summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/BasicAliasAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/BasicAliasAnalysis.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/BasicAliasAnalysis.cpp758
1 files changed, 758 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/BasicAliasAnalysis.cpp b/contrib/llvm/lib/Analysis/BasicAliasAnalysis.cpp
new file mode 100644
index 0000000..cfe7a1c
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/BasicAliasAnalysis.cpp
@@ -0,0 +1,758 @@
+//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the default implementation of the Alias Analysis interface
+// that simply implements a few identities (two different globals cannot alias,
+// etc), but otherwise does no analysis.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Instructions.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Operator.h"
+#include "llvm/Pass.h"
+#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <algorithm>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Useful predicates
+//===----------------------------------------------------------------------===//
+
+/// isKnownNonNull - Return true if we know that the specified value is never
+/// null.
+static bool isKnownNonNull(const Value *V) {
+ // Alloca never returns null, malloc might.
+ if (isa<AllocaInst>(V)) return true;
+
+ // A byval argument is never null.
+ if (const Argument *A = dyn_cast<Argument>(V))
+ return A->hasByValAttr();
+
+ // Global values are not null unless extern weak.
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
+ return !GV->hasExternalWeakLinkage();
+ return false;
+}
+
+/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
+/// object that never escapes from the function.
+static bool isNonEscapingLocalObject(const Value *V) {
+ // If this is a local allocation, check to see if it escapes.
+ if (isa<AllocaInst>(V) || isNoAliasCall(V))
+ // Set StoreCaptures to True so that we can assume in our callers that the
+ // pointer is not the result of a load instruction. Currently
+ // PointerMayBeCaptured doesn't have any special analysis for the
+ // StoreCaptures=false case; if it did, our callers could be refined to be
+ // more precise.
+ return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
+
+ // If this is an argument that corresponds to a byval or noalias argument,
+ // then it has not escaped before entering the function. Check if it escapes
+ // inside the function.
+ if (const Argument *A = dyn_cast<Argument>(V))
+ if (A->hasByValAttr() || A->hasNoAliasAttr()) {
+ // Don't bother analyzing arguments already known not to escape.
+ if (A->hasNoCaptureAttr())
+ return true;
+ return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
+ }
+ return false;
+}
+
+
+/// isObjectSmallerThan - Return true if we can prove that the object specified
+/// by V is smaller than Size.
+static bool isObjectSmallerThan(const Value *V, unsigned Size,
+ const TargetData &TD) {
+ const Type *AccessTy;
+ if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
+ AccessTy = GV->getType()->getElementType();
+ } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
+ if (!AI->isArrayAllocation())
+ AccessTy = AI->getType()->getElementType();
+ else
+ return false;
+ } else if (const CallInst* CI = extractMallocCall(V)) {
+ if (!isArrayMalloc(V, &TD))
+ // The size is the argument to the malloc call.
+ if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getOperand(1)))
+ return (C->getZExtValue() < Size);
+ return false;
+ } else if (const Argument *A = dyn_cast<Argument>(V)) {
+ if (A->hasByValAttr())
+ AccessTy = cast<PointerType>(A->getType())->getElementType();
+ else
+ return false;
+ } else {
+ return false;
+ }
+
+ if (AccessTy->isSized())
+ return TD.getTypeAllocSize(AccessTy) < Size;
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// NoAA Pass
+//===----------------------------------------------------------------------===//
+
+namespace {
+ /// NoAA - This class implements the -no-aa pass, which always returns "I
+ /// don't know" for alias queries. NoAA is unlike other alias analysis
+ /// implementations, in that it does not chain to a previous analysis. As
+ /// such it doesn't follow many of the rules that other alias analyses must.
+ ///
+ struct NoAA : public ImmutablePass, public AliasAnalysis {
+ static char ID; // Class identification, replacement for typeinfo
+ NoAA() : ImmutablePass(&ID) {}
+ explicit NoAA(void *PID) : ImmutablePass(PID) { }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ }
+
+ virtual void initializePass() {
+ TD = getAnalysisIfAvailable<TargetData>();
+ }
+
+ virtual AliasResult alias(const Value *V1, unsigned V1Size,
+ const Value *V2, unsigned V2Size) {
+ return MayAlias;
+ }
+
+ virtual void getArgumentAccesses(Function *F, CallSite CS,
+ std::vector<PointerAccessInfo> &Info) {
+ llvm_unreachable("This method may not be called on this function!");
+ }
+
+ virtual bool pointsToConstantMemory(const Value *P) { return false; }
+ virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
+ return ModRef;
+ }
+ virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
+ return ModRef;
+ }
+
+ virtual void deleteValue(Value *V) {}
+ virtual void copyValue(Value *From, Value *To) {}
+
+ /// getAdjustedAnalysisPointer - This method is used when a pass implements
+ /// an analysis interface through multiple inheritance. If needed, it should
+ /// override this to adjust the this pointer as needed for the specified pass
+ /// info.
+ virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) {
+ if (PI->isPassID(&AliasAnalysis::ID))
+ return (AliasAnalysis*)this;
+ return this;
+ }
+ };
+} // End of anonymous namespace
+
+// Register this pass...
+char NoAA::ID = 0;
+static RegisterPass<NoAA>
+U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
+
+// Declare that we implement the AliasAnalysis interface
+static RegisterAnalysisGroup<AliasAnalysis> V(U);
+
+ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
+
+//===----------------------------------------------------------------------===//
+// BasicAA Pass
+//===----------------------------------------------------------------------===//
+
+namespace {
+ /// BasicAliasAnalysis - This is the default alias analysis implementation.
+ /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
+ /// derives from the NoAA class.
+ struct BasicAliasAnalysis : public NoAA {
+ static char ID; // Class identification, replacement for typeinfo
+ BasicAliasAnalysis() : NoAA(&ID) {}
+ AliasResult alias(const Value *V1, unsigned V1Size,
+ const Value *V2, unsigned V2Size) {
+ assert(VisitedPHIs.empty() && "VisitedPHIs must be cleared after use!");
+ AliasResult Alias = aliasCheck(V1, V1Size, V2, V2Size);
+ VisitedPHIs.clear();
+ return Alias;
+ }
+
+ ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
+ ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
+
+ /// pointsToConstantMemory - Chase pointers until we find a (constant
+ /// global) or not.
+ bool pointsToConstantMemory(const Value *P);
+
+ /// getAdjustedAnalysisPointer - This method is used when a pass implements
+ /// an analysis interface through multiple inheritance. If needed, it should
+ /// override this to adjust the this pointer as needed for the specified pass
+ /// info.
+ virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) {
+ if (PI->isPassID(&AliasAnalysis::ID))
+ return (AliasAnalysis*)this;
+ return this;
+ }
+
+ private:
+ // VisitedPHIs - Track PHI nodes visited by a aliasCheck() call.
+ SmallPtrSet<const Value*, 16> VisitedPHIs;
+
+ // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
+ // instruction against another.
+ AliasResult aliasGEP(const GEPOperator *V1, unsigned V1Size,
+ const Value *V2, unsigned V2Size,
+ const Value *UnderlyingV1, const Value *UnderlyingV2);
+
+ // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
+ // instruction against another.
+ AliasResult aliasPHI(const PHINode *PN, unsigned PNSize,
+ const Value *V2, unsigned V2Size);
+
+ /// aliasSelect - Disambiguate a Select instruction against another value.
+ AliasResult aliasSelect(const SelectInst *SI, unsigned SISize,
+ const Value *V2, unsigned V2Size);
+
+ AliasResult aliasCheck(const Value *V1, unsigned V1Size,
+ const Value *V2, unsigned V2Size);
+ };
+} // End of anonymous namespace
+
+// Register this pass...
+char BasicAliasAnalysis::ID = 0;
+static RegisterPass<BasicAliasAnalysis>
+X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
+
+// Declare that we implement the AliasAnalysis interface
+static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
+
+ImmutablePass *llvm::createBasicAliasAnalysisPass() {
+ return new BasicAliasAnalysis();
+}
+
+
+/// pointsToConstantMemory - Chase pointers until we find a (constant
+/// global) or not.
+bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
+ if (const GlobalVariable *GV =
+ dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
+ // Note: this doesn't require GV to be "ODR" because it isn't legal for a
+ // global to be marked constant in some modules and non-constant in others.
+ // GV may even be a declaration, not a definition.
+ return GV->isConstant();
+ return false;
+}
+
+
+/// getModRefInfo - Check to see if the specified callsite can clobber the
+/// specified memory object. Since we only look at local properties of this
+/// function, we really can't say much about this query. We do, however, use
+/// simple "address taken" analysis on local objects.
+AliasAnalysis::ModRefResult
+BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
+ const Value *Object = P->getUnderlyingObject();
+
+ // If this is a tail call and P points to a stack location, we know that
+ // the tail call cannot access or modify the local stack.
+ // We cannot exclude byval arguments here; these belong to the caller of
+ // the current function not to the current function, and a tail callee
+ // may reference them.
+ if (isa<AllocaInst>(Object))
+ if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
+ if (CI->isTailCall())
+ return NoModRef;
+
+ // If the pointer is to a locally allocated object that does not escape,
+ // then the call can not mod/ref the pointer unless the call takes the pointer
+ // as an argument, and itself doesn't capture it.
+ if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
+ isNonEscapingLocalObject(Object)) {
+ bool PassedAsArg = false;
+ unsigned ArgNo = 0;
+ for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
+ CI != CE; ++CI, ++ArgNo) {
+ // Only look at the no-capture pointer arguments.
+ if (!(*CI)->getType()->isPointerTy() ||
+ !CS.paramHasAttr(ArgNo+1, Attribute::NoCapture))
+ continue;
+
+ // If this is a no-capture pointer argument, see if we can tell that it
+ // is impossible to alias the pointer we're checking. If not, we have to
+ // assume that the call could touch the pointer, even though it doesn't
+ // escape.
+ if (!isNoAlias(cast<Value>(CI), ~0U, P, ~0U)) {
+ PassedAsArg = true;
+ break;
+ }
+ }
+
+ if (!PassedAsArg)
+ return NoModRef;
+ }
+
+ // Finally, handle specific knowledge of intrinsics.
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
+ if (II == 0)
+ return AliasAnalysis::getModRefInfo(CS, P, Size);
+
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::memcpy:
+ case Intrinsic::memmove: {
+ unsigned Len = ~0U;
+ if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getOperand(3)))
+ Len = LenCI->getZExtValue();
+ Value *Dest = II->getOperand(1);
+ Value *Src = II->getOperand(2);
+ if (isNoAlias(Dest, Len, P, Size)) {
+ if (isNoAlias(Src, Len, P, Size))
+ return NoModRef;
+ return Ref;
+ }
+ break;
+ }
+ case Intrinsic::memset:
+ // Since memset is 'accesses arguments' only, the AliasAnalysis base class
+ // will handle it for the variable length case.
+ if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getOperand(3))) {
+ unsigned Len = LenCI->getZExtValue();
+ Value *Dest = II->getOperand(1);
+ if (isNoAlias(Dest, Len, P, Size))
+ return NoModRef;
+ }
+ break;
+ case Intrinsic::atomic_cmp_swap:
+ case Intrinsic::atomic_swap:
+ case Intrinsic::atomic_load_add:
+ case Intrinsic::atomic_load_sub:
+ case Intrinsic::atomic_load_and:
+ case Intrinsic::atomic_load_nand:
+ case Intrinsic::atomic_load_or:
+ case Intrinsic::atomic_load_xor:
+ case Intrinsic::atomic_load_max:
+ case Intrinsic::atomic_load_min:
+ case Intrinsic::atomic_load_umax:
+ case Intrinsic::atomic_load_umin:
+ if (TD) {
+ Value *Op1 = II->getOperand(1);
+ unsigned Op1Size = TD->getTypeStoreSize(Op1->getType());
+ if (isNoAlias(Op1, Op1Size, P, Size))
+ return NoModRef;
+ }
+ break;
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ case Intrinsic::invariant_start: {
+ unsigned PtrSize = cast<ConstantInt>(II->getOperand(1))->getZExtValue();
+ if (isNoAlias(II->getOperand(2), PtrSize, P, Size))
+ return NoModRef;
+ break;
+ }
+ case Intrinsic::invariant_end: {
+ unsigned PtrSize = cast<ConstantInt>(II->getOperand(2))->getZExtValue();
+ if (isNoAlias(II->getOperand(3), PtrSize, P, Size))
+ return NoModRef;
+ break;
+ }
+ }
+
+ // The AliasAnalysis base class has some smarts, lets use them.
+ return AliasAnalysis::getModRefInfo(CS, P, Size);
+}
+
+
+AliasAnalysis::ModRefResult
+BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
+ // If CS1 or CS2 are readnone, they don't interact.
+ ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
+ if (CS1B == DoesNotAccessMemory) return NoModRef;
+
+ ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
+ if (CS2B == DoesNotAccessMemory) return NoModRef;
+
+ // If they both only read from memory, just return ref.
+ if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
+ return Ref;
+
+ // Otherwise, fall back to NoAA (mod+ref).
+ return NoAA::getModRefInfo(CS1, CS2);
+}
+
+/// GetIndiceDifference - Dest and Src are the variable indices from two
+/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
+/// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic
+/// difference between the two pointers.
+static void GetIndiceDifference(
+ SmallVectorImpl<std::pair<const Value*, int64_t> > &Dest,
+ const SmallVectorImpl<std::pair<const Value*, int64_t> > &Src) {
+ if (Src.empty()) return;
+
+ for (unsigned i = 0, e = Src.size(); i != e; ++i) {
+ const Value *V = Src[i].first;
+ int64_t Scale = Src[i].second;
+
+ // Find V in Dest. This is N^2, but pointer indices almost never have more
+ // than a few variable indexes.
+ for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
+ if (Dest[j].first != V) continue;
+
+ // If we found it, subtract off Scale V's from the entry in Dest. If it
+ // goes to zero, remove the entry.
+ if (Dest[j].second != Scale)
+ Dest[j].second -= Scale;
+ else
+ Dest.erase(Dest.begin()+j);
+ Scale = 0;
+ break;
+ }
+
+ // If we didn't consume this entry, add it to the end of the Dest list.
+ if (Scale)
+ Dest.push_back(std::make_pair(V, -Scale));
+ }
+}
+
+/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
+/// against another pointer. We know that V1 is a GEP, but we don't know
+/// anything about V2. UnderlyingV1 is GEP1->getUnderlyingObject(),
+/// UnderlyingV2 is the same for V2.
+///
+AliasAnalysis::AliasResult
+BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, unsigned V1Size,
+ const Value *V2, unsigned V2Size,
+ const Value *UnderlyingV1,
+ const Value *UnderlyingV2) {
+ int64_t GEP1BaseOffset;
+ SmallVector<std::pair<const Value*, int64_t>, 4> GEP1VariableIndices;
+
+ // If we have two gep instructions with must-alias'ing base pointers, figure
+ // out if the indexes to the GEP tell us anything about the derived pointer.
+ if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
+ // Do the base pointers alias?
+ AliasResult BaseAlias = aliasCheck(UnderlyingV1, ~0U, UnderlyingV2, ~0U);
+
+ // If we get a No or May, then return it immediately, no amount of analysis
+ // will improve this situation.
+ if (BaseAlias != MustAlias) return BaseAlias;
+
+ // Otherwise, we have a MustAlias. Since the base pointers alias each other
+ // exactly, see if the computed offset from the common pointer tells us
+ // about the relation of the resulting pointer.
+ const Value *GEP1BasePtr =
+ DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
+
+ int64_t GEP2BaseOffset;
+ SmallVector<std::pair<const Value*, int64_t>, 4> GEP2VariableIndices;
+ const Value *GEP2BasePtr =
+ DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
+
+ // If DecomposeGEPExpression isn't able to look all the way through the
+ // addressing operation, we must not have TD and this is too complex for us
+ // to handle without it.
+ if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
+ assert(TD == 0 &&
+ "DecomposeGEPExpression and getUnderlyingObject disagree!");
+ return MayAlias;
+ }
+
+ // Subtract the GEP2 pointer from the GEP1 pointer to find out their
+ // symbolic difference.
+ GEP1BaseOffset -= GEP2BaseOffset;
+ GetIndiceDifference(GEP1VariableIndices, GEP2VariableIndices);
+
+ } else {
+ // Check to see if these two pointers are related by the getelementptr
+ // instruction. If one pointer is a GEP with a non-zero index of the other
+ // pointer, we know they cannot alias.
+
+ // If both accesses are unknown size, we can't do anything useful here.
+ if (V1Size == ~0U && V2Size == ~0U)
+ return MayAlias;
+
+ AliasResult R = aliasCheck(UnderlyingV1, ~0U, V2, V2Size);
+ if (R != MustAlias)
+ // If V2 may alias GEP base pointer, conservatively returns MayAlias.
+ // If V2 is known not to alias GEP base pointer, then the two values
+ // cannot alias per GEP semantics: "A pointer value formed from a
+ // getelementptr instruction is associated with the addresses associated
+ // with the first operand of the getelementptr".
+ return R;
+
+ const Value *GEP1BasePtr =
+ DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
+
+ // If DecomposeGEPExpression isn't able to look all the way through the
+ // addressing operation, we must not have TD and this is too complex for us
+ // to handle without it.
+ if (GEP1BasePtr != UnderlyingV1) {
+ assert(TD == 0 &&
+ "DecomposeGEPExpression and getUnderlyingObject disagree!");
+ return MayAlias;
+ }
+ }
+
+ // In the two GEP Case, if there is no difference in the offsets of the
+ // computed pointers, the resultant pointers are a must alias. This
+ // hapens when we have two lexically identical GEP's (for example).
+ //
+ // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
+ // must aliases the GEP, the end result is a must alias also.
+ if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
+ return MustAlias;
+
+ // If we have a known constant offset, see if this offset is larger than the
+ // access size being queried. If so, and if no variable indices can remove
+ // pieces of this constant, then we know we have a no-alias. For example,
+ // &A[100] != &A.
+
+ // In order to handle cases like &A[100][i] where i is an out of range
+ // subscript, we have to ignore all constant offset pieces that are a multiple
+ // of a scaled index. Do this by removing constant offsets that are a
+ // multiple of any of our variable indices. This allows us to transform
+ // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1
+ // provides an offset of 4 bytes (assuming a <= 4 byte access).
+ for (unsigned i = 0, e = GEP1VariableIndices.size();
+ i != e && GEP1BaseOffset;++i)
+ if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].second)
+ GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].second;
+
+ // If our known offset is bigger than the access size, we know we don't have
+ // an alias.
+ if (GEP1BaseOffset) {
+ if (GEP1BaseOffset >= (int64_t)V2Size ||
+ GEP1BaseOffset <= -(int64_t)V1Size)
+ return NoAlias;
+ }
+
+ return MayAlias;
+}
+
+/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
+/// instruction against another.
+AliasAnalysis::AliasResult
+BasicAliasAnalysis::aliasSelect(const SelectInst *SI, unsigned SISize,
+ const Value *V2, unsigned V2Size) {
+ // If the values are Selects with the same condition, we can do a more precise
+ // check: just check for aliases between the values on corresponding arms.
+ if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
+ if (SI->getCondition() == SI2->getCondition()) {
+ AliasResult Alias =
+ aliasCheck(SI->getTrueValue(), SISize,
+ SI2->getTrueValue(), V2Size);
+ if (Alias == MayAlias)
+ return MayAlias;
+ AliasResult ThisAlias =
+ aliasCheck(SI->getFalseValue(), SISize,
+ SI2->getFalseValue(), V2Size);
+ if (ThisAlias != Alias)
+ return MayAlias;
+ return Alias;
+ }
+
+ // If both arms of the Select node NoAlias or MustAlias V2, then returns
+ // NoAlias / MustAlias. Otherwise, returns MayAlias.
+ AliasResult Alias =
+ aliasCheck(SI->getTrueValue(), SISize, V2, V2Size);
+ if (Alias == MayAlias)
+ return MayAlias;
+ AliasResult ThisAlias =
+ aliasCheck(SI->getFalseValue(), SISize, V2, V2Size);
+ if (ThisAlias != Alias)
+ return MayAlias;
+ return Alias;
+}
+
+// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
+// against another.
+AliasAnalysis::AliasResult
+BasicAliasAnalysis::aliasPHI(const PHINode *PN, unsigned PNSize,
+ const Value *V2, unsigned V2Size) {
+ // The PHI node has already been visited, avoid recursion any further.
+ if (!VisitedPHIs.insert(PN))
+ return MayAlias;
+
+ // If the values are PHIs in the same block, we can do a more precise
+ // as well as efficient check: just check for aliases between the values
+ // on corresponding edges.
+ if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
+ if (PN2->getParent() == PN->getParent()) {
+ AliasResult Alias =
+ aliasCheck(PN->getIncomingValue(0), PNSize,
+ PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
+ V2Size);
+ if (Alias == MayAlias)
+ return MayAlias;
+ for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
+ AliasResult ThisAlias =
+ aliasCheck(PN->getIncomingValue(i), PNSize,
+ PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
+ V2Size);
+ if (ThisAlias != Alias)
+ return MayAlias;
+ }
+ return Alias;
+ }
+
+ SmallPtrSet<Value*, 4> UniqueSrc;
+ SmallVector<Value*, 4> V1Srcs;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *PV1 = PN->getIncomingValue(i);
+ if (isa<PHINode>(PV1))
+ // If any of the source itself is a PHI, return MayAlias conservatively
+ // to avoid compile time explosion. The worst possible case is if both
+ // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
+ // and 'n' are the number of PHI sources.
+ return MayAlias;
+ if (UniqueSrc.insert(PV1))
+ V1Srcs.push_back(PV1);
+ }
+
+ AliasResult Alias = aliasCheck(V2, V2Size, V1Srcs[0], PNSize);
+ // Early exit if the check of the first PHI source against V2 is MayAlias.
+ // Other results are not possible.
+ if (Alias == MayAlias)
+ return MayAlias;
+
+ // If all sources of the PHI node NoAlias or MustAlias V2, then returns
+ // NoAlias / MustAlias. Otherwise, returns MayAlias.
+ for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
+ Value *V = V1Srcs[i];
+
+ // If V2 is a PHI, the recursive case will have been caught in the
+ // above aliasCheck call, so these subsequent calls to aliasCheck
+ // don't need to assume that V2 is being visited recursively.
+ VisitedPHIs.erase(V2);
+
+ AliasResult ThisAlias = aliasCheck(V2, V2Size, V, PNSize);
+ if (ThisAlias != Alias || ThisAlias == MayAlias)
+ return MayAlias;
+ }
+
+ return Alias;
+}
+
+// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
+// such as array references.
+//
+AliasAnalysis::AliasResult
+BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size,
+ const Value *V2, unsigned V2Size) {
+ // If either of the memory references is empty, it doesn't matter what the
+ // pointer values are.
+ if (V1Size == 0 || V2Size == 0)
+ return NoAlias;
+
+ // Strip off any casts if they exist.
+ V1 = V1->stripPointerCasts();
+ V2 = V2->stripPointerCasts();
+
+ // Are we checking for alias of the same value?
+ if (V1 == V2) return MustAlias;
+
+ if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
+ return NoAlias; // Scalars cannot alias each other
+
+ // Figure out what objects these things are pointing to if we can.
+ const Value *O1 = V1->getUnderlyingObject();
+ const Value *O2 = V2->getUnderlyingObject();
+
+ // Null values in the default address space don't point to any object, so they
+ // don't alias any other pointer.
+ if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
+ if (CPN->getType()->getAddressSpace() == 0)
+ return NoAlias;
+ if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
+ if (CPN->getType()->getAddressSpace() == 0)
+ return NoAlias;
+
+ if (O1 != O2) {
+ // If V1/V2 point to two different objects we know that we have no alias.
+ if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
+ return NoAlias;
+
+ // Constant pointers can't alias with non-const isIdentifiedObject objects.
+ if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
+ (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
+ return NoAlias;
+
+ // Arguments can't alias with local allocations or noalias calls.
+ if ((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
+ (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1))))
+ return NoAlias;
+
+ // Most objects can't alias null.
+ if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
+ (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
+ return NoAlias;
+ }
+
+ // If the size of one access is larger than the entire object on the other
+ // side, then we know such behavior is undefined and can assume no alias.
+ if (TD)
+ if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, *TD)) ||
+ (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, *TD)))
+ return NoAlias;
+
+ // If one pointer is the result of a call/invoke or load and the other is a
+ // non-escaping local object, then we know the object couldn't escape to a
+ // point where the call could return it. The load case works because
+ // isNonEscapingLocalObject considers all stores to be escapes (it
+ // passes true for the StoreCaptures argument to PointerMayBeCaptured).
+ if (O1 != O2) {
+ if ((isa<CallInst>(O1) || isa<InvokeInst>(O1) || isa<LoadInst>(O1) ||
+ isa<Argument>(O1)) &&
+ isNonEscapingLocalObject(O2))
+ return NoAlias;
+ if ((isa<CallInst>(O2) || isa<InvokeInst>(O2) || isa<LoadInst>(O2) ||
+ isa<Argument>(O2)) &&
+ isNonEscapingLocalObject(O1))
+ return NoAlias;
+ }
+
+ // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
+ // GEP can't simplify, we don't even look at the PHI cases.
+ if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
+ std::swap(V1, V2);
+ std::swap(V1Size, V2Size);
+ std::swap(O1, O2);
+ }
+ if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1))
+ return aliasGEP(GV1, V1Size, V2, V2Size, O1, O2);
+
+ if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
+ std::swap(V1, V2);
+ std::swap(V1Size, V2Size);
+ }
+ if (const PHINode *PN = dyn_cast<PHINode>(V1))
+ return aliasPHI(PN, V1Size, V2, V2Size);
+
+ if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
+ std::swap(V1, V2);
+ std::swap(V1Size, V2Size);
+ }
+ if (const SelectInst *S1 = dyn_cast<SelectInst>(V1))
+ return aliasSelect(S1, V1Size, V2, V2Size);
+
+ return MayAlias;
+}
+
+// Make sure that anything that uses AliasAnalysis pulls in this file.
+DEFINING_FILE_FOR(BasicAliasAnalysis)
OpenPOWER on IntegriCloud