summaryrefslogtreecommitdiffstats
path: root/contrib/gdb/gdb/arm-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/gdb/gdb/arm-tdep.c')
-rw-r--r--contrib/gdb/gdb/arm-tdep.c3018
1 files changed, 3018 insertions, 0 deletions
diff --git a/contrib/gdb/gdb/arm-tdep.c b/contrib/gdb/gdb/arm-tdep.c
new file mode 100644
index 0000000..0034690
--- /dev/null
+++ b/contrib/gdb/gdb/arm-tdep.c
@@ -0,0 +1,3018 @@
+/* Common target dependent code for GDB on ARM systems.
+ Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
+ 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include <ctype.h> /* XXX for isupper () */
+
+#include "defs.h"
+#include "frame.h"
+#include "inferior.h"
+#include "gdbcmd.h"
+#include "gdbcore.h"
+#include "gdb_string.h"
+#include "dis-asm.h" /* For register styles. */
+#include "regcache.h"
+#include "doublest.h"
+#include "value.h"
+#include "arch-utils.h"
+#include "osabi.h"
+#include "frame-unwind.h"
+#include "frame-base.h"
+#include "trad-frame.h"
+
+#include "arm-tdep.h"
+#include "gdb/sim-arm.h"
+
+#include "elf-bfd.h"
+#include "coff/internal.h"
+#include "elf/arm.h"
+
+#include "gdb_assert.h"
+
+static int arm_debug;
+
+/* Each OS has a different mechanism for accessing the various
+ registers stored in the sigcontext structure.
+
+ SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
+ function pointer) which may be used to determine the addresses
+ of the various saved registers in the sigcontext structure.
+
+ For the ARM target, there are three parameters to this function.
+ The first is the pc value of the frame under consideration, the
+ second the stack pointer of this frame, and the last is the
+ register number to fetch.
+
+ If the tm.h file does not define this macro, then it's assumed that
+ no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
+ be 0.
+
+ When it comes time to multi-arching this code, see the identically
+ named machinery in ia64-tdep.c for an example of how it could be
+ done. It should not be necessary to modify the code below where
+ this macro is used. */
+
+#ifdef SIGCONTEXT_REGISTER_ADDRESS
+#ifndef SIGCONTEXT_REGISTER_ADDRESS_P
+#define SIGCONTEXT_REGISTER_ADDRESS_P() 1
+#endif
+#else
+#define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
+#define SIGCONTEXT_REGISTER_ADDRESS_P() 0
+#endif
+
+/* Macros for setting and testing a bit in a minimal symbol that marks
+ it as Thumb function. The MSB of the minimal symbol's "info" field
+ is used for this purpose.
+
+ MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
+ MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
+
+#define MSYMBOL_SET_SPECIAL(msym) \
+ MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
+ | 0x80000000)
+
+#define MSYMBOL_IS_SPECIAL(msym) \
+ (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
+
+/* The list of available "set arm ..." and "show arm ..." commands. */
+static struct cmd_list_element *setarmcmdlist = NULL;
+static struct cmd_list_element *showarmcmdlist = NULL;
+
+/* The type of floating-point to use. Keep this in sync with enum
+ arm_float_model, and the help string in _initialize_arm_tdep. */
+static const char *fp_model_strings[] =
+{
+ "auto",
+ "softfpa",
+ "fpa",
+ "softvfp",
+ "vfp"
+};
+
+/* A variable that can be configured by the user. */
+static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
+static const char *current_fp_model = "auto";
+
+/* Number of different reg name sets (options). */
+static int num_disassembly_options;
+
+/* We have more registers than the disassembler as gdb can print the value
+ of special registers as well.
+ The general register names are overwritten by whatever is being used by
+ the disassembler at the moment. We also adjust the case of cpsr and fps. */
+
+/* Initial value: Register names used in ARM's ISA documentation. */
+static char * arm_register_name_strings[] =
+{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
+ "r4", "r5", "r6", "r7", /* 4 5 6 7 */
+ "r8", "r9", "r10", "r11", /* 8 9 10 11 */
+ "r12", "sp", "lr", "pc", /* 12 13 14 15 */
+ "f0", "f1", "f2", "f3", /* 16 17 18 19 */
+ "f4", "f5", "f6", "f7", /* 20 21 22 23 */
+ "fps", "cpsr" }; /* 24 25 */
+static char **arm_register_names = arm_register_name_strings;
+
+/* Valid register name styles. */
+static const char **valid_disassembly_styles;
+
+/* Disassembly style to use. Default to "std" register names. */
+static const char *disassembly_style;
+/* Index to that option in the opcodes table. */
+static int current_option;
+
+/* This is used to keep the bfd arch_info in sync with the disassembly
+ style. */
+static void set_disassembly_style_sfunc(char *, int,
+ struct cmd_list_element *);
+static void set_disassembly_style (void);
+
+static void convert_from_extended (const struct floatformat *, const void *,
+ void *);
+static void convert_to_extended (const struct floatformat *, void *,
+ const void *);
+
+struct arm_prologue_cache
+{
+ /* The stack pointer at the time this frame was created; i.e. the
+ caller's stack pointer when this function was called. It is used
+ to identify this frame. */
+ CORE_ADDR prev_sp;
+
+ /* The frame base for this frame is just prev_sp + frame offset -
+ frame size. FRAMESIZE is the size of this stack frame, and
+ FRAMEOFFSET if the initial offset from the stack pointer (this
+ frame's stack pointer, not PREV_SP) to the frame base. */
+
+ int framesize;
+ int frameoffset;
+
+ /* The register used to hold the frame pointer for this frame. */
+ int framereg;
+
+ /* Saved register offsets. */
+ struct trad_frame_saved_reg *saved_regs;
+};
+
+/* Addresses for calling Thumb functions have the bit 0 set.
+ Here are some macros to test, set, or clear bit 0 of addresses. */
+#define IS_THUMB_ADDR(addr) ((addr) & 1)
+#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
+#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
+
+/* Set to true if the 32-bit mode is in use. */
+
+int arm_apcs_32 = 1;
+
+/* Flag set by arm_fix_call_dummy that tells whether the target
+ function is a Thumb function. This flag is checked by
+ arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
+ its use in valops.c) to pass the function address as an additional
+ parameter. */
+
+static int target_is_thumb;
+
+/* Flag set by arm_fix_call_dummy that tells whether the calling
+ function is a Thumb function. This flag is checked by
+ arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
+
+static int caller_is_thumb;
+
+/* Determine if the program counter specified in MEMADDR is in a Thumb
+ function. */
+
+int
+arm_pc_is_thumb (CORE_ADDR memaddr)
+{
+ struct minimal_symbol *sym;
+
+ /* If bit 0 of the address is set, assume this is a Thumb address. */
+ if (IS_THUMB_ADDR (memaddr))
+ return 1;
+
+ /* Thumb functions have a "special" bit set in minimal symbols. */
+ sym = lookup_minimal_symbol_by_pc (memaddr);
+ if (sym)
+ {
+ return (MSYMBOL_IS_SPECIAL (sym));
+ }
+ else
+ {
+ return 0;
+ }
+}
+
+/* Determine if the program counter specified in MEMADDR is in a call
+ dummy being called from a Thumb function. */
+
+int
+arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
+{
+ CORE_ADDR sp = read_sp ();
+
+ /* FIXME: Until we switch for the new call dummy macros, this heuristic
+ is the best we can do. We are trying to determine if the pc is on
+ the stack, which (hopefully) will only happen in a call dummy.
+ We hope the current stack pointer is not so far alway from the dummy
+ frame location (true if we have not pushed large data structures or
+ gone too many levels deep) and that our 1024 is not enough to consider
+ code regions as part of the stack (true for most practical purposes). */
+ if (DEPRECATED_PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
+ return caller_is_thumb;
+ else
+ return 0;
+}
+
+/* Remove useless bits from addresses in a running program. */
+static CORE_ADDR
+arm_addr_bits_remove (CORE_ADDR val)
+{
+ if (arm_apcs_32)
+ return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
+ else
+ return (val & 0x03fffffc);
+}
+
+/* When reading symbols, we need to zap the low bit of the address,
+ which may be set to 1 for Thumb functions. */
+static CORE_ADDR
+arm_smash_text_address (CORE_ADDR val)
+{
+ return val & ~1;
+}
+
+/* Immediately after a function call, return the saved pc. Can't
+ always go through the frames for this because on some machines the
+ new frame is not set up until the new function executes some
+ instructions. */
+
+static CORE_ADDR
+arm_saved_pc_after_call (struct frame_info *frame)
+{
+ return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
+}
+
+/* Determine whether the function invocation represented by FI has a
+ frame on the stack associated with it. If it does return zero,
+ otherwise return 1. */
+
+static int
+arm_frameless_function_invocation (struct frame_info *fi)
+{
+ CORE_ADDR func_start, after_prologue;
+ int frameless;
+
+ /* Sometimes we have functions that do a little setup (like saving the
+ vN registers with the stmdb instruction, but DO NOT set up a frame.
+ The symbol table will report this as a prologue. However, it is
+ important not to try to parse these partial frames as frames, or we
+ will get really confused.
+
+ So I will demand 3 instructions between the start & end of the
+ prologue before I call it a real prologue, i.e. at least
+ mov ip, sp,
+ stmdb sp!, {}
+ sub sp, ip, #4. */
+
+ func_start = (get_frame_func (fi) + FUNCTION_START_OFFSET);
+ after_prologue = SKIP_PROLOGUE (func_start);
+
+ /* There are some frameless functions whose first two instructions
+ follow the standard APCS form, in which case after_prologue will
+ be func_start + 8. */
+
+ frameless = (after_prologue < func_start + 12);
+ return frameless;
+}
+
+/* A typical Thumb prologue looks like this:
+ push {r7, lr}
+ add sp, sp, #-28
+ add r7, sp, #12
+ Sometimes the latter instruction may be replaced by:
+ mov r7, sp
+
+ or like this:
+ push {r7, lr}
+ mov r7, sp
+ sub sp, #12
+
+ or, on tpcs, like this:
+ sub sp,#16
+ push {r7, lr}
+ (many instructions)
+ mov r7, sp
+ sub sp, #12
+
+ There is always one instruction of three classes:
+ 1 - push
+ 2 - setting of r7
+ 3 - adjusting of sp
+
+ When we have found at least one of each class we are done with the prolog.
+ Note that the "sub sp, #NN" before the push does not count.
+ */
+
+static CORE_ADDR
+thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
+{
+ CORE_ADDR current_pc;
+ /* findmask:
+ bit 0 - push { rlist }
+ bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
+ bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
+ */
+ int findmask = 0;
+
+ for (current_pc = pc;
+ current_pc + 2 < func_end && current_pc < pc + 40;
+ current_pc += 2)
+ {
+ unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
+
+ if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
+ {
+ findmask |= 1; /* push found */
+ }
+ else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
+ sub sp, #simm */
+ {
+ if ((findmask & 1) == 0) /* before push ? */
+ continue;
+ else
+ findmask |= 4; /* add/sub sp found */
+ }
+ else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
+ {
+ findmask |= 2; /* setting of r7 found */
+ }
+ else if (insn == 0x466f) /* mov r7, sp */
+ {
+ findmask |= 2; /* setting of r7 found */
+ }
+ else if (findmask == (4+2+1))
+ {
+ /* We have found one of each type of prologue instruction */
+ break;
+ }
+ else
+ /* Something in the prolog that we don't care about or some
+ instruction from outside the prolog scheduled here for
+ optimization. */
+ continue;
+ }
+
+ return current_pc;
+}
+
+/* Advance the PC across any function entry prologue instructions to
+ reach some "real" code.
+
+ The APCS (ARM Procedure Call Standard) defines the following
+ prologue:
+
+ mov ip, sp
+ [stmfd sp!, {a1,a2,a3,a4}]
+ stmfd sp!, {...,fp,ip,lr,pc}
+ [stfe f7, [sp, #-12]!]
+ [stfe f6, [sp, #-12]!]
+ [stfe f5, [sp, #-12]!]
+ [stfe f4, [sp, #-12]!]
+ sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
+
+static CORE_ADDR
+arm_skip_prologue (CORE_ADDR pc)
+{
+ unsigned long inst;
+ CORE_ADDR skip_pc;
+ CORE_ADDR func_addr, func_end = 0;
+ char *func_name;
+ struct symtab_and_line sal;
+
+ /* If we're in a dummy frame, don't even try to skip the prologue. */
+ if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
+ return pc;
+
+ /* See what the symbol table says. */
+
+ if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
+ {
+ struct symbol *sym;
+
+ /* Found a function. */
+ sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
+ if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
+ {
+ /* Don't use this trick for assembly source files. */
+ sal = find_pc_line (func_addr, 0);
+ if ((sal.line != 0) && (sal.end < func_end))
+ return sal.end;
+ }
+ }
+
+ /* Check if this is Thumb code. */
+ if (arm_pc_is_thumb (pc))
+ return thumb_skip_prologue (pc, func_end);
+
+ /* Can't find the prologue end in the symbol table, try it the hard way
+ by disassembling the instructions. */
+
+ /* Like arm_scan_prologue, stop no later than pc + 64. */
+ if (func_end == 0 || func_end > pc + 64)
+ func_end = pc + 64;
+
+ for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
+ {
+ inst = read_memory_integer (skip_pc, 4);
+
+ /* "mov ip, sp" is no longer a required part of the prologue. */
+ if (inst == 0xe1a0c00d) /* mov ip, sp */
+ continue;
+
+ if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
+ continue;
+
+ if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
+ continue;
+
+ /* Some prologues begin with "str lr, [sp, #-4]!". */
+ if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
+ continue;
+
+ if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
+ continue;
+
+ if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
+ continue;
+
+ /* Any insns after this point may float into the code, if it makes
+ for better instruction scheduling, so we skip them only if we
+ find them, but still consider the function to be frame-ful. */
+
+ /* We may have either one sfmfd instruction here, or several stfe
+ insns, depending on the version of floating point code we
+ support. */
+ if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
+ continue;
+
+ if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
+ continue;
+
+ if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
+ continue;
+
+ if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
+ continue;
+
+ if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
+ (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
+ (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
+ continue;
+
+ if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
+ (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
+ (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
+ continue;
+
+ /* Un-recognized instruction; stop scanning. */
+ break;
+ }
+
+ return skip_pc; /* End of prologue */
+}
+
+/* *INDENT-OFF* */
+/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
+ This function decodes a Thumb function prologue to determine:
+ 1) the size of the stack frame
+ 2) which registers are saved on it
+ 3) the offsets of saved regs
+ 4) the offset from the stack pointer to the frame pointer
+
+ A typical Thumb function prologue would create this stack frame
+ (offsets relative to FP)
+ old SP -> 24 stack parameters
+ 20 LR
+ 16 R7
+ R7 -> 0 local variables (16 bytes)
+ SP -> -12 additional stack space (12 bytes)
+ The frame size would thus be 36 bytes, and the frame offset would be
+ 12 bytes. The frame register is R7.
+
+ The comments for thumb_skip_prolog() describe the algorithm we use
+ to detect the end of the prolog. */
+/* *INDENT-ON* */
+
+static void
+thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
+{
+ CORE_ADDR prologue_start;
+ CORE_ADDR prologue_end;
+ CORE_ADDR current_pc;
+ /* Which register has been copied to register n? */
+ int saved_reg[16];
+ /* findmask:
+ bit 0 - push { rlist }
+ bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
+ bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
+ */
+ int findmask = 0;
+ int i;
+
+ if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
+ {
+ struct symtab_and_line sal = find_pc_line (prologue_start, 0);
+
+ if (sal.line == 0) /* no line info, use current PC */
+ prologue_end = prev_pc;
+ else if (sal.end < prologue_end) /* next line begins after fn end */
+ prologue_end = sal.end; /* (probably means no prologue) */
+ }
+ else
+ /* We're in the boondocks: allow for
+ 16 pushes, an add, and "mv fp,sp". */
+ prologue_end = prologue_start + 40;
+
+ prologue_end = min (prologue_end, prev_pc);
+
+ /* Initialize the saved register map. When register H is copied to
+ register L, we will put H in saved_reg[L]. */
+ for (i = 0; i < 16; i++)
+ saved_reg[i] = i;
+
+ /* Search the prologue looking for instructions that set up the
+ frame pointer, adjust the stack pointer, and save registers.
+ Do this until all basic prolog instructions are found. */
+
+ cache->framesize = 0;
+ for (current_pc = prologue_start;
+ (current_pc < prologue_end) && ((findmask & 7) != 7);
+ current_pc += 2)
+ {
+ unsigned short insn;
+ int regno;
+ int offset;
+
+ insn = read_memory_unsigned_integer (current_pc, 2);
+
+ if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
+ {
+ int mask;
+ findmask |= 1; /* push found */
+ /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
+ whether to save LR (R14). */
+ mask = (insn & 0xff) | ((insn & 0x100) << 6);
+
+ /* Calculate offsets of saved R0-R7 and LR. */
+ for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
+ if (mask & (1 << regno))
+ {
+ cache->framesize += 4;
+ cache->saved_regs[saved_reg[regno]].addr = -cache->framesize;
+ /* Reset saved register map. */
+ saved_reg[regno] = regno;
+ }
+ }
+ else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
+ sub sp, #simm */
+ {
+ if ((findmask & 1) == 0) /* before push? */
+ continue;
+ else
+ findmask |= 4; /* add/sub sp found */
+
+ offset = (insn & 0x7f) << 2; /* get scaled offset */
+ if (insn & 0x80) /* is it signed? (==subtracting) */
+ {
+ cache->frameoffset += offset;
+ offset = -offset;
+ }
+ cache->framesize -= offset;
+ }
+ else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
+ {
+ findmask |= 2; /* setting of r7 found */
+ cache->framereg = THUMB_FP_REGNUM;
+ /* get scaled offset */
+ cache->frameoffset = (insn & 0xff) << 2;
+ }
+ else if (insn == 0x466f) /* mov r7, sp */
+ {
+ findmask |= 2; /* setting of r7 found */
+ cache->framereg = THUMB_FP_REGNUM;
+ cache->frameoffset = 0;
+ saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
+ }
+ else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
+ {
+ int lo_reg = insn & 7; /* dest. register (r0-r7) */
+ int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
+ saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
+ }
+ else
+ /* Something in the prolog that we don't care about or some
+ instruction from outside the prolog scheduled here for
+ optimization. */
+ continue;
+ }
+}
+
+/* This function decodes an ARM function prologue to determine:
+ 1) the size of the stack frame
+ 2) which registers are saved on it
+ 3) the offsets of saved regs
+ 4) the offset from the stack pointer to the frame pointer
+ This information is stored in the "extra" fields of the frame_info.
+
+ There are two basic forms for the ARM prologue. The fixed argument
+ function call will look like:
+
+ mov ip, sp
+ stmfd sp!, {fp, ip, lr, pc}
+ sub fp, ip, #4
+ [sub sp, sp, #4]
+
+ Which would create this stack frame (offsets relative to FP):
+ IP -> 4 (caller's stack)
+ FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
+ -4 LR (return address in caller)
+ -8 IP (copy of caller's SP)
+ -12 FP (caller's FP)
+ SP -> -28 Local variables
+
+ The frame size would thus be 32 bytes, and the frame offset would be
+ 28 bytes. The stmfd call can also save any of the vN registers it
+ plans to use, which increases the frame size accordingly.
+
+ Note: The stored PC is 8 off of the STMFD instruction that stored it
+ because the ARM Store instructions always store PC + 8 when you read
+ the PC register.
+
+ A variable argument function call will look like:
+
+ mov ip, sp
+ stmfd sp!, {a1, a2, a3, a4}
+ stmfd sp!, {fp, ip, lr, pc}
+ sub fp, ip, #20
+
+ Which would create this stack frame (offsets relative to FP):
+ IP -> 20 (caller's stack)
+ 16 A4
+ 12 A3
+ 8 A2
+ 4 A1
+ FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
+ -4 LR (return address in caller)
+ -8 IP (copy of caller's SP)
+ -12 FP (caller's FP)
+ SP -> -28 Local variables
+
+ The frame size would thus be 48 bytes, and the frame offset would be
+ 28 bytes.
+
+ There is another potential complication, which is that the optimizer
+ will try to separate the store of fp in the "stmfd" instruction from
+ the "sub fp, ip, #NN" instruction. Almost anything can be there, so
+ we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
+
+ Also, note, the original version of the ARM toolchain claimed that there
+ should be an
+
+ instruction at the end of the prologue. I have never seen GCC produce
+ this, and the ARM docs don't mention it. We still test for it below in
+ case it happens...
+
+ */
+
+static void
+arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
+{
+ int regno, sp_offset, fp_offset, ip_offset;
+ CORE_ADDR prologue_start, prologue_end, current_pc;
+ CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
+
+ /* Assume there is no frame until proven otherwise. */
+ cache->framereg = ARM_SP_REGNUM;
+ cache->framesize = 0;
+ cache->frameoffset = 0;
+
+ /* Check for Thumb prologue. */
+ if (arm_pc_is_thumb (prev_pc))
+ {
+ thumb_scan_prologue (prev_pc, cache);
+ return;
+ }
+
+ /* Find the function prologue. If we can't find the function in
+ the symbol table, peek in the stack frame to find the PC. */
+ if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
+ {
+ /* One way to find the end of the prologue (which works well
+ for unoptimized code) is to do the following:
+
+ struct symtab_and_line sal = find_pc_line (prologue_start, 0);
+
+ if (sal.line == 0)
+ prologue_end = prev_pc;
+ else if (sal.end < prologue_end)
+ prologue_end = sal.end;
+
+ This mechanism is very accurate so long as the optimizer
+ doesn't move any instructions from the function body into the
+ prologue. If this happens, sal.end will be the last
+ instruction in the first hunk of prologue code just before
+ the first instruction that the scheduler has moved from
+ the body to the prologue.
+
+ In order to make sure that we scan all of the prologue
+ instructions, we use a slightly less accurate mechanism which
+ may scan more than necessary. To help compensate for this
+ lack of accuracy, the prologue scanning loop below contains
+ several clauses which'll cause the loop to terminate early if
+ an implausible prologue instruction is encountered.
+
+ The expression
+
+ prologue_start + 64
+
+ is a suitable endpoint since it accounts for the largest
+ possible prologue plus up to five instructions inserted by
+ the scheduler. */
+
+ if (prologue_end > prologue_start + 64)
+ {
+ prologue_end = prologue_start + 64; /* See above. */
+ }
+ }
+ else
+ {
+ /* We have no symbol information. Our only option is to assume this
+ function has a standard stack frame and the normal frame register.
+ Then, we can find the value of our frame pointer on entrance to
+ the callee (or at the present moment if this is the innermost frame).
+ The value stored there should be the address of the stmfd + 8. */
+ CORE_ADDR frame_loc;
+ LONGEST return_value;
+
+ frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
+ if (!safe_read_memory_integer (frame_loc, 4, &return_value))
+ return;
+ else
+ {
+ prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
+ prologue_end = prologue_start + 64; /* See above. */
+ }
+ }
+
+ if (prev_pc < prologue_end)
+ prologue_end = prev_pc;
+
+ /* Now search the prologue looking for instructions that set up the
+ frame pointer, adjust the stack pointer, and save registers.
+
+ Be careful, however, and if it doesn't look like a prologue,
+ don't try to scan it. If, for instance, a frameless function
+ begins with stmfd sp!, then we will tell ourselves there is
+ a frame, which will confuse stack traceback, as well as "finish"
+ and other operations that rely on a knowledge of the stack
+ traceback.
+
+ In the APCS, the prologue should start with "mov ip, sp" so
+ if we don't see this as the first insn, we will stop.
+
+ [Note: This doesn't seem to be true any longer, so it's now an
+ optional part of the prologue. - Kevin Buettner, 2001-11-20]
+
+ [Note further: The "mov ip,sp" only seems to be missing in
+ frameless functions at optimization level "-O2" or above,
+ in which case it is often (but not always) replaced by
+ "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
+
+ sp_offset = fp_offset = ip_offset = 0;
+
+ for (current_pc = prologue_start;
+ current_pc < prologue_end;
+ current_pc += 4)
+ {
+ unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
+
+ if (insn == 0xe1a0c00d) /* mov ip, sp */
+ {
+ ip_offset = 0;
+ continue;
+ }
+ else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
+ {
+ unsigned imm = insn & 0xff; /* immediate value */
+ unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
+ imm = (imm >> rot) | (imm << (32 - rot));
+ ip_offset = imm;
+ continue;
+ }
+ else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
+ {
+ unsigned imm = insn & 0xff; /* immediate value */
+ unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
+ imm = (imm >> rot) | (imm << (32 - rot));
+ ip_offset = -imm;
+ continue;
+ }
+ else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
+ {
+ sp_offset -= 4;
+ cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
+ continue;
+ }
+ else if ((insn & 0xffff0000) == 0xe92d0000)
+ /* stmfd sp!, {..., fp, ip, lr, pc}
+ or
+ stmfd sp!, {a1, a2, a3, a4} */
+ {
+ int mask = insn & 0xffff;
+
+ /* Calculate offsets of saved registers. */
+ for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
+ if (mask & (1 << regno))
+ {
+ sp_offset -= 4;
+ cache->saved_regs[regno].addr = sp_offset;
+ }
+ }
+ else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
+ (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
+ (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
+ {
+ /* No need to add this to saved_regs -- it's just an arg reg. */
+ continue;
+ }
+ else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
+ (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
+ (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
+ {
+ /* No need to add this to saved_regs -- it's just an arg reg. */
+ continue;
+ }
+ else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
+ {
+ unsigned imm = insn & 0xff; /* immediate value */
+ unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
+ imm = (imm >> rot) | (imm << (32 - rot));
+ fp_offset = -imm + ip_offset;
+ cache->framereg = ARM_FP_REGNUM;
+ }
+ else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
+ {
+ unsigned imm = insn & 0xff; /* immediate value */
+ unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
+ imm = (imm >> rot) | (imm << (32 - rot));
+ sp_offset -= imm;
+ }
+ else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
+ {
+ sp_offset -= 12;
+ regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
+ cache->saved_regs[regno].addr = sp_offset;
+ }
+ else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
+ {
+ int n_saved_fp_regs;
+ unsigned int fp_start_reg, fp_bound_reg;
+
+ if ((insn & 0x800) == 0x800) /* N0 is set */
+ {
+ if ((insn & 0x40000) == 0x40000) /* N1 is set */
+ n_saved_fp_regs = 3;
+ else
+ n_saved_fp_regs = 1;
+ }
+ else
+ {
+ if ((insn & 0x40000) == 0x40000) /* N1 is set */
+ n_saved_fp_regs = 2;
+ else
+ n_saved_fp_regs = 4;
+ }
+
+ fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
+ fp_bound_reg = fp_start_reg + n_saved_fp_regs;
+ for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
+ {
+ sp_offset -= 12;
+ cache->saved_regs[fp_start_reg++].addr = sp_offset;
+ }
+ }
+ else if ((insn & 0xf0000000) != 0xe0000000)
+ break; /* Condition not true, exit early */
+ else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
+ break; /* Don't scan past a block load */
+ else
+ /* The optimizer might shove anything into the prologue,
+ so we just skip what we don't recognize. */
+ continue;
+ }
+
+ /* The frame size is just the negative of the offset (from the
+ original SP) of the last thing thing we pushed on the stack.
+ The frame offset is [new FP] - [new SP]. */
+ cache->framesize = -sp_offset;
+ if (cache->framereg == ARM_FP_REGNUM)
+ cache->frameoffset = fp_offset - sp_offset;
+ else
+ cache->frameoffset = 0;
+}
+
+static struct arm_prologue_cache *
+arm_make_prologue_cache (struct frame_info *next_frame)
+{
+ int reg;
+ struct arm_prologue_cache *cache;
+ CORE_ADDR unwound_fp;
+
+ cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
+ cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
+
+ arm_scan_prologue (next_frame, cache);
+
+ unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
+ if (unwound_fp == 0)
+ return cache;
+
+ cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
+
+ /* Calculate actual addresses of saved registers using offsets
+ determined by arm_scan_prologue. */
+ for (reg = 0; reg < NUM_REGS; reg++)
+ if (trad_frame_addr_p (cache->saved_regs, reg))
+ cache->saved_regs[reg].addr += cache->prev_sp;
+
+ return cache;
+}
+
+/* Our frame ID for a normal frame is the current function's starting PC
+ and the caller's SP when we were called. */
+
+static void
+arm_prologue_this_id (struct frame_info *next_frame,
+ void **this_cache,
+ struct frame_id *this_id)
+{
+ struct arm_prologue_cache *cache;
+ struct frame_id id;
+ CORE_ADDR func;
+
+ if (*this_cache == NULL)
+ *this_cache = arm_make_prologue_cache (next_frame);
+ cache = *this_cache;
+
+ func = frame_func_unwind (next_frame);
+
+ /* This is meant to halt the backtrace at "_start". Make sure we
+ don't halt it at a generic dummy frame. */
+ if (func <= LOWEST_PC)
+ return;
+
+ /* If we've hit a wall, stop. */
+ if (cache->prev_sp == 0)
+ return;
+
+ id = frame_id_build (cache->prev_sp, func);
+
+ /* Check that we're not going round in circles with the same frame
+ ID (but avoid applying the test to sentinel frames which do go
+ round in circles). */
+ if (frame_relative_level (next_frame) >= 0
+ && get_frame_type (next_frame) == NORMAL_FRAME
+ && frame_id_eq (get_frame_id (next_frame), id))
+ return;
+
+ *this_id = id;
+}
+
+static void
+arm_prologue_prev_register (struct frame_info *next_frame,
+ void **this_cache,
+ int prev_regnum,
+ int *optimized,
+ enum lval_type *lvalp,
+ CORE_ADDR *addrp,
+ int *realnump,
+ void *valuep)
+{
+ struct arm_prologue_cache *cache;
+
+ if (*this_cache == NULL)
+ *this_cache = arm_make_prologue_cache (next_frame);
+ cache = *this_cache;
+
+ /* If we are asked to unwind the PC, then we need to return the LR
+ instead. The saved value of PC points into this frame's
+ prologue, not the next frame's resume location. */
+ if (prev_regnum == ARM_PC_REGNUM)
+ prev_regnum = ARM_LR_REGNUM;
+
+ /* SP is generally not saved to the stack, but this frame is
+ identified by NEXT_FRAME's stack pointer at the time of the call.
+ The value was already reconstructed into PREV_SP. */
+ if (prev_regnum == ARM_SP_REGNUM)
+ {
+ *lvalp = not_lval;
+ if (valuep)
+ store_unsigned_integer (valuep, 4, cache->prev_sp);
+ return;
+ }
+
+ trad_frame_prev_register (next_frame, cache->saved_regs, prev_regnum,
+ optimized, lvalp, addrp, realnump, valuep);
+}
+
+struct frame_unwind arm_prologue_unwind = {
+ NORMAL_FRAME,
+ arm_prologue_this_id,
+ arm_prologue_prev_register
+};
+
+static const struct frame_unwind *
+arm_prologue_unwind_sniffer (struct frame_info *next_frame)
+{
+ return &arm_prologue_unwind;
+}
+
+static CORE_ADDR
+arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
+{
+ struct arm_prologue_cache *cache;
+
+ if (*this_cache == NULL)
+ *this_cache = arm_make_prologue_cache (next_frame);
+ cache = *this_cache;
+
+ return cache->prev_sp + cache->frameoffset - cache->framesize;
+}
+
+struct frame_base arm_normal_base = {
+ &arm_prologue_unwind,
+ arm_normal_frame_base,
+ arm_normal_frame_base,
+ arm_normal_frame_base
+};
+
+static struct arm_prologue_cache *
+arm_make_sigtramp_cache (struct frame_info *next_frame)
+{
+ struct arm_prologue_cache *cache;
+ int reg;
+
+ cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
+
+ cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
+
+ cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
+
+ for (reg = 0; reg < NUM_REGS; reg++)
+ cache->saved_regs[reg].addr
+ = SIGCONTEXT_REGISTER_ADDRESS (cache->prev_sp,
+ frame_pc_unwind (next_frame), reg);
+
+ /* FIXME: What about thumb mode? */
+ cache->framereg = ARM_SP_REGNUM;
+ cache->prev_sp
+ = read_memory_integer (cache->saved_regs[cache->framereg].addr,
+ register_size (current_gdbarch, cache->framereg));
+
+ return cache;
+}
+
+static void
+arm_sigtramp_this_id (struct frame_info *next_frame,
+ void **this_cache,
+ struct frame_id *this_id)
+{
+ struct arm_prologue_cache *cache;
+
+ if (*this_cache == NULL)
+ *this_cache = arm_make_sigtramp_cache (next_frame);
+ cache = *this_cache;
+
+ /* FIXME drow/2003-07-07: This isn't right if we single-step within
+ the sigtramp frame; the PC should be the beginning of the trampoline. */
+ *this_id = frame_id_build (cache->prev_sp, frame_pc_unwind (next_frame));
+}
+
+static void
+arm_sigtramp_prev_register (struct frame_info *next_frame,
+ void **this_cache,
+ int prev_regnum,
+ int *optimized,
+ enum lval_type *lvalp,
+ CORE_ADDR *addrp,
+ int *realnump,
+ void *valuep)
+{
+ struct arm_prologue_cache *cache;
+
+ if (*this_cache == NULL)
+ *this_cache = arm_make_sigtramp_cache (next_frame);
+ cache = *this_cache;
+
+ trad_frame_prev_register (next_frame, cache->saved_regs, prev_regnum,
+ optimized, lvalp, addrp, realnump, valuep);
+}
+
+struct frame_unwind arm_sigtramp_unwind = {
+ SIGTRAMP_FRAME,
+ arm_sigtramp_this_id,
+ arm_sigtramp_prev_register
+};
+
+static const struct frame_unwind *
+arm_sigtramp_unwind_sniffer (struct frame_info *next_frame)
+{
+ /* Note: If an ARM PC_IN_SIGTRAMP method ever needs to compare
+ against the name of the function, the code below will have to be
+ changed to first fetch the name of the function and then pass
+ this name to PC_IN_SIGTRAMP. */
+
+ if (SIGCONTEXT_REGISTER_ADDRESS_P ()
+ && PC_IN_SIGTRAMP (frame_pc_unwind (next_frame), (char *) 0))
+ return &arm_sigtramp_unwind;
+
+ return NULL;
+}
+
+/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
+ dummy frame. The frame ID's base needs to match the TOS value
+ saved by save_dummy_frame_tos() and returned from
+ arm_push_dummy_call, and the PC needs to match the dummy frame's
+ breakpoint. */
+
+static struct frame_id
+arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
+ frame_pc_unwind (next_frame));
+}
+
+/* Given THIS_FRAME, find the previous frame's resume PC (which will
+ be used to construct the previous frame's ID, after looking up the
+ containing function). */
+
+static CORE_ADDR
+arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
+{
+ CORE_ADDR pc;
+ pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
+ return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
+}
+
+static CORE_ADDR
+arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
+{
+ return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
+}
+
+/* DEPRECATED_CALL_DUMMY_WORDS:
+ This sequence of words is the instructions
+
+ mov lr,pc
+ mov pc,r4
+ illegal
+
+ Note this is 12 bytes. */
+
+static LONGEST arm_call_dummy_words[] =
+{
+ 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
+};
+
+/* When arguments must be pushed onto the stack, they go on in reverse
+ order. The code below implements a FILO (stack) to do this. */
+
+struct stack_item
+{
+ int len;
+ struct stack_item *prev;
+ void *data;
+};
+
+static struct stack_item *
+push_stack_item (struct stack_item *prev, void *contents, int len)
+{
+ struct stack_item *si;
+ si = xmalloc (sizeof (struct stack_item));
+ si->data = xmalloc (len);
+ si->len = len;
+ si->prev = prev;
+ memcpy (si->data, contents, len);
+ return si;
+}
+
+static struct stack_item *
+pop_stack_item (struct stack_item *si)
+{
+ struct stack_item *dead = si;
+ si = si->prev;
+ xfree (dead->data);
+ xfree (dead);
+ return si;
+}
+
+/* We currently only support passing parameters in integer registers. This
+ conforms with GCC's default model. Several other variants exist and
+ we should probably support some of them based on the selected ABI. */
+
+static CORE_ADDR
+arm_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
+ struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
+ struct value **args, CORE_ADDR sp, int struct_return,
+ CORE_ADDR struct_addr)
+{
+ int argnum;
+ int argreg;
+ int nstack;
+ struct stack_item *si = NULL;
+
+ /* Set the return address. For the ARM, the return breakpoint is
+ always at BP_ADDR. */
+ /* XXX Fix for Thumb. */
+ regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
+
+ /* Walk through the list of args and determine how large a temporary
+ stack is required. Need to take care here as structs may be
+ passed on the stack, and we have to to push them. */
+ nstack = 0;
+
+ argreg = ARM_A1_REGNUM;
+ nstack = 0;
+
+ /* Some platforms require a double-word aligned stack. Make sure sp
+ is correctly aligned before we start. We always do this even if
+ it isn't really needed -- it can never hurt things. */
+ sp &= ~(CORE_ADDR)(2 * DEPRECATED_REGISTER_SIZE - 1);
+
+ /* The struct_return pointer occupies the first parameter
+ passing register. */
+ if (struct_return)
+ {
+ if (arm_debug)
+ fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
+ REGISTER_NAME (argreg), paddr (struct_addr));
+ regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
+ argreg++;
+ }
+
+ for (argnum = 0; argnum < nargs; argnum++)
+ {
+ int len;
+ struct type *arg_type;
+ struct type *target_type;
+ enum type_code typecode;
+ char *val;
+
+ arg_type = check_typedef (VALUE_TYPE (args[argnum]));
+ len = TYPE_LENGTH (arg_type);
+ target_type = TYPE_TARGET_TYPE (arg_type);
+ typecode = TYPE_CODE (arg_type);
+ val = VALUE_CONTENTS (args[argnum]);
+
+ /* If the argument is a pointer to a function, and it is a
+ Thumb function, create a LOCAL copy of the value and set
+ the THUMB bit in it. */
+ if (TYPE_CODE_PTR == typecode
+ && target_type != NULL
+ && TYPE_CODE_FUNC == TYPE_CODE (target_type))
+ {
+ CORE_ADDR regval = extract_unsigned_integer (val, len);
+ if (arm_pc_is_thumb (regval))
+ {
+ val = alloca (len);
+ store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
+ }
+ }
+
+ /* Copy the argument to general registers or the stack in
+ register-sized pieces. Large arguments are split between
+ registers and stack. */
+ while (len > 0)
+ {
+ int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
+
+ if (argreg <= ARM_LAST_ARG_REGNUM)
+ {
+ /* The argument is being passed in a general purpose
+ register. */
+ CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
+ if (arm_debug)
+ fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
+ argnum, REGISTER_NAME (argreg),
+ phex (regval, DEPRECATED_REGISTER_SIZE));
+ regcache_cooked_write_unsigned (regcache, argreg, regval);
+ argreg++;
+ }
+ else
+ {
+ /* Push the arguments onto the stack. */
+ if (arm_debug)
+ fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
+ argnum, nstack);
+ si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
+ nstack += DEPRECATED_REGISTER_SIZE;
+ }
+
+ len -= partial_len;
+ val += partial_len;
+ }
+ }
+ /* If we have an odd number of words to push, then decrement the stack
+ by one word now, so first stack argument will be dword aligned. */
+ if (nstack & 4)
+ sp -= 4;
+
+ while (si)
+ {
+ sp -= si->len;
+ write_memory (sp, si->data, si->len);
+ si = pop_stack_item (si);
+ }
+
+ /* Finally, update teh SP register. */
+ regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
+
+ return sp;
+}
+
+static void
+print_fpu_flags (int flags)
+{
+ if (flags & (1 << 0))
+ fputs ("IVO ", stdout);
+ if (flags & (1 << 1))
+ fputs ("DVZ ", stdout);
+ if (flags & (1 << 2))
+ fputs ("OFL ", stdout);
+ if (flags & (1 << 3))
+ fputs ("UFL ", stdout);
+ if (flags & (1 << 4))
+ fputs ("INX ", stdout);
+ putchar ('\n');
+}
+
+/* Print interesting information about the floating point processor
+ (if present) or emulator. */
+static void
+arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
+ struct frame_info *frame, const char *args)
+{
+ unsigned long status = read_register (ARM_FPS_REGNUM);
+ int type;
+
+ type = (status >> 24) & 127;
+ printf ("%s FPU type %d\n",
+ (status & (1 << 31)) ? "Hardware" : "Software",
+ type);
+ fputs ("mask: ", stdout);
+ print_fpu_flags (status >> 16);
+ fputs ("flags: ", stdout);
+ print_fpu_flags (status);
+}
+
+/* Return the GDB type object for the "standard" data type of data in
+ register N. */
+
+static struct type *
+arm_register_type (struct gdbarch *gdbarch, int regnum)
+{
+ if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
+ {
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ return builtin_type_arm_ext_big;
+ else
+ return builtin_type_arm_ext_littlebyte_bigword;
+ }
+ else
+ return builtin_type_int32;
+}
+
+/* Index within `registers' of the first byte of the space for
+ register N. */
+
+static int
+arm_register_byte (int regnum)
+{
+ if (regnum < ARM_F0_REGNUM)
+ return regnum * INT_REGISTER_SIZE;
+ else if (regnum < ARM_PS_REGNUM)
+ return (NUM_GREGS * INT_REGISTER_SIZE
+ + (regnum - ARM_F0_REGNUM) * FP_REGISTER_SIZE);
+ else
+ return (NUM_GREGS * INT_REGISTER_SIZE
+ + NUM_FREGS * FP_REGISTER_SIZE
+ + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
+}
+
+/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
+static int
+arm_register_sim_regno (int regnum)
+{
+ int reg = regnum;
+ gdb_assert (reg >= 0 && reg < NUM_REGS);
+
+ if (reg < NUM_GREGS)
+ return SIM_ARM_R0_REGNUM + reg;
+ reg -= NUM_GREGS;
+
+ if (reg < NUM_FREGS)
+ return SIM_ARM_FP0_REGNUM + reg;
+ reg -= NUM_FREGS;
+
+ if (reg < NUM_SREGS)
+ return SIM_ARM_FPS_REGNUM + reg;
+ reg -= NUM_SREGS;
+
+ internal_error (__FILE__, __LINE__, "Bad REGNUM %d", regnum);
+}
+
+/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
+ convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
+ It is thought that this is is the floating-point register format on
+ little-endian systems. */
+
+static void
+convert_from_extended (const struct floatformat *fmt, const void *ptr,
+ void *dbl)
+{
+ DOUBLEST d;
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
+ else
+ floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
+ ptr, &d);
+ floatformat_from_doublest (fmt, &d, dbl);
+}
+
+static void
+convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
+{
+ DOUBLEST d;
+ floatformat_to_doublest (fmt, ptr, &d);
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
+ else
+ floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
+ &d, dbl);
+}
+
+static int
+condition_true (unsigned long cond, unsigned long status_reg)
+{
+ if (cond == INST_AL || cond == INST_NV)
+ return 1;
+
+ switch (cond)
+ {
+ case INST_EQ:
+ return ((status_reg & FLAG_Z) != 0);
+ case INST_NE:
+ return ((status_reg & FLAG_Z) == 0);
+ case INST_CS:
+ return ((status_reg & FLAG_C) != 0);
+ case INST_CC:
+ return ((status_reg & FLAG_C) == 0);
+ case INST_MI:
+ return ((status_reg & FLAG_N) != 0);
+ case INST_PL:
+ return ((status_reg & FLAG_N) == 0);
+ case INST_VS:
+ return ((status_reg & FLAG_V) != 0);
+ case INST_VC:
+ return ((status_reg & FLAG_V) == 0);
+ case INST_HI:
+ return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
+ case INST_LS:
+ return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
+ case INST_GE:
+ return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
+ case INST_LT:
+ return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
+ case INST_GT:
+ return (((status_reg & FLAG_Z) == 0) &&
+ (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
+ case INST_LE:
+ return (((status_reg & FLAG_Z) != 0) ||
+ (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
+ }
+ return 1;
+}
+
+/* Support routines for single stepping. Calculate the next PC value. */
+#define submask(x) ((1L << ((x) + 1)) - 1)
+#define bit(obj,st) (((obj) >> (st)) & 1)
+#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
+#define sbits(obj,st,fn) \
+ ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
+#define BranchDest(addr,instr) \
+ ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
+#define ARM_PC_32 1
+
+static unsigned long
+shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
+ unsigned long status_reg)
+{
+ unsigned long res, shift;
+ int rm = bits (inst, 0, 3);
+ unsigned long shifttype = bits (inst, 5, 6);
+
+ if (bit (inst, 4))
+ {
+ int rs = bits (inst, 8, 11);
+ shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
+ }
+ else
+ shift = bits (inst, 7, 11);
+
+ res = (rm == 15
+ ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
+ + (bit (inst, 4) ? 12 : 8))
+ : read_register (rm));
+
+ switch (shifttype)
+ {
+ case 0: /* LSL */
+ res = shift >= 32 ? 0 : res << shift;
+ break;
+
+ case 1: /* LSR */
+ res = shift >= 32 ? 0 : res >> shift;
+ break;
+
+ case 2: /* ASR */
+ if (shift >= 32)
+ shift = 31;
+ res = ((res & 0x80000000L)
+ ? ~((~res) >> shift) : res >> shift);
+ break;
+
+ case 3: /* ROR/RRX */
+ shift &= 31;
+ if (shift == 0)
+ res = (res >> 1) | (carry ? 0x80000000L : 0);
+ else
+ res = (res >> shift) | (res << (32 - shift));
+ break;
+ }
+
+ return res & 0xffffffff;
+}
+
+/* Return number of 1-bits in VAL. */
+
+static int
+bitcount (unsigned long val)
+{
+ int nbits;
+ for (nbits = 0; val != 0; nbits++)
+ val &= val - 1; /* delete rightmost 1-bit in val */
+ return nbits;
+}
+
+CORE_ADDR
+thumb_get_next_pc (CORE_ADDR pc)
+{
+ unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
+ unsigned short inst1 = read_memory_integer (pc, 2);
+ CORE_ADDR nextpc = pc + 2; /* default is next instruction */
+ unsigned long offset;
+
+ if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
+ {
+ CORE_ADDR sp;
+
+ /* Fetch the saved PC from the stack. It's stored above
+ all of the other registers. */
+ offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
+ sp = read_register (ARM_SP_REGNUM);
+ nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
+ nextpc = ADDR_BITS_REMOVE (nextpc);
+ if (nextpc == pc)
+ error ("Infinite loop detected");
+ }
+ else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
+ {
+ unsigned long status = read_register (ARM_PS_REGNUM);
+ unsigned long cond = bits (inst1, 8, 11);
+ if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
+ nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
+ }
+ else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
+ {
+ nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
+ }
+ else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
+ {
+ unsigned short inst2 = read_memory_integer (pc + 2, 2);
+ offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
+ nextpc = pc_val + offset;
+ /* For BLX make sure to clear the low bits. */
+ if (bits (inst2, 11, 12) == 1)
+ nextpc = nextpc & 0xfffffffc;
+ }
+ else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
+ {
+ if (bits (inst1, 3, 6) == 0x0f)
+ nextpc = pc_val;
+ else
+ nextpc = read_register (bits (inst1, 3, 6));
+
+ nextpc = ADDR_BITS_REMOVE (nextpc);
+ if (nextpc == pc)
+ error ("Infinite loop detected");
+ }
+
+ return nextpc;
+}
+
+CORE_ADDR
+arm_get_next_pc (CORE_ADDR pc)
+{
+ unsigned long pc_val;
+ unsigned long this_instr;
+ unsigned long status;
+ CORE_ADDR nextpc;
+
+ if (arm_pc_is_thumb (pc))
+ return thumb_get_next_pc (pc);
+
+ pc_val = (unsigned long) pc;
+ this_instr = read_memory_integer (pc, 4);
+ status = read_register (ARM_PS_REGNUM);
+ nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
+
+ if (condition_true (bits (this_instr, 28, 31), status))
+ {
+ switch (bits (this_instr, 24, 27))
+ {
+ case 0x0:
+ case 0x1: /* data processing */
+ case 0x2:
+ case 0x3:
+ {
+ unsigned long operand1, operand2, result = 0;
+ unsigned long rn;
+ int c;
+
+ if (bits (this_instr, 12, 15) != 15)
+ break;
+
+ if (bits (this_instr, 22, 25) == 0
+ && bits (this_instr, 4, 7) == 9) /* multiply */
+ error ("Illegal update to pc in instruction");
+
+ /* BX <reg>, BLX <reg> */
+ if (bits (this_instr, 4, 28) == 0x12fff1
+ || bits (this_instr, 4, 28) == 0x12fff3)
+ {
+ rn = bits (this_instr, 0, 3);
+ result = (rn == 15) ? pc_val + 8 : read_register (rn);
+ nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
+
+ if (nextpc == pc)
+ error ("Infinite loop detected");
+
+ return nextpc;
+ }
+
+ /* Multiply into PC */
+ c = (status & FLAG_C) ? 1 : 0;
+ rn = bits (this_instr, 16, 19);
+ operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
+
+ if (bit (this_instr, 25))
+ {
+ unsigned long immval = bits (this_instr, 0, 7);
+ unsigned long rotate = 2 * bits (this_instr, 8, 11);
+ operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
+ & 0xffffffff;
+ }
+ else /* operand 2 is a shifted register */
+ operand2 = shifted_reg_val (this_instr, c, pc_val, status);
+
+ switch (bits (this_instr, 21, 24))
+ {
+ case 0x0: /*and */
+ result = operand1 & operand2;
+ break;
+
+ case 0x1: /*eor */
+ result = operand1 ^ operand2;
+ break;
+
+ case 0x2: /*sub */
+ result = operand1 - operand2;
+ break;
+
+ case 0x3: /*rsb */
+ result = operand2 - operand1;
+ break;
+
+ case 0x4: /*add */
+ result = operand1 + operand2;
+ break;
+
+ case 0x5: /*adc */
+ result = operand1 + operand2 + c;
+ break;
+
+ case 0x6: /*sbc */
+ result = operand1 - operand2 + c;
+ break;
+
+ case 0x7: /*rsc */
+ result = operand2 - operand1 + c;
+ break;
+
+ case 0x8:
+ case 0x9:
+ case 0xa:
+ case 0xb: /* tst, teq, cmp, cmn */
+ result = (unsigned long) nextpc;
+ break;
+
+ case 0xc: /*orr */
+ result = operand1 | operand2;
+ break;
+
+ case 0xd: /*mov */
+ /* Always step into a function. */
+ result = operand2;
+ break;
+
+ case 0xe: /*bic */
+ result = operand1 & ~operand2;
+ break;
+
+ case 0xf: /*mvn */
+ result = ~operand2;
+ break;
+ }
+ nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
+
+ if (nextpc == pc)
+ error ("Infinite loop detected");
+ break;
+ }
+
+ case 0x4:
+ case 0x5: /* data transfer */
+ case 0x6:
+ case 0x7:
+ if (bit (this_instr, 20))
+ {
+ /* load */
+ if (bits (this_instr, 12, 15) == 15)
+ {
+ /* rd == pc */
+ unsigned long rn;
+ unsigned long base;
+
+ if (bit (this_instr, 22))
+ error ("Illegal update to pc in instruction");
+
+ /* byte write to PC */
+ rn = bits (this_instr, 16, 19);
+ base = (rn == 15) ? pc_val + 8 : read_register (rn);
+ if (bit (this_instr, 24))
+ {
+ /* pre-indexed */
+ int c = (status & FLAG_C) ? 1 : 0;
+ unsigned long offset =
+ (bit (this_instr, 25)
+ ? shifted_reg_val (this_instr, c, pc_val, status)
+ : bits (this_instr, 0, 11));
+
+ if (bit (this_instr, 23))
+ base += offset;
+ else
+ base -= offset;
+ }
+ nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
+ 4);
+
+ nextpc = ADDR_BITS_REMOVE (nextpc);
+
+ if (nextpc == pc)
+ error ("Infinite loop detected");
+ }
+ }
+ break;
+
+ case 0x8:
+ case 0x9: /* block transfer */
+ if (bit (this_instr, 20))
+ {
+ /* LDM */
+ if (bit (this_instr, 15))
+ {
+ /* loading pc */
+ int offset = 0;
+
+ if (bit (this_instr, 23))
+ {
+ /* up */
+ unsigned long reglist = bits (this_instr, 0, 14);
+ offset = bitcount (reglist) * 4;
+ if (bit (this_instr, 24)) /* pre */
+ offset += 4;
+ }
+ else if (bit (this_instr, 24))
+ offset = -4;
+
+ {
+ unsigned long rn_val =
+ read_register (bits (this_instr, 16, 19));
+ nextpc =
+ (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
+ + offset),
+ 4);
+ }
+ nextpc = ADDR_BITS_REMOVE (nextpc);
+ if (nextpc == pc)
+ error ("Infinite loop detected");
+ }
+ }
+ break;
+
+ case 0xb: /* branch & link */
+ case 0xa: /* branch */
+ {
+ nextpc = BranchDest (pc, this_instr);
+
+ /* BLX */
+ if (bits (this_instr, 28, 31) == INST_NV)
+ nextpc |= bit (this_instr, 24) << 1;
+
+ nextpc = ADDR_BITS_REMOVE (nextpc);
+ if (nextpc == pc)
+ error ("Infinite loop detected");
+ break;
+ }
+
+ case 0xc:
+ case 0xd:
+ case 0xe: /* coproc ops */
+ case 0xf: /* SWI */
+ break;
+
+ default:
+ fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
+ return (pc);
+ }
+ }
+
+ return nextpc;
+}
+
+/* single_step() is called just before we want to resume the inferior,
+ if we want to single-step it but there is no hardware or kernel
+ single-step support. We find the target of the coming instruction
+ and breakpoint it.
+
+ single_step() is also called just after the inferior stops. If we
+ had set up a simulated single-step, we undo our damage. */
+
+static void
+arm_software_single_step (enum target_signal sig, int insert_bpt)
+{
+ static int next_pc; /* State between setting and unsetting. */
+ static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
+
+ if (insert_bpt)
+ {
+ next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
+ target_insert_breakpoint (next_pc, break_mem);
+ }
+ else
+ target_remove_breakpoint (next_pc, break_mem);
+}
+
+#include "bfd-in2.h"
+#include "libcoff.h"
+
+static int
+gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
+{
+ if (arm_pc_is_thumb (memaddr))
+ {
+ static asymbol *asym;
+ static combined_entry_type ce;
+ static struct coff_symbol_struct csym;
+ static struct bfd fake_bfd;
+ static bfd_target fake_target;
+
+ if (csym.native == NULL)
+ {
+ /* Create a fake symbol vector containing a Thumb symbol.
+ This is solely so that the code in print_insn_little_arm()
+ and print_insn_big_arm() in opcodes/arm-dis.c will detect
+ the presence of a Thumb symbol and switch to decoding
+ Thumb instructions. */
+
+ fake_target.flavour = bfd_target_coff_flavour;
+ fake_bfd.xvec = &fake_target;
+ ce.u.syment.n_sclass = C_THUMBEXTFUNC;
+ csym.native = &ce;
+ csym.symbol.the_bfd = &fake_bfd;
+ csym.symbol.name = "fake";
+ asym = (asymbol *) & csym;
+ }
+
+ memaddr = UNMAKE_THUMB_ADDR (memaddr);
+ info->symbols = &asym;
+ }
+ else
+ info->symbols = NULL;
+
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ return print_insn_big_arm (memaddr, info);
+ else
+ return print_insn_little_arm (memaddr, info);
+}
+
+/* The following define instruction sequences that will cause ARM
+ cpu's to take an undefined instruction trap. These are used to
+ signal a breakpoint to GDB.
+
+ The newer ARMv4T cpu's are capable of operating in ARM or Thumb
+ modes. A different instruction is required for each mode. The ARM
+ cpu's can also be big or little endian. Thus four different
+ instructions are needed to support all cases.
+
+ Note: ARMv4 defines several new instructions that will take the
+ undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
+ not in fact add the new instructions. The new undefined
+ instructions in ARMv4 are all instructions that had no defined
+ behaviour in earlier chips. There is no guarantee that they will
+ raise an exception, but may be treated as NOP's. In practice, it
+ may only safe to rely on instructions matching:
+
+ 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
+ 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
+ C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
+
+ Even this may only true if the condition predicate is true. The
+ following use a condition predicate of ALWAYS so it is always TRUE.
+
+ There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
+ and NetBSD all use a software interrupt rather than an undefined
+ instruction to force a trap. This can be handled by by the
+ abi-specific code during establishment of the gdbarch vector. */
+
+
+/* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
+ override these definitions. */
+#ifndef ARM_LE_BREAKPOINT
+#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
+#endif
+#ifndef ARM_BE_BREAKPOINT
+#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
+#endif
+#ifndef THUMB_LE_BREAKPOINT
+#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
+#endif
+#ifndef THUMB_BE_BREAKPOINT
+#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
+#endif
+
+static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
+static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
+static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
+static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
+
+/* Determine the type and size of breakpoint to insert at PCPTR. Uses
+ the program counter value to determine whether a 16-bit or 32-bit
+ breakpoint should be used. It returns a pointer to a string of
+ bytes that encode a breakpoint instruction, stores the length of
+ the string to *lenptr, and adjusts the program counter (if
+ necessary) to point to the actual memory location where the
+ breakpoint should be inserted. */
+
+/* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
+ breakpoints and storing their handles instread of what was in
+ memory. It is nice that this is the same size as a handle -
+ otherwise remote-rdp will have to change. */
+
+static const unsigned char *
+arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
+ {
+ *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
+ *lenptr = tdep->thumb_breakpoint_size;
+ return tdep->thumb_breakpoint;
+ }
+ else
+ {
+ *lenptr = tdep->arm_breakpoint_size;
+ return tdep->arm_breakpoint;
+ }
+}
+
+/* Extract from an array REGBUF containing the (raw) register state a
+ function return value of type TYPE, and copy that, in virtual
+ format, into VALBUF. */
+
+static void
+arm_extract_return_value (struct type *type,
+ struct regcache *regs,
+ void *dst)
+{
+ bfd_byte *valbuf = dst;
+
+ if (TYPE_CODE_FLT == TYPE_CODE (type))
+ {
+ switch (arm_get_fp_model (current_gdbarch))
+ {
+ case ARM_FLOAT_FPA:
+ {
+ /* The value is in register F0 in internal format. We need to
+ extract the raw value and then convert it to the desired
+ internal type. */
+ bfd_byte tmpbuf[FP_REGISTER_SIZE];
+
+ regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
+ convert_from_extended (floatformat_from_type (type), tmpbuf,
+ valbuf);
+ }
+ break;
+
+ case ARM_FLOAT_SOFT_FPA:
+ case ARM_FLOAT_SOFT_VFP:
+ regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
+ if (TYPE_LENGTH (type) > 4)
+ regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
+ valbuf + INT_REGISTER_SIZE);
+ break;
+
+ default:
+ internal_error
+ (__FILE__, __LINE__,
+ "arm_extract_return_value: Floating point model not supported");
+ break;
+ }
+ }
+ else if (TYPE_CODE (type) == TYPE_CODE_INT
+ || TYPE_CODE (type) == TYPE_CODE_CHAR
+ || TYPE_CODE (type) == TYPE_CODE_BOOL
+ || TYPE_CODE (type) == TYPE_CODE_PTR
+ || TYPE_CODE (type) == TYPE_CODE_REF
+ || TYPE_CODE (type) == TYPE_CODE_ENUM)
+ {
+ /* If the the type is a plain integer, then the access is
+ straight-forward. Otherwise we have to play around a bit more. */
+ int len = TYPE_LENGTH (type);
+ int regno = ARM_A1_REGNUM;
+ ULONGEST tmp;
+
+ while (len > 0)
+ {
+ /* By using store_unsigned_integer we avoid having to do
+ anything special for small big-endian values. */
+ regcache_cooked_read_unsigned (regs, regno++, &tmp);
+ store_unsigned_integer (valbuf,
+ (len > INT_REGISTER_SIZE
+ ? INT_REGISTER_SIZE : len),
+ tmp);
+ len -= INT_REGISTER_SIZE;
+ valbuf += INT_REGISTER_SIZE;
+ }
+ }
+ else
+ {
+ /* For a structure or union the behaviour is as if the value had
+ been stored to word-aligned memory and then loaded into
+ registers with 32-bit load instruction(s). */
+ int len = TYPE_LENGTH (type);
+ int regno = ARM_A1_REGNUM;
+ bfd_byte tmpbuf[INT_REGISTER_SIZE];
+
+ while (len > 0)
+ {
+ regcache_cooked_read (regs, regno++, tmpbuf);
+ memcpy (valbuf, tmpbuf,
+ len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
+ len -= INT_REGISTER_SIZE;
+ valbuf += INT_REGISTER_SIZE;
+ }
+ }
+}
+
+/* Extract from an array REGBUF containing the (raw) register state
+ the address in which a function should return its structure value. */
+
+static CORE_ADDR
+arm_extract_struct_value_address (struct regcache *regcache)
+{
+ ULONGEST ret;
+
+ regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
+ return ret;
+}
+
+/* Will a function return an aggregate type in memory or in a
+ register? Return 0 if an aggregate type can be returned in a
+ register, 1 if it must be returned in memory. */
+
+static int
+arm_use_struct_convention (int gcc_p, struct type *type)
+{
+ int nRc;
+ enum type_code code;
+
+ CHECK_TYPEDEF (type);
+
+ /* In the ARM ABI, "integer" like aggregate types are returned in
+ registers. For an aggregate type to be integer like, its size
+ must be less than or equal to DEPRECATED_REGISTER_SIZE and the
+ offset of each addressable subfield must be zero. Note that bit
+ fields are not addressable, and all addressable subfields of
+ unions always start at offset zero.
+
+ This function is based on the behaviour of GCC 2.95.1.
+ See: gcc/arm.c: arm_return_in_memory() for details.
+
+ Note: All versions of GCC before GCC 2.95.2 do not set up the
+ parameters correctly for a function returning the following
+ structure: struct { float f;}; This should be returned in memory,
+ not a register. Richard Earnshaw sent me a patch, but I do not
+ know of any way to detect if a function like the above has been
+ compiled with the correct calling convention. */
+
+ /* All aggregate types that won't fit in a register must be returned
+ in memory. */
+ if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
+ {
+ return 1;
+ }
+
+ /* The only aggregate types that can be returned in a register are
+ structs and unions. Arrays must be returned in memory. */
+ code = TYPE_CODE (type);
+ if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
+ {
+ return 1;
+ }
+
+ /* Assume all other aggregate types can be returned in a register.
+ Run a check for structures, unions and arrays. */
+ nRc = 0;
+
+ if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
+ {
+ int i;
+ /* Need to check if this struct/union is "integer" like. For
+ this to be true, its size must be less than or equal to
+ DEPRECATED_REGISTER_SIZE and the offset of each addressable
+ subfield must be zero. Note that bit fields are not
+ addressable, and unions always start at offset zero. If any
+ of the subfields is a floating point type, the struct/union
+ cannot be an integer type. */
+
+ /* For each field in the object, check:
+ 1) Is it FP? --> yes, nRc = 1;
+ 2) Is it addressable (bitpos != 0) and
+ not packed (bitsize == 0)?
+ --> yes, nRc = 1
+ */
+
+ for (i = 0; i < TYPE_NFIELDS (type); i++)
+ {
+ enum type_code field_type_code;
+ field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
+
+ /* Is it a floating point type field? */
+ if (field_type_code == TYPE_CODE_FLT)
+ {
+ nRc = 1;
+ break;
+ }
+
+ /* If bitpos != 0, then we have to care about it. */
+ if (TYPE_FIELD_BITPOS (type, i) != 0)
+ {
+ /* Bitfields are not addressable. If the field bitsize is
+ zero, then the field is not packed. Hence it cannot be
+ a bitfield or any other packed type. */
+ if (TYPE_FIELD_BITSIZE (type, i) == 0)
+ {
+ nRc = 1;
+ break;
+ }
+ }
+ }
+ }
+
+ return nRc;
+}
+
+/* Write into appropriate registers a function return value of type
+ TYPE, given in virtual format. */
+
+static void
+arm_store_return_value (struct type *type, struct regcache *regs,
+ const void *src)
+{
+ const bfd_byte *valbuf = src;
+
+ if (TYPE_CODE (type) == TYPE_CODE_FLT)
+ {
+ char buf[MAX_REGISTER_SIZE];
+
+ switch (arm_get_fp_model (current_gdbarch))
+ {
+ case ARM_FLOAT_FPA:
+
+ convert_to_extended (floatformat_from_type (type), buf, valbuf);
+ regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
+ break;
+
+ case ARM_FLOAT_SOFT_FPA:
+ case ARM_FLOAT_SOFT_VFP:
+ regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
+ if (TYPE_LENGTH (type) > 4)
+ regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
+ valbuf + INT_REGISTER_SIZE);
+ break;
+
+ default:
+ internal_error
+ (__FILE__, __LINE__,
+ "arm_store_return_value: Floating point model not supported");
+ break;
+ }
+ }
+ else if (TYPE_CODE (type) == TYPE_CODE_INT
+ || TYPE_CODE (type) == TYPE_CODE_CHAR
+ || TYPE_CODE (type) == TYPE_CODE_BOOL
+ || TYPE_CODE (type) == TYPE_CODE_PTR
+ || TYPE_CODE (type) == TYPE_CODE_REF
+ || TYPE_CODE (type) == TYPE_CODE_ENUM)
+ {
+ if (TYPE_LENGTH (type) <= 4)
+ {
+ /* Values of one word or less are zero/sign-extended and
+ returned in r0. */
+ bfd_byte tmpbuf[INT_REGISTER_SIZE];
+ LONGEST val = unpack_long (type, valbuf);
+
+ store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
+ regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
+ }
+ else
+ {
+ /* Integral values greater than one word are stored in consecutive
+ registers starting with r0. This will always be a multiple of
+ the regiser size. */
+ int len = TYPE_LENGTH (type);
+ int regno = ARM_A1_REGNUM;
+
+ while (len > 0)
+ {
+ regcache_cooked_write (regs, regno++, valbuf);
+ len -= INT_REGISTER_SIZE;
+ valbuf += INT_REGISTER_SIZE;
+ }
+ }
+ }
+ else
+ {
+ /* For a structure or union the behaviour is as if the value had
+ been stored to word-aligned memory and then loaded into
+ registers with 32-bit load instruction(s). */
+ int len = TYPE_LENGTH (type);
+ int regno = ARM_A1_REGNUM;
+ bfd_byte tmpbuf[INT_REGISTER_SIZE];
+
+ while (len > 0)
+ {
+ memcpy (tmpbuf, valbuf,
+ len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
+ regcache_cooked_write (regs, regno++, tmpbuf);
+ len -= INT_REGISTER_SIZE;
+ valbuf += INT_REGISTER_SIZE;
+ }
+ }
+}
+
+static int
+arm_get_longjmp_target (CORE_ADDR *pc)
+{
+ CORE_ADDR jb_addr;
+ char buf[INT_REGISTER_SIZE];
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ jb_addr = read_register (ARM_A1_REGNUM);
+
+ if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
+ INT_REGISTER_SIZE))
+ return 0;
+
+ *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
+ return 1;
+}
+
+/* Return non-zero if the PC is inside a thumb call thunk. */
+
+int
+arm_in_call_stub (CORE_ADDR pc, char *name)
+{
+ CORE_ADDR start_addr;
+
+ /* Find the starting address of the function containing the PC. If
+ the caller didn't give us a name, look it up at the same time. */
+ if (0 == find_pc_partial_function (pc, name ? NULL : &name,
+ &start_addr, NULL))
+ return 0;
+
+ return strncmp (name, "_call_via_r", 11) == 0;
+}
+
+/* If PC is in a Thumb call or return stub, return the address of the
+ target PC, which is in a register. The thunk functions are called
+ _called_via_xx, where x is the register name. The possible names
+ are r0-r9, sl, fp, ip, sp, and lr. */
+
+CORE_ADDR
+arm_skip_stub (CORE_ADDR pc)
+{
+ char *name;
+ CORE_ADDR start_addr;
+
+ /* Find the starting address and name of the function containing the PC. */
+ if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
+ return 0;
+
+ /* Call thunks always start with "_call_via_". */
+ if (strncmp (name, "_call_via_", 10) == 0)
+ {
+ /* Use the name suffix to determine which register contains the
+ target PC. */
+ static char *table[15] =
+ {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "sl", "fp", "ip", "sp", "lr"
+ };
+ int regno;
+
+ for (regno = 0; regno <= 14; regno++)
+ if (strcmp (&name[10], table[regno]) == 0)
+ return read_register (regno);
+ }
+
+ return 0; /* not a stub */
+}
+
+static void
+set_arm_command (char *args, int from_tty)
+{
+ printf_unfiltered ("\"set arm\" must be followed by an apporpriate subcommand.\n");
+ help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
+}
+
+static void
+show_arm_command (char *args, int from_tty)
+{
+ cmd_show_list (showarmcmdlist, from_tty, "");
+}
+
+enum arm_float_model
+arm_get_fp_model (struct gdbarch *gdbarch)
+{
+ if (arm_fp_model == ARM_FLOAT_AUTO)
+ return gdbarch_tdep (gdbarch)->fp_model;
+
+ return arm_fp_model;
+}
+
+static void
+arm_set_fp (struct gdbarch *gdbarch)
+{
+ enum arm_float_model fp_model = arm_get_fp_model (gdbarch);
+
+ if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
+ && (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA))
+ {
+ set_gdbarch_double_format (gdbarch,
+ &floatformat_ieee_double_littlebyte_bigword);
+ set_gdbarch_long_double_format
+ (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
+ }
+ else
+ {
+ set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
+ set_gdbarch_long_double_format (gdbarch,
+ &floatformat_ieee_double_little);
+ }
+}
+
+static void
+set_fp_model_sfunc (char *args, int from_tty,
+ struct cmd_list_element *c)
+{
+ enum arm_float_model fp_model;
+
+ for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
+ if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
+ {
+ arm_fp_model = fp_model;
+ break;
+ }
+
+ if (fp_model == ARM_FLOAT_LAST)
+ internal_error (__FILE__, __LINE__, "Invalid fp model accepted: %s.",
+ current_fp_model);
+
+ if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
+ arm_set_fp (current_gdbarch);
+}
+
+static void
+show_fp_model (char *args, int from_tty,
+ struct cmd_list_element *c)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ if (arm_fp_model == ARM_FLOAT_AUTO
+ && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
+ printf_filtered (" - the default for the current ABI is \"%s\".\n",
+ fp_model_strings[tdep->fp_model]);
+}
+
+/* If the user changes the register disassembly style used for info
+ register and other commands, we have to also switch the style used
+ in opcodes for disassembly output. This function is run in the "set
+ arm disassembly" command, and does that. */
+
+static void
+set_disassembly_style_sfunc (char *args, int from_tty,
+ struct cmd_list_element *c)
+{
+ set_disassembly_style ();
+}
+
+/* Return the ARM register name corresponding to register I. */
+static const char *
+arm_register_name (int i)
+{
+ return arm_register_names[i];
+}
+
+static void
+set_disassembly_style (void)
+{
+ const char *setname, *setdesc, **regnames;
+ int numregs, j;
+
+ /* Find the style that the user wants in the opcodes table. */
+ int current = 0;
+ numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
+ while ((disassembly_style != setname)
+ && (current < num_disassembly_options))
+ get_arm_regnames (++current, &setname, &setdesc, &regnames);
+ current_option = current;
+
+ /* Fill our copy. */
+ for (j = 0; j < numregs; j++)
+ arm_register_names[j] = (char *) regnames[j];
+
+ /* Adjust case. */
+ if (isupper (*regnames[ARM_PC_REGNUM]))
+ {
+ arm_register_names[ARM_FPS_REGNUM] = "FPS";
+ arm_register_names[ARM_PS_REGNUM] = "CPSR";
+ }
+ else
+ {
+ arm_register_names[ARM_FPS_REGNUM] = "fps";
+ arm_register_names[ARM_PS_REGNUM] = "cpsr";
+ }
+
+ /* Synchronize the disassembler. */
+ set_arm_regname_option (current);
+}
+
+/* arm_othernames implements the "othernames" command. This is deprecated
+ by the "set arm disassembly" command. */
+
+static void
+arm_othernames (char *names, int n)
+{
+ /* Circle through the various flavors. */
+ current_option = (current_option + 1) % num_disassembly_options;
+
+ disassembly_style = valid_disassembly_styles[current_option];
+ set_disassembly_style ();
+}
+
+/* Test whether the coff symbol specific value corresponds to a Thumb
+ function. */
+
+static int
+coff_sym_is_thumb (int val)
+{
+ return (val == C_THUMBEXT ||
+ val == C_THUMBSTAT ||
+ val == C_THUMBEXTFUNC ||
+ val == C_THUMBSTATFUNC ||
+ val == C_THUMBLABEL);
+}
+
+/* arm_coff_make_msymbol_special()
+ arm_elf_make_msymbol_special()
+
+ These functions test whether the COFF or ELF symbol corresponds to
+ an address in thumb code, and set a "special" bit in a minimal
+ symbol to indicate that it does. */
+
+static void
+arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
+{
+ /* Thumb symbols are of type STT_LOPROC, (synonymous with
+ STT_ARM_TFUNC). */
+ if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
+ == STT_LOPROC)
+ MSYMBOL_SET_SPECIAL (msym);
+}
+
+static void
+arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
+{
+ if (coff_sym_is_thumb (val))
+ MSYMBOL_SET_SPECIAL (msym);
+}
+
+static void
+arm_write_pc (CORE_ADDR pc, ptid_t ptid)
+{
+ write_register_pid (ARM_PC_REGNUM, pc, ptid);
+
+ /* If necessary, set the T bit. */
+ if (arm_apcs_32)
+ {
+ CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
+ if (arm_pc_is_thumb (pc))
+ write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
+ else
+ write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
+ }
+}
+
+static enum gdb_osabi
+arm_elf_osabi_sniffer (bfd *abfd)
+{
+ unsigned int elfosabi, eflags;
+ enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
+
+ elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
+
+ switch (elfosabi)
+ {
+ case ELFOSABI_NONE:
+ /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
+ file are conforming to the base specification for that machine
+ (there are no OS-specific extensions). In order to determine the
+ real OS in use we must look for OS notes that have been added. */
+ bfd_map_over_sections (abfd,
+ generic_elf_osabi_sniff_abi_tag_sections,
+ &osabi);
+ if (osabi == GDB_OSABI_UNKNOWN)
+ {
+ /* Existing ARM tools don't set this field, so look at the EI_FLAGS
+ field for more information. */
+ eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
+ switch (eflags)
+ {
+ case EF_ARM_EABI_VER1:
+ osabi = GDB_OSABI_ARM_EABI_V1;
+ break;
+
+ case EF_ARM_EABI_VER2:
+ osabi = GDB_OSABI_ARM_EABI_V2;
+ break;
+
+ case EF_ARM_EABI_UNKNOWN:
+ /* Assume GNU tools. */
+ osabi = GDB_OSABI_ARM_APCS;
+ break;
+
+ default:
+ internal_error (__FILE__, __LINE__,
+ "arm_elf_osabi_sniffer: Unknown ARM EABI "
+ "version 0x%x", eflags);
+ }
+ }
+ break;
+
+ case ELFOSABI_ARM:
+ /* GNU tools use this value. Check note sections in this case,
+ as well. */
+ bfd_map_over_sections (abfd,
+ generic_elf_osabi_sniff_abi_tag_sections,
+ &osabi);
+ if (osabi == GDB_OSABI_UNKNOWN)
+ {
+ /* Assume APCS ABI. */
+ osabi = GDB_OSABI_ARM_APCS;
+ }
+ break;
+
+ case ELFOSABI_FREEBSD:
+ osabi = GDB_OSABI_FREEBSD_ELF;
+ break;
+
+ case ELFOSABI_NETBSD:
+ osabi = GDB_OSABI_NETBSD_ELF;
+ break;
+
+ case ELFOSABI_LINUX:
+ osabi = GDB_OSABI_LINUX;
+ break;
+ }
+
+ return osabi;
+}
+
+
+/* Initialize the current architecture based on INFO. If possible,
+ re-use an architecture from ARCHES, which is a list of
+ architectures already created during this debugging session.
+
+ Called e.g. at program startup, when reading a core file, and when
+ reading a binary file. */
+
+static struct gdbarch *
+arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+{
+ struct gdbarch_tdep *tdep;
+ struct gdbarch *gdbarch;
+
+ /* Try to deterimine the ABI of the object we are loading. */
+
+ if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
+ {
+ switch (bfd_get_flavour (info.abfd))
+ {
+ case bfd_target_aout_flavour:
+ /* Assume it's an old APCS-style ABI. */
+ info.osabi = GDB_OSABI_ARM_APCS;
+ break;
+
+ case bfd_target_coff_flavour:
+ /* Assume it's an old APCS-style ABI. */
+ /* XXX WinCE? */
+ info.osabi = GDB_OSABI_ARM_APCS;
+ break;
+
+ default:
+ /* Leave it as "unknown". */
+ break;
+ }
+ }
+
+ /* If there is already a candidate, use it. */
+ arches = gdbarch_list_lookup_by_info (arches, &info);
+ if (arches != NULL)
+ return arches->gdbarch;
+
+ tdep = xmalloc (sizeof (struct gdbarch_tdep));
+ gdbarch = gdbarch_alloc (&info, tdep);
+
+ /* We used to default to FPA for generic ARM, but almost nobody uses that
+ now, and we now provide a way for the user to force the model. So
+ default to the most useful variant. */
+ tdep->fp_model = ARM_FLOAT_SOFT_FPA;
+
+ /* Breakpoints. */
+ switch (info.byte_order)
+ {
+ case BFD_ENDIAN_BIG:
+ tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
+ tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
+ tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
+ tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
+
+ break;
+
+ case BFD_ENDIAN_LITTLE:
+ tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
+ tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
+ tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
+ tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
+
+ break;
+
+ default:
+ internal_error (__FILE__, __LINE__,
+ "arm_gdbarch_init: bad byte order for float format");
+ }
+
+ /* On ARM targets char defaults to unsigned. */
+ set_gdbarch_char_signed (gdbarch, 0);
+
+ /* This should be low enough for everything. */
+ tdep->lowest_pc = 0x20;
+ tdep->jb_pc = -1; /* Longjump support not enabled by default. */
+
+ set_gdbarch_deprecated_call_dummy_words (gdbarch, arm_call_dummy_words);
+ set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, 0);
+
+ set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
+
+ set_gdbarch_write_pc (gdbarch, arm_write_pc);
+
+ /* Frame handling. */
+ set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
+ set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
+ set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
+
+ set_gdbarch_deprecated_frameless_function_invocation (gdbarch, arm_frameless_function_invocation);
+
+ frame_base_set_default (gdbarch, &arm_normal_base);
+
+ /* Address manipulation. */
+ set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
+ set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
+
+ /* Advance PC across function entry code. */
+ set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
+
+ /* Get the PC when a frame might not be available. */
+ set_gdbarch_deprecated_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
+
+ /* The stack grows downward. */
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+
+ /* Breakpoint manipulation. */
+ set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
+
+ /* Information about registers, etc. */
+ set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
+ set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
+ set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
+ set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
+ set_gdbarch_deprecated_register_byte (gdbarch, arm_register_byte);
+ set_gdbarch_deprecated_register_bytes (gdbarch,
+ (NUM_GREGS * INT_REGISTER_SIZE
+ + NUM_FREGS * FP_REGISTER_SIZE
+ + NUM_SREGS * STATUS_REGISTER_SIZE));
+ set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
+ set_gdbarch_register_type (gdbarch, arm_register_type);
+
+ /* Internal <-> external register number maps. */
+ set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
+
+ /* Integer registers are 4 bytes. */
+ set_gdbarch_deprecated_register_size (gdbarch, 4);
+ set_gdbarch_register_name (gdbarch, arm_register_name);
+
+ /* Returning results. */
+ set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
+ set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
+ set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
+ set_gdbarch_deprecated_extract_struct_value_address (gdbarch, arm_extract_struct_value_address);
+
+ /* Single stepping. */
+ /* XXX For an RDI target we should ask the target if it can single-step. */
+ set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
+
+ /* Disassembly. */
+ set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
+
+ /* Minsymbol frobbing. */
+ set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
+ set_gdbarch_coff_make_msymbol_special (gdbarch,
+ arm_coff_make_msymbol_special);
+
+ /* Hook in the ABI-specific overrides, if they have been registered. */
+ gdbarch_init_osabi (info, gdbarch);
+
+ /* Add some default predicates. */
+ frame_unwind_append_sniffer (gdbarch, arm_sigtramp_unwind_sniffer);
+ frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
+
+ /* Now we have tuned the configuration, set a few final things,
+ based on what the OS ABI has told us. */
+
+ if (tdep->jb_pc >= 0)
+ set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
+
+ /* Floating point sizes and format. */
+ switch (info.byte_order)
+ {
+ case BFD_ENDIAN_BIG:
+ set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
+ set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
+ set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
+
+ break;
+
+ case BFD_ENDIAN_LITTLE:
+ set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
+ arm_set_fp (gdbarch);
+ break;
+
+ default:
+ internal_error (__FILE__, __LINE__,
+ "arm_gdbarch_init: bad byte order for float format");
+ }
+
+ return gdbarch;
+}
+
+static void
+arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+
+ if (tdep == NULL)
+ return;
+
+ fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
+ (unsigned long) tdep->lowest_pc);
+}
+
+static void
+arm_init_abi_eabi_v1 (struct gdbarch_info info,
+ struct gdbarch *gdbarch)
+{
+ /* Place-holder. */
+}
+
+static void
+arm_init_abi_eabi_v2 (struct gdbarch_info info,
+ struct gdbarch *gdbarch)
+{
+ /* Place-holder. */
+}
+
+static void
+arm_init_abi_apcs (struct gdbarch_info info,
+ struct gdbarch *gdbarch)
+{
+ /* Place-holder. */
+}
+
+extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
+
+void
+_initialize_arm_tdep (void)
+{
+ struct ui_file *stb;
+ long length;
+ struct cmd_list_element *new_set, *new_show;
+ const char *setname;
+ const char *setdesc;
+ const char **regnames;
+ int numregs, i, j;
+ static char *helptext;
+
+ gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
+
+ /* Register an ELF OS ABI sniffer for ARM binaries. */
+ gdbarch_register_osabi_sniffer (bfd_arch_arm,
+ bfd_target_elf_flavour,
+ arm_elf_osabi_sniffer);
+
+ /* Register some ABI variants for embedded systems. */
+ gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V1,
+ arm_init_abi_eabi_v1);
+ gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V2,
+ arm_init_abi_eabi_v2);
+ gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_APCS,
+ arm_init_abi_apcs);
+
+ /* Get the number of possible sets of register names defined in opcodes. */
+ num_disassembly_options = get_arm_regname_num_options ();
+
+ /* Add root prefix command for all "set arm"/"show arm" commands. */
+ add_prefix_cmd ("arm", no_class, set_arm_command,
+ "Various ARM-specific commands.",
+ &setarmcmdlist, "set arm ", 0, &setlist);
+
+ add_prefix_cmd ("arm", no_class, show_arm_command,
+ "Various ARM-specific commands.",
+ &showarmcmdlist, "show arm ", 0, &showlist);
+
+ /* Sync the opcode insn printer with our register viewer. */
+ parse_arm_disassembler_option ("reg-names-std");
+
+ /* Begin creating the help text. */
+ stb = mem_fileopen ();
+ fprintf_unfiltered (stb, "Set the disassembly style.\n"
+ "The valid values are:\n");
+
+ /* Initialize the array that will be passed to add_set_enum_cmd(). */
+ valid_disassembly_styles
+ = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
+ for (i = 0; i < num_disassembly_options; i++)
+ {
+ numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
+ valid_disassembly_styles[i] = setname;
+ fprintf_unfiltered (stb, "%s - %s\n", setname,
+ setdesc);
+ /* Copy the default names (if found) and synchronize disassembler. */
+ if (!strcmp (setname, "std"))
+ {
+ disassembly_style = setname;
+ current_option = i;
+ for (j = 0; j < numregs; j++)
+ arm_register_names[j] = (char *) regnames[j];
+ set_arm_regname_option (i);
+ }
+ }
+ /* Mark the end of valid options. */
+ valid_disassembly_styles[num_disassembly_options] = NULL;
+
+ /* Finish the creation of the help text. */
+ fprintf_unfiltered (stb, "The default is \"std\".");
+ helptext = ui_file_xstrdup (stb, &length);
+ ui_file_delete (stb);
+
+ /* Add the deprecated disassembly-flavor command. */
+ new_set = add_set_enum_cmd ("disassembly-flavor", no_class,
+ valid_disassembly_styles,
+ &disassembly_style,
+ helptext,
+ &setlist);
+ set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
+ deprecate_cmd (new_set, "set arm disassembly");
+ deprecate_cmd (add_show_from_set (new_set, &showlist),
+ "show arm disassembly");
+
+ /* And now add the new interface. */
+ new_set = add_set_enum_cmd ("disassembler", no_class,
+ valid_disassembly_styles, &disassembly_style,
+ helptext, &setarmcmdlist);
+
+ set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
+ add_show_from_set (new_set, &showarmcmdlist);
+
+ add_setshow_cmd_full ("apcs32", no_class,
+ var_boolean, (char *) &arm_apcs_32,
+ "Set usage of ARM 32-bit mode.",
+ "Show usage of ARM 32-bit mode.",
+ NULL, NULL,
+ &setlist, &showlist, &new_set, &new_show);
+ deprecate_cmd (new_set, "set arm apcs32");
+ deprecate_cmd (new_show, "show arm apcs32");
+
+ add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
+ "Set usage of ARM 32-bit mode. "
+ "When off, a 26-bit PC will be used.",
+ "Show usage of ARM 32-bit mode. "
+ "When off, a 26-bit PC will be used.",
+ NULL, NULL,
+ &setarmcmdlist, &showarmcmdlist);
+
+ /* Add a command to allow the user to force the FPU model. */
+ new_set = add_set_enum_cmd
+ ("fpu", no_class, fp_model_strings, &current_fp_model,
+ "Set the floating point type.\n"
+ "auto - Determine the FP typefrom the OS-ABI.\n"
+ "softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n"
+ "fpa - FPA co-processor (GCC compiled).\n"
+ "softvfp - Software FP with pure-endian doubles.\n"
+ "vfp - VFP co-processor.",
+ &setarmcmdlist);
+ set_cmd_sfunc (new_set, set_fp_model_sfunc);
+ set_cmd_sfunc (add_show_from_set (new_set, &showarmcmdlist), show_fp_model);
+
+ /* Add the deprecated "othernames" command. */
+ deprecate_cmd (add_com ("othernames", class_obscure, arm_othernames,
+ "Switch to the next set of register names."),
+ "set arm disassembly");
+
+ /* Debugging flag. */
+ add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
+ "Set ARM debugging. "
+ "When on, arm-specific debugging is enabled.",
+ "Show ARM debugging. "
+ "When on, arm-specific debugging is enabled.",
+ NULL, NULL,
+ &setdebuglist, &showdebuglist);
+}
OpenPOWER on IntegriCloud