diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/AliasAnalysis.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/AliasAnalysis.cpp | 548 |
1 files changed, 548 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/AliasAnalysis.cpp b/contrib/llvm/lib/Analysis/AliasAnalysis.cpp new file mode 100644 index 0000000..8b8106b --- /dev/null +++ b/contrib/llvm/lib/Analysis/AliasAnalysis.cpp @@ -0,0 +1,548 @@ +//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the generic AliasAnalysis interface which is used as the +// common interface used by all clients and implementations of alias analysis. +// +// This file also implements the default version of the AliasAnalysis interface +// that is to be used when no other implementation is specified. This does some +// simple tests that detect obvious cases: two different global pointers cannot +// alias, a global cannot alias a malloc, two different mallocs cannot alias, +// etc. +// +// This alias analysis implementation really isn't very good for anything, but +// it is very fast, and makes a nice clean default implementation. Because it +// handles lots of little corner cases, other, more complex, alias analysis +// implementations may choose to rely on this pass to resolve these simple and +// easy cases. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/CaptureTracking.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Type.h" +#include "llvm/Pass.h" +#include "llvm/Target/TargetLibraryInfo.h" +using namespace llvm; + +// Register the AliasAnalysis interface, providing a nice name to refer to. +INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA) +char AliasAnalysis::ID = 0; + +//===----------------------------------------------------------------------===// +// Default chaining methods +//===----------------------------------------------------------------------===// + +AliasAnalysis::AliasResult +AliasAnalysis::alias(const Location &LocA, const Location &LocB) { + assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); + return AA->alias(LocA, LocB); +} + +bool AliasAnalysis::pointsToConstantMemory(const Location &Loc, + bool OrLocal) { + assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); + return AA->pointsToConstantMemory(Loc, OrLocal); +} + +AliasAnalysis::Location +AliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx, + AliasAnalysis::ModRefResult &Mask) { + assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); + return AA->getArgLocation(CS, ArgIdx, Mask); +} + +void AliasAnalysis::deleteValue(Value *V) { + assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); + AA->deleteValue(V); +} + +void AliasAnalysis::copyValue(Value *From, Value *To) { + assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); + AA->copyValue(From, To); +} + +void AliasAnalysis::addEscapingUse(Use &U) { + assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); + AA->addEscapingUse(U); +} + + +AliasAnalysis::ModRefResult +AliasAnalysis::getModRefInfo(ImmutableCallSite CS, + const Location &Loc) { + assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); + + ModRefBehavior MRB = getModRefBehavior(CS); + if (MRB == DoesNotAccessMemory) + return NoModRef; + + ModRefResult Mask = ModRef; + if (onlyReadsMemory(MRB)) + Mask = Ref; + + if (onlyAccessesArgPointees(MRB)) { + bool doesAlias = false; + ModRefResult AllArgsMask = NoModRef; + if (doesAccessArgPointees(MRB)) { + for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); + AI != AE; ++AI) { + const Value *Arg = *AI; + if (!Arg->getType()->isPointerTy()) + continue; + ModRefResult ArgMask; + Location CSLoc = + getArgLocation(CS, (unsigned) std::distance(CS.arg_begin(), AI), + ArgMask); + if (!isNoAlias(CSLoc, Loc)) { + doesAlias = true; + AllArgsMask = ModRefResult(AllArgsMask | ArgMask); + } + } + } + if (!doesAlias) + return NoModRef; + Mask = ModRefResult(Mask & AllArgsMask); + } + + // If Loc is a constant memory location, the call definitely could not + // modify the memory location. + if ((Mask & Mod) && pointsToConstantMemory(Loc)) + Mask = ModRefResult(Mask & ~Mod); + + // If this is the end of the chain, don't forward. + if (!AA) return Mask; + + // Otherwise, fall back to the next AA in the chain. But we can merge + // in any mask we've managed to compute. + return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask); +} + +AliasAnalysis::ModRefResult +AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) { + assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); + + // If CS1 or CS2 are readnone, they don't interact. + ModRefBehavior CS1B = getModRefBehavior(CS1); + if (CS1B == DoesNotAccessMemory) return NoModRef; + + ModRefBehavior CS2B = getModRefBehavior(CS2); + if (CS2B == DoesNotAccessMemory) return NoModRef; + + // If they both only read from memory, there is no dependence. + if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B)) + return NoModRef; + + AliasAnalysis::ModRefResult Mask = ModRef; + + // If CS1 only reads memory, the only dependence on CS2 can be + // from CS1 reading memory written by CS2. + if (onlyReadsMemory(CS1B)) + Mask = ModRefResult(Mask & Ref); + + // If CS2 only access memory through arguments, accumulate the mod/ref + // information from CS1's references to the memory referenced by + // CS2's arguments. + if (onlyAccessesArgPointees(CS2B)) { + AliasAnalysis::ModRefResult R = NoModRef; + if (doesAccessArgPointees(CS2B)) { + for (ImmutableCallSite::arg_iterator + I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) { + const Value *Arg = *I; + if (!Arg->getType()->isPointerTy()) + continue; + ModRefResult ArgMask; + Location CS2Loc = + getArgLocation(CS2, (unsigned) std::distance(CS2.arg_begin(), I), + ArgMask); + // ArgMask indicates what CS2 might do to CS2Loc, and the dependence of + // CS1 on that location is the inverse. + if (ArgMask == Mod) + ArgMask = ModRef; + else if (ArgMask == Ref) + ArgMask = Mod; + + R = ModRefResult((R | (getModRefInfo(CS1, CS2Loc) & ArgMask)) & Mask); + if (R == Mask) + break; + } + } + return R; + } + + // If CS1 only accesses memory through arguments, check if CS2 references + // any of the memory referenced by CS1's arguments. If not, return NoModRef. + if (onlyAccessesArgPointees(CS1B)) { + AliasAnalysis::ModRefResult R = NoModRef; + if (doesAccessArgPointees(CS1B)) { + for (ImmutableCallSite::arg_iterator + I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) { + const Value *Arg = *I; + if (!Arg->getType()->isPointerTy()) + continue; + ModRefResult ArgMask; + Location CS1Loc = + getArgLocation(CS1, (unsigned) std::distance(CS1.arg_begin(), I), + ArgMask); + // ArgMask indicates what CS1 might do to CS1Loc; if CS1 might Mod + // CS1Loc, then we care about either a Mod or a Ref by CS2. If CS1 + // might Ref, then we care only about a Mod by CS2. + ModRefResult ArgR = getModRefInfo(CS2, CS1Loc); + if (((ArgMask & Mod) != NoModRef && (ArgR & ModRef) != NoModRef) || + ((ArgMask & Ref) != NoModRef && (ArgR & Mod) != NoModRef)) + R = ModRefResult((R | ArgMask) & Mask); + + if (R == Mask) + break; + } + } + return R; + } + + // If this is the end of the chain, don't forward. + if (!AA) return Mask; + + // Otherwise, fall back to the next AA in the chain. But we can merge + // in any mask we've managed to compute. + return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask); +} + +AliasAnalysis::ModRefBehavior +AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { + assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); + + ModRefBehavior Min = UnknownModRefBehavior; + + // Call back into the alias analysis with the other form of getModRefBehavior + // to see if it can give a better response. + if (const Function *F = CS.getCalledFunction()) + Min = getModRefBehavior(F); + + // If this is the end of the chain, don't forward. + if (!AA) return Min; + + // Otherwise, fall back to the next AA in the chain. But we can merge + // in any result we've managed to compute. + return ModRefBehavior(AA->getModRefBehavior(CS) & Min); +} + +AliasAnalysis::ModRefBehavior +AliasAnalysis::getModRefBehavior(const Function *F) { + assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); + return AA->getModRefBehavior(F); +} + +//===----------------------------------------------------------------------===// +// AliasAnalysis non-virtual helper method implementation +//===----------------------------------------------------------------------===// + +AliasAnalysis::Location AliasAnalysis::getLocation(const LoadInst *LI) { + return Location(LI->getPointerOperand(), + getTypeStoreSize(LI->getType()), + LI->getMetadata(LLVMContext::MD_tbaa)); +} + +AliasAnalysis::Location AliasAnalysis::getLocation(const StoreInst *SI) { + return Location(SI->getPointerOperand(), + getTypeStoreSize(SI->getValueOperand()->getType()), + SI->getMetadata(LLVMContext::MD_tbaa)); +} + +AliasAnalysis::Location AliasAnalysis::getLocation(const VAArgInst *VI) { + return Location(VI->getPointerOperand(), + UnknownSize, + VI->getMetadata(LLVMContext::MD_tbaa)); +} + +AliasAnalysis::Location +AliasAnalysis::getLocation(const AtomicCmpXchgInst *CXI) { + return Location(CXI->getPointerOperand(), + getTypeStoreSize(CXI->getCompareOperand()->getType()), + CXI->getMetadata(LLVMContext::MD_tbaa)); +} + +AliasAnalysis::Location +AliasAnalysis::getLocation(const AtomicRMWInst *RMWI) { + return Location(RMWI->getPointerOperand(), + getTypeStoreSize(RMWI->getValOperand()->getType()), + RMWI->getMetadata(LLVMContext::MD_tbaa)); +} + +AliasAnalysis::Location +AliasAnalysis::getLocationForSource(const MemTransferInst *MTI) { + uint64_t Size = UnknownSize; + if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength())) + Size = C->getValue().getZExtValue(); + + // memcpy/memmove can have TBAA tags. For memcpy, they apply + // to both the source and the destination. + MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa); + + return Location(MTI->getRawSource(), Size, TBAATag); +} + +AliasAnalysis::Location +AliasAnalysis::getLocationForDest(const MemIntrinsic *MTI) { + uint64_t Size = UnknownSize; + if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength())) + Size = C->getValue().getZExtValue(); + + // memcpy/memmove can have TBAA tags. For memcpy, they apply + // to both the source and the destination. + MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa); + + return Location(MTI->getRawDest(), Size, TBAATag); +} + + + +AliasAnalysis::ModRefResult +AliasAnalysis::getModRefInfo(const LoadInst *L, const Location &Loc) { + // Be conservative in the face of volatile/atomic. + if (!L->isUnordered()) + return ModRef; + + // If the load address doesn't alias the given address, it doesn't read + // or write the specified memory. + if (!alias(getLocation(L), Loc)) + return NoModRef; + + // Otherwise, a load just reads. + return Ref; +} + +AliasAnalysis::ModRefResult +AliasAnalysis::getModRefInfo(const StoreInst *S, const Location &Loc) { + // Be conservative in the face of volatile/atomic. + if (!S->isUnordered()) + return ModRef; + + // If the store address cannot alias the pointer in question, then the + // specified memory cannot be modified by the store. + if (!alias(getLocation(S), Loc)) + return NoModRef; + + // If the pointer is a pointer to constant memory, then it could not have been + // modified by this store. + if (pointsToConstantMemory(Loc)) + return NoModRef; + + // Otherwise, a store just writes. + return Mod; +} + +AliasAnalysis::ModRefResult +AliasAnalysis::getModRefInfo(const VAArgInst *V, const Location &Loc) { + // If the va_arg address cannot alias the pointer in question, then the + // specified memory cannot be accessed by the va_arg. + if (!alias(getLocation(V), Loc)) + return NoModRef; + + // If the pointer is a pointer to constant memory, then it could not have been + // modified by this va_arg. + if (pointsToConstantMemory(Loc)) + return NoModRef; + + // Otherwise, a va_arg reads and writes. + return ModRef; +} + +AliasAnalysis::ModRefResult +AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc) { + // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. + if (CX->getSuccessOrdering() > Monotonic) + return ModRef; + + // If the cmpxchg address does not alias the location, it does not access it. + if (!alias(getLocation(CX), Loc)) + return NoModRef; + + return ModRef; +} + +AliasAnalysis::ModRefResult +AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc) { + // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. + if (RMW->getOrdering() > Monotonic) + return ModRef; + + // If the atomicrmw address does not alias the location, it does not access it. + if (!alias(getLocation(RMW), Loc)) + return NoModRef; + + return ModRef; +} + +// FIXME: this is really just shoring-up a deficiency in alias analysis. +// BasicAA isn't willing to spend linear time determining whether an alloca +// was captured before or after this particular call, while we are. However, +// with a smarter AA in place, this test is just wasting compile time. +AliasAnalysis::ModRefResult +AliasAnalysis::callCapturesBefore(const Instruction *I, + const AliasAnalysis::Location &MemLoc, + DominatorTree *DT) { + if (!DT || !DL) return AliasAnalysis::ModRef; + + const Value *Object = GetUnderlyingObject(MemLoc.Ptr, DL); + if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) || + isa<Constant>(Object)) + return AliasAnalysis::ModRef; + + ImmutableCallSite CS(I); + if (!CS.getInstruction() || CS.getInstruction() == Object) + return AliasAnalysis::ModRef; + + if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true, + /* StoreCaptures */ true, I, DT, + /* include Object */ true)) + return AliasAnalysis::ModRef; + + unsigned ArgNo = 0; + AliasAnalysis::ModRefResult R = AliasAnalysis::NoModRef; + for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); + CI != CE; ++CI, ++ArgNo) { + // Only look at the no-capture or byval pointer arguments. If this + // pointer were passed to arguments that were neither of these, then it + // couldn't be no-capture. + if (!(*CI)->getType()->isPointerTy() || + (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) + continue; + + // If this is a no-capture pointer argument, see if we can tell that it + // is impossible to alias the pointer we're checking. If not, we have to + // assume that the call could touch the pointer, even though it doesn't + // escape. + if (isNoAlias(AliasAnalysis::Location(*CI), + AliasAnalysis::Location(Object))) + continue; + if (CS.doesNotAccessMemory(ArgNo)) + continue; + if (CS.onlyReadsMemory(ArgNo)) { + R = AliasAnalysis::Ref; + continue; + } + return AliasAnalysis::ModRef; + } + return R; +} + +// AliasAnalysis destructor: DO NOT move this to the header file for +// AliasAnalysis or else clients of the AliasAnalysis class may not depend on +// the AliasAnalysis.o file in the current .a file, causing alias analysis +// support to not be included in the tool correctly! +// +AliasAnalysis::~AliasAnalysis() {} + +/// InitializeAliasAnalysis - Subclasses must call this method to initialize the +/// AliasAnalysis interface before any other methods are called. +/// +void AliasAnalysis::InitializeAliasAnalysis(Pass *P) { + DataLayoutPass *DLP = P->getAnalysisIfAvailable<DataLayoutPass>(); + DL = DLP ? &DLP->getDataLayout() : nullptr; + TLI = P->getAnalysisIfAvailable<TargetLibraryInfo>(); + AA = &P->getAnalysis<AliasAnalysis>(); +} + +// getAnalysisUsage - All alias analysis implementations should invoke this +// directly (using AliasAnalysis::getAnalysisUsage(AU)). +void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<AliasAnalysis>(); // All AA's chain +} + +/// getTypeStoreSize - Return the DataLayout store size for the given type, +/// if known, or a conservative value otherwise. +/// +uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) { + return DL ? DL->getTypeStoreSize(Ty) : UnknownSize; +} + +/// canBasicBlockModify - Return true if it is possible for execution of the +/// specified basic block to modify the value pointed to by Ptr. +/// +bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB, + const Location &Loc) { + return canInstructionRangeModify(BB.front(), BB.back(), Loc); +} + +/// canInstructionRangeModify - Return true if it is possible for the execution +/// of the specified instructions to modify the value pointed to by Ptr. The +/// instructions to consider are all of the instructions in the range of [I1,I2] +/// INCLUSIVE. I1 and I2 must be in the same basic block. +/// +bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1, + const Instruction &I2, + const Location &Loc) { + assert(I1.getParent() == I2.getParent() && + "Instructions not in same basic block!"); + BasicBlock::const_iterator I = &I1; + BasicBlock::const_iterator E = &I2; + ++E; // Convert from inclusive to exclusive range. + + for (; I != E; ++I) // Check every instruction in range + if (getModRefInfo(I, Loc) & Mod) + return true; + return false; +} + +/// isNoAliasCall - Return true if this pointer is returned by a noalias +/// function. +bool llvm::isNoAliasCall(const Value *V) { + if (isa<CallInst>(V) || isa<InvokeInst>(V)) + return ImmutableCallSite(cast<Instruction>(V)) + .paramHasAttr(0, Attribute::NoAlias); + return false; +} + +/// isNoAliasArgument - Return true if this is an argument with the noalias +/// attribute. +bool llvm::isNoAliasArgument(const Value *V) +{ + if (const Argument *A = dyn_cast<Argument>(V)) + return A->hasNoAliasAttr(); + return false; +} + +/// isIdentifiedObject - Return true if this pointer refers to a distinct and +/// identifiable object. This returns true for: +/// Global Variables and Functions (but not Global Aliases) +/// Allocas and Mallocs +/// ByVal and NoAlias Arguments +/// NoAlias returns +/// +bool llvm::isIdentifiedObject(const Value *V) { + if (isa<AllocaInst>(V)) + return true; + if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V)) + return true; + if (isNoAliasCall(V)) + return true; + if (const Argument *A = dyn_cast<Argument>(V)) + return A->hasNoAliasAttr() || A->hasByValAttr(); + return false; +} + +/// isIdentifiedFunctionLocal - Return true if V is umabigously identified +/// at the function-level. Different IdentifiedFunctionLocals can't alias. +/// Further, an IdentifiedFunctionLocal can not alias with any function +/// arguments other than itself, which is not necessarily true for +/// IdentifiedObjects. +bool llvm::isIdentifiedFunctionLocal(const Value *V) +{ + return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); +} + |