diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/AliasAnalysis.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/AliasAnalysis.cpp | 585 |
1 files changed, 585 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/AliasAnalysis.cpp b/contrib/llvm/lib/Analysis/AliasAnalysis.cpp new file mode 100644 index 0000000..35f2e97 --- /dev/null +++ b/contrib/llvm/lib/Analysis/AliasAnalysis.cpp @@ -0,0 +1,585 @@ +//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the generic AliasAnalysis interface which is used as the +// common interface used by all clients and implementations of alias analysis. +// +// This file also implements the default version of the AliasAnalysis interface +// that is to be used when no other implementation is specified. This does some +// simple tests that detect obvious cases: two different global pointers cannot +// alias, a global cannot alias a malloc, two different mallocs cannot alias, +// etc. +// +// This alias analysis implementation really isn't very good for anything, but +// it is very fast, and makes a nice clean default implementation. Because it +// handles lots of little corner cases, other, more complex, alias analysis +// implementations may choose to rely on this pass to resolve these simple and +// easy cases. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/BasicAliasAnalysis.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/CFLAliasAnalysis.h" +#include "llvm/Analysis/CaptureTracking.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/ObjCARCAliasAnalysis.h" +#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" +#include "llvm/Analysis/ScopedNoAliasAA.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TypeBasedAliasAnalysis.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Type.h" +#include "llvm/Pass.h" +using namespace llvm; + +/// Allow disabling BasicAA from the AA results. This is particularly useful +/// when testing to isolate a single AA implementation. +static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden, + cl::init(false)); + +AAResults::AAResults(AAResults &&Arg) : AAs(std::move(Arg.AAs)) { + for (auto &AA : AAs) + AA->setAAResults(this); +} + +AAResults &AAResults::operator=(AAResults &&Arg) { + AAs = std::move(Arg.AAs); + for (auto &AA : AAs) + AA->setAAResults(this); + return *this; +} + +AAResults::~AAResults() { +// FIXME; It would be nice to at least clear out the pointers back to this +// aggregation here, but we end up with non-nesting lifetimes in the legacy +// pass manager that prevent this from working. In the legacy pass manager +// we'll end up with dangling references here in some cases. +#if 0 + for (auto &AA : AAs) + AA->setAAResults(nullptr); +#endif +} + +//===----------------------------------------------------------------------===// +// Default chaining methods +//===----------------------------------------------------------------------===// + +AliasResult AAResults::alias(const MemoryLocation &LocA, + const MemoryLocation &LocB) { + for (const auto &AA : AAs) { + auto Result = AA->alias(LocA, LocB); + if (Result != MayAlias) + return Result; + } + return MayAlias; +} + +bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, + bool OrLocal) { + for (const auto &AA : AAs) + if (AA->pointsToConstantMemory(Loc, OrLocal)) + return true; + + return false; +} + +ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) { + ModRefInfo Result = MRI_ModRef; + + for (const auto &AA : AAs) { + Result = ModRefInfo(Result & AA->getArgModRefInfo(CS, ArgIdx)); + + // Early-exit the moment we reach the bottom of the lattice. + if (Result == MRI_NoModRef) + return Result; + } + + return Result; +} + +ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) { + // We may have two calls + if (auto CS = ImmutableCallSite(I)) { + // Check if the two calls modify the same memory + return getModRefInfo(Call, CS); + } else { + // Otherwise, check if the call modifies or references the + // location this memory access defines. The best we can say + // is that if the call references what this instruction + // defines, it must be clobbered by this location. + const MemoryLocation DefLoc = MemoryLocation::get(I); + if (getModRefInfo(Call, DefLoc) != MRI_NoModRef) + return MRI_ModRef; + } + return MRI_NoModRef; +} + +ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS, + const MemoryLocation &Loc) { + ModRefInfo Result = MRI_ModRef; + + for (const auto &AA : AAs) { + Result = ModRefInfo(Result & AA->getModRefInfo(CS, Loc)); + + // Early-exit the moment we reach the bottom of the lattice. + if (Result == MRI_NoModRef) + return Result; + } + + return Result; +} + +ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1, + ImmutableCallSite CS2) { + ModRefInfo Result = MRI_ModRef; + + for (const auto &AA : AAs) { + Result = ModRefInfo(Result & AA->getModRefInfo(CS1, CS2)); + + // Early-exit the moment we reach the bottom of the lattice. + if (Result == MRI_NoModRef) + return Result; + } + + return Result; +} + +FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) { + FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; + + for (const auto &AA : AAs) { + Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS)); + + // Early-exit the moment we reach the bottom of the lattice. + if (Result == FMRB_DoesNotAccessMemory) + return Result; + } + + return Result; +} + +FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) { + FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; + + for (const auto &AA : AAs) { + Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F)); + + // Early-exit the moment we reach the bottom of the lattice. + if (Result == FMRB_DoesNotAccessMemory) + return Result; + } + + return Result; +} + +//===----------------------------------------------------------------------===// +// Helper method implementation +//===----------------------------------------------------------------------===// + +ModRefInfo AAResults::getModRefInfo(const LoadInst *L, + const MemoryLocation &Loc) { + // Be conservative in the face of volatile/atomic. + if (!L->isUnordered()) + return MRI_ModRef; + + // If the load address doesn't alias the given address, it doesn't read + // or write the specified memory. + if (Loc.Ptr && !alias(MemoryLocation::get(L), Loc)) + return MRI_NoModRef; + + // Otherwise, a load just reads. + return MRI_Ref; +} + +ModRefInfo AAResults::getModRefInfo(const StoreInst *S, + const MemoryLocation &Loc) { + // Be conservative in the face of volatile/atomic. + if (!S->isUnordered()) + return MRI_ModRef; + + if (Loc.Ptr) { + // If the store address cannot alias the pointer in question, then the + // specified memory cannot be modified by the store. + if (!alias(MemoryLocation::get(S), Loc)) + return MRI_NoModRef; + + // If the pointer is a pointer to constant memory, then it could not have + // been modified by this store. + if (pointsToConstantMemory(Loc)) + return MRI_NoModRef; + } + + // Otherwise, a store just writes. + return MRI_Mod; +} + +ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, + const MemoryLocation &Loc) { + + if (Loc.Ptr) { + // If the va_arg address cannot alias the pointer in question, then the + // specified memory cannot be accessed by the va_arg. + if (!alias(MemoryLocation::get(V), Loc)) + return MRI_NoModRef; + + // If the pointer is a pointer to constant memory, then it could not have + // been modified by this va_arg. + if (pointsToConstantMemory(Loc)) + return MRI_NoModRef; + } + + // Otherwise, a va_arg reads and writes. + return MRI_ModRef; +} + +ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, + const MemoryLocation &Loc) { + if (Loc.Ptr) { + // If the pointer is a pointer to constant memory, + // then it could not have been modified by this catchpad. + if (pointsToConstantMemory(Loc)) + return MRI_NoModRef; + } + + // Otherwise, a catchpad reads and writes. + return MRI_ModRef; +} + +ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, + const MemoryLocation &Loc) { + if (Loc.Ptr) { + // If the pointer is a pointer to constant memory, + // then it could not have been modified by this catchpad. + if (pointsToConstantMemory(Loc)) + return MRI_NoModRef; + } + + // Otherwise, a catchret reads and writes. + return MRI_ModRef; +} + +ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, + const MemoryLocation &Loc) { + // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. + if (CX->getSuccessOrdering() > Monotonic) + return MRI_ModRef; + + // If the cmpxchg address does not alias the location, it does not access it. + if (Loc.Ptr && !alias(MemoryLocation::get(CX), Loc)) + return MRI_NoModRef; + + return MRI_ModRef; +} + +ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, + const MemoryLocation &Loc) { + // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. + if (RMW->getOrdering() > Monotonic) + return MRI_ModRef; + + // If the atomicrmw address does not alias the location, it does not access it. + if (Loc.Ptr && !alias(MemoryLocation::get(RMW), Loc)) + return MRI_NoModRef; + + return MRI_ModRef; +} + +/// \brief Return information about whether a particular call site modifies +/// or reads the specified memory location \p MemLoc before instruction \p I +/// in a BasicBlock. A ordered basic block \p OBB can be used to speed up +/// instruction-ordering queries inside the BasicBlock containing \p I. +/// FIXME: this is really just shoring-up a deficiency in alias analysis. +/// BasicAA isn't willing to spend linear time determining whether an alloca +/// was captured before or after this particular call, while we are. However, +/// with a smarter AA in place, this test is just wasting compile time. +ModRefInfo AAResults::callCapturesBefore(const Instruction *I, + const MemoryLocation &MemLoc, + DominatorTree *DT, + OrderedBasicBlock *OBB) { + if (!DT) + return MRI_ModRef; + + const Value *Object = + GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout()); + if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) || + isa<Constant>(Object)) + return MRI_ModRef; + + ImmutableCallSite CS(I); + if (!CS.getInstruction() || CS.getInstruction() == Object) + return MRI_ModRef; + + if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true, + /* StoreCaptures */ true, I, DT, + /* include Object */ true, + /* OrderedBasicBlock */ OBB)) + return MRI_ModRef; + + unsigned ArgNo = 0; + ModRefInfo R = MRI_NoModRef; + for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); + CI != CE; ++CI, ++ArgNo) { + // Only look at the no-capture or byval pointer arguments. If this + // pointer were passed to arguments that were neither of these, then it + // couldn't be no-capture. + if (!(*CI)->getType()->isPointerTy() || + (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) + continue; + + // If this is a no-capture pointer argument, see if we can tell that it + // is impossible to alias the pointer we're checking. If not, we have to + // assume that the call could touch the pointer, even though it doesn't + // escape. + if (isNoAlias(MemoryLocation(*CI), MemoryLocation(Object))) + continue; + if (CS.doesNotAccessMemory(ArgNo)) + continue; + if (CS.onlyReadsMemory(ArgNo)) { + R = MRI_Ref; + continue; + } + return MRI_ModRef; + } + return R; +} + +/// canBasicBlockModify - Return true if it is possible for execution of the +/// specified basic block to modify the location Loc. +/// +bool AAResults::canBasicBlockModify(const BasicBlock &BB, + const MemoryLocation &Loc) { + return canInstructionRangeModRef(BB.front(), BB.back(), Loc, MRI_Mod); +} + +/// canInstructionRangeModRef - Return true if it is possible for the +/// execution of the specified instructions to mod\ref (according to the +/// mode) the location Loc. The instructions to consider are all +/// of the instructions in the range of [I1,I2] INCLUSIVE. +/// I1 and I2 must be in the same basic block. +bool AAResults::canInstructionRangeModRef(const Instruction &I1, + const Instruction &I2, + const MemoryLocation &Loc, + const ModRefInfo Mode) { + assert(I1.getParent() == I2.getParent() && + "Instructions not in same basic block!"); + BasicBlock::const_iterator I = I1.getIterator(); + BasicBlock::const_iterator E = I2.getIterator(); + ++E; // Convert from inclusive to exclusive range. + + for (; I != E; ++I) // Check every instruction in range + if (getModRefInfo(&*I, Loc) & Mode) + return true; + return false; +} + +// Provide a definition for the root virtual destructor. +AAResults::Concept::~Concept() {} + +namespace { +/// A wrapper pass for external alias analyses. This just squirrels away the +/// callback used to run any analyses and register their results. +struct ExternalAAWrapperPass : ImmutablePass { + typedef std::function<void(Pass &, Function &, AAResults &)> CallbackT; + + CallbackT CB; + + static char ID; + + ExternalAAWrapperPass() : ImmutablePass(ID) { + initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); + } + explicit ExternalAAWrapperPass(CallbackT CB) + : ImmutablePass(ID), CB(std::move(CB)) { + initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesAll(); + } +}; +} + +char ExternalAAWrapperPass::ID = 0; +INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis", + false, true) + +ImmutablePass * +llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) { + return new ExternalAAWrapperPass(std::move(Callback)); +} + +AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) { + initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); +} + +char AAResultsWrapperPass::ID = 0; + +INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa", + "Function Alias Analysis Results", false, true) +INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(CFLAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass) +INITIALIZE_PASS_END(AAResultsWrapperPass, "aa", + "Function Alias Analysis Results", false, true) + +FunctionPass *llvm::createAAResultsWrapperPass() { + return new AAResultsWrapperPass(); +} + +/// Run the wrapper pass to rebuild an aggregation over known AA passes. +/// +/// This is the legacy pass manager's interface to the new-style AA results +/// aggregation object. Because this is somewhat shoe-horned into the legacy +/// pass manager, we hard code all the specific alias analyses available into +/// it. While the particular set enabled is configured via commandline flags, +/// adding a new alias analysis to LLVM will require adding support for it to +/// this list. +bool AAResultsWrapperPass::runOnFunction(Function &F) { + // NB! This *must* be reset before adding new AA results to the new + // AAResults object because in the legacy pass manager, each instance + // of these will refer to the *same* immutable analyses, registering and + // unregistering themselves with them. We need to carefully tear down the + // previous object first, in this case replacing it with an empty one, before + // registering new results. + AAR.reset(new AAResults()); + + // BasicAA is always available for function analyses. Also, we add it first + // so that it can trump TBAA results when it proves MustAlias. + // FIXME: TBAA should have an explicit mode to support this and then we + // should reconsider the ordering here. + if (!DisableBasicAA) + AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult()); + + // Populate the results with the currently available AAs. + if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = + getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = getAnalysisIfAvailable<CFLAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + + // If available, run an external AA providing callback over the results as + // well. + if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>()) + if (WrapperPass->CB) + WrapperPass->CB(*this, F, *AAR); + + // Analyses don't mutate the IR, so return false. + return false; +} + +void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequired<BasicAAWrapperPass>(); + + // We also need to mark all the alias analysis passes we will potentially + // probe in runOnFunction as used here to ensure the legacy pass manager + // preserves them. This hard coding of lists of alias analyses is specific to + // the legacy pass manager. + AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); + AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); + AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); + AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); + AU.addUsedIfAvailable<SCEVAAWrapperPass>(); + AU.addUsedIfAvailable<CFLAAWrapperPass>(); +} + +AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F, + BasicAAResult &BAR) { + AAResults AAR; + + // Add in our explicitly constructed BasicAA results. + if (!DisableBasicAA) + AAR.addAAResult(BAR); + + // Populate the results with the other currently available AAs. + if (auto *WrapperPass = + P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = + P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = P.getAnalysisIfAvailable<SCEVAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + + return AAR; +} + +/// isNoAliasCall - Return true if this pointer is returned by a noalias +/// function. +bool llvm::isNoAliasCall(const Value *V) { + if (auto CS = ImmutableCallSite(V)) + return CS.paramHasAttr(0, Attribute::NoAlias); + return false; +} + +/// isNoAliasArgument - Return true if this is an argument with the noalias +/// attribute. +bool llvm::isNoAliasArgument(const Value *V) +{ + if (const Argument *A = dyn_cast<Argument>(V)) + return A->hasNoAliasAttr(); + return false; +} + +/// isIdentifiedObject - Return true if this pointer refers to a distinct and +/// identifiable object. This returns true for: +/// Global Variables and Functions (but not Global Aliases) +/// Allocas and Mallocs +/// ByVal and NoAlias Arguments +/// NoAlias returns +/// +bool llvm::isIdentifiedObject(const Value *V) { + if (isa<AllocaInst>(V)) + return true; + if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V)) + return true; + if (isNoAliasCall(V)) + return true; + if (const Argument *A = dyn_cast<Argument>(V)) + return A->hasNoAliasAttr() || A->hasByValAttr(); + return false; +} + +/// isIdentifiedFunctionLocal - Return true if V is umabigously identified +/// at the function-level. Different IdentifiedFunctionLocals can't alias. +/// Further, an IdentifiedFunctionLocal can not alias with any function +/// arguments other than itself, which is not necessarily true for +/// IdentifiedObjects. +bool llvm::isIdentifiedFunctionLocal(const Value *V) +{ + return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); +} |