summaryrefslogtreecommitdiffstats
path: root/contrib/gdb/gdb/regcache.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/gdb/gdb/regcache.c')
-rw-r--r--contrib/gdb/gdb/regcache.c817
1 files changed, 817 insertions, 0 deletions
diff --git a/contrib/gdb/gdb/regcache.c b/contrib/gdb/gdb/regcache.c
new file mode 100644
index 0000000..2885904
--- /dev/null
+++ b/contrib/gdb/gdb/regcache.c
@@ -0,0 +1,817 @@
+/* Cache and manage the values of registers for GDB, the GNU debugger.
+ Copyright 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001
+ Free Software Foundation, Inc.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "inferior.h"
+#include "target.h"
+#include "gdbarch.h"
+#include "gdbcmd.h"
+#include "regcache.h"
+#include "gdb_assert.h"
+
+/*
+ * DATA STRUCTURE
+ *
+ * Here is the actual register cache.
+ */
+
+/* NOTE: this is a write-through cache. There is no "dirty" bit for
+ recording if the register values have been changed (eg. by the
+ user). Therefore all registers must be written back to the
+ target when appropriate. */
+
+/* REGISTERS contains the cached register values (in target byte order). */
+
+char *registers;
+
+/* REGISTER_VALID is 0 if the register needs to be fetched,
+ 1 if it has been fetched, and
+ -1 if the register value was not available.
+ "Not available" means don't try to fetch it again. */
+
+signed char *register_valid;
+
+/* The thread/process associated with the current set of registers. */
+
+static ptid_t registers_ptid;
+
+/*
+ * FUNCTIONS:
+ */
+
+/* REGISTER_CACHED()
+
+ Returns 0 if the value is not in the cache (needs fetch).
+ >0 if the value is in the cache.
+ <0 if the value is permanently unavailable (don't ask again). */
+
+int
+register_cached (int regnum)
+{
+ return register_valid[regnum];
+}
+
+/* Record that REGNUM's value is cached if STATE is >0, uncached but
+ fetchable if STATE is 0, and uncached and unfetchable if STATE is <0. */
+
+void
+set_register_cached (int regnum, int state)
+{
+ register_valid[regnum] = state;
+}
+
+/* REGISTER_CHANGED
+
+ invalidate a single register REGNUM in the cache */
+void
+register_changed (int regnum)
+{
+ set_register_cached (regnum, 0);
+}
+
+/* If REGNUM >= 0, return a pointer to register REGNUM's cache buffer area,
+ else return a pointer to the start of the cache buffer. */
+
+static char *
+register_buffer (int regnum)
+{
+ gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
+ return &registers[REGISTER_BYTE (regnum)];
+}
+
+/* Return whether register REGNUM is a real register. */
+
+static int
+real_register (int regnum)
+{
+ return regnum >= 0 && regnum < NUM_REGS;
+}
+
+/* Return whether register REGNUM is a pseudo register. */
+
+static int
+pseudo_register (int regnum)
+{
+ return regnum >= NUM_REGS && regnum < NUM_REGS + NUM_PSEUDO_REGS;
+}
+
+/* Fetch register REGNUM into the cache. */
+
+static void
+fetch_register (int regnum)
+{
+ /* NOTE: cagney/2001-12-04: Legacy targets were using fetch/store
+ pseudo-register as a way of handling registers that needed to be
+ constructed from one or more raw registers. New targets instead
+ use gdbarch register read/write. */
+ if (FETCH_PSEUDO_REGISTER_P ()
+ && pseudo_register (regnum))
+ FETCH_PSEUDO_REGISTER (regnum);
+ else
+ target_fetch_registers (regnum);
+}
+
+/* Write register REGNUM cached value to the target. */
+
+static void
+store_register (int regnum)
+{
+ /* NOTE: cagney/2001-12-04: Legacy targets were using fetch/store
+ pseudo-register as a way of handling registers that needed to be
+ constructed from one or more raw registers. New targets instead
+ use gdbarch register read/write. */
+ if (STORE_PSEUDO_REGISTER_P ()
+ && pseudo_register (regnum))
+ STORE_PSEUDO_REGISTER (regnum);
+ else
+ target_store_registers (regnum);
+}
+
+/* Low level examining and depositing of registers.
+
+ The caller is responsible for making sure that the inferior is
+ stopped before calling the fetching routines, or it will get
+ garbage. (a change from GDB version 3, in which the caller got the
+ value from the last stop). */
+
+/* REGISTERS_CHANGED ()
+
+ Indicate that registers may have changed, so invalidate the cache. */
+
+void
+registers_changed (void)
+{
+ int i;
+
+ registers_ptid = pid_to_ptid (-1);
+
+ /* Force cleanup of any alloca areas if using C alloca instead of
+ a builtin alloca. This particular call is used to clean up
+ areas allocated by low level target code which may build up
+ during lengthy interactions between gdb and the target before
+ gdb gives control to the user (ie watchpoints). */
+ alloca (0);
+
+ for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
+ set_register_cached (i, 0);
+
+ if (registers_changed_hook)
+ registers_changed_hook ();
+}
+
+/* REGISTERS_FETCHED ()
+
+ Indicate that all registers have been fetched, so mark them all valid. */
+
+/* NOTE: cagney/2001-12-04: This function does not set valid on the
+ pseudo-register range since pseudo registers are always supplied
+ using supply_register(). */
+/* FIXME: cagney/2001-12-04: This function is DEPRECATED. The target
+ code was blatting the registers[] array and then calling this.
+ Since targets should only be using supply_register() the need for
+ this function/hack is eliminated. */
+
+void
+registers_fetched (void)
+{
+ int i;
+
+ for (i = 0; i < NUM_REGS; i++)
+ set_register_cached (i, 1);
+ /* Do not assume that the pseudo-regs have also been fetched.
+ Fetching all real regs NEVER accounts for pseudo-regs. */
+}
+
+/* read_register_bytes and write_register_bytes are generally a *BAD*
+ idea. They are inefficient because they need to check for partial
+ updates, which can only be done by scanning through all of the
+ registers and seeing if the bytes that are being read/written fall
+ inside of an invalid register. [The main reason this is necessary
+ is that register sizes can vary, so a simple index won't suffice.]
+ It is far better to call read_register_gen and write_register_gen
+ if you want to get at the raw register contents, as it only takes a
+ regnum as an argument, and therefore can't do a partial register
+ update.
+
+ Prior to the recent fixes to check for partial updates, both read
+ and write_register_bytes always checked to see if any registers
+ were stale, and then called target_fetch_registers (-1) to update
+ the whole set. This caused really slowed things down for remote
+ targets. */
+
+/* Copy INLEN bytes of consecutive data from registers
+ starting with the INREGBYTE'th byte of register data
+ into memory at MYADDR. */
+
+void
+read_register_bytes (int in_start, char *in_buf, int in_len)
+{
+ int in_end = in_start + in_len;
+ int regnum;
+ char *reg_buf = alloca (MAX_REGISTER_RAW_SIZE);
+
+ /* See if we are trying to read bytes from out-of-date registers. If so,
+ update just those registers. */
+
+ for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
+ {
+ int reg_start;
+ int reg_end;
+ int reg_len;
+ int start;
+ int end;
+ int byte;
+
+ reg_start = REGISTER_BYTE (regnum);
+ reg_len = REGISTER_RAW_SIZE (regnum);
+ reg_end = reg_start + reg_len;
+
+ if (reg_end <= in_start || in_end <= reg_start)
+ /* The range the user wants to read doesn't overlap with regnum. */
+ continue;
+
+ if (REGISTER_NAME (regnum) != NULL && *REGISTER_NAME (regnum) != '\0')
+ /* Force the cache to fetch the entire register. */
+ read_register_gen (regnum, reg_buf);
+ else
+ /* Legacy note: even though this register is ``invalid'' we
+ still need to return something. It would appear that some
+ code relies on apparent gaps in the register array also
+ being returned. */
+ /* FIXME: cagney/2001-08-18: This is just silly. It defeats
+ the entire register read/write flow of control. Must
+ resist temptation to return 0xdeadbeef. */
+ memcpy (reg_buf, registers + reg_start, reg_len);
+
+ /* Legacy note: This function, for some reason, allows a NULL
+ input buffer. If the buffer is NULL, the registers are still
+ fetched, just the final transfer is skipped. */
+ if (in_buf == NULL)
+ continue;
+
+ /* start = max (reg_start, in_start) */
+ if (reg_start > in_start)
+ start = reg_start;
+ else
+ start = in_start;
+
+ /* end = min (reg_end, in_end) */
+ if (reg_end < in_end)
+ end = reg_end;
+ else
+ end = in_end;
+
+ /* Transfer just the bytes common to both IN_BUF and REG_BUF */
+ for (byte = start; byte < end; byte++)
+ {
+ in_buf[byte - in_start] = reg_buf[byte - reg_start];
+ }
+ }
+}
+
+/* Read register REGNUM into memory at MYADDR, which must be large
+ enough for REGISTER_RAW_BYTES (REGNUM). Target byte-order. If the
+ register is known to be the size of a CORE_ADDR or smaller,
+ read_register can be used instead. */
+
+static void
+legacy_read_register_gen (int regnum, char *myaddr)
+{
+ gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
+ if (! ptid_equal (registers_ptid, inferior_ptid))
+ {
+ registers_changed ();
+ registers_ptid = inferior_ptid;
+ }
+
+ if (!register_cached (regnum))
+ fetch_register (regnum);
+
+ memcpy (myaddr, register_buffer (regnum),
+ REGISTER_RAW_SIZE (regnum));
+}
+
+void
+regcache_read (int rawnum, char *buf)
+{
+ gdb_assert (rawnum >= 0 && rawnum < (NUM_REGS + NUM_PSEUDO_REGS));
+ /* For moment, just use underlying legacy code. Ulgh!!! */
+ legacy_read_register_gen (rawnum, buf);
+}
+
+void
+read_register_gen (int regnum, char *buf)
+{
+ if (! gdbarch_register_read_p (current_gdbarch))
+ {
+ legacy_read_register_gen (regnum, buf);
+ return;
+ }
+ gdbarch_register_read (current_gdbarch, regnum, buf);
+}
+
+
+/* Write register REGNUM at MYADDR to the target. MYADDR points at
+ REGISTER_RAW_BYTES(REGNUM), which must be in target byte-order. */
+
+static void
+legacy_write_register_gen (int regnum, char *myaddr)
+{
+ int size;
+ gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
+
+ /* On the sparc, writing %g0 is a no-op, so we don't even want to
+ change the registers array if something writes to this register. */
+ if (CANNOT_STORE_REGISTER (regnum))
+ return;
+
+ if (! ptid_equal (registers_ptid, inferior_ptid))
+ {
+ registers_changed ();
+ registers_ptid = inferior_ptid;
+ }
+
+ size = REGISTER_RAW_SIZE (regnum);
+
+ if (real_register (regnum))
+ {
+ /* If we have a valid copy of the register, and new value == old
+ value, then don't bother doing the actual store. */
+ if (register_cached (regnum)
+ && memcmp (register_buffer (regnum), myaddr, size) == 0)
+ return;
+ else
+ target_prepare_to_store ();
+ }
+
+ memcpy (register_buffer (regnum), myaddr, size);
+
+ set_register_cached (regnum, 1);
+ store_register (regnum);
+}
+
+void
+regcache_write (int rawnum, char *buf)
+{
+ gdb_assert (rawnum >= 0 && rawnum < (NUM_REGS + NUM_PSEUDO_REGS));
+ /* For moment, just use underlying legacy code. Ulgh!!! */
+ legacy_write_register_gen (rawnum, buf);
+}
+
+void
+write_register_gen (int regnum, char *buf)
+{
+ if (! gdbarch_register_write_p (current_gdbarch))
+ {
+ legacy_write_register_gen (regnum, buf);
+ return;
+ }
+ gdbarch_register_write (current_gdbarch, regnum, buf);
+}
+
+/* Copy INLEN bytes of consecutive data from memory at MYADDR
+ into registers starting with the MYREGSTART'th byte of register data. */
+
+void
+write_register_bytes (int myregstart, char *myaddr, int inlen)
+{
+ int myregend = myregstart + inlen;
+ int regnum;
+
+ target_prepare_to_store ();
+
+ /* Scan through the registers updating any that are covered by the
+ range myregstart<=>myregend using write_register_gen, which does
+ nice things like handling threads, and avoiding updates when the
+ new and old contents are the same. */
+
+ for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
+ {
+ int regstart, regend;
+
+ regstart = REGISTER_BYTE (regnum);
+ regend = regstart + REGISTER_RAW_SIZE (regnum);
+
+ /* Is this register completely outside the range the user is writing? */
+ if (myregend <= regstart || regend <= myregstart)
+ /* do nothing */ ;
+
+ /* Is this register completely within the range the user is writing? */
+ else if (myregstart <= regstart && regend <= myregend)
+ write_register_gen (regnum, myaddr + (regstart - myregstart));
+
+ /* The register partially overlaps the range being written. */
+ else
+ {
+ char *regbuf = (char*) alloca (MAX_REGISTER_RAW_SIZE);
+ /* What's the overlap between this register's bytes and
+ those the caller wants to write? */
+ int overlapstart = max (regstart, myregstart);
+ int overlapend = min (regend, myregend);
+
+ /* We may be doing a partial update of an invalid register.
+ Update it from the target before scribbling on it. */
+ read_register_gen (regnum, regbuf);
+
+ memcpy (registers + overlapstart,
+ myaddr + (overlapstart - myregstart),
+ overlapend - overlapstart);
+
+ store_register (regnum);
+ }
+ }
+}
+
+
+/* Return the contents of register REGNUM as an unsigned integer. */
+
+ULONGEST
+read_register (int regnum)
+{
+ char *buf = alloca (REGISTER_RAW_SIZE (regnum));
+ read_register_gen (regnum, buf);
+ return (extract_unsigned_integer (buf, REGISTER_RAW_SIZE (regnum)));
+}
+
+ULONGEST
+read_register_pid (int regnum, ptid_t ptid)
+{
+ ptid_t save_ptid;
+ int save_pid;
+ CORE_ADDR retval;
+
+ if (ptid_equal (ptid, inferior_ptid))
+ return read_register (regnum);
+
+ save_ptid = inferior_ptid;
+
+ inferior_ptid = ptid;
+
+ retval = read_register (regnum);
+
+ inferior_ptid = save_ptid;
+
+ return retval;
+}
+
+/* Return the contents of register REGNUM as a signed integer. */
+
+LONGEST
+read_signed_register (int regnum)
+{
+ void *buf = alloca (REGISTER_RAW_SIZE (regnum));
+ read_register_gen (regnum, buf);
+ return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum)));
+}
+
+LONGEST
+read_signed_register_pid (int regnum, ptid_t ptid)
+{
+ ptid_t save_ptid;
+ LONGEST retval;
+
+ if (ptid_equal (ptid, inferior_ptid))
+ return read_signed_register (regnum);
+
+ save_ptid = inferior_ptid;
+
+ inferior_ptid = ptid;
+
+ retval = read_signed_register (regnum);
+
+ inferior_ptid = save_ptid;
+
+ return retval;
+}
+
+/* Store VALUE into the raw contents of register number REGNUM. */
+
+void
+write_register (int regnum, LONGEST val)
+{
+ void *buf;
+ int size;
+ size = REGISTER_RAW_SIZE (regnum);
+ buf = alloca (size);
+ store_signed_integer (buf, size, (LONGEST) val);
+ write_register_gen (regnum, buf);
+}
+
+void
+write_register_pid (int regnum, CORE_ADDR val, ptid_t ptid)
+{
+ ptid_t save_ptid;
+
+ if (ptid_equal (ptid, inferior_ptid))
+ {
+ write_register (regnum, val);
+ return;
+ }
+
+ save_ptid = inferior_ptid;
+
+ inferior_ptid = ptid;
+
+ write_register (regnum, val);
+
+ inferior_ptid = save_ptid;
+}
+
+/* SUPPLY_REGISTER()
+
+ Record that register REGNUM contains VAL. This is used when the
+ value is obtained from the inferior or core dump, so there is no
+ need to store the value there.
+
+ If VAL is a NULL pointer, then it's probably an unsupported register.
+ We just set its value to all zeros. We might want to record this
+ fact, and report it to the users of read_register and friends. */
+
+void
+supply_register (int regnum, char *val)
+{
+#if 1
+ if (! ptid_equal (registers_ptid, inferior_ptid))
+ {
+ registers_changed ();
+ registers_ptid = inferior_ptid;
+ }
+#endif
+
+ set_register_cached (regnum, 1);
+ if (val)
+ memcpy (register_buffer (regnum), val,
+ REGISTER_RAW_SIZE (regnum));
+ else
+ memset (register_buffer (regnum), '\000',
+ REGISTER_RAW_SIZE (regnum));
+
+ /* On some architectures, e.g. HPPA, there are a few stray bits in
+ some registers, that the rest of the code would like to ignore. */
+
+ /* NOTE: cagney/2001-03-16: The macro CLEAN_UP_REGISTER_VALUE is
+ going to be deprecated. Instead architectures will leave the raw
+ register value as is and instead clean things up as they pass
+ through the method gdbarch_register_read() clean up the
+ values. */
+
+#ifdef DEPRECATED_CLEAN_UP_REGISTER_VALUE
+ DEPRECATED_CLEAN_UP_REGISTER_VALUE (regnum, register_buffer (regnum));
+#endif
+}
+
+void
+regcache_collect (int regnum, void *buf)
+{
+ memcpy (buf, register_buffer (regnum), REGISTER_RAW_SIZE (regnum));
+}
+
+
+/* read_pc, write_pc, read_sp, write_sp, read_fp, write_fp, etc.
+ Special handling for registers PC, SP, and FP. */
+
+/* NOTE: cagney/2001-02-18: The functions generic_target_read_pc(),
+ read_pc_pid(), read_pc(), generic_target_write_pc(),
+ write_pc_pid(), write_pc(), generic_target_read_sp(), read_sp(),
+ generic_target_write_sp(), write_sp(), generic_target_read_fp(),
+ read_fp(), generic_target_write_fp(), write_fp will eventually be
+ moved out of the reg-cache into either frame.[hc] or to the
+ multi-arch framework. The are not part of the raw register cache. */
+
+/* This routine is getting awfully cluttered with #if's. It's probably
+ time to turn this into READ_PC and define it in the tm.h file.
+ Ditto for write_pc.
+
+ 1999-06-08: The following were re-written so that it assumes the
+ existence of a TARGET_READ_PC et.al. macro. A default generic
+ version of that macro is made available where needed.
+
+ Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled
+ by the multi-arch framework, it will eventually be possible to
+ eliminate the intermediate read_pc_pid(). The client would call
+ TARGET_READ_PC directly. (cagney). */
+
+CORE_ADDR
+generic_target_read_pc (ptid_t ptid)
+{
+#ifdef PC_REGNUM
+ if (PC_REGNUM >= 0)
+ {
+ CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, ptid));
+ return pc_val;
+ }
+#endif
+ internal_error (__FILE__, __LINE__,
+ "generic_target_read_pc");
+ return 0;
+}
+
+CORE_ADDR
+read_pc_pid (ptid_t ptid)
+{
+ ptid_t saved_inferior_ptid;
+ CORE_ADDR pc_val;
+
+ /* In case ptid != inferior_ptid. */
+ saved_inferior_ptid = inferior_ptid;
+ inferior_ptid = ptid;
+
+ pc_val = TARGET_READ_PC (ptid);
+
+ inferior_ptid = saved_inferior_ptid;
+ return pc_val;
+}
+
+CORE_ADDR
+read_pc (void)
+{
+ return read_pc_pid (inferior_ptid);
+}
+
+void
+generic_target_write_pc (CORE_ADDR pc, ptid_t ptid)
+{
+#ifdef PC_REGNUM
+ if (PC_REGNUM >= 0)
+ write_register_pid (PC_REGNUM, pc, ptid);
+ if (NPC_REGNUM >= 0)
+ write_register_pid (NPC_REGNUM, pc + 4, ptid);
+ if (NNPC_REGNUM >= 0)
+ write_register_pid (NNPC_REGNUM, pc + 8, ptid);
+#else
+ internal_error (__FILE__, __LINE__,
+ "generic_target_write_pc");
+#endif
+}
+
+void
+write_pc_pid (CORE_ADDR pc, ptid_t ptid)
+{
+ ptid_t saved_inferior_ptid;
+
+ /* In case ptid != inferior_ptid. */
+ saved_inferior_ptid = inferior_ptid;
+ inferior_ptid = ptid;
+
+ TARGET_WRITE_PC (pc, ptid);
+
+ inferior_ptid = saved_inferior_ptid;
+}
+
+void
+write_pc (CORE_ADDR pc)
+{
+ write_pc_pid (pc, inferior_ptid);
+}
+
+/* Cope with strage ways of getting to the stack and frame pointers */
+
+CORE_ADDR
+generic_target_read_sp (void)
+{
+#ifdef SP_REGNUM
+ if (SP_REGNUM >= 0)
+ return read_register (SP_REGNUM);
+#endif
+ internal_error (__FILE__, __LINE__,
+ "generic_target_read_sp");
+}
+
+CORE_ADDR
+read_sp (void)
+{
+ return TARGET_READ_SP ();
+}
+
+void
+generic_target_write_sp (CORE_ADDR val)
+{
+#ifdef SP_REGNUM
+ if (SP_REGNUM >= 0)
+ {
+ write_register (SP_REGNUM, val);
+ return;
+ }
+#endif
+ internal_error (__FILE__, __LINE__,
+ "generic_target_write_sp");
+}
+
+void
+write_sp (CORE_ADDR val)
+{
+ TARGET_WRITE_SP (val);
+}
+
+CORE_ADDR
+generic_target_read_fp (void)
+{
+#ifdef FP_REGNUM
+ if (FP_REGNUM >= 0)
+ return read_register (FP_REGNUM);
+#endif
+ internal_error (__FILE__, __LINE__,
+ "generic_target_read_fp");
+}
+
+CORE_ADDR
+read_fp (void)
+{
+ return TARGET_READ_FP ();
+}
+
+void
+generic_target_write_fp (CORE_ADDR val)
+{
+#ifdef FP_REGNUM
+ if (FP_REGNUM >= 0)
+ {
+ write_register (FP_REGNUM, val);
+ return;
+ }
+#endif
+ internal_error (__FILE__, __LINE__,
+ "generic_target_write_fp");
+}
+
+void
+write_fp (CORE_ADDR val)
+{
+ TARGET_WRITE_FP (val);
+}
+
+/* ARGSUSED */
+static void
+reg_flush_command (char *command, int from_tty)
+{
+ /* Force-flush the register cache. */
+ registers_changed ();
+ if (from_tty)
+ printf_filtered ("Register cache flushed.\n");
+}
+
+static void
+build_regcache (void)
+{
+ int i;
+ int sizeof_register_valid;
+ /* Come up with the real size of the registers buffer. */
+ int sizeof_registers = REGISTER_BYTES; /* OK use. */
+ for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
+ {
+ long regend;
+ /* Keep extending the buffer so that there is always enough
+ space for all registers. The comparison is necessary since
+ legacy code is free to put registers in random places in the
+ buffer separated by holes. Once REGISTER_BYTE() is killed
+ this can be greatly simplified. */
+ /* FIXME: cagney/2001-12-04: This code shouldn't need to use
+ REGISTER_BYTE(). Unfortunatly, legacy code likes to lay the
+ buffer out so that certain registers just happen to overlap.
+ Ulgh! New targets use gdbarch's register read/write and
+ entirely avoid this uglyness. */
+ regend = REGISTER_BYTE (i) + REGISTER_RAW_SIZE (i);
+ if (sizeof_registers < regend)
+ sizeof_registers = regend;
+ }
+ registers = xmalloc (sizeof_registers);
+ sizeof_register_valid = ((NUM_REGS + NUM_PSEUDO_REGS)
+ * sizeof (*register_valid));
+ register_valid = xmalloc (sizeof_register_valid);
+ memset (register_valid, 0, sizeof_register_valid);
+}
+
+void
+_initialize_regcache (void)
+{
+ build_regcache ();
+
+ register_gdbarch_swap (&registers, sizeof (registers), NULL);
+ register_gdbarch_swap (&register_valid, sizeof (register_valid), NULL);
+ register_gdbarch_swap (NULL, 0, build_regcache);
+
+ add_com ("flushregs", class_maintenance, reg_flush_command,
+ "Force gdb to flush its register cache (maintainer command)");
+
+ /* Initialize the thread/process associated with the current set of
+ registers. For now, -1 is special, and means `no current process'. */
+ registers_ptid = pid_to_ptid (-1);
+}
OpenPOWER on IntegriCloud