summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/sched.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/gcc/sched.c')
-rw-r--r--contrib/gcc/sched.c1322
1 files changed, 470 insertions, 852 deletions
diff --git a/contrib/gcc/sched.c b/contrib/gcc/sched.c
index 81d77bf..5b54028 100644
--- a/contrib/gcc/sched.c
+++ b/contrib/gcc/sched.c
@@ -1,5 +1,5 @@
/* Instruction scheduling pass.
- Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
+ Copyright (C) 1992, 93-97, 1998 Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@cygnus.com)
Enhanced by, and currently maintained by, Jim Wilson (wilson@cygnus.com)
@@ -111,12 +111,14 @@ Boston, MA 02111-1307, USA. */
reg_n_calls_crossed, and reg_live_length. Also, basic_block_head,
basic_block_end.
- The information in the line number notes is carefully retained by this
- pass. All other NOTE insns are grouped in their same relative order at
- the beginning of basic blocks that have been scheduled. */
+ The information in the line number notes is carefully retained by
+ this pass. Notes that refer to the starting and ending of
+ exception regions are also carefully retained by this pass. All
+ other NOTE insns are grouped in their same relative order at the
+ beginning of basic blocks that have been scheduled. */
-#include <stdio.h>
#include "config.h"
+#include "system.h"
#include "rtl.h"
#include "basic-block.h"
#include "regs.h"
@@ -125,6 +127,9 @@ Boston, MA 02111-1307, USA. */
#include "insn-config.h"
#include "insn-attr.h"
+extern char *reg_known_equiv_p;
+extern rtx *reg_known_value;
+
#ifdef INSN_SCHEDULING
/* Arrays set up by scheduling for the same respective purposes as
similar-named arrays set up by flow analysis. We work with these
@@ -133,7 +138,6 @@ Boston, MA 02111-1307, USA. */
Values of these arrays are copied at the end of this pass into the
arrays set up by flow analysis. */
-static short *sched_reg_n_deaths;
static int *sched_reg_n_calls_crossed;
static int *sched_reg_live_length;
@@ -175,7 +179,7 @@ static unsigned int *insn_blockage;
#define UNIT_BLOCKED(B) ((B) >> (2 * BLOCKAGE_BITS))
#define BLOCKAGE_RANGE(B) \
(((((B) >> BLOCKAGE_BITS) & BLOCKAGE_MASK) << (HOST_BITS_PER_INT / 2)) \
- | (B) & BLOCKAGE_MASK)
+ | ((B) & BLOCKAGE_MASK))
/* Encodings of the `<name>_unit_blockage_range' function. */
#define MIN_BLOCKAGE_COST(R) ((R) >> (HOST_BITS_PER_INT / 2))
@@ -260,7 +264,7 @@ static rtx dead_notes;
The transition (R->S) is implemented in the scheduling loop in
`schedule_block' when the best insn to schedule is chosen.
The transition (R->Q) is implemented in `schedule_select' when an
- insn is found to to have a function unit conflict with the already
+ insn is found to have a function unit conflict with the already
committed insns.
The transitions (P->R and P->Q) are implemented in `schedule_insn' as
insns move from the ready list to the scheduled list.
@@ -288,16 +292,12 @@ static int *insn_tick;
struct sometimes
{
- short offset; short bit;
- short live_length; short calls_crossed;
+ int regno;
+ int live_length;
+ int calls_crossed;
};
/* Forward declarations. */
-static rtx canon_rtx PROTO((rtx));
-static int rtx_equal_for_memref_p PROTO((rtx, rtx));
-static rtx find_symbolic_term PROTO((rtx));
-static int memrefs_conflict_p PROTO((int, rtx, int, rtx,
- HOST_WIDE_INT));
static void add_dependence PROTO((rtx, rtx, enum reg_note));
static void remove_dependence PROTO((rtx, rtx));
static rtx find_insn_list PROTO((rtx, rtx));
@@ -313,16 +313,16 @@ static int insn_cost PROTO((rtx, rtx, rtx));
static int priority PROTO((rtx));
static void free_pending_lists PROTO((void));
static void add_insn_mem_dependence PROTO((rtx *, rtx *, rtx, rtx));
-static void flush_pending_lists PROTO((rtx));
+static void flush_pending_lists PROTO((rtx, int));
static void sched_analyze_1 PROTO((rtx, rtx));
static void sched_analyze_2 PROTO((rtx, rtx));
static void sched_analyze_insn PROTO((rtx, rtx, rtx));
static int sched_analyze PROTO((rtx, rtx));
static void sched_note_set PROTO((int, rtx, int));
-static int rank_for_schedule PROTO((rtx *, rtx *));
+static int rank_for_schedule PROTO((const GENERIC_PTR, const GENERIC_PTR));
static void swap_sort PROTO((rtx *, int));
static void queue_insn PROTO((rtx, int));
-static int birthing_insn PROTO((rtx));
+static int birthing_insn_p PROTO((rtx));
static void adjust_priority PROTO((rtx));
static int schedule_insn PROTO((rtx, rtx *, int, int));
static int schedule_select PROTO((rtx *, int, int, FILE *));
@@ -330,9 +330,9 @@ static void create_reg_dead_note PROTO((rtx, rtx));
static void attach_deaths PROTO((rtx, rtx, int));
static void attach_deaths_insn PROTO((rtx));
static rtx unlink_notes PROTO((rtx, rtx));
-static int new_sometimes_live PROTO((struct sometimes *, int, int,
- int));
+static int new_sometimes_live PROTO((struct sometimes *, int, int));
static void finish_sometimes_live PROTO((struct sometimes *, int));
+static rtx reemit_notes PROTO((rtx, rtx));
static void schedule_block PROTO((int, FILE *));
static rtx regno_use_in PROTO((int, rtx));
static void split_hard_reg_notes PROTO((rtx, rtx, rtx, rtx));
@@ -347,540 +347,6 @@ void schedule_insns PROTO((FILE *));
#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
-/* Vector indexed by N giving the initial (unchanging) value known
- for pseudo-register N. */
-static rtx *reg_known_value;
-
-/* Vector recording for each reg_known_value whether it is due to a
- REG_EQUIV note. Future passes (viz., reload) may replace the
- pseudo with the equivalent expression and so we account for the
- dependences that would be introduced if that happens. */
-/* ??? This is a problem only on the Convex. The REG_EQUIV notes created in
- assign_parms mention the arg pointer, and there are explicit insns in the
- RTL that modify the arg pointer. Thus we must ensure that such insns don't
- get scheduled across each other because that would invalidate the REG_EQUIV
- notes. One could argue that the REG_EQUIV notes are wrong, but solving
- the problem in the scheduler will likely give better code, so we do it
- here. */
-static char *reg_known_equiv_p;
-
-/* Indicates number of valid entries in reg_known_value. */
-static int reg_known_value_size;
-
-static rtx
-canon_rtx (x)
- rtx x;
-{
- if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
- && REGNO (x) <= reg_known_value_size)
- return reg_known_value[REGNO (x)];
- else if (GET_CODE (x) == PLUS)
- {
- rtx x0 = canon_rtx (XEXP (x, 0));
- rtx x1 = canon_rtx (XEXP (x, 1));
-
- if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
- {
- /* We can tolerate LO_SUMs being offset here; these
- rtl are used for nothing other than comparisons. */
- if (GET_CODE (x0) == CONST_INT)
- return plus_constant_for_output (x1, INTVAL (x0));
- else if (GET_CODE (x1) == CONST_INT)
- return plus_constant_for_output (x0, INTVAL (x1));
- return gen_rtx (PLUS, GET_MODE (x), x0, x1);
- }
- }
- return x;
-}
-
-/* Set up all info needed to perform alias analysis on memory references. */
-
-void
-init_alias_analysis ()
-{
- int maxreg = max_reg_num ();
- rtx insn;
- rtx note;
- rtx set;
-
- reg_known_value_size = maxreg;
-
- reg_known_value
- = (rtx *) oballoc ((maxreg-FIRST_PSEUDO_REGISTER) * sizeof (rtx))
- - FIRST_PSEUDO_REGISTER;
- bzero ((char *) (reg_known_value + FIRST_PSEUDO_REGISTER),
- (maxreg-FIRST_PSEUDO_REGISTER) * sizeof (rtx));
-
- reg_known_equiv_p
- = (char *) oballoc ((maxreg -FIRST_PSEUDO_REGISTER) * sizeof (char))
- - FIRST_PSEUDO_REGISTER;
- bzero (reg_known_equiv_p + FIRST_PSEUDO_REGISTER,
- (maxreg - FIRST_PSEUDO_REGISTER) * sizeof (char));
-
- /* Fill in the entries with known constant values. */
- for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
- if ((set = single_set (insn)) != 0
- && GET_CODE (SET_DEST (set)) == REG
- && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
- && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
- && reg_n_sets[REGNO (SET_DEST (set))] == 1)
- || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
- && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
- {
- int regno = REGNO (SET_DEST (set));
- reg_known_value[regno] = XEXP (note, 0);
- reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
- }
-
- /* Fill in the remaining entries. */
- while (--maxreg >= FIRST_PSEUDO_REGISTER)
- if (reg_known_value[maxreg] == 0)
- reg_known_value[maxreg] = regno_reg_rtx[maxreg];
-}
-
-/* Return 1 if X and Y are identical-looking rtx's.
-
- We use the data in reg_known_value above to see if two registers with
- different numbers are, in fact, equivalent. */
-
-static int
-rtx_equal_for_memref_p (x, y)
- rtx x, y;
-{
- register int i;
- register int j;
- register enum rtx_code code;
- register char *fmt;
-
- if (x == 0 && y == 0)
- return 1;
- if (x == 0 || y == 0)
- return 0;
- x = canon_rtx (x);
- y = canon_rtx (y);
-
- if (x == y)
- return 1;
-
- code = GET_CODE (x);
- /* Rtx's of different codes cannot be equal. */
- if (code != GET_CODE (y))
- return 0;
-
- /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
- (REG:SI x) and (REG:HI x) are NOT equivalent. */
-
- if (GET_MODE (x) != GET_MODE (y))
- return 0;
-
- /* REG, LABEL_REF, and SYMBOL_REF can be compared nonrecursively. */
-
- if (code == REG)
- return REGNO (x) == REGNO (y);
- if (code == LABEL_REF)
- return XEXP (x, 0) == XEXP (y, 0);
- if (code == SYMBOL_REF)
- return XSTR (x, 0) == XSTR (y, 0);
-
- /* For commutative operations, the RTX match if the operand match in any
- order. Also handle the simple binary and unary cases without a loop. */
- if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
- return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
- && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
- || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
- && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
- else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
- return (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
- && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)));
- else if (GET_RTX_CLASS (code) == '1')
- return rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0));
-
- /* Compare the elements. If any pair of corresponding elements
- fail to match, return 0 for the whole things. */
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- switch (fmt[i])
- {
- case 'w':
- if (XWINT (x, i) != XWINT (y, i))
- return 0;
- break;
-
- case 'n':
- case 'i':
- if (XINT (x, i) != XINT (y, i))
- return 0;
- break;
-
- case 'V':
- case 'E':
- /* Two vectors must have the same length. */
- if (XVECLEN (x, i) != XVECLEN (y, i))
- return 0;
-
- /* And the corresponding elements must match. */
- for (j = 0; j < XVECLEN (x, i); j++)
- if (rtx_equal_for_memref_p (XVECEXP (x, i, j), XVECEXP (y, i, j)) == 0)
- return 0;
- break;
-
- case 'e':
- if (rtx_equal_for_memref_p (XEXP (x, i), XEXP (y, i)) == 0)
- return 0;
- break;
-
- case 'S':
- case 's':
- if (strcmp (XSTR (x, i), XSTR (y, i)))
- return 0;
- break;
-
- case 'u':
- /* These are just backpointers, so they don't matter. */
- break;
-
- case '0':
- break;
-
- /* It is believed that rtx's at this level will never
- contain anything but integers and other rtx's,
- except for within LABEL_REFs and SYMBOL_REFs. */
- default:
- abort ();
- }
- }
- return 1;
-}
-
-/* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
- X and return it, or return 0 if none found. */
-
-static rtx
-find_symbolic_term (x)
- rtx x;
-{
- register int i;
- register enum rtx_code code;
- register char *fmt;
-
- code = GET_CODE (x);
- if (code == SYMBOL_REF || code == LABEL_REF)
- return x;
- if (GET_RTX_CLASS (code) == 'o')
- return 0;
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- rtx t;
-
- if (fmt[i] == 'e')
- {
- t = find_symbolic_term (XEXP (x, i));
- if (t != 0)
- return t;
- }
- else if (fmt[i] == 'E')
- break;
- }
- return 0;
-}
-
-/* Return nonzero if X and Y (memory addresses) could reference the
- same location in memory. C is an offset accumulator. When
- C is nonzero, we are testing aliases between X and Y + C.
- XSIZE is the size in bytes of the X reference,
- similarly YSIZE is the size in bytes for Y.
-
- If XSIZE or YSIZE is zero, we do not know the amount of memory being
- referenced (the reference was BLKmode), so make the most pessimistic
- assumptions.
-
- We recognize the following cases of non-conflicting memory:
-
- (1) addresses involving the frame pointer cannot conflict
- with addresses involving static variables.
- (2) static variables with different addresses cannot conflict.
-
- Nice to notice that varying addresses cannot conflict with fp if no
- local variables had their addresses taken, but that's too hard now. */
-
-/* ??? In Fortran, references to a array parameter can never conflict with
- another array parameter. */
-
-static int
-memrefs_conflict_p (xsize, x, ysize, y, c)
- rtx x, y;
- int xsize, ysize;
- HOST_WIDE_INT c;
-{
- if (GET_CODE (x) == HIGH)
- x = XEXP (x, 0);
- else if (GET_CODE (x) == LO_SUM)
- x = XEXP (x, 1);
- else
- x = canon_rtx (x);
- if (GET_CODE (y) == HIGH)
- y = XEXP (y, 0);
- else if (GET_CODE (y) == LO_SUM)
- y = XEXP (y, 1);
- else
- y = canon_rtx (y);
-
- if (rtx_equal_for_memref_p (x, y))
- return (xsize == 0 || ysize == 0 ||
- (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
-
- if (y == frame_pointer_rtx || y == hard_frame_pointer_rtx
- || y == stack_pointer_rtx)
- {
- rtx t = y;
- int tsize = ysize;
- y = x; ysize = xsize;
- x = t; xsize = tsize;
- }
-
- if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
- || x == stack_pointer_rtx)
- {
- rtx y1;
-
- if (CONSTANT_P (y))
- return 0;
-
- if (GET_CODE (y) == PLUS
- && canon_rtx (XEXP (y, 0)) == x
- && (y1 = canon_rtx (XEXP (y, 1)))
- && GET_CODE (y1) == CONST_INT)
- {
- c += INTVAL (y1);
- return (xsize == 0 || ysize == 0
- || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
- }
-
- if (GET_CODE (y) == PLUS
- && (y1 = canon_rtx (XEXP (y, 0)))
- && CONSTANT_P (y1))
- return 0;
-
- return 1;
- }
-
- if (GET_CODE (x) == PLUS)
- {
- /* The fact that X is canonicalized means that this
- PLUS rtx is canonicalized. */
- rtx x0 = XEXP (x, 0);
- rtx x1 = XEXP (x, 1);
-
- if (GET_CODE (y) == PLUS)
- {
- /* The fact that Y is canonicalized means that this
- PLUS rtx is canonicalized. */
- rtx y0 = XEXP (y, 0);
- rtx y1 = XEXP (y, 1);
-
- if (rtx_equal_for_memref_p (x1, y1))
- return memrefs_conflict_p (xsize, x0, ysize, y0, c);
- if (rtx_equal_for_memref_p (x0, y0))
- return memrefs_conflict_p (xsize, x1, ysize, y1, c);
- if (GET_CODE (x1) == CONST_INT)
- if (GET_CODE (y1) == CONST_INT)
- return memrefs_conflict_p (xsize, x0, ysize, y0,
- c - INTVAL (x1) + INTVAL (y1));
- else
- return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
- else if (GET_CODE (y1) == CONST_INT)
- return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
-
- /* Handle case where we cannot understand iteration operators,
- but we notice that the base addresses are distinct objects. */
- x = find_symbolic_term (x);
- if (x == 0)
- return 1;
- y = find_symbolic_term (y);
- if (y == 0)
- return 1;
- return rtx_equal_for_memref_p (x, y);
- }
- else if (GET_CODE (x1) == CONST_INT)
- return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
- }
- else if (GET_CODE (y) == PLUS)
- {
- /* The fact that Y is canonicalized means that this
- PLUS rtx is canonicalized. */
- rtx y0 = XEXP (y, 0);
- rtx y1 = XEXP (y, 1);
-
- if (GET_CODE (y1) == CONST_INT)
- return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
- else
- return 1;
- }
-
- if (GET_CODE (x) == GET_CODE (y))
- switch (GET_CODE (x))
- {
- case MULT:
- {
- /* Handle cases where we expect the second operands to be the
- same, and check only whether the first operand would conflict
- or not. */
- rtx x0, y0;
- rtx x1 = canon_rtx (XEXP (x, 1));
- rtx y1 = canon_rtx (XEXP (y, 1));
- if (! rtx_equal_for_memref_p (x1, y1))
- return 1;
- x0 = canon_rtx (XEXP (x, 0));
- y0 = canon_rtx (XEXP (y, 0));
- if (rtx_equal_for_memref_p (x0, y0))
- return (xsize == 0 || ysize == 0
- || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
-
- /* Can't properly adjust our sizes. */
- if (GET_CODE (x1) != CONST_INT)
- return 1;
- xsize /= INTVAL (x1);
- ysize /= INTVAL (x1);
- c /= INTVAL (x1);
- return memrefs_conflict_p (xsize, x0, ysize, y0, c);
- }
- }
-
- if (CONSTANT_P (x))
- {
- if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
- {
- c += (INTVAL (y) - INTVAL (x));
- return (xsize == 0 || ysize == 0
- || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
- }
-
- if (GET_CODE (x) == CONST)
- {
- if (GET_CODE (y) == CONST)
- return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
- ysize, canon_rtx (XEXP (y, 0)), c);
- else
- return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
- ysize, y, c);
- }
- if (GET_CODE (y) == CONST)
- return memrefs_conflict_p (xsize, x, ysize,
- canon_rtx (XEXP (y, 0)), c);
-
- if (CONSTANT_P (y))
- return (rtx_equal_for_memref_p (x, y)
- && (xsize == 0 || ysize == 0
- || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0)));
-
- return 1;
- }
- return 1;
-}
-
-/* Functions to compute memory dependencies.
-
- Since we process the insns in execution order, we can build tables
- to keep track of what registers are fixed (and not aliased), what registers
- are varying in known ways, and what registers are varying in unknown
- ways.
-
- If both memory references are volatile, then there must always be a
- dependence between the two references, since their order can not be
- changed. A volatile and non-volatile reference can be interchanged
- though.
-
- A MEM_IN_STRUCT reference at a non-QImode varying address can never
- conflict with a non-MEM_IN_STRUCT reference at a fixed address. We must
- allow QImode aliasing because the ANSI C standard allows character
- pointers to alias anything. We are assuming that characters are
- always QImode here. */
-
-/* Read dependence: X is read after read in MEM takes place. There can
- only be a dependence here if both reads are volatile. */
-
-int
-read_dependence (mem, x)
- rtx mem;
- rtx x;
-{
- return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
-}
-
-/* True dependence: X is read after store in MEM takes place. */
-
-int
-true_dependence (mem, x)
- rtx mem;
- rtx x;
-{
- /* If X is an unchanging read, then it can't possibly conflict with any
- non-unchanging store. It may conflict with an unchanging write though,
- because there may be a single store to this address to initialize it.
- Just fall through to the code below to resolve the case where we have
- both an unchanging read and an unchanging write. This won't handle all
- cases optimally, but the possible performance loss should be
- negligible. */
- if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
- return 0;
-
- return ((MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
- || (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0),
- SIZE_FOR_MODE (x), XEXP (x, 0), 0)
- && ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem)
- && GET_MODE (mem) != QImode
- && ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x))
- && ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x)
- && GET_MODE (x) != QImode
- && ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem))));
-}
-
-/* Anti dependence: X is written after read in MEM takes place. */
-
-int
-anti_dependence (mem, x)
- rtx mem;
- rtx x;
-{
- /* If MEM is an unchanging read, then it can't possibly conflict with
- the store to X, because there is at most one store to MEM, and it must
- have occurred somewhere before MEM. */
- if (RTX_UNCHANGING_P (mem))
- return 0;
-
- return ((MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
- || (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0),
- SIZE_FOR_MODE (x), XEXP (x, 0), 0)
- && ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem)
- && GET_MODE (mem) != QImode
- && ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x))
- && ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x)
- && GET_MODE (x) != QImode
- && ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem))));
-}
-
-/* Output dependence: X is written after store in MEM takes place. */
-
-int
-output_dependence (mem, x)
- rtx mem;
- rtx x;
-{
- return ((MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
- || (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0),
- SIZE_FOR_MODE (x), XEXP (x, 0), 0)
- && ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem)
- && GET_MODE (mem) != QImode
- && ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x))
- && ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x)
- && GET_MODE (x) != QImode
- && ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem))));
-}
-
/* Helper functions for instruction scheduling. */
/* Add ELEM wrapped in an INSN_LIST with reg note kind DEP_TYPE to the
@@ -912,7 +378,8 @@ add_dependence (insn, elem, dep_type)
next = NEXT_INSN (next);
#endif
- if (next && SCHED_GROUP_P (next))
+ if (next && SCHED_GROUP_P (next)
+ && GET_CODE (next) != CODE_LABEL)
{
/* Notes will never intervene here though, so don't bother checking
for them. */
@@ -964,17 +431,19 @@ remove_dependence (insn, elem)
rtx prev, link;
int found = 0;
- for (prev = 0, link = LOG_LINKS (insn); link;
- prev = link, link = XEXP (link, 1))
+ for (prev = 0, link = LOG_LINKS (insn); link; link = XEXP (link, 1))
{
if (XEXP (link, 0) == elem)
{
+ RTX_INTEGRATED_P (link) = 1;
if (prev)
XEXP (prev, 1) = XEXP (link, 1);
else
LOG_LINKS (insn) = XEXP (link, 1);
found = 1;
}
+ else
+ prev = link;
}
if (! found)
@@ -1278,9 +747,9 @@ actual_hazard (unit, insn, clock, cost)
int instance = unit;
int best_cost = actual_hazard_this_instance (unit, instance, insn,
clock, cost);
+#if MAX_MULTIPLICITY > 1
int this_cost;
-#if MAX_MULTIPLICITY > 1
if (best_cost > cost)
{
for (i = function_units[unit].multiplicity - 1; i > 0; i--)
@@ -1452,6 +921,11 @@ priority (insn)
{
rtx x = XEXP (prev, 0);
+ /* If this was a duplicate of a dependence we already deleted,
+ ignore it. */
+ if (RTX_INTEGRATED_P (prev))
+ continue;
+
/* A dependence pointing to a note or deleted insn is always
obsolete, because sched_analyze_insn will have created any
necessary new dependences which replace it. Notes and deleted
@@ -1608,15 +1082,17 @@ add_insn_mem_dependence (insn_list, mem_list, insn, mem)
}
/* Make a dependency between every memory reference on the pending lists
- and INSN, thus flushing the pending lists. */
+ and INSN, thus flushing the pending lists. If ONLY_WRITE, don't flush
+ the read list. */
static void
-flush_pending_lists (insn)
+flush_pending_lists (insn, only_write)
rtx insn;
+ int only_write;
{
rtx link;
- while (pending_read_insns)
+ while (pending_read_insns && ! only_write)
{
add_dependence (insn, XEXP (pending_read_insns, 0), REG_DEP_ANTI);
@@ -1699,8 +1175,7 @@ sched_analyze_1 (x, insn)
if (reg_last_sets[regno + i])
add_dependence (insn, reg_last_sets[regno + i],
REG_DEP_OUTPUT);
- reg_pending_sets[(regno + i) / REGSET_ELT_BITS]
- |= (REGSET_ELT_TYPE) 1 << ((regno + i) % REGSET_ELT_BITS);
+ SET_REGNO_REG_SET (reg_pending_sets, regno + i);
if ((call_used_regs[i] || global_regs[i])
&& last_function_call)
/* Function calls clobber all call_used regs. */
@@ -1716,8 +1191,7 @@ sched_analyze_1 (x, insn)
reg_last_uses[regno] = 0;
if (reg_last_sets[regno])
add_dependence (insn, reg_last_sets[regno], REG_DEP_OUTPUT);
- reg_pending_sets[regno / REGSET_ELT_BITS]
- |= (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
+ SET_REGNO_REG_SET (reg_pending_sets, regno);
/* Pseudos that are REG_EQUIV to something may be replaced
by that during reloading. We need only add dependencies for
@@ -1729,7 +1203,7 @@ sched_analyze_1 (x, insn)
/* Don't let it cross a call after scheduling if it doesn't
already cross one. */
- if (reg_n_calls_crossed[regno] == 0 && last_function_call)
+ if (REG_N_CALLS_CROSSED (regno) == 0 && last_function_call)
add_dependence (insn, last_function_call, REG_DEP_ANTI);
}
}
@@ -1745,7 +1219,7 @@ sched_analyze_1 (x, insn)
seems like a reasonable number. When compiling GCC with itself,
this flush occurs 8 times for sparc, and 10 times for m88k using
the number 32. */
- flush_pending_lists (insn);
+ flush_pending_lists (insn, 0);
}
else
{
@@ -1825,22 +1299,19 @@ sched_analyze_2 (x, insn)
{
rtx link, prev;
+ /* User of CC0 depends on immediately preceding insn. */
+ SCHED_GROUP_P (insn) = 1;
+
/* There may be a note before this insn now, but all notes will
be removed before we actually try to schedule the insns, so
it won't cause a problem later. We must avoid it here though. */
-
- /* User of CC0 depends on immediately preceding insn. */
- SCHED_GROUP_P (insn) = 1;
+ prev = prev_nonnote_insn (insn);
/* Make a copy of all dependencies on the immediately previous insn,
and add to this insn. This is so that all the dependencies will
apply to the group. Remove an explicit dependence on this insn
as SCHED_GROUP_P now represents it. */
- prev = PREV_INSN (insn);
- while (GET_CODE (prev) == NOTE)
- prev = PREV_INSN (prev);
-
if (find_insn_list (prev, LOG_LINKS (insn)))
remove_dependence (insn, prev);
@@ -1862,8 +1333,8 @@ sched_analyze_2 (x, insn)
while (--i >= 0)
{
reg_last_uses[regno + i]
- = gen_rtx (INSN_LIST, VOIDmode,
- insn, reg_last_uses[regno + i]);
+ = gen_rtx_INSN_LIST (VOIDmode,
+ insn, reg_last_uses[regno + i]);
if (reg_last_sets[regno + i])
add_dependence (insn, reg_last_sets[regno + i], 0);
if ((call_used_regs[regno + i] || global_regs[regno + i])
@@ -1875,7 +1346,7 @@ sched_analyze_2 (x, insn)
else
{
reg_last_uses[regno]
- = gen_rtx (INSN_LIST, VOIDmode, insn, reg_last_uses[regno]);
+ = gen_rtx_INSN_LIST (VOIDmode, insn, reg_last_uses[regno]);
if (reg_last_sets[regno])
add_dependence (insn, reg_last_sets[regno], 0);
@@ -1890,7 +1361,7 @@ sched_analyze_2 (x, insn)
/* If the register does not already cross any calls, then add this
insn to the sched_before_next_call list so that it will still
not cross calls after scheduling. */
- if (reg_n_calls_crossed[regno] == 0)
+ if (REG_N_CALLS_CROSSED (regno) == 0)
add_dependence (sched_before_next_call, insn, REG_DEP_ANTI);
}
return;
@@ -1921,7 +1392,8 @@ sched_analyze_2 (x, insn)
{
/* If a dependency already exists, don't create a new one. */
if (! find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
- if (true_dependence (XEXP (pending_mem, 0), x))
+ if (true_dependence (XEXP (pending_mem, 0), VOIDmode,
+ x, rtx_varies_p))
add_dependence (insn, XEXP (pending, 0), 0);
pending = XEXP (pending, 1);
@@ -1967,7 +1439,7 @@ sched_analyze_2 (x, insn)
}
reg_pending_sets_all = 1;
- flush_pending_lists (insn);
+ flush_pending_lists (insn, 0);
}
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
@@ -1997,6 +1469,9 @@ sched_analyze_2 (x, insn)
sched_analyze_2 (XEXP (x, 0), insn);
sched_analyze_1 (x, insn);
return;
+
+ default:
+ break;
}
/* Other cases: walk the insn. */
@@ -2050,7 +1525,7 @@ sched_analyze_insn (x, insn, loop_notes)
sched_analyze_2 (XEXP (link, 0), insn);
}
- /* If there is a LOOP_{BEG,END} note in the middle of a basic block, then
+ /* If there is a {LOOP,EHREGION}_{BEG,END} note in the middle of a basic block, then
we must be sure that no instructions are scheduled across it.
Otherwise, the reg_n_refs info (which depends on loop_depth) would
become incorrect. */
@@ -2071,7 +1546,7 @@ sched_analyze_insn (x, insn, loop_notes)
}
reg_pending_sets_all = 1;
- flush_pending_lists (insn);
+ flush_pending_lists (insn, 0);
link = loop_notes;
while (XEXP (link, 1))
@@ -2101,18 +1576,12 @@ sched_analyze_insn (x, insn, loop_notes)
sched_analyze_2 (XEXP (note, 0), insn);
}
- for (i = 0; i < regset_size; i++)
- {
- REGSET_ELT_TYPE sets = reg_pending_sets[i];
- if (sets)
- {
- register int bit;
- for (bit = 0; bit < REGSET_ELT_BITS; bit++)
- if (sets & ((REGSET_ELT_TYPE) 1 << bit))
- reg_last_sets[i * REGSET_ELT_BITS + bit] = insn;
- reg_pending_sets[i] = 0;
- }
- }
+ EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i,
+ {
+ reg_last_sets[i] = insn;
+ });
+ CLEAR_REG_SET (reg_pending_sets);
+
if (reg_pending_sets_all)
{
for (i = 0; i < maxreg; i++)
@@ -2212,11 +1681,16 @@ sched_analyze (head, tail)
}
reg_pending_sets_all = 1;
- /* Add a fake REG_NOTE which we will later convert
- back into a NOTE_INSN_SETJMP note. */
- REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_DEAD,
- GEN_INT (NOTE_INSN_SETJMP),
- REG_NOTES (insn));
+ /* Add a pair of fake REG_NOTEs which we will later
+ convert back into a NOTE_INSN_SETJMP note. See
+ reemit_notes for why we use a pair of NOTEs. */
+
+ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD,
+ GEN_INT (0),
+ REG_NOTES (insn));
+ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD,
+ GEN_INT (NOTE_INSN_SETJMP),
+ REG_NOTES (insn));
}
else
{
@@ -2228,8 +1702,7 @@ sched_analyze (head, tail)
reg_last_uses[i] = 0;
if (reg_last_sets[i])
add_dependence (insn, reg_last_sets[i], REG_DEP_ANTI);
- reg_pending_sets[i / REGSET_ELT_BITS]
- |= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
+ SET_REGNO_REG_SET (reg_pending_sets, i);
}
}
@@ -2246,30 +1719,43 @@ sched_analyze (head, tail)
sched_analyze_insn (PATTERN (insn), insn, loop_notes);
loop_notes = 0;
- /* We don't need to flush memory for a function call which does
- not involve memory. */
- if (! CONST_CALL_P (insn))
- {
- /* In the absence of interprocedural alias analysis,
- we must flush all pending reads and writes, and
- start new dependencies starting from here. */
- flush_pending_lists (insn);
- }
+ /* In the absence of interprocedural alias analysis, we must flush
+ all pending reads and writes, and start new dependencies starting
+ from here. But only flush writes for constant calls (which may
+ be passed a pointer to something we haven't written yet). */
+ flush_pending_lists (insn, CONST_CALL_P (insn));
/* Depend this function call (actually, the user of this
function call) on all hard register clobberage. */
last_function_call = insn;
n_insns += 1;
}
+
+ /* See comments on reemit_notes as to why we do this. */
else if (GET_CODE (insn) == NOTE
&& (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
- || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END))
- loop_notes = gen_rtx (EXPR_LIST, REG_DEAD,
- GEN_INT (NOTE_LINE_NUMBER (insn)), loop_notes);
+ || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
+ || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
+ || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END
+ || NOTE_LINE_NUMBER (insn) == NOTE_INSN_RANGE_START
+ || NOTE_LINE_NUMBER (insn) == NOTE_INSN_RANGE_END
+ || (NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP
+ && GET_CODE (PREV_INSN (insn)) != CALL_INSN)))
+ {
+ loop_notes = gen_rtx_EXPR_LIST (REG_DEAD,
+ GEN_INT (NOTE_BLOCK_NUMBER (insn)),
+ loop_notes);
+ loop_notes = gen_rtx_EXPR_LIST (REG_DEAD,
+ GEN_INT (NOTE_LINE_NUMBER (insn)),
+ loop_notes);
+ CONST_CALL_P (loop_notes) = CONST_CALL_P (insn);
+ }
if (insn == tail)
return n_insns;
}
+
+ abort ();
}
/* Called when we see a set of a register. If death is true, then we are
@@ -2313,10 +1799,6 @@ sched_note_set (b, x, death)
regno = REGNO (reg);
if (regno >= FIRST_PSEUDO_REGISTER || ! global_regs[regno])
{
- register int offset = regno / REGSET_ELT_BITS;
- register REGSET_ELT_TYPE bit
- = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
-
if (death)
{
/* If we only set part of the register, then this set does not
@@ -2330,17 +1812,14 @@ sched_note_set (b, x, death)
int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
while (--j >= 0)
{
- offset = (regno + j) / REGSET_ELT_BITS;
- bit = (REGSET_ELT_TYPE) 1 << ((regno + j) % REGSET_ELT_BITS);
-
- bb_live_regs[offset] &= ~bit;
- bb_dead_regs[offset] |= bit;
+ CLEAR_REGNO_REG_SET (bb_live_regs, regno + j);
+ SET_REGNO_REG_SET (bb_dead_regs, regno + j);
}
}
else
{
- bb_live_regs[offset] &= ~bit;
- bb_dead_regs[offset] |= bit;
+ CLEAR_REGNO_REG_SET (bb_live_regs, regno);
+ SET_REGNO_REG_SET (bb_dead_regs, regno);
}
}
else
@@ -2351,17 +1830,14 @@ sched_note_set (b, x, death)
int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
while (--j >= 0)
{
- offset = (regno + j) / REGSET_ELT_BITS;
- bit = (REGSET_ELT_TYPE) 1 << ((regno + j) % REGSET_ELT_BITS);
-
- bb_live_regs[offset] |= bit;
- bb_dead_regs[offset] &= ~bit;
+ SET_REGNO_REG_SET (bb_live_regs, regno + j);
+ CLEAR_REGNO_REG_SET (bb_dead_regs, regno + j);
}
}
else
{
- bb_live_regs[offset] |= bit;
- bb_dead_regs[offset] &= ~bit;
+ SET_REGNO_REG_SET (bb_live_regs, regno);
+ CLEAR_REGNO_REG_SET (bb_dead_regs, regno);
}
}
}
@@ -2383,16 +1859,17 @@ sched_note_set (b, x, death)
static int
rank_for_schedule (x, y)
- rtx *x, *y;
+ const GENERIC_PTR x;
+ const GENERIC_PTR y;
{
- rtx tmp = *y;
- rtx tmp2 = *x;
+ rtx tmp = *(rtx *)y;
+ rtx tmp2 = *(rtx *)x;
rtx link;
int tmp_class, tmp2_class;
int value;
/* Choose the instruction with the highest priority, if different. */
- if (value = INSN_PRIORITY (tmp) - INSN_PRIORITY (tmp2))
+ if ((value = INSN_PRIORITY (tmp) - INSN_PRIORITY (tmp2)))
return value;
if (last_scheduled_insn)
@@ -2418,7 +1895,7 @@ rank_for_schedule (x, y)
else
tmp2_class = 2;
- if (value = tmp_class - tmp2_class)
+ if ((value = tmp_class - tmp2_class))
return value;
}
@@ -2479,15 +1956,13 @@ birthing_insn_p (pat)
{
rtx dest = SET_DEST (pat);
int i = REGNO (dest);
- int offset = i / REGSET_ELT_BITS;
- REGSET_ELT_TYPE bit = (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
/* It would be more accurate to use refers_to_regno_p or
reg_mentioned_p to determine when the dest is not live before this
insn. */
- if (bb_live_regs[offset] & bit)
- return (reg_n_sets[i] == 1);
+ if (REGNO_REG_SET_P (bb_live_regs, i))
+ return (REG_N_SETS (i) == 1);
return 0;
}
@@ -2545,6 +2020,9 @@ adjust_priority (prev)
}
break;
}
+#ifdef ADJUST_PRIORITY
+ ADJUST_PRIORITY (prev);
+#endif
}
}
@@ -2745,6 +2223,12 @@ create_reg_dead_note (reg, insn)
GET_MODE (XEXP (link, 0))));
while (reg_note_regs < regs_killed)
{
+ /* LINK might be zero if we killed more registers after scheduling
+ than before, and the last hard register we kill is actually
+ multiple hard regs. */
+ if (link == NULL_RTX)
+ abort ();
+
link = XEXP (link, 1);
reg_note_regs += (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
: HARD_REGNO_NREGS (REGNO (XEXP (link, 0)),
@@ -2757,7 +2241,7 @@ create_reg_dead_note (reg, insn)
{
rtx temp_reg, temp_link;
- temp_reg = gen_rtx (REG, word_mode, 0);
+ temp_reg = gen_rtx_REG (word_mode, 0);
temp_link = rtx_alloc (EXPR_LIST);
PUT_REG_NOTE_KIND (temp_link, REG_DEAD);
XEXP (temp_link, 0) = temp_reg;
@@ -2811,16 +2295,15 @@ attach_deaths (x, insn, set_p)
/* This code is very similar to mark_used_1 (if set_p is false)
and mark_set_1 (if set_p is true) in flow.c. */
- register int regno = REGNO (x);
- register int offset = regno / REGSET_ELT_BITS;
- register REGSET_ELT_TYPE bit
- = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
- REGSET_ELT_TYPE all_needed = (old_live_regs[offset] & bit);
- REGSET_ELT_TYPE some_needed = (old_live_regs[offset] & bit);
+ register int regno;
+ int some_needed;
+ int all_needed;
if (set_p)
return;
+ regno = REGNO (x);
+ all_needed = some_needed = REGNO_REG_SET_P (old_live_regs, regno);
if (regno < FIRST_PSEUDO_REGISTER)
{
int n;
@@ -2828,12 +2311,9 @@ attach_deaths (x, insn, set_p)
n = HARD_REGNO_NREGS (regno, GET_MODE (x));
while (--n > 0)
{
- some_needed |= (old_live_regs[(regno + n) / REGSET_ELT_BITS]
- & ((REGSET_ELT_TYPE) 1
- << ((regno + n) % REGSET_ELT_BITS)));
- all_needed &= (old_live_regs[(regno + n) / REGSET_ELT_BITS]
- & ((REGSET_ELT_TYPE) 1
- << ((regno + n) % REGSET_ELT_BITS)));
+ int needed = (REGNO_REG_SET_P (old_live_regs, regno + n));
+ some_needed |= needed;
+ all_needed &= needed;
}
}
@@ -2865,12 +2345,7 @@ attach_deaths (x, insn, set_p)
#endif
&& regno != STACK_POINTER_REGNUM)
{
- /* ??? It is perhaps a dead_or_set_p bug that it does
- not check for REG_UNUSED notes itself. This is necessary
- for the case where the SET_DEST is a subreg of regno, as
- dead_or_set_p handles subregs specially. */
- if (! all_needed && ! dead_or_set_p (insn, x)
- && ! find_reg_note (insn, REG_UNUSED, x))
+ if (! all_needed && ! dead_or_set_p (insn, x))
{
/* Check for the case where the register dying partially
overlaps the register set by this insn. */
@@ -2895,13 +2370,10 @@ attach_deaths (x, insn, set_p)
register that is set in the insn. */
for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
i >= 0; i--)
- if ((old_live_regs[(regno + i) / REGSET_ELT_BITS]
- & ((REGSET_ELT_TYPE) 1
- << ((regno +i) % REGSET_ELT_BITS))) == 0
+ if (! REGNO_REG_SET_P (old_live_regs, regno + i)
&& ! dead_or_set_regno_p (insn, regno + i))
- create_reg_dead_note (gen_rtx (REG,
- reg_raw_mode[regno + i],
- regno + i),
+ create_reg_dead_note (gen_rtx_REG (reg_raw_mode[regno + i],
+ regno + i),
insn);
}
}
@@ -2912,18 +2384,14 @@ attach_deaths (x, insn, set_p)
int j = HARD_REGNO_NREGS (regno, GET_MODE (x));
while (--j >= 0)
{
- offset = (regno + j) / REGSET_ELT_BITS;
- bit
- = (REGSET_ELT_TYPE) 1 << ((regno + j) % REGSET_ELT_BITS);
-
- bb_dead_regs[offset] &= ~bit;
- bb_live_regs[offset] |= bit;
+ CLEAR_REGNO_REG_SET (bb_dead_regs, regno + j);
+ SET_REGNO_REG_SET (bb_live_regs, regno + j);
}
}
else
{
- bb_dead_regs[offset] &= ~bit;
- bb_live_regs[offset] |= bit;
+ CLEAR_REGNO_REG_SET (bb_dead_regs, regno);
+ SET_REGNO_REG_SET (bb_live_regs, regno);
}
}
return;
@@ -2935,17 +2403,20 @@ attach_deaths (x, insn, set_p)
return;
case SUBREG:
+ attach_deaths (SUBREG_REG (x), insn,
+ set_p && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
+ <= UNITS_PER_WORD)
+ || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
+ == GET_MODE_SIZE (GET_MODE ((x))))));
+ return;
+
case STRICT_LOW_PART:
- /* These two cases preserve the value of SET_P, so handle them
- separately. */
- attach_deaths (XEXP (x, 0), insn, set_p);
+ attach_deaths (XEXP (x, 0), insn, 0);
return;
case ZERO_EXTRACT:
case SIGN_EXTRACT:
- /* This case preserves the value of SET_P for the first operand, but
- clears it for the other two. */
- attach_deaths (XEXP (x, 0), insn, set_p);
+ attach_deaths (XEXP (x, 0), insn, 0);
attach_deaths (XEXP (x, 1), insn, 0);
attach_deaths (XEXP (x, 2), insn, 0);
return;
@@ -3043,10 +2514,14 @@ unlink_notes (insn, tail)
/* Don't save away NOTE_INSN_SETJMPs, because they must remain
immediately after the call they follow. We use a fake
(REG_DEAD (const_int -1)) note to remember them.
- Likewise with NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END. */
+ Likewise with NOTE_INSN_{LOOP,EHREGION}_{BEG, END}. */
else if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_SETJMP
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG
- && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_END)
+ && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_END
+ && NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_START
+ && NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_END
+ && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
+ && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_END)
{
/* Insert the note at the end of the notes list. */
PREV_INSN (insn) = note_list;
@@ -3063,13 +2538,12 @@ unlink_notes (insn, tail)
/* Constructor for `sometimes' data structure. */
static int
-new_sometimes_live (regs_sometimes_live, offset, bit, sometimes_max)
+new_sometimes_live (regs_sometimes_live, regno, sometimes_max)
struct sometimes *regs_sometimes_live;
- int offset, bit;
+ int regno;
int sometimes_max;
{
register struct sometimes *p;
- register int regno = offset * REGSET_ELT_BITS + bit;
/* There should never be a register greater than max_regno here. If there
is, it means that a define_split has created a new pseudo reg. This
@@ -3079,8 +2553,7 @@ new_sometimes_live (regs_sometimes_live, offset, bit, sometimes_max)
abort ();
p = &regs_sometimes_live[sometimes_max];
- p->offset = offset;
- p->bit = bit;
+ p->regno = regno;
p->live_length = 0;
p->calls_crossed = 0;
sometimes_max++;
@@ -3100,19 +2573,19 @@ finish_sometimes_live (regs_sometimes_live, sometimes_max)
for (i = 0; i < sometimes_max; i++)
{
register struct sometimes *p = &regs_sometimes_live[i];
- int regno;
-
- regno = p->offset * REGSET_ELT_BITS + p->bit;
+ int regno = p->regno;
sched_reg_live_length[regno] += p->live_length;
sched_reg_n_calls_crossed[regno] += p->calls_crossed;
}
}
-/* Search INSN for fake REG_DEAD notes for NOTE_INSN_SETJMP,
- NOTE_INSN_LOOP_BEG, and NOTE_INSN_LOOP_END; and convert them back
- into NOTEs. LAST is the last instruction output by the instruction
- scheduler. Return the new value of LAST. */
+/* Search INSN for fake REG_DEAD note pairs for NOTE_INSN_SETJMP,
+ NOTE_INSN_{LOOP,EHREGION}_{BEG,END}; and convert them back into
+ NOTEs. The REG_DEAD note following first one is contains the saved
+ value for NOTE_BLOCK_NUMBER which is useful for
+ NOTE_INSN_EH_REGION_{BEG,END} NOTEs. LAST is the last instruction
+ output by the instruction scheduler. Return the new value of LAST. */
static rtx
reemit_notes (insn, last)
@@ -3127,9 +2600,19 @@ reemit_notes (insn, last)
&& GET_CODE (XEXP (note, 0)) == CONST_INT)
{
if (INTVAL (XEXP (note, 0)) == NOTE_INSN_SETJMP)
- emit_note_after (INTVAL (XEXP (note, 0)), insn);
+ {
+ CONST_CALL_P (emit_note_after (INTVAL (XEXP (note, 0)), insn))
+ = CONST_CALL_P (note);
+ remove_note (insn, note);
+ note = XEXP (note, 1);
+ }
else
- last = emit_note_before (INTVAL (XEXP (note, 0)), last);
+ {
+ last = emit_note_before (INTVAL (XEXP (note, 0)), last);
+ remove_note (insn, note);
+ note = XEXP (note, 1);
+ NOTE_BLOCK_NUMBER (last) = INTVAL (XEXP (note, 0));
+ }
remove_note (insn, note);
}
}
@@ -3147,7 +2630,7 @@ schedule_block (b, file)
{
rtx insn, last;
rtx *ready, link;
- int i, j, n_ready = 0, new_ready, n_insns = 0;
+ int i, j, n_ready = 0, new_ready, n_insns;
int sched_n_insns = 0;
int clock;
#define NEED_NOTHING 0
@@ -3178,11 +2661,19 @@ schedule_block (b, file)
bzero ((char *) reg_last_uses, i * sizeof (rtx));
reg_last_sets = (rtx *) alloca (i * sizeof (rtx));
bzero ((char *) reg_last_sets, i * sizeof (rtx));
- reg_pending_sets = (regset) alloca (regset_bytes);
- bzero ((char *) reg_pending_sets, regset_bytes);
+ reg_pending_sets = ALLOCA_REG_SET ();
+ CLEAR_REG_SET (reg_pending_sets);
reg_pending_sets_all = 0;
clear_units ();
+#if 0
+ /* We used to have code to avoid getting parameters moved from hard
+ argument registers into pseudos.
+
+ However, it was removed when it proved to be of marginal benefit and
+ caused problems because of different notions of what the "head" insn
+ was. */
+
/* Remove certain insns at the beginning from scheduling,
by advancing HEAD. */
@@ -3213,6 +2704,7 @@ schedule_block (b, file)
head = NEXT_INSN (head);
}
}
+#endif
/* Don't include any notes or labels at the beginning of the
basic block, or notes at the ends of basic blocks. */
@@ -3230,7 +2722,7 @@ schedule_block (b, file)
to schedule this block. */
if (head == tail
&& (GET_CODE (head) == NOTE || GET_CODE (head) == CODE_LABEL))
- return;
+ goto ret;
#if 0
/* This short-cut doesn't work. It does not count call insns crossed by
@@ -3243,7 +2735,7 @@ schedule_block (b, file)
has one insn, so this won't slow down this pass by much. */
if (head == tail)
- return;
+ goto ret;
#endif
/* Now HEAD through TAIL are the insns actually to be rearranged;
@@ -3264,11 +2756,11 @@ schedule_block (b, file)
LOG_LINKS (sched_before_next_call) = 0;
- n_insns += sched_analyze (head, tail);
+ n_insns = sched_analyze (head, tail);
if (n_insns == 0)
{
free_pending_lists ();
- return;
+ goto ret;
}
/* Allocate vector to hold insns to be rearranged (except those
@@ -3358,9 +2850,7 @@ schedule_block (b, file)
{
while (SCHED_GROUP_P (insn))
{
- insn = PREV_INSN (insn);
- while (GET_CODE (insn) == NOTE)
- insn = PREV_INSN (insn);
+ insn = prev_nonnote_insn (insn);
priority (insn);
}
continue;
@@ -3400,7 +2890,7 @@ schedule_block (b, file)
finish_sometimes_live (regs_sometimes_live, sometimes_max);
}
free_pending_lists ();
- return;
+ goto ret;
}
#endif
@@ -3414,9 +2904,8 @@ schedule_block (b, file)
if (reload_completed == 0)
{
- bcopy ((char *) basic_block_live_at_start[b], (char *) bb_live_regs,
- regset_bytes);
- bzero ((char *) bb_dead_regs, regset_bytes);
+ COPY_REG_SET (bb_live_regs, basic_block_live_at_start[b]);
+ CLEAR_REG_SET (bb_dead_regs);
if (b == 0)
{
@@ -3455,6 +2944,22 @@ schedule_block (b, file)
sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 0);
}
+ /* Each call clobbers (makes live) all call-clobbered regs
+ that are not global or fixed. Note that the function-value
+ reg is a call_clobbered reg. */
+
+ if (GET_CODE (insn) == CALL_INSN)
+ {
+ int j;
+ for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
+ if (call_used_regs[j] && ! global_regs[j]
+ && ! fixed_regs[j])
+ {
+ SET_REGNO_REG_SET (bb_live_regs, j);
+ CLEAR_REGNO_REG_SET (bb_dead_regs, j);
+ }
+ }
+
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
{
if ((REG_NOTE_KIND (link) == REG_DEAD
@@ -3463,9 +2968,6 @@ schedule_block (b, file)
&& GET_CODE (XEXP (link, 0)) == REG)
{
register int regno = REGNO (XEXP (link, 0));
- register int offset = regno / REGSET_ELT_BITS;
- register REGSET_ELT_TYPE bit
- = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
if (regno < FIRST_PSEUDO_REGISTER)
{
@@ -3473,18 +2975,14 @@ schedule_block (b, file)
GET_MODE (XEXP (link, 0)));
while (--j >= 0)
{
- offset = (regno + j) / REGSET_ELT_BITS;
- bit = ((REGSET_ELT_TYPE) 1
- << ((regno + j) % REGSET_ELT_BITS));
-
- bb_live_regs[offset] &= ~bit;
- bb_dead_regs[offset] |= bit;
+ CLEAR_REGNO_REG_SET (bb_live_regs, regno + j);
+ SET_REGNO_REG_SET (bb_dead_regs, regno + j);
}
}
else
{
- bb_live_regs[offset] &= ~bit;
- bb_dead_regs[offset] |= bit;
+ CLEAR_REGNO_REG_SET (bb_live_regs, regno);
+ SET_REGNO_REG_SET (bb_dead_regs, regno);
}
}
}
@@ -3556,6 +3054,22 @@ schedule_block (b, file)
sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 0);
}
+ /* Each call clobbers (makes live) all call-clobbered regs that are
+ not global or fixed. Note that the function-value reg is a
+ call_clobbered reg. */
+
+ if (GET_CODE (insn) == CALL_INSN)
+ {
+ int j;
+ for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
+ if (call_used_regs[j] && ! global_regs[j]
+ && ! fixed_regs[j])
+ {
+ SET_REGNO_REG_SET (bb_live_regs, j);
+ CLEAR_REGNO_REG_SET (bb_dead_regs, j);
+ }
+ }
+
/* Need to know what registers this insn kills. */
for (prev = 0, link = REG_NOTES (insn); link; link = next)
{
@@ -3566,9 +3080,6 @@ schedule_block (b, file)
&& GET_CODE (XEXP (link, 0)) == REG)
{
register int regno = REGNO (XEXP (link, 0));
- register int offset = regno / REGSET_ELT_BITS;
- register REGSET_ELT_TYPE bit
- = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
/* Only unlink REG_DEAD notes; leave REG_UNUSED notes
alone. */
@@ -3590,18 +3101,14 @@ schedule_block (b, file)
GET_MODE (XEXP (link, 0)));
while (--j >= 0)
{
- offset = (regno + j) / REGSET_ELT_BITS;
- bit = ((REGSET_ELT_TYPE) 1
- << ((regno + j) % REGSET_ELT_BITS));
-
- bb_live_regs[offset] &= ~bit;
- bb_dead_regs[offset] |= bit;
+ CLEAR_REGNO_REG_SET (bb_live_regs, regno + j);
+ SET_REGNO_REG_SET (bb_dead_regs, regno + j);
}
}
else
{
- bb_live_regs[offset] &= ~bit;
- bb_dead_regs[offset] |= bit;
+ CLEAR_REGNO_REG_SET (bb_live_regs, regno);
+ SET_REGNO_REG_SET (bb_dead_regs, regno);
}
}
else
@@ -3613,25 +3120,19 @@ schedule_block (b, file)
if (reload_completed == 0)
{
/* Keep track of register lives. */
- old_live_regs = (regset) alloca (regset_bytes);
+ old_live_regs = ALLOCA_REG_SET ();
regs_sometimes_live
= (struct sometimes *) alloca (max_regno * sizeof (struct sometimes));
sometimes_max = 0;
/* Start with registers live at end. */
- for (j = 0; j < regset_size; j++)
- {
- REGSET_ELT_TYPE live = bb_live_regs[j];
- old_live_regs[j] = live;
- if (live)
- {
- register int bit;
- for (bit = 0; bit < REGSET_ELT_BITS; bit++)
- if (live & ((REGSET_ELT_TYPE) 1 << bit))
- sometimes_max = new_sometimes_live (regs_sometimes_live, j,
- bit, sometimes_max);
- }
- }
+ COPY_REG_SET (old_live_regs, bb_live_regs);
+ EXECUTE_IF_SET_IN_REG_SET (bb_live_regs, 0, j,
+ {
+ sometimes_max
+ = new_sometimes_live (regs_sometimes_live,
+ j, sometimes_max);
+ });
}
SCHED_SORT (ready, n_ready, 1);
@@ -3692,7 +3193,7 @@ schedule_block (b, file)
register int stalls;
for (stalls = 1; stalls < INSN_QUEUE_SIZE; stalls++)
- if (insn = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)])
+ if ((insn = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
{
for (; insn; insn = NEXT_INSN (insn))
{
@@ -3795,18 +3296,15 @@ schedule_block (b, file)
{
register struct sometimes *p;
- /* A call kills all call used and global registers, except
- for those mentioned in the call pattern which will be
- made live again later. */
+ /* A call kills all call used registers that are not
+ global or fixed, except for those mentioned in the call
+ pattern which will be made live again later. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- if (call_used_regs[i] || global_regs[i])
+ if (call_used_regs[i] && ! global_regs[i]
+ && ! fixed_regs[i])
{
- register int offset = i / REGSET_ELT_BITS;
- register REGSET_ELT_TYPE bit
- = (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
-
- bb_live_regs[offset] &= ~bit;
- bb_dead_regs[offset] |= bit;
+ CLEAR_REGNO_REG_SET (bb_live_regs, i);
+ SET_REGNO_REG_SET (bb_dead_regs, i);
}
/* Regs live at the time of a call instruction must not
@@ -3817,8 +3315,7 @@ schedule_block (b, file)
(below). */
p = regs_sometimes_live;
for (i = 0; i < sometimes_max; i++, p++)
- if (bb_live_regs[p->offset]
- & ((REGSET_ELT_TYPE) 1 << p->bit))
+ if (REGNO_REG_SET_P (bb_live_regs, p->regno))
p->calls_crossed += 1;
}
@@ -3827,20 +3324,13 @@ schedule_block (b, file)
attach_deaths_insn (insn);
/* Find registers now made live by that instruction. */
- for (i = 0; i < regset_size; i++)
- {
- REGSET_ELT_TYPE diff = bb_live_regs[i] & ~old_live_regs[i];
- if (diff)
- {
- register int bit;
- old_live_regs[i] |= diff;
- for (bit = 0; bit < REGSET_ELT_BITS; bit++)
- if (diff & ((REGSET_ELT_TYPE) 1 << bit))
- sometimes_max
- = new_sometimes_live (regs_sometimes_live, i, bit,
- sometimes_max);
- }
- }
+ EXECUTE_IF_AND_COMPL_IN_REG_SET (bb_live_regs, old_live_regs, 0, i,
+ {
+ sometimes_max
+ = new_sometimes_live (regs_sometimes_live,
+ i, sometimes_max);
+ });
+ IOR_REG_SET (old_live_regs, bb_live_regs);
/* Count lengths of all regs we are worrying about now,
and handle registers no longer live. */
@@ -3848,20 +3338,18 @@ schedule_block (b, file)
for (i = 0; i < sometimes_max; i++)
{
register struct sometimes *p = &regs_sometimes_live[i];
- int regno = p->offset*REGSET_ELT_BITS + p->bit;
+ int regno = p->regno;
p->live_length += 1;
- if ((bb_live_regs[p->offset]
- & ((REGSET_ELT_TYPE) 1 << p->bit)) == 0)
+ if (!REGNO_REG_SET_P (bb_live_regs, p->regno))
{
/* This is the end of one of this register's lifetime
segments. Save the lifetime info collected so far,
and clear its bit in the old_live_regs entry. */
sched_reg_live_length[regno] += p->live_length;
sched_reg_n_calls_crossed[regno] += p->calls_crossed;
- old_live_regs[p->offset]
- &= ~((REGSET_ELT_TYPE) 1 << p->bit);
+ CLEAR_REGNO_REG_SET (old_live_regs, p->regno);
/* Delete the reg_sometimes_live entry for this reg by
copying the last entry over top of it. */
@@ -3888,10 +3376,6 @@ schedule_block (b, file)
sched_n_insns += 1;
NEXT_INSN (insn) = last;
PREV_INSN (last) = insn;
- last = insn;
-
- /* Check to see if we need to re-emit any notes here. */
- last = reemit_notes (insn, last);
/* Everything that precedes INSN now either becomes "ready", if
it can execute immediately before INSN, or "pending", if
@@ -3918,22 +3402,42 @@ schedule_block (b, file)
/* Now handle each group insn like the main insn was handled
above. */
- while (SCHED_GROUP_P (insn))
+ link = insn;
+ while (SCHED_GROUP_P (link))
{
- insn = PREV_INSN (insn);
+ link = PREV_INSN (link);
sched_n_insns += 1;
- NEXT_INSN (insn) = last;
- PREV_INSN (last) = insn;
- last = insn;
-
- last = reemit_notes (insn, last);
/* ??? Why don't we set LAUNCH_PRIORITY here? */
- new_ready = schedule_insn (insn, ready, new_ready, clock);
- INSN_PRIORITY (insn) = DONE_PRIORITY;
+ new_ready = schedule_insn (link, ready, new_ready, clock);
+ INSN_PRIORITY (link) = DONE_PRIORITY;
}
}
+
+ /* Put back NOTE_INSN_SETJMP,
+ NOTE_INSN_{LOOP,EHREGION}_{BEGIN,END} notes. */
+
+ /* To prime the loop. We need to handle INSN and all the insns in the
+ sched group. */
+ last = NEXT_INSN (insn);
+ do
+ {
+ insn = PREV_INSN (last);
+
+ /* Maintain a valid chain so emit_note_before works.
+ This is necessary because PREV_INSN (insn) isn't valid
+ (if ! SCHED_GROUP_P) and if it points to an insn already
+ scheduled, a circularity will result. */
+ if (! SCHED_GROUP_P (insn))
+ {
+ NEXT_INSN (prev_head) = insn;
+ PREV_INSN (insn) = prev_head;
+ }
+
+ last = reemit_notes (insn, insn);
+ }
+ while (SCHED_GROUP_P (insn));
}
if (q_size != 0)
abort ();
@@ -3944,7 +3448,7 @@ schedule_block (b, file)
/* HEAD is now the first insn in the chain of insns that
been scheduled by the loop above.
TAIL is the last of those insns. */
- head = insn;
+ head = last;
/* NOTE_LIST is the end of a chain of notes previously found
among the insns. Insert them at the beginning of the insns. */
@@ -4017,7 +3521,7 @@ schedule_block (b, file)
prev = PREV_INSN (insn);
if (LINE_NOTE (note))
{
- /* Re-use the original line-number note. */
+ /* Re-use the original line-number note. */
LINE_NOTE (note) = 0;
PREV_INSN (note) = prev;
NEXT_INSN (prev) = note;
@@ -4029,6 +3533,7 @@ schedule_block (b, file)
notes++;
new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
+ RTX_INTEGRATED_P (new) = RTX_INTEGRATED_P (note);
}
}
if (file && notes)
@@ -4044,6 +3549,10 @@ schedule_block (b, file)
/* Yow! We're done! */
free_pending_lists ();
+ret:
+ FREE_REG_SET (reg_pending_sets);
+ FREE_REG_SET (old_live_regs);
+
return;
}
@@ -4068,12 +3577,12 @@ regno_use_in (regno, x)
{
if (fmt[i] == 'e')
{
- if (tem = regno_use_in (regno, XEXP (x, i)))
+ if ((tem = regno_use_in (regno, XEXP (x, i))))
return tem;
}
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- if (tem = regno_use_in (regno , XVECEXP (x, i, j)))
+ if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
return tem;
}
@@ -4150,6 +3659,13 @@ new_insn_dead_notes (pat, insn, last, orig_insn)
if (GET_CODE (dest) == REG)
{
+ /* If the original insn already used this register, we may not add new
+ notes for it. One example for a split that needs this test is
+ when a multi-word memory access with register-indirect addressing
+ is split into multiple memory accesses with auto-increment and
+ one adjusting add instruction for the address register. */
+ if (reg_referenced_p (dest, PATTERN (orig_insn)))
+ return;
for (tem = last; tem != insn; tem = PREV_INSN (tem))
{
if (GET_RTX_CLASS (GET_CODE (tem)) == 'i'
@@ -4256,10 +3772,10 @@ update_n_sets (x, inc)
int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (dest));
for (i = regno; i < endregno; i++)
- reg_n_sets[i] += inc;
+ REG_N_SETS (i) += inc;
}
else
- reg_n_sets[regno] += inc;
+ REG_N_SETS (regno) += inc;
}
}
@@ -4321,6 +3837,7 @@ update_flow_info (notes, first, last, orig_insn)
/* ??? This won't handle multiple word registers correctly,
but should be good enough for now. */
if (REG_NOTE_KIND (note) == REG_UNUSED
+ && GET_CODE (XEXP (note, 0)) != SCRATCH
&& ! dead_or_set_p (insn, XEXP (note, 0)))
PUT_REG_NOTE_KIND (note, REG_DEAD);
@@ -4335,6 +3852,15 @@ update_flow_info (notes, first, last, orig_insn)
pattern, so we can safely ignore it. */
if (insn == first)
{
+ /* After reload, REG_DEAD notes come sometimes an
+ instruction after the register actually dies. */
+ if (reload_completed && REG_NOTE_KIND (note) == REG_DEAD)
+ {
+ XEXP (note, 1) = REG_NOTES (insn);
+ REG_NOTES (insn) = note;
+ break;
+ }
+
if (REG_NOTE_KIND (note) != REG_UNUSED)
abort ();
@@ -4344,6 +3870,14 @@ update_flow_info (notes, first, last, orig_insn)
break;
case REG_WAS_0:
+ /* If the insn that set the register to 0 was deleted, this
+ note cannot be relied on any longer. The destination might
+ even have been moved to memory.
+ This was observed for SH4 with execute/920501-6.c compilation,
+ -O2 -fomit-frame-pointer -finline-functions . */
+ if (GET_CODE (XEXP (note, 0)) == NOTE
+ || INSN_DELETED_P (XEXP (note, 0)))
+ break;
/* This note applies to the dest of the original insn. Find the
first new insn that now has the same dest, and move the note
there. */
@@ -4363,6 +3897,15 @@ update_flow_info (notes, first, last, orig_insn)
uses it. */
break;
}
+ /* If this note refers to a multiple word hard
+ register, it may have been split into several smaller
+ hard register references. We could split the notes,
+ but simply dropping them is good enough. */
+ if (GET_CODE (orig_dest) == REG
+ && REGNO (orig_dest) < FIRST_PSEUDO_REGISTER
+ && HARD_REGNO_NREGS (REGNO (orig_dest),
+ GET_MODE (orig_dest)) > 1)
+ break;
/* It must be set somewhere, fail if we couldn't find where it
was set. */
if (insn == last)
@@ -4399,7 +3942,22 @@ update_flow_info (notes, first, last, orig_insn)
/* The original dest must still be set someplace. Abort if we
couldn't find it. */
if (insn == first)
- abort ();
+ {
+ /* However, if this note refers to a multiple word hard
+ register, it may have been split into several smaller
+ hard register references. We could split the notes,
+ but simply dropping them is good enough. */
+ if (GET_CODE (orig_dest) == REG
+ && REGNO (orig_dest) < FIRST_PSEUDO_REGISTER
+ && HARD_REGNO_NREGS (REGNO (orig_dest),
+ GET_MODE (orig_dest)) > 1)
+ break;
+ /* Likewise for multi-word memory references. */
+ if (GET_CODE (orig_dest) == MEM
+ && SIZE_FOR_MODE (orig_dest) > MOVE_MAX)
+ break;
+ abort ();
+ }
}
break;
@@ -4415,6 +3973,12 @@ update_flow_info (notes, first, last, orig_insn)
XEXP (note, 0) = first;
break;
+ case REG_EXEC_COUNT:
+ /* Move a REG_EXEC_COUNT note to the first insn created. */
+ XEXP (note, 1) = REG_NOTES (first);
+ REG_NOTES (first) = note;
+ break;
+
case REG_RETVAL:
/* Move a REG_RETVAL note to the last insn created, and update
the corresponding REG_LIBCALL note. */
@@ -4428,6 +3992,7 @@ update_flow_info (notes, first, last, orig_insn)
break;
case REG_NONNEG:
+ case REG_BR_PROB:
/* This should be moved to whichever instruction is a JUMP_INSN. */
for (insn = last; ; insn = PREV_INSN (insn))
@@ -4446,6 +4011,9 @@ update_flow_info (notes, first, last, orig_insn)
break;
case REG_INC:
+ /* reload sometimes leaves obsolete REG_INC notes around. */
+ if (reload_completed)
+ break;
/* This should be moved to whichever instruction now has the
increment operation. */
abort ();
@@ -4455,8 +4023,9 @@ update_flow_info (notes, first, last, orig_insn)
for (insn = first; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
&& reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
- REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL,
- XEXP (note, 0), REG_NOTES (insn));
+ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL,
+ XEXP (note, 0),
+ REG_NOTES (insn));
break;
case REG_CC_SETTER:
@@ -4496,10 +4065,7 @@ update_flow_info (notes, first, last, orig_insn)
/* If any insn, except the last, uses the register set by the last insn,
then we need a new REG_DEAD note on that insn. In this case, there
would not have been a REG_DEAD note for this register in the original
- insn because it was used and set within one insn.
-
- There is no new REG_DEAD note needed if the last insn uses the register
- that it is setting. */
+ insn because it was used and set within one insn. */
set = single_set (last);
if (set)
@@ -4512,9 +4078,34 @@ update_flow_info (notes, first, last, orig_insn)
dest = XEXP (dest, 0);
if (GET_CODE (dest) == REG
- && ! reg_overlap_mentioned_p (dest, SET_SRC (set)))
+ /* Global registers are always live, so the code below does not
+ apply to them. */
+ && (REGNO (dest) >= FIRST_PSEUDO_REGISTER
+ || ! global_regs[REGNO (dest)]))
{
- for (insn = PREV_INSN (last); ; insn = PREV_INSN (insn))
+ rtx stop_insn = PREV_INSN (first);
+
+ /* If the last insn uses the register that it is setting, then
+ we don't want to put a REG_DEAD note there. Search backwards
+ to find the first insn that sets but does not use DEST. */
+
+ insn = last;
+ if (reg_overlap_mentioned_p (dest, SET_SRC (set)))
+ {
+ for (insn = PREV_INSN (insn); insn != first;
+ insn = PREV_INSN (insn))
+ {
+ if ((set = single_set (insn))
+ && reg_mentioned_p (dest, SET_DEST (set))
+ && ! reg_overlap_mentioned_p (dest, SET_SRC (set)))
+ break;
+ }
+ }
+
+ /* Now find the first insn that uses but does not set DEST. */
+
+ for (insn = PREV_INSN (insn); insn != stop_insn;
+ insn = PREV_INSN (insn))
{
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
&& reg_mentioned_p (dest, PATTERN (insn))
@@ -4540,8 +4131,6 @@ update_flow_info (notes, first, last, orig_insn)
break;
}
}
- if (insn == first)
- break;
}
}
}
@@ -4565,21 +4154,29 @@ update_flow_info (notes, first, last, orig_insn)
for (insn = first; ; insn = NEXT_INSN (insn))
{
- set = single_set (insn);
- if (set)
+ rtx pat = PATTERN (insn);
+ int i = GET_CODE (pat) == PARALLEL ? XVECLEN (pat, 0) : 0;
+ set = pat;
+ for (;;)
{
- if (GET_CODE (SET_DEST (set)) == REG
- && REGNO (SET_DEST (set)) == REGNO (orig_dest))
+ if (GET_CODE (set) == SET)
{
- found_orig_dest = 1;
- break;
- }
- else if (GET_CODE (SET_DEST (set)) == SUBREG
- && SUBREG_REG (SET_DEST (set)) == orig_dest)
- {
- found_split_dest = 1;
- break;
+ if (GET_CODE (SET_DEST (set)) == REG
+ && REGNO (SET_DEST (set)) == REGNO (orig_dest))
+ {
+ found_orig_dest = 1;
+ break;
+ }
+ else if (GET_CODE (SET_DEST (set)) == SUBREG
+ && SUBREG_REG (SET_DEST (set)) == orig_dest)
+ {
+ found_split_dest = 1;
+ break;
+ }
}
+ if (--i < 0)
+ break;
+ set = XVECEXP (pat, 0, i);
}
if (insn == last)
@@ -4677,8 +4274,8 @@ schedule_insns (dump_file)
/* Create an insn here so that we can hang dependencies off of it later. */
sched_before_next_call
- = gen_rtx (INSN, VOIDmode, 0, NULL_RTX, NULL_RTX,
- NULL_RTX, 0, NULL_RTX, 0);
+ = gen_rtx_INSN (VOIDmode, 0, NULL_RTX, NULL_RTX,
+ NULL_RTX, 0, NULL_RTX, NULL_RTX);
/* Initialize the unused_*_lists. We can't use the ones left over from
the previous function, because gcc has freed that memory. We can use
@@ -4696,44 +4293,42 @@ schedule_insns (dump_file)
remember how far we can cut back the stack on exit. */
/* Allocate data for this pass. See comments, above,
- for what these vectors do. */
- insn_luid = (int *) alloca (max_uid * sizeof (int));
- insn_priority = (int *) alloca (max_uid * sizeof (int));
- insn_tick = (int *) alloca (max_uid * sizeof (int));
- insn_costs = (short *) alloca (max_uid * sizeof (short));
- insn_units = (short *) alloca (max_uid * sizeof (short));
- insn_blockage = (unsigned int *) alloca (max_uid * sizeof (unsigned int));
- insn_ref_count = (int *) alloca (max_uid * sizeof (int));
+ for what these vectors do.
+
+ We use xmalloc instead of alloca, because max_uid can be very large
+ when there is a lot of function inlining. If we used alloca, we could
+ exceed stack limits on some hosts for some inputs. */
+ insn_luid = (int *) xmalloc (max_uid * sizeof (int));
+ insn_priority = (int *) xmalloc (max_uid * sizeof (int));
+ insn_tick = (int *) xmalloc (max_uid * sizeof (int));
+ insn_costs = (short *) xmalloc (max_uid * sizeof (short));
+ insn_units = (short *) xmalloc (max_uid * sizeof (short));
+ insn_blockage = (unsigned int *) xmalloc (max_uid * sizeof (unsigned int));
+ insn_ref_count = (int *) xmalloc (max_uid * sizeof (int));
if (reload_completed == 0)
{
- sched_reg_n_deaths = (short *) alloca (max_regno * sizeof (short));
sched_reg_n_calls_crossed = (int *) alloca (max_regno * sizeof (int));
sched_reg_live_length = (int *) alloca (max_regno * sizeof (int));
- bb_dead_regs = (regset) alloca (regset_bytes);
- bb_live_regs = (regset) alloca (regset_bytes);
+ bb_dead_regs = ALLOCA_REG_SET ();
+ bb_live_regs = ALLOCA_REG_SET ();
bzero ((char *) sched_reg_n_calls_crossed, max_regno * sizeof (int));
bzero ((char *) sched_reg_live_length, max_regno * sizeof (int));
- bcopy ((char *) reg_n_deaths, (char *) sched_reg_n_deaths,
- max_regno * sizeof (short));
- init_alias_analysis ();
}
else
{
- sched_reg_n_deaths = 0;
sched_reg_n_calls_crossed = 0;
sched_reg_live_length = 0;
bb_dead_regs = 0;
bb_live_regs = 0;
- if (! flag_schedule_insns)
- init_alias_analysis ();
}
+ init_alias_analysis ();
if (write_symbols != NO_DEBUG)
{
rtx line;
- line_note = (rtx *) alloca (max_uid * sizeof (rtx));
+ line_note = (rtx *) xmalloc (max_uid * sizeof (rtx));
bzero ((char *) line_note, max_uid * sizeof (rtx));
line_note_head = (rtx *) alloca (n_basic_blocks * sizeof (rtx));
bzero ((char *) line_note_head, n_basic_blocks * sizeof (rtx));
@@ -4764,6 +4359,8 @@ schedule_insns (dump_file)
/* ??? Add a NOTE after the last insn of the last basic block. It is not
known why this is done. */
+ /* ??? Perhaps it's done to ensure NEXT_TAIL in schedule_block is a
+ valid insn. */
insn = basic_block_end[n_basic_blocks-1];
if (NEXT_INSN (insn) == 0
@@ -4822,7 +4419,10 @@ schedule_insns (dump_file)
/* Split insns here to get max fine-grain parallelism. */
prev = PREV_INSN (insn);
- if (reload_completed == 0)
+ /* It is probably not worthwhile to try to split again in the
+ second pass. However, if flag_schedule_insns is not set,
+ the first and only (if any) scheduling pass is after reload. */
+ if (reload_completed == 0 || ! flag_schedule_insns)
{
rtx last, first = PREV_INSN (insn);
rtx notes = REG_NOTES (insn);
@@ -4916,35 +4516,35 @@ schedule_insns (dump_file)
{
if (dump_file)
{
- if (reg_live_length[regno] > sched_reg_live_length[regno])
+ if (REG_LIVE_LENGTH (regno) > sched_reg_live_length[regno])
fprintf (dump_file,
";; register %d life shortened from %d to %d\n",
- regno, reg_live_length[regno],
+ regno, REG_LIVE_LENGTH (regno),
sched_reg_live_length[regno]);
/* Negative values are special; don't overwrite the current
reg_live_length value if it is negative. */
- else if (reg_live_length[regno] < sched_reg_live_length[regno]
- && reg_live_length[regno] >= 0)
+ else if (REG_LIVE_LENGTH (regno) < sched_reg_live_length[regno]
+ && REG_LIVE_LENGTH (regno) >= 0)
fprintf (dump_file,
";; register %d life extended from %d to %d\n",
- regno, reg_live_length[regno],
+ regno, REG_LIVE_LENGTH (regno),
sched_reg_live_length[regno]);
- if (! reg_n_calls_crossed[regno]
+ if (! REG_N_CALLS_CROSSED (regno)
&& sched_reg_n_calls_crossed[regno])
fprintf (dump_file,
";; register %d now crosses calls\n", regno);
- else if (reg_n_calls_crossed[regno]
+ else if (REG_N_CALLS_CROSSED (regno)
&& ! sched_reg_n_calls_crossed[regno]
- && reg_basic_block[regno] != REG_BLOCK_GLOBAL)
+ && REG_BASIC_BLOCK (regno) != REG_BLOCK_GLOBAL)
fprintf (dump_file,
";; register %d no longer crosses calls\n", regno);
}
/* Negative values are special; don't overwrite the current
reg_live_length value if it is negative. */
- if (reg_live_length[regno] >= 0)
- reg_live_length[regno] = sched_reg_live_length[regno];
+ if (REG_LIVE_LENGTH (regno) >= 0)
+ REG_LIVE_LENGTH (regno) = sched_reg_live_length[regno];
/* We can't change the value of reg_n_calls_crossed to zero for
pseudos which are live in more than one block.
@@ -4960,9 +4560,27 @@ schedule_insns (dump_file)
Alternatively, we could try to correctly update basic block live
at start here in sched, but that seems complicated. */
if (sched_reg_n_calls_crossed[regno]
- || reg_basic_block[regno] != REG_BLOCK_GLOBAL)
- reg_n_calls_crossed[regno] = sched_reg_n_calls_crossed[regno];
+ || REG_BASIC_BLOCK (regno) != REG_BLOCK_GLOBAL)
+ REG_N_CALLS_CROSSED (regno) = sched_reg_n_calls_crossed[regno];
}
}
+
+ free (insn_luid);
+ free (insn_priority);
+ free (insn_tick);
+ free (insn_costs);
+ free (insn_units);
+ free (insn_blockage);
+ free (insn_ref_count);
+
+ if (write_symbols != NO_DEBUG)
+ free (line_note);
+
+ if (reload_completed == 0)
+ {
+ FREE_REG_SET (bb_dead_regs);
+ FREE_REG_SET (bb_live_regs);
+ }
+
}
#endif /* INSN_SCHEDULING */
OpenPOWER on IntegriCloud