summaryrefslogtreecommitdiffstats
path: root/contrib/gdb/gdb/sparc-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/gdb/gdb/sparc-tdep.c')
-rw-r--r--contrib/gdb/gdb/sparc-tdep.c3209
1 files changed, 3209 insertions, 0 deletions
diff --git a/contrib/gdb/gdb/sparc-tdep.c b/contrib/gdb/gdb/sparc-tdep.c
new file mode 100644
index 0000000..b2380b4
--- /dev/null
+++ b/contrib/gdb/gdb/sparc-tdep.c
@@ -0,0 +1,3209 @@
+/* Target-dependent code for the SPARC for GDB, the GNU debugger.
+ Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
+ 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+/* ??? Support for calling functions from gdb in sparc64 is unfinished. */
+
+#include "defs.h"
+#include "arch-utils.h"
+#include "frame.h"
+#include "inferior.h"
+#include "obstack.h"
+#include "target.h"
+#include "value.h"
+#include "bfd.h"
+#include "gdb_string.h"
+#include "regcache.h"
+
+#ifdef USE_PROC_FS
+#include <sys/procfs.h>
+/* Prototypes for supply_gregset etc. */
+#include "gregset.h"
+#endif
+
+#include "gdbcore.h"
+
+#include "symfile.h" /* for 'entry_point_address' */
+
+/*
+ * Some local macros that have multi-arch and non-multi-arch versions:
+ */
+
+#if (GDB_MULTI_ARCH > 0)
+
+/* Does the target have Floating Point registers? */
+#define SPARC_HAS_FPU (gdbarch_tdep (current_gdbarch)->has_fpu)
+/* Number of bytes devoted to Floating Point registers: */
+#define FP_REGISTER_BYTES (gdbarch_tdep (current_gdbarch)->fp_register_bytes)
+/* Highest numbered Floating Point register. */
+#define FP_MAX_REGNUM (gdbarch_tdep (current_gdbarch)->fp_max_regnum)
+/* Size of a general (integer) register: */
+#define SPARC_INTREG_SIZE (gdbarch_tdep (current_gdbarch)->intreg_size)
+/* Offset within the call dummy stack of the saved registers. */
+#define DUMMY_REG_SAVE_OFFSET (gdbarch_tdep (current_gdbarch)->reg_save_offset)
+
+#else /* non-multi-arch */
+
+
+/* Does the target have Floating Point registers? */
+#if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE)
+#define SPARC_HAS_FPU 0
+#else
+#define SPARC_HAS_FPU 1
+#endif
+
+/* Number of bytes devoted to Floating Point registers: */
+#if (GDB_TARGET_IS_SPARC64)
+#define FP_REGISTER_BYTES (64 * 4)
+#else
+#if (SPARC_HAS_FPU)
+#define FP_REGISTER_BYTES (32 * 4)
+#else
+#define FP_REGISTER_BYTES 0
+#endif
+#endif
+
+/* Highest numbered Floating Point register. */
+#if (GDB_TARGET_IS_SPARC64)
+#define FP_MAX_REGNUM (FP0_REGNUM + 48)
+#else
+#define FP_MAX_REGNUM (FP0_REGNUM + 32)
+#endif
+
+/* Size of a general (integer) register: */
+#define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM))
+
+/* Offset within the call dummy stack of the saved registers. */
+#if (GDB_TARGET_IS_SPARC64)
+#define DUMMY_REG_SAVE_OFFSET (128 + 16)
+#else
+#define DUMMY_REG_SAVE_OFFSET 0x60
+#endif
+
+#endif /* GDB_MULTI_ARCH */
+
+struct gdbarch_tdep
+ {
+ int has_fpu;
+ int fp_register_bytes;
+ int y_regnum;
+ int fp_max_regnum;
+ int intreg_size;
+ int reg_save_offset;
+ int call_dummy_call_offset;
+ int print_insn_mach;
+ };
+
+/* Now make GDB_TARGET_IS_SPARC64 a runtime test. */
+/* FIXME MVS: or try testing bfd_arch_info.arch and bfd_arch_info.mach ...
+ * define GDB_TARGET_IS_SPARC64 \
+ * (TARGET_ARCHITECTURE->arch == bfd_arch_sparc && \
+ * (TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9 || \
+ * TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9a))
+ */
+
+/* From infrun.c */
+extern int stop_after_trap;
+
+/* We don't store all registers immediately when requested, since they
+ get sent over in large chunks anyway. Instead, we accumulate most
+ of the changes and send them over once. "deferred_stores" keeps
+ track of which sets of registers we have locally-changed copies of,
+ so we only need send the groups that have changed. */
+
+int deferred_stores = 0; /* Accumulated stores we want to do eventually. */
+
+
+/* Some machines, such as Fujitsu SPARClite 86x, have a bi-endian mode
+ where instructions are big-endian and data are little-endian.
+ This flag is set when we detect that the target is of this type. */
+
+int bi_endian = 0;
+
+
+/* Fetch a single instruction. Even on bi-endian machines
+ such as sparc86x, instructions are always big-endian. */
+
+static unsigned long
+fetch_instruction (CORE_ADDR pc)
+{
+ unsigned long retval;
+ int i;
+ unsigned char buf[4];
+
+ read_memory (pc, buf, sizeof (buf));
+
+ /* Start at the most significant end of the integer, and work towards
+ the least significant. */
+ retval = 0;
+ for (i = 0; i < sizeof (buf); ++i)
+ retval = (retval << 8) | buf[i];
+ return retval;
+}
+
+
+/* Branches with prediction are treated like their non-predicting cousins. */
+/* FIXME: What about floating point branches? */
+
+/* Macros to extract fields from sparc instructions. */
+#define X_OP(i) (((i) >> 30) & 0x3)
+#define X_RD(i) (((i) >> 25) & 0x1f)
+#define X_A(i) (((i) >> 29) & 1)
+#define X_COND(i) (((i) >> 25) & 0xf)
+#define X_OP2(i) (((i) >> 22) & 0x7)
+#define X_IMM22(i) ((i) & 0x3fffff)
+#define X_OP3(i) (((i) >> 19) & 0x3f)
+#define X_RS1(i) (((i) >> 14) & 0x1f)
+#define X_I(i) (((i) >> 13) & 1)
+#define X_IMM13(i) ((i) & 0x1fff)
+/* Sign extension macros. */
+#define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000)
+#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
+#define X_CC(i) (((i) >> 20) & 3)
+#define X_P(i) (((i) >> 19) & 1)
+#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
+#define X_RCOND(i) (((i) >> 25) & 7)
+#define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000)
+#define X_FCN(i) (((i) >> 25) & 31)
+
+typedef enum
+{
+ Error, not_branch, bicc, bicca, ba, baa, ticc, ta, done_retry
+} branch_type;
+
+/* Simulate single-step ptrace call for sun4. Code written by Gary
+ Beihl (beihl@mcc.com). */
+
+/* npc4 and next_pc describe the situation at the time that the
+ step-breakpoint was set, not necessary the current value of NPC_REGNUM. */
+static CORE_ADDR next_pc, npc4, target;
+static int brknpc4, brktrg;
+typedef char binsn_quantum[BREAKPOINT_MAX];
+static binsn_quantum break_mem[3];
+
+static branch_type isbranch (long, CORE_ADDR, CORE_ADDR *);
+
+/* single_step() is called just before we want to resume the inferior,
+ if we want to single-step it but there is no hardware or kernel single-step
+ support (as on all SPARCs). We find all the possible targets of the
+ coming instruction and breakpoint them.
+
+ single_step is also called just after the inferior stops. If we had
+ set up a simulated single-step, we undo our damage. */
+
+void
+sparc_software_single_step (enum target_signal ignore, /* pid, but we don't need it */
+ int insert_breakpoints_p)
+{
+ branch_type br;
+ CORE_ADDR pc;
+ long pc_instruction;
+
+ if (insert_breakpoints_p)
+ {
+ /* Always set breakpoint for NPC. */
+ next_pc = read_register (NPC_REGNUM);
+ npc4 = next_pc + 4; /* branch not taken */
+
+ target_insert_breakpoint (next_pc, break_mem[0]);
+ /* printf_unfiltered ("set break at %x\n",next_pc); */
+
+ pc = read_register (PC_REGNUM);
+ pc_instruction = fetch_instruction (pc);
+ br = isbranch (pc_instruction, pc, &target);
+ brknpc4 = brktrg = 0;
+
+ if (br == bicca)
+ {
+ /* Conditional annulled branch will either end up at
+ npc (if taken) or at npc+4 (if not taken).
+ Trap npc+4. */
+ brknpc4 = 1;
+ target_insert_breakpoint (npc4, break_mem[1]);
+ }
+ else if (br == baa && target != next_pc)
+ {
+ /* Unconditional annulled branch will always end up at
+ the target. */
+ brktrg = 1;
+ target_insert_breakpoint (target, break_mem[2]);
+ }
+ else if (GDB_TARGET_IS_SPARC64 && br == done_retry)
+ {
+ brktrg = 1;
+ target_insert_breakpoint (target, break_mem[2]);
+ }
+ }
+ else
+ {
+ /* Remove breakpoints */
+ target_remove_breakpoint (next_pc, break_mem[0]);
+
+ if (brknpc4)
+ target_remove_breakpoint (npc4, break_mem[1]);
+
+ if (brktrg)
+ target_remove_breakpoint (target, break_mem[2]);
+ }
+}
+
+struct frame_extra_info
+{
+ CORE_ADDR bottom;
+ int in_prologue;
+ int flat;
+ /* Following fields only relevant for flat frames. */
+ CORE_ADDR pc_addr;
+ CORE_ADDR fp_addr;
+ /* Add this to ->frame to get the value of the stack pointer at the
+ time of the register saves. */
+ int sp_offset;
+};
+
+/* Call this for each newly created frame. For SPARC, we need to
+ calculate the bottom of the frame, and do some extra work if the
+ prologue has been generated via the -mflat option to GCC. In
+ particular, we need to know where the previous fp and the pc have
+ been stashed, since their exact position within the frame may vary. */
+
+void
+sparc_init_extra_frame_info (int fromleaf, struct frame_info *fi)
+{
+ char *name;
+ CORE_ADDR prologue_start, prologue_end;
+ int insn;
+
+ fi->extra_info = (struct frame_extra_info *)
+ frame_obstack_alloc (sizeof (struct frame_extra_info));
+ frame_saved_regs_zalloc (fi);
+
+ fi->extra_info->bottom =
+ (fi->next ?
+ (fi->frame == fi->next->frame ? fi->next->extra_info->bottom :
+ fi->next->frame) : read_sp ());
+
+ /* If fi->next is NULL, then we already set ->frame by passing read_fp()
+ to create_new_frame. */
+ if (fi->next)
+ {
+ char *buf;
+
+ buf = alloca (MAX_REGISTER_RAW_SIZE);
+
+ /* Compute ->frame as if not flat. If it is flat, we'll change
+ it later. */
+ if (fi->next->next != NULL
+ && (fi->next->next->signal_handler_caller
+ || frame_in_dummy (fi->next->next))
+ && frameless_look_for_prologue (fi->next))
+ {
+ /* A frameless function interrupted by a signal did not change
+ the frame pointer, fix up frame pointer accordingly. */
+ fi->frame = FRAME_FP (fi->next);
+ fi->extra_info->bottom = fi->next->extra_info->bottom;
+ }
+ else
+ {
+ /* Should we adjust for stack bias here? */
+ get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0);
+ fi->frame = extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM));
+
+ if (GDB_TARGET_IS_SPARC64 && (fi->frame & 1))
+ fi->frame += 2047;
+ }
+ }
+
+ /* Decide whether this is a function with a ``flat register window''
+ frame. For such functions, the frame pointer is actually in %i7. */
+ fi->extra_info->flat = 0;
+ fi->extra_info->in_prologue = 0;
+ if (find_pc_partial_function (fi->pc, &name, &prologue_start, &prologue_end))
+ {
+ /* See if the function starts with an add (which will be of a
+ negative number if a flat frame) to the sp. FIXME: Does not
+ handle large frames which will need more than one instruction
+ to adjust the sp. */
+ insn = fetch_instruction (prologue_start);
+ if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0
+ && X_I (insn) && X_SIMM13 (insn) < 0)
+ {
+ int offset = X_SIMM13 (insn);
+
+ /* Then look for a save of %i7 into the frame. */
+ insn = fetch_instruction (prologue_start + 4);
+ if (X_OP (insn) == 3
+ && X_RD (insn) == 31
+ && X_OP3 (insn) == 4
+ && X_RS1 (insn) == 14)
+ {
+ char *buf;
+
+ buf = alloca (MAX_REGISTER_RAW_SIZE);
+
+ /* We definitely have a flat frame now. */
+ fi->extra_info->flat = 1;
+
+ fi->extra_info->sp_offset = offset;
+
+ /* Overwrite the frame's address with the value in %i7. */
+ get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0);
+ fi->frame = extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM));
+
+ if (GDB_TARGET_IS_SPARC64 && (fi->frame & 1))
+ fi->frame += 2047;
+
+ /* Record where the fp got saved. */
+ fi->extra_info->fp_addr =
+ fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn);
+
+ /* Also try to collect where the pc got saved to. */
+ fi->extra_info->pc_addr = 0;
+ insn = fetch_instruction (prologue_start + 12);
+ if (X_OP (insn) == 3
+ && X_RD (insn) == 15
+ && X_OP3 (insn) == 4
+ && X_RS1 (insn) == 14)
+ fi->extra_info->pc_addr =
+ fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn);
+ }
+ }
+ else
+ {
+ /* Check if the PC is in the function prologue before a SAVE
+ instruction has been executed yet. If so, set the frame
+ to the current value of the stack pointer and set
+ the in_prologue flag. */
+ CORE_ADDR addr;
+ struct symtab_and_line sal;
+
+ sal = find_pc_line (prologue_start, 0);
+ if (sal.line == 0) /* no line info, use PC */
+ prologue_end = fi->pc;
+ else if (sal.end < prologue_end)
+ prologue_end = sal.end;
+ if (fi->pc < prologue_end)
+ {
+ for (addr = prologue_start; addr < fi->pc; addr += 4)
+ {
+ insn = read_memory_integer (addr, 4);
+ if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
+ break; /* SAVE seen, stop searching */
+ }
+ if (addr >= fi->pc)
+ {
+ fi->extra_info->in_prologue = 1;
+ fi->frame = read_register (SP_REGNUM);
+ }
+ }
+ }
+ }
+ if (fi->next && fi->frame == 0)
+ {
+ /* Kludge to cause init_prev_frame_info to destroy the new frame. */
+ fi->frame = fi->next->frame;
+ fi->pc = fi->next->pc;
+ }
+}
+
+CORE_ADDR
+sparc_frame_chain (struct frame_info *frame)
+{
+ /* Value that will cause FRAME_CHAIN_VALID to not worry about the chain
+ value. If it really is zero, we detect it later in
+ sparc_init_prev_frame. */
+ return (CORE_ADDR) 1;
+}
+
+CORE_ADDR
+sparc_extract_struct_value_address (char *regbuf)
+{
+ return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM),
+ REGISTER_RAW_SIZE (O0_REGNUM));
+}
+
+/* Find the pc saved in frame FRAME. */
+
+CORE_ADDR
+sparc_frame_saved_pc (struct frame_info *frame)
+{
+ char *buf;
+ CORE_ADDR addr;
+
+ buf = alloca (MAX_REGISTER_RAW_SIZE);
+ if (frame->signal_handler_caller)
+ {
+ /* This is the signal trampoline frame.
+ Get the saved PC from the sigcontext structure. */
+
+#ifndef SIGCONTEXT_PC_OFFSET
+#define SIGCONTEXT_PC_OFFSET 12
+#endif
+
+ CORE_ADDR sigcontext_addr;
+ char *scbuf;
+ int saved_pc_offset = SIGCONTEXT_PC_OFFSET;
+ char *name = NULL;
+
+ scbuf = alloca (TARGET_PTR_BIT / HOST_CHAR_BIT);
+
+ /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext
+ as the third parameter. The offset to the saved pc is 12. */
+ find_pc_partial_function (frame->pc, &name,
+ (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
+ if (name && STREQ (name, "ucbsigvechandler"))
+ saved_pc_offset = 12;
+
+ /* The sigcontext address is contained in register O2. */
+ get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL,
+ frame, O0_REGNUM + 2, (enum lval_type *) NULL);
+ sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2));
+
+ /* Don't cause a memory_error when accessing sigcontext in case the
+ stack layout has changed or the stack is corrupt. */
+ target_read_memory (sigcontext_addr + saved_pc_offset,
+ scbuf, sizeof (scbuf));
+ return extract_address (scbuf, sizeof (scbuf));
+ }
+ else if (frame->extra_info->in_prologue ||
+ (frame->next != NULL &&
+ (frame->next->signal_handler_caller ||
+ frame_in_dummy (frame->next)) &&
+ frameless_look_for_prologue (frame)))
+ {
+ /* A frameless function interrupted by a signal did not save
+ the PC, it is still in %o7. */
+ get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL,
+ frame, O7_REGNUM, (enum lval_type *) NULL);
+ return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
+ }
+ if (frame->extra_info->flat)
+ addr = frame->extra_info->pc_addr;
+ else
+ addr = frame->extra_info->bottom + FRAME_SAVED_I0 +
+ SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM);
+
+ if (addr == 0)
+ /* A flat frame leaf function might not save the PC anywhere,
+ just leave it in %o7. */
+ return PC_ADJUST (read_register (O7_REGNUM));
+
+ read_memory (addr, buf, SPARC_INTREG_SIZE);
+ return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
+}
+
+/* Since an individual frame in the frame cache is defined by two
+ arguments (a frame pointer and a stack pointer), we need two
+ arguments to get info for an arbitrary stack frame. This routine
+ takes two arguments and makes the cached frames look as if these
+ two arguments defined a frame on the cache. This allows the rest
+ of info frame to extract the important arguments without
+ difficulty. */
+
+struct frame_info *
+setup_arbitrary_frame (int argc, CORE_ADDR *argv)
+{
+ struct frame_info *frame;
+
+ if (argc != 2)
+ error ("Sparc frame specifications require two arguments: fp and sp");
+
+ frame = create_new_frame (argv[0], 0);
+
+ if (!frame)
+ internal_error (__FILE__, __LINE__,
+ "create_new_frame returned invalid frame");
+
+ frame->extra_info->bottom = argv[1];
+ frame->pc = FRAME_SAVED_PC (frame);
+ return frame;
+}
+
+/* Given a pc value, skip it forward past the function prologue by
+ disassembling instructions that appear to be a prologue.
+
+ If FRAMELESS_P is set, we are only testing to see if the function
+ is frameless. This allows a quicker answer.
+
+ This routine should be more specific in its actions; making sure
+ that it uses the same register in the initial prologue section. */
+
+static CORE_ADDR examine_prologue (CORE_ADDR, int, struct frame_info *,
+ CORE_ADDR *);
+
+static CORE_ADDR
+examine_prologue (CORE_ADDR start_pc, int frameless_p, struct frame_info *fi,
+ CORE_ADDR *saved_regs)
+{
+ int insn;
+ int dest = -1;
+ CORE_ADDR pc = start_pc;
+ int is_flat = 0;
+
+ insn = fetch_instruction (pc);
+
+ /* Recognize the `sethi' insn and record its destination. */
+ if (X_OP (insn) == 0 && X_OP2 (insn) == 4)
+ {
+ dest = X_RD (insn);
+ pc += 4;
+ insn = fetch_instruction (pc);
+ }
+
+ /* Recognize an add immediate value to register to either %g1 or
+ the destination register recorded above. Actually, this might
+ well recognize several different arithmetic operations.
+ It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
+ followed by "save %sp, %g1, %sp" is a valid prologue (Not that
+ I imagine any compiler really does that, however). */
+ if (X_OP (insn) == 2
+ && X_I (insn)
+ && (X_RD (insn) == 1 || X_RD (insn) == dest))
+ {
+ pc += 4;
+ insn = fetch_instruction (pc);
+ }
+
+ /* Recognize any SAVE insn. */
+ if (X_OP (insn) == 2 && X_OP3 (insn) == 60)
+ {
+ pc += 4;
+ if (frameless_p) /* If the save is all we care about, */
+ return pc; /* return before doing more work */
+ insn = fetch_instruction (pc);
+ }
+ /* Recognize add to %sp. */
+ else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0)
+ {
+ pc += 4;
+ if (frameless_p) /* If the add is all we care about, */
+ return pc; /* return before doing more work */
+ is_flat = 1;
+ insn = fetch_instruction (pc);
+ /* Recognize store of frame pointer (i7). */
+ if (X_OP (insn) == 3
+ && X_RD (insn) == 31
+ && X_OP3 (insn) == 4
+ && X_RS1 (insn) == 14)
+ {
+ pc += 4;
+ insn = fetch_instruction (pc);
+
+ /* Recognize sub %sp, <anything>, %i7. */
+ if (X_OP (insn) == 2
+ && X_OP3 (insn) == 4
+ && X_RS1 (insn) == 14
+ && X_RD (insn) == 31)
+ {
+ pc += 4;
+ insn = fetch_instruction (pc);
+ }
+ else
+ return pc;
+ }
+ else
+ return pc;
+ }
+ else
+ /* Without a save or add instruction, it's not a prologue. */
+ return start_pc;
+
+ while (1)
+ {
+ /* Recognize stores into the frame from the input registers.
+ This recognizes all non alternate stores of an input register,
+ into a location offset from the frame pointer between
+ +68 and +92. */
+
+ /* The above will fail for arguments that are promoted
+ (eg. shorts to ints or floats to doubles), because the compiler
+ will pass them in positive-offset frame space, but the prologue
+ will save them (after conversion) in negative frame space at an
+ unpredictable offset. Therefore I am going to remove the
+ restriction on the target-address of the save, on the theory
+ that any unbroken sequence of saves from input registers must
+ be part of the prologue. In un-optimized code (at least), I'm
+ fairly sure that the compiler would emit SOME other instruction
+ (eg. a move or add) before emitting another save that is actually
+ a part of the function body.
+
+ Besides, the reserved stack space is different for SPARC64 anyway.
+
+ MVS 4/23/2000 */
+
+ if (X_OP (insn) == 3
+ && (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */
+ && (X_RD (insn) & 0x18) == 0x18 /* Input register. */
+ && X_I (insn) /* Immediate mode. */
+ && X_RS1 (insn) == 30) /* Off of frame pointer. */
+ ; /* empty statement -- fall thru to end of loop */
+ else if (GDB_TARGET_IS_SPARC64
+ && X_OP (insn) == 3
+ && (X_OP3 (insn) & 0x3c) == 12 /* store, extended (64-bit) */
+ && (X_RD (insn) & 0x18) == 0x18 /* input register */
+ && X_I (insn) /* immediate mode */
+ && X_RS1 (insn) == 30) /* off of frame pointer */
+ ; /* empty statement -- fall thru to end of loop */
+ else if (X_OP (insn) == 3
+ && (X_OP3 (insn) & 0x3c) == 36 /* store, floating-point */
+ && X_I (insn) /* immediate mode */
+ && X_RS1 (insn) == 30) /* off of frame pointer */
+ ; /* empty statement -- fall thru to end of loop */
+ else if (is_flat
+ && X_OP (insn) == 3
+ && X_OP3 (insn) == 4 /* store? */
+ && X_RS1 (insn) == 14) /* off of frame pointer */
+ {
+ if (saved_regs && X_I (insn))
+ saved_regs[X_RD (insn)] =
+ fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn);
+ }
+ else
+ break;
+ pc += 4;
+ insn = fetch_instruction (pc);
+ }
+
+ return pc;
+}
+
+CORE_ADDR
+sparc_skip_prologue (CORE_ADDR start_pc, int frameless_p)
+{
+ return examine_prologue (start_pc, frameless_p, NULL, NULL);
+}
+
+/* Check instruction at ADDR to see if it is a branch.
+ All non-annulled instructions will go to NPC or will trap.
+ Set *TARGET if we find a candidate branch; set to zero if not.
+
+ This isn't static as it's used by remote-sa.sparc.c. */
+
+static branch_type
+isbranch (long instruction, CORE_ADDR addr, CORE_ADDR *target)
+{
+ branch_type val = not_branch;
+ long int offset = 0; /* Must be signed for sign-extend. */
+
+ *target = 0;
+
+ if (X_OP (instruction) == 0
+ && (X_OP2 (instruction) == 2
+ || X_OP2 (instruction) == 6
+ || X_OP2 (instruction) == 1
+ || X_OP2 (instruction) == 3
+ || X_OP2 (instruction) == 5
+ || (GDB_TARGET_IS_SPARC64 && X_OP2 (instruction) == 7)))
+ {
+ if (X_COND (instruction) == 8)
+ val = X_A (instruction) ? baa : ba;
+ else
+ val = X_A (instruction) ? bicca : bicc;
+ switch (X_OP2 (instruction))
+ {
+ case 7:
+ if (!GDB_TARGET_IS_SPARC64)
+ break;
+ /* else fall thru */
+ case 2:
+ case 6:
+ offset = 4 * X_DISP22 (instruction);
+ break;
+ case 1:
+ case 5:
+ offset = 4 * X_DISP19 (instruction);
+ break;
+ case 3:
+ offset = 4 * X_DISP16 (instruction);
+ break;
+ }
+ *target = addr + offset;
+ }
+ else if (GDB_TARGET_IS_SPARC64
+ && X_OP (instruction) == 2
+ && X_OP3 (instruction) == 62)
+ {
+ if (X_FCN (instruction) == 0)
+ {
+ /* done */
+ *target = read_register (TNPC_REGNUM);
+ val = done_retry;
+ }
+ else if (X_FCN (instruction) == 1)
+ {
+ /* retry */
+ *target = read_register (TPC_REGNUM);
+ val = done_retry;
+ }
+ }
+
+ return val;
+}
+
+/* Find register number REGNUM relative to FRAME and put its
+ (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
+ was optimized out (and thus can't be fetched). If the variable
+ was fetched from memory, set *ADDRP to where it was fetched from,
+ otherwise it was fetched from a register.
+
+ The argument RAW_BUFFER must point to aligned memory. */
+
+void
+sparc_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
+ struct frame_info *frame, int regnum,
+ enum lval_type *lval)
+{
+ struct frame_info *frame1;
+ CORE_ADDR addr;
+
+ if (!target_has_registers)
+ error ("No registers.");
+
+ if (optimized)
+ *optimized = 0;
+
+ addr = 0;
+
+ /* FIXME This code extracted from infcmd.c; should put elsewhere! */
+ if (frame == NULL)
+ {
+ /* error ("No selected frame."); */
+ if (!target_has_registers)
+ error ("The program has no registers now.");
+ if (selected_frame == NULL)
+ error ("No selected frame.");
+ /* Try to use selected frame */
+ frame = get_prev_frame (selected_frame);
+ if (frame == 0)
+ error ("Cmd not meaningful in the outermost frame.");
+ }
+
+
+ frame1 = frame->next;
+
+ /* Get saved PC from the frame info if not in innermost frame. */
+ if (regnum == PC_REGNUM && frame1 != NULL)
+ {
+ if (lval != NULL)
+ *lval = not_lval;
+ if (raw_buffer != NULL)
+ {
+ /* Put it back in target format. */
+ store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
+ }
+ if (addrp != NULL)
+ *addrp = 0;
+ return;
+ }
+
+ while (frame1 != NULL)
+ {
+ /* FIXME MVS: wrong test for dummy frame at entry. */
+
+ if (frame1->pc >= (frame1->extra_info->bottom ?
+ frame1->extra_info->bottom : read_sp ())
+ && frame1->pc <= FRAME_FP (frame1))
+ {
+ /* Dummy frame. All but the window regs are in there somewhere.
+ The window registers are saved on the stack, just like in a
+ normal frame. */
+ if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7)
+ addr = frame1->frame + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
+ - (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE);
+ else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
+ addr = (frame1->prev->extra_info->bottom
+ + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
+ + FRAME_SAVED_I0);
+ else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
+ addr = (frame1->prev->extra_info->bottom
+ + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
+ + FRAME_SAVED_L0);
+ else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
+ addr = frame1->frame + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
+ - (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE);
+ else if (SPARC_HAS_FPU &&
+ regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32)
+ addr = frame1->frame + (regnum - FP0_REGNUM) * 4
+ - (FP_REGISTER_BYTES);
+ else if (GDB_TARGET_IS_SPARC64 && SPARC_HAS_FPU &&
+ regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM)
+ addr = frame1->frame + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8
+ - (FP_REGISTER_BYTES);
+ else if (regnum >= Y_REGNUM && regnum < NUM_REGS)
+ addr = frame1->frame + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
+ - (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE);
+ }
+ else if (frame1->extra_info->flat)
+ {
+
+ if (regnum == RP_REGNUM)
+ addr = frame1->extra_info->pc_addr;
+ else if (regnum == I7_REGNUM)
+ addr = frame1->extra_info->fp_addr;
+ else
+ {
+ CORE_ADDR func_start;
+ CORE_ADDR *regs;
+
+ regs = alloca (NUM_REGS * sizeof (CORE_ADDR));
+ memset (regs, 0, NUM_REGS * sizeof (CORE_ADDR));
+
+ find_pc_partial_function (frame1->pc, NULL, &func_start, NULL);
+ examine_prologue (func_start, 0, frame1, regs);
+ addr = regs[regnum];
+ }
+ }
+ else
+ {
+ /* Normal frame. Local and In registers are saved on stack. */
+ if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
+ addr = (frame1->prev->extra_info->bottom
+ + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
+ + FRAME_SAVED_I0);
+ else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
+ addr = (frame1->prev->extra_info->bottom
+ + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
+ + FRAME_SAVED_L0);
+ else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
+ {
+ /* Outs become ins. */
+ get_saved_register (raw_buffer, optimized, addrp, frame1,
+ (regnum - O0_REGNUM + I0_REGNUM), lval);
+ return;
+ }
+ }
+ if (addr != 0)
+ break;
+ frame1 = frame1->next;
+ }
+ if (addr != 0)
+ {
+ if (lval != NULL)
+ *lval = lval_memory;
+ if (regnum == SP_REGNUM)
+ {
+ if (raw_buffer != NULL)
+ {
+ /* Put it back in target format. */
+ store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr);
+ }
+ if (addrp != NULL)
+ *addrp = 0;
+ return;
+ }
+ if (raw_buffer != NULL)
+ read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
+ }
+ else
+ {
+ if (lval != NULL)
+ *lval = lval_register;
+ addr = REGISTER_BYTE (regnum);
+ if (raw_buffer != NULL)
+ read_register_gen (regnum, raw_buffer);
+ }
+ if (addrp != NULL)
+ *addrp = addr;
+}
+
+/* Push an empty stack frame, and record in it the current PC, regs, etc.
+
+ We save the non-windowed registers and the ins. The locals and outs
+ are new; they don't need to be saved. The i's and l's of
+ the last frame were already saved on the stack. */
+
+/* Definitely see tm-sparc.h for more doc of the frame format here. */
+
+/* See tm-sparc.h for how this is calculated. */
+
+#define DUMMY_STACK_REG_BUF_SIZE \
+ (((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES)
+#define DUMMY_STACK_SIZE \
+ (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET)
+
+void
+sparc_push_dummy_frame (void)
+{
+ CORE_ADDR sp, old_sp;
+ char *register_temp;
+
+ register_temp = alloca (DUMMY_STACK_SIZE);
+
+ old_sp = sp = read_sp ();
+
+ if (GDB_TARGET_IS_SPARC64)
+ {
+ /* PC, NPC, CCR, FSR, FPRS, Y, ASI */
+ read_register_bytes (REGISTER_BYTE (PC_REGNUM), &register_temp[0],
+ REGISTER_RAW_SIZE (PC_REGNUM) * 7);
+ read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM),
+ &register_temp[7 * SPARC_INTREG_SIZE],
+ REGISTER_RAW_SIZE (PSTATE_REGNUM));
+ /* FIXME: not sure what needs to be saved here. */
+ }
+ else
+ {
+ /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
+ read_register_bytes (REGISTER_BYTE (Y_REGNUM), &register_temp[0],
+ REGISTER_RAW_SIZE (Y_REGNUM) * 8);
+ }
+
+ read_register_bytes (REGISTER_BYTE (O0_REGNUM),
+ &register_temp[8 * SPARC_INTREG_SIZE],
+ SPARC_INTREG_SIZE * 8);
+
+ read_register_bytes (REGISTER_BYTE (G0_REGNUM),
+ &register_temp[16 * SPARC_INTREG_SIZE],
+ SPARC_INTREG_SIZE * 8);
+
+ if (SPARC_HAS_FPU)
+ read_register_bytes (REGISTER_BYTE (FP0_REGNUM),
+ &register_temp[24 * SPARC_INTREG_SIZE],
+ FP_REGISTER_BYTES);
+
+ sp -= DUMMY_STACK_SIZE;
+
+ write_sp (sp);
+
+ write_memory (sp + DUMMY_REG_SAVE_OFFSET, &register_temp[0],
+ DUMMY_STACK_REG_BUF_SIZE);
+
+ if (strcmp (target_shortname, "sim") != 0)
+ {
+ write_fp (old_sp);
+
+ /* Set return address register for the call dummy to the current PC. */
+ write_register (I7_REGNUM, read_pc () - 8);
+ }
+ else
+ {
+ /* The call dummy will write this value to FP before executing
+ the 'save'. This ensures that register window flushes work
+ correctly in the simulator. */
+ write_register (G0_REGNUM + 1, read_register (FP_REGNUM));
+
+ /* The call dummy will write this value to FP after executing
+ the 'save'. */
+ write_register (G0_REGNUM + 2, old_sp);
+
+ /* The call dummy will write this value to the return address (%i7) after
+ executing the 'save'. */
+ write_register (G0_REGNUM + 3, read_pc () - 8);
+
+ /* Set the FP that the call dummy will be using after the 'save'.
+ This makes backtraces from an inferior function call work properly. */
+ write_register (FP_REGNUM, old_sp);
+ }
+}
+
+/* sparc_frame_find_saved_regs (). This function is here only because
+ pop_frame uses it. Note there is an interesting corner case which
+ I think few ports of GDB get right--if you are popping a frame
+ which does not save some register that *is* saved by a more inner
+ frame (such a frame will never be a dummy frame because dummy
+ frames save all registers). Rewriting pop_frame to use
+ get_saved_register would solve this problem and also get rid of the
+ ugly duplication between sparc_frame_find_saved_regs and
+ get_saved_register.
+
+ Stores, into an array of CORE_ADDR,
+ the addresses of the saved registers of frame described by FRAME_INFO.
+ This includes special registers such as pc and fp saved in special
+ ways in the stack frame. sp is even more special:
+ the address we return for it IS the sp for the next frame.
+
+ Note that on register window machines, we are currently making the
+ assumption that window registers are being saved somewhere in the
+ frame in which they are being used. If they are stored in an
+ inferior frame, find_saved_register will break.
+
+ On the Sun 4, the only time all registers are saved is when
+ a dummy frame is involved. Otherwise, the only saved registers
+ are the LOCAL and IN registers which are saved as a result
+ of the "save/restore" opcodes. This condition is determined
+ by address rather than by value.
+
+ The "pc" is not stored in a frame on the SPARC. (What is stored
+ is a return address minus 8.) sparc_pop_frame knows how to
+ deal with that. Other routines might or might not.
+
+ See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information
+ about how this works. */
+
+static void sparc_frame_find_saved_regs (struct frame_info *, CORE_ADDR *);
+
+static void
+sparc_frame_find_saved_regs (struct frame_info *fi, CORE_ADDR *saved_regs_addr)
+{
+ register int regnum;
+ CORE_ADDR frame_addr = FRAME_FP (fi);
+
+ if (!fi)
+ internal_error (__FILE__, __LINE__,
+ "Bad frame info struct in FRAME_FIND_SAVED_REGS");
+
+ memset (saved_regs_addr, 0, NUM_REGS * sizeof (CORE_ADDR));
+
+ if (fi->pc >= (fi->extra_info->bottom ?
+ fi->extra_info->bottom : read_sp ())
+ && fi->pc <= FRAME_FP (fi))
+ {
+ /* Dummy frame. All but the window regs are in there somewhere. */
+ for (regnum = G1_REGNUM; regnum < G1_REGNUM + 7; regnum++)
+ saved_regs_addr[regnum] =
+ frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
+ - DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE;
+
+ for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
+ saved_regs_addr[regnum] =
+ frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
+ - DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE;
+
+ if (SPARC_HAS_FPU)
+ for (regnum = FP0_REGNUM; regnum < FP_MAX_REGNUM; regnum++)
+ saved_regs_addr[regnum] = frame_addr + (regnum - FP0_REGNUM) * 4
+ - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE;
+
+ if (GDB_TARGET_IS_SPARC64)
+ {
+ for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++)
+ {
+ saved_regs_addr[regnum] =
+ frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE
+ - DUMMY_STACK_REG_BUF_SIZE;
+ }
+ saved_regs_addr[PSTATE_REGNUM] =
+ frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE;
+ }
+ else
+ for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
+ saved_regs_addr[regnum] =
+ frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
+ - DUMMY_STACK_REG_BUF_SIZE;
+
+ frame_addr = fi->extra_info->bottom ?
+ fi->extra_info->bottom : read_sp ();
+ }
+ else if (fi->extra_info->flat)
+ {
+ CORE_ADDR func_start;
+ find_pc_partial_function (fi->pc, NULL, &func_start, NULL);
+ examine_prologue (func_start, 0, fi, saved_regs_addr);
+
+ /* Flat register window frame. */
+ saved_regs_addr[RP_REGNUM] = fi->extra_info->pc_addr;
+ saved_regs_addr[I7_REGNUM] = fi->extra_info->fp_addr;
+ }
+ else
+ {
+ /* Normal frame. Just Local and In registers */
+ frame_addr = fi->extra_info->bottom ?
+ fi->extra_info->bottom : read_sp ();
+ for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; regnum++)
+ saved_regs_addr[regnum] =
+ (frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
+ + FRAME_SAVED_L0);
+ for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
+ saved_regs_addr[regnum] =
+ (frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
+ + FRAME_SAVED_I0);
+ }
+ if (fi->next)
+ {
+ if (fi->extra_info->flat)
+ {
+ saved_regs_addr[O7_REGNUM] = fi->extra_info->pc_addr;
+ }
+ else
+ {
+ /* Pull off either the next frame pointer or the stack pointer */
+ CORE_ADDR next_next_frame_addr =
+ (fi->next->extra_info->bottom ?
+ fi->next->extra_info->bottom : read_sp ());
+ for (regnum = O0_REGNUM; regnum < O0_REGNUM + 8; regnum++)
+ saved_regs_addr[regnum] =
+ (next_next_frame_addr
+ + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
+ + FRAME_SAVED_I0);
+ }
+ }
+ /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
+ /* FIXME -- should this adjust for the sparc64 offset? */
+ saved_regs_addr[SP_REGNUM] = FRAME_FP (fi);
+}
+
+/* Discard from the stack the innermost frame, restoring all saved registers.
+
+ Note that the values stored in fsr by get_frame_saved_regs are *in
+ the context of the called frame*. What this means is that the i
+ regs of fsr must be restored into the o regs of the (calling) frame that
+ we pop into. We don't care about the output regs of the calling frame,
+ since unless it's a dummy frame, it won't have any output regs in it.
+
+ We never have to bother with %l (local) regs, since the called routine's
+ locals get tossed, and the calling routine's locals are already saved
+ on its stack. */
+
+/* Definitely see tm-sparc.h for more doc of the frame format here. */
+
+void
+sparc_pop_frame (void)
+{
+ register struct frame_info *frame = get_current_frame ();
+ register CORE_ADDR pc;
+ CORE_ADDR *fsr;
+ char *raw_buffer;
+ int regnum;
+
+ fsr = alloca (NUM_REGS * sizeof (CORE_ADDR));
+ raw_buffer = alloca (REGISTER_BYTES);
+ sparc_frame_find_saved_regs (frame, &fsr[0]);
+ if (SPARC_HAS_FPU)
+ {
+ if (fsr[FP0_REGNUM])
+ {
+ read_memory (fsr[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES);
+ write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
+ raw_buffer, FP_REGISTER_BYTES);
+ }
+ if (!(GDB_TARGET_IS_SPARC64))
+ {
+ if (fsr[FPS_REGNUM])
+ {
+ read_memory (fsr[FPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE);
+ write_register_gen (FPS_REGNUM, raw_buffer);
+ }
+ if (fsr[CPS_REGNUM])
+ {
+ read_memory (fsr[CPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE);
+ write_register_gen (CPS_REGNUM, raw_buffer);
+ }
+ }
+ }
+ if (fsr[G1_REGNUM])
+ {
+ read_memory (fsr[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE);
+ write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer,
+ 7 * SPARC_INTREG_SIZE);
+ }
+
+ if (frame->extra_info->flat)
+ {
+ /* Each register might or might not have been saved, need to test
+ individually. */
+ for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum)
+ if (fsr[regnum])
+ write_register (regnum, read_memory_integer (fsr[regnum],
+ SPARC_INTREG_SIZE));
+ for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum)
+ if (fsr[regnum])
+ write_register (regnum, read_memory_integer (fsr[regnum],
+ SPARC_INTREG_SIZE));
+
+ /* Handle all outs except stack pointer (o0-o5; o7). */
+ for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum)
+ if (fsr[regnum])
+ write_register (regnum, read_memory_integer (fsr[regnum],
+ SPARC_INTREG_SIZE));
+ if (fsr[O0_REGNUM + 7])
+ write_register (O0_REGNUM + 7,
+ read_memory_integer (fsr[O0_REGNUM + 7],
+ SPARC_INTREG_SIZE));
+
+ write_sp (frame->frame);
+ }
+ else if (fsr[I0_REGNUM])
+ {
+ CORE_ADDR sp;
+
+ char *reg_temp;
+
+ reg_temp = alloca (REGISTER_BYTES);
+
+ read_memory (fsr[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE);
+
+ /* Get the ins and locals which we are about to restore. Just
+ moving the stack pointer is all that is really needed, except
+ store_inferior_registers is then going to write the ins and
+ locals from the registers array, so we need to muck with the
+ registers array. */
+ sp = fsr[SP_REGNUM];
+
+ if (GDB_TARGET_IS_SPARC64 && (sp & 1))
+ sp += 2047;
+
+ read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16);
+
+ /* Restore the out registers.
+ Among other things this writes the new stack pointer. */
+ write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer,
+ SPARC_INTREG_SIZE * 8);
+
+ write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp,
+ SPARC_INTREG_SIZE * 16);
+ }
+
+ if (!(GDB_TARGET_IS_SPARC64))
+ if (fsr[PS_REGNUM])
+ write_register (PS_REGNUM,
+ read_memory_integer (fsr[PS_REGNUM],
+ REGISTER_RAW_SIZE (PS_REGNUM)));
+
+ if (fsr[Y_REGNUM])
+ write_register (Y_REGNUM,
+ read_memory_integer (fsr[Y_REGNUM],
+ REGISTER_RAW_SIZE (Y_REGNUM)));
+ if (fsr[PC_REGNUM])
+ {
+ /* Explicitly specified PC (and maybe NPC) -- just restore them. */
+ write_register (PC_REGNUM,
+ read_memory_integer (fsr[PC_REGNUM],
+ REGISTER_RAW_SIZE (PC_REGNUM)));
+ if (fsr[NPC_REGNUM])
+ write_register (NPC_REGNUM,
+ read_memory_integer (fsr[NPC_REGNUM],
+ REGISTER_RAW_SIZE (NPC_REGNUM)));
+ }
+ else if (frame->extra_info->flat)
+ {
+ if (frame->extra_info->pc_addr)
+ pc = PC_ADJUST ((CORE_ADDR)
+ read_memory_integer (frame->extra_info->pc_addr,
+ REGISTER_RAW_SIZE (PC_REGNUM)));
+ else
+ {
+ /* I think this happens only in the innermost frame, if so then
+ it is a complicated way of saying
+ "pc = read_register (O7_REGNUM);". */
+ char *buf;
+
+ buf = alloca (MAX_REGISTER_RAW_SIZE);
+ get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0);
+ pc = PC_ADJUST (extract_address
+ (buf, REGISTER_RAW_SIZE (O7_REGNUM)));
+ }
+
+ write_register (PC_REGNUM, pc);
+ write_register (NPC_REGNUM, pc + 4);
+ }
+ else if (fsr[I7_REGNUM])
+ {
+ /* Return address in %i7 -- adjust it, then restore PC and NPC from it */
+ pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr[I7_REGNUM],
+ SPARC_INTREG_SIZE));
+ write_register (PC_REGNUM, pc);
+ write_register (NPC_REGNUM, pc + 4);
+ }
+ flush_cached_frames ();
+}
+
+/* On the Sun 4 under SunOS, the compile will leave a fake insn which
+ encodes the structure size being returned. If we detect such
+ a fake insn, step past it. */
+
+CORE_ADDR
+sparc_pc_adjust (CORE_ADDR pc)
+{
+ unsigned long insn;
+ char buf[4];
+ int err;
+
+ err = target_read_memory (pc + 8, buf, 4);
+ insn = extract_unsigned_integer (buf, 4);
+ if ((err == 0) && (insn & 0xffc00000) == 0)
+ return pc + 12;
+ else
+ return pc + 8;
+}
+
+/* If pc is in a shared library trampoline, return its target.
+ The SunOs 4.x linker rewrites the jump table entries for PIC
+ compiled modules in the main executable to bypass the dynamic linker
+ with jumps of the form
+ sethi %hi(addr),%g1
+ jmp %g1+%lo(addr)
+ and removes the corresponding jump table relocation entry in the
+ dynamic relocations.
+ find_solib_trampoline_target relies on the presence of the jump
+ table relocation entry, so we have to detect these jump instructions
+ by hand. */
+
+CORE_ADDR
+sunos4_skip_trampoline_code (CORE_ADDR pc)
+{
+ unsigned long insn1;
+ char buf[4];
+ int err;
+
+ err = target_read_memory (pc, buf, 4);
+ insn1 = extract_unsigned_integer (buf, 4);
+ if (err == 0 && (insn1 & 0xffc00000) == 0x03000000)
+ {
+ unsigned long insn2;
+
+ err = target_read_memory (pc + 4, buf, 4);
+ insn2 = extract_unsigned_integer (buf, 4);
+ if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000)
+ {
+ CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10;
+ int delta = insn2 & 0x1fff;
+
+ /* Sign extend the displacement. */
+ if (delta & 0x1000)
+ delta |= ~0x1fff;
+ return target_pc + delta;
+ }
+ }
+ return find_solib_trampoline_target (pc);
+}
+
+#ifdef USE_PROC_FS /* Target dependent support for /proc */
+/* *INDENT-OFF* */
+/* The /proc interface divides the target machine's register set up into
+ two different sets, the general register set (gregset) and the floating
+ point register set (fpregset). For each set, there is an ioctl to get
+ the current register set and another ioctl to set the current values.
+
+ The actual structure passed through the ioctl interface is, of course,
+ naturally machine dependent, and is different for each set of registers.
+ For the sparc for example, the general register set is typically defined
+ by:
+
+ typedef int gregset_t[38];
+
+ #define R_G0 0
+ ...
+ #define R_TBR 37
+
+ and the floating point set by:
+
+ typedef struct prfpregset {
+ union {
+ u_long pr_regs[32];
+ double pr_dregs[16];
+ } pr_fr;
+ void * pr_filler;
+ u_long pr_fsr;
+ u_char pr_qcnt;
+ u_char pr_q_entrysize;
+ u_char pr_en;
+ u_long pr_q[64];
+ } prfpregset_t;
+
+ These routines provide the packing and unpacking of gregset_t and
+ fpregset_t formatted data.
+
+ */
+/* *INDENT-ON* */
+
+/* Given a pointer to a general register set in /proc format (gregset_t *),
+ unpack the register contents and supply them as gdb's idea of the current
+ register values. */
+
+void
+supply_gregset (gdb_gregset_t *gregsetp)
+{
+ prgreg_t *regp = (prgreg_t *) gregsetp;
+ int regi, offset = 0;
+
+ /* If the host is 64-bit sparc, but the target is 32-bit sparc,
+ then the gregset may contain 64-bit ints while supply_register
+ is expecting 32-bit ints. Compensate. */
+ if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4)
+ offset = 4;
+
+ /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */
+ /* FIXME MVS: assumes the order of the first 32 elements... */
+ for (regi = G0_REGNUM; regi <= I7_REGNUM; regi++)
+ {
+ supply_register (regi, ((char *) (regp + regi)) + offset);
+ }
+
+ /* These require a bit more care. */
+ supply_register (PC_REGNUM, ((char *) (regp + R_PC)) + offset);
+ supply_register (NPC_REGNUM, ((char *) (regp + R_nPC)) + offset);
+ supply_register (Y_REGNUM, ((char *) (regp + R_Y)) + offset);
+
+ if (GDB_TARGET_IS_SPARC64)
+ {
+#ifdef R_CCR
+ supply_register (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset);
+#else
+ supply_register (CCR_REGNUM, NULL);
+#endif
+#ifdef R_FPRS
+ supply_register (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset);
+#else
+ supply_register (FPRS_REGNUM, NULL);
+#endif
+#ifdef R_ASI
+ supply_register (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset);
+#else
+ supply_register (ASI_REGNUM, NULL);
+#endif
+ }
+ else /* sparc32 */
+ {
+#ifdef R_PS
+ supply_register (PS_REGNUM, ((char *) (regp + R_PS)) + offset);
+#else
+ supply_register (PS_REGNUM, NULL);
+#endif
+
+ /* For 64-bit hosts, R_WIM and R_TBR may not be defined.
+ Steal R_ASI and R_FPRS, and hope for the best! */
+
+#if !defined (R_WIM) && defined (R_ASI)
+#define R_WIM R_ASI
+#endif
+
+#if !defined (R_TBR) && defined (R_FPRS)
+#define R_TBR R_FPRS
+#endif
+
+#if defined (R_WIM)
+ supply_register (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset);
+#else
+ supply_register (WIM_REGNUM, NULL);
+#endif
+
+#if defined (R_TBR)
+ supply_register (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset);
+#else
+ supply_register (TBR_REGNUM, NULL);
+#endif
+ }
+
+ /* Fill inaccessible registers with zero. */
+ if (GDB_TARGET_IS_SPARC64)
+ {
+ /*
+ * don't know how to get value of any of the following:
+ */
+ supply_register (VER_REGNUM, NULL);
+ supply_register (TICK_REGNUM, NULL);
+ supply_register (PIL_REGNUM, NULL);
+ supply_register (PSTATE_REGNUM, NULL);
+ supply_register (TSTATE_REGNUM, NULL);
+ supply_register (TBA_REGNUM, NULL);
+ supply_register (TL_REGNUM, NULL);
+ supply_register (TT_REGNUM, NULL);
+ supply_register (TPC_REGNUM, NULL);
+ supply_register (TNPC_REGNUM, NULL);
+ supply_register (WSTATE_REGNUM, NULL);
+ supply_register (CWP_REGNUM, NULL);
+ supply_register (CANSAVE_REGNUM, NULL);
+ supply_register (CANRESTORE_REGNUM, NULL);
+ supply_register (CLEANWIN_REGNUM, NULL);
+ supply_register (OTHERWIN_REGNUM, NULL);
+ supply_register (ASR16_REGNUM, NULL);
+ supply_register (ASR17_REGNUM, NULL);
+ supply_register (ASR18_REGNUM, NULL);
+ supply_register (ASR19_REGNUM, NULL);
+ supply_register (ASR20_REGNUM, NULL);
+ supply_register (ASR21_REGNUM, NULL);
+ supply_register (ASR22_REGNUM, NULL);
+ supply_register (ASR23_REGNUM, NULL);
+ supply_register (ASR24_REGNUM, NULL);
+ supply_register (ASR25_REGNUM, NULL);
+ supply_register (ASR26_REGNUM, NULL);
+ supply_register (ASR27_REGNUM, NULL);
+ supply_register (ASR28_REGNUM, NULL);
+ supply_register (ASR29_REGNUM, NULL);
+ supply_register (ASR30_REGNUM, NULL);
+ supply_register (ASR31_REGNUM, NULL);
+ supply_register (ICC_REGNUM, NULL);
+ supply_register (XCC_REGNUM, NULL);
+ }
+ else
+ {
+ supply_register (CPS_REGNUM, NULL);
+ }
+}
+
+void
+fill_gregset (gdb_gregset_t *gregsetp, int regno)
+{
+ prgreg_t *regp = (prgreg_t *) gregsetp;
+ int regi, offset = 0;
+
+ /* If the host is 64-bit sparc, but the target is 32-bit sparc,
+ then the gregset may contain 64-bit ints while supply_register
+ is expecting 32-bit ints. Compensate. */
+ if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4)
+ offset = 4;
+
+ for (regi = 0; regi <= R_I7; regi++)
+ if ((regno == -1) || (regno == regi))
+ read_register_gen (regi, (char *) (regp + regi) + offset);
+
+ if ((regno == -1) || (regno == PC_REGNUM))
+ read_register_gen (PC_REGNUM, (char *) (regp + R_PC) + offset);
+
+ if ((regno == -1) || (regno == NPC_REGNUM))
+ read_register_gen (NPC_REGNUM, (char *) (regp + R_nPC) + offset);
+
+ if ((regno == -1) || (regno == Y_REGNUM))
+ read_register_gen (Y_REGNUM, (char *) (regp + R_Y) + offset);
+
+ if (GDB_TARGET_IS_SPARC64)
+ {
+#ifdef R_CCR
+ if (regno == -1 || regno == CCR_REGNUM)
+ read_register_gen (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset);
+#endif
+#ifdef R_FPRS
+ if (regno == -1 || regno == FPRS_REGNUM)
+ read_register_gen (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset);
+#endif
+#ifdef R_ASI
+ if (regno == -1 || regno == ASI_REGNUM)
+ read_register_gen (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset);
+#endif
+ }
+ else /* sparc32 */
+ {
+#ifdef R_PS
+ if (regno == -1 || regno == PS_REGNUM)
+ read_register_gen (PS_REGNUM, ((char *) (regp + R_PS)) + offset);
+#endif
+
+ /* For 64-bit hosts, R_WIM and R_TBR may not be defined.
+ Steal R_ASI and R_FPRS, and hope for the best! */
+
+#if !defined (R_WIM) && defined (R_ASI)
+#define R_WIM R_ASI
+#endif
+
+#if !defined (R_TBR) && defined (R_FPRS)
+#define R_TBR R_FPRS
+#endif
+
+#if defined (R_WIM)
+ if (regno == -1 || regno == WIM_REGNUM)
+ read_register_gen (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset);
+#else
+ if (regno == -1 || regno == WIM_REGNUM)
+ read_register_gen (WIM_REGNUM, NULL);
+#endif
+
+#if defined (R_TBR)
+ if (regno == -1 || regno == TBR_REGNUM)
+ read_register_gen (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset);
+#else
+ if (regno == -1 || regno == TBR_REGNUM)
+ read_register_gen (TBR_REGNUM, NULL);
+#endif
+ }
+}
+
+/* Given a pointer to a floating point register set in /proc format
+ (fpregset_t *), unpack the register contents and supply them as gdb's
+ idea of the current floating point register values. */
+
+void
+supply_fpregset (gdb_fpregset_t *fpregsetp)
+{
+ register int regi;
+ char *from;
+
+ if (!SPARC_HAS_FPU)
+ return;
+
+ for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
+ {
+ from = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
+ supply_register (regi, from);
+ }
+
+ if (GDB_TARGET_IS_SPARC64)
+ {
+ /*
+ * don't know how to get value of the following.
+ */
+ supply_register (FSR_REGNUM, NULL); /* zero it out for now */
+ supply_register (FCC0_REGNUM, NULL);
+ supply_register (FCC1_REGNUM, NULL); /* don't know how to get value */
+ supply_register (FCC2_REGNUM, NULL); /* don't know how to get value */
+ supply_register (FCC3_REGNUM, NULL); /* don't know how to get value */
+ }
+ else
+ {
+ supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
+ }
+}
+
+/* Given a pointer to a floating point register set in /proc format
+ (fpregset_t *), update the register specified by REGNO from gdb's idea
+ of the current floating point register set. If REGNO is -1, update
+ them all. */
+/* This will probably need some changes for sparc64. */
+
+void
+fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
+{
+ int regi;
+ char *to;
+ char *from;
+
+ if (!SPARC_HAS_FPU)
+ return;
+
+ for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
+ {
+ if ((regno == -1) || (regno == regi))
+ {
+ from = (char *) &registers[REGISTER_BYTE (regi)];
+ to = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
+ memcpy (to, from, REGISTER_RAW_SIZE (regi));
+ }
+ }
+
+ if (!(GDB_TARGET_IS_SPARC64)) /* FIXME: does Sparc64 have this register? */
+ if ((regno == -1) || (regno == FPS_REGNUM))
+ {
+ from = (char *)&registers[REGISTER_BYTE (FPS_REGNUM)];
+ to = (char *) &fpregsetp->pr_fsr;
+ memcpy (to, from, REGISTER_RAW_SIZE (FPS_REGNUM));
+ }
+}
+
+#endif /* USE_PROC_FS */
+
+/* Because of Multi-arch, GET_LONGJMP_TARGET is always defined. So test
+ for a definition of JB_PC. */
+#ifdef JB_PC
+
+/* Figure out where the longjmp will land. We expect that we have just entered
+ longjmp and haven't yet setup the stack frame, so the args are still in the
+ output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we
+ extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
+ This routine returns true on success */
+
+int
+get_longjmp_target (CORE_ADDR *pc)
+{
+ CORE_ADDR jb_addr;
+#define LONGJMP_TARGET_SIZE 4
+ char buf[LONGJMP_TARGET_SIZE];
+
+ jb_addr = read_register (O0_REGNUM);
+
+ if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
+ LONGJMP_TARGET_SIZE))
+ return 0;
+
+ *pc = extract_address (buf, LONGJMP_TARGET_SIZE);
+
+ return 1;
+}
+#endif /* GET_LONGJMP_TARGET */
+
+#ifdef STATIC_TRANSFORM_NAME
+/* SunPRO (3.0 at least), encodes the static variables. This is not
+ related to C++ mangling, it is done for C too. */
+
+char *
+sunpro_static_transform_name (char *name)
+{
+ char *p;
+ if (name[0] == '$')
+ {
+ /* For file-local statics there will be a dollar sign, a bunch
+ of junk (the contents of which match a string given in the
+ N_OPT), a period and the name. For function-local statics
+ there will be a bunch of junk (which seems to change the
+ second character from 'A' to 'B'), a period, the name of the
+ function, and the name. So just skip everything before the
+ last period. */
+ p = strrchr (name, '.');
+ if (p != NULL)
+ name = p + 1;
+ }
+ return name;
+}
+#endif /* STATIC_TRANSFORM_NAME */
+
+
+/* Utilities for printing registers.
+ Page numbers refer to the SPARC Architecture Manual. */
+
+static void dump_ccreg (char *, int);
+
+static void
+dump_ccreg (char *reg, int val)
+{
+ /* page 41 */
+ printf_unfiltered ("%s:%s,%s,%s,%s", reg,
+ val & 8 ? "N" : "NN",
+ val & 4 ? "Z" : "NZ",
+ val & 2 ? "O" : "NO",
+ val & 1 ? "C" : "NC");
+}
+
+static char *
+decode_asi (int val)
+{
+ /* page 72 */
+ switch (val)
+ {
+ case 4:
+ return "ASI_NUCLEUS";
+ case 0x0c:
+ return "ASI_NUCLEUS_LITTLE";
+ case 0x10:
+ return "ASI_AS_IF_USER_PRIMARY";
+ case 0x11:
+ return "ASI_AS_IF_USER_SECONDARY";
+ case 0x18:
+ return "ASI_AS_IF_USER_PRIMARY_LITTLE";
+ case 0x19:
+ return "ASI_AS_IF_USER_SECONDARY_LITTLE";
+ case 0x80:
+ return "ASI_PRIMARY";
+ case 0x81:
+ return "ASI_SECONDARY";
+ case 0x82:
+ return "ASI_PRIMARY_NOFAULT";
+ case 0x83:
+ return "ASI_SECONDARY_NOFAULT";
+ case 0x88:
+ return "ASI_PRIMARY_LITTLE";
+ case 0x89:
+ return "ASI_SECONDARY_LITTLE";
+ case 0x8a:
+ return "ASI_PRIMARY_NOFAULT_LITTLE";
+ case 0x8b:
+ return "ASI_SECONDARY_NOFAULT_LITTLE";
+ default:
+ return NULL;
+ }
+}
+
+/* PRINT_REGISTER_HOOK routine.
+ Pretty print various registers. */
+/* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */
+
+void
+sparc_print_register_hook (int regno)
+{
+ ULONGEST val;
+
+ /* Handle double/quad versions of lower 32 fp regs. */
+ if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32
+ && (regno & 1) == 0)
+ {
+ char value[16];
+
+ if (!read_relative_register_raw_bytes (regno, value)
+ && !read_relative_register_raw_bytes (regno + 1, value + 4))
+ {
+ printf_unfiltered ("\t");
+ print_floating (value, builtin_type_double, gdb_stdout);
+ }
+#if 0 /* FIXME: gdb doesn't handle long doubles */
+ if ((regno & 3) == 0)
+ {
+ if (!read_relative_register_raw_bytes (regno + 2, value + 8)
+ && !read_relative_register_raw_bytes (regno + 3, value + 12))
+ {
+ printf_unfiltered ("\t");
+ print_floating (value, builtin_type_long_double, gdb_stdout);
+ }
+ }
+#endif
+ return;
+ }
+
+#if 0 /* FIXME: gdb doesn't handle long doubles */
+ /* Print upper fp regs as long double if appropriate. */
+ if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM
+ /* We test for even numbered regs and not a multiple of 4 because
+ the upper fp regs are recorded as doubles. */
+ && (regno & 1) == 0)
+ {
+ char value[16];
+
+ if (!read_relative_register_raw_bytes (regno, value)
+ && !read_relative_register_raw_bytes (regno + 1, value + 8))
+ {
+ printf_unfiltered ("\t");
+ print_floating (value, builtin_type_long_double, gdb_stdout);
+ }
+ return;
+ }
+#endif
+
+ /* FIXME: Some of these are priviledged registers.
+ Not sure how they should be handled. */
+
+#define BITS(n, mask) ((int) (((val) >> (n)) & (mask)))
+
+ val = read_register (regno);
+
+ /* pages 40 - 60 */
+ if (GDB_TARGET_IS_SPARC64)
+ switch (regno)
+ {
+ case CCR_REGNUM:
+ printf_unfiltered ("\t");
+ dump_ccreg ("xcc", val >> 4);
+ printf_unfiltered (", ");
+ dump_ccreg ("icc", val & 15);
+ break;
+ case FPRS_REGNUM:
+ printf ("\tfef:%d, du:%d, dl:%d",
+ BITS (2, 1), BITS (1, 1), BITS (0, 1));
+ break;
+ case FSR_REGNUM:
+ {
+ static char *fcc[4] =
+ {"=", "<", ">", "?"};
+ static char *rd[4] =
+ {"N", "0", "+", "-"};
+ /* Long, but I'd rather leave it as is and use a wide screen. */
+ printf_filtered ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ",
+ fcc[BITS (10, 3)], fcc[BITS (32, 3)],
+ fcc[BITS (34, 3)], fcc[BITS (36, 3)],
+ rd[BITS (30, 3)], BITS (23, 31));
+ printf_filtered ("ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d",
+ BITS (22, 1), BITS (17, 7), BITS (14, 7),
+ BITS (13, 1), BITS (5, 31), BITS (0, 31));
+ break;
+ }
+ case ASI_REGNUM:
+ {
+ char *asi = decode_asi (val);
+ if (asi != NULL)
+ printf ("\t%s", asi);
+ break;
+ }
+ case VER_REGNUM:
+ printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d",
+ BITS (48, 0xffff), BITS (32, 0xffff),
+ BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31));
+ break;
+ case PSTATE_REGNUM:
+ {
+ static char *mm[4] =
+ {"tso", "pso", "rso", "?"};
+ printf_filtered ("\tcle:%d, tle:%d, mm:%s, red:%d, ",
+ BITS (9, 1), BITS (8, 1),
+ mm[BITS (6, 3)], BITS (5, 1));
+ printf_filtered ("pef:%d, am:%d, priv:%d, ie:%d, ag:%d",
+ BITS (4, 1), BITS (3, 1), BITS (2, 1),
+ BITS (1, 1), BITS (0, 1));
+ break;
+ }
+ case TSTATE_REGNUM:
+ /* FIXME: print all 4? */
+ break;
+ case TT_REGNUM:
+ /* FIXME: print all 4? */
+ break;
+ case TPC_REGNUM:
+ /* FIXME: print all 4? */
+ break;
+ case TNPC_REGNUM:
+ /* FIXME: print all 4? */
+ break;
+ case WSTATE_REGNUM:
+ printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7));
+ break;
+ case CWP_REGNUM:
+ printf ("\t%d", BITS (0, 31));
+ break;
+ case CANSAVE_REGNUM:
+ printf ("\t%-2d before spill", BITS (0, 31));
+ break;
+ case CANRESTORE_REGNUM:
+ printf ("\t%-2d before fill", BITS (0, 31));
+ break;
+ case CLEANWIN_REGNUM:
+ printf ("\t%-2d before clean", BITS (0, 31));
+ break;
+ case OTHERWIN_REGNUM:
+ printf ("\t%d", BITS (0, 31));
+ break;
+ }
+ else /* Sparc32 */
+ switch (regno)
+ {
+ case PS_REGNUM:
+ printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d",
+ BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-',
+ BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-',
+ BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1),
+ BITS (0, 31));
+ break;
+ case FPS_REGNUM:
+ {
+ static char *fcc[4] =
+ {"=", "<", ">", "?"};
+ static char *rd[4] =
+ {"N", "0", "+", "-"};
+ /* Long, but I'd rather leave it as is and use a wide screen. */
+ printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, "
+ "fcc:%s, aexc:%d, cexc:%d",
+ rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7),
+ BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31),
+ BITS (0, 31));
+ break;
+ }
+ }
+
+#undef BITS
+}
+
+int
+gdb_print_insn_sparc (bfd_vma memaddr, disassemble_info *info)
+{
+ /* It's necessary to override mach again because print_insn messes it up. */
+ info->mach = TARGET_ARCHITECTURE->mach;
+ return print_insn_sparc (memaddr, info);
+}
+
+/* The SPARC passes the arguments on the stack; arguments smaller
+ than an int are promoted to an int. The first 6 words worth of
+ args are also passed in registers o0 - o5. */
+
+CORE_ADDR
+sparc32_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
+ int struct_return, CORE_ADDR struct_addr)
+{
+ int i, j, oregnum;
+ int accumulate_size = 0;
+ struct sparc_arg
+ {
+ char *contents;
+ int len;
+ int offset;
+ };
+ struct sparc_arg *sparc_args =
+ (struct sparc_arg *) alloca (nargs * sizeof (struct sparc_arg));
+ struct sparc_arg *m_arg;
+
+ /* Promote arguments if necessary, and calculate their stack offsets
+ and sizes. */
+ for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++)
+ {
+ struct value *arg = args[i];
+ struct type *arg_type = check_typedef (VALUE_TYPE (arg));
+ /* Cast argument to long if necessary as the compiler does it too. */
+ switch (TYPE_CODE (arg_type))
+ {
+ case TYPE_CODE_INT:
+ case TYPE_CODE_BOOL:
+ case TYPE_CODE_CHAR:
+ case TYPE_CODE_RANGE:
+ case TYPE_CODE_ENUM:
+ if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
+ {
+ arg_type = builtin_type_long;
+ arg = value_cast (arg_type, arg);
+ }
+ break;
+ default:
+ break;
+ }
+ m_arg->len = TYPE_LENGTH (arg_type);
+ m_arg->offset = accumulate_size;
+ accumulate_size = (accumulate_size + m_arg->len + 3) & ~3;
+ m_arg->contents = VALUE_CONTENTS (arg);
+ }
+
+ /* Make room for the arguments on the stack. */
+ accumulate_size += CALL_DUMMY_STACK_ADJUST;
+ sp = ((sp - accumulate_size) & ~7) + CALL_DUMMY_STACK_ADJUST;
+
+ /* `Push' arguments on the stack. */
+ for (i = 0, oregnum = 0, m_arg = sparc_args;
+ i < nargs;
+ i++, m_arg++)
+ {
+ write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
+ for (j = 0;
+ j < m_arg->len && oregnum < 6;
+ j += SPARC_INTREG_SIZE, oregnum++)
+ write_register_gen (O0_REGNUM + oregnum, m_arg->contents + j);
+ }
+
+ return sp;
+}
+
+
+/* Extract from an array REGBUF containing the (raw) register state
+ a function return value of type TYPE, and copy that, in virtual format,
+ into VALBUF. */
+
+void
+sparc32_extract_return_value (struct type *type, char *regbuf, char *valbuf)
+{
+ int typelen = TYPE_LENGTH (type);
+ int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
+
+ if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
+ memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM)], typelen);
+ else
+ memcpy (valbuf,
+ &regbuf[O0_REGNUM * regsize +
+ (typelen >= regsize
+ || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE ? 0
+ : regsize - typelen)],
+ typelen);
+}
+
+
+/* Write into appropriate registers a function return value
+ of type TYPE, given in virtual format. On SPARCs with FPUs,
+ float values are returned in %f0 (and %f1). In all other cases,
+ values are returned in register %o0. */
+
+void
+sparc_store_return_value (struct type *type, char *valbuf)
+{
+ int regno;
+ char *buffer;
+
+ buffer = alloca (MAX_REGISTER_RAW_SIZE);
+
+ if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
+ /* Floating-point values are returned in the register pair */
+ /* formed by %f0 and %f1 (doubles are, anyway). */
+ regno = FP0_REGNUM;
+ else
+ /* Other values are returned in register %o0. */
+ regno = O0_REGNUM;
+
+ /* Add leading zeros to the value. */
+ if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (regno))
+ {
+ memset (buffer, 0, REGISTER_RAW_SIZE (regno));
+ memcpy (buffer + REGISTER_RAW_SIZE (regno) - TYPE_LENGTH (type), valbuf,
+ TYPE_LENGTH (type));
+ write_register_gen (regno, buffer);
+ }
+ else
+ write_register_bytes (REGISTER_BYTE (regno), valbuf, TYPE_LENGTH (type));
+}
+
+extern void
+sparclet_store_return_value (struct type *type, char *valbuf)
+{
+ /* Other values are returned in register %o0. */
+ write_register_bytes (REGISTER_BYTE (O0_REGNUM), valbuf,
+ TYPE_LENGTH (type));
+}
+
+
+#ifndef CALL_DUMMY_CALL_OFFSET
+#define CALL_DUMMY_CALL_OFFSET \
+ (gdbarch_tdep (current_gdbarch)->call_dummy_call_offset)
+#endif /* CALL_DUMMY_CALL_OFFSET */
+
+/* Insert the function address into a call dummy instruction sequence
+ stored at DUMMY.
+
+ For structs and unions, if the function was compiled with Sun cc,
+ it expects 'unimp' after the call. But gcc doesn't use that
+ (twisted) convention. So leave a nop there for gcc (FIX_CALL_DUMMY
+ can assume it is operating on a pristine CALL_DUMMY, not one that
+ has already been customized for a different function). */
+
+void
+sparc_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
+ struct type *value_type, int using_gcc)
+{
+ int i;
+
+ /* Store the relative adddress of the target function into the
+ 'call' instruction. */
+ store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4,
+ (0x40000000
+ | (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2)
+ & 0x3fffffff)));
+
+ /* If the called function returns an aggregate value, fill in the UNIMP
+ instruction containing the size of the returned aggregate return value,
+ which follows the call instruction.
+ For details see the SPARC Architecture Manual Version 8, Appendix D.3.
+
+ Adjust the call_dummy_breakpoint_offset for the bp_call_dummy breakpoint
+ to the proper address in the call dummy, so that `finish' after a stop
+ in a call dummy works.
+ Tweeking current_gdbarch is not an optimal solution, but the call to
+ sparc_fix_call_dummy is immediately followed by a call to run_stack_dummy,
+ which is the only function where dummy_breakpoint_offset is actually
+ used, if it is non-zero. */
+ if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
+ || TYPE_CODE (value_type) == TYPE_CODE_UNION)
+ {
+ store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4,
+ TYPE_LENGTH (value_type) & 0x1fff);
+ set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 0x30);
+ }
+ else
+ set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 0x2c);
+
+ if (!(GDB_TARGET_IS_SPARC64))
+ {
+ /* If this is not a simulator target, change the first four
+ instructions of the call dummy to NOPs. Those instructions
+ include a 'save' instruction and are designed to work around
+ problems with register window flushing in the simulator. */
+
+ if (strcmp (target_shortname, "sim") != 0)
+ {
+ for (i = 0; i < 4; i++)
+ store_unsigned_integer (dummy + (i * 4), 4, 0x01000000);
+ }
+ }
+
+ /* If this is a bi-endian target, GDB has written the call dummy
+ in little-endian order. We must byte-swap it back to big-endian. */
+ if (bi_endian)
+ {
+ for (i = 0; i < CALL_DUMMY_LENGTH; i += 4)
+ {
+ char tmp = dummy[i];
+ dummy[i] = dummy[i + 3];
+ dummy[i + 3] = tmp;
+ tmp = dummy[i + 1];
+ dummy[i + 1] = dummy[i + 2];
+ dummy[i + 2] = tmp;
+ }
+ }
+}
+
+
+/* Set target byte order based on machine type. */
+
+static int
+sparc_target_architecture_hook (const bfd_arch_info_type *ap)
+{
+ int i, j;
+
+ if (ap->mach == bfd_mach_sparc_sparclite_le)
+ {
+ target_byte_order = BFD_ENDIAN_LITTLE;
+ bi_endian = 1;
+ }
+ else
+ bi_endian = 0;
+ return 1;
+}
+
+
+/*
+ * Module "constructor" function.
+ */
+
+static struct gdbarch * sparc_gdbarch_init (struct gdbarch_info info,
+ struct gdbarch_list *arches);
+
+void
+_initialize_sparc_tdep (void)
+{
+ /* Hook us into the gdbarch mechanism. */
+ register_gdbarch_init (bfd_arch_sparc, sparc_gdbarch_init);
+
+ tm_print_insn = gdb_print_insn_sparc;
+ tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */
+ target_architecture_hook = sparc_target_architecture_hook;
+}
+
+/* Compensate for stack bias. Note that we currently don't handle
+ mixed 32/64 bit code. */
+
+CORE_ADDR
+sparc64_read_sp (void)
+{
+ CORE_ADDR sp = read_register (SP_REGNUM);
+
+ if (sp & 1)
+ sp += 2047;
+ return sp;
+}
+
+CORE_ADDR
+sparc64_read_fp (void)
+{
+ CORE_ADDR fp = read_register (FP_REGNUM);
+
+ if (fp & 1)
+ fp += 2047;
+ return fp;
+}
+
+void
+sparc64_write_sp (CORE_ADDR val)
+{
+ CORE_ADDR oldsp = read_register (SP_REGNUM);
+ if (oldsp & 1)
+ write_register (SP_REGNUM, val - 2047);
+ else
+ write_register (SP_REGNUM, val);
+}
+
+void
+sparc64_write_fp (CORE_ADDR val)
+{
+ CORE_ADDR oldfp = read_register (FP_REGNUM);
+ if (oldfp & 1)
+ write_register (FP_REGNUM, val - 2047);
+ else
+ write_register (FP_REGNUM, val);
+}
+
+/* The SPARC 64 ABI passes floating-point arguments in FP0 to FP31,
+ and all other arguments in O0 to O5. They are also copied onto
+ the stack in the correct places. Apparently (empirically),
+ structs of less than 16 bytes are passed member-by-member in
+ separate registers, but I am unable to figure out the algorithm.
+ Some members go in floating point regs, but I don't know which.
+
+ FIXME: Handle small structs (less than 16 bytes containing floats).
+
+ The counting regimen for using both integer and FP registers
+ for argument passing is rather odd -- a single counter is used
+ for both; this means that if the arguments alternate between
+ int and float, we will waste every other register of both types. */
+
+CORE_ADDR
+sparc64_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
+ int struct_return, CORE_ADDR struct_retaddr)
+{
+ int i, j, register_counter = 0;
+ CORE_ADDR tempsp;
+ struct type *sparc_intreg_type =
+ TYPE_LENGTH (builtin_type_long) == SPARC_INTREG_SIZE ?
+ builtin_type_long : builtin_type_long_long;
+
+ sp = (sp & ~(((unsigned long) SPARC_INTREG_SIZE) - 1UL));
+
+ /* Figure out how much space we'll need. */
+ for (i = nargs - 1; i >= 0; i--)
+ {
+ int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i])));
+ struct value *copyarg = args[i];
+ int copylen = len;
+
+ if (copylen < SPARC_INTREG_SIZE)
+ {
+ copyarg = value_cast (sparc_intreg_type, copyarg);
+ copylen = SPARC_INTREG_SIZE;
+ }
+ sp -= copylen;
+ }
+
+ /* Round down. */
+ sp = sp & ~7;
+ tempsp = sp;
+
+ /* if STRUCT_RETURN, then first argument is the struct return location. */
+ if (struct_return)
+ write_register (O0_REGNUM + register_counter++, struct_retaddr);
+
+ /* Now write the arguments onto the stack, while writing FP
+ arguments into the FP registers, and other arguments into the
+ first six 'O' registers. */
+
+ for (i = 0; i < nargs; i++)
+ {
+ int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i])));
+ struct value *copyarg = args[i];
+ enum type_code typecode = TYPE_CODE (VALUE_TYPE (args[i]));
+ int copylen = len;
+
+ if (typecode == TYPE_CODE_INT ||
+ typecode == TYPE_CODE_BOOL ||
+ typecode == TYPE_CODE_CHAR ||
+ typecode == TYPE_CODE_RANGE ||
+ typecode == TYPE_CODE_ENUM)
+ if (len < SPARC_INTREG_SIZE)
+ {
+ /* Small ints will all take up the size of one intreg on
+ the stack. */
+ copyarg = value_cast (sparc_intreg_type, copyarg);
+ copylen = SPARC_INTREG_SIZE;
+ }
+
+ write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen);
+ tempsp += copylen;
+
+ /* Corner case: Structs consisting of a single float member are floats.
+ * FIXME! I don't know about structs containing multiple floats!
+ * Structs containing mixed floats and ints are even more weird.
+ */
+
+
+
+ /* Separate float args from all other args. */
+ if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU)
+ {
+ if (register_counter < 16)
+ {
+ /* This arg gets copied into a FP register. */
+ int fpreg;
+
+ switch (len) {
+ case 4: /* Single-precision (float) */
+ fpreg = FP0_REGNUM + 2 * register_counter + 1;
+ register_counter += 1;
+ break;
+ case 8: /* Double-precision (double) */
+ fpreg = FP0_REGNUM + 2 * register_counter;
+ register_counter += 1;
+ break;
+ case 16: /* Quad-precision (long double) */
+ fpreg = FP0_REGNUM + 2 * register_counter;
+ register_counter += 2;
+ break;
+ default:
+ internal_error (__FILE__, __LINE__, "bad switch");
+ }
+ write_register_bytes (REGISTER_BYTE (fpreg),
+ VALUE_CONTENTS (args[i]),
+ len);
+ }
+ }
+ else /* all other args go into the first six 'o' registers */
+ {
+ for (j = 0;
+ j < len && register_counter < 6;
+ j += SPARC_INTREG_SIZE)
+ {
+ int oreg = O0_REGNUM + register_counter;
+
+ write_register_gen (oreg, VALUE_CONTENTS (copyarg) + j);
+ register_counter += 1;
+ }
+ }
+ }
+ return sp;
+}
+
+/* Values <= 32 bytes are returned in o0-o3 (floating-point values are
+ returned in f0-f3). */
+
+void
+sp64_extract_return_value (struct type *type, char *regbuf, char *valbuf,
+ int bitoffset)
+{
+ int typelen = TYPE_LENGTH (type);
+ int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
+
+ if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
+ {
+ memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM)], typelen);
+ return;
+ }
+
+ if (TYPE_CODE (type) != TYPE_CODE_STRUCT
+ || (TYPE_LENGTH (type) > 32))
+ {
+ memcpy (valbuf,
+ &regbuf[O0_REGNUM * regsize +
+ (typelen >= regsize ? 0 : regsize - typelen)],
+ typelen);
+ return;
+ }
+ else
+ {
+ char *o0 = &regbuf[O0_REGNUM * regsize];
+ char *f0 = &regbuf[FP0_REGNUM * regsize];
+ int x;
+
+ for (x = 0; x < TYPE_NFIELDS (type); x++)
+ {
+ struct field *f = &TYPE_FIELDS (type)[x];
+ /* FIXME: We may need to handle static fields here. */
+ int whichreg = (f->loc.bitpos + bitoffset) / 32;
+ int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8;
+ int where = (f->loc.bitpos + bitoffset) / 8;
+ int size = TYPE_LENGTH (f->type);
+ int typecode = TYPE_CODE (f->type);
+
+ if (typecode == TYPE_CODE_STRUCT)
+ {
+ sp64_extract_return_value (f->type,
+ regbuf,
+ valbuf,
+ bitoffset + f->loc.bitpos);
+ }
+ else if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU)
+ {
+ memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size);
+ }
+ else
+ {
+ memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size);
+ }
+ }
+ }
+}
+
+extern void
+sparc64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
+{
+ sp64_extract_return_value (type, regbuf, valbuf, 0);
+}
+
+extern void
+sparclet_extract_return_value (struct type *type,
+ char *regbuf,
+ char *valbuf)
+{
+ regbuf += REGISTER_RAW_SIZE (O0_REGNUM) * 8;
+ if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (O0_REGNUM))
+ regbuf += REGISTER_RAW_SIZE (O0_REGNUM) - TYPE_LENGTH (type);
+
+ memcpy ((void *) valbuf, regbuf, TYPE_LENGTH (type));
+}
+
+
+extern CORE_ADDR
+sparc32_stack_align (CORE_ADDR addr)
+{
+ return ((addr + 7) & -8);
+}
+
+extern CORE_ADDR
+sparc64_stack_align (CORE_ADDR addr)
+{
+ return ((addr + 15) & -16);
+}
+
+extern void
+sparc_print_extra_frame_info (struct frame_info *fi)
+{
+ if (fi && fi->extra_info && fi->extra_info->flat)
+ printf_filtered (" flat, pc saved at 0x%s, fp saved at 0x%s\n",
+ paddr_nz (fi->extra_info->pc_addr),
+ paddr_nz (fi->extra_info->fp_addr));
+}
+
+/* MULTI_ARCH support */
+
+static char *
+sparc32_register_name (int regno)
+{
+ static char *register_names[] =
+ { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
+ "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
+ "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
+ "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
+
+ "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
+ "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
+ "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
+ "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
+
+ "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr"
+ };
+
+ if (regno < 0 ||
+ regno >= (sizeof (register_names) / sizeof (register_names[0])))
+ return NULL;
+ else
+ return register_names[regno];
+}
+
+static char *
+sparc64_register_name (int regno)
+{
+ static char *register_names[] =
+ { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
+ "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
+ "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
+ "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
+
+ "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
+ "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
+ "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
+ "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
+ "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46",
+ "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62",
+
+ "pc", "npc", "ccr", "fsr", "fprs", "y", "asi", "ver",
+ "tick", "pil", "pstate", "tstate", "tba", "tl", "tt", "tpc",
+ "tnpc", "wstate", "cwp", "cansave", "canrestore", "cleanwin", "otherwin",
+ "asr16", "asr17", "asr18", "asr19", "asr20", "asr21", "asr22", "asr23",
+ "asr24", "asr25", "asr26", "asr27", "asr28", "asr29", "asr30", "asr31",
+ /* These are here at the end to simplify removing them if we have to. */
+ "icc", "xcc", "fcc0", "fcc1", "fcc2", "fcc3"
+ };
+
+ if (regno < 0 ||
+ regno >= (sizeof (register_names) / sizeof (register_names[0])))
+ return NULL;
+ else
+ return register_names[regno];
+}
+
+static char *
+sparclite_register_name (int regno)
+{
+ static char *register_names[] =
+ { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
+ "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
+ "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
+ "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
+
+ "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
+ "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
+ "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
+ "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
+
+ "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr",
+ "dia1", "dia2", "dda1", "dda2", "ddv1", "ddv2", "dcr", "dsr"
+ };
+
+ if (regno < 0 ||
+ regno >= (sizeof (register_names) / sizeof (register_names[0])))
+ return NULL;
+ else
+ return register_names[regno];
+}
+
+static char *
+sparclet_register_name (int regno)
+{
+ static char *register_names[] =
+ { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
+ "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
+ "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
+ "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
+
+ "", "", "", "", "", "", "", "", /* no floating point registers */
+ "", "", "", "", "", "", "", "",
+ "", "", "", "", "", "", "", "",
+ "", "", "", "", "", "", "", "",
+
+ "y", "psr", "wim", "tbr", "pc", "npc", "", "", /* no FPSR or CPSR */
+ "ccsr", "ccpr", "cccrcr", "ccor", "ccobr", "ccibr", "ccir", "",
+
+ /* ASR15 ASR19 (don't display them) */
+ "asr1", "", "asr17", "asr18", "", "asr20", "asr21", "asr22"
+ /* None of the rest get displayed */
+#if 0
+ "awr0", "awr1", "awr2", "awr3", "awr4", "awr5", "awr6", "awr7",
+ "awr8", "awr9", "awr10", "awr11", "awr12", "awr13", "awr14", "awr15",
+ "awr16", "awr17", "awr18", "awr19", "awr20", "awr21", "awr22", "awr23",
+ "awr24", "awr25", "awr26", "awr27", "awr28", "awr29", "awr30", "awr31",
+ "apsr"
+#endif /* 0 */
+ };
+
+ if (regno < 0 ||
+ regno >= (sizeof (register_names) / sizeof (register_names[0])))
+ return NULL;
+ else
+ return register_names[regno];
+}
+
+CORE_ADDR
+sparc_push_return_address (CORE_ADDR pc_unused, CORE_ADDR sp)
+{
+ if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
+ {
+ /* The return PC of the dummy_frame is the former 'current' PC
+ (where we were before we made the target function call).
+ This is saved in %i7 by push_dummy_frame.
+
+ We will save the 'call dummy location' (ie. the address
+ to which the target function will return) in %o7.
+ This address will actually be the program's entry point.
+ There will be a special call_dummy breakpoint there. */
+
+ write_register (O7_REGNUM,
+ CALL_DUMMY_ADDRESS () - 8);
+ }
+
+ return sp;
+}
+
+/* Should call_function allocate stack space for a struct return? */
+
+static int
+sparc64_use_struct_convention (int gcc_p, struct type *type)
+{
+ return (TYPE_LENGTH (type) > 32);
+}
+
+/* Store the address of the place in which to copy the structure the
+ subroutine will return. This is called from call_function_by_hand.
+ The ultimate mystery is, tho, what is the value "16"?
+
+ MVS: That's the offset from where the sp is now, to where the
+ subroutine is gonna expect to find the struct return address. */
+
+static void
+sparc32_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
+{
+ char *val;
+ CORE_ADDR o7;
+
+ val = alloca (SPARC_INTREG_SIZE);
+ store_unsigned_integer (val, SPARC_INTREG_SIZE, addr);
+ write_memory (sp + (16 * SPARC_INTREG_SIZE), val, SPARC_INTREG_SIZE);
+
+ if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
+ {
+ /* Now adjust the value of the link register, which was previously
+ stored by push_return_address. Functions that return structs are
+ peculiar in that they return to link register + 12, rather than
+ link register + 8. */
+
+ o7 = read_register (O7_REGNUM);
+ write_register (O7_REGNUM, o7 - 4);
+ }
+}
+
+static void
+sparc64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
+{
+ /* FIXME: V9 uses %o0 for this. */
+ /* FIXME MVS: Only for small enough structs!!! */
+
+ target_write_memory (sp + (16 * SPARC_INTREG_SIZE),
+ (char *) &addr, SPARC_INTREG_SIZE);
+#if 0
+ if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
+ {
+ /* Now adjust the value of the link register, which was previously
+ stored by push_return_address. Functions that return structs are
+ peculiar in that they return to link register + 12, rather than
+ link register + 8. */
+
+ write_register (O7_REGNUM, read_register (O7_REGNUM) - 4);
+ }
+#endif
+}
+
+/* Default target data type for register REGNO. */
+
+static struct type *
+sparc32_register_virtual_type (int regno)
+{
+ if (regno == PC_REGNUM ||
+ regno == FP_REGNUM ||
+ regno == SP_REGNUM)
+ return builtin_type_unsigned_int;
+ if (regno < 32)
+ return builtin_type_int;
+ if (regno < 64)
+ return builtin_type_float;
+ return builtin_type_int;
+}
+
+static struct type *
+sparc64_register_virtual_type (int regno)
+{
+ if (regno == PC_REGNUM ||
+ regno == FP_REGNUM ||
+ regno == SP_REGNUM)
+ return builtin_type_unsigned_long_long;
+ if (regno < 32)
+ return builtin_type_long_long;
+ if (regno < 64)
+ return builtin_type_float;
+ if (regno < 80)
+ return builtin_type_double;
+ return builtin_type_long_long;
+}
+
+/* Number of bytes of storage in the actual machine representation for
+ register REGNO. */
+
+static int
+sparc32_register_size (int regno)
+{
+ return 4;
+}
+
+static int
+sparc64_register_size (int regno)
+{
+ return (regno < 32 ? 8 : regno < 64 ? 4 : 8);
+}
+
+/* Index within the `registers' buffer of the first byte of the space
+ for register REGNO. */
+
+static int
+sparc32_register_byte (int regno)
+{
+ return (regno * 4);
+}
+
+static int
+sparc64_register_byte (int regno)
+{
+ if (regno < 32)
+ return regno * 8;
+ else if (regno < 64)
+ return 32 * 8 + (regno - 32) * 4;
+ else if (regno < 80)
+ return 32 * 8 + 32 * 4 + (regno - 64) * 8;
+ else
+ return 64 * 8 + (regno - 80) * 8;
+}
+
+/* Advance PC across any function entry prologue instructions to reach
+ some "real" code. SKIP_PROLOGUE_FRAMELESS_P advances the PC past
+ some of the prologue, but stops as soon as it knows that the
+ function has a frame. Its result is equal to its input PC if the
+ function is frameless, unequal otherwise. */
+
+static CORE_ADDR
+sparc_gdbarch_skip_prologue (CORE_ADDR ip)
+{
+ return examine_prologue (ip, 0, NULL, NULL);
+}
+
+/* Immediately after a function call, return the saved pc.
+ Can't go through the frames for this because on some machines
+ the new frame is not set up until the new function executes
+ some instructions. */
+
+static CORE_ADDR
+sparc_saved_pc_after_call (struct frame_info *fi)
+{
+ return sparc_pc_adjust (read_register (RP_REGNUM));
+}
+
+/* Convert registers between 'raw' and 'virtual' formats.
+ They are the same on sparc, so there's nothing to do. */
+
+static void
+sparc_convert_to_virtual (int regnum, struct type *type, char *from, char *to)
+{ /* do nothing (should never be called) */
+}
+
+static void
+sparc_convert_to_raw (struct type *type, int regnum, char *from, char *to)
+{ /* do nothing (should never be called) */
+}
+
+/* Init saved regs: nothing to do, just a place-holder function. */
+
+static void
+sparc_frame_init_saved_regs (struct frame_info *fi_ignored)
+{ /* no-op */
+}
+
+/* gdbarch fix call dummy:
+ All this function does is rearrange the arguments before calling
+ sparc_fix_call_dummy (which does the real work). */
+
+static void
+sparc_gdbarch_fix_call_dummy (char *dummy,
+ CORE_ADDR pc,
+ CORE_ADDR fun,
+ int nargs,
+ struct value **args,
+ struct type *type,
+ int gcc_p)
+{
+ if (CALL_DUMMY_LOCATION == ON_STACK)
+ sparc_fix_call_dummy (dummy, pc, fun, type, gcc_p);
+}
+
+/* Coerce float to double: a no-op. */
+
+static int
+sparc_coerce_float_to_double (struct type *formal, struct type *actual)
+{
+ return 1;
+}
+
+/* CALL_DUMMY_ADDRESS: fetch the breakpoint address for a call dummy. */
+
+static CORE_ADDR
+sparc_call_dummy_address (void)
+{
+ return (CALL_DUMMY_START_OFFSET) + CALL_DUMMY_BREAKPOINT_OFFSET;
+}
+
+/* Supply the Y register number to those that need it. */
+
+int
+sparc_y_regnum (void)
+{
+ return gdbarch_tdep (current_gdbarch)->y_regnum;
+}
+
+int
+sparc_reg_struct_has_addr (int gcc_p, struct type *type)
+{
+ if (GDB_TARGET_IS_SPARC64)
+ return (TYPE_LENGTH (type) > 32);
+ else
+ return (gcc_p != 1);
+}
+
+int
+sparc_intreg_size (void)
+{
+ return SPARC_INTREG_SIZE;
+}
+
+static int
+sparc_return_value_on_stack (struct type *type)
+{
+ if (TYPE_CODE (type) == TYPE_CODE_FLT &&
+ TYPE_LENGTH (type) > 8)
+ return 1;
+ else
+ return 0;
+}
+
+/*
+ * Gdbarch "constructor" function.
+ */
+
+#define SPARC32_CALL_DUMMY_ON_STACK
+
+#define SPARC_SP_REGNUM 14
+#define SPARC_FP_REGNUM 30
+#define SPARC_FP0_REGNUM 32
+#define SPARC32_NPC_REGNUM 69
+#define SPARC32_PC_REGNUM 68
+#define SPARC32_Y_REGNUM 64
+#define SPARC64_PC_REGNUM 80
+#define SPARC64_NPC_REGNUM 81
+#define SPARC64_Y_REGNUM 85
+
+static struct gdbarch *
+sparc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+{
+ struct gdbarch *gdbarch;
+ struct gdbarch_tdep *tdep;
+
+ static LONGEST call_dummy_32[] =
+ { 0xbc100001, 0x9de38000, 0xbc100002, 0xbe100003,
+ 0xda03a058, 0xd803a054, 0xd603a050, 0xd403a04c,
+ 0xd203a048, 0x40000000, 0xd003a044, 0x01000000,
+ 0x91d02001, 0x01000000
+ };
+ static LONGEST call_dummy_64[] =
+ { 0x9de3bec0fd3fa7f7LL, 0xf93fa7eff53fa7e7LL,
+ 0xf13fa7dfed3fa7d7LL, 0xe93fa7cfe53fa7c7LL,
+ 0xe13fa7bfdd3fa7b7LL, 0xd93fa7afd53fa7a7LL,
+ 0xd13fa79fcd3fa797LL, 0xc93fa78fc53fa787LL,
+ 0xc13fa77fcc3fa777LL, 0xc83fa76fc43fa767LL,
+ 0xc03fa75ffc3fa757LL, 0xf83fa74ff43fa747LL,
+ 0xf03fa73f01000000LL, 0x0100000001000000LL,
+ 0x0100000091580000LL, 0xd027a72b93500000LL,
+ 0xd027a72791480000LL, 0xd027a72391400000LL,
+ 0xd027a71fda5ba8a7LL, 0xd85ba89fd65ba897LL,
+ 0xd45ba88fd25ba887LL, 0x9fc02000d05ba87fLL,
+ 0x0100000091d02001LL, 0x0100000001000000LL
+ };
+ static LONGEST call_dummy_nil[] = {0};
+
+ /* First see if there is already a gdbarch that can satisfy the request. */
+ arches = gdbarch_list_lookup_by_info (arches, &info);
+ if (arches != NULL)
+ return arches->gdbarch;
+
+ /* None found: is the request for a sparc architecture? */
+ if (info.bfd_arch_info->arch != bfd_arch_sparc)
+ return NULL; /* No; then it's not for us. */
+
+ /* Yes: create a new gdbarch for the specified machine type. */
+ tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
+ gdbarch = gdbarch_alloc (&info, tdep);
+
+ /* First set settings that are common for all sparc architectures. */
+ set_gdbarch_believe_pcc_promotion (gdbarch, 1);
+ set_gdbarch_breakpoint_from_pc (gdbarch, memory_breakpoint_from_pc);
+ set_gdbarch_coerce_float_to_double (gdbarch,
+ sparc_coerce_float_to_double);
+ set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
+ set_gdbarch_call_dummy_p (gdbarch, 1);
+ set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 1);
+ set_gdbarch_decr_pc_after_break (gdbarch, 0);
+ set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+ set_gdbarch_extract_struct_value_address (gdbarch,
+ sparc_extract_struct_value_address);
+ set_gdbarch_fix_call_dummy (gdbarch, sparc_gdbarch_fix_call_dummy);
+ set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_fp_regnum (gdbarch, SPARC_FP_REGNUM);
+ set_gdbarch_fp0_regnum (gdbarch, SPARC_FP0_REGNUM);
+ set_gdbarch_frame_args_address (gdbarch, default_frame_address);
+ set_gdbarch_frame_chain (gdbarch, sparc_frame_chain);
+ set_gdbarch_frame_init_saved_regs (gdbarch, sparc_frame_init_saved_regs);
+ set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
+ set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
+ set_gdbarch_frame_saved_pc (gdbarch, sparc_frame_saved_pc);
+ set_gdbarch_frameless_function_invocation (gdbarch,
+ frameless_look_for_prologue);
+ set_gdbarch_get_saved_register (gdbarch, sparc_get_saved_register);
+ set_gdbarch_init_extra_frame_info (gdbarch, sparc_init_extra_frame_info);
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+ set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
+ set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+ set_gdbarch_max_register_raw_size (gdbarch, 8);
+ set_gdbarch_max_register_virtual_size (gdbarch, 8);
+ set_gdbarch_pop_frame (gdbarch, sparc_pop_frame);
+ set_gdbarch_push_return_address (gdbarch, sparc_push_return_address);
+ set_gdbarch_push_dummy_frame (gdbarch, sparc_push_dummy_frame);
+ set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
+ set_gdbarch_register_convert_to_raw (gdbarch, sparc_convert_to_raw);
+ set_gdbarch_register_convert_to_virtual (gdbarch,
+ sparc_convert_to_virtual);
+ set_gdbarch_register_convertible (gdbarch,
+ generic_register_convertible_not);
+ set_gdbarch_reg_struct_has_addr (gdbarch, sparc_reg_struct_has_addr);
+ set_gdbarch_return_value_on_stack (gdbarch, sparc_return_value_on_stack);
+ set_gdbarch_saved_pc_after_call (gdbarch, sparc_saved_pc_after_call);
+ set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
+ set_gdbarch_skip_prologue (gdbarch, sparc_gdbarch_skip_prologue);
+ set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM);
+ set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
+ set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
+
+ /*
+ * Settings that depend only on 32/64 bit word size
+ */
+
+ switch (info.bfd_arch_info->mach)
+ {
+ case bfd_mach_sparc:
+ case bfd_mach_sparc_sparclet:
+ case bfd_mach_sparc_sparclite:
+ case bfd_mach_sparc_v8plus:
+ case bfd_mach_sparc_v8plusa:
+ case bfd_mach_sparc_sparclite_le:
+ /* 32-bit machine types: */
+
+#ifdef SPARC32_CALL_DUMMY_ON_STACK
+ set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
+ set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address);
+ set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0x30);
+ set_gdbarch_call_dummy_length (gdbarch, 0x38);
+ set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
+ set_gdbarch_call_dummy_words (gdbarch, call_dummy_32);
+#else
+ set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
+ set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
+ set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
+ set_gdbarch_call_dummy_length (gdbarch, 0);
+ set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
+ set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
+#endif
+ set_gdbarch_call_dummy_stack_adjust (gdbarch, 68);
+ set_gdbarch_call_dummy_start_offset (gdbarch, 0);
+ set_gdbarch_frame_args_skip (gdbarch, 68);
+ set_gdbarch_function_start_offset (gdbarch, 0);
+ set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_npc_regnum (gdbarch, SPARC32_NPC_REGNUM);
+ set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM);
+ set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_push_arguments (gdbarch, sparc32_push_arguments);
+ set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
+ set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
+
+ set_gdbarch_register_byte (gdbarch, sparc32_register_byte);
+ set_gdbarch_register_raw_size (gdbarch, sparc32_register_size);
+ set_gdbarch_register_size (gdbarch, 4);
+ set_gdbarch_register_virtual_size (gdbarch, sparc32_register_size);
+ set_gdbarch_register_virtual_type (gdbarch,
+ sparc32_register_virtual_type);
+#ifdef SPARC32_CALL_DUMMY_ON_STACK
+ set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_32));
+#else
+ set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
+#endif
+ set_gdbarch_stack_align (gdbarch, sparc32_stack_align);
+ set_gdbarch_store_struct_return (gdbarch, sparc32_store_struct_return);
+ set_gdbarch_use_struct_convention (gdbarch,
+ generic_use_struct_convention);
+ set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
+ set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
+ tdep->y_regnum = SPARC32_Y_REGNUM;
+ tdep->fp_max_regnum = SPARC_FP0_REGNUM + 32;
+ tdep->intreg_size = 4;
+ tdep->reg_save_offset = 0x60;
+ tdep->call_dummy_call_offset = 0x24;
+ break;
+
+ case bfd_mach_sparc_v9:
+ case bfd_mach_sparc_v9a:
+ /* 64-bit machine types: */
+ default: /* Any new machine type is likely to be 64-bit. */
+
+#ifdef SPARC64_CALL_DUMMY_ON_STACK
+ set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
+ set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address);
+ set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 8 * 4);
+ set_gdbarch_call_dummy_length (gdbarch, 192);
+ set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
+ set_gdbarch_call_dummy_start_offset (gdbarch, 148);
+ set_gdbarch_call_dummy_words (gdbarch, call_dummy_64);
+#else
+ set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
+ set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
+ set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
+ set_gdbarch_call_dummy_length (gdbarch, 0);
+ set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
+ set_gdbarch_call_dummy_start_offset (gdbarch, 0);
+ set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
+#endif
+ set_gdbarch_call_dummy_stack_adjust (gdbarch, 128);
+ set_gdbarch_frame_args_skip (gdbarch, 136);
+ set_gdbarch_function_start_offset (gdbarch, 0);
+ set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+ set_gdbarch_npc_regnum (gdbarch, SPARC64_NPC_REGNUM);
+ set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM);
+ set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+ set_gdbarch_push_arguments (gdbarch, sparc64_push_arguments);
+ /* NOTE different for at_entry */
+ set_gdbarch_read_fp (gdbarch, sparc64_read_fp);
+ set_gdbarch_read_sp (gdbarch, sparc64_read_sp);
+ /* Some of the registers aren't 64 bits, but it's a lot simpler just
+ to assume they all are (since most of them are). */
+ set_gdbarch_register_byte (gdbarch, sparc64_register_byte);
+ set_gdbarch_register_raw_size (gdbarch, sparc64_register_size);
+ set_gdbarch_register_size (gdbarch, 8);
+ set_gdbarch_register_virtual_size (gdbarch, sparc64_register_size);
+ set_gdbarch_register_virtual_type (gdbarch,
+ sparc64_register_virtual_type);
+#ifdef SPARC64_CALL_DUMMY_ON_STACK
+ set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_64));
+#else
+ set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
+#endif
+ set_gdbarch_stack_align (gdbarch, sparc64_stack_align);
+ set_gdbarch_store_struct_return (gdbarch, sparc64_store_struct_return);
+ set_gdbarch_use_struct_convention (gdbarch,
+ sparc64_use_struct_convention);
+ set_gdbarch_write_fp (gdbarch, sparc64_write_fp);
+ set_gdbarch_write_sp (gdbarch, sparc64_write_sp);
+ tdep->y_regnum = SPARC64_Y_REGNUM;
+ tdep->fp_max_regnum = SPARC_FP0_REGNUM + 48;
+ tdep->intreg_size = 8;
+ tdep->reg_save_offset = 0x90;
+ tdep->call_dummy_call_offset = 148 + 4 * 5;
+ break;
+ }
+
+ /*
+ * Settings that vary per-architecture:
+ */
+
+ switch (info.bfd_arch_info->mach)
+ {
+ case bfd_mach_sparc:
+ set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value);
+ set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
+ set_gdbarch_num_regs (gdbarch, 72);
+ set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
+ set_gdbarch_register_name (gdbarch, sparc32_register_name);
+ set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
+ tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
+ tdep->fp_register_bytes = 32 * 4;
+ tdep->print_insn_mach = bfd_mach_sparc;
+ break;
+ case bfd_mach_sparc_sparclet:
+ set_gdbarch_extract_return_value (gdbarch,
+ sparclet_extract_return_value);
+ set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
+ set_gdbarch_num_regs (gdbarch, 32 + 32 + 8 + 8 + 8);
+ set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4 + 8*4);
+ set_gdbarch_register_name (gdbarch, sparclet_register_name);
+ set_gdbarch_store_return_value (gdbarch, sparclet_store_return_value);
+ tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
+ tdep->fp_register_bytes = 0;
+ tdep->print_insn_mach = bfd_mach_sparc_sparclet;
+ break;
+ case bfd_mach_sparc_sparclite:
+ set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value);
+ set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
+ set_gdbarch_num_regs (gdbarch, 80);
+ set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4);
+ set_gdbarch_register_name (gdbarch, sparclite_register_name);
+ set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
+ tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
+ tdep->fp_register_bytes = 0;
+ tdep->print_insn_mach = bfd_mach_sparc_sparclite;
+ break;
+ case bfd_mach_sparc_v8plus:
+ set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value);
+ set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
+ set_gdbarch_num_regs (gdbarch, 72);
+ set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
+ set_gdbarch_register_name (gdbarch, sparc32_register_name);
+ set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
+ tdep->print_insn_mach = bfd_mach_sparc;
+ tdep->fp_register_bytes = 32 * 4;
+ tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
+ break;
+ case bfd_mach_sparc_v8plusa:
+ set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value);
+ set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
+ set_gdbarch_num_regs (gdbarch, 72);
+ set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
+ set_gdbarch_register_name (gdbarch, sparc32_register_name);
+ set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
+ tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
+ tdep->fp_register_bytes = 32 * 4;
+ tdep->print_insn_mach = bfd_mach_sparc;
+ break;
+ case bfd_mach_sparc_sparclite_le:
+ set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value);
+ set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
+ set_gdbarch_num_regs (gdbarch, 80);
+ set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4);
+ set_gdbarch_register_name (gdbarch, sparclite_register_name);
+ set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
+ tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
+ tdep->fp_register_bytes = 0;
+ tdep->print_insn_mach = bfd_mach_sparc_sparclite;
+ break;
+ case bfd_mach_sparc_v9:
+ set_gdbarch_extract_return_value (gdbarch, sparc64_extract_return_value);
+ set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
+ set_gdbarch_num_regs (gdbarch, 125);
+ set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8);
+ set_gdbarch_register_name (gdbarch, sparc64_register_name);
+ set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
+ tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
+ tdep->fp_register_bytes = 64 * 4;
+ tdep->print_insn_mach = bfd_mach_sparc_v9a;
+ break;
+ case bfd_mach_sparc_v9a:
+ set_gdbarch_extract_return_value (gdbarch, sparc64_extract_return_value);
+ set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
+ set_gdbarch_num_regs (gdbarch, 125);
+ set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8);
+ set_gdbarch_register_name (gdbarch, sparc64_register_name);
+ set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
+ tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
+ tdep->fp_register_bytes = 64 * 4;
+ tdep->print_insn_mach = bfd_mach_sparc_v9a;
+ break;
+ }
+
+ return gdbarch;
+}
+
OpenPOWER on IntegriCloud