summaryrefslogtreecommitdiffstats
path: root/contrib/libstdc++/include/bits/stl_vector.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/libstdc++/include/bits/stl_vector.h')
-rw-r--r--contrib/libstdc++/include/bits/stl_vector.h1083
1 files changed, 1083 insertions, 0 deletions
diff --git a/contrib/libstdc++/include/bits/stl_vector.h b/contrib/libstdc++/include/bits/stl_vector.h
new file mode 100644
index 0000000..5e2ea54
--- /dev/null
+++ b/contrib/libstdc++/include/bits/stl_vector.h
@@ -0,0 +1,1083 @@
+// Vector implementation -*- C++ -*-
+
+// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
+//
+// This file is part of the GNU ISO C++ Library. This library is free
+// software; you can redistribute it and/or modify it under the
+// terms of the GNU General Public License as published by the
+// Free Software Foundation; either version 2, or (at your option)
+// any later version.
+
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+
+// You should have received a copy of the GNU General Public License along
+// with this library; see the file COPYING. If not, write to the Free
+// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
+// USA.
+
+// As a special exception, you may use this file as part of a free software
+// library without restriction. Specifically, if other files instantiate
+// templates or use macros or inline functions from this file, or you compile
+// this file and link it with other files to produce an executable, this
+// file does not by itself cause the resulting executable to be covered by
+// the GNU General Public License. This exception does not however
+// invalidate any other reasons why the executable file might be covered by
+// the GNU General Public License.
+
+/*
+ *
+ * Copyright (c) 1994
+ * Hewlett-Packard Company
+ *
+ * Permission to use, copy, modify, distribute and sell this software
+ * and its documentation for any purpose is hereby granted without fee,
+ * provided that the above copyright notice appear in all copies and
+ * that both that copyright notice and this permission notice appear
+ * in supporting documentation. Hewlett-Packard Company makes no
+ * representations about the suitability of this software for any
+ * purpose. It is provided "as is" without express or implied warranty.
+ *
+ *
+ * Copyright (c) 1996
+ * Silicon Graphics Computer Systems, Inc.
+ *
+ * Permission to use, copy, modify, distribute and sell this software
+ * and its documentation for any purpose is hereby granted without fee,
+ * provided that the above copyright notice appear in all copies and
+ * that both that copyright notice and this permission notice appear
+ * in supporting documentation. Silicon Graphics makes no
+ * representations about the suitability of this software for any
+ * purpose. It is provided "as is" without express or implied warranty.
+ */
+
+/** @file stl_vector.h
+ * This is an internal header file, included by other library headers.
+ * You should not attempt to use it directly.
+ */
+
+#ifndef __GLIBCPP_INTERNAL_VECTOR_H
+#define __GLIBCPP_INTERNAL_VECTOR_H
+
+#include <bits/stl_iterator_base_funcs.h>
+#include <bits/functexcept.h>
+#include <bits/concept_check.h>
+
+namespace std
+{
+
+// The vector base class serves two purposes. First, its constructor
+// and destructor allocate (but don't initialize) storage. This makes
+// exception safety easier. Second, the base class encapsulates all of
+// the differences between SGI-style allocators and standard-conforming
+// allocators.
+
+// Base class for ordinary allocators.
+template <class _Tp, class _Allocator, bool _IsStatic>
+class _Vector_alloc_base {
+public:
+ typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
+ allocator_type;
+ allocator_type get_allocator() const { return _M_data_allocator; }
+
+ _Vector_alloc_base(const allocator_type& __a)
+ : _M_data_allocator(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
+ {}
+
+protected:
+ allocator_type _M_data_allocator;
+ _Tp* _M_start;
+ _Tp* _M_finish;
+ _Tp* _M_end_of_storage;
+
+ _Tp* _M_allocate(size_t __n)
+ { return _M_data_allocator.allocate(__n); }
+ void _M_deallocate(_Tp* __p, size_t __n)
+ { if (__p) _M_data_allocator.deallocate(__p, __n); }
+};
+
+// Specialization for allocators that have the property that we don't
+// actually have to store an allocator object.
+template <class _Tp, class _Allocator>
+class _Vector_alloc_base<_Tp, _Allocator, true> {
+public:
+ typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
+ allocator_type;
+ allocator_type get_allocator() const { return allocator_type(); }
+
+ _Vector_alloc_base(const allocator_type&)
+ : _M_start(0), _M_finish(0), _M_end_of_storage(0)
+ {}
+
+protected:
+ _Tp* _M_start;
+ _Tp* _M_finish;
+ _Tp* _M_end_of_storage;
+
+ typedef typename _Alloc_traits<_Tp, _Allocator>::_Alloc_type _Alloc_type;
+ _Tp* _M_allocate(size_t __n)
+ { return _Alloc_type::allocate(__n); }
+ void _M_deallocate(_Tp* __p, size_t __n)
+ { _Alloc_type::deallocate(__p, __n);}
+};
+
+template <class _Tp, class _Alloc>
+struct _Vector_base
+ : public _Vector_alloc_base<_Tp, _Alloc,
+ _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
+{
+ typedef _Vector_alloc_base<_Tp, _Alloc,
+ _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
+ _Base;
+ typedef typename _Base::allocator_type allocator_type;
+
+ _Vector_base(const allocator_type& __a) : _Base(__a) {}
+ _Vector_base(size_t __n, const allocator_type& __a) : _Base(__a) {
+ _M_start = _M_allocate(__n);
+ _M_finish = _M_start;
+ _M_end_of_storage = _M_start + __n;
+ }
+
+ ~_Vector_base() { _M_deallocate(_M_start, _M_end_of_storage - _M_start); }
+};
+
+
+/**
+ * @brief A standard container which offers fixed time access to individual
+ * elements in any order.
+ *
+ * @ingroup Containers
+ * @ingroup Sequences
+ *
+ * Meets the requirements of a <a href="tables.html#65">container</a>, a
+ * <a href="tables.html#66">reversible container</a>, and a
+ * <a href="tables.html#67">sequence</a>, including the
+ * <a href="tables.html#68">optional sequence requirements</a> with the
+ * %exception of @c push_front and @c pop_front.
+ *
+ * In some terminology a vector can be described as a dynamic C-style array,
+ * it offers fast and efficient access to individual elements in any order
+ * and saves the user from worrying about memory and size allocation.
+ * Subscripting ( [] ) access is also provided as with C-style arrays.
+*/
+template <class _Tp, class _Alloc = allocator<_Tp> >
+class vector : protected _Vector_base<_Tp, _Alloc>
+{
+ // concept requirements
+ __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
+
+private:
+ typedef _Vector_base<_Tp, _Alloc> _Base;
+ typedef vector<_Tp, _Alloc> vector_type;
+public:
+ typedef _Tp value_type;
+ typedef value_type* pointer;
+ typedef const value_type* const_pointer;
+ typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
+ typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
+ const_iterator;
+ typedef value_type& reference;
+ typedef const value_type& const_reference;
+ typedef size_t size_type;
+ typedef ptrdiff_t difference_type;
+
+ typedef typename _Base::allocator_type allocator_type;
+ allocator_type get_allocator() const { return _Base::get_allocator(); }
+
+ typedef reverse_iterator<const_iterator> const_reverse_iterator;
+ typedef reverse_iterator<iterator> reverse_iterator;
+
+protected:
+ using _Base::_M_allocate;
+ using _Base::_M_deallocate;
+ using _Base::_M_start;
+ using _Base::_M_finish;
+ using _Base::_M_end_of_storage;
+
+protected:
+ void _M_insert_aux(iterator __position, const _Tp& __x);
+ void _M_insert_aux(iterator __position);
+
+public:
+ /**
+ * Returns a read/write iterator that points to the first element in the
+ * vector. Iteration is done in ordinary element order.
+ */
+ iterator begin() { return iterator (_M_start); }
+
+ /**
+ * Returns a read-only (constant) iterator that points to the first element
+ * in the vector. Iteration is done in ordinary element order.
+ */
+ const_iterator begin() const
+ { return const_iterator (_M_start); }
+
+ /**
+ * Returns a read/write iterator that points one past the last element in
+ * the vector. Iteration is done in ordinary element order.
+ */
+ iterator end() { return iterator (_M_finish); }
+
+ /**
+ * Returns a read-only (constant) iterator that points one past the last
+ * element in the vector. Iteration is done in ordinary element order.
+ */
+ const_iterator end() const { return const_iterator (_M_finish); }
+
+ /**
+ * Returns a read/write reverse iterator that points to the last element in
+ * the vector. Iteration is done in reverse element order.
+ */
+ reverse_iterator rbegin()
+ { return reverse_iterator(end()); }
+
+ /**
+ * Returns a read-only (constant) reverse iterator that points to the last
+ * element in the vector. Iteration is done in reverse element order.
+ */
+ const_reverse_iterator rbegin() const
+ { return const_reverse_iterator(end()); }
+
+ /**
+ * Returns a read/write reverse iterator that points to one before the
+ * first element in the vector. Iteration is done in reverse element
+ * order.
+ */
+ reverse_iterator rend()
+ { return reverse_iterator(begin()); }
+
+ /**
+ * Returns a read-only (constant) reverse iterator that points to one
+ * before the first element in the vector. Iteration is done in reverse
+ * element order.
+ */
+ const_reverse_iterator rend() const
+ { return const_reverse_iterator(begin()); }
+
+ /** Returns the number of elements in the vector. */
+ size_type size() const
+ { return size_type(end() - begin()); }
+
+ /** Returns the size of the largest possible vector. */
+ size_type max_size() const
+ { return size_type(-1) / sizeof(_Tp); }
+
+ /**
+ * Returns the amount of memory that has been alocated for the current
+ * elements (?).
+ */
+ size_type capacity() const
+ { return size_type(const_iterator(_M_end_of_storage) - begin()); }
+
+ /**
+ * Returns true if the vector is empty. (Thus begin() would equal end().)
+ */
+ bool empty() const
+ { return begin() == end(); }
+
+ /**
+ * @brief Subscript access to the data contained in the vector.
+ * @param n The element for which data should be accessed.
+ * @return Read/write reference to data.
+ *
+ * This operator allows for easy, array-style, data access.
+ * Note that data access with this operator is unchecked and out_of_range
+ * lookups are not defined. (For checked lookups see at().)
+ */
+ reference operator[](size_type __n) { return *(begin() + __n); }
+
+ /**
+ * @brief Subscript access to the data contained in the vector.
+ * @param n The element for which data should be accessed.
+ * @return Read-only (constant) reference to data.
+ *
+ * This operator allows for easy, array-style, data access.
+ * Note that data access with this operator is unchecked and out_of_range
+ * lookups are not defined. (For checked lookups see at().)
+ */
+ const_reference operator[](size_type __n) const { return *(begin() + __n); }
+
+ void _M_range_check(size_type __n) const {
+ if (__n >= this->size())
+ __throw_out_of_range("vector");
+ }
+
+ /**
+ * @brief Provides access to the data contained in the vector.
+ * @param n The element for which data should be accessed.
+ * @return Read/write reference to data.
+ *
+ * This function provides for safer data access. The parameter is first
+ * checked that it is in the range of the vector. The function throws
+ * out_of_range if the check fails.
+ */
+ reference at(size_type __n)
+ { _M_range_check(__n); return (*this)[__n]; }
+
+ /**
+ * @brief Provides access to the data contained in the vector.
+ * @param n The element for which data should be accessed.
+ * @return Read-only (constant) reference to data.
+ *
+ * This function provides for safer data access. The parameter is first
+ * checked that it is in the range of the vector. The function throws
+ * out_of_range if the check fails.
+ */
+ const_reference at(size_type __n) const
+ { _M_range_check(__n); return (*this)[__n]; }
+
+
+ explicit vector(const allocator_type& __a = allocator_type())
+ : _Base(__a) {}
+
+ vector(size_type __n, const _Tp& __value,
+ const allocator_type& __a = allocator_type())
+ : _Base(__n, __a)
+ { _M_finish = uninitialized_fill_n(_M_start, __n, __value); }
+
+ explicit vector(size_type __n)
+ : _Base(__n, allocator_type())
+ { _M_finish = uninitialized_fill_n(_M_start, __n, _Tp()); }
+
+ vector(const vector<_Tp, _Alloc>& __x)
+ : _Base(__x.size(), __x.get_allocator())
+ { _M_finish = uninitialized_copy(__x.begin(), __x.end(), _M_start); }
+
+ // Check whether it's an integral type. If so, it's not an iterator.
+ template <class _InputIterator>
+ vector(_InputIterator __first, _InputIterator __last,
+ const allocator_type& __a = allocator_type())
+ : _Base(__a)
+ {
+ typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
+ _M_initialize_aux(__first, __last, _Integral());
+ }
+
+ template <class _Integer>
+ void _M_initialize_aux(_Integer __n, _Integer __value, __true_type)
+ {
+ _M_start = _M_allocate(__n);
+ _M_end_of_storage = _M_start + __n;
+ _M_finish = uninitialized_fill_n(_M_start, __n, __value);
+ }
+
+ template<class _InputIterator>
+ void
+ _M_initialize_aux(_InputIterator __first, _InputIterator __last, __false_type)
+ {
+ typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory;
+ _M_range_initialize(__first, __last, _IterCategory());
+ }
+
+ ~vector()
+ { _Destroy(_M_start, _M_finish); }
+
+ vector<_Tp, _Alloc>& operator=(const vector<_Tp, _Alloc>& __x);
+
+ /**
+ * @brief Attempt to preallocate enough memory for specified number of
+ * elements.
+ * @param n Number of elements required
+ *
+ * This function attempts to reserve enough memory for the vector to hold
+ * the specified number of elements. If the number requested is more than
+ * max_size() length_error is thrown.
+ *
+ * The advantage of this function is that if optimal code is a necessity
+ * and the user can determine the number of elements that will be required
+ * the user can reserve the memory and thus prevent a possible
+ * reallocation of memory and copy of vector data.
+ */
+ void reserve(size_type __n) {
+ if (capacity() < __n) {
+ const size_type __old_size = size();
+ pointer __tmp = _M_allocate_and_copy(__n, _M_start, _M_finish);
+ _Destroy(_M_start, _M_finish);
+ _M_deallocate(_M_start, _M_end_of_storage - _M_start);
+ _M_start = __tmp;
+ _M_finish = __tmp + __old_size;
+ _M_end_of_storage = _M_start + __n;
+ }
+ }
+
+ // assign(), a generalized assignment member function. Two
+ // versions: one that takes a count, and one that takes a range.
+ // The range version is a member template, so we dispatch on whether
+ // or not the type is an integer.
+
+ /**
+ * @brief Assigns a given value or range to a vector.
+ * @param n Number of elements to be assigned.
+ * @param val Value to be assigned.
+ *
+ * This function can be used to assign a range to a vector or fill it
+ * with a specified number of copies of the given value.
+ * Note that the assignment completely changes the vector and that the
+ * resulting vector's size is the same as the number of elements assigned.
+ * Old data may be lost.
+ */
+ void assign(size_type __n, const _Tp& __val) { _M_fill_assign(__n, __val); }
+ void _M_fill_assign(size_type __n, const _Tp& __val);
+
+ template<class _InputIterator>
+ void
+ assign(_InputIterator __first, _InputIterator __last)
+ {
+ typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
+ _M_assign_dispatch(__first, __last, _Integral());
+ }
+
+ template<class _Integer>
+ void
+ _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
+ { _M_fill_assign((size_type) __n, (_Tp) __val); }
+
+ template<class _InputIter>
+ void
+ _M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
+ {
+ typedef typename iterator_traits<_InputIter>::iterator_category _IterCategory;
+ _M_assign_aux(__first, __last, _IterCategory());
+ }
+
+ template <class _InputIterator>
+ void
+ _M_assign_aux(_InputIterator __first, _InputIterator __last,
+ input_iterator_tag);
+
+ template <class _ForwardIterator>
+ void
+ _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
+ forward_iterator_tag);
+
+ /**
+ * Returns a read/write reference to the data at the first element of the
+ * vector.
+ */
+ reference front() { return *begin(); }
+
+ /**
+ * Returns a read-only (constant) reference to the data at the first
+ * element of the vector.
+ */
+ const_reference front() const { return *begin(); }
+
+ /**
+ * Returns a read/write reference to the data at the last element of the
+ * vector.
+ */
+ reference back() { return *(end() - 1); }
+
+ /**
+ * Returns a read-only (constant) reference to the data at the first
+ * element of the vector.
+ */
+ const_reference back() const { return *(end() - 1); }
+
+ /**
+ * @brief Add data to the end of the vector.
+ * @param x Data to be added.
+ *
+ * This is a typical stack operation. The function creates an element at
+ * the end of the vector and assigns the given data to it.
+ * Due to the nature of a vector this operation can be done in constant
+ * time if the vector has preallocated space available.
+ */
+ void
+ push_back(const _Tp& __x)
+ {
+ if (_M_finish != _M_end_of_storage) {
+ _Construct(_M_finish, __x);
+ ++_M_finish;
+ }
+ else
+ _M_insert_aux(end(), __x);
+ }
+
+#ifdef _GLIBCPP_DEPRECATED
+ /**
+ * Add an element to the end of the vector. The element is
+ * default-constructed.
+ *
+ * @note You must define _GLIBCPP_DEPRECATED to make this visible; see
+ * c++config.h.
+ */
+ void
+ push_back()
+ {
+ if (_M_finish != _M_end_of_storage) {
+ _Construct(_M_finish);
+ ++_M_finish;
+ }
+ else
+ _M_insert_aux(end());
+ }
+#endif
+
+ void
+ swap(vector<_Tp, _Alloc>& __x)
+ {
+ std::swap(_M_start, __x._M_start);
+ std::swap(_M_finish, __x._M_finish);
+ std::swap(_M_end_of_storage, __x._M_end_of_storage);
+ }
+
+ /**
+ * @brief Inserts given value into vector at specified element.
+ * @param position An iterator that points to the element where data
+ * should be inserted.
+ * @param x Data to be inserted.
+ * @return An iterator that points to the inserted data.
+ *
+ * This function will insert the given value into the specified location.
+ * Note that this kind of operation could be expensive for a vector and if
+ * it is frequently used the user should consider using std::list.
+ */
+ iterator
+ insert(iterator __position, const _Tp& __x)
+ {
+ size_type __n = __position - begin();
+ if (_M_finish != _M_end_of_storage && __position == end()) {
+ _Construct(_M_finish, __x);
+ ++_M_finish;
+ }
+ else
+ _M_insert_aux(iterator(__position), __x);
+ return begin() + __n;
+ }
+
+ /**
+ * @brief Inserts an empty element into the vector.
+ * @param position An iterator that points to the element where empty
+ * element should be inserted.
+ * @param x Data to be inserted.
+ * @return An iterator that points to the inserted element.
+ *
+ * This function will insert an empty element into the specified location.
+ * Note that this kind of operation could be expensive for a vector and if
+ * it is frequently used the user should consider using std::list.
+ */
+ iterator
+ insert(iterator __position)
+ {
+ size_type __n = __position - begin();
+ if (_M_finish != _M_end_of_storage && __position == end()) {
+ _Construct(_M_finish);
+ ++_M_finish;
+ }
+ else
+ _M_insert_aux(iterator(__position));
+ return begin() + __n;
+ }
+
+ // Check whether it's an integral type. If so, it's not an iterator.
+ template<class _InputIterator>
+ void
+ insert(iterator __pos, _InputIterator __first, _InputIterator __last)
+ {
+ typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
+ _M_insert_dispatch(__pos, __first, __last, _Integral());
+ }
+
+ template <class _Integer>
+ void
+ _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val, __true_type)
+ { _M_fill_insert(__pos, static_cast<size_type>(__n), static_cast<_Tp>(__val)); }
+
+ template<class _InputIterator>
+ void
+ _M_insert_dispatch(iterator __pos,
+ _InputIterator __first, _InputIterator __last,
+ __false_type)
+ {
+ typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory;
+ _M_range_insert(__pos, __first, __last, _IterCategory());
+ }
+
+ /**
+ * @brief Inserts a number of copies of given data into the vector.
+ * @param position An iterator that points to the element where data
+ * should be inserted.
+ * @param n Amount of elements to be inserted.
+ * @param x Data to be inserted.
+ *
+ * This function will insert a specified number of copies of the given data
+ * into the specified location.
+ *
+ * Note that this kind of operation could be expensive for a vector and if
+ * it is frequently used the user should consider using std::list.
+ */
+ void insert (iterator __pos, size_type __n, const _Tp& __x)
+ { _M_fill_insert(__pos, __n, __x); }
+
+ void _M_fill_insert (iterator __pos, size_type __n, const _Tp& __x);
+
+ /**
+ * @brief Removes last element from vector.
+ *
+ * This is a typical stack operation. It allows us to shrink the vector by
+ * one.
+ *
+ * Note that no data is returned and if last element's data is needed it
+ * should be retrieved before pop_back() is called.
+ */
+ void pop_back() {
+ --_M_finish;
+ _Destroy(_M_finish);
+ }
+
+ /**
+ * @brief Remove element at given position
+ * @param position Iterator pointing to element to be erased.
+ * @return Doc Me! (Iterator pointing to new element at old location?)
+ *
+ * This function will erase the element at the given position and thus
+ * shorten the vector by one.
+ *
+ * Note This operation could be expensive and if it is frequently used the
+ * user should consider using std::list. The user is also cautioned that
+ * this function only erases the element, and that if the element is itself
+ * a pointer, the pointed-to memory is not touched in any way. Managing
+ * the pointer is the user's responsibilty.
+ */
+ iterator erase(iterator __position) {
+ if (__position + 1 != end())
+ copy(__position + 1, end(), __position);
+ --_M_finish;
+ _Destroy(_M_finish);
+ return __position;
+ }
+
+ /**
+ * @brief Remove a range of elements from a vector.
+ * @param first Iterator pointing to the first element to be erased.
+ * @param last Iterator pointing to the last element to be erased.
+ * @return Doc Me! (Iterator pointing to new element at old location?)
+ *
+ * This function will erase the elements in the given range and shorten the
+ * vector accordingly.
+ *
+ * Note This operation could be expensive and if it is frequently used the
+ * user should consider using std::list. The user is also cautioned that
+ * this function only erases the elements, and that if the elements
+ * themselves are pointers, the pointed-to memory is not touched in any
+ * way. Managing the pointer is the user's responsibilty.
+ */
+ iterator erase(iterator __first, iterator __last) {
+ iterator __i(copy(__last, end(), __first));
+ _Destroy(__i, end());
+ _M_finish = _M_finish - (__last - __first);
+ return __first;
+ }
+
+ /**
+ * @brief Resizes the vector to the specified number of elements.
+ * @param new_size Number of elements the vector should contain.
+ * @param x Data with which new elements should be populated.
+ *
+ * This function will resize the vector to the specified number of
+ * elements. If the number is smaller than the vector's current size the
+ * vector is truncated, otherwise the vector is extended and new elements
+ * are populated with given data.
+ */
+ void resize(size_type __new_size, const _Tp& __x) {
+ if (__new_size < size())
+ erase(begin() + __new_size, end());
+ else
+ insert(end(), __new_size - size(), __x);
+ }
+
+ /**
+ * @brief Resizes the vector to the specified number of elements.
+ * @param new_size Number of elements the vector should contain.
+ *
+ * This function will resize the vector to the specified number of
+ * elements. If the number is smaller than the vector's current size the
+ * vector is truncated, otherwise the vector is extended and new elements
+ * are left uninitialized.
+ */
+ void resize(size_type __new_size) { resize(__new_size, _Tp()); }
+
+ /**
+ * Erases all elements in vector. Note that this function only erases the
+ * elements, and that if the elements themselves are pointers, the
+ * pointed-to memory is not touched in any way. Managing the pointer is
+ * the user's responsibilty.
+ */
+ void clear() { erase(begin(), end()); }
+
+protected:
+
+ template <class _ForwardIterator>
+ pointer _M_allocate_and_copy(size_type __n, _ForwardIterator __first,
+ _ForwardIterator __last)
+ {
+ pointer __result = _M_allocate(__n);
+ try {
+ uninitialized_copy(__first, __last, __result);
+ return __result;
+ }
+ catch(...)
+ {
+ _M_deallocate(__result, __n);
+ __throw_exception_again;
+ }
+ }
+
+ template <class _InputIterator>
+ void _M_range_initialize(_InputIterator __first,
+ _InputIterator __last, input_iterator_tag)
+ {
+ for ( ; __first != __last; ++__first)
+ push_back(*__first);
+ }
+
+ // This function is only called by the constructor.
+ template <class _ForwardIterator>
+ void _M_range_initialize(_ForwardIterator __first,
+ _ForwardIterator __last, forward_iterator_tag)
+ {
+ size_type __n = distance(__first, __last);
+ _M_start = _M_allocate(__n);
+ _M_end_of_storage = _M_start + __n;
+ _M_finish = uninitialized_copy(__first, __last, _M_start);
+ }
+
+ template <class _InputIterator>
+ void _M_range_insert(iterator __pos,
+ _InputIterator __first, _InputIterator __last,
+ input_iterator_tag);
+
+ template <class _ForwardIterator>
+ void _M_range_insert(iterator __pos,
+ _ForwardIterator __first, _ForwardIterator __last,
+ forward_iterator_tag);
+};
+
+template <class _Tp, class _Alloc>
+inline bool
+operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
+{
+ return __x.size() == __y.size() &&
+ equal(__x.begin(), __x.end(), __y.begin());
+}
+
+template <class _Tp, class _Alloc>
+inline bool
+operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
+{
+ return lexicographical_compare(__x.begin(), __x.end(),
+ __y.begin(), __y.end());
+}
+
+template <class _Tp, class _Alloc>
+inline void swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
+{
+ __x.swap(__y);
+}
+
+template <class _Tp, class _Alloc>
+inline bool
+operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
+ return !(__x == __y);
+}
+
+template <class _Tp, class _Alloc>
+inline bool
+operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
+ return __y < __x;
+}
+
+template <class _Tp, class _Alloc>
+inline bool
+operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
+ return !(__y < __x);
+}
+
+template <class _Tp, class _Alloc>
+inline bool
+operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
+ return !(__x < __y);
+}
+
+template <class _Tp, class _Alloc>
+vector<_Tp,_Alloc>&
+vector<_Tp,_Alloc>::operator=(const vector<_Tp, _Alloc>& __x)
+{
+ if (&__x != this) {
+ const size_type __xlen = __x.size();
+ if (__xlen > capacity()) {
+ pointer __tmp = _M_allocate_and_copy(__xlen, __x.begin(), __x.end());
+ _Destroy(_M_start, _M_finish);
+ _M_deallocate(_M_start, _M_end_of_storage - _M_start);
+ _M_start = __tmp;
+ _M_end_of_storage = _M_start + __xlen;
+ }
+ else if (size() >= __xlen) {
+ iterator __i(copy(__x.begin(), __x.end(), begin()));
+ _Destroy(__i, end());
+ }
+ else {
+ copy(__x.begin(), __x.begin() + size(), _M_start);
+ uninitialized_copy(__x.begin() + size(), __x.end(), _M_finish);
+ }
+ _M_finish = _M_start + __xlen;
+ }
+ return *this;
+}
+
+template <class _Tp, class _Alloc>
+void vector<_Tp, _Alloc>::_M_fill_assign(size_t __n, const value_type& __val)
+{
+ if (__n > capacity()) {
+ vector<_Tp, _Alloc> __tmp(__n, __val, get_allocator());
+ __tmp.swap(*this);
+ }
+ else if (__n > size()) {
+ fill(begin(), end(), __val);
+ _M_finish = uninitialized_fill_n(_M_finish, __n - size(), __val);
+ }
+ else
+ erase(fill_n(begin(), __n, __val), end());
+}
+
+template <class _Tp, class _Alloc> template <class _InputIter>
+void vector<_Tp, _Alloc>::_M_assign_aux(_InputIter __first, _InputIter __last,
+ input_iterator_tag) {
+ iterator __cur(begin());
+ for ( ; __first != __last && __cur != end(); ++__cur, ++__first)
+ *__cur = *__first;
+ if (__first == __last)
+ erase(__cur, end());
+ else
+ insert(end(), __first, __last);
+}
+
+template <class _Tp, class _Alloc> template <class _ForwardIter>
+void
+vector<_Tp, _Alloc>::_M_assign_aux(_ForwardIter __first, _ForwardIter __last,
+ forward_iterator_tag) {
+ size_type __len = distance(__first, __last);
+
+ if (__len > capacity()) {
+ pointer __tmp(_M_allocate_and_copy(__len, __first, __last));
+ _Destroy(_M_start, _M_finish);
+ _M_deallocate(_M_start, _M_end_of_storage - _M_start);
+ _M_start = __tmp;
+ _M_end_of_storage = _M_finish = _M_start + __len;
+ }
+ else if (size() >= __len) {
+ iterator __new_finish(copy(__first, __last, _M_start));
+ _Destroy(__new_finish, end());
+ _M_finish = __new_finish.base();
+ }
+ else {
+ _ForwardIter __mid = __first;
+ advance(__mid, size());
+ copy(__first, __mid, _M_start);
+ _M_finish = uninitialized_copy(__mid, __last, _M_finish);
+ }
+}
+
+template <class _Tp, class _Alloc>
+void
+vector<_Tp, _Alloc>::_M_insert_aux(iterator __position, const _Tp& __x)
+{
+ if (_M_finish != _M_end_of_storage) {
+ _Construct(_M_finish, *(_M_finish - 1));
+ ++_M_finish;
+ _Tp __x_copy = __x;
+ copy_backward(__position, iterator(_M_finish - 2), iterator(_M_finish- 1));
+ *__position = __x_copy;
+ }
+ else {
+ const size_type __old_size = size();
+ const size_type __len = __old_size != 0 ? 2 * __old_size : 1;
+ iterator __new_start(_M_allocate(__len));
+ iterator __new_finish(__new_start);
+ try {
+ __new_finish = uninitialized_copy(iterator(_M_start), __position,
+ __new_start);
+ _Construct(__new_finish.base(), __x);
+ ++__new_finish;
+ __new_finish = uninitialized_copy(__position, iterator(_M_finish),
+ __new_finish);
+ }
+ catch(...)
+ {
+ _Destroy(__new_start,__new_finish);
+ _M_deallocate(__new_start.base(),__len);
+ __throw_exception_again;
+ }
+ _Destroy(begin(), end());
+ _M_deallocate(_M_start, _M_end_of_storage - _M_start);
+ _M_start = __new_start.base();
+ _M_finish = __new_finish.base();
+ _M_end_of_storage = __new_start.base() + __len;
+ }
+}
+
+template <class _Tp, class _Alloc>
+void
+vector<_Tp, _Alloc>::_M_insert_aux(iterator __position)
+{
+ if (_M_finish != _M_end_of_storage) {
+ _Construct(_M_finish, *(_M_finish - 1));
+ ++_M_finish;
+ copy_backward(__position, iterator(_M_finish - 2),
+ iterator(_M_finish - 1));
+ *__position = _Tp();
+ }
+ else {
+ const size_type __old_size = size();
+ const size_type __len = __old_size != 0 ? 2 * __old_size : 1;
+ pointer __new_start = _M_allocate(__len);
+ pointer __new_finish = __new_start;
+ try {
+ __new_finish = uninitialized_copy(iterator(_M_start), __position,
+ __new_start);
+ _Construct(__new_finish);
+ ++__new_finish;
+ __new_finish = uninitialized_copy(__position, iterator(_M_finish),
+ __new_finish);
+ }
+ catch(...)
+ {
+ _Destroy(__new_start,__new_finish);
+ _M_deallocate(__new_start,__len);
+ __throw_exception_again;
+ }
+ _Destroy(begin(), end());
+ _M_deallocate(_M_start, _M_end_of_storage - _M_start);
+ _M_start = __new_start;
+ _M_finish = __new_finish;
+ _M_end_of_storage = __new_start + __len;
+ }
+}
+
+template <class _Tp, class _Alloc>
+void vector<_Tp, _Alloc>::_M_fill_insert(iterator __position, size_type __n,
+ const _Tp& __x)
+{
+ if (__n != 0) {
+ if (size_type(_M_end_of_storage - _M_finish) >= __n) {
+ _Tp __x_copy = __x;
+ const size_type __elems_after = end() - __position;
+ iterator __old_finish(_M_finish);
+ if (__elems_after > __n) {
+ uninitialized_copy(_M_finish - __n, _M_finish, _M_finish);
+ _M_finish += __n;
+ copy_backward(__position, __old_finish - __n, __old_finish);
+ fill(__position, __position + __n, __x_copy);
+ }
+ else {
+ uninitialized_fill_n(_M_finish, __n - __elems_after, __x_copy);
+ _M_finish += __n - __elems_after;
+ uninitialized_copy(__position, __old_finish, _M_finish);
+ _M_finish += __elems_after;
+ fill(__position, __old_finish, __x_copy);
+ }
+ }
+ else {
+ const size_type __old_size = size();
+ const size_type __len = __old_size + max(__old_size, __n);
+ iterator __new_start(_M_allocate(__len));
+ iterator __new_finish(__new_start);
+ try {
+ __new_finish = uninitialized_copy(begin(), __position, __new_start);
+ __new_finish = uninitialized_fill_n(__new_finish, __n, __x);
+ __new_finish
+ = uninitialized_copy(__position, end(), __new_finish);
+ }
+ catch(...)
+ {
+ _Destroy(__new_start,__new_finish);
+ _M_deallocate(__new_start.base(),__len);
+ __throw_exception_again;
+ }
+ _Destroy(_M_start, _M_finish);
+ _M_deallocate(_M_start, _M_end_of_storage - _M_start);
+ _M_start = __new_start.base();
+ _M_finish = __new_finish.base();
+ _M_end_of_storage = __new_start.base() + __len;
+ }
+ }
+}
+
+template <class _Tp, class _Alloc> template <class _InputIterator>
+void
+vector<_Tp, _Alloc>::_M_range_insert(iterator __pos,
+ _InputIterator __first,
+ _InputIterator __last,
+ input_iterator_tag)
+{
+ for ( ; __first != __last; ++__first) {
+ __pos = insert(__pos, *__first);
+ ++__pos;
+ }
+}
+
+template <class _Tp, class _Alloc> template <class _ForwardIterator>
+void
+vector<_Tp, _Alloc>::_M_range_insert(iterator __position,
+ _ForwardIterator __first,
+ _ForwardIterator __last,
+ forward_iterator_tag)
+{
+ if (__first != __last) {
+ size_type __n = distance(__first, __last);
+ if (size_type(_M_end_of_storage - _M_finish) >= __n) {
+ const size_type __elems_after = end() - __position;
+ iterator __old_finish(_M_finish);
+ if (__elems_after > __n) {
+ uninitialized_copy(_M_finish - __n, _M_finish, _M_finish);
+ _M_finish += __n;
+ copy_backward(__position, __old_finish - __n, __old_finish);
+ copy(__first, __last, __position);
+ }
+ else {
+ _ForwardIterator __mid = __first;
+ advance(__mid, __elems_after);
+ uninitialized_copy(__mid, __last, _M_finish);
+ _M_finish += __n - __elems_after;
+ uninitialized_copy(__position, __old_finish, _M_finish);
+ _M_finish += __elems_after;
+ copy(__first, __mid, __position);
+ }
+ }
+ else {
+ const size_type __old_size = size();
+ const size_type __len = __old_size + max(__old_size, __n);
+ iterator __new_start(_M_allocate(__len));
+ iterator __new_finish(__new_start);
+ try {
+ __new_finish = uninitialized_copy(iterator(_M_start),
+ __position, __new_start);
+ __new_finish = uninitialized_copy(__first, __last, __new_finish);
+ __new_finish
+ = uninitialized_copy(__position, iterator(_M_finish), __new_finish);
+ }
+ catch(...)
+ {
+ _Destroy(__new_start,__new_finish);
+ _M_deallocate(__new_start.base(), __len);
+ __throw_exception_again;
+ }
+ _Destroy(_M_start, _M_finish);
+ _M_deallocate(_M_start, _M_end_of_storage - _M_start);
+ _M_start = __new_start.base();
+ _M_finish = __new_finish.base();
+ _M_end_of_storage = __new_start.base() + __len;
+ }
+ }
+}
+
+} // namespace std
+
+#endif /* __GLIBCPP_INTERNAL_VECTOR_H */
+
+// Local Variables:
+// mode:C++
+// End:
OpenPOWER on IntegriCloud