diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/BasicAliasAnalysis.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/BasicAliasAnalysis.cpp | 584 |
1 files changed, 425 insertions, 159 deletions
diff --git a/contrib/llvm/lib/Analysis/BasicAliasAnalysis.cpp b/contrib/llvm/lib/Analysis/BasicAliasAnalysis.cpp index 4f53a6d..113c72b 100644 --- a/contrib/llvm/lib/Analysis/BasicAliasAnalysis.cpp +++ b/contrib/llvm/lib/Analysis/BasicAliasAnalysis.cpp @@ -18,6 +18,7 @@ #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" +#include "llvm/GlobalAlias.h" #include "llvm/GlobalVariable.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" @@ -30,6 +31,7 @@ #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" #include <algorithm> using namespace llvm; @@ -137,8 +139,8 @@ namespace { /// struct NoAA : public ImmutablePass, public AliasAnalysis { static char ID; // Class identification, replacement for typeinfo - NoAA() : ImmutablePass(&ID) {} - explicit NoAA(void *PID) : ImmutablePass(PID) { } + NoAA() : ImmutablePass(ID) {} + explicit NoAA(char &PID) : ImmutablePass(PID) { } virtual void getAnalysisUsage(AnalysisUsage &AU) const { } @@ -152,16 +154,20 @@ namespace { return MayAlias; } - virtual void getArgumentAccesses(Function *F, CallSite CS, - std::vector<PointerAccessInfo> &Info) { - llvm_unreachable("This method may not be called on this function!"); + virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS) { + return UnknownModRefBehavior; + } + virtual ModRefBehavior getModRefBehavior(const Function *F) { + return UnknownModRefBehavior; } virtual bool pointsToConstantMemory(const Value *P) { return false; } - virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) { + virtual ModRefResult getModRefInfo(ImmutableCallSite CS, + const Value *P, unsigned Size) { return ModRef; } - virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) { + virtual ModRefResult getModRefInfo(ImmutableCallSite CS1, + ImmutableCallSite CS2) { return ModRef; } @@ -169,11 +175,11 @@ namespace { virtual void copyValue(Value *From, Value *To) {} /// getAdjustedAnalysisPointer - This method is used when a pass implements - /// an analysis interface through multiple inheritance. If needed, it should - /// override this to adjust the this pointer as needed for the specified pass - /// info. - virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) { - if (PI->isPassID(&AliasAnalysis::ID)) + /// an analysis interface through multiple inheritance. If needed, it + /// should override this to adjust the this pointer as needed for the + /// specified pass info. + virtual void *getAdjustedAnalysisPointer(const void *ID) { + if (ID == &AliasAnalysis::ID) return (AliasAnalysis*)this; return this; } @@ -182,15 +188,279 @@ namespace { // Register this pass... char NoAA::ID = 0; -static RegisterPass<NoAA> -U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true); - -// Declare that we implement the AliasAnalysis interface -static RegisterAnalysisGroup<AliasAnalysis> V(U); +INITIALIZE_AG_PASS(NoAA, AliasAnalysis, "no-aa", + "No Alias Analysis (always returns 'may' alias)", + true, true, false); ImmutablePass *llvm::createNoAAPass() { return new NoAA(); } //===----------------------------------------------------------------------===// +// GetElementPtr Instruction Decomposition and Analysis +//===----------------------------------------------------------------------===// + +namespace { + enum ExtensionKind { + EK_NotExtended, + EK_SignExt, + EK_ZeroExt + }; + + struct VariableGEPIndex { + const Value *V; + ExtensionKind Extension; + int64_t Scale; + }; +} + + +/// GetLinearExpression - Analyze the specified value as a linear expression: +/// "A*V + B", where A and B are constant integers. Return the scale and offset +/// values as APInts and return V as a Value*, and return whether we looked +/// through any sign or zero extends. The incoming Value is known to have +/// IntegerType and it may already be sign or zero extended. +/// +/// Note that this looks through extends, so the high bits may not be +/// represented in the result. +static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, + ExtensionKind &Extension, + const TargetData &TD, unsigned Depth) { + assert(V->getType()->isIntegerTy() && "Not an integer value"); + + // Limit our recursion depth. + if (Depth == 6) { + Scale = 1; + Offset = 0; + return V; + } + + if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { + if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { + switch (BOp->getOpcode()) { + default: break; + case Instruction::Or: + // X|C == X+C if all the bits in C are unset in X. Otherwise we can't + // analyze it. + if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD)) + break; + // FALL THROUGH. + case Instruction::Add: + V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, + TD, Depth+1); + Offset += RHSC->getValue(); + return V; + case Instruction::Mul: + V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, + TD, Depth+1); + Offset *= RHSC->getValue(); + Scale *= RHSC->getValue(); + return V; + case Instruction::Shl: + V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, + TD, Depth+1); + Offset <<= RHSC->getValue().getLimitedValue(); + Scale <<= RHSC->getValue().getLimitedValue(); + return V; + } + } + } + + // Since GEP indices are sign extended anyway, we don't care about the high + // bits of a sign or zero extended value - just scales and offsets. The + // extensions have to be consistent though. + if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) || + (isa<ZExtInst>(V) && Extension != EK_SignExt)) { + Value *CastOp = cast<CastInst>(V)->getOperand(0); + unsigned OldWidth = Scale.getBitWidth(); + unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); + Scale.trunc(SmallWidth); + Offset.trunc(SmallWidth); + Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt; + + Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, + TD, Depth+1); + Scale.zext(OldWidth); + Offset.zext(OldWidth); + + return Result; + } + + Scale = 1; + Offset = 0; + return V; +} + +/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it +/// into a base pointer with a constant offset and a number of scaled symbolic +/// offsets. +/// +/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in +/// the VarIndices vector) are Value*'s that are known to be scaled by the +/// specified amount, but which may have other unrepresented high bits. As such, +/// the gep cannot necessarily be reconstructed from its decomposed form. +/// +/// When TargetData is around, this function is capable of analyzing everything +/// that Value::getUnderlyingObject() can look through. When not, it just looks +/// through pointer casts. +/// +static const Value * +DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, + SmallVectorImpl<VariableGEPIndex> &VarIndices, + const TargetData *TD) { + // Limit recursion depth to limit compile time in crazy cases. + unsigned MaxLookup = 6; + + BaseOffs = 0; + do { + // See if this is a bitcast or GEP. + const Operator *Op = dyn_cast<Operator>(V); + if (Op == 0) { + // The only non-operator case we can handle are GlobalAliases. + if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { + if (!GA->mayBeOverridden()) { + V = GA->getAliasee(); + continue; + } + } + return V; + } + + if (Op->getOpcode() == Instruction::BitCast) { + V = Op->getOperand(0); + continue; + } + + const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); + if (GEPOp == 0) + return V; + + // Don't attempt to analyze GEPs over unsized objects. + if (!cast<PointerType>(GEPOp->getOperand(0)->getType()) + ->getElementType()->isSized()) + return V; + + // If we are lacking TargetData information, we can't compute the offets of + // elements computed by GEPs. However, we can handle bitcast equivalent + // GEPs. + if (TD == 0) { + if (!GEPOp->hasAllZeroIndices()) + return V; + V = GEPOp->getOperand(0); + continue; + } + + // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. + gep_type_iterator GTI = gep_type_begin(GEPOp); + for (User::const_op_iterator I = GEPOp->op_begin()+1, + E = GEPOp->op_end(); I != E; ++I) { + Value *Index = *I; + // Compute the (potentially symbolic) offset in bytes for this index. + if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { + // For a struct, add the member offset. + unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); + if (FieldNo == 0) continue; + + BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo); + continue; + } + + // For an array/pointer, add the element offset, explicitly scaled. + if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { + if (CIdx->isZero()) continue; + BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); + continue; + } + + uint64_t Scale = TD->getTypeAllocSize(*GTI); + ExtensionKind Extension = EK_NotExtended; + + // If the integer type is smaller than the pointer size, it is implicitly + // sign extended to pointer size. + unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth(); + if (TD->getPointerSizeInBits() > Width) + Extension = EK_SignExt; + + // Use GetLinearExpression to decompose the index into a C1*V+C2 form. + APInt IndexScale(Width, 0), IndexOffset(Width, 0); + Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, + *TD, 0); + + // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. + // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. + BaseOffs += IndexOffset.getZExtValue()*Scale; + Scale *= IndexScale.getZExtValue(); + + + // If we already had an occurrance of this index variable, merge this + // scale into it. For example, we want to handle: + // A[x][x] -> x*16 + x*4 -> x*20 + // This also ensures that 'x' only appears in the index list once. + for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { + if (VarIndices[i].V == Index && + VarIndices[i].Extension == Extension) { + Scale += VarIndices[i].Scale; + VarIndices.erase(VarIndices.begin()+i); + break; + } + } + + // Make sure that we have a scale that makes sense for this target's + // pointer size. + if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) { + Scale <<= ShiftBits; + Scale >>= ShiftBits; + } + + if (Scale) { + VariableGEPIndex Entry = {Index, Extension, Scale}; + VarIndices.push_back(Entry); + } + } + + // Analyze the base pointer next. + V = GEPOp->getOperand(0); + } while (--MaxLookup); + + // If the chain of expressions is too deep, just return early. + return V; +} + +/// GetIndexDifference - Dest and Src are the variable indices from two +/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base +/// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic +/// difference between the two pointers. +static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest, + const SmallVectorImpl<VariableGEPIndex> &Src) { + if (Src.empty()) return; + + for (unsigned i = 0, e = Src.size(); i != e; ++i) { + const Value *V = Src[i].V; + ExtensionKind Extension = Src[i].Extension; + int64_t Scale = Src[i].Scale; + + // Find V in Dest. This is N^2, but pointer indices almost never have more + // than a few variable indexes. + for (unsigned j = 0, e = Dest.size(); j != e; ++j) { + if (Dest[j].V != V || Dest[j].Extension != Extension) continue; + + // If we found it, subtract off Scale V's from the entry in Dest. If it + // goes to zero, remove the entry. + if (Dest[j].Scale != Scale) + Dest[j].Scale -= Scale; + else + Dest.erase(Dest.begin()+j); + Scale = 0; + break; + } + + // If we didn't consume this entry, add it to the end of the Dest list. + if (Scale) { + VariableGEPIndex Entry = { V, Extension, -Scale }; + Dest.push_back(Entry); + } + } +} + +//===----------------------------------------------------------------------===// // BasicAliasAnalysis Pass //===----------------------------------------------------------------------===// @@ -220,10 +490,10 @@ namespace { /// derives from the NoAA class. struct BasicAliasAnalysis : public NoAA { static char ID; // Class identification, replacement for typeinfo - BasicAliasAnalysis() : NoAA(&ID) {} + BasicAliasAnalysis() : NoAA(ID) {} - AliasResult alias(const Value *V1, unsigned V1Size, - const Value *V2, unsigned V2Size) { + virtual AliasResult alias(const Value *V1, unsigned V1Size, + const Value *V2, unsigned V2Size) { assert(Visited.empty() && "Visited must be cleared after use!"); assert(notDifferentParent(V1, V2) && "BasicAliasAnalysis doesn't support interprocedural queries."); @@ -232,19 +502,33 @@ namespace { return Alias; } - ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size); - ModRefResult getModRefInfo(CallSite CS1, CallSite CS2); + virtual ModRefResult getModRefInfo(ImmutableCallSite CS, + const Value *P, unsigned Size); + + virtual ModRefResult getModRefInfo(ImmutableCallSite CS1, + ImmutableCallSite CS2) { + // The AliasAnalysis base class has some smarts, lets use them. + return AliasAnalysis::getModRefInfo(CS1, CS2); + } /// pointsToConstantMemory - Chase pointers until we find a (constant /// global) or not. - bool pointsToConstantMemory(const Value *P); + virtual bool pointsToConstantMemory(const Value *P); + + /// getModRefBehavior - Return the behavior when calling the given + /// call site. + virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS); + + /// getModRefBehavior - Return the behavior when calling the given function. + /// For use when the call site is not known. + virtual ModRefBehavior getModRefBehavior(const Function *F); /// getAdjustedAnalysisPointer - This method is used when a pass implements - /// an analysis interface through multiple inheritance. If needed, it should - /// override this to adjust the this pointer as needed for the specified pass - /// info. - virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) { - if (PI->isPassID(&AliasAnalysis::ID)) + /// an analysis interface through multiple inheritance. If needed, it + /// should override this to adjust the this pointer as needed for the + /// specified pass info. + virtual void *getAdjustedAnalysisPointer(const void *ID) { + if (ID == &AliasAnalysis::ID) return (AliasAnalysis*)this; return this; } @@ -275,11 +559,9 @@ namespace { // Register this pass... char BasicAliasAnalysis::ID = 0; -static RegisterPass<BasicAliasAnalysis> -X("basicaa", "Basic Alias Analysis (default AA impl)", false, true); - -// Declare that we implement the AliasAnalysis interface -static RegisterAnalysisGroup<AliasAnalysis, true> Y(X); +INITIALIZE_AG_PASS(BasicAliasAnalysis, AliasAnalysis, "basicaa", + "Basic Alias Analysis (default AA impl)", + false, true, true); ImmutablePass *llvm::createBasicAliasAnalysisPass() { return new BasicAliasAnalysis(); @@ -295,16 +577,50 @@ bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) { // global to be marked constant in some modules and non-constant in others. // GV may even be a declaration, not a definition. return GV->isConstant(); - return false; + + return NoAA::pointsToConstantMemory(P); } +/// getModRefBehavior - Return the behavior when calling the given call site. +AliasAnalysis::ModRefBehavior +BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { + if (CS.doesNotAccessMemory()) + // Can't do better than this. + return DoesNotAccessMemory; + + ModRefBehavior Min = UnknownModRefBehavior; + + // If the callsite knows it only reads memory, don't return worse + // than that. + if (CS.onlyReadsMemory()) + Min = OnlyReadsMemory; + + // The AliasAnalysis base class has some smarts, lets use them. + return std::min(AliasAnalysis::getModRefBehavior(CS), Min); +} + +/// getModRefBehavior - Return the behavior when calling the given function. +/// For use when the call site is not known. +AliasAnalysis::ModRefBehavior +BasicAliasAnalysis::getModRefBehavior(const Function *F) { + if (F->doesNotAccessMemory()) + // Can't do better than this. + return DoesNotAccessMemory; + if (F->onlyReadsMemory()) + return OnlyReadsMemory; + if (unsigned id = F->getIntrinsicID()) + return getIntrinsicModRefBehavior(id); + + return NoAA::getModRefBehavior(F); +} /// getModRefInfo - Check to see if the specified callsite can clobber the /// specified memory object. Since we only look at local properties of this /// function, we really can't say much about this query. We do, however, use /// simple "address taken" analysis on local objects. AliasAnalysis::ModRefResult -BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) { +BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, + const Value *P, unsigned Size) { assert(notDifferentParent(CS.getInstruction(), P) && "AliasAnalysis query involving multiple functions!"); @@ -316,7 +632,7 @@ BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) { // the current function not to the current function, and a tail callee // may reference them. if (isa<AllocaInst>(Object)) - if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) + if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) if (CI->isTailCall()) return NoModRef; @@ -327,7 +643,7 @@ BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) { isNonEscapingLocalObject(Object)) { bool PassedAsArg = false; unsigned ArgNo = 0; - for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); + for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); CI != CE; ++CI, ++ArgNo) { // Only look at the no-capture pointer arguments. if (!(*CI)->getType()->isPointerTy() || @@ -338,7 +654,7 @@ BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) { // is impossible to alias the pointer we're checking. If not, we have to // assume that the call could touch the pointer, even though it doesn't // escape. - if (!isNoAlias(cast<Value>(CI), ~0U, P, ~0U)) { + if (!isNoAlias(cast<Value>(CI), UnknownSize, P, UnknownSize)) { PassedAsArg = true; break; } @@ -349,127 +665,76 @@ BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) { } // Finally, handle specific knowledge of intrinsics. - IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); - if (II == 0) - return AliasAnalysis::getModRefInfo(CS, P, Size); - - switch (II->getIntrinsicID()) { - default: break; - case Intrinsic::memcpy: - case Intrinsic::memmove: { - unsigned Len = ~0U; - if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) - Len = LenCI->getZExtValue(); - Value *Dest = II->getArgOperand(0); - Value *Src = II->getArgOperand(1); - if (isNoAlias(Dest, Len, P, Size)) { - if (isNoAlias(Src, Len, P, Size)) - return NoModRef; - return Ref; - } - break; - } - case Intrinsic::memset: - // Since memset is 'accesses arguments' only, the AliasAnalysis base class - // will handle it for the variable length case. - if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) { - unsigned Len = LenCI->getZExtValue(); + const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); + if (II != 0) + switch (II->getIntrinsicID()) { + default: break; + case Intrinsic::memcpy: + case Intrinsic::memmove: { + unsigned Len = UnknownSize; + if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) + Len = LenCI->getZExtValue(); Value *Dest = II->getArgOperand(0); - if (isNoAlias(Dest, Len, P, Size)) + Value *Src = II->getArgOperand(1); + if (isNoAlias(Dest, Len, P, Size)) { + if (isNoAlias(Src, Len, P, Size)) + return NoModRef; + return Ref; + } + break; + } + case Intrinsic::memset: + // Since memset is 'accesses arguments' only, the AliasAnalysis base class + // will handle it for the variable length case. + if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) { + unsigned Len = LenCI->getZExtValue(); + Value *Dest = II->getArgOperand(0); + if (isNoAlias(Dest, Len, P, Size)) + return NoModRef; + } + break; + case Intrinsic::atomic_cmp_swap: + case Intrinsic::atomic_swap: + case Intrinsic::atomic_load_add: + case Intrinsic::atomic_load_sub: + case Intrinsic::atomic_load_and: + case Intrinsic::atomic_load_nand: + case Intrinsic::atomic_load_or: + case Intrinsic::atomic_load_xor: + case Intrinsic::atomic_load_max: + case Intrinsic::atomic_load_min: + case Intrinsic::atomic_load_umax: + case Intrinsic::atomic_load_umin: + if (TD) { + Value *Op1 = II->getArgOperand(0); + unsigned Op1Size = TD->getTypeStoreSize(Op1->getType()); + if (isNoAlias(Op1, Op1Size, P, Size)) + return NoModRef; + } + break; + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + case Intrinsic::invariant_start: { + unsigned PtrSize = + cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); + if (isNoAlias(II->getArgOperand(1), PtrSize, P, Size)) return NoModRef; + break; } - break; - case Intrinsic::atomic_cmp_swap: - case Intrinsic::atomic_swap: - case Intrinsic::atomic_load_add: - case Intrinsic::atomic_load_sub: - case Intrinsic::atomic_load_and: - case Intrinsic::atomic_load_nand: - case Intrinsic::atomic_load_or: - case Intrinsic::atomic_load_xor: - case Intrinsic::atomic_load_max: - case Intrinsic::atomic_load_min: - case Intrinsic::atomic_load_umax: - case Intrinsic::atomic_load_umin: - if (TD) { - Value *Op1 = II->getArgOperand(0); - unsigned Op1Size = TD->getTypeStoreSize(Op1->getType()); - if (isNoAlias(Op1, Op1Size, P, Size)) + case Intrinsic::invariant_end: { + unsigned PtrSize = + cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); + if (isNoAlias(II->getArgOperand(2), PtrSize, P, Size)) return NoModRef; + break; + } } - break; - case Intrinsic::lifetime_start: - case Intrinsic::lifetime_end: - case Intrinsic::invariant_start: { - unsigned PtrSize = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); - if (isNoAlias(II->getArgOperand(1), PtrSize, P, Size)) - return NoModRef; - break; - } - case Intrinsic::invariant_end: { - unsigned PtrSize = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); - if (isNoAlias(II->getArgOperand(2), PtrSize, P, Size)) - return NoModRef; - break; - } - } // The AliasAnalysis base class has some smarts, lets use them. return AliasAnalysis::getModRefInfo(CS, P, Size); } -AliasAnalysis::ModRefResult -BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) { - // If CS1 or CS2 are readnone, they don't interact. - ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1); - if (CS1B == DoesNotAccessMemory) return NoModRef; - - ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2); - if (CS2B == DoesNotAccessMemory) return NoModRef; - - // If they both only read from memory, just return ref. - if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory) - return Ref; - - // Otherwise, fall back to NoAA (mod+ref). - return NoAA::getModRefInfo(CS1, CS2); -} - -/// GetIndiceDifference - Dest and Src are the variable indices from two -/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base -/// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic -/// difference between the two pointers. -static void GetIndiceDifference( - SmallVectorImpl<std::pair<const Value*, int64_t> > &Dest, - const SmallVectorImpl<std::pair<const Value*, int64_t> > &Src) { - if (Src.empty()) return; - - for (unsigned i = 0, e = Src.size(); i != e; ++i) { - const Value *V = Src[i].first; - int64_t Scale = Src[i].second; - - // Find V in Dest. This is N^2, but pointer indices almost never have more - // than a few variable indexes. - for (unsigned j = 0, e = Dest.size(); j != e; ++j) { - if (Dest[j].first != V) continue; - - // If we found it, subtract off Scale V's from the entry in Dest. If it - // goes to zero, remove the entry. - if (Dest[j].second != Scale) - Dest[j].second -= Scale; - else - Dest.erase(Dest.begin()+j); - Scale = 0; - break; - } - - // If we didn't consume this entry, add it to the end of the Dest list. - if (Scale) - Dest.push_back(std::make_pair(V, -Scale)); - } -} - /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction /// against another pointer. We know that V1 is a GEP, but we don't know /// anything about V2. UnderlyingV1 is GEP1->getUnderlyingObject(), @@ -488,13 +753,14 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, unsigned V1Size, return MayAlias; int64_t GEP1BaseOffset; - SmallVector<std::pair<const Value*, int64_t>, 4> GEP1VariableIndices; + SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; // If we have two gep instructions with must-alias'ing base pointers, figure // out if the indexes to the GEP tell us anything about the derived pointer. if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { // Do the base pointers alias? - AliasResult BaseAlias = aliasCheck(UnderlyingV1, ~0U, UnderlyingV2, ~0U); + AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, + UnderlyingV2, UnknownSize); // If we get a No or May, then return it immediately, no amount of analysis // will improve this situation. @@ -507,7 +773,7 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, unsigned V1Size, DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); int64_t GEP2BaseOffset; - SmallVector<std::pair<const Value*, int64_t>, 4> GEP2VariableIndices; + SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; const Value *GEP2BasePtr = DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD); @@ -523,7 +789,7 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, unsigned V1Size, // Subtract the GEP2 pointer from the GEP1 pointer to find out their // symbolic difference. GEP1BaseOffset -= GEP2BaseOffset; - GetIndiceDifference(GEP1VariableIndices, GEP2VariableIndices); + GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); } else { // Check to see if these two pointers are related by the getelementptr @@ -531,10 +797,10 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, unsigned V1Size, // pointer, we know they cannot alias. // If both accesses are unknown size, we can't do anything useful here. - if (V1Size == ~0U && V2Size == ~0U) + if (V1Size == UnknownSize && V2Size == UnknownSize) return MayAlias; - AliasResult R = aliasCheck(UnderlyingV1, ~0U, V2, V2Size); + AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, V2, V2Size); if (R != MustAlias) // If V2 may alias GEP base pointer, conservatively returns MayAlias. // If V2 is known not to alias GEP base pointer, then the two values @@ -578,8 +844,8 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, unsigned V1Size, // provides an offset of 4 bytes (assuming a <= 4 byte access). for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e && GEP1BaseOffset;++i) - if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].second) - GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].second; + if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].Scale) + GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].Scale; // If our known offset is bigger than the access size, we know we don't have // an alias. @@ -782,8 +1048,8 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size, // If the size of one access is larger than the entire object on the other // side, then we know such behavior is undefined and can assume no alias. if (TD) - if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, *TD)) || - (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, *TD))) + if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) || + (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD))) return NoAlias; // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the @@ -810,7 +1076,7 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size, if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) return aliasSelect(S1, V1Size, V2, V2Size); - return MayAlias; + return NoAA::alias(V1, V1Size, V2, V2Size); } // Make sure that anything that uses AliasAnalysis pulls in this file. |