summaryrefslogtreecommitdiffstats
path: root/contrib/libstdc++/stl/pthread_alloc
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/libstdc++/stl/pthread_alloc')
-rw-r--r--contrib/libstdc++/stl/pthread_alloc479
1 files changed, 0 insertions, 479 deletions
diff --git a/contrib/libstdc++/stl/pthread_alloc b/contrib/libstdc++/stl/pthread_alloc
deleted file mode 100644
index 1852908..0000000
--- a/contrib/libstdc++/stl/pthread_alloc
+++ /dev/null
@@ -1,479 +0,0 @@
-/*
- * Copyright (c) 1996
- * Silicon Graphics Computer Systems, Inc.
- *
- * Permission to use, copy, modify, distribute and sell this software
- * and its documentation for any purpose is hereby granted without fee,
- * provided that the above copyright notice appear in all copies and
- * that both that copyright notice and this permission notice appear
- * in supporting documentation. Silicon Graphics makes no
- * representations about the suitability of this software for any
- * purpose. It is provided "as is" without express or implied warranty.
- */
-
-#ifndef __SGI_STL_PTHREAD_ALLOC
-#define __SGI_STL_PTHREAD_ALLOC
-
-// Pthread-specific node allocator.
-// This is similar to the default allocator, except that free-list
-// information is kept separately for each thread, avoiding locking.
-// This should be reasonably fast even in the presence of threads.
-// The down side is that storage may not be well-utilized.
-// It is not an error to allocate memory in thread A and deallocate
-// it in thread B. But this effectively transfers ownership of the memory,
-// so that it can only be reallocated by thread B. Thus this can effectively
-// result in a storage leak if it's done on a regular basis.
-// It can also result in frequent sharing of
-// cache lines among processors, with potentially serious performance
-// consequences.
-
-#include <stl_config.h>
-#include <stl_alloc.h>
-#ifndef __RESTRICT
-# define __RESTRICT
-#endif
-
-__STL_BEGIN_NAMESPACE
-
-#define __STL_DATA_ALIGNMENT 8
-
-union _Pthread_alloc_obj {
- union _Pthread_alloc_obj * __free_list_link;
- char __client_data[__STL_DATA_ALIGNMENT]; /* The client sees this. */
-};
-
-// Pthread allocators don't appear to the client to have meaningful
-// instances. We do in fact need to associate some state with each
-// thread. That state is represented by
-// _Pthread_alloc_per_thread_state<_Max_size>.
-
-template<size_t _Max_size>
-struct _Pthread_alloc_per_thread_state {
- typedef _Pthread_alloc_obj __obj;
- enum { _S_NFREELISTS = _Max_size/__STL_DATA_ALIGNMENT };
- _Pthread_alloc_obj* volatile __free_list[_S_NFREELISTS];
- _Pthread_alloc_per_thread_state<_Max_size> * __next;
- // Free list link for list of available per thread structures.
- // When one of these becomes available for reuse due to thread
- // termination, any objects in its free list remain associated
- // with it. The whole structure may then be used by a newly
- // created thread.
- _Pthread_alloc_per_thread_state() : __next(0)
- {
- memset((void *)__free_list, 0, _S_NFREELISTS * sizeof(__obj *));
- }
- // Returns an object of size __n, and possibly adds to size n free list.
- void *_M_refill(size_t __n);
-};
-
-// Pthread-specific allocator.
-// The argument specifies the largest object size allocated from per-thread
-// free lists. Larger objects are allocated using malloc_alloc.
-// Max_size must be a power of 2.
-template <size_t _Max_size = 128>
-class _Pthread_alloc_template {
-
-public: // but only for internal use:
-
- typedef _Pthread_alloc_obj __obj;
-
- // Allocates a chunk for nobjs of size "size". nobjs may be reduced
- // if it is inconvenient to allocate the requested number.
- static char *_S_chunk_alloc(size_t __size, int &__nobjs);
-
- enum {_S_ALIGN = __STL_DATA_ALIGNMENT};
-
- static size_t _S_round_up(size_t __bytes) {
- return (((__bytes) + _S_ALIGN-1) & ~(_S_ALIGN - 1));
- }
- static size_t _S_freelist_index(size_t __bytes) {
- return (((__bytes) + _S_ALIGN-1)/_S_ALIGN - 1);
- }
-
-private:
- // Chunk allocation state. And other shared state.
- // Protected by _S_chunk_allocator_lock.
- static pthread_mutex_t _S_chunk_allocator_lock;
- static char *_S_start_free;
- static char *_S_end_free;
- static size_t _S_heap_size;
- static _Pthread_alloc_per_thread_state<_Max_size>* _S_free_per_thread_states;
- static pthread_key_t _S_key;
- static bool _S_key_initialized;
- // Pthread key under which per thread state is stored.
- // Allocator instances that are currently unclaimed by any thread.
- static void _S_destructor(void *instance);
- // Function to be called on thread exit to reclaim per thread
- // state.
- static _Pthread_alloc_per_thread_state<_Max_size> *_S_new_per_thread_state();
- // Return a recycled or new per thread state.
- static _Pthread_alloc_per_thread_state<_Max_size> *_S_get_per_thread_state();
- // ensure that the current thread has an associated
- // per thread state.
- friend class _M_lock;
- class _M_lock {
- public:
- _M_lock () { pthread_mutex_lock(&_S_chunk_allocator_lock); }
- ~_M_lock () { pthread_mutex_unlock(&_S_chunk_allocator_lock); }
- };
-
-public:
-
- /* n must be > 0 */
- static void * allocate(size_t __n)
- {
- __obj * volatile * __my_free_list;
- __obj * __RESTRICT __result;
- _Pthread_alloc_per_thread_state<_Max_size>* __a;
-
- if (__n > _Max_size) {
- return(malloc_alloc::allocate(__n));
- }
- if (!_S_key_initialized ||
- !(__a = (_Pthread_alloc_per_thread_state<_Max_size>*)
- pthread_getspecific(_S_key))) {
- __a = _S_get_per_thread_state();
- }
- __my_free_list = __a -> __free_list + _S_freelist_index(__n);
- __result = *__my_free_list;
- if (__result == 0) {
- void *__r = __a -> _M_refill(_S_round_up(__n));
- return __r;
- }
- *__my_free_list = __result -> __free_list_link;
- return (__result);
- };
-
- /* p may not be 0 */
- static void deallocate(void *__p, size_t __n)
- {
- __obj *__q = (__obj *)__p;
- __obj * volatile * __my_free_list;
- _Pthread_alloc_per_thread_state<_Max_size>* __a;
-
- if (__n > _Max_size) {
- malloc_alloc::deallocate(__p, __n);
- return;
- }
- if (!_S_key_initialized ||
- !(__a = (_Pthread_alloc_per_thread_state<_Max_size> *)
- pthread_getspecific(_S_key))) {
- __a = _S_get_per_thread_state();
- }
- __my_free_list = __a->__free_list + _S_freelist_index(__n);
- __q -> __free_list_link = *__my_free_list;
- *__my_free_list = __q;
- }
-
- static void * reallocate(void *__p, size_t __old_sz, size_t __new_sz);
-
-} ;
-
-typedef _Pthread_alloc_template<> pthread_alloc;
-
-
-template <size_t _Max_size>
-void _Pthread_alloc_template<_Max_size>::_S_destructor(void * __instance)
-{
- _M_lock __lock_instance; // Need to acquire lock here.
- _Pthread_alloc_per_thread_state<_Max_size>* __s =
- (_Pthread_alloc_per_thread_state<_Max_size> *)__instance;
- __s -> __next = _S_free_per_thread_states;
- _S_free_per_thread_states = __s;
-}
-
-template <size_t _Max_size>
-_Pthread_alloc_per_thread_state<_Max_size> *
-_Pthread_alloc_template<_Max_size>::_S_new_per_thread_state()
-{
- /* lock already held here. */
- if (0 != _S_free_per_thread_states) {
- _Pthread_alloc_per_thread_state<_Max_size> *__result =
- _S_free_per_thread_states;
- _S_free_per_thread_states = _S_free_per_thread_states -> __next;
- return __result;
- } else {
- return new _Pthread_alloc_per_thread_state<_Max_size>;
- }
-}
-
-template <size_t _Max_size>
-_Pthread_alloc_per_thread_state<_Max_size> *
-_Pthread_alloc_template<_Max_size>::_S_get_per_thread_state()
-{
- /*REFERENCED*/
- _M_lock __lock_instance; // Need to acquire lock here.
- _Pthread_alloc_per_thread_state<_Max_size> * __result;
- if (!_S_key_initialized) {
- if (pthread_key_create(&_S_key, _S_destructor)) {
- abort(); // failed
- }
- _S_key_initialized = true;
- }
- __result = _S_new_per_thread_state();
- if (pthread_setspecific(_S_key, __result)) abort();
- return __result;
-}
-
-/* We allocate memory in large chunks in order to avoid fragmenting */
-/* the malloc heap too much. */
-/* We assume that size is properly aligned. */
-template <size_t _Max_size>
-char *_Pthread_alloc_template<_Max_size>
-::_S_chunk_alloc(size_t __size, int &__nobjs)
-{
- {
- char * __result;
- size_t __total_bytes;
- size_t __bytes_left;
- /*REFERENCED*/
- _M_lock __lock_instance; // Acquire lock for this routine
-
- __total_bytes = __size * __nobjs;
- __bytes_left = _S_end_free - _S_start_free;
- if (__bytes_left >= __total_bytes) {
- __result = _S_start_free;
- _S_start_free += __total_bytes;
- return(__result);
- } else if (__bytes_left >= __size) {
- __nobjs = __bytes_left/__size;
- __total_bytes = __size * __nobjs;
- __result = _S_start_free;
- _S_start_free += __total_bytes;
- return(__result);
- } else {
- size_t __bytes_to_get =
- 2 * __total_bytes + _S_round_up(_S_heap_size >> 4);
- // Try to make use of the left-over piece.
- if (__bytes_left > 0) {
- _Pthread_alloc_per_thread_state<_Max_size>* __a =
- (_Pthread_alloc_per_thread_state<_Max_size>*)
- pthread_getspecific(_S_key);
- __obj * volatile * __my_free_list =
- __a->__free_list + _S_freelist_index(__bytes_left);
-
- ((__obj *)_S_start_free) -> __free_list_link = *__my_free_list;
- *__my_free_list = (__obj *)_S_start_free;
- }
-# ifdef _SGI_SOURCE
- // Try to get memory that's aligned on something like a
- // cache line boundary, so as to avoid parceling out
- // parts of the same line to different threads and thus
- // possibly different processors.
- {
- const int __cache_line_size = 128; // probable upper bound
- __bytes_to_get &= ~(__cache_line_size-1);
- _S_start_free = (char *)memalign(__cache_line_size, __bytes_to_get);
- if (0 == _S_start_free) {
- _S_start_free = (char *)malloc_alloc::allocate(__bytes_to_get);
- }
- }
-# else /* !SGI_SOURCE */
- _S_start_free = (char *)malloc_alloc::allocate(__bytes_to_get);
-# endif
- _S_heap_size += __bytes_to_get;
- _S_end_free = _S_start_free + __bytes_to_get;
- }
- }
- // lock is released here
- return(_S_chunk_alloc(__size, __nobjs));
-}
-
-
-/* Returns an object of size n, and optionally adds to size n free list.*/
-/* We assume that n is properly aligned. */
-/* We hold the allocation lock. */
-template <size_t _Max_size>
-void *_Pthread_alloc_per_thread_state<_Max_size>
-::_M_refill(size_t __n)
-{
- int __nobjs = 128;
- char * __chunk =
- _Pthread_alloc_template<_Max_size>::_S_chunk_alloc(__n, __nobjs);
- __obj * volatile * __my_free_list;
- __obj * __result;
- __obj * __current_obj, * __next_obj;
- int __i;
-
- if (1 == __nobjs) {
- return(__chunk);
- }
- __my_free_list = __free_list
- + _Pthread_alloc_template<_Max_size>::_S_freelist_index(__n);
-
- /* Build free list in chunk */
- __result = (__obj *)__chunk;
- *__my_free_list = __next_obj = (__obj *)(__chunk + __n);
- for (__i = 1; ; __i++) {
- __current_obj = __next_obj;
- __next_obj = (__obj *)((char *)__next_obj + __n);
- if (__nobjs - 1 == __i) {
- __current_obj -> __free_list_link = 0;
- break;
- } else {
- __current_obj -> __free_list_link = __next_obj;
- }
- }
- return(__result);
-}
-
-template <size_t _Max_size>
-void *_Pthread_alloc_template<_Max_size>
-::reallocate(void *__p, size_t __old_sz, size_t __new_sz)
-{
- void * __result;
- size_t __copy_sz;
-
- if (__old_sz > _Max_size
- && __new_sz > _Max_size) {
- return(realloc(__p, __new_sz));
- }
- if (_S_round_up(__old_sz) == _S_round_up(__new_sz)) return(__p);
- __result = allocate(__new_sz);
- __copy_sz = __new_sz > __old_sz? __old_sz : __new_sz;
- memcpy(__result, __p, __copy_sz);
- deallocate(__p, __old_sz);
- return(__result);
-}
-
-template <size_t _Max_size>
-_Pthread_alloc_per_thread_state<_Max_size> *
-_Pthread_alloc_template<_Max_size>::_S_free_per_thread_states = 0;
-
-template <size_t _Max_size>
-pthread_key_t _Pthread_alloc_template<_Max_size>::_S_key;
-
-template <size_t _Max_size>
-bool _Pthread_alloc_template<_Max_size>::_S_key_initialized = false;
-
-template <size_t _Max_size>
-pthread_mutex_t _Pthread_alloc_template<_Max_size>::_S_chunk_allocator_lock
-= PTHREAD_MUTEX_INITIALIZER;
-
-template <size_t _Max_size>
-char *_Pthread_alloc_template<_Max_size>
-::_S_start_free = 0;
-
-template <size_t _Max_size>
-char *_Pthread_alloc_template<_Max_size>
-::_S_end_free = 0;
-
-template <size_t _Max_size>
-size_t _Pthread_alloc_template<_Max_size>
-::_S_heap_size = 0;
-
-#ifdef __STL_USE_STD_ALLOCATORS
-
-template <class _Tp>
-class pthread_allocator {
- typedef pthread_alloc _S_Alloc; // The underlying allocator.
-public:
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef _Tp* pointer;
- typedef const _Tp* const_pointer;
- typedef _Tp& reference;
- typedef const _Tp& const_reference;
- typedef _Tp value_type;
-
- template <class _Up> struct rebind {
- typedef pthread_allocator<_Up> other;
- };
-
- pthread_allocator() __STL_NOTHROW {}
- pthread_allocator(const pthread_allocator& a) __STL_NOTHROW {}
- template <class _Up> pthread_allocator(const pthread_allocator<_Up>&)
- __STL_NOTHROW {}
- ~pthread_allocator() __STL_NOTHROW {}
-
- pointer address(reference __x) const { return &__x; }
- const_pointer address(const_reference __x) const { return &__x; }
-
- // __n is permitted to be 0. The C++ standard says nothing about what
- // the return value is when __n == 0.
- _Tp* allocate(size_type __n, const void* = 0) {
- return __n != 0 ? static_cast<_Tp*>(_S_Alloc::allocate(__n * sizeof(_Tp)))
- : 0;
- }
-
- // p is not permitted to be a null pointer.
- void deallocate(pointer __p, size_type __n)
- { _S_Alloc::deallocate(__p, __n * sizeof(_Tp)); }
-
- size_type max_size() const __STL_NOTHROW
- { return size_t(-1) / sizeof(_Tp); }
-
- void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
- void destroy(pointer _p) { _p->~_Tp(); }
-};
-
-template<>
-class pthread_allocator<void> {
-public:
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef void* pointer;
- typedef const void* const_pointer;
- typedef void value_type;
-
- template <class _Up> struct rebind {
- typedef pthread_allocator<_Up> other;
- };
-};
-
-template <size_t _Max_size>
-inline bool operator==(const _Pthread_alloc_template<_Max_size>&,
- const _Pthread_alloc_template<_Max_size>&)
-{
- return true;
-}
-
-template <class _T1, class _T2>
-inline bool operator==(const pthread_allocator<_T1>&,
- const pthread_allocator<_T2>& a2)
-{
- return true;
-}
-
-template <class _T1, class _T2>
-inline bool operator!=(const pthread_allocator<_T1>&,
- const pthread_allocator<_T2>&)
-{
- return false;
-}
-
-template <class _Tp, size_t _Max_size>
-struct _Alloc_traits<_Tp, _Pthread_alloc_template<_Max_size> >
-{
- static const bool _S_instanceless = true;
- typedef simple_alloc<_Tp, _Pthread_alloc_template<_Max_size> > _Alloc_type;
- typedef __allocator<_Tp, _Pthread_alloc_template<_Max_size> >
- allocator_type;
-};
-
-template <class _Tp, class _Up, size_t _Max>
-struct _Alloc_traits<_Tp, __allocator<_Up, _Pthread_alloc_template<_Max> > >
-{
- static const bool _S_instanceless = true;
- typedef simple_alloc<_Tp, _Pthread_alloc_template<_Max> > _Alloc_type;
- typedef __allocator<_Tp, _Pthread_alloc_template<_Max> > allocator_type;
-};
-
-template <class _Tp, class _Up>
-struct _Alloc_traits<_Tp, pthread_allocator<_Up> >
-{
- static const bool _S_instanceless = true;
- typedef simple_alloc<_Tp, _Pthread_alloc_template<> > _Alloc_type;
- typedef pthread_allocator<_Tp> allocator_type;
-};
-
-
-#endif /* __STL_USE_STD_ALLOCATORS */
-
-__STL_END_NAMESPACE
-
-#endif /* __SGI_STL_PTHREAD_ALLOC */
-
-// Local Variables:
-// mode:C++
-// End:
OpenPOWER on IntegriCloud