summaryrefslogtreecommitdiffstats
path: root/contrib/gdb/gdb/rs6000-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/gdb/gdb/rs6000-tdep.c')
-rw-r--r--contrib/gdb/gdb/rs6000-tdep.c2981
1 files changed, 2981 insertions, 0 deletions
diff --git a/contrib/gdb/gdb/rs6000-tdep.c b/contrib/gdb/gdb/rs6000-tdep.c
new file mode 100644
index 0000000..5eef895
--- /dev/null
+++ b/contrib/gdb/gdb/rs6000-tdep.c
@@ -0,0 +1,2981 @@
+/* Target-dependent code for GDB, the GNU debugger.
+
+ Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
+ 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
+ Foundation, Inc.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "frame.h"
+#include "inferior.h"
+#include "symtab.h"
+#include "target.h"
+#include "gdbcore.h"
+#include "gdbcmd.h"
+#include "objfiles.h"
+#include "arch-utils.h"
+#include "regcache.h"
+#include "doublest.h"
+#include "value.h"
+#include "parser-defs.h"
+#include "osabi.h"
+
+#include "libbfd.h" /* for bfd_default_set_arch_mach */
+#include "coff/internal.h" /* for libcoff.h */
+#include "libcoff.h" /* for xcoff_data */
+#include "coff/xcoff.h"
+#include "libxcoff.h"
+
+#include "elf-bfd.h"
+
+#include "solib-svr4.h"
+#include "ppc-tdep.h"
+
+#include "gdb_assert.h"
+#include "dis-asm.h"
+
+/* If the kernel has to deliver a signal, it pushes a sigcontext
+ structure on the stack and then calls the signal handler, passing
+ the address of the sigcontext in an argument register. Usually
+ the signal handler doesn't save this register, so we have to
+ access the sigcontext structure via an offset from the signal handler
+ frame.
+ The following constants were determined by experimentation on AIX 3.2. */
+#define SIG_FRAME_PC_OFFSET 96
+#define SIG_FRAME_LR_OFFSET 108
+#define SIG_FRAME_FP_OFFSET 284
+
+/* To be used by skip_prologue. */
+
+struct rs6000_framedata
+ {
+ int offset; /* total size of frame --- the distance
+ by which we decrement sp to allocate
+ the frame */
+ int saved_gpr; /* smallest # of saved gpr */
+ int saved_fpr; /* smallest # of saved fpr */
+ int saved_vr; /* smallest # of saved vr */
+ int saved_ev; /* smallest # of saved ev */
+ int alloca_reg; /* alloca register number (frame ptr) */
+ char frameless; /* true if frameless functions. */
+ char nosavedpc; /* true if pc not saved. */
+ int gpr_offset; /* offset of saved gprs from prev sp */
+ int fpr_offset; /* offset of saved fprs from prev sp */
+ int vr_offset; /* offset of saved vrs from prev sp */
+ int ev_offset; /* offset of saved evs from prev sp */
+ int lr_offset; /* offset of saved lr */
+ int cr_offset; /* offset of saved cr */
+ int vrsave_offset; /* offset of saved vrsave register */
+ };
+
+/* Description of a single register. */
+
+struct reg
+ {
+ char *name; /* name of register */
+ unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
+ unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
+ unsigned char fpr; /* whether register is floating-point */
+ unsigned char pseudo; /* whether register is pseudo */
+ };
+
+/* Breakpoint shadows for the single step instructions will be kept here. */
+
+static struct sstep_breaks
+ {
+ /* Address, or 0 if this is not in use. */
+ CORE_ADDR address;
+ /* Shadow contents. */
+ char data[4];
+ }
+stepBreaks[2];
+
+/* Hook for determining the TOC address when calling functions in the
+ inferior under AIX. The initialization code in rs6000-nat.c sets
+ this hook to point to find_toc_address. */
+
+CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
+
+/* Hook to set the current architecture when starting a child process.
+ rs6000-nat.c sets this. */
+
+void (*rs6000_set_host_arch_hook) (int) = NULL;
+
+/* Static function prototypes */
+
+static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
+ CORE_ADDR safety);
+static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
+ struct rs6000_framedata *);
+static void frame_get_saved_regs (struct frame_info * fi,
+ struct rs6000_framedata * fdatap);
+static CORE_ADDR frame_initial_stack_address (struct frame_info *);
+
+/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
+int
+altivec_register_p (int regno)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+ if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
+ return 0;
+ else
+ return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
+}
+
+/* Use the architectures FP registers? */
+int
+ppc_floating_point_unit_p (struct gdbarch *gdbarch)
+{
+ const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
+ if (info->arch == bfd_arch_powerpc)
+ return (info->mach != bfd_mach_ppc_e500);
+ if (info->arch == bfd_arch_rs6000)
+ return 1;
+ return 0;
+}
+
+/* Read a LEN-byte address from debugged memory address MEMADDR. */
+
+static CORE_ADDR
+read_memory_addr (CORE_ADDR memaddr, int len)
+{
+ return read_memory_unsigned_integer (memaddr, len);
+}
+
+static CORE_ADDR
+rs6000_skip_prologue (CORE_ADDR pc)
+{
+ struct rs6000_framedata frame;
+ pc = skip_prologue (pc, 0, &frame);
+ return pc;
+}
+
+
+/* Fill in fi->saved_regs */
+
+struct frame_extra_info
+{
+ /* Functions calling alloca() change the value of the stack
+ pointer. We need to use initial stack pointer (which is saved in
+ r31 by gcc) in such cases. If a compiler emits traceback table,
+ then we should use the alloca register specified in traceback
+ table. FIXME. */
+ CORE_ADDR initial_sp; /* initial stack pointer. */
+};
+
+void
+rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
+{
+ struct frame_extra_info *extra_info =
+ frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
+ extra_info->initial_sp = 0;
+ if (get_next_frame (fi) != NULL
+ && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
+ /* We're in get_prev_frame */
+ /* and this is a special signal frame. */
+ /* (fi->pc will be some low address in the kernel, */
+ /* to which the signal handler returns). */
+ deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
+}
+
+/* Put here the code to store, into a struct frame_saved_regs,
+ the addresses of the saved registers of frame described by FRAME_INFO.
+ This includes special registers such as pc and fp saved in special
+ ways in the stack frame. sp is even more special:
+ the address we return for it IS the sp for the next frame. */
+
+/* In this implementation for RS/6000, we do *not* save sp. I am
+ not sure if it will be needed. The following function takes care of gpr's
+ and fpr's only. */
+
+void
+rs6000_frame_init_saved_regs (struct frame_info *fi)
+{
+ frame_get_saved_regs (fi, NULL);
+}
+
+static CORE_ADDR
+rs6000_frame_args_address (struct frame_info *fi)
+{
+ struct frame_extra_info *extra_info = get_frame_extra_info (fi);
+ if (extra_info->initial_sp != 0)
+ return extra_info->initial_sp;
+ else
+ return frame_initial_stack_address (fi);
+}
+
+/* Immediately after a function call, return the saved pc.
+ Can't go through the frames for this because on some machines
+ the new frame is not set up until the new function executes
+ some instructions. */
+
+static CORE_ADDR
+rs6000_saved_pc_after_call (struct frame_info *fi)
+{
+ return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
+}
+
+/* Get the ith function argument for the current function. */
+static CORE_ADDR
+rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
+ struct type *type)
+{
+ CORE_ADDR addr;
+ get_frame_register (frame, 3 + argi, &addr);
+ return addr;
+}
+
+/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
+
+static CORE_ADDR
+branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
+{
+ CORE_ADDR dest;
+ int immediate;
+ int absolute;
+ int ext_op;
+
+ absolute = (int) ((instr >> 1) & 1);
+
+ switch (opcode)
+ {
+ case 18:
+ immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
+ if (absolute)
+ dest = immediate;
+ else
+ dest = pc + immediate;
+ break;
+
+ case 16:
+ immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
+ if (absolute)
+ dest = immediate;
+ else
+ dest = pc + immediate;
+ break;
+
+ case 19:
+ ext_op = (instr >> 1) & 0x3ff;
+
+ if (ext_op == 16) /* br conditional register */
+ {
+ dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
+
+ /* If we are about to return from a signal handler, dest is
+ something like 0x3c90. The current frame is a signal handler
+ caller frame, upon completion of the sigreturn system call
+ execution will return to the saved PC in the frame. */
+ if (dest < TEXT_SEGMENT_BASE)
+ {
+ struct frame_info *fi;
+
+ fi = get_current_frame ();
+ if (fi != NULL)
+ dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
+ gdbarch_tdep (current_gdbarch)->wordsize);
+ }
+ }
+
+ else if (ext_op == 528) /* br cond to count reg */
+ {
+ dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
+
+ /* If we are about to execute a system call, dest is something
+ like 0x22fc or 0x3b00. Upon completion the system call
+ will return to the address in the link register. */
+ if (dest < TEXT_SEGMENT_BASE)
+ dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
+ }
+ else
+ return -1;
+ break;
+
+ default:
+ return -1;
+ }
+ return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
+}
+
+
+/* Sequence of bytes for breakpoint instruction. */
+
+const static unsigned char *
+rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
+{
+ static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
+ static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
+ *bp_size = 4;
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ return big_breakpoint;
+ else
+ return little_breakpoint;
+}
+
+
+/* AIX does not support PT_STEP. Simulate it. */
+
+void
+rs6000_software_single_step (enum target_signal signal,
+ int insert_breakpoints_p)
+{
+ CORE_ADDR dummy;
+ int breakp_sz;
+ const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
+ int ii, insn;
+ CORE_ADDR loc;
+ CORE_ADDR breaks[2];
+ int opcode;
+
+ if (insert_breakpoints_p)
+ {
+
+ loc = read_pc ();
+
+ insn = read_memory_integer (loc, 4);
+
+ breaks[0] = loc + breakp_sz;
+ opcode = insn >> 26;
+ breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
+
+ /* Don't put two breakpoints on the same address. */
+ if (breaks[1] == breaks[0])
+ breaks[1] = -1;
+
+ stepBreaks[1].address = 0;
+
+ for (ii = 0; ii < 2; ++ii)
+ {
+
+ /* ignore invalid breakpoint. */
+ if (breaks[ii] == -1)
+ continue;
+ target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
+ stepBreaks[ii].address = breaks[ii];
+ }
+
+ }
+ else
+ {
+
+ /* remove step breakpoints. */
+ for (ii = 0; ii < 2; ++ii)
+ if (stepBreaks[ii].address != 0)
+ target_remove_breakpoint (stepBreaks[ii].address,
+ stepBreaks[ii].data);
+ }
+ errno = 0; /* FIXME, don't ignore errors! */
+ /* What errors? {read,write}_memory call error(). */
+}
+
+
+/* return pc value after skipping a function prologue and also return
+ information about a function frame.
+
+ in struct rs6000_framedata fdata:
+ - frameless is TRUE, if function does not have a frame.
+ - nosavedpc is TRUE, if function does not save %pc value in its frame.
+ - offset is the initial size of this stack frame --- the amount by
+ which we decrement the sp to allocate the frame.
+ - saved_gpr is the number of the first saved gpr.
+ - saved_fpr is the number of the first saved fpr.
+ - saved_vr is the number of the first saved vr.
+ - saved_ev is the number of the first saved ev.
+ - alloca_reg is the number of the register used for alloca() handling.
+ Otherwise -1.
+ - gpr_offset is the offset of the first saved gpr from the previous frame.
+ - fpr_offset is the offset of the first saved fpr from the previous frame.
+ - vr_offset is the offset of the first saved vr from the previous frame.
+ - ev_offset is the offset of the first saved ev from the previous frame.
+ - lr_offset is the offset of the saved lr
+ - cr_offset is the offset of the saved cr
+ - vrsave_offset is the offset of the saved vrsave register
+ */
+
+#define SIGNED_SHORT(x) \
+ ((sizeof (short) == 2) \
+ ? ((int)(short)(x)) \
+ : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
+
+#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
+
+/* Limit the number of skipped non-prologue instructions, as the examining
+ of the prologue is expensive. */
+static int max_skip_non_prologue_insns = 10;
+
+/* Given PC representing the starting address of a function, and
+ LIM_PC which is the (sloppy) limit to which to scan when looking
+ for a prologue, attempt to further refine this limit by using
+ the line data in the symbol table. If successful, a better guess
+ on where the prologue ends is returned, otherwise the previous
+ value of lim_pc is returned. */
+
+/* FIXME: cagney/2004-02-14: This function and logic have largely been
+ superseded by skip_prologue_using_sal. */
+
+static CORE_ADDR
+refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
+{
+ struct symtab_and_line prologue_sal;
+
+ prologue_sal = find_pc_line (pc, 0);
+ if (prologue_sal.line != 0)
+ {
+ int i;
+ CORE_ADDR addr = prologue_sal.end;
+
+ /* Handle the case in which compiler's optimizer/scheduler
+ has moved instructions into the prologue. We scan ahead
+ in the function looking for address ranges whose corresponding
+ line number is less than or equal to the first one that we
+ found for the function. (It can be less than when the
+ scheduler puts a body instruction before the first prologue
+ instruction.) */
+ for (i = 2 * max_skip_non_prologue_insns;
+ i > 0 && (lim_pc == 0 || addr < lim_pc);
+ i--)
+ {
+ struct symtab_and_line sal;
+
+ sal = find_pc_line (addr, 0);
+ if (sal.line == 0)
+ break;
+ if (sal.line <= prologue_sal.line
+ && sal.symtab == prologue_sal.symtab)
+ {
+ prologue_sal = sal;
+ }
+ addr = sal.end;
+ }
+
+ if (lim_pc == 0 || prologue_sal.end < lim_pc)
+ lim_pc = prologue_sal.end;
+ }
+ return lim_pc;
+}
+
+
+static CORE_ADDR
+skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
+{
+ CORE_ADDR orig_pc = pc;
+ CORE_ADDR last_prologue_pc = pc;
+ CORE_ADDR li_found_pc = 0;
+ char buf[4];
+ unsigned long op;
+ long offset = 0;
+ long vr_saved_offset = 0;
+ int lr_reg = -1;
+ int cr_reg = -1;
+ int vr_reg = -1;
+ int ev_reg = -1;
+ long ev_offset = 0;
+ int vrsave_reg = -1;
+ int reg;
+ int framep = 0;
+ int minimal_toc_loaded = 0;
+ int prev_insn_was_prologue_insn = 1;
+ int num_skip_non_prologue_insns = 0;
+ const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ /* Attempt to find the end of the prologue when no limit is specified.
+ Note that refine_prologue_limit() has been written so that it may
+ be used to "refine" the limits of non-zero PC values too, but this
+ is only safe if we 1) trust the line information provided by the
+ compiler and 2) iterate enough to actually find the end of the
+ prologue.
+
+ It may become a good idea at some point (for both performance and
+ accuracy) to unconditionally call refine_prologue_limit(). But,
+ until we can make a clear determination that this is beneficial,
+ we'll play it safe and only use it to obtain a limit when none
+ has been specified. */
+ if (lim_pc == 0)
+ lim_pc = refine_prologue_limit (pc, lim_pc);
+
+ memset (fdata, 0, sizeof (struct rs6000_framedata));
+ fdata->saved_gpr = -1;
+ fdata->saved_fpr = -1;
+ fdata->saved_vr = -1;
+ fdata->saved_ev = -1;
+ fdata->alloca_reg = -1;
+ fdata->frameless = 1;
+ fdata->nosavedpc = 1;
+
+ for (;; pc += 4)
+ {
+ /* Sometimes it isn't clear if an instruction is a prologue
+ instruction or not. When we encounter one of these ambiguous
+ cases, we'll set prev_insn_was_prologue_insn to 0 (false).
+ Otherwise, we'll assume that it really is a prologue instruction. */
+ if (prev_insn_was_prologue_insn)
+ last_prologue_pc = pc;
+
+ /* Stop scanning if we've hit the limit. */
+ if (lim_pc != 0 && pc >= lim_pc)
+ break;
+
+ prev_insn_was_prologue_insn = 1;
+
+ /* Fetch the instruction and convert it to an integer. */
+ if (target_read_memory (pc, buf, 4))
+ break;
+ op = extract_signed_integer (buf, 4);
+
+ if ((op & 0xfc1fffff) == 0x7c0802a6)
+ { /* mflr Rx */
+ lr_reg = (op & 0x03e00000);
+ continue;
+
+ }
+ else if ((op & 0xfc1fffff) == 0x7c000026)
+ { /* mfcr Rx */
+ cr_reg = (op & 0x03e00000);
+ continue;
+
+ }
+ else if ((op & 0xfc1f0000) == 0xd8010000)
+ { /* stfd Rx,NUM(r1) */
+ reg = GET_SRC_REG (op);
+ if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
+ {
+ fdata->saved_fpr = reg;
+ fdata->fpr_offset = SIGNED_SHORT (op) + offset;
+ }
+ continue;
+
+ }
+ else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
+ (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
+ (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
+ (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
+ {
+
+ reg = GET_SRC_REG (op);
+ if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
+ {
+ fdata->saved_gpr = reg;
+ if ((op & 0xfc1f0003) == 0xf8010000)
+ op &= ~3UL;
+ fdata->gpr_offset = SIGNED_SHORT (op) + offset;
+ }
+ continue;
+
+ }
+ else if ((op & 0xffff0000) == 0x60000000)
+ {
+ /* nop */
+ /* Allow nops in the prologue, but do not consider them to
+ be part of the prologue unless followed by other prologue
+ instructions. */
+ prev_insn_was_prologue_insn = 0;
+ continue;
+
+ }
+ else if ((op & 0xffff0000) == 0x3c000000)
+ { /* addis 0,0,NUM, used
+ for >= 32k frames */
+ fdata->offset = (op & 0x0000ffff) << 16;
+ fdata->frameless = 0;
+ continue;
+
+ }
+ else if ((op & 0xffff0000) == 0x60000000)
+ { /* ori 0,0,NUM, 2nd ha
+ lf of >= 32k frames */
+ fdata->offset |= (op & 0x0000ffff);
+ fdata->frameless = 0;
+ continue;
+
+ }
+ else if (lr_reg != -1 &&
+ /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
+ (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
+ /* stw Rx, NUM(r1) */
+ ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
+ /* stwu Rx, NUM(r1) */
+ ((op & 0xffff0000) == (lr_reg | 0x94010000))))
+ { /* where Rx == lr */
+ fdata->lr_offset = offset;
+ fdata->nosavedpc = 0;
+ lr_reg = 0;
+ if ((op & 0xfc000003) == 0xf8000000 || /* std */
+ (op & 0xfc000000) == 0x90000000) /* stw */
+ {
+ /* Does not update r1, so add displacement to lr_offset. */
+ fdata->lr_offset += SIGNED_SHORT (op);
+ }
+ continue;
+
+ }
+ else if (cr_reg != -1 &&
+ /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
+ (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
+ /* stw Rx, NUM(r1) */
+ ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
+ /* stwu Rx, NUM(r1) */
+ ((op & 0xffff0000) == (cr_reg | 0x94010000))))
+ { /* where Rx == cr */
+ fdata->cr_offset = offset;
+ cr_reg = 0;
+ if ((op & 0xfc000003) == 0xf8000000 ||
+ (op & 0xfc000000) == 0x90000000)
+ {
+ /* Does not update r1, so add displacement to cr_offset. */
+ fdata->cr_offset += SIGNED_SHORT (op);
+ }
+ continue;
+
+ }
+ else if (op == 0x48000005)
+ { /* bl .+4 used in
+ -mrelocatable */
+ continue;
+
+ }
+ else if (op == 0x48000004)
+ { /* b .+4 (xlc) */
+ break;
+
+ }
+ else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
+ in V.4 -mminimal-toc */
+ (op & 0xffff0000) == 0x3bde0000)
+ { /* addi 30,30,foo@l */
+ continue;
+
+ }
+ else if ((op & 0xfc000001) == 0x48000001)
+ { /* bl foo,
+ to save fprs??? */
+
+ fdata->frameless = 0;
+ /* Don't skip over the subroutine call if it is not within
+ the first three instructions of the prologue. */
+ if ((pc - orig_pc) > 8)
+ break;
+
+ op = read_memory_integer (pc + 4, 4);
+
+ /* At this point, make sure this is not a trampoline
+ function (a function that simply calls another functions,
+ and nothing else). If the next is not a nop, this branch
+ was part of the function prologue. */
+
+ if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
+ break; /* don't skip over
+ this branch */
+ continue;
+
+ }
+ /* update stack pointer */
+ else if ((op & 0xfc1f0000) == 0x94010000)
+ { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
+ fdata->frameless = 0;
+ fdata->offset = SIGNED_SHORT (op);
+ offset = fdata->offset;
+ continue;
+ }
+ else if ((op & 0xfc1f016a) == 0x7c01016e)
+ { /* stwux rX,r1,rY */
+ /* no way to figure out what r1 is going to be */
+ fdata->frameless = 0;
+ offset = fdata->offset;
+ continue;
+ }
+ else if ((op & 0xfc1f0003) == 0xf8010001)
+ { /* stdu rX,NUM(r1) */
+ fdata->frameless = 0;
+ fdata->offset = SIGNED_SHORT (op & ~3UL);
+ offset = fdata->offset;
+ continue;
+ }
+ else if ((op & 0xfc1f016a) == 0x7c01016a)
+ { /* stdux rX,r1,rY */
+ /* no way to figure out what r1 is going to be */
+ fdata->frameless = 0;
+ offset = fdata->offset;
+ continue;
+ }
+ /* Load up minimal toc pointer */
+ else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
+ (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
+ && !minimal_toc_loaded)
+ {
+ minimal_toc_loaded = 1;
+ continue;
+
+ /* move parameters from argument registers to local variable
+ registers */
+ }
+ else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
+ (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
+ (((op >> 21) & 31) <= 10) &&
+ ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
+ {
+ continue;
+
+ /* store parameters in stack */
+ }
+ else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
+ (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
+ (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
+ {
+ continue;
+
+ /* store parameters in stack via frame pointer */
+ }
+ else if (framep &&
+ ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
+ (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
+ (op & 0xfc1f0000) == 0xfc1f0000))
+ { /* frsp, fp?,NUM(r1) */
+ continue;
+
+ /* Set up frame pointer */
+ }
+ else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
+ || op == 0x7c3f0b78)
+ { /* mr r31, r1 */
+ fdata->frameless = 0;
+ framep = 1;
+ fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
+ continue;
+
+ /* Another way to set up the frame pointer. */
+ }
+ else if ((op & 0xfc1fffff) == 0x38010000)
+ { /* addi rX, r1, 0x0 */
+ fdata->frameless = 0;
+ framep = 1;
+ fdata->alloca_reg = (tdep->ppc_gp0_regnum
+ + ((op & ~0x38010000) >> 21));
+ continue;
+ }
+ /* AltiVec related instructions. */
+ /* Store the vrsave register (spr 256) in another register for
+ later manipulation, or load a register into the vrsave
+ register. 2 instructions are used: mfvrsave and
+ mtvrsave. They are shorthand notation for mfspr Rn, SPR256
+ and mtspr SPR256, Rn. */
+ /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
+ mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
+ else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
+ {
+ vrsave_reg = GET_SRC_REG (op);
+ continue;
+ }
+ else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
+ {
+ continue;
+ }
+ /* Store the register where vrsave was saved to onto the stack:
+ rS is the register where vrsave was stored in a previous
+ instruction. */
+ /* 100100 sssss 00001 dddddddd dddddddd */
+ else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
+ {
+ if (vrsave_reg == GET_SRC_REG (op))
+ {
+ fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
+ vrsave_reg = -1;
+ }
+ continue;
+ }
+ /* Compute the new value of vrsave, by modifying the register
+ where vrsave was saved to. */
+ else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
+ || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
+ {
+ continue;
+ }
+ /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
+ in a pair of insns to save the vector registers on the
+ stack. */
+ /* 001110 00000 00000 iiii iiii iiii iiii */
+ /* 001110 01110 00000 iiii iiii iiii iiii */
+ else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
+ || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
+ {
+ li_found_pc = pc;
+ vr_saved_offset = SIGNED_SHORT (op);
+ }
+ /* Store vector register S at (r31+r0) aligned to 16 bytes. */
+ /* 011111 sssss 11111 00000 00111001110 */
+ else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
+ {
+ if (pc == (li_found_pc + 4))
+ {
+ vr_reg = GET_SRC_REG (op);
+ /* If this is the first vector reg to be saved, or if
+ it has a lower number than others previously seen,
+ reupdate the frame info. */
+ if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
+ {
+ fdata->saved_vr = vr_reg;
+ fdata->vr_offset = vr_saved_offset + offset;
+ }
+ vr_saved_offset = -1;
+ vr_reg = -1;
+ li_found_pc = 0;
+ }
+ }
+ /* End AltiVec related instructions. */
+
+ /* Start BookE related instructions. */
+ /* Store gen register S at (r31+uimm).
+ Any register less than r13 is volatile, so we don't care. */
+ /* 000100 sssss 11111 iiiii 01100100001 */
+ else if (arch_info->mach == bfd_mach_ppc_e500
+ && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
+ {
+ if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
+ {
+ unsigned int imm;
+ ev_reg = GET_SRC_REG (op);
+ imm = (op >> 11) & 0x1f;
+ ev_offset = imm * 8;
+ /* If this is the first vector reg to be saved, or if
+ it has a lower number than others previously seen,
+ reupdate the frame info. */
+ if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
+ {
+ fdata->saved_ev = ev_reg;
+ fdata->ev_offset = ev_offset + offset;
+ }
+ }
+ continue;
+ }
+ /* Store gen register rS at (r1+rB). */
+ /* 000100 sssss 00001 bbbbb 01100100000 */
+ else if (arch_info->mach == bfd_mach_ppc_e500
+ && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
+ {
+ if (pc == (li_found_pc + 4))
+ {
+ ev_reg = GET_SRC_REG (op);
+ /* If this is the first vector reg to be saved, or if
+ it has a lower number than others previously seen,
+ reupdate the frame info. */
+ /* We know the contents of rB from the previous instruction. */
+ if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
+ {
+ fdata->saved_ev = ev_reg;
+ fdata->ev_offset = vr_saved_offset + offset;
+ }
+ vr_saved_offset = -1;
+ ev_reg = -1;
+ li_found_pc = 0;
+ }
+ continue;
+ }
+ /* Store gen register r31 at (rA+uimm). */
+ /* 000100 11111 aaaaa iiiii 01100100001 */
+ else if (arch_info->mach == bfd_mach_ppc_e500
+ && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
+ {
+ /* Wwe know that the source register is 31 already, but
+ it can't hurt to compute it. */
+ ev_reg = GET_SRC_REG (op);
+ ev_offset = ((op >> 11) & 0x1f) * 8;
+ /* If this is the first vector reg to be saved, or if
+ it has a lower number than others previously seen,
+ reupdate the frame info. */
+ if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
+ {
+ fdata->saved_ev = ev_reg;
+ fdata->ev_offset = ev_offset + offset;
+ }
+
+ continue;
+ }
+ /* Store gen register S at (r31+r0).
+ Store param on stack when offset from SP bigger than 4 bytes. */
+ /* 000100 sssss 11111 00000 01100100000 */
+ else if (arch_info->mach == bfd_mach_ppc_e500
+ && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
+ {
+ if (pc == (li_found_pc + 4))
+ {
+ if ((op & 0x03e00000) >= 0x01a00000)
+ {
+ ev_reg = GET_SRC_REG (op);
+ /* If this is the first vector reg to be saved, or if
+ it has a lower number than others previously seen,
+ reupdate the frame info. */
+ /* We know the contents of r0 from the previous
+ instruction. */
+ if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
+ {
+ fdata->saved_ev = ev_reg;
+ fdata->ev_offset = vr_saved_offset + offset;
+ }
+ ev_reg = -1;
+ }
+ vr_saved_offset = -1;
+ li_found_pc = 0;
+ continue;
+ }
+ }
+ /* End BookE related instructions. */
+
+ else
+ {
+ /* Not a recognized prologue instruction.
+ Handle optimizer code motions into the prologue by continuing
+ the search if we have no valid frame yet or if the return
+ address is not yet saved in the frame. */
+ if (fdata->frameless == 0
+ && (lr_reg == -1 || fdata->nosavedpc == 0))
+ break;
+
+ if (op == 0x4e800020 /* blr */
+ || op == 0x4e800420) /* bctr */
+ /* Do not scan past epilogue in frameless functions or
+ trampolines. */
+ break;
+ if ((op & 0xf4000000) == 0x40000000) /* bxx */
+ /* Never skip branches. */
+ break;
+
+ if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
+ /* Do not scan too many insns, scanning insns is expensive with
+ remote targets. */
+ break;
+
+ /* Continue scanning. */
+ prev_insn_was_prologue_insn = 0;
+ continue;
+ }
+ }
+
+#if 0
+/* I have problems with skipping over __main() that I need to address
+ * sometime. Previously, I used to use misc_function_vector which
+ * didn't work as well as I wanted to be. -MGO */
+
+ /* If the first thing after skipping a prolog is a branch to a function,
+ this might be a call to an initializer in main(), introduced by gcc2.
+ We'd like to skip over it as well. Fortunately, xlc does some extra
+ work before calling a function right after a prologue, thus we can
+ single out such gcc2 behaviour. */
+
+
+ if ((op & 0xfc000001) == 0x48000001)
+ { /* bl foo, an initializer function? */
+ op = read_memory_integer (pc + 4, 4);
+
+ if (op == 0x4def7b82)
+ { /* cror 0xf, 0xf, 0xf (nop) */
+
+ /* Check and see if we are in main. If so, skip over this
+ initializer function as well. */
+
+ tmp = find_pc_misc_function (pc);
+ if (tmp >= 0
+ && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
+ return pc + 8;
+ }
+ }
+#endif /* 0 */
+
+ fdata->offset = -fdata->offset;
+ return last_prologue_pc;
+}
+
+
+/*************************************************************************
+ Support for creating pushing a dummy frame into the stack, and popping
+ frames, etc.
+*************************************************************************/
+
+
+/* Pop the innermost frame, go back to the caller. */
+
+static void
+rs6000_pop_frame (void)
+{
+ CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
+ struct rs6000_framedata fdata;
+ struct frame_info *frame = get_current_frame ();
+ int ii, wordsize;
+
+ pc = read_pc ();
+ sp = get_frame_base (frame);
+
+ if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
+ get_frame_base (frame),
+ get_frame_base (frame)))
+ {
+ generic_pop_dummy_frame ();
+ flush_cached_frames ();
+ return;
+ }
+
+ /* Make sure that all registers are valid. */
+ deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
+
+ /* Figure out previous %pc value. If the function is frameless, it is
+ still in the link register, otherwise walk the frames and retrieve the
+ saved %pc value in the previous frame. */
+
+ addr = get_frame_func (frame);
+ (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
+
+ wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
+ if (fdata.frameless)
+ prev_sp = sp;
+ else
+ prev_sp = read_memory_addr (sp, wordsize);
+ if (fdata.lr_offset == 0)
+ lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
+ else
+ lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
+
+ /* reset %pc value. */
+ write_register (PC_REGNUM, lr);
+
+ /* reset register values if any was saved earlier. */
+
+ if (fdata.saved_gpr != -1)
+ {
+ addr = prev_sp + fdata.gpr_offset;
+ for (ii = fdata.saved_gpr; ii <= 31; ++ii)
+ {
+ read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii)],
+ wordsize);
+ addr += wordsize;
+ }
+ }
+
+ if (fdata.saved_fpr != -1)
+ {
+ addr = prev_sp + fdata.fpr_offset;
+ for (ii = fdata.saved_fpr; ii <= 31; ++ii)
+ {
+ read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + FP0_REGNUM)], 8);
+ addr += 8;
+ }
+ }
+
+ write_register (SP_REGNUM, prev_sp);
+ target_store_registers (-1);
+ flush_cached_frames ();
+}
+
+/* All the ABI's require 16 byte alignment. */
+static CORE_ADDR
+rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
+{
+ return (addr & -16);
+}
+
+/* Pass the arguments in either registers, or in the stack. In RS/6000,
+ the first eight words of the argument list (that might be less than
+ eight parameters if some parameters occupy more than one word) are
+ passed in r3..r10 registers. float and double parameters are
+ passed in fpr's, in addition to that. Rest of the parameters if any
+ are passed in user stack. There might be cases in which half of the
+ parameter is copied into registers, the other half is pushed into
+ stack.
+
+ Stack must be aligned on 64-bit boundaries when synthesizing
+ function calls.
+
+ If the function is returning a structure, then the return address is passed
+ in r3, then the first 7 words of the parameters can be passed in registers,
+ starting from r4. */
+
+static CORE_ADDR
+rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
+ struct regcache *regcache, CORE_ADDR bp_addr,
+ int nargs, struct value **args, CORE_ADDR sp,
+ int struct_return, CORE_ADDR struct_addr)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+ int ii;
+ int len = 0;
+ int argno; /* current argument number */
+ int argbytes; /* current argument byte */
+ char tmp_buffer[50];
+ int f_argno = 0; /* current floating point argno */
+ int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
+
+ struct value *arg = 0;
+ struct type *type;
+
+ CORE_ADDR saved_sp;
+
+ /* The first eight words of ther arguments are passed in registers.
+ Copy them appropriately. */
+ ii = 0;
+
+ /* If the function is returning a `struct', then the first word
+ (which will be passed in r3) is used for struct return address.
+ In that case we should advance one word and start from r4
+ register to copy parameters. */
+ if (struct_return)
+ {
+ regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
+ struct_addr);
+ ii++;
+ }
+
+/*
+ effectively indirect call... gcc does...
+
+ return_val example( float, int);
+
+ eabi:
+ float in fp0, int in r3
+ offset of stack on overflow 8/16
+ for varargs, must go by type.
+ power open:
+ float in r3&r4, int in r5
+ offset of stack on overflow different
+ both:
+ return in r3 or f0. If no float, must study how gcc emulates floats;
+ pay attention to arg promotion.
+ User may have to cast\args to handle promotion correctly
+ since gdb won't know if prototype supplied or not.
+ */
+
+ for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
+ {
+ int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
+
+ arg = args[argno];
+ type = check_typedef (VALUE_TYPE (arg));
+ len = TYPE_LENGTH (type);
+
+ if (TYPE_CODE (type) == TYPE_CODE_FLT)
+ {
+
+ /* Floating point arguments are passed in fpr's, as well as gpr's.
+ There are 13 fpr's reserved for passing parameters. At this point
+ there is no way we would run out of them. */
+
+ if (len > 8)
+ printf_unfiltered (
+ "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
+
+ memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
+ VALUE_CONTENTS (arg),
+ len);
+ ++f_argno;
+ }
+
+ if (len > reg_size)
+ {
+
+ /* Argument takes more than one register. */
+ while (argbytes < len)
+ {
+ memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
+ reg_size);
+ memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
+ ((char *) VALUE_CONTENTS (arg)) + argbytes,
+ (len - argbytes) > reg_size
+ ? reg_size : len - argbytes);
+ ++ii, argbytes += reg_size;
+
+ if (ii >= 8)
+ goto ran_out_of_registers_for_arguments;
+ }
+ argbytes = 0;
+ --ii;
+ }
+ else
+ {
+ /* Argument can fit in one register. No problem. */
+ int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
+ memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
+ memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
+ VALUE_CONTENTS (arg), len);
+ }
+ ++argno;
+ }
+
+ran_out_of_registers_for_arguments:
+
+ saved_sp = read_sp ();
+
+ /* Location for 8 parameters are always reserved. */
+ sp -= wordsize * 8;
+
+ /* Another six words for back chain, TOC register, link register, etc. */
+ sp -= wordsize * 6;
+
+ /* Stack pointer must be quadword aligned. */
+ sp &= -16;
+
+ /* If there are more arguments, allocate space for them in
+ the stack, then push them starting from the ninth one. */
+
+ if ((argno < nargs) || argbytes)
+ {
+ int space = 0, jj;
+
+ if (argbytes)
+ {
+ space += ((len - argbytes + 3) & -4);
+ jj = argno + 1;
+ }
+ else
+ jj = argno;
+
+ for (; jj < nargs; ++jj)
+ {
+ struct value *val = args[jj];
+ space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
+ }
+
+ /* Add location required for the rest of the parameters. */
+ space = (space + 15) & -16;
+ sp -= space;
+
+ /* This is another instance we need to be concerned about
+ securing our stack space. If we write anything underneath %sp
+ (r1), we might conflict with the kernel who thinks he is free
+ to use this area. So, update %sp first before doing anything
+ else. */
+
+ regcache_raw_write_signed (regcache, SP_REGNUM, sp);
+
+ /* If the last argument copied into the registers didn't fit there
+ completely, push the rest of it into stack. */
+
+ if (argbytes)
+ {
+ write_memory (sp + 24 + (ii * 4),
+ ((char *) VALUE_CONTENTS (arg)) + argbytes,
+ len - argbytes);
+ ++argno;
+ ii += ((len - argbytes + 3) & -4) / 4;
+ }
+
+ /* Push the rest of the arguments into stack. */
+ for (; argno < nargs; ++argno)
+ {
+
+ arg = args[argno];
+ type = check_typedef (VALUE_TYPE (arg));
+ len = TYPE_LENGTH (type);
+
+
+ /* Float types should be passed in fpr's, as well as in the
+ stack. */
+ if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
+ {
+
+ if (len > 8)
+ printf_unfiltered (
+ "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
+
+ memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
+ VALUE_CONTENTS (arg),
+ len);
+ ++f_argno;
+ }
+
+ write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
+ ii += ((len + 3) & -4) / 4;
+ }
+ }
+
+ /* Set the stack pointer. According to the ABI, the SP is meant to
+ be set _before_ the corresponding stack space is used. On AIX,
+ this even applies when the target has been completely stopped!
+ Not doing this can lead to conflicts with the kernel which thinks
+ that it still has control over this not-yet-allocated stack
+ region. */
+ regcache_raw_write_signed (regcache, SP_REGNUM, sp);
+
+ /* Set back chain properly. */
+ store_unsigned_integer (tmp_buffer, 4, saved_sp);
+ write_memory (sp, tmp_buffer, 4);
+
+ /* Point the inferior function call's return address at the dummy's
+ breakpoint. */
+ regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
+
+ /* Set the TOC register, get the value from the objfile reader
+ which, in turn, gets it from the VMAP table. */
+ if (rs6000_find_toc_address_hook != NULL)
+ {
+ CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
+ regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
+ }
+
+ target_store_registers (-1);
+ return sp;
+}
+
+/* PowerOpen always puts structures in memory. Vectors, which were
+ added later, do get returned in a register though. */
+
+static int
+rs6000_use_struct_convention (int gcc_p, struct type *value_type)
+{
+ if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
+ && TYPE_VECTOR (value_type))
+ return 0;
+ return 1;
+}
+
+static void
+rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
+{
+ int offset = 0;
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
+ {
+
+ double dd;
+ float ff;
+ /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
+ We need to truncate the return value into float size (4 byte) if
+ necessary. */
+
+ if (TYPE_LENGTH (valtype) > 4) /* this is a double */
+ memcpy (valbuf,
+ &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)],
+ TYPE_LENGTH (valtype));
+ else
+ { /* float */
+ memcpy (&dd, &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)], 8);
+ ff = (float) dd;
+ memcpy (valbuf, &ff, sizeof (float));
+ }
+ }
+ else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
+ && TYPE_LENGTH (valtype) == 16
+ && TYPE_VECTOR (valtype))
+ {
+ memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
+ TYPE_LENGTH (valtype));
+ }
+ else
+ {
+ /* return value is copied starting from r3. */
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
+ && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
+ offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
+
+ memcpy (valbuf,
+ regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
+ TYPE_LENGTH (valtype));
+ }
+}
+
+/* Return whether handle_inferior_event() should proceed through code
+ starting at PC in function NAME when stepping.
+
+ The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
+ handle memory references that are too distant to fit in instructions
+ generated by the compiler. For example, if 'foo' in the following
+ instruction:
+
+ lwz r9,foo(r2)
+
+ is greater than 32767, the linker might replace the lwz with a branch to
+ somewhere in @FIX1 that does the load in 2 instructions and then branches
+ back to where execution should continue.
+
+ GDB should silently step over @FIX code, just like AIX dbx does.
+ Unfortunately, the linker uses the "b" instruction for the branches,
+ meaning that the link register doesn't get set. Therefore, GDB's usual
+ step_over_function() mechanism won't work.
+
+ Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
+ in handle_inferior_event() to skip past @FIX code. */
+
+int
+rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
+{
+ return name && !strncmp (name, "@FIX", 4);
+}
+
+/* Skip code that the user doesn't want to see when stepping:
+
+ 1. Indirect function calls use a piece of trampoline code to do context
+ switching, i.e. to set the new TOC table. Skip such code if we are on
+ its first instruction (as when we have single-stepped to here).
+
+ 2. Skip shared library trampoline code (which is different from
+ indirect function call trampolines).
+
+ 3. Skip bigtoc fixup code.
+
+ Result is desired PC to step until, or NULL if we are not in
+ code that should be skipped. */
+
+CORE_ADDR
+rs6000_skip_trampoline_code (CORE_ADDR pc)
+{
+ unsigned int ii, op;
+ int rel;
+ CORE_ADDR solib_target_pc;
+ struct minimal_symbol *msymbol;
+
+ static unsigned trampoline_code[] =
+ {
+ 0x800b0000, /* l r0,0x0(r11) */
+ 0x90410014, /* st r2,0x14(r1) */
+ 0x7c0903a6, /* mtctr r0 */
+ 0x804b0004, /* l r2,0x4(r11) */
+ 0x816b0008, /* l r11,0x8(r11) */
+ 0x4e800420, /* bctr */
+ 0x4e800020, /* br */
+ 0
+ };
+
+ /* Check for bigtoc fixup code. */
+ msymbol = lookup_minimal_symbol_by_pc (pc);
+ if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
+ {
+ /* Double-check that the third instruction from PC is relative "b". */
+ op = read_memory_integer (pc + 8, 4);
+ if ((op & 0xfc000003) == 0x48000000)
+ {
+ /* Extract bits 6-29 as a signed 24-bit relative word address and
+ add it to the containing PC. */
+ rel = ((int)(op << 6) >> 6);
+ return pc + 8 + rel;
+ }
+ }
+
+ /* If pc is in a shared library trampoline, return its target. */
+ solib_target_pc = find_solib_trampoline_target (pc);
+ if (solib_target_pc)
+ return solib_target_pc;
+
+ for (ii = 0; trampoline_code[ii]; ++ii)
+ {
+ op = read_memory_integer (pc + (ii * 4), 4);
+ if (op != trampoline_code[ii])
+ return 0;
+ }
+ ii = read_register (11); /* r11 holds destination addr */
+ pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
+ return pc;
+}
+
+/* Determines whether the function FI has a frame on the stack or not. */
+
+int
+rs6000_frameless_function_invocation (struct frame_info *fi)
+{
+ CORE_ADDR func_start;
+ struct rs6000_framedata fdata;
+
+ /* Don't even think about framelessness except on the innermost frame
+ or if the function was interrupted by a signal. */
+ if (get_next_frame (fi) != NULL
+ && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
+ return 0;
+
+ func_start = get_frame_func (fi);
+
+ /* If we failed to find the start of the function, it is a mistake
+ to inspect the instructions. */
+
+ if (!func_start)
+ {
+ /* A frame with a zero PC is usually created by dereferencing a NULL
+ function pointer, normally causing an immediate core dump of the
+ inferior. Mark function as frameless, as the inferior has no chance
+ of setting up a stack frame. */
+ if (get_frame_pc (fi) == 0)
+ return 1;
+ else
+ return 0;
+ }
+
+ (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
+ return fdata.frameless;
+}
+
+/* Return the PC saved in a frame. */
+
+CORE_ADDR
+rs6000_frame_saved_pc (struct frame_info *fi)
+{
+ CORE_ADDR func_start;
+ struct rs6000_framedata fdata;
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+ int wordsize = tdep->wordsize;
+
+ if ((get_frame_type (fi) == SIGTRAMP_FRAME))
+ return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
+ wordsize);
+
+ if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
+ get_frame_base (fi),
+ get_frame_base (fi)))
+ return deprecated_read_register_dummy (get_frame_pc (fi),
+ get_frame_base (fi), PC_REGNUM);
+
+ func_start = get_frame_func (fi);
+
+ /* If we failed to find the start of the function, it is a mistake
+ to inspect the instructions. */
+ if (!func_start)
+ return 0;
+
+ (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
+
+ if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
+ {
+ if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
+ return read_memory_addr ((get_frame_base (get_next_frame (fi))
+ + SIG_FRAME_LR_OFFSET),
+ wordsize);
+ else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
+ /* The link register wasn't saved by this frame and the next
+ (inner, newer) frame is a dummy. Get the link register
+ value by unwinding it from that [dummy] frame. */
+ {
+ ULONGEST lr;
+ frame_unwind_unsigned_register (get_next_frame (fi),
+ tdep->ppc_lr_regnum, &lr);
+ return lr;
+ }
+ else
+ return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
+ + tdep->lr_frame_offset,
+ wordsize);
+ }
+
+ if (fdata.lr_offset == 0)
+ return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
+
+ return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
+ wordsize);
+}
+
+/* If saved registers of frame FI are not known yet, read and cache them.
+ &FDATAP contains rs6000_framedata; TDATAP can be NULL,
+ in which case the framedata are read. */
+
+static void
+frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
+{
+ CORE_ADDR frame_addr;
+ struct rs6000_framedata work_fdata;
+ struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
+ int wordsize = tdep->wordsize;
+
+ if (deprecated_get_frame_saved_regs (fi))
+ return;
+
+ if (fdatap == NULL)
+ {
+ fdatap = &work_fdata;
+ (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
+ }
+
+ frame_saved_regs_zalloc (fi);
+
+ /* If there were any saved registers, figure out parent's stack
+ pointer. */
+ /* The following is true only if the frame doesn't have a call to
+ alloca(), FIXME. */
+
+ if (fdatap->saved_fpr == 0
+ && fdatap->saved_gpr == 0
+ && fdatap->saved_vr == 0
+ && fdatap->saved_ev == 0
+ && fdatap->lr_offset == 0
+ && fdatap->cr_offset == 0
+ && fdatap->vr_offset == 0
+ && fdatap->ev_offset == 0)
+ frame_addr = 0;
+ else
+ /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
+ address of the current frame. Things might be easier if the
+ ->frame pointed to the outer-most address of the frame. In the
+ mean time, the address of the prev frame is used as the base
+ address of this frame. */
+ frame_addr = DEPRECATED_FRAME_CHAIN (fi);
+
+ /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
+ All fpr's from saved_fpr to fp31 are saved. */
+
+ if (fdatap->saved_fpr >= 0)
+ {
+ int i;
+ CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
+ for (i = fdatap->saved_fpr; i < 32; i++)
+ {
+ deprecated_get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
+ fpr_addr += 8;
+ }
+ }
+
+ /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
+ All gpr's from saved_gpr to gpr31 are saved. */
+
+ if (fdatap->saved_gpr >= 0)
+ {
+ int i;
+ CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
+ for (i = fdatap->saved_gpr; i < 32; i++)
+ {
+ deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
+ gpr_addr += wordsize;
+ }
+ }
+
+ /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
+ All vr's from saved_vr to vr31 are saved. */
+ if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
+ {
+ if (fdatap->saved_vr >= 0)
+ {
+ int i;
+ CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
+ for (i = fdatap->saved_vr; i < 32; i++)
+ {
+ deprecated_get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
+ vr_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
+ }
+ }
+ }
+
+ /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
+ All vr's from saved_ev to ev31 are saved. ????? */
+ if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
+ {
+ if (fdatap->saved_ev >= 0)
+ {
+ int i;
+ CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
+ for (i = fdatap->saved_ev; i < 32; i++)
+ {
+ deprecated_get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
+ deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
+ ev_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
+ }
+ }
+ }
+
+ /* If != 0, fdatap->cr_offset is the offset from the frame that holds
+ the CR. */
+ if (fdatap->cr_offset != 0)
+ deprecated_get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
+
+ /* If != 0, fdatap->lr_offset is the offset from the frame that holds
+ the LR. */
+ if (fdatap->lr_offset != 0)
+ deprecated_get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
+
+ /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
+ the VRSAVE. */
+ if (fdatap->vrsave_offset != 0)
+ deprecated_get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
+}
+
+/* Return the address of a frame. This is the inital %sp value when the frame
+ was first allocated. For functions calling alloca(), it might be saved in
+ an alloca register. */
+
+static CORE_ADDR
+frame_initial_stack_address (struct frame_info *fi)
+{
+ CORE_ADDR tmpaddr;
+ struct rs6000_framedata fdata;
+ struct frame_info *callee_fi;
+
+ /* If the initial stack pointer (frame address) of this frame is known,
+ just return it. */
+
+ if (get_frame_extra_info (fi)->initial_sp)
+ return get_frame_extra_info (fi)->initial_sp;
+
+ /* Find out if this function is using an alloca register. */
+
+ (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
+
+ /* If saved registers of this frame are not known yet, read and
+ cache them. */
+
+ if (!deprecated_get_frame_saved_regs (fi))
+ frame_get_saved_regs (fi, &fdata);
+
+ /* If no alloca register used, then fi->frame is the value of the %sp for
+ this frame, and it is good enough. */
+
+ if (fdata.alloca_reg < 0)
+ {
+ get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
+ return get_frame_extra_info (fi)->initial_sp;
+ }
+
+ /* There is an alloca register, use its value, in the current frame,
+ as the initial stack pointer. */
+ {
+ char tmpbuf[MAX_REGISTER_SIZE];
+ if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
+ {
+ get_frame_extra_info (fi)->initial_sp
+ = extract_unsigned_integer (tmpbuf,
+ DEPRECATED_REGISTER_RAW_SIZE (fdata.alloca_reg));
+ }
+ else
+ /* NOTE: cagney/2002-04-17: At present the only time
+ frame_register_read will fail is when the register isn't
+ available. If that does happen, use the frame. */
+ get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
+ }
+ return get_frame_extra_info (fi)->initial_sp;
+}
+
+/* Describe the pointer in each stack frame to the previous stack frame
+ (its caller). */
+
+/* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
+ the frame's chain-pointer. */
+
+/* In the case of the RS/6000, the frame's nominal address
+ is the address of a 4-byte word containing the calling frame's address. */
+
+CORE_ADDR
+rs6000_frame_chain (struct frame_info *thisframe)
+{
+ CORE_ADDR fp, fpp, lr;
+ int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
+
+ if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
+ get_frame_base (thisframe),
+ get_frame_base (thisframe)))
+ /* A dummy frame always correctly chains back to the previous
+ frame. */
+ return read_memory_addr (get_frame_base (thisframe), wordsize);
+
+ if (deprecated_inside_entry_file (get_frame_pc (thisframe))
+ || get_frame_pc (thisframe) == entry_point_address ())
+ return 0;
+
+ if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
+ fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
+ wordsize);
+ else if (get_next_frame (thisframe) != NULL
+ && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
+ && (DEPRECATED_FRAMELESS_FUNCTION_INVOCATION_P ()
+ && DEPRECATED_FRAMELESS_FUNCTION_INVOCATION (thisframe)))
+ /* A frameless function interrupted by a signal did not change the
+ frame pointer. */
+ fp = get_frame_base (thisframe);
+ else
+ fp = read_memory_addr (get_frame_base (thisframe), wordsize);
+ return fp;
+}
+
+/* Return the size of register REG when words are WORDSIZE bytes long. If REG
+ isn't available with that word size, return 0. */
+
+static int
+regsize (const struct reg *reg, int wordsize)
+{
+ return wordsize == 8 ? reg->sz64 : reg->sz32;
+}
+
+/* Return the name of register number N, or null if no such register exists
+ in the current architecture. */
+
+static const char *
+rs6000_register_name (int n)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+ const struct reg *reg = tdep->regs + n;
+
+ if (!regsize (reg, tdep->wordsize))
+ return NULL;
+ return reg->name;
+}
+
+/* Index within `registers' of the first byte of the space for
+ register N. */
+
+static int
+rs6000_register_byte (int n)
+{
+ return gdbarch_tdep (current_gdbarch)->regoff[n];
+}
+
+/* Return the number of bytes of storage in the actual machine representation
+ for register N if that register is available, else return 0. */
+
+static int
+rs6000_register_raw_size (int n)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+ const struct reg *reg = tdep->regs + n;
+ return regsize (reg, tdep->wordsize);
+}
+
+/* Return the GDB type object for the "standard" data type
+ of data in register N. */
+
+static struct type *
+rs6000_register_virtual_type (int n)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+ const struct reg *reg = tdep->regs + n;
+
+ if (reg->fpr)
+ return builtin_type_double;
+ else
+ {
+ int size = regsize (reg, tdep->wordsize);
+ switch (size)
+ {
+ case 0:
+ return builtin_type_int0;
+ case 4:
+ return builtin_type_int32;
+ case 8:
+ if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
+ return builtin_type_vec64;
+ else
+ return builtin_type_int64;
+ break;
+ case 16:
+ return builtin_type_vec128;
+ break;
+ default:
+ internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
+ n, size);
+ }
+ }
+}
+
+/* Return whether register N requires conversion when moving from raw format
+ to virtual format.
+
+ The register format for RS/6000 floating point registers is always
+ double, we need a conversion if the memory format is float. */
+
+static int
+rs6000_register_convertible (int n)
+{
+ const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
+ return reg->fpr;
+}
+
+/* Convert data from raw format for register N in buffer FROM
+ to virtual format with type TYPE in buffer TO. */
+
+static void
+rs6000_register_convert_to_virtual (int n, struct type *type,
+ char *from, char *to)
+{
+ if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
+ {
+ double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
+ deprecated_store_floating (to, TYPE_LENGTH (type), val);
+ }
+ else
+ memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
+}
+
+/* Convert data from virtual format with type TYPE in buffer FROM
+ to raw format for register N in buffer TO. */
+
+static void
+rs6000_register_convert_to_raw (struct type *type, int n,
+ const char *from, char *to)
+{
+ if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
+ {
+ double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
+ deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
+ }
+ else
+ memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
+}
+
+static void
+e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
+ int reg_nr, void *buffer)
+{
+ int base_regnum;
+ int offset = 0;
+ char temp_buffer[MAX_REGISTER_SIZE];
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+ if (reg_nr >= tdep->ppc_gp0_regnum
+ && reg_nr <= tdep->ppc_gplast_regnum)
+ {
+ base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
+
+ /* Build the value in the provided buffer. */
+ /* Read the raw register of which this one is the lower portion. */
+ regcache_raw_read (regcache, base_regnum, temp_buffer);
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ offset = 4;
+ memcpy ((char *) buffer, temp_buffer + offset, 4);
+ }
+}
+
+static void
+e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
+ int reg_nr, const void *buffer)
+{
+ int base_regnum;
+ int offset = 0;
+ char temp_buffer[MAX_REGISTER_SIZE];
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+ if (reg_nr >= tdep->ppc_gp0_regnum
+ && reg_nr <= tdep->ppc_gplast_regnum)
+ {
+ base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
+ /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ offset = 4;
+
+ /* Let's read the value of the base register into a temporary
+ buffer, so that overwriting the last four bytes with the new
+ value of the pseudo will leave the upper 4 bytes unchanged. */
+ regcache_raw_read (regcache, base_regnum, temp_buffer);
+
+ /* Write as an 8 byte quantity. */
+ memcpy (temp_buffer + offset, (char *) buffer, 4);
+ regcache_raw_write (regcache, base_regnum, temp_buffer);
+ }
+}
+
+/* Convert a dwarf2 register number to a gdb REGNUM. */
+static int
+e500_dwarf2_reg_to_regnum (int num)
+{
+ int regnum;
+ if (0 <= num && num <= 31)
+ return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
+ else
+ return num;
+}
+
+/* Convert a dbx stab register number (from `r' declaration) to a gdb
+ REGNUM. */
+static int
+rs6000_stab_reg_to_regnum (int num)
+{
+ int regnum;
+ switch (num)
+ {
+ case 64:
+ regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
+ break;
+ case 65:
+ regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
+ break;
+ case 66:
+ regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
+ break;
+ case 76:
+ regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
+ break;
+ default:
+ regnum = num;
+ break;
+ }
+ return regnum;
+}
+
+static void
+rs6000_store_return_value (struct type *type, char *valbuf)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ if (TYPE_CODE (type) == TYPE_CODE_FLT)
+
+ /* Floating point values are returned starting from FPR1 and up.
+ Say a double_double_double type could be returned in
+ FPR1/FPR2/FPR3 triple. */
+
+ deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
+ TYPE_LENGTH (type));
+ else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
+ {
+ if (TYPE_LENGTH (type) == 16
+ && TYPE_VECTOR (type))
+ deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
+ valbuf, TYPE_LENGTH (type));
+ }
+ else
+ /* Everything else is returned in GPR3 and up. */
+ deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
+ valbuf, TYPE_LENGTH (type));
+}
+
+/* Extract from an array REGBUF containing the (raw) register state
+ the address in which a function should return its structure value,
+ as a CORE_ADDR (or an expression that can be used as one). */
+
+static CORE_ADDR
+rs6000_extract_struct_value_address (struct regcache *regcache)
+{
+ /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
+ function call GDB knows the address of the struct return value
+ and hence, should not need to call this function. Unfortunately,
+ the current call_function_by_hand() code only saves the most
+ recent struct address leading to occasional calls. The code
+ should instead maintain a stack of such addresses (in the dummy
+ frame object). */
+ /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
+ really got no idea where the return value is being stored. While
+ r3, on function entry, contained the address it will have since
+ been reused (scratch) and hence wouldn't be valid */
+ return 0;
+}
+
+/* Hook called when a new child process is started. */
+
+void
+rs6000_create_inferior (int pid)
+{
+ if (rs6000_set_host_arch_hook)
+ rs6000_set_host_arch_hook (pid);
+}
+
+/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
+
+ Usually a function pointer's representation is simply the address
+ of the function. On the RS/6000 however, a function pointer is
+ represented by a pointer to a TOC entry. This TOC entry contains
+ three words, the first word is the address of the function, the
+ second word is the TOC pointer (r2), and the third word is the
+ static chain value. Throughout GDB it is currently assumed that a
+ function pointer contains the address of the function, which is not
+ easy to fix. In addition, the conversion of a function address to
+ a function pointer would require allocation of a TOC entry in the
+ inferior's memory space, with all its drawbacks. To be able to
+ call C++ virtual methods in the inferior (which are called via
+ function pointers), find_function_addr uses this function to get the
+ function address from a function pointer. */
+
+/* Return real function address if ADDR (a function pointer) is in the data
+ space and is therefore a special function pointer. */
+
+static CORE_ADDR
+rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
+ CORE_ADDR addr,
+ struct target_ops *targ)
+{
+ struct obj_section *s;
+
+ s = find_pc_section (addr);
+ if (s && s->the_bfd_section->flags & SEC_CODE)
+ return addr;
+
+ /* ADDR is in the data space, so it's a special function pointer. */
+ return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
+}
+
+
+/* Handling the various POWER/PowerPC variants. */
+
+
+/* The arrays here called registers_MUMBLE hold information about available
+ registers.
+
+ For each family of PPC variants, I've tried to isolate out the
+ common registers and put them up front, so that as long as you get
+ the general family right, GDB will correctly identify the registers
+ common to that family. The common register sets are:
+
+ For the 60x family: hid0 hid1 iabr dabr pir
+
+ For the 505 and 860 family: eie eid nri
+
+ For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
+ tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
+ pbu1 pbl2 pbu2
+
+ Most of these register groups aren't anything formal. I arrived at
+ them by looking at the registers that occurred in more than one
+ processor.
+
+ Note: kevinb/2002-04-30: Support for the fpscr register was added
+ during April, 2002. Slot 70 is being used for PowerPC and slot 71
+ for Power. For PowerPC, slot 70 was unused and was already in the
+ PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
+ slot 70 was being used for "mq", so the next available slot (71)
+ was chosen. It would have been nice to be able to make the
+ register numbers the same across processor cores, but this wasn't
+ possible without either 1) renumbering some registers for some
+ processors or 2) assigning fpscr to a really high slot that's
+ larger than any current register number. Doing (1) is bad because
+ existing stubs would break. Doing (2) is undesirable because it
+ would introduce a really large gap between fpscr and the rest of
+ the registers for most processors. */
+
+/* Convenience macros for populating register arrays. */
+
+/* Within another macro, convert S to a string. */
+
+#define STR(s) #s
+
+/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
+ and 64 bits on 64-bit systems. */
+#define R(name) { STR(name), 4, 8, 0, 0 }
+
+/* Return a struct reg defining register NAME that's 32 bits on all
+ systems. */
+#define R4(name) { STR(name), 4, 4, 0, 0 }
+
+/* Return a struct reg defining register NAME that's 64 bits on all
+ systems. */
+#define R8(name) { STR(name), 8, 8, 0, 0 }
+
+/* Return a struct reg defining register NAME that's 128 bits on all
+ systems. */
+#define R16(name) { STR(name), 16, 16, 0, 0 }
+
+/* Return a struct reg defining floating-point register NAME. */
+#define F(name) { STR(name), 8, 8, 1, 0 }
+
+/* Return a struct reg defining a pseudo register NAME. */
+#define P(name) { STR(name), 4, 8, 0, 1}
+
+/* Return a struct reg defining register NAME that's 32 bits on 32-bit
+ systems and that doesn't exist on 64-bit systems. */
+#define R32(name) { STR(name), 4, 0, 0, 0 }
+
+/* Return a struct reg defining register NAME that's 64 bits on 64-bit
+ systems and that doesn't exist on 32-bit systems. */
+#define R64(name) { STR(name), 0, 8, 0, 0 }
+
+/* Return a struct reg placeholder for a register that doesn't exist. */
+#define R0 { 0, 0, 0, 0, 0 }
+
+/* UISA registers common across all architectures, including POWER. */
+
+#define COMMON_UISA_REGS \
+ /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
+ /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
+ /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
+ /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
+ /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
+ /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
+ /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
+ /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
+ /* 64 */ R(pc), R(ps)
+
+#define COMMON_UISA_NOFP_REGS \
+ /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
+ /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
+ /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
+ /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
+ /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
+ /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
+ /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
+ /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
+ /* 64 */ R(pc), R(ps)
+
+/* UISA-level SPRs for PowerPC. */
+#define PPC_UISA_SPRS \
+ /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
+
+/* UISA-level SPRs for PowerPC without floating point support. */
+#define PPC_UISA_NOFP_SPRS \
+ /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
+
+/* Segment registers, for PowerPC. */
+#define PPC_SEGMENT_REGS \
+ /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
+ /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
+ /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
+ /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
+
+/* OEA SPRs for PowerPC. */
+#define PPC_OEA_SPRS \
+ /* 87 */ R4(pvr), \
+ /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
+ /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
+ /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
+ /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
+ /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
+ /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
+ /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
+ /* 116 */ R4(dec), R(dabr), R4(ear)
+
+/* AltiVec registers. */
+#define PPC_ALTIVEC_REGS \
+ /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
+ /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
+ /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
+ /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
+ /*151*/R4(vscr), R4(vrsave)
+
+/* Vectors of hi-lo general purpose registers. */
+#define PPC_EV_REGS \
+ /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
+ /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
+ /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
+ /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
+
+/* Lower half of the EV registers. */
+#define PPC_GPRS_PSEUDO_REGS \
+ /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
+ /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
+ /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
+ /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
+
+/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
+ user-level SPR's. */
+static const struct reg registers_power[] =
+{
+ COMMON_UISA_REGS,
+ /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
+ /* 71 */ R4(fpscr)
+};
+
+/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
+ view of the PowerPC. */
+static const struct reg registers_powerpc[] =
+{
+ COMMON_UISA_REGS,
+ PPC_UISA_SPRS,
+ PPC_ALTIVEC_REGS
+};
+
+/* PowerPC UISA - a PPC processor as viewed by user-level
+ code, but without floating point registers. */
+static const struct reg registers_powerpc_nofp[] =
+{
+ COMMON_UISA_NOFP_REGS,
+ PPC_UISA_SPRS
+};
+
+/* IBM PowerPC 403. */
+static const struct reg registers_403[] =
+{
+ COMMON_UISA_REGS,
+ PPC_UISA_SPRS,
+ PPC_SEGMENT_REGS,
+ PPC_OEA_SPRS,
+ /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
+ /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
+ /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
+ /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
+ /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
+ /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
+};
+
+/* IBM PowerPC 403GC. */
+static const struct reg registers_403GC[] =
+{
+ COMMON_UISA_REGS,
+ PPC_UISA_SPRS,
+ PPC_SEGMENT_REGS,
+ PPC_OEA_SPRS,
+ /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
+ /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
+ /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
+ /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
+ /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
+ /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
+ /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
+ /* 147 */ R(tbhu), R(tblu)
+};
+
+/* Motorola PowerPC 505. */
+static const struct reg registers_505[] =
+{
+ COMMON_UISA_REGS,
+ PPC_UISA_SPRS,
+ PPC_SEGMENT_REGS,
+ PPC_OEA_SPRS,
+ /* 119 */ R(eie), R(eid), R(nri)
+};
+
+/* Motorola PowerPC 860 or 850. */
+static const struct reg registers_860[] =
+{
+ COMMON_UISA_REGS,
+ PPC_UISA_SPRS,
+ PPC_SEGMENT_REGS,
+ PPC_OEA_SPRS,
+ /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
+ /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
+ /* 127 */ R(der), R(counta), R(countb), R(cmpe),
+ /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
+ /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
+ /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
+ /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
+ /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
+ /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
+ /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
+ /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
+ /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
+};
+
+/* Motorola PowerPC 601. Note that the 601 has different register numbers
+ for reading and writing RTCU and RTCL. However, how one reads and writes a
+ register is the stub's problem. */
+static const struct reg registers_601[] =
+{
+ COMMON_UISA_REGS,
+ PPC_UISA_SPRS,
+ PPC_SEGMENT_REGS,
+ PPC_OEA_SPRS,
+ /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
+ /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
+};
+
+/* Motorola PowerPC 602. */
+static const struct reg registers_602[] =
+{
+ COMMON_UISA_REGS,
+ PPC_UISA_SPRS,
+ PPC_SEGMENT_REGS,
+ PPC_OEA_SPRS,
+ /* 119 */ R(hid0), R(hid1), R(iabr), R0,
+ /* 123 */ R0, R(tcr), R(ibr), R(esassr),
+ /* 127 */ R(sebr), R(ser), R(sp), R(lt)
+};
+
+/* Motorola/IBM PowerPC 603 or 603e. */
+static const struct reg registers_603[] =
+{
+ COMMON_UISA_REGS,
+ PPC_UISA_SPRS,
+ PPC_SEGMENT_REGS,
+ PPC_OEA_SPRS,
+ /* 119 */ R(hid0), R(hid1), R(iabr), R0,
+ /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
+ /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
+};
+
+/* Motorola PowerPC 604 or 604e. */
+static const struct reg registers_604[] =
+{
+ COMMON_UISA_REGS,
+ PPC_UISA_SPRS,
+ PPC_SEGMENT_REGS,
+ PPC_OEA_SPRS,
+ /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
+ /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
+ /* 127 */ R(sia), R(sda)
+};
+
+/* Motorola/IBM PowerPC 750 or 740. */
+static const struct reg registers_750[] =
+{
+ COMMON_UISA_REGS,
+ PPC_UISA_SPRS,
+ PPC_SEGMENT_REGS,
+ PPC_OEA_SPRS,
+ /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
+ /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
+ /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
+ /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
+ /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
+ /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
+};
+
+
+/* Motorola PowerPC 7400. */
+static const struct reg registers_7400[] =
+{
+ /* gpr0-gpr31, fpr0-fpr31 */
+ COMMON_UISA_REGS,
+ /* ctr, xre, lr, cr */
+ PPC_UISA_SPRS,
+ /* sr0-sr15 */
+ PPC_SEGMENT_REGS,
+ PPC_OEA_SPRS,
+ /* vr0-vr31, vrsave, vscr */
+ PPC_ALTIVEC_REGS
+ /* FIXME? Add more registers? */
+};
+
+/* Motorola e500. */
+static const struct reg registers_e500[] =
+{
+ R(pc), R(ps),
+ /* cr, lr, ctr, xer, "" */
+ PPC_UISA_NOFP_SPRS,
+ /* 7...38 */
+ PPC_EV_REGS,
+ R8(acc), R(spefscr),
+ /* NOTE: Add new registers here the end of the raw register
+ list and just before the first pseudo register. */
+ /* 39...70 */
+ PPC_GPRS_PSEUDO_REGS
+};
+
+/* Information about a particular processor variant. */
+
+struct variant
+ {
+ /* Name of this variant. */
+ char *name;
+
+ /* English description of the variant. */
+ char *description;
+
+ /* bfd_arch_info.arch corresponding to variant. */
+ enum bfd_architecture arch;
+
+ /* bfd_arch_info.mach corresponding to variant. */
+ unsigned long mach;
+
+ /* Number of real registers. */
+ int nregs;
+
+ /* Number of pseudo registers. */
+ int npregs;
+
+ /* Number of total registers (the sum of nregs and npregs). */
+ int num_tot_regs;
+
+ /* Table of register names; registers[R] is the name of the register
+ number R. */
+ const struct reg *regs;
+ };
+
+#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
+
+static int
+num_registers (const struct reg *reg_list, int num_tot_regs)
+{
+ int i;
+ int nregs = 0;
+
+ for (i = 0; i < num_tot_regs; i++)
+ if (!reg_list[i].pseudo)
+ nregs++;
+
+ return nregs;
+}
+
+static int
+num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
+{
+ int i;
+ int npregs = 0;
+
+ for (i = 0; i < num_tot_regs; i++)
+ if (reg_list[i].pseudo)
+ npregs ++;
+
+ return npregs;
+}
+
+/* Information in this table comes from the following web sites:
+ IBM: http://www.chips.ibm.com:80/products/embedded/
+ Motorola: http://www.mot.com/SPS/PowerPC/
+
+ I'm sure I've got some of the variant descriptions not quite right.
+ Please report any inaccuracies you find to GDB's maintainer.
+
+ If you add entries to this table, please be sure to allow the new
+ value as an argument to the --with-cpu flag, in configure.in. */
+
+static struct variant variants[] =
+{
+
+ {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
+ bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
+ registers_powerpc},
+ {"power", "POWER user-level", bfd_arch_rs6000,
+ bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
+ registers_power},
+ {"403", "IBM PowerPC 403", bfd_arch_powerpc,
+ bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
+ registers_403},
+ {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
+ bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
+ registers_601},
+ {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
+ bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
+ registers_602},
+ {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
+ bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
+ registers_603},
+ {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
+ 604, -1, -1, tot_num_registers (registers_604),
+ registers_604},
+ {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
+ bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
+ registers_403GC},
+ {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
+ bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
+ registers_505},
+ {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
+ bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
+ registers_860},
+ {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
+ bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
+ registers_750},
+ {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
+ bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
+ registers_7400},
+ {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
+ bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
+ registers_e500},
+
+ /* 64-bit */
+ {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
+ bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
+ registers_powerpc},
+ {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
+ bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
+ registers_powerpc},
+ {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
+ bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
+ registers_powerpc},
+ {"a35", "PowerPC A35", bfd_arch_powerpc,
+ bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
+ registers_powerpc},
+ {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
+ bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
+ registers_powerpc},
+ {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
+ bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
+ registers_powerpc},
+
+ /* FIXME: I haven't checked the register sets of the following. */
+ {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
+ bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
+ registers_power},
+ {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
+ bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
+ registers_power},
+ {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
+ bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
+ registers_power},
+
+ {0, 0, 0, 0, 0, 0, 0, 0}
+};
+
+/* Initialize the number of registers and pseudo registers in each variant. */
+
+static void
+init_variants (void)
+{
+ struct variant *v;
+
+ for (v = variants; v->name; v++)
+ {
+ if (v->nregs == -1)
+ v->nregs = num_registers (v->regs, v->num_tot_regs);
+ if (v->npregs == -1)
+ v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
+ }
+}
+
+/* Return the variant corresponding to architecture ARCH and machine number
+ MACH. If no such variant exists, return null. */
+
+static const struct variant *
+find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
+{
+ const struct variant *v;
+
+ for (v = variants; v->name; v++)
+ if (arch == v->arch && mach == v->mach)
+ return v;
+
+ return NULL;
+}
+
+static int
+gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
+{
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ return print_insn_big_powerpc (memaddr, info);
+ else
+ return print_insn_little_powerpc (memaddr, info);
+}
+
+/* Initialize the current architecture based on INFO. If possible, re-use an
+ architecture from ARCHES, which is a list of architectures already created
+ during this debugging session.
+
+ Called e.g. at program startup, when reading a core file, and when reading
+ a binary file. */
+
+static struct gdbarch *
+rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+{
+ struct gdbarch *gdbarch;
+ struct gdbarch_tdep *tdep;
+ int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
+ struct reg *regs;
+ const struct variant *v;
+ enum bfd_architecture arch;
+ unsigned long mach;
+ bfd abfd;
+ int sysv_abi;
+ asection *sect;
+
+ from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
+ bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
+
+ from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
+ bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
+
+ sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
+
+ /* Check word size. If INFO is from a binary file, infer it from
+ that, else choose a likely default. */
+ if (from_xcoff_exec)
+ {
+ if (bfd_xcoff_is_xcoff64 (info.abfd))
+ wordsize = 8;
+ else
+ wordsize = 4;
+ }
+ else if (from_elf_exec)
+ {
+ if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
+ wordsize = 8;
+ else
+ wordsize = 4;
+ }
+ else
+ {
+ if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
+ wordsize = info.bfd_arch_info->bits_per_word /
+ info.bfd_arch_info->bits_per_byte;
+ else
+ wordsize = 4;
+ }
+
+ /* Find a candidate among extant architectures. */
+ for (arches = gdbarch_list_lookup_by_info (arches, &info);
+ arches != NULL;
+ arches = gdbarch_list_lookup_by_info (arches->next, &info))
+ {
+ /* Word size in the various PowerPC bfd_arch_info structs isn't
+ meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
+ separate word size check. */
+ tdep = gdbarch_tdep (arches->gdbarch);
+ if (tdep && tdep->wordsize == wordsize)
+ return arches->gdbarch;
+ }
+
+ /* None found, create a new architecture from INFO, whose bfd_arch_info
+ validity depends on the source:
+ - executable useless
+ - rs6000_host_arch() good
+ - core file good
+ - "set arch" trust blindly
+ - GDB startup useless but harmless */
+
+ if (!from_xcoff_exec)
+ {
+ arch = info.bfd_arch_info->arch;
+ mach = info.bfd_arch_info->mach;
+ }
+ else
+ {
+ arch = bfd_arch_powerpc;
+ bfd_default_set_arch_mach (&abfd, arch, 0);
+ info.bfd_arch_info = bfd_get_arch_info (&abfd);
+ mach = info.bfd_arch_info->mach;
+ }
+ tdep = xmalloc (sizeof (struct gdbarch_tdep));
+ tdep->wordsize = wordsize;
+
+ /* For e500 executables, the apuinfo section is of help here. Such
+ section contains the identifier and revision number of each
+ Application-specific Processing Unit that is present on the
+ chip. The content of the section is determined by the assembler
+ which looks at each instruction and determines which unit (and
+ which version of it) can execute it. In our case we just look for
+ the existance of the section. */
+
+ if (info.abfd)
+ {
+ sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
+ if (sect)
+ {
+ arch = info.bfd_arch_info->arch;
+ mach = bfd_mach_ppc_e500;
+ bfd_default_set_arch_mach (&abfd, arch, mach);
+ info.bfd_arch_info = bfd_get_arch_info (&abfd);
+ }
+ }
+
+ gdbarch = gdbarch_alloc (&info, tdep);
+ power = arch == bfd_arch_rs6000;
+
+ /* Initialize the number of real and pseudo registers in each variant. */
+ init_variants ();
+
+ /* Choose variant. */
+ v = find_variant_by_arch (arch, mach);
+ if (!v)
+ return NULL;
+
+ tdep->regs = v->regs;
+
+ tdep->ppc_gp0_regnum = 0;
+ tdep->ppc_gplast_regnum = 31;
+ tdep->ppc_toc_regnum = 2;
+ tdep->ppc_ps_regnum = 65;
+ tdep->ppc_cr_regnum = 66;
+ tdep->ppc_lr_regnum = 67;
+ tdep->ppc_ctr_regnum = 68;
+ tdep->ppc_xer_regnum = 69;
+ if (v->mach == bfd_mach_ppc_601)
+ tdep->ppc_mq_regnum = 124;
+ else if (power)
+ tdep->ppc_mq_regnum = 70;
+ else
+ tdep->ppc_mq_regnum = -1;
+ tdep->ppc_fpscr_regnum = power ? 71 : 70;
+
+ set_gdbarch_pc_regnum (gdbarch, 64);
+ set_gdbarch_sp_regnum (gdbarch, 1);
+ set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
+ if (sysv_abi && wordsize == 8)
+ set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
+ else if (sysv_abi && wordsize == 4)
+ set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
+ else
+ {
+ set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
+ set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
+ }
+
+ if (v->arch == bfd_arch_powerpc)
+ switch (v->mach)
+ {
+ case bfd_mach_ppc:
+ tdep->ppc_vr0_regnum = 71;
+ tdep->ppc_vrsave_regnum = 104;
+ tdep->ppc_ev0_regnum = -1;
+ tdep->ppc_ev31_regnum = -1;
+ break;
+ case bfd_mach_ppc_7400:
+ tdep->ppc_vr0_regnum = 119;
+ tdep->ppc_vrsave_regnum = 152;
+ tdep->ppc_ev0_regnum = -1;
+ tdep->ppc_ev31_regnum = -1;
+ break;
+ case bfd_mach_ppc_e500:
+ tdep->ppc_gp0_regnum = 41;
+ tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
+ tdep->ppc_toc_regnum = -1;
+ tdep->ppc_ps_regnum = 1;
+ tdep->ppc_cr_regnum = 2;
+ tdep->ppc_lr_regnum = 3;
+ tdep->ppc_ctr_regnum = 4;
+ tdep->ppc_xer_regnum = 5;
+ tdep->ppc_ev0_regnum = 7;
+ tdep->ppc_ev31_regnum = 38;
+ set_gdbarch_pc_regnum (gdbarch, 0);
+ set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
+ set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
+ set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
+ set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
+ set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
+ break;
+ default:
+ tdep->ppc_vr0_regnum = -1;
+ tdep->ppc_vrsave_regnum = -1;
+ tdep->ppc_ev0_regnum = -1;
+ tdep->ppc_ev31_regnum = -1;
+ break;
+ }
+
+ /* Sanity check on registers. */
+ gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
+
+ /* Set lr_frame_offset. */
+ if (wordsize == 8)
+ tdep->lr_frame_offset = 16;
+ else if (sysv_abi)
+ tdep->lr_frame_offset = 4;
+ else
+ tdep->lr_frame_offset = 8;
+
+ /* Calculate byte offsets in raw register array. */
+ tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
+ for (i = off = 0; i < v->num_tot_regs; i++)
+ {
+ tdep->regoff[i] = off;
+ off += regsize (v->regs + i, wordsize);
+ }
+
+ /* Select instruction printer. */
+ if (arch == power)
+ set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
+ else
+ set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
+
+ set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
+
+ set_gdbarch_num_regs (gdbarch, v->nregs);
+ set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
+ set_gdbarch_register_name (gdbarch, rs6000_register_name);
+ set_gdbarch_deprecated_register_size (gdbarch, wordsize);
+ set_gdbarch_deprecated_register_bytes (gdbarch, off);
+ set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
+ set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
+ set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
+
+ set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
+ set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
+ set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
+ set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+ set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+ if (sysv_abi)
+ set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
+ else
+ set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+ set_gdbarch_char_signed (gdbarch, 0);
+
+ set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
+ if (sysv_abi && wordsize == 8)
+ /* PPC64 SYSV. */
+ set_gdbarch_frame_red_zone_size (gdbarch, 288);
+ else if (!sysv_abi && wordsize == 4)
+ /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
+ 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
+ Problem is, 220 isn't frame (16 byte) aligned. Round it up to
+ 224. */
+ set_gdbarch_frame_red_zone_size (gdbarch, 224);
+ set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
+ set_gdbarch_believe_pcc_promotion (gdbarch, 1);
+
+ set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
+ set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
+ set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
+ set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
+ /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
+ is correct for the SysV ABI when the wordsize is 8, but I'm also
+ fairly certain that ppc_sysv_abi_push_arguments() will give even
+ worse results since it only works for 32-bit code. So, for the moment,
+ we're better off calling rs6000_push_arguments() since it works for
+ 64-bit code. At some point in the future, this matter needs to be
+ revisited. */
+ if (sysv_abi && wordsize == 4)
+ set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
+ else if (sysv_abi && wordsize == 8)
+ set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
+ else
+ set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
+
+ set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
+ set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
+
+ set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+ set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
+
+ /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
+ for the descriptor and ".FN" for the entry-point -- a user
+ specifying "break FN" will unexpectedly end up with a breakpoint
+ on the descriptor and not the function. This architecture method
+ transforms any breakpoints on descriptors into breakpoints on the
+ corresponding entry point. */
+ if (sysv_abi && wordsize == 8)
+ set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
+
+ /* Not sure on this. FIXMEmgo */
+ set_gdbarch_frame_args_skip (gdbarch, 8);
+
+ if (!sysv_abi)
+ set_gdbarch_use_struct_convention (gdbarch,
+ rs6000_use_struct_convention);
+
+ set_gdbarch_deprecated_frameless_function_invocation (gdbarch, rs6000_frameless_function_invocation);
+ set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
+ set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
+
+ set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
+ set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
+
+ if (!sysv_abi)
+ {
+ /* Handle RS/6000 function pointers (which are really function
+ descriptors). */
+ set_gdbarch_convert_from_func_ptr_addr (gdbarch,
+ rs6000_convert_from_func_ptr_addr);
+ }
+ set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
+ set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
+ set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
+
+ /* Helpers for function argument information. */
+ set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
+
+ /* Hook in ABI-specific overrides, if they have been registered. */
+ gdbarch_init_osabi (info, gdbarch);
+
+ if (from_xcoff_exec)
+ {
+ /* NOTE: jimix/2003-06-09: This test should really check for
+ GDB_OSABI_AIX when that is defined and becomes
+ available. (Actually, once things are properly split apart,
+ the test goes away.) */
+ /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
+ set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
+ }
+
+ return gdbarch;
+}
+
+static void
+rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ if (tdep == NULL)
+ return;
+
+ /* FIXME: Dump gdbarch_tdep. */
+}
+
+static struct cmd_list_element *info_powerpc_cmdlist = NULL;
+
+static void
+rs6000_info_powerpc_command (char *args, int from_tty)
+{
+ help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
+}
+
+/* Initialization code. */
+
+extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
+
+void
+_initialize_rs6000_tdep (void)
+{
+ gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
+ gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
+
+ /* Add root prefix command for "info powerpc" commands */
+ add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
+ "Various POWERPC info specific commands.",
+ &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
+}
OpenPOWER on IntegriCloud