summaryrefslogtreecommitdiffstats
path: root/contrib/gdb/gdb/x86-64-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/gdb/gdb/x86-64-tdep.c')
-rw-r--r--contrib/gdb/gdb/x86-64-tdep.c1102
1 files changed, 1102 insertions, 0 deletions
diff --git a/contrib/gdb/gdb/x86-64-tdep.c b/contrib/gdb/gdb/x86-64-tdep.c
new file mode 100644
index 0000000..3ebc1b2
--- /dev/null
+++ b/contrib/gdb/gdb/x86-64-tdep.c
@@ -0,0 +1,1102 @@
+/* Target-dependent code for the x86-64 for GDB, the GNU debugger.
+
+ Copyright 2001, 2002 Free Software Foundation, Inc.
+
+ Contributed by Jiri Smid, SuSE Labs.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "inferior.h"
+#include "gdbcore.h"
+#include "gdbcmd.h"
+#include "arch-utils.h"
+#include "regcache.h"
+#include "symfile.h"
+#include "x86-64-tdep.h"
+#include "dwarf2cfi.h"
+#include "gdb_assert.h"
+
+/* Register numbers of various important registers. */
+#define RAX_REGNUM 0
+#define RDX_REGNUM 3
+#define RDI_REGNUM 5
+#define EFLAGS_REGNUM 17
+#define XMM1_REGNUM 39
+
+struct register_info
+{
+ int size;
+ char *name;
+ struct type **type;
+};
+
+/* x86_64_register_raw_size_table[i] is the number of bytes of storage in
+ GDB's register array occupied by register i. */
+static struct register_info x86_64_register_info_table[] = {
+ {8, "rax", &builtin_type_int64},
+ {8, "rbx", &builtin_type_int64},
+ {8, "rcx", &builtin_type_int64},
+ {8, "rdx", &builtin_type_int64},
+ {8, "rsi", &builtin_type_int64},
+ {8, "rdi", &builtin_type_int64},
+ {8, "rbp", &builtin_type_void_func_ptr},
+ {8, "rsp", &builtin_type_void_func_ptr},
+ {8, "r8", &builtin_type_int64},
+ {8, "r9", &builtin_type_int64},
+ {8, "r10", &builtin_type_int64},
+ {8, "r11", &builtin_type_int64},
+ {8, "r12", &builtin_type_int64},
+ {8, "r13", &builtin_type_int64},
+ {8, "r14", &builtin_type_int64},
+ {8, "r15", &builtin_type_int64},
+ {8, "rip", &builtin_type_void_func_ptr},
+ {4, "eflags", &builtin_type_int32},
+ {4, "ds", &builtin_type_int32},
+ {4, "es", &builtin_type_int32},
+ {4, "fs", &builtin_type_int32},
+ {4, "gs", &builtin_type_int32},
+ {10, "st0", &builtin_type_i387_ext},
+ {10, "st1", &builtin_type_i387_ext},
+ {10, "st2", &builtin_type_i387_ext},
+ {10, "st3", &builtin_type_i387_ext},
+ {10, "st4", &builtin_type_i387_ext},
+ {10, "st5", &builtin_type_i387_ext},
+ {10, "st6", &builtin_type_i387_ext},
+ {10, "st7", &builtin_type_i387_ext},
+ {4, "fctrl", &builtin_type_int32},
+ {4, "fstat", &builtin_type_int32},
+ {4, "ftag", &builtin_type_int32},
+ {4, "fiseg", &builtin_type_int32},
+ {4, "fioff", &builtin_type_int32},
+ {4, "foseg", &builtin_type_int32},
+ {4, "fooff", &builtin_type_int32},
+ {4, "fop", &builtin_type_int32},
+ {16, "xmm0", &builtin_type_v4sf},
+ {16, "xmm1", &builtin_type_v4sf},
+ {16, "xmm2", &builtin_type_v4sf},
+ {16, "xmm3", &builtin_type_v4sf},
+ {16, "xmm4", &builtin_type_v4sf},
+ {16, "xmm5", &builtin_type_v4sf},
+ {16, "xmm6", &builtin_type_v4sf},
+ {16, "xmm7", &builtin_type_v4sf},
+ {16, "xmm8", &builtin_type_v4sf},
+ {16, "xmm9", &builtin_type_v4sf},
+ {16, "xmm10", &builtin_type_v4sf},
+ {16, "xmm11", &builtin_type_v4sf},
+ {16, "xmm12", &builtin_type_v4sf},
+ {16, "xmm13", &builtin_type_v4sf},
+ {16, "xmm14", &builtin_type_v4sf},
+ {16, "xmm15", &builtin_type_v4sf},
+ {4, "mxcsr", &builtin_type_int32}
+};
+
+/* Number of all registers */
+#define X86_64_NUM_REGS (sizeof (x86_64_register_info_table) / \
+ sizeof (x86_64_register_info_table[0]))
+
+/* Number of general registers. */
+#define X86_64_NUM_GREGS (22)
+
+int x86_64_num_regs = X86_64_NUM_REGS;
+int x86_64_num_gregs = X86_64_NUM_GREGS;
+
+/* Did we already print a note about frame pointer? */
+int omit_fp_note_printed = 0;
+
+/* Number of bytes of storage in the actual machine representation for
+ register REGNO. */
+int
+x86_64_register_raw_size (int regno)
+{
+ return x86_64_register_info_table[regno].size;
+}
+
+/* x86_64_register_byte_table[i] is the offset into the register file of the
+ start of register number i. We initialize this from
+ x86_64_register_info_table. */
+int x86_64_register_byte_table[X86_64_NUM_REGS];
+
+/* Index within `registers' of the first byte of the space for register REGNO. */
+int
+x86_64_register_byte (int regno)
+{
+ return x86_64_register_byte_table[regno];
+}
+
+/* Return the GDB type object for the "standard" data type of data in
+ register N. */
+static struct type *
+x86_64_register_virtual_type (int regno)
+{
+ return *x86_64_register_info_table[regno].type;
+}
+
+/* x86_64_register_convertible is true if register N's virtual format is
+ different from its raw format. Note that this definition assumes
+ that the host supports IEEE 32-bit floats, since it doesn't say
+ that SSE registers need conversion. Even if we can't find a
+ counterexample, this is still sloppy. */
+int
+x86_64_register_convertible (int regno)
+{
+ return IS_FP_REGNUM (regno);
+}
+
+/* Convert data from raw format for register REGNUM in buffer FROM to
+ virtual format with type TYPE in buffer TO. In principle both
+ formats are identical except that the virtual format has two extra
+ bytes appended that aren't used. We set these to zero. */
+void
+x86_64_register_convert_to_virtual (int regnum, struct type *type,
+ char *from, char *to)
+{
+ char buf[12];
+ DOUBLEST d;
+ /* We only support floating-point values. */
+ if (TYPE_CODE (type) != TYPE_CODE_FLT)
+ {
+ warning ("Cannot convert floating-point register value "
+ "to non-floating-point type.");
+ memset (to, 0, TYPE_LENGTH (type));
+ return;
+ }
+ /* First add the necessary padding. */
+ memcpy (buf, from, FPU_REG_RAW_SIZE);
+ memset (buf + FPU_REG_RAW_SIZE, 0, sizeof buf - FPU_REG_RAW_SIZE);
+ /* Convert to TYPE. This should be a no-op, if TYPE is equivalent
+ to the extended floating-point format used by the FPU. */
+ convert_typed_floating (to, type, buf,
+ x86_64_register_virtual_type (regnum));
+}
+
+/* Convert data from virtual format with type TYPE in buffer FROM to
+ raw format for register REGNUM in buffer TO. Simply omit the two
+ unused bytes. */
+
+void
+x86_64_register_convert_to_raw (struct type *type, int regnum,
+ char *from, char *to)
+{
+ gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12);
+ /* Simply omit the two unused bytes. */
+ memcpy (to, from, FPU_REG_RAW_SIZE);
+}
+
+/* This is the variable that is set with "set disassembly-flavour", and
+ its legitimate values. */
+static const char att_flavour[] = "att";
+static const char intel_flavour[] = "intel";
+static const char *valid_flavours[] = {
+ att_flavour,
+ intel_flavour,
+ NULL
+};
+static const char *disassembly_flavour = att_flavour;
+
+static CORE_ADDR
+x86_64_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
+{
+ char buf[8];
+
+ store_unsigned_integer (buf, 8, CALL_DUMMY_ADDRESS ());
+
+ write_memory (sp - 8, buf, 8);
+ return sp - 8;
+}
+
+void
+x86_64_pop_frame (void)
+{
+ generic_pop_current_frame (cfi_pop_frame);
+}
+
+
+/* The returning of values is done according to the special algorithm.
+ Some types are returned in registers an some (big structures) in memory.
+ See ABI for details.
+ */
+
+#define MAX_CLASSES 4
+
+enum x86_64_reg_class
+{
+ X86_64_NO_CLASS,
+ X86_64_INTEGER_CLASS,
+ X86_64_INTEGERSI_CLASS,
+ X86_64_SSE_CLASS,
+ X86_64_SSESF_CLASS,
+ X86_64_SSEDF_CLASS,
+ X86_64_SSEUP_CLASS,
+ X86_64_X87_CLASS,
+ X86_64_X87UP_CLASS,
+ X86_64_MEMORY_CLASS
+};
+
+/* Return the union class of CLASS1 and CLASS2.
+ See the x86-64 ABI for details. */
+
+static enum x86_64_reg_class
+merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2)
+{
+ /* Rule #1: If both classes are equal, this is the resulting class. */
+ if (class1 == class2)
+ return class1;
+
+ /* Rule #2: If one of the classes is NO_CLASS, the resulting class is
+ the other class. */
+ if (class1 == X86_64_NO_CLASS)
+ return class2;
+ if (class2 == X86_64_NO_CLASS)
+ return class1;
+
+ /* Rule #3: If one of the classes is MEMORY, the result is MEMORY. */
+ if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS)
+ return X86_64_MEMORY_CLASS;
+
+ /* Rule #4: If one of the classes is INTEGER, the result is INTEGER. */
+ if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS)
+ || (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS))
+ return X86_64_INTEGERSI_CLASS;
+ if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS
+ || class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS)
+ return X86_64_INTEGER_CLASS;
+
+ /* Rule #5: If one of the classes is X87 or X87UP class, MEMORY is used. */
+ if (class1 == X86_64_X87_CLASS || class1 == X86_64_X87UP_CLASS
+ || class2 == X86_64_X87_CLASS || class2 == X86_64_X87UP_CLASS)
+ return X86_64_MEMORY_CLASS;
+
+ /* Rule #6: Otherwise class SSE is used. */
+ return X86_64_SSE_CLASS;
+}
+
+
+/* Classify the argument type.
+ CLASSES will be filled by the register class used to pass each word
+ of the operand. The number of words is returned. In case the parameter
+ should be passed in memory, 0 is returned. As a special case for zero
+ sized containers, classes[0] will be NO_CLASS and 1 is returned.
+
+ See the x86-64 PS ABI for details.
+*/
+
+static int
+classify_argument (struct type *type,
+ enum x86_64_reg_class classes[MAX_CLASSES], int bit_offset)
+{
+ int bytes = TYPE_LENGTH (type);
+ int words = (bytes + 8 - 1) / 8;
+
+ switch (TYPE_CODE (type))
+ {
+ case TYPE_CODE_ARRAY:
+ case TYPE_CODE_STRUCT:
+ case TYPE_CODE_UNION:
+ {
+ int i;
+ enum x86_64_reg_class subclasses[MAX_CLASSES];
+
+ /* On x86-64 we pass structures larger than 16 bytes on the stack. */
+ if (bytes > 16)
+ return 0;
+
+ for (i = 0; i < words; i++)
+ classes[i] = X86_64_NO_CLASS;
+
+ /* Zero sized arrays or structures are NO_CLASS. We return 0 to
+ signalize memory class, so handle it as special case. */
+ if (!words)
+ {
+ classes[0] = X86_64_NO_CLASS;
+ return 1;
+ }
+ switch (TYPE_CODE (type))
+ {
+ case TYPE_CODE_STRUCT:
+ {
+ int j;
+ for (j = 0; j < type->nfields; ++j)
+ {
+ int num = classify_argument (type->fields[j].type,
+ subclasses,
+ (type->fields[j].loc.bitpos
+ + bit_offset) % 256);
+ if (!num)
+ return 0;
+ for (i = 0; i < num; i++)
+ {
+ int pos =
+ (type->fields[j].loc.bitpos + bit_offset) / 8 / 8;
+ classes[i + pos] =
+ merge_classes (subclasses[i], classes[i + pos]);
+ }
+ }
+ }
+ break;
+ case TYPE_CODE_ARRAY:
+ {
+ int num;
+
+ num = classify_argument (type->target_type,
+ subclasses, bit_offset);
+ if (!num)
+ return 0;
+
+ /* The partial classes are now full classes. */
+ if (subclasses[0] == X86_64_SSESF_CLASS && bytes != 4)
+ subclasses[0] = X86_64_SSE_CLASS;
+ if (subclasses[0] == X86_64_INTEGERSI_CLASS && bytes != 4)
+ subclasses[0] = X86_64_INTEGER_CLASS;
+
+ for (i = 0; i < words; i++)
+ classes[i] = subclasses[i % num];
+ }
+ break;
+ case TYPE_CODE_UNION:
+ {
+ int j;
+ {
+ for (j = 0; j < type->nfields; ++j)
+ {
+ int num;
+ num = classify_argument (type->fields[j].type,
+ subclasses, bit_offset);
+ if (!num)
+ return 0;
+ for (i = 0; i < num; i++)
+ classes[i] = merge_classes (subclasses[i], classes[i]);
+ }
+ }
+ }
+ break;
+ }
+ /* Final merger cleanup. */
+ for (i = 0; i < words; i++)
+ {
+ /* If one class is MEMORY, everything should be passed in
+ memory. */
+ if (classes[i] == X86_64_MEMORY_CLASS)
+ return 0;
+
+ /* The X86_64_SSEUP_CLASS should be always preceeded by
+ X86_64_SSE_CLASS. */
+ if (classes[i] == X86_64_SSEUP_CLASS
+ && (i == 0 || classes[i - 1] != X86_64_SSE_CLASS))
+ classes[i] = X86_64_SSE_CLASS;
+
+ /* X86_64_X87UP_CLASS should be preceeded by X86_64_X87_CLASS. */
+ if (classes[i] == X86_64_X87UP_CLASS
+ && (i == 0 || classes[i - 1] != X86_64_X87_CLASS))
+ classes[i] = X86_64_SSE_CLASS;
+ }
+ return words;
+ }
+ break;
+ case TYPE_CODE_FLT:
+ switch (bytes)
+ {
+ case 4:
+ if (!(bit_offset % 64))
+ classes[0] = X86_64_SSESF_CLASS;
+ else
+ classes[0] = X86_64_SSE_CLASS;
+ return 1;
+ case 8:
+ classes[0] = X86_64_SSEDF_CLASS;
+ return 1;
+ case 16:
+ classes[0] = X86_64_X87_CLASS;
+ classes[1] = X86_64_X87UP_CLASS;
+ return 2;
+ }
+ break;
+ case TYPE_CODE_INT:
+ case TYPE_CODE_PTR:
+ switch (bytes)
+ {
+ case 1:
+ case 2:
+ case 4:
+ case 8:
+ if (bytes * 8 + bit_offset <= 32)
+ classes[0] = X86_64_INTEGERSI_CLASS;
+ else
+ classes[0] = X86_64_INTEGER_CLASS;
+ return 1;
+ case 16:
+ classes[0] = classes[1] = X86_64_INTEGER_CLASS;
+ return 2;
+ default:
+ break;
+ }
+ case TYPE_CODE_VOID:
+ return 0;
+ }
+ internal_error (__FILE__, __LINE__,
+ "classify_argument: unknown argument type");
+}
+
+/* Examine the argument and return set number of register required in each
+ class. Return 0 ifif parameter should be passed in memory. */
+
+static int
+examine_argument (enum x86_64_reg_class classes[MAX_CLASSES],
+ int n, int *int_nregs, int *sse_nregs)
+{
+ *int_nregs = 0;
+ *sse_nregs = 0;
+ if (!n)
+ return 0;
+ for (n--; n >= 0; n--)
+ switch (classes[n])
+ {
+ case X86_64_INTEGER_CLASS:
+ case X86_64_INTEGERSI_CLASS:
+ (*int_nregs)++;
+ break;
+ case X86_64_SSE_CLASS:
+ case X86_64_SSESF_CLASS:
+ case X86_64_SSEDF_CLASS:
+ (*sse_nregs)++;
+ break;
+ case X86_64_NO_CLASS:
+ case X86_64_SSEUP_CLASS:
+ case X86_64_X87_CLASS:
+ case X86_64_X87UP_CLASS:
+ break;
+ case X86_64_MEMORY_CLASS:
+ internal_error (__FILE__, __LINE__,
+ "examine_argument: unexpected memory class");
+ }
+ return 1;
+}
+
+#define RET_INT_REGS 2
+#define RET_SSE_REGS 2
+
+/* Check if the structure in value_type is returned in registers or in
+ memory. If this function returns 1, gdb will call STORE_STRUCT_RETURN and
+ EXTRACT_STRUCT_VALUE_ADDRESS else STORE_RETURN_VALUE and EXTRACT_RETURN_VALUE
+ will be used. */
+int
+x86_64_use_struct_convention (int gcc_p, struct type *value_type)
+{
+ enum x86_64_reg_class class[MAX_CLASSES];
+ int n = classify_argument (value_type, class, 0);
+ int needed_intregs;
+ int needed_sseregs;
+
+ return (!n ||
+ !examine_argument (class, n, &needed_intregs, &needed_sseregs) ||
+ needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS);
+}
+
+
+/* Extract from an array REGBUF containing the (raw) register state, a
+ function return value of TYPE, and copy that, in virtual format,
+ into VALBUF. */
+
+void
+x86_64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
+{
+ enum x86_64_reg_class class[MAX_CLASSES];
+ int n = classify_argument (type, class, 0);
+ int needed_intregs;
+ int needed_sseregs;
+ int intreg = 0;
+ int ssereg = 0;
+ int offset = 0;
+ int ret_int_r[RET_INT_REGS] = { RAX_REGNUM, RDX_REGNUM };
+ int ret_sse_r[RET_SSE_REGS] = { XMM0_REGNUM, XMM1_REGNUM };
+
+ if (!n ||
+ !examine_argument (class, n, &needed_intregs, &needed_sseregs) ||
+ needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS)
+ { /* memory class */
+ CORE_ADDR addr;
+ memcpy (&addr, regbuf, REGISTER_RAW_SIZE (RAX_REGNUM));
+ read_memory (addr, valbuf, TYPE_LENGTH (type));
+ return;
+ }
+ else
+ {
+ int i;
+ for (i = 0; i < n; i++)
+ {
+ switch (class[i])
+ {
+ case X86_64_NO_CLASS:
+ break;
+ case X86_64_INTEGER_CLASS:
+ memcpy (valbuf + offset,
+ regbuf + REGISTER_BYTE (ret_int_r[(intreg + 1) / 2]),
+ 8);
+ offset += 8;
+ intreg += 2;
+ break;
+ case X86_64_INTEGERSI_CLASS:
+ memcpy (valbuf + offset,
+ regbuf + REGISTER_BYTE (ret_int_r[intreg / 2]), 4);
+ offset += 8;
+ intreg++;
+ break;
+ case X86_64_SSEDF_CLASS:
+ case X86_64_SSESF_CLASS:
+ case X86_64_SSE_CLASS:
+ memcpy (valbuf + offset,
+ regbuf + REGISTER_BYTE (ret_sse_r[(ssereg + 1) / 2]),
+ 8);
+ offset += 8;
+ ssereg += 2;
+ break;
+ case X86_64_SSEUP_CLASS:
+ memcpy (valbuf + offset + 8,
+ regbuf + REGISTER_BYTE (ret_sse_r[ssereg / 2]), 8);
+ offset += 8;
+ ssereg++;
+ break;
+ case X86_64_X87_CLASS:
+ memcpy (valbuf + offset, regbuf + REGISTER_BYTE (FP0_REGNUM),
+ 8);
+ offset += 8;
+ break;
+ case X86_64_X87UP_CLASS:
+ memcpy (valbuf + offset,
+ regbuf + REGISTER_BYTE (FP0_REGNUM) + 8, 8);
+ offset += 8;
+ break;
+ case X86_64_MEMORY_CLASS:
+ default:
+ internal_error (__FILE__, __LINE__,
+ "Unexpected argument class");
+ }
+ }
+ }
+}
+
+/* Handled by unwind informations. */
+static void
+x86_64_frame_init_saved_regs (struct frame_info *fi)
+{
+}
+
+#define INT_REGS 6
+#define SSE_REGS 16
+
+CORE_ADDR
+x86_64_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
+ int struct_return, CORE_ADDR struct_addr)
+{
+ int intreg = 0;
+ int ssereg = 0;
+ int i;
+ static int int_parameter_registers[INT_REGS] = {
+ 5 /* RDI */ , 4 /* RSI */ ,
+ 3 /* RDX */ , 2 /* RCX */ ,
+ 8 /* R8 */ , 9 /* R9 */
+ };
+ /* XMM0 - XMM15 */
+ static int sse_parameter_registers[SSE_REGS] = {
+ XMM1_REGNUM - 1, XMM1_REGNUM, XMM1_REGNUM + 1, XMM1_REGNUM + 2,
+ XMM1_REGNUM + 3, XMM1_REGNUM + 4, XMM1_REGNUM + 5, XMM1_REGNUM + 6,
+ XMM1_REGNUM + 7, XMM1_REGNUM + 8, XMM1_REGNUM + 9, XMM1_REGNUM + 10,
+ XMM1_REGNUM + 11, XMM1_REGNUM + 12, XMM1_REGNUM + 13, XMM1_REGNUM + 14
+ };
+ int stack_values_count = 0;
+ int *stack_values;
+ stack_values = alloca (nargs * sizeof (int));
+ for (i = 0; i < nargs; i++)
+ {
+ enum x86_64_reg_class class[MAX_CLASSES];
+ int n = classify_argument (args[i]->type, class, 0);
+ int needed_intregs;
+ int needed_sseregs;
+
+ if (!n ||
+ !examine_argument (class, n, &needed_intregs, &needed_sseregs)
+ || intreg / 2 + needed_intregs > INT_REGS
+ || ssereg / 2 + needed_sseregs > SSE_REGS)
+ { /* memory class */
+ stack_values[stack_values_count++] = i;
+ }
+ else
+ {
+ int j;
+ for (j = 0; j < n; j++)
+ {
+ int offset = 0;
+ switch (class[j])
+ {
+ case X86_64_NO_CLASS:
+ break;
+ case X86_64_INTEGER_CLASS:
+ write_register_gen (int_parameter_registers
+ [(intreg + 1) / 2],
+ VALUE_CONTENTS_ALL (args[i]) + offset);
+ offset += 8;
+ intreg += 2;
+ break;
+ case X86_64_INTEGERSI_CLASS:
+ write_register_gen (int_parameter_registers[intreg / 2],
+ VALUE_CONTENTS_ALL (args[i]) + offset);
+ offset += 8;
+ intreg++;
+ break;
+ case X86_64_SSEDF_CLASS:
+ case X86_64_SSESF_CLASS:
+ case X86_64_SSE_CLASS:
+ write_register_gen (sse_parameter_registers
+ [(ssereg + 1) / 2],
+ VALUE_CONTENTS_ALL (args[i]) + offset);
+ offset += 8;
+ ssereg += 2;
+ break;
+ case X86_64_SSEUP_CLASS:
+ write_register_gen (sse_parameter_registers[ssereg / 2],
+ VALUE_CONTENTS_ALL (args[i]) + offset);
+ offset += 8;
+ ssereg++;
+ break;
+ case X86_64_X87_CLASS:
+ case X86_64_MEMORY_CLASS:
+ stack_values[stack_values_count++] = i;
+ break;
+ case X86_64_X87UP_CLASS:
+ break;
+ default:
+ internal_error (__FILE__, __LINE__,
+ "Unexpected argument class");
+ }
+ intreg += intreg % 2;
+ ssereg += ssereg % 2;
+ }
+ }
+ }
+ while (--stack_values_count >= 0)
+ {
+ struct value *arg = args[stack_values[stack_values_count]];
+ int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
+ len += 7;
+ len -= len % 8;
+ sp -= len;
+ write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
+ }
+ return sp;
+}
+
+/* Write into the appropriate registers a function return value stored
+ in VALBUF of type TYPE, given in virtual format. */
+void
+x86_64_store_return_value (struct type *type, char *valbuf)
+{
+ int len = TYPE_LENGTH (type);
+
+ if (TYPE_CODE_FLT == TYPE_CODE (type))
+ {
+ /* Floating-point return values can be found in %st(0). */
+ if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
+ && TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
+ {
+ /* Copy straight over. */
+ write_register_bytes (REGISTER_BYTE (FP0_REGNUM), valbuf,
+ FPU_REG_RAW_SIZE);
+ }
+ else
+ {
+ char buf[FPU_REG_RAW_SIZE];
+ DOUBLEST val;
+
+ /* Convert the value found in VALBUF to the extended
+ floating point format used by the FPU. This is probably
+ not exactly how it would happen on the target itself, but
+ it is the best we can do. */
+ val = extract_floating (valbuf, TYPE_LENGTH (type));
+ floatformat_from_doublest (&floatformat_i387_ext, &val, buf);
+ write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
+ FPU_REG_RAW_SIZE);
+ }
+ }
+ else
+ {
+ int low_size = REGISTER_RAW_SIZE (0);
+ int high_size = REGISTER_RAW_SIZE (1);
+
+ if (len <= low_size)
+ write_register_bytes (REGISTER_BYTE (0), valbuf, len);
+ else if (len <= (low_size + high_size))
+ {
+ write_register_bytes (REGISTER_BYTE (0), valbuf, low_size);
+ write_register_bytes (REGISTER_BYTE (1),
+ valbuf + low_size, len - low_size);
+ }
+ else
+ internal_error (__FILE__, __LINE__,
+ "Cannot store return value of %d bytes long.", len);
+ }
+}
+
+
+static char *
+x86_64_register_name (int reg_nr)
+{
+ if (reg_nr < 0 || reg_nr >= X86_64_NUM_REGS)
+ return NULL;
+ return x86_64_register_info_table[reg_nr].name;
+}
+
+
+
+/* We have two flavours of disassembly. The machinery on this page
+ deals with switching between those. */
+
+static int
+gdb_print_insn_x86_64 (bfd_vma memaddr, disassemble_info * info)
+{
+ if (disassembly_flavour == att_flavour)
+ return print_insn_i386_att (memaddr, info);
+ else if (disassembly_flavour == intel_flavour)
+ return print_insn_i386_intel (memaddr, info);
+ /* Never reached -- disassembly_flavour is always either att_flavour
+ or intel_flavour. */
+ internal_error (__FILE__, __LINE__, "failed internal consistency check");
+}
+
+
+/* Store the address of the place in which to copy the structure the
+ subroutine will return. This is called from call_function. */
+void
+x86_64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
+{
+ write_register (RDI_REGNUM, addr);
+}
+
+int
+x86_64_frameless_function_invocation (struct frame_info *frame)
+{
+ return 0;
+}
+
+/* If a function with debugging information and known beginning
+ is detected, we will return pc of the next line in the source
+ code. With this approach we effectively skip the prolog. */
+
+#define PROLOG_BUFSIZE 4
+CORE_ADDR
+x86_64_skip_prologue (CORE_ADDR pc)
+{
+ int i, firstline, currline;
+ struct symtab_and_line v_sal;
+ struct symbol *v_function;
+ CORE_ADDR salendaddr = 0, endaddr = 0;
+
+ /* We will handle only functions beginning with:
+ 55 pushq %rbp
+ 48 89 e5 movq %rsp,%rbp
+ */
+ unsigned char prolog_expect[PROLOG_BUFSIZE] = { 0x55, 0x48, 0x89, 0xe5 },
+ prolog_buf[PROLOG_BUFSIZE];
+
+ read_memory (pc, (char *) prolog_buf, PROLOG_BUFSIZE);
+
+ /* First check, whether pc points to pushq %rbp, movq %rsp,%rbp. */
+ for (i = 0; i < PROLOG_BUFSIZE; i++)
+ if (prolog_expect[i] != prolog_buf[i])
+ return pc; /* ... no, it doesn't. Nothing to skip. */
+
+ /* OK, we have found the prologue and want PC of the first
+ non-prologue instruction. */
+ pc += PROLOG_BUFSIZE;
+
+ v_function = find_pc_function (pc);
+ v_sal = find_pc_line (pc, 0);
+
+ /* If pc doesn't point to a function with debuginfo,
+ some of the following may be NULL. */
+ if (!v_function || !v_function->ginfo.value.block || !v_sal.symtab)
+ return pc;
+
+ firstline = v_sal.line;
+ currline = firstline;
+ salendaddr = v_sal.end;
+ endaddr = v_function->ginfo.value.block->endaddr;
+
+ for (i = 0; i < v_sal.symtab->linetable->nitems; i++)
+ if (v_sal.symtab->linetable->item[i].line > firstline
+ && v_sal.symtab->linetable->item[i].pc >= salendaddr
+ && v_sal.symtab->linetable->item[i].pc < endaddr)
+ {
+ pc = v_sal.symtab->linetable->item[i].pc;
+ currline = v_sal.symtab->linetable->item[i].line;
+ break;
+ }
+
+ return pc;
+}
+
+/* Sequence of bytes for breakpoint instruction. */
+static unsigned char *
+x86_64_breakpoint_from_pc (CORE_ADDR * pc, int *lenptr)
+{
+ static unsigned char breakpoint[] = { 0xcc };
+ *lenptr = 1;
+ return breakpoint;
+}
+
+static struct gdbarch *
+i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+{
+ struct gdbarch *gdbarch;
+ struct gdbarch_tdep *tdep;
+ int i, sum;
+
+ /* Find a candidate among the list of pre-declared architectures. */
+ for (arches = gdbarch_list_lookup_by_info (arches, &info);
+ arches != NULL;
+ arches = gdbarch_list_lookup_by_info (arches->next, &info))
+ {
+ switch (info.bfd_arch_info->mach)
+ {
+ case bfd_mach_x86_64:
+ case bfd_mach_x86_64_intel_syntax:
+ switch (gdbarch_bfd_arch_info (arches->gdbarch)->mach)
+ {
+ case bfd_mach_x86_64:
+ case bfd_mach_x86_64_intel_syntax:
+ return arches->gdbarch;
+ case bfd_mach_i386_i386:
+ case bfd_mach_i386_i8086:
+ case bfd_mach_i386_i386_intel_syntax:
+ break;
+ default:
+ internal_error (__FILE__, __LINE__,
+ "i386_gdbarch_init: unknown machine type");
+ }
+ break;
+ case bfd_mach_i386_i386:
+ case bfd_mach_i386_i8086:
+ case bfd_mach_i386_i386_intel_syntax:
+ switch (gdbarch_bfd_arch_info (arches->gdbarch)->mach)
+ {
+ case bfd_mach_x86_64:
+ case bfd_mach_x86_64_intel_syntax:
+ break;
+ case bfd_mach_i386_i386:
+ case bfd_mach_i386_i8086:
+ case bfd_mach_i386_i386_intel_syntax:
+ return arches->gdbarch;
+ default:
+ internal_error (__FILE__, __LINE__,
+ "i386_gdbarch_init: unknown machine type");
+ }
+ break;
+ default:
+ internal_error (__FILE__, __LINE__,
+ "i386_gdbarch_init: unknown machine type");
+ }
+ }
+
+ tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
+ gdbarch = gdbarch_alloc (&info, tdep);
+
+ switch (info.bfd_arch_info->mach)
+ {
+ case bfd_mach_x86_64:
+ case bfd_mach_x86_64_intel_syntax:
+ tdep->num_xmm_regs = 16;
+ break;
+ case bfd_mach_i386_i386:
+ case bfd_mach_i386_i8086:
+ case bfd_mach_i386_i386_intel_syntax:
+ /* This is place for definition of i386 target vector. */
+ break;
+ default:
+ internal_error (__FILE__, __LINE__,
+ "i386_gdbarch_init: unknown machine type");
+ }
+
+ set_gdbarch_long_bit (gdbarch, 64);
+ set_gdbarch_long_long_bit (gdbarch, 64);
+ set_gdbarch_ptr_bit (gdbarch, 64);
+
+ set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
+
+ set_gdbarch_num_regs (gdbarch, X86_64_NUM_REGS);
+ set_gdbarch_register_name (gdbarch, x86_64_register_name);
+ set_gdbarch_register_size (gdbarch, 8);
+ set_gdbarch_register_raw_size (gdbarch, x86_64_register_raw_size);
+ set_gdbarch_max_register_raw_size (gdbarch, 16);
+ set_gdbarch_register_byte (gdbarch, x86_64_register_byte);
+
+ /* Total amount of space needed to store our copies of the machine's register
+ (SIZEOF_GREGS + SIZEOF_FPU_REGS + SIZEOF_FPU_CTRL_REGS + SIZEOF_SSE_REGS) */
+ for (i = 0, sum = 0; i < X86_64_NUM_REGS; i++)
+ sum += x86_64_register_info_table[i].size;
+ set_gdbarch_register_bytes (gdbarch, sum);
+ set_gdbarch_register_virtual_size (gdbarch, generic_register_virtual_size);
+ set_gdbarch_max_register_virtual_size (gdbarch, 16);
+
+ set_gdbarch_register_virtual_type (gdbarch, x86_64_register_virtual_type);
+
+ set_gdbarch_register_convertible (gdbarch, x86_64_register_convertible);
+ set_gdbarch_register_convert_to_virtual (gdbarch,
+ x86_64_register_convert_to_virtual);
+ set_gdbarch_register_convert_to_raw (gdbarch,
+ x86_64_register_convert_to_raw);
+
+/* Register numbers of various important registers. */
+ set_gdbarch_sp_regnum (gdbarch, 7); /* (rsp) Contains address of top of stack. */
+ set_gdbarch_fp_regnum (gdbarch, 6); /* (rbp) */
+ set_gdbarch_pc_regnum (gdbarch, 16); /* (rip) Contains program counter. */
+
+ set_gdbarch_fp0_regnum (gdbarch, X86_64_NUM_GREGS); /* First FPU floating-point register. */
+
+ set_gdbarch_read_fp (gdbarch, cfi_read_fp);
+ set_gdbarch_write_fp (gdbarch, cfi_write_fp);
+
+/* Discard from the stack the innermost frame, restoring all registers. */
+ set_gdbarch_pop_frame (gdbarch, x86_64_pop_frame);
+
+ /* FRAME_CHAIN takes a frame's nominal address and produces the frame's
+ chain-pointer. */
+ set_gdbarch_frame_chain (gdbarch, cfi_frame_chain);
+
+ set_gdbarch_frameless_function_invocation (gdbarch,
+ x86_64_frameless_function_invocation);
+ set_gdbarch_frame_saved_pc (gdbarch, x86_64_linux_frame_saved_pc);
+
+ set_gdbarch_frame_args_address (gdbarch, default_frame_address);
+ set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
+
+/* Return number of bytes at start of arglist that are not really args. */
+ set_gdbarch_frame_args_skip (gdbarch, 8);
+
+ set_gdbarch_frame_init_saved_regs (gdbarch, x86_64_frame_init_saved_regs);
+
+/* Frame pc initialization is handled by unwind informations. */
+ set_gdbarch_init_frame_pc (gdbarch, cfi_init_frame_pc);
+
+/* Initialization of unwind informations. */
+ set_gdbarch_init_extra_frame_info (gdbarch, cfi_init_extra_frame_info);
+
+/* Getting saved registers is handled by unwind informations. */
+ set_gdbarch_get_saved_register (gdbarch, cfi_get_saved_register);
+
+ set_gdbarch_frame_init_saved_regs (gdbarch, x86_64_frame_init_saved_regs);
+
+/* Cons up virtual frame pointer for trace */
+ set_gdbarch_virtual_frame_pointer (gdbarch, cfi_virtual_frame_pointer);
+
+
+ set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
+
+ set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
+ set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
+ set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
+ set_gdbarch_call_dummy_length (gdbarch, 0);
+ set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
+ set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
+ set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
+ set_gdbarch_call_dummy_words (gdbarch, 0);
+ set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
+ set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
+ set_gdbarch_call_dummy_p (gdbarch, 1);
+ set_gdbarch_call_dummy_start_offset (gdbarch, 0);
+ set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
+ set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
+ set_gdbarch_push_return_address (gdbarch, x86_64_push_return_address);
+ set_gdbarch_push_arguments (gdbarch, x86_64_push_arguments);
+
+/* Return number of args passed to a frame, no way to tell. */
+ set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
+/* Don't use default structure extract routine */
+ set_gdbarch_extract_struct_value_address (gdbarch, 0);
+
+/* If USE_STRUCT_CONVENTION retruns 0, then gdb uses STORE_RETURN_VALUE
+ and EXTRACT_RETURN_VALUE to store/fetch the functions return value. It is
+ the case when structure is returned in registers. */
+ set_gdbarch_use_struct_convention (gdbarch, x86_64_use_struct_convention);
+
+/* Store the address of the place in which to copy the structure the
+ subroutine will return. This is called from call_function. */
+ set_gdbarch_store_struct_return (gdbarch, x86_64_store_struct_return);
+
+/* Extract from an array REGBUF containing the (raw) register state
+ a function return value of type TYPE, and copy that, in virtual format,
+ into VALBUF. */
+ set_gdbarch_extract_return_value (gdbarch, x86_64_extract_return_value);
+
+
+/* Write into the appropriate registers a function return value stored
+ in VALBUF of type TYPE, given in virtual format. */
+ set_gdbarch_store_return_value (gdbarch, x86_64_store_return_value);
+
+
+/* Offset from address of function to start of its code. */
+ set_gdbarch_function_start_offset (gdbarch, 0);
+
+ set_gdbarch_skip_prologue (gdbarch, x86_64_skip_prologue);
+
+ set_gdbarch_saved_pc_after_call (gdbarch, x86_64_linux_saved_pc_after_call);
+
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+
+ set_gdbarch_breakpoint_from_pc (gdbarch, x86_64_breakpoint_from_pc);
+
+
+/* Amount PC must be decremented by after a breakpoint. This is often the
+ number of bytes in BREAKPOINT but not always. */
+ set_gdbarch_decr_pc_after_break (gdbarch, 1);
+
+/* Use dwarf2 debug frame informations. */
+ set_gdbarch_dwarf2_build_frame_info (gdbarch, dwarf2_build_frame_info);
+ return gdbarch;
+}
+
+void
+_initialize_x86_64_tdep (void)
+{
+ register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
+
+ /* Initialize the table saying where each register starts in the
+ register file. */
+ {
+ int i, offset;
+
+ offset = 0;
+ for (i = 0; i < X86_64_NUM_REGS; i++)
+ {
+ x86_64_register_byte_table[i] = offset;
+ offset += x86_64_register_info_table[i].size;
+ }
+ }
+
+ tm_print_insn = gdb_print_insn_x86_64;
+ tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 3)->mach;
+
+ /* Add the variable that controls the disassembly flavour. */
+ {
+ struct cmd_list_element *new_cmd;
+
+ new_cmd = add_set_enum_cmd ("disassembly-flavour", no_class,
+ valid_flavours, &disassembly_flavour, "\
+Set the disassembly flavour, the valid values are \"att\" and \"intel\", \
+and the default value is \"att\".", &setlist);
+ add_show_from_set (new_cmd, &showlist);
+ }
+}
OpenPOWER on IntegriCloud