summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/AliasAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/AliasAnalysis.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/AliasAnalysis.cpp585
1 files changed, 585 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/AliasAnalysis.cpp b/contrib/llvm/lib/Analysis/AliasAnalysis.cpp
new file mode 100644
index 0000000..35f2e97
--- /dev/null
+++ b/contrib/llvm/lib/Analysis/AliasAnalysis.cpp
@@ -0,0 +1,585 @@
+//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the generic AliasAnalysis interface which is used as the
+// common interface used by all clients and implementations of alias analysis.
+//
+// This file also implements the default version of the AliasAnalysis interface
+// that is to be used when no other implementation is specified. This does some
+// simple tests that detect obvious cases: two different global pointers cannot
+// alias, a global cannot alias a malloc, two different mallocs cannot alias,
+// etc.
+//
+// This alias analysis implementation really isn't very good for anything, but
+// it is very fast, and makes a nice clean default implementation. Because it
+// handles lots of little corner cases, other, more complex, alias analysis
+// implementations may choose to rely on this pass to resolve these simple and
+// easy cases.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/BasicAliasAnalysis.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/CFLAliasAnalysis.h"
+#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/ObjCARCAliasAnalysis.h"
+#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
+#include "llvm/Analysis/ScopedNoAliasAA.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Pass.h"
+using namespace llvm;
+
+/// Allow disabling BasicAA from the AA results. This is particularly useful
+/// when testing to isolate a single AA implementation.
+static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
+ cl::init(false));
+
+AAResults::AAResults(AAResults &&Arg) : AAs(std::move(Arg.AAs)) {
+ for (auto &AA : AAs)
+ AA->setAAResults(this);
+}
+
+AAResults &AAResults::operator=(AAResults &&Arg) {
+ AAs = std::move(Arg.AAs);
+ for (auto &AA : AAs)
+ AA->setAAResults(this);
+ return *this;
+}
+
+AAResults::~AAResults() {
+// FIXME; It would be nice to at least clear out the pointers back to this
+// aggregation here, but we end up with non-nesting lifetimes in the legacy
+// pass manager that prevent this from working. In the legacy pass manager
+// we'll end up with dangling references here in some cases.
+#if 0
+ for (auto &AA : AAs)
+ AA->setAAResults(nullptr);
+#endif
+}
+
+//===----------------------------------------------------------------------===//
+// Default chaining methods
+//===----------------------------------------------------------------------===//
+
+AliasResult AAResults::alias(const MemoryLocation &LocA,
+ const MemoryLocation &LocB) {
+ for (const auto &AA : AAs) {
+ auto Result = AA->alias(LocA, LocB);
+ if (Result != MayAlias)
+ return Result;
+ }
+ return MayAlias;
+}
+
+bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
+ bool OrLocal) {
+ for (const auto &AA : AAs)
+ if (AA->pointsToConstantMemory(Loc, OrLocal))
+ return true;
+
+ return false;
+}
+
+ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
+ ModRefInfo Result = MRI_ModRef;
+
+ for (const auto &AA : AAs) {
+ Result = ModRefInfo(Result & AA->getArgModRefInfo(CS, ArgIdx));
+
+ // Early-exit the moment we reach the bottom of the lattice.
+ if (Result == MRI_NoModRef)
+ return Result;
+ }
+
+ return Result;
+}
+
+ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
+ // We may have two calls
+ if (auto CS = ImmutableCallSite(I)) {
+ // Check if the two calls modify the same memory
+ return getModRefInfo(Call, CS);
+ } else {
+ // Otherwise, check if the call modifies or references the
+ // location this memory access defines. The best we can say
+ // is that if the call references what this instruction
+ // defines, it must be clobbered by this location.
+ const MemoryLocation DefLoc = MemoryLocation::get(I);
+ if (getModRefInfo(Call, DefLoc) != MRI_NoModRef)
+ return MRI_ModRef;
+ }
+ return MRI_NoModRef;
+}
+
+ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS,
+ const MemoryLocation &Loc) {
+ ModRefInfo Result = MRI_ModRef;
+
+ for (const auto &AA : AAs) {
+ Result = ModRefInfo(Result & AA->getModRefInfo(CS, Loc));
+
+ // Early-exit the moment we reach the bottom of the lattice.
+ if (Result == MRI_NoModRef)
+ return Result;
+ }
+
+ return Result;
+}
+
+ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1,
+ ImmutableCallSite CS2) {
+ ModRefInfo Result = MRI_ModRef;
+
+ for (const auto &AA : AAs) {
+ Result = ModRefInfo(Result & AA->getModRefInfo(CS1, CS2));
+
+ // Early-exit the moment we reach the bottom of the lattice.
+ if (Result == MRI_NoModRef)
+ return Result;
+ }
+
+ return Result;
+}
+
+FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) {
+ FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
+
+ for (const auto &AA : AAs) {
+ Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS));
+
+ // Early-exit the moment we reach the bottom of the lattice.
+ if (Result == FMRB_DoesNotAccessMemory)
+ return Result;
+ }
+
+ return Result;
+}
+
+FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
+ FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
+
+ for (const auto &AA : AAs) {
+ Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
+
+ // Early-exit the moment we reach the bottom of the lattice.
+ if (Result == FMRB_DoesNotAccessMemory)
+ return Result;
+ }
+
+ return Result;
+}
+
+//===----------------------------------------------------------------------===//
+// Helper method implementation
+//===----------------------------------------------------------------------===//
+
+ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
+ const MemoryLocation &Loc) {
+ // Be conservative in the face of volatile/atomic.
+ if (!L->isUnordered())
+ return MRI_ModRef;
+
+ // If the load address doesn't alias the given address, it doesn't read
+ // or write the specified memory.
+ if (Loc.Ptr && !alias(MemoryLocation::get(L), Loc))
+ return MRI_NoModRef;
+
+ // Otherwise, a load just reads.
+ return MRI_Ref;
+}
+
+ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
+ const MemoryLocation &Loc) {
+ // Be conservative in the face of volatile/atomic.
+ if (!S->isUnordered())
+ return MRI_ModRef;
+
+ if (Loc.Ptr) {
+ // If the store address cannot alias the pointer in question, then the
+ // specified memory cannot be modified by the store.
+ if (!alias(MemoryLocation::get(S), Loc))
+ return MRI_NoModRef;
+
+ // If the pointer is a pointer to constant memory, then it could not have
+ // been modified by this store.
+ if (pointsToConstantMemory(Loc))
+ return MRI_NoModRef;
+ }
+
+ // Otherwise, a store just writes.
+ return MRI_Mod;
+}
+
+ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
+ const MemoryLocation &Loc) {
+
+ if (Loc.Ptr) {
+ // If the va_arg address cannot alias the pointer in question, then the
+ // specified memory cannot be accessed by the va_arg.
+ if (!alias(MemoryLocation::get(V), Loc))
+ return MRI_NoModRef;
+
+ // If the pointer is a pointer to constant memory, then it could not have
+ // been modified by this va_arg.
+ if (pointsToConstantMemory(Loc))
+ return MRI_NoModRef;
+ }
+
+ // Otherwise, a va_arg reads and writes.
+ return MRI_ModRef;
+}
+
+ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
+ const MemoryLocation &Loc) {
+ if (Loc.Ptr) {
+ // If the pointer is a pointer to constant memory,
+ // then it could not have been modified by this catchpad.
+ if (pointsToConstantMemory(Loc))
+ return MRI_NoModRef;
+ }
+
+ // Otherwise, a catchpad reads and writes.
+ return MRI_ModRef;
+}
+
+ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
+ const MemoryLocation &Loc) {
+ if (Loc.Ptr) {
+ // If the pointer is a pointer to constant memory,
+ // then it could not have been modified by this catchpad.
+ if (pointsToConstantMemory(Loc))
+ return MRI_NoModRef;
+ }
+
+ // Otherwise, a catchret reads and writes.
+ return MRI_ModRef;
+}
+
+ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
+ const MemoryLocation &Loc) {
+ // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
+ if (CX->getSuccessOrdering() > Monotonic)
+ return MRI_ModRef;
+
+ // If the cmpxchg address does not alias the location, it does not access it.
+ if (Loc.Ptr && !alias(MemoryLocation::get(CX), Loc))
+ return MRI_NoModRef;
+
+ return MRI_ModRef;
+}
+
+ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
+ const MemoryLocation &Loc) {
+ // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
+ if (RMW->getOrdering() > Monotonic)
+ return MRI_ModRef;
+
+ // If the atomicrmw address does not alias the location, it does not access it.
+ if (Loc.Ptr && !alias(MemoryLocation::get(RMW), Loc))
+ return MRI_NoModRef;
+
+ return MRI_ModRef;
+}
+
+/// \brief Return information about whether a particular call site modifies
+/// or reads the specified memory location \p MemLoc before instruction \p I
+/// in a BasicBlock. A ordered basic block \p OBB can be used to speed up
+/// instruction-ordering queries inside the BasicBlock containing \p I.
+/// FIXME: this is really just shoring-up a deficiency in alias analysis.
+/// BasicAA isn't willing to spend linear time determining whether an alloca
+/// was captured before or after this particular call, while we are. However,
+/// with a smarter AA in place, this test is just wasting compile time.
+ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
+ const MemoryLocation &MemLoc,
+ DominatorTree *DT,
+ OrderedBasicBlock *OBB) {
+ if (!DT)
+ return MRI_ModRef;
+
+ const Value *Object =
+ GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
+ if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
+ isa<Constant>(Object))
+ return MRI_ModRef;
+
+ ImmutableCallSite CS(I);
+ if (!CS.getInstruction() || CS.getInstruction() == Object)
+ return MRI_ModRef;
+
+ if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
+ /* StoreCaptures */ true, I, DT,
+ /* include Object */ true,
+ /* OrderedBasicBlock */ OBB))
+ return MRI_ModRef;
+
+ unsigned ArgNo = 0;
+ ModRefInfo R = MRI_NoModRef;
+ for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
+ CI != CE; ++CI, ++ArgNo) {
+ // Only look at the no-capture or byval pointer arguments. If this
+ // pointer were passed to arguments that were neither of these, then it
+ // couldn't be no-capture.
+ if (!(*CI)->getType()->isPointerTy() ||
+ (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
+ continue;
+
+ // If this is a no-capture pointer argument, see if we can tell that it
+ // is impossible to alias the pointer we're checking. If not, we have to
+ // assume that the call could touch the pointer, even though it doesn't
+ // escape.
+ if (isNoAlias(MemoryLocation(*CI), MemoryLocation(Object)))
+ continue;
+ if (CS.doesNotAccessMemory(ArgNo))
+ continue;
+ if (CS.onlyReadsMemory(ArgNo)) {
+ R = MRI_Ref;
+ continue;
+ }
+ return MRI_ModRef;
+ }
+ return R;
+}
+
+/// canBasicBlockModify - Return true if it is possible for execution of the
+/// specified basic block to modify the location Loc.
+///
+bool AAResults::canBasicBlockModify(const BasicBlock &BB,
+ const MemoryLocation &Loc) {
+ return canInstructionRangeModRef(BB.front(), BB.back(), Loc, MRI_Mod);
+}
+
+/// canInstructionRangeModRef - Return true if it is possible for the
+/// execution of the specified instructions to mod\ref (according to the
+/// mode) the location Loc. The instructions to consider are all
+/// of the instructions in the range of [I1,I2] INCLUSIVE.
+/// I1 and I2 must be in the same basic block.
+bool AAResults::canInstructionRangeModRef(const Instruction &I1,
+ const Instruction &I2,
+ const MemoryLocation &Loc,
+ const ModRefInfo Mode) {
+ assert(I1.getParent() == I2.getParent() &&
+ "Instructions not in same basic block!");
+ BasicBlock::const_iterator I = I1.getIterator();
+ BasicBlock::const_iterator E = I2.getIterator();
+ ++E; // Convert from inclusive to exclusive range.
+
+ for (; I != E; ++I) // Check every instruction in range
+ if (getModRefInfo(&*I, Loc) & Mode)
+ return true;
+ return false;
+}
+
+// Provide a definition for the root virtual destructor.
+AAResults::Concept::~Concept() {}
+
+namespace {
+/// A wrapper pass for external alias analyses. This just squirrels away the
+/// callback used to run any analyses and register their results.
+struct ExternalAAWrapperPass : ImmutablePass {
+ typedef std::function<void(Pass &, Function &, AAResults &)> CallbackT;
+
+ CallbackT CB;
+
+ static char ID;
+
+ ExternalAAWrapperPass() : ImmutablePass(ID) {
+ initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
+ }
+ explicit ExternalAAWrapperPass(CallbackT CB)
+ : ImmutablePass(ID), CB(std::move(CB)) {
+ initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesAll();
+ }
+};
+}
+
+char ExternalAAWrapperPass::ID = 0;
+INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
+ false, true)
+
+ImmutablePass *
+llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
+ return new ExternalAAWrapperPass(std::move(Callback));
+}
+
+AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
+ initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
+}
+
+char AAResultsWrapperPass::ID = 0;
+
+INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
+ "Function Alias Analysis Results", false, true)
+INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(CFLAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
+INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
+ "Function Alias Analysis Results", false, true)
+
+FunctionPass *llvm::createAAResultsWrapperPass() {
+ return new AAResultsWrapperPass();
+}
+
+/// Run the wrapper pass to rebuild an aggregation over known AA passes.
+///
+/// This is the legacy pass manager's interface to the new-style AA results
+/// aggregation object. Because this is somewhat shoe-horned into the legacy
+/// pass manager, we hard code all the specific alias analyses available into
+/// it. While the particular set enabled is configured via commandline flags,
+/// adding a new alias analysis to LLVM will require adding support for it to
+/// this list.
+bool AAResultsWrapperPass::runOnFunction(Function &F) {
+ // NB! This *must* be reset before adding new AA results to the new
+ // AAResults object because in the legacy pass manager, each instance
+ // of these will refer to the *same* immutable analyses, registering and
+ // unregistering themselves with them. We need to carefully tear down the
+ // previous object first, in this case replacing it with an empty one, before
+ // registering new results.
+ AAR.reset(new AAResults());
+
+ // BasicAA is always available for function analyses. Also, we add it first
+ // so that it can trump TBAA results when it proves MustAlias.
+ // FIXME: TBAA should have an explicit mode to support this and then we
+ // should reconsider the ordering here.
+ if (!DisableBasicAA)
+ AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
+
+ // Populate the results with the currently available AAs.
+ if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
+ AAR->addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
+ AAR->addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass =
+ getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
+ AAR->addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
+ AAR->addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
+ AAR->addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass = getAnalysisIfAvailable<CFLAAWrapperPass>())
+ AAR->addAAResult(WrapperPass->getResult());
+
+ // If available, run an external AA providing callback over the results as
+ // well.
+ if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
+ if (WrapperPass->CB)
+ WrapperPass->CB(*this, F, *AAR);
+
+ // Analyses don't mutate the IR, so return false.
+ return false;
+}
+
+void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequired<BasicAAWrapperPass>();
+
+ // We also need to mark all the alias analysis passes we will potentially
+ // probe in runOnFunction as used here to ensure the legacy pass manager
+ // preserves them. This hard coding of lists of alias analyses is specific to
+ // the legacy pass manager.
+ AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
+ AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
+ AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
+ AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
+ AU.addUsedIfAvailable<SCEVAAWrapperPass>();
+ AU.addUsedIfAvailable<CFLAAWrapperPass>();
+}
+
+AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
+ BasicAAResult &BAR) {
+ AAResults AAR;
+
+ // Add in our explicitly constructed BasicAA results.
+ if (!DisableBasicAA)
+ AAR.addAAResult(BAR);
+
+ // Populate the results with the other currently available AAs.
+ if (auto *WrapperPass =
+ P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
+ AAR.addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
+ AAR.addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass =
+ P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
+ AAR.addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
+ AAR.addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass = P.getAnalysisIfAvailable<SCEVAAWrapperPass>())
+ AAR.addAAResult(WrapperPass->getResult());
+ if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAAWrapperPass>())
+ AAR.addAAResult(WrapperPass->getResult());
+
+ return AAR;
+}
+
+/// isNoAliasCall - Return true if this pointer is returned by a noalias
+/// function.
+bool llvm::isNoAliasCall(const Value *V) {
+ if (auto CS = ImmutableCallSite(V))
+ return CS.paramHasAttr(0, Attribute::NoAlias);
+ return false;
+}
+
+/// isNoAliasArgument - Return true if this is an argument with the noalias
+/// attribute.
+bool llvm::isNoAliasArgument(const Value *V)
+{
+ if (const Argument *A = dyn_cast<Argument>(V))
+ return A->hasNoAliasAttr();
+ return false;
+}
+
+/// isIdentifiedObject - Return true if this pointer refers to a distinct and
+/// identifiable object. This returns true for:
+/// Global Variables and Functions (but not Global Aliases)
+/// Allocas and Mallocs
+/// ByVal and NoAlias Arguments
+/// NoAlias returns
+///
+bool llvm::isIdentifiedObject(const Value *V) {
+ if (isa<AllocaInst>(V))
+ return true;
+ if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
+ return true;
+ if (isNoAliasCall(V))
+ return true;
+ if (const Argument *A = dyn_cast<Argument>(V))
+ return A->hasNoAliasAttr() || A->hasByValAttr();
+ return false;
+}
+
+/// isIdentifiedFunctionLocal - Return true if V is umabigously identified
+/// at the function-level. Different IdentifiedFunctionLocals can't alias.
+/// Further, an IdentifiedFunctionLocal can not alias with any function
+/// arguments other than itself, which is not necessarily true for
+/// IdentifiedObjects.
+bool llvm::isIdentifiedFunctionLocal(const Value *V)
+{
+ return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
+}
OpenPOWER on IntegriCloud