summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/ra-colorize.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/gcc/ra-colorize.c')
-rw-r--r--contrib/gcc/ra-colorize.c2742
1 files changed, 2742 insertions, 0 deletions
diff --git a/contrib/gcc/ra-colorize.c b/contrib/gcc/ra-colorize.c
new file mode 100644
index 0000000..5db6474
--- /dev/null
+++ b/contrib/gcc/ra-colorize.c
@@ -0,0 +1,2742 @@
+/* Graph coloring register allocator
+ Copyright (C) 2001, 2002 Free Software Foundation, Inc.
+ Contributed by Michael Matz <matz@suse.de>
+ and Daniel Berlin <dan@cgsoftware.com>.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it under the
+ terms of the GNU General Public License as published by the Free Software
+ Foundation; either version 2, or (at your option) any later version.
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
+ details.
+
+ You should have received a copy of the GNU General Public License along
+ with GCC; see the file COPYING. If not, write to the Free Software
+ Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+#include "config.h"
+#include "system.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "function.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "basic-block.h"
+#include "df.h"
+#include "output.h"
+#include "ra.h"
+
+/* This file is part of the graph coloring register allocator.
+ It contains the graph colorizer. Given an interference graph
+ as set up in ra-build.c the toplevel function in this file
+ (ra_colorize_graph) colorizes the graph, leaving a list
+ of colored, coalesced and spilled nodes.
+
+ The algorithm used is a merge of George & Appels iterative coalescing
+ and optimistic coalescing, switchable at runtime. The current default
+ is "optimistic coalescing +", which is based on the normal Briggs/Cooper
+ framework. We can also use biased coloring. Most of the structure
+ here follows the different papers.
+
+ Additionally there is a custom step to locally improve the overall
+ spill cost of the colored graph (recolor_spills). */
+
+static void push_list PARAMS ((struct dlist *, struct dlist **));
+static void push_list_end PARAMS ((struct dlist *, struct dlist **));
+static void free_dlist PARAMS ((struct dlist **));
+static void put_web_at_end PARAMS ((struct web *, enum node_type));
+static void put_move PARAMS ((struct move *, enum move_type));
+static void build_worklists PARAMS ((struct df *));
+static void enable_move PARAMS ((struct web *));
+static void decrement_degree PARAMS ((struct web *, int));
+static void simplify PARAMS ((void));
+static void remove_move_1 PARAMS ((struct web *, struct move *));
+static void remove_move PARAMS ((struct web *, struct move *));
+static void add_worklist PARAMS ((struct web *));
+static int ok PARAMS ((struct web *, struct web *));
+static int conservative PARAMS ((struct web *, struct web *));
+static inline unsigned int simplify_p PARAMS ((enum node_type));
+static void combine PARAMS ((struct web *, struct web *));
+static void coalesce PARAMS ((void));
+static void freeze_moves PARAMS ((struct web *));
+static void freeze PARAMS ((void));
+static void select_spill PARAMS ((void));
+static int color_usable_p PARAMS ((int, HARD_REG_SET, HARD_REG_SET,
+ enum machine_mode));
+int get_free_reg PARAMS ((HARD_REG_SET, HARD_REG_SET, enum machine_mode));
+static int get_biased_reg PARAMS ((HARD_REG_SET, HARD_REG_SET, HARD_REG_SET,
+ HARD_REG_SET, enum machine_mode));
+static int count_long_blocks PARAMS ((HARD_REG_SET, int));
+static char * hardregset_to_string PARAMS ((HARD_REG_SET));
+static void calculate_dont_begin PARAMS ((struct web *, HARD_REG_SET *));
+static void colorize_one_web PARAMS ((struct web *, int));
+static void assign_colors PARAMS ((void));
+static void try_recolor_web PARAMS ((struct web *));
+static void insert_coalesced_conflicts PARAMS ((void));
+static int comp_webs_maxcost PARAMS ((const void *, const void *));
+static void recolor_spills PARAMS ((void));
+static void check_colors PARAMS ((void));
+static void restore_conflicts_from_coalesce PARAMS ((struct web *));
+static void break_coalesced_spills PARAMS ((void));
+static void unalias_web PARAMS ((struct web *));
+static void break_aliases_to_web PARAMS ((struct web *));
+static void break_precolored_alias PARAMS ((struct web *));
+static void init_web_pairs PARAMS ((void));
+static void add_web_pair_cost PARAMS ((struct web *, struct web *,
+ unsigned HOST_WIDE_INT, unsigned int));
+static int comp_web_pairs PARAMS ((const void *, const void *));
+static void sort_and_combine_web_pairs PARAMS ((int));
+static void aggressive_coalesce PARAMS ((void));
+static void extended_coalesce_2 PARAMS ((void));
+static void check_uncoalesced_moves PARAMS ((void));
+
+static struct dlist *mv_worklist, *mv_coalesced, *mv_constrained;
+static struct dlist *mv_frozen, *mv_active;
+
+/* Push a node onto the front of the list. */
+
+static void
+push_list (x, list)
+ struct dlist *x;
+ struct dlist **list;
+{
+ if (x->next || x->prev)
+ abort ();
+ x->next = *list;
+ if (*list)
+ (*list)->prev = x;
+ *list = x;
+}
+
+static void
+push_list_end (x, list)
+ struct dlist *x;
+ struct dlist **list;
+{
+ if (x->prev || x->next)
+ abort ();
+ if (!*list)
+ {
+ *list = x;
+ return;
+ }
+ while ((*list)->next)
+ list = &((*list)->next);
+ x->prev = *list;
+ (*list)->next = x;
+}
+
+/* Remove a node from the list. */
+
+void
+remove_list (x, list)
+ struct dlist *x;
+ struct dlist **list;
+{
+ struct dlist *y = x->prev;
+ if (y)
+ y->next = x->next;
+ else
+ *list = x->next;
+ y = x->next;
+ if (y)
+ y->prev = x->prev;
+ x->next = x->prev = NULL;
+}
+
+/* Pop the front of the list. */
+
+struct dlist *
+pop_list (list)
+ struct dlist **list;
+{
+ struct dlist *r = *list;
+ if (r)
+ remove_list (r, list);
+ return r;
+}
+
+/* Free the given double linked list. */
+
+static void
+free_dlist (list)
+ struct dlist **list;
+{
+ *list = NULL;
+}
+
+/* The web WEB should get the given new TYPE. Put it onto the
+ appropriate list.
+ Inline, because it's called with constant TYPE every time. */
+
+inline void
+put_web (web, type)
+ struct web *web;
+ enum node_type type;
+{
+ switch (type)
+ {
+ case INITIAL:
+ case FREE:
+ case FREEZE:
+ case SPILL:
+ case SPILLED:
+ case COALESCED:
+ case COLORED:
+ case SELECT:
+ push_list (web->dlink, &WEBS(type));
+ break;
+ case PRECOLORED:
+ push_list (web->dlink, &WEBS(INITIAL));
+ break;
+ case SIMPLIFY:
+ if (web->spill_temp)
+ push_list (web->dlink, &WEBS(type = SIMPLIFY_SPILL));
+ else if (web->add_hardregs)
+ push_list (web->dlink, &WEBS(type = SIMPLIFY_FAT));
+ else
+ push_list (web->dlink, &WEBS(SIMPLIFY));
+ break;
+ default:
+ abort ();
+ }
+ web->type = type;
+}
+
+/* After we are done with the whole pass of coloring/spilling,
+ we reset the lists of webs, in preparation of the next pass.
+ The spilled webs become free, colored webs go to the initial list,
+ coalesced webs become free or initial, according to what type of web
+ they are coalesced to. */
+
+void
+reset_lists ()
+{
+ struct dlist *d;
+ unsigned int i;
+ if (WEBS(SIMPLIFY) || WEBS(SIMPLIFY_SPILL) || WEBS(SIMPLIFY_FAT)
+ || WEBS(FREEZE) || WEBS(SPILL) || WEBS(SELECT))
+ abort ();
+
+ while ((d = pop_list (&WEBS(COALESCED))) != NULL)
+ {
+ struct web *web = DLIST_WEB (d);
+ struct web *aweb = alias (web);
+ /* Note, how alias() becomes invalid through the two put_web()'s
+ below. It might set the type of a web to FREE (from COALESCED),
+ which itself is a target of aliasing (i.e. in the middle of
+ an alias chain). We can handle this by checking also for
+ type == FREE. Note nevertheless, that alias() is invalid
+ henceforth. */
+ if (aweb->type == SPILLED || aweb->type == FREE)
+ put_web (web, FREE);
+ else
+ put_web (web, INITIAL);
+ }
+ while ((d = pop_list (&WEBS(SPILLED))) != NULL)
+ put_web (DLIST_WEB (d), FREE);
+ while ((d = pop_list (&WEBS(COLORED))) != NULL)
+ put_web (DLIST_WEB (d), INITIAL);
+
+ /* All free webs have no conflicts anymore. */
+ for (d = WEBS(FREE); d; d = d->next)
+ {
+ struct web *web = DLIST_WEB (d);
+ BITMAP_XFREE (web->useless_conflicts);
+ web->useless_conflicts = NULL;
+ }
+
+ /* Sanity check, that we only have free, initial or precolored webs. */
+ for (i = 0; i < num_webs; i++)
+ {
+ struct web *web = ID2WEB (i);
+ if (web->type != INITIAL && web->type != FREE && web->type != PRECOLORED)
+ abort ();
+ }
+ free_dlist (&mv_worklist);
+ free_dlist (&mv_coalesced);
+ free_dlist (&mv_constrained);
+ free_dlist (&mv_frozen);
+ free_dlist (&mv_active);
+}
+
+/* Similar to put_web(), but add the web to the end of the appropriate
+ list. Additionally TYPE may not be SIMPLIFY. */
+
+static void
+put_web_at_end (web, type)
+ struct web *web;
+ enum node_type type;
+{
+ if (type == PRECOLORED)
+ type = INITIAL;
+ else if (type == SIMPLIFY)
+ abort ();
+ push_list_end (web->dlink, &WEBS(type));
+ web->type = type;
+}
+
+/* Unlink WEB from the list it's currently on (which corresponds to
+ its current type). */
+
+void
+remove_web_from_list (web)
+ struct web *web;
+{
+ if (web->type == PRECOLORED)
+ remove_list (web->dlink, &WEBS(INITIAL));
+ else
+ remove_list (web->dlink, &WEBS(web->type));
+}
+
+/* Give MOVE the TYPE, and link it into the correct list. */
+
+static inline void
+put_move (move, type)
+ struct move *move;
+ enum move_type type;
+{
+ switch (type)
+ {
+ case WORKLIST:
+ push_list (move->dlink, &mv_worklist);
+ break;
+ case MV_COALESCED:
+ push_list (move->dlink, &mv_coalesced);
+ break;
+ case CONSTRAINED:
+ push_list (move->dlink, &mv_constrained);
+ break;
+ case FROZEN:
+ push_list (move->dlink, &mv_frozen);
+ break;
+ case ACTIVE:
+ push_list (move->dlink, &mv_active);
+ break;
+ default:
+ abort ();
+ }
+ move->type = type;
+}
+
+/* Build the worklists we are going to process. */
+
+static void
+build_worklists (df)
+ struct df *df ATTRIBUTE_UNUSED;
+{
+ struct dlist *d, *d_next;
+ struct move_list *ml;
+
+ /* If we are not the first pass, put all stackwebs (which are still
+ backed by a new pseudo, but conceptually can stand for a stackslot,
+ i.e. it doesn't really matter if they get a color or not), on
+ the SELECT stack first, those with lowest cost first. This way
+ they will be colored last, so do not contrain the coloring of the
+ normal webs. But still those with the highest count are colored
+ before, i.e. get a color more probable. The use of stackregs is
+ a pure optimization, and all would work, if we used real stackslots
+ from the begin. */
+ if (ra_pass > 1)
+ {
+ unsigned int i, num, max_num;
+ struct web **order2web;
+ max_num = num_webs - num_subwebs;
+ order2web = (struct web **) xmalloc (max_num * sizeof (order2web[0]));
+ for (i = 0, num = 0; i < max_num; i++)
+ if (id2web[i]->regno >= max_normal_pseudo)
+ order2web[num++] = id2web[i];
+ if (num)
+ {
+ qsort (order2web, num, sizeof (order2web[0]), comp_webs_maxcost);
+ for (i = num - 1;; i--)
+ {
+ struct web *web = order2web[i];
+ struct conflict_link *wl;
+ remove_list (web->dlink, &WEBS(INITIAL));
+ put_web (web, SELECT);
+ for (wl = web->conflict_list; wl; wl = wl->next)
+ {
+ struct web *pweb = wl->t;
+ pweb->num_conflicts -= 1 + web->add_hardregs;
+ }
+ if (i == 0)
+ break;
+ }
+ }
+ free (order2web);
+ }
+
+ /* For all remaining initial webs, classify them. */
+ for (d = WEBS(INITIAL); d; d = d_next)
+ {
+ struct web *web = DLIST_WEB (d);
+ d_next = d->next;
+ if (web->type == PRECOLORED)
+ continue;
+
+ remove_list (d, &WEBS(INITIAL));
+ if (web->num_conflicts >= NUM_REGS (web))
+ put_web (web, SPILL);
+ else if (web->moves)
+ put_web (web, FREEZE);
+ else
+ put_web (web, SIMPLIFY);
+ }
+
+ /* And put all moves on the worklist for iterated coalescing.
+ Note, that if iterated coalescing is off, then wl_moves doesn't
+ contain any moves. */
+ for (ml = wl_moves; ml; ml = ml->next)
+ if (ml->move)
+ {
+ struct move *m = ml->move;
+ d = (struct dlist *) ra_calloc (sizeof (struct dlist));
+ DLIST_MOVE (d) = m;
+ m->dlink = d;
+ put_move (m, WORKLIST);
+ }
+}
+
+/* Enable the active moves, in which WEB takes part, to be processed. */
+
+static void
+enable_move (web)
+ struct web *web;
+{
+ struct move_list *ml;
+ for (ml = web->moves; ml; ml = ml->next)
+ if (ml->move->type == ACTIVE)
+ {
+ remove_list (ml->move->dlink, &mv_active);
+ put_move (ml->move, WORKLIST);
+ }
+}
+
+/* Decrement the degree of node WEB by the amount DEC.
+ Possibly change the type of WEB, if the number of conflicts is
+ now smaller than its freedom. */
+
+static void
+decrement_degree (web, dec)
+ struct web *web;
+ int dec;
+{
+ int before = web->num_conflicts;
+ web->num_conflicts -= dec;
+ if (web->num_conflicts < NUM_REGS (web) && before >= NUM_REGS (web))
+ {
+ struct conflict_link *a;
+ enable_move (web);
+ for (a = web->conflict_list; a; a = a->next)
+ {
+ struct web *aweb = a->t;
+ if (aweb->type != SELECT && aweb->type != COALESCED)
+ enable_move (aweb);
+ }
+ if (web->type != FREEZE)
+ {
+ remove_web_from_list (web);
+ if (web->moves)
+ put_web (web, FREEZE);
+ else
+ put_web (web, SIMPLIFY);
+ }
+ }
+}
+
+/* Repeatedly simplify the nodes on the simplify worklists. */
+
+static void
+simplify ()
+{
+ struct dlist *d;
+ struct web *web;
+ struct conflict_link *wl;
+ while (1)
+ {
+ /* We try hard to color all the webs resulting from spills first.
+ Without that on register starved machines (x86 e.g) with some live
+ DImode pseudos, -fPIC, and an asm requiring %edx, it might be, that
+ we do rounds over rounds, because the conflict graph says, we can
+ simplify those short webs, but later due to irregularities we can't
+ color those pseudos. So we have to spill them, which in later rounds
+ leads to other spills. */
+ d = pop_list (&WEBS(SIMPLIFY));
+ if (!d)
+ d = pop_list (&WEBS(SIMPLIFY_FAT));
+ if (!d)
+ d = pop_list (&WEBS(SIMPLIFY_SPILL));
+ if (!d)
+ break;
+ web = DLIST_WEB (d);
+ ra_debug_msg (DUMP_PROCESS, " simplifying web %3d, conflicts = %d\n",
+ web->id, web->num_conflicts);
+ put_web (web, SELECT);
+ for (wl = web->conflict_list; wl; wl = wl->next)
+ {
+ struct web *pweb = wl->t;
+ if (pweb->type != SELECT && pweb->type != COALESCED)
+ {
+ decrement_degree (pweb, 1 + web->add_hardregs);
+ }
+ }
+ }
+}
+
+/* Helper function to remove a move from the movelist of the web. */
+
+static void
+remove_move_1 (web, move)
+ struct web *web;
+ struct move *move;
+{
+ struct move_list *ml = web->moves;
+ if (!ml)
+ return;
+ if (ml->move == move)
+ {
+ web->moves = ml->next;
+ return;
+ }
+ for (; ml->next && ml->next->move != move; ml = ml->next) ;
+ if (!ml->next)
+ return;
+ ml->next = ml->next->next;
+}
+
+/* Remove a move from the movelist of the web. Actually this is just a
+ wrapper around remove_move_1(), making sure, the removed move really is
+ not in the list anymore. */
+
+static void
+remove_move (web, move)
+ struct web *web;
+ struct move *move;
+{
+ struct move_list *ml;
+ remove_move_1 (web, move);
+ for (ml = web->moves; ml; ml = ml->next)
+ if (ml->move == move)
+ abort ();
+}
+
+/* Merge the moves for the two webs into the first web's movelist. */
+
+void
+merge_moves (u, v)
+ struct web *u, *v;
+{
+ regset seen;
+ struct move_list *ml, *ml_next;
+
+ seen = BITMAP_XMALLOC ();
+ for (ml = u->moves; ml; ml = ml->next)
+ bitmap_set_bit (seen, INSN_UID (ml->move->insn));
+ for (ml = v->moves; ml; ml = ml_next)
+ {
+ ml_next = ml->next;
+ if (! bitmap_bit_p (seen, INSN_UID (ml->move->insn)))
+ {
+ ml->next = u->moves;
+ u->moves = ml;
+ }
+ }
+ BITMAP_XFREE (seen);
+ v->moves = NULL;
+}
+
+/* Add a web to the simplify worklist, from the freeze worklist. */
+
+static void
+add_worklist (web)
+ struct web *web;
+{
+ if (web->type != PRECOLORED && !web->moves
+ && web->num_conflicts < NUM_REGS (web))
+ {
+ remove_list (web->dlink, &WEBS(FREEZE));
+ put_web (web, SIMPLIFY);
+ }
+}
+
+/* Precolored node coalescing heuristic. */
+
+static int
+ok (target, source)
+ struct web *target, *source;
+{
+ struct conflict_link *wl;
+ int i;
+ int color = source->color;
+ int size;
+
+ /* Normally one would think, the next test wouldn't be needed.
+ We try to coalesce S and T, and S has already a color, and we checked
+ when processing the insns, that both have the same mode. So naively
+ we could conclude, that of course that mode was valid for this color.
+ Hah. But there is sparc. Before reload there are copy insns
+ (e.g. the ones copying arguments to locals) which happily refer to
+ colors in invalid modes. We can't coalesce those things. */
+ if (! HARD_REGNO_MODE_OK (source->color, GET_MODE (target->orig_x)))
+ return 0;
+
+ /* Sanity for funny modes. */
+ size = HARD_REGNO_NREGS (color, GET_MODE (target->orig_x));
+ if (!size)
+ return 0;
+
+ /* We can't coalesce target with a precolored register which isn't in
+ usable_regs. */
+ for (i = size; i--;)
+ if (TEST_HARD_REG_BIT (never_use_colors, color + i)
+ || !TEST_HARD_REG_BIT (target->usable_regs, color + i)
+ /* Before usually calling ok() at all, we already test, if the
+ candidates conflict in sup_igraph. But when wide webs are
+ coalesced to hardregs, we only test the hardweb coalesced into.
+ This is only the begin color. When actually coalescing both,
+ it will also take the following size colors, i.e. their webs.
+ We nowhere checked if the candidate possibly conflicts with
+ one of _those_, which is possible with partial conflicts,
+ so we simply do it here (this does one bit-test more than
+ necessary, the first color). Note, that if X is precolored
+ bit [X*num_webs + Y] can't be set (see add_conflict_edge()). */
+ || TEST_BIT (sup_igraph,
+ target->id * num_webs + hardreg2web[color + i]->id))
+ return 0;
+
+ for (wl = target->conflict_list; wl; wl = wl->next)
+ {
+ struct web *pweb = wl->t;
+ if (pweb->type == SELECT || pweb->type == COALESCED)
+ continue;
+
+ /* Coalescing target (T) and source (S) is o.k, if for
+ all conflicts C of T it is true, that:
+ 1) C will be colored, or
+ 2) C is a hardreg (precolored), or
+ 3) C already conflicts with S too, or
+ 4) a web which contains C conflicts already with S.
+ XXX: we handle here only the special case of 4), that C is
+ a subreg, and the containing thing is the reg itself, i.e.
+ we dont handle the situation, were T conflicts with
+ (subreg:SI x 1), and S conflicts with (subreg:DI x 0), which
+ would be allowed also, as the S-conflict overlaps
+ the T-conflict.
+ So, we first test the whole web for any of these conditions, and
+ continue with the next C, if 1, 2 or 3 is true. */
+ if (pweb->num_conflicts < NUM_REGS (pweb)
+ || pweb->type == PRECOLORED
+ || TEST_BIT (igraph, igraph_index (source->id, pweb->id)) )
+ continue;
+
+ /* This is reached, if not one of 1, 2 or 3 was true. In the case C has
+ no subwebs, 4 can't be true either, so we can't coalesce S and T. */
+ if (wl->sub == NULL)
+ return 0;
+ else
+ {
+ /* The main webs do _not_ conflict, only some parts of both. This
+ means, that 4 is possibly true, so we need to check this too.
+ For this we go thru all sub conflicts between T and C, and see if
+ the target part of C already conflicts with S. When this is not
+ the case we disallow coalescing. */
+ struct sub_conflict *sl;
+ for (sl = wl->sub; sl; sl = sl->next)
+ {
+ if (!TEST_BIT (igraph, igraph_index (source->id, sl->t->id)))
+ return 0;
+ }
+ }
+ }
+ return 1;
+}
+
+/* Non-precolored node coalescing heuristic. */
+
+static int
+conservative (target, source)
+ struct web *target, *source;
+{
+ unsigned int k;
+ unsigned int loop;
+ regset seen;
+ struct conflict_link *wl;
+ unsigned int num_regs = NUM_REGS (target); /* XXX */
+
+ /* k counts the resulting conflict weight, if target and source
+ would be merged, and all low-degree neighbors would be
+ removed. */
+ k = 0 * MAX (target->add_hardregs, source->add_hardregs);
+ seen = BITMAP_XMALLOC ();
+ for (loop = 0; loop < 2; loop++)
+ for (wl = ((loop == 0) ? target : source)->conflict_list;
+ wl; wl = wl->next)
+ {
+ struct web *pweb = wl->t;
+ if (pweb->type != SELECT && pweb->type != COALESCED
+ && pweb->num_conflicts >= NUM_REGS (pweb)
+ && ! REGNO_REG_SET_P (seen, pweb->id))
+ {
+ SET_REGNO_REG_SET (seen, pweb->id);
+ k += 1 + pweb->add_hardregs;
+ }
+ }
+ BITMAP_XFREE (seen);
+
+ if (k >= num_regs)
+ return 0;
+ return 1;
+}
+
+/* If the web is coalesced, return it's alias. Otherwise, return what
+ was passed in. */
+
+struct web *
+alias (web)
+ struct web *web;
+{
+ while (web->type == COALESCED)
+ web = web->alias;
+ return web;
+}
+
+/* Returns nonzero, if the TYPE belongs to one of those representing
+ SIMPLIFY types. */
+
+static inline unsigned int
+simplify_p (type)
+ enum node_type type;
+{
+ return type == SIMPLIFY || type == SIMPLIFY_SPILL || type == SIMPLIFY_FAT;
+}
+
+/* Actually combine two webs, that can be coalesced. */
+
+static void
+combine (u, v)
+ struct web *u, *v;
+{
+ int i;
+ struct conflict_link *wl;
+ if (u == v || v->type == COALESCED)
+ abort ();
+ if ((u->regno >= max_normal_pseudo) != (v->regno >= max_normal_pseudo))
+ abort ();
+ remove_web_from_list (v);
+ put_web (v, COALESCED);
+ v->alias = u;
+ u->is_coalesced = 1;
+ v->is_coalesced = 1;
+ u->num_aliased += 1 + v->num_aliased;
+ if (flag_ra_merge_spill_costs && u->type != PRECOLORED)
+ u->spill_cost += v->spill_cost;
+ /*u->spill_cost = MAX (u->spill_cost, v->spill_cost);*/
+ merge_moves (u, v);
+ /* combine add_hardregs's of U and V. */
+
+ for (wl = v->conflict_list; wl; wl = wl->next)
+ {
+ struct web *pweb = wl->t;
+ /* We don't strictly need to move conflicts between webs which are
+ already coalesced or selected, if we do iterated coalescing, or
+ better if we need not to be able to break aliases again.
+ I.e. normally we would use the condition
+ (pweb->type != SELECT && pweb->type != COALESCED).
+ But for now we simply merge all conflicts. It doesn't take that
+ much time. */
+ if (1)
+ {
+ struct web *web = u;
+ int nregs = 1 + v->add_hardregs;
+ if (u->type == PRECOLORED)
+ nregs = HARD_REGNO_NREGS (u->color, GET_MODE (v->orig_x));
+
+ /* For precolored U's we need to make conflicts between V's
+ neighbors and as many hardregs from U as V needed if it gets
+ color U. For now we approximate this by V->add_hardregs, which
+ could be too much in multi-length classes. We should really
+ count how many hardregs are needed for V with color U. When U
+ isn't precolored this loop breaks out after one iteration. */
+ for (i = 0; i < nregs; i++)
+ {
+ if (u->type == PRECOLORED)
+ web = hardreg2web[i + u->color];
+ if (wl->sub == NULL)
+ record_conflict (web, pweb);
+ else
+ {
+ struct sub_conflict *sl;
+ /* So, between V and PWEB there are sub_conflicts. We
+ need to relocate those conflicts to be between WEB (==
+ U when it wasn't precolored) and PWEB. In the case
+ only a part of V conflicted with (part of) PWEB we
+ nevertheless make the new conflict between the whole U
+ and the (part of) PWEB. Later we might try to find in
+ U the correct subpart corresponding (by size and
+ offset) to the part of V (sl->s) which was the source
+ of the conflict. */
+ for (sl = wl->sub; sl; sl = sl->next)
+ {
+ /* Beware: sl->s is no subweb of web (== U) but of V.
+ We try to search a corresponding subpart of U.
+ If we found none we let it conflict with the whole U.
+ Note that find_subweb() only looks for mode and
+ subreg_byte of the REG rtx but not for the pseudo
+ reg number (otherwise it would be guaranteed to
+ _not_ find any subpart). */
+ struct web *sweb = NULL;
+ if (SUBWEB_P (sl->s))
+ sweb = find_subweb (web, sl->s->orig_x);
+ if (!sweb)
+ sweb = web;
+ record_conflict (sweb, sl->t);
+ }
+ }
+ if (u->type != PRECOLORED)
+ break;
+ }
+ if (pweb->type != SELECT && pweb->type != COALESCED)
+ decrement_degree (pweb, 1 + v->add_hardregs);
+ }
+ }
+
+ /* Now merge the usable_regs together. */
+ /* XXX That merging might normally make it necessary to
+ adjust add_hardregs, which also means to adjust neighbors. This can
+ result in making some more webs trivially colorable, (or the opposite,
+ if this increases our add_hardregs). Because we intersect the
+ usable_regs it should only be possible to decrease add_hardregs. So a
+ conservative solution for now is to simply don't change it. */
+ u->use_my_regs = 1;
+ AND_HARD_REG_SET (u->usable_regs, v->usable_regs);
+ u->regclass = reg_class_subunion[u->regclass][v->regclass];
+ /* Count number of possible hardregs. This might make U a spillweb,
+ but that could also happen, if U and V together had too many
+ conflicts. */
+ u->num_freedom = hard_regs_count (u->usable_regs);
+ u->num_freedom -= u->add_hardregs;
+ /* The next would mean an invalid coalesced move (both webs have no
+ possible hardreg in common), so abort. */
+ if (!u->num_freedom)
+ abort();
+
+ if (u->num_conflicts >= NUM_REGS (u)
+ && (u->type == FREEZE || simplify_p (u->type)))
+ {
+ remove_web_from_list (u);
+ put_web (u, SPILL);
+ }
+
+ /* We want the most relaxed combination of spill_temp state.
+ I.e. if any was no spilltemp or a spilltemp2, the result is so too,
+ otherwise if any is short, the result is too. It remains, when both
+ are normal spilltemps. */
+ if (v->spill_temp == 0)
+ u->spill_temp = 0;
+ else if (v->spill_temp == 2 && u->spill_temp != 0)
+ u->spill_temp = 2;
+ else if (v->spill_temp == 3 && u->spill_temp == 1)
+ u->spill_temp = 3;
+}
+
+/* Attempt to coalesce the first thing on the move worklist.
+ This is used only for iterated coalescing. */
+
+static void
+coalesce ()
+{
+ struct dlist *d = pop_list (&mv_worklist);
+ struct move *m = DLIST_MOVE (d);
+ struct web *source = alias (m->source_web);
+ struct web *target = alias (m->target_web);
+
+ if (target->type == PRECOLORED)
+ {
+ struct web *h = source;
+ source = target;
+ target = h;
+ }
+ if (source == target)
+ {
+ remove_move (source, m);
+ put_move (m, MV_COALESCED);
+ add_worklist (source);
+ }
+ else if (target->type == PRECOLORED
+ || TEST_BIT (sup_igraph, source->id * num_webs + target->id)
+ || TEST_BIT (sup_igraph, target->id * num_webs + source->id))
+ {
+ remove_move (source, m);
+ remove_move (target, m);
+ put_move (m, CONSTRAINED);
+ add_worklist (source);
+ add_worklist (target);
+ }
+ else if ((source->type == PRECOLORED && ok (target, source))
+ || (source->type != PRECOLORED
+ && conservative (target, source)))
+ {
+ remove_move (source, m);
+ remove_move (target, m);
+ put_move (m, MV_COALESCED);
+ combine (source, target);
+ add_worklist (source);
+ }
+ else
+ put_move (m, ACTIVE);
+}
+
+/* Freeze the moves associated with the web. Used for iterated coalescing. */
+
+static void
+freeze_moves (web)
+ struct web *web;
+{
+ struct move_list *ml, *ml_next;
+ for (ml = web->moves; ml; ml = ml_next)
+ {
+ struct move *m = ml->move;
+ struct web *src, *dest;
+ ml_next = ml->next;
+ if (m->type == ACTIVE)
+ remove_list (m->dlink, &mv_active);
+ else
+ remove_list (m->dlink, &mv_worklist);
+ put_move (m, FROZEN);
+ remove_move (web, m);
+ src = alias (m->source_web);
+ dest = alias (m->target_web);
+ src = (src == web) ? dest : src;
+ remove_move (src, m);
+ /* XXX GA use the original v, instead of alias(v) */
+ if (!src->moves && src->num_conflicts < NUM_REGS (src))
+ {
+ remove_list (src->dlink, &WEBS(FREEZE));
+ put_web (src, SIMPLIFY);
+ }
+ }
+}
+
+/* Freeze the first thing on the freeze worklist (only for iterated
+ coalescing). */
+
+static void
+freeze ()
+{
+ struct dlist *d = pop_list (&WEBS(FREEZE));
+ put_web (DLIST_WEB (d), SIMPLIFY);
+ freeze_moves (DLIST_WEB (d));
+}
+
+/* The current spill heuristic. Returns a number for a WEB.
+ Webs with higher numbers are selected later. */
+
+static unsigned HOST_WIDE_INT (*spill_heuristic) PARAMS ((struct web *));
+
+static unsigned HOST_WIDE_INT default_spill_heuristic PARAMS ((struct web *));
+
+/* Our default heuristic is similar to spill_cost / num_conflicts.
+ Just scaled for integer arithmetic, and it favors coalesced webs,
+ and webs which span more insns with deaths. */
+
+static unsigned HOST_WIDE_INT
+default_spill_heuristic (web)
+ struct web *web;
+{
+ unsigned HOST_WIDE_INT ret;
+ unsigned int divisor = 1;
+ /* Make coalesce targets cheaper to spill, because they will be broken
+ up again into smaller parts. */
+ if (flag_ra_break_aliases)
+ divisor += web->num_aliased;
+ divisor += web->num_conflicts;
+ ret = ((web->spill_cost << 8) + divisor - 1) / divisor;
+ /* It is better to spill webs that span more insns (deaths in our
+ case) than other webs with the otherwise same spill_cost. So make
+ them a little bit cheaper. Remember that spill_cost is unsigned. */
+ if (web->span_deaths < ret)
+ ret -= web->span_deaths;
+ return ret;
+}
+
+/* Select the cheapest spill to be potentially spilled (we don't
+ *actually* spill until we need to). */
+
+static void
+select_spill ()
+{
+ unsigned HOST_WIDE_INT best = (unsigned HOST_WIDE_INT) -1;
+ struct dlist *bestd = NULL;
+ unsigned HOST_WIDE_INT best2 = (unsigned HOST_WIDE_INT) -1;
+ struct dlist *bestd2 = NULL;
+ struct dlist *d;
+ for (d = WEBS(SPILL); d; d = d->next)
+ {
+ struct web *w = DLIST_WEB (d);
+ unsigned HOST_WIDE_INT cost = spill_heuristic (w);
+ if ((!w->spill_temp) && cost < best)
+ {
+ best = cost;
+ bestd = d;
+ }
+ /* Specially marked spill temps can be spilled. Also coalesce
+ targets can. Eventually they will be broken up later in the
+ colorizing process, so if we have nothing better take that. */
+ else if ((w->spill_temp == 2 || w->is_coalesced) && cost < best2)
+ {
+ best2 = cost;
+ bestd2 = d;
+ }
+ }
+ if (!bestd)
+ {
+ bestd = bestd2;
+ best = best2;
+ }
+ if (!bestd)
+ abort ();
+
+ /* Note the potential spill. */
+ DLIST_WEB (bestd)->was_spilled = 1;
+ remove_list (bestd, &WEBS(SPILL));
+ put_web (DLIST_WEB (bestd), SIMPLIFY);
+ freeze_moves (DLIST_WEB (bestd));
+ ra_debug_msg (DUMP_PROCESS, " potential spill web %3d, conflicts = %d\n",
+ DLIST_WEB (bestd)->id, DLIST_WEB (bestd)->num_conflicts);
+}
+
+/* Given a set of forbidden colors to begin at, and a set of still
+ free colors, and MODE, returns nonzero of color C is still usable. */
+
+static int
+color_usable_p (c, dont_begin_colors, free_colors, mode)
+ int c;
+ HARD_REG_SET dont_begin_colors, free_colors;
+ enum machine_mode mode;
+{
+ if (!TEST_HARD_REG_BIT (dont_begin_colors, c)
+ && TEST_HARD_REG_BIT (free_colors, c)
+ && HARD_REGNO_MODE_OK (c, mode))
+ {
+ int i, size;
+ size = HARD_REGNO_NREGS (c, mode);
+ for (i = 1; i < size && TEST_HARD_REG_BIT (free_colors, c + i); i++);
+ if (i == size)
+ return 1;
+ }
+ return 0;
+}
+
+/* I don't want to clutter up the actual code with ifdef's. */
+#ifdef REG_ALLOC_ORDER
+#define INV_REG_ALLOC_ORDER(c) inv_reg_alloc_order[c]
+#else
+#define INV_REG_ALLOC_ORDER(c) c
+#endif
+
+/* Searches in FREE_COLORS for a block of hardregs of the right length
+ for MODE, which doesn't begin at a hardreg mentioned in DONT_BEGIN_COLORS.
+ If it needs more than one hardreg it prefers blocks beginning
+ at an even hardreg, and only gives an odd begin reg if no other
+ block could be found. */
+
+int
+get_free_reg (dont_begin_colors, free_colors, mode)
+ HARD_REG_SET dont_begin_colors, free_colors;
+ enum machine_mode mode;
+{
+ int c;
+ int last_resort_reg = -1;
+ int pref_reg = -1;
+ int pref_reg_order = INT_MAX;
+ int last_resort_reg_order = INT_MAX;
+
+ for (c = 0; c < FIRST_PSEUDO_REGISTER; c++)
+ if (!TEST_HARD_REG_BIT (dont_begin_colors, c)
+ && TEST_HARD_REG_BIT (free_colors, c)
+ && HARD_REGNO_MODE_OK (c, mode))
+ {
+ int i, size;
+ size = HARD_REGNO_NREGS (c, mode);
+ for (i = 1; i < size && TEST_HARD_REG_BIT (free_colors, c + i); i++);
+ if (i != size)
+ {
+ c += i;
+ continue;
+ }
+ if (i == size)
+ {
+ if (size < 2 || (c & 1) == 0)
+ {
+ if (INV_REG_ALLOC_ORDER (c) < pref_reg_order)
+ {
+ pref_reg = c;
+ pref_reg_order = INV_REG_ALLOC_ORDER (c);
+ }
+ }
+ else if (INV_REG_ALLOC_ORDER (c) < last_resort_reg_order)
+ {
+ last_resort_reg = c;
+ last_resort_reg_order = INV_REG_ALLOC_ORDER (c);
+ }
+ }
+ else
+ c += i;
+ }
+ return pref_reg >= 0 ? pref_reg : last_resort_reg;
+}
+
+/* Similar to get_free_reg(), but first search in colors provided
+ by BIAS _and_ PREFER_COLORS, then in BIAS alone, then in PREFER_COLORS
+ alone, and only then for any free color. If flag_ra_biased is zero
+ only do the last two steps. */
+
+static int
+get_biased_reg (dont_begin_colors, bias, prefer_colors, free_colors, mode)
+ HARD_REG_SET dont_begin_colors, bias, prefer_colors, free_colors;
+ enum machine_mode mode;
+{
+ int c = -1;
+ HARD_REG_SET s;
+ if (flag_ra_biased)
+ {
+ COPY_HARD_REG_SET (s, dont_begin_colors);
+ IOR_COMPL_HARD_REG_SET (s, bias);
+ IOR_COMPL_HARD_REG_SET (s, prefer_colors);
+ c = get_free_reg (s, free_colors, mode);
+ if (c >= 0)
+ return c;
+ COPY_HARD_REG_SET (s, dont_begin_colors);
+ IOR_COMPL_HARD_REG_SET (s, bias);
+ c = get_free_reg (s, free_colors, mode);
+ if (c >= 0)
+ return c;
+ }
+ COPY_HARD_REG_SET (s, dont_begin_colors);
+ IOR_COMPL_HARD_REG_SET (s, prefer_colors);
+ c = get_free_reg (s, free_colors, mode);
+ if (c >= 0)
+ return c;
+ c = get_free_reg (dont_begin_colors, free_colors, mode);
+ return c;
+}
+
+/* Counts the number of non-overlapping bitblocks of length LEN
+ in FREE_COLORS. */
+
+static int
+count_long_blocks (free_colors, len)
+ HARD_REG_SET free_colors;
+ int len;
+{
+ int i, j;
+ int count = 0;
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ if (!TEST_HARD_REG_BIT (free_colors, i))
+ continue;
+ for (j = 1; j < len; j++)
+ if (!TEST_HARD_REG_BIT (free_colors, i + j))
+ break;
+ /* Bits [i .. i+j-1] are free. */
+ if (j == len)
+ count++;
+ i += j - 1;
+ }
+ return count;
+}
+
+/* Given a hardreg set S, return a string representing it.
+ Either as 0/1 string, or as hex value depending on the implementation
+ of hardreg sets. Note that this string is statically allocated. */
+
+static char *
+hardregset_to_string (s)
+ HARD_REG_SET s;
+{
+ static char string[/*FIRST_PSEUDO_REGISTER + 30*/1024];
+#if FIRST_PSEUDO_REGISTER <= HOST_BITS_PER_WIDE_INT
+ sprintf (string, HOST_WIDE_INT_PRINT_HEX, s);
+#else
+ char *c = string;
+ int i,j;
+ c += sprintf (c, "{ ");
+ for (i = 0;i < HARD_REG_SET_LONGS; i++)
+ {
+ for (j = 0; j < HOST_BITS_PER_WIDE_INT; j++)
+ c += sprintf (c, "%s", ( 1 << j) & s[i] ? "1" : "0");
+ c += sprintf (c, "%s", i ? ", " : "");
+ }
+ c += sprintf (c, " }");
+#endif
+ return string;
+}
+
+/* For WEB, look at its already colored neighbors, and calculate
+ the set of hardregs which is not allowed as color for WEB. Place
+ that set int *RESULT. Note that the set of forbidden begin colors
+ is not the same as all colors taken up by neighbors. E.g. suppose
+ two DImode webs, but only the lo-part from one conflicts with the
+ hipart from the other, and suppose the other gets colors 2 and 3
+ (it needs two SImode hardregs). Now the first can take also color
+ 1 or 2, although in those cases there's a partial overlap. Only
+ 3 can't be used as begin color. */
+
+static void
+calculate_dont_begin (web, result)
+ struct web *web;
+ HARD_REG_SET *result;
+{
+ struct conflict_link *wl;
+ HARD_REG_SET dont_begin;
+ /* The bits set in dont_begin correspond to the hardregs, at which
+ WEB may not begin. This differs from the set of _all_ hardregs which
+ are taken by WEB's conflicts in the presence of wide webs, where only
+ some parts conflict with others. */
+ CLEAR_HARD_REG_SET (dont_begin);
+ for (wl = web->conflict_list; wl; wl = wl->next)
+ {
+ struct web *w;
+ struct web *ptarget = alias (wl->t);
+ struct sub_conflict *sl = wl->sub;
+ w = sl ? sl->t : wl->t;
+ while (w)
+ {
+ if (ptarget->type == COLORED || ptarget->type == PRECOLORED)
+ {
+ struct web *source = (sl) ? sl->s : web;
+ unsigned int tsize = HARD_REGNO_NREGS (ptarget->color,
+ GET_MODE (w->orig_x));
+ /* ssize is only a first guess for the size. */
+ unsigned int ssize = HARD_REGNO_NREGS (ptarget->color, GET_MODE
+ (source->orig_x));
+ unsigned int tofs = 0;
+ unsigned int sofs = 0;
+ /* C1 and C2 can become negative, so unsigned
+ would be wrong. */
+ int c1, c2;
+
+ if (SUBWEB_P (w)
+ && GET_MODE_SIZE (GET_MODE (w->orig_x)) >= UNITS_PER_WORD)
+ tofs = (SUBREG_BYTE (w->orig_x) / UNITS_PER_WORD);
+ if (SUBWEB_P (source)
+ && GET_MODE_SIZE (GET_MODE (source->orig_x))
+ >= UNITS_PER_WORD)
+ sofs = (SUBREG_BYTE (source->orig_x) / UNITS_PER_WORD);
+ c1 = ptarget->color + tofs - sofs - ssize + 1;
+ c2 = ptarget->color + tofs + tsize - 1 - sofs;
+ if (c2 >= 0)
+ {
+ if (c1 < 0)
+ c1 = 0;
+ /* Because ssize was only guessed above, which influenced our
+ begin color (c1), we need adjustment, if for that color
+ another size would be needed. This is done by moving
+ c1 to a place, where the last of sources hardregs does not
+ overlap the first of targets colors. */
+ while (c1 + sofs
+ + HARD_REGNO_NREGS (c1, GET_MODE (source->orig_x)) - 1
+ < ptarget->color + tofs)
+ c1++;
+ while (c1 > 0 && c1 + sofs
+ + HARD_REGNO_NREGS (c1, GET_MODE (source->orig_x)) - 1
+ > ptarget->color + tofs)
+ c1--;
+ for (; c1 <= c2; c1++)
+ SET_HARD_REG_BIT (dont_begin, c1);
+ }
+ }
+ /* The next if() only gets true, if there was no wl->sub at all, in
+ which case we are only making one go thru this loop with W being
+ a whole web. */
+ if (!sl)
+ break;
+ sl = sl->next;
+ w = sl ? sl->t : NULL;
+ }
+ }
+ COPY_HARD_REG_SET (*result, dont_begin);
+}
+
+/* Try to assign a color to WEB. If HARD if nonzero, we try many
+ tricks to get it one color, including respilling already colored
+ neighbors.
+
+ We also trie very hard, to not constrain the uncolored non-spill
+ neighbors, which need more hardregs than we. Consider a situation, 2
+ hardregs free for us (0 and 1), and one of our neighbors needs 2
+ hardregs, and only conflicts with us. There are 3 hardregs at all. Now
+ a simple minded method might choose 1 as color for us. Then our neighbor
+ has two free colors (0 and 2) as it should, but they are not consecutive,
+ so coloring it later would fail. This leads to nasty problems on
+ register starved machines, so we try to avoid this. */
+
+static void
+colorize_one_web (web, hard)
+ struct web *web;
+ int hard;
+{
+ struct conflict_link *wl;
+ HARD_REG_SET colors, dont_begin;
+ int c = -1;
+ int bestc = -1;
+ int neighbor_needs= 0;
+ struct web *fat_neighbor = NULL;
+ struct web *fats_parent = NULL;
+ int num_fat = 0;
+ int long_blocks = 0;
+ int best_long_blocks = -1;
+ HARD_REG_SET fat_colors;
+ HARD_REG_SET bias;
+
+ if (web->regno >= max_normal_pseudo)
+ hard = 0;
+
+ /* First we want to know the colors at which we can't begin. */
+ calculate_dont_begin (web, &dont_begin);
+ CLEAR_HARD_REG_SET (bias);
+
+ /* Now setup the set of colors used by our neighbors neighbors,
+ and search the biggest noncolored neighbor. */
+ neighbor_needs = web->add_hardregs + 1;
+ for (wl = web->conflict_list; wl; wl = wl->next)
+ {
+ struct web *w;
+ struct web *ptarget = alias (wl->t);
+ struct sub_conflict *sl = wl->sub;
+ IOR_HARD_REG_SET (bias, ptarget->bias_colors);
+ w = sl ? sl->t : wl->t;
+ if (ptarget->type != COLORED && ptarget->type != PRECOLORED
+ && !ptarget->was_spilled)
+ while (w)
+ {
+ if (find_web_for_subweb (w)->type != COALESCED
+ && w->add_hardregs >= neighbor_needs)
+ {
+ neighbor_needs = w->add_hardregs;
+ fat_neighbor = w;
+ fats_parent = ptarget;
+ num_fat++;
+ }
+ if (!sl)
+ break;
+ sl = sl->next;
+ w = sl ? sl->t : NULL;
+ }
+ }
+
+ ra_debug_msg (DUMP_COLORIZE, "colorize web %d [don't begin at %s]", web->id,
+ hardregset_to_string (dont_begin));
+
+ /* If there are some fat neighbors, remember their usable regs,
+ and how many blocks are free in it for that neighbor. */
+ if (num_fat)
+ {
+ COPY_HARD_REG_SET (fat_colors, fats_parent->usable_regs);
+ long_blocks = count_long_blocks (fat_colors, neighbor_needs + 1);
+ }
+
+ /* We break out, if we found a color which doesn't constrain
+ neighbors, or if we can't find any colors. */
+ while (1)
+ {
+ HARD_REG_SET call_clobbered;
+
+ /* Here we choose a hard-reg for the current web. For non spill
+ temporaries we first search in the hardregs for it's prefered
+ class, then, if we found nothing appropriate, in those of the
+ alternate class. For spill temporaries we only search in
+ usable_regs of this web (which is probably larger than that of
+ the preferred or alternate class). All searches first try to
+ find a non-call-clobbered hard-reg.
+ XXX this should be more finegraned... First look into preferred
+ non-callclobbered hardregs, then _if_ the web crosses calls, in
+ alternate non-cc hardregs, and only _then_ also in preferred cc
+ hardregs (and alternate ones). Currently we don't track the number
+ of calls crossed for webs. We should. */
+ if (web->use_my_regs)
+ {
+ COPY_HARD_REG_SET (colors, web->usable_regs);
+ AND_HARD_REG_SET (colors,
+ usable_regs[reg_preferred_class (web->regno)]);
+ }
+ else
+ COPY_HARD_REG_SET (colors,
+ usable_regs[reg_preferred_class (web->regno)]);
+#ifdef CLASS_CANNOT_CHANGE_MODE
+ if (web->mode_changed)
+ AND_COMPL_HARD_REG_SET (colors, reg_class_contents[
+ (int) CLASS_CANNOT_CHANGE_MODE]);
+#endif
+ COPY_HARD_REG_SET (call_clobbered, colors);
+ AND_HARD_REG_SET (call_clobbered, call_used_reg_set);
+
+ /* If this web got a color in the last pass, try to give it the
+ same color again. This will to much better colorization
+ down the line, as we spilled for a certain coloring last time. */
+ if (web->old_color)
+ {
+ c = web->old_color - 1;
+ if (!color_usable_p (c, dont_begin, colors,
+ PSEUDO_REGNO_MODE (web->regno)))
+ c = -1;
+ }
+ else
+ c = -1;
+ if (c < 0)
+ c = get_biased_reg (dont_begin, bias, web->prefer_colors,
+ call_clobbered, PSEUDO_REGNO_MODE (web->regno));
+ if (c < 0)
+ c = get_biased_reg (dont_begin, bias, web->prefer_colors,
+ colors, PSEUDO_REGNO_MODE (web->regno));
+
+ if (c < 0)
+ {
+ if (web->use_my_regs)
+ IOR_HARD_REG_SET (colors, web->usable_regs);
+ else
+ IOR_HARD_REG_SET (colors, usable_regs
+ [reg_alternate_class (web->regno)]);
+#ifdef CLASS_CANNOT_CHANGE_MODE
+ if (web->mode_changed)
+ AND_COMPL_HARD_REG_SET (colors, reg_class_contents[
+ (int) CLASS_CANNOT_CHANGE_MODE]);
+#endif
+ COPY_HARD_REG_SET (call_clobbered, colors);
+ AND_HARD_REG_SET (call_clobbered, call_used_reg_set);
+
+ c = get_biased_reg (dont_begin, bias, web->prefer_colors,
+ call_clobbered, PSEUDO_REGNO_MODE (web->regno));
+ if (c < 0)
+ c = get_biased_reg (dont_begin, bias, web->prefer_colors,
+ colors, PSEUDO_REGNO_MODE (web->regno));
+ }
+ if (c < 0)
+ break;
+ if (bestc < 0)
+ bestc = c;
+ /* If one of the yet uncolored neighbors, which is not a potential
+ spill needs a block of hardregs be sure, not to destroy such a block
+ by coloring one reg in the middle. */
+ if (num_fat)
+ {
+ int i;
+ int new_long;
+ HARD_REG_SET colors1;
+ COPY_HARD_REG_SET (colors1, fat_colors);
+ for (i = 0; i < 1 + web->add_hardregs; i++)
+ CLEAR_HARD_REG_BIT (colors1, c + i);
+ new_long = count_long_blocks (colors1, neighbor_needs + 1);
+ /* If we changed the number of long blocks, and it's now smaller
+ than needed, we try to avoid this color. */
+ if (long_blocks != new_long && new_long < num_fat)
+ {
+ if (new_long > best_long_blocks)
+ {
+ best_long_blocks = new_long;
+ bestc = c;
+ }
+ SET_HARD_REG_BIT (dont_begin, c);
+ ra_debug_msg (DUMP_COLORIZE, " avoid %d", c);
+ }
+ else
+ /* We found a color which doesn't destroy a block. */
+ break;
+ }
+ /* If we havee no fat neighbors, the current color won't become
+ "better", so we've found it. */
+ else
+ break;
+ }
+ ra_debug_msg (DUMP_COLORIZE, " --> got %d", c < 0 ? bestc : c);
+ if (bestc >= 0 && c < 0 && !web->was_spilled)
+ {
+ /* This is a non-potential-spill web, which got a color, which did
+ destroy a hardreg block for one of it's neighbors. We color
+ this web anyway and hope for the best for the neighbor, if we are
+ a spill temp. */
+ if (1 || web->spill_temp)
+ c = bestc;
+ ra_debug_msg (DUMP_COLORIZE, " [constrains neighbors]");
+ }
+ ra_debug_msg (DUMP_COLORIZE, "\n");
+
+ if (c < 0)
+ {
+ /* Guard against a simplified node being spilled. */
+ /* Don't abort. This can happen, when e.g. enough registers
+ are available in colors, but they are not consecutive. This is a
+ very serious issue if this web is a short live one, because
+ even if we spill this one here, the situation won't become better
+ in the next iteration. It probably will have the same conflicts,
+ those will have the same colors, and we would come here again, for
+ all parts, in which this one gets splitted by the spill. This
+ can result in endless iteration spilling the same register again and
+ again. That's why we try to find a neighbor, which spans more
+ instructions that ourself, and got a color, and try to spill _that_.
+
+ if (DLIST_WEB (d)->was_spilled < 0)
+ abort (); */
+ if (hard && (!web->was_spilled || web->spill_temp))
+ {
+ unsigned int loop;
+ struct web *try = NULL;
+ struct web *candidates[8];
+
+ ra_debug_msg (DUMP_COLORIZE, " *** %d spilled, although %s ***\n",
+ web->id, web->spill_temp ? "spilltemp" : "non-spill");
+ /* We make multiple passes over our conflicts, first trying to
+ spill those webs, which only got a color by chance, but
+ were potential spill ones, and if that isn't enough, in a second
+ pass also to spill normal colored webs. If we still didn't find
+ a candidate, but we are a spill-temp, we make a third pass
+ and include also webs, which were targets for coalescing, and
+ spill those. */
+ memset (candidates, 0, sizeof candidates);
+#define set_cand(i, w) \
+ do { \
+ if (!candidates[(i)] \
+ || (candidates[(i)]->spill_cost < (w)->spill_cost)) \
+ candidates[(i)] = (w); \
+ } while (0)
+ for (wl = web->conflict_list; wl; wl = wl->next)
+ {
+ struct web *w = wl->t;
+ struct web *aw = alias (w);
+ /* If we are a spill-temp, we also look at webs coalesced
+ to precolored ones. Otherwise we only look at webs which
+ themself were colored, or coalesced to one. */
+ if (aw->type == PRECOLORED && w != aw && web->spill_temp
+ && flag_ra_optimistic_coalescing)
+ {
+ if (!w->spill_temp)
+ set_cand (4, w);
+ else if (web->spill_temp == 2
+ && w->spill_temp == 2
+ && w->spill_cost < web->spill_cost)
+ set_cand (5, w);
+ else if (web->spill_temp != 2
+ && (w->spill_temp == 2
+ || w->spill_cost < web->spill_cost))
+ set_cand (6, w);
+ continue;
+ }
+ if (aw->type != COLORED)
+ continue;
+ if (w->type == COLORED && !w->spill_temp && !w->is_coalesced
+ && w->was_spilled)
+ {
+ if (w->spill_cost < web->spill_cost)
+ set_cand (0, w);
+ else if (web->spill_temp)
+ set_cand (1, w);
+ }
+ if (w->type == COLORED && !w->spill_temp && !w->is_coalesced
+ && !w->was_spilled)
+ {
+ if (w->spill_cost < web->spill_cost)
+ set_cand (2, w);
+ else if (web->spill_temp && web->spill_temp != 2)
+ set_cand (3, w);
+ }
+ if (web->spill_temp)
+ {
+ if (w->type == COLORED && w->spill_temp == 2
+ && !w->is_coalesced
+ && (w->spill_cost < web->spill_cost
+ || web->spill_temp != 2))
+ set_cand (4, w);
+ if (!aw->spill_temp)
+ set_cand (5, aw);
+ if (aw->spill_temp == 2
+ && (aw->spill_cost < web->spill_cost
+ || web->spill_temp != 2))
+ set_cand (6, aw);
+ /* For boehm-gc/misc.c. If we are a difficult spilltemp,
+ also coalesced neighbors are a chance, _even_ if they
+ too are spilltemps. At least their coalscing can be
+ broken up, which may be reset usable_regs, and makes
+ it easier colorable. */
+ if (web->spill_temp != 2 && aw->is_coalesced
+ && flag_ra_optimistic_coalescing)
+ set_cand (7, aw);
+ }
+ }
+ for (loop = 0; try == NULL && loop < 8; loop++)
+ if (candidates[loop])
+ try = candidates[loop];
+#undef set_cand
+ if (try)
+ {
+ int old_c = try->color;
+ if (try->type == COALESCED)
+ {
+ if (alias (try)->type != PRECOLORED)
+ abort ();
+ ra_debug_msg (DUMP_COLORIZE, " breaking alias %d -> %d\n",
+ try->id, alias (try)->id);
+ break_precolored_alias (try);
+ colorize_one_web (web, hard);
+ }
+ else
+ {
+ remove_list (try->dlink, &WEBS(COLORED));
+ put_web (try, SPILLED);
+ /* Now try to colorize us again. Can recursively make other
+ webs also spill, until there are no more unspilled
+ neighbors. */
+ ra_debug_msg (DUMP_COLORIZE, " trying to spill %d\n", try->id);
+ colorize_one_web (web, hard);
+ if (web->type != COLORED)
+ {
+ /* We tried recursively to spill all already colored
+ neighbors, but we are still uncolorable. So it made
+ no sense to spill those neighbors. Recolor them. */
+ remove_list (try->dlink, &WEBS(SPILLED));
+ put_web (try, COLORED);
+ try->color = old_c;
+ ra_debug_msg (DUMP_COLORIZE,
+ " spilling %d was useless\n", try->id);
+ }
+ else
+ {
+ ra_debug_msg (DUMP_COLORIZE,
+ " to spill %d was a good idea\n",
+ try->id);
+ remove_list (try->dlink, &WEBS(SPILLED));
+ if (try->was_spilled)
+ colorize_one_web (try, 0);
+ else
+ colorize_one_web (try, hard - 1);
+ }
+ }
+ }
+ else
+ /* No more chances to get a color, so give up hope and
+ spill us. */
+ put_web (web, SPILLED);
+ }
+ else
+ put_web (web, SPILLED);
+ }
+ else
+ {
+ put_web (web, COLORED);
+ web->color = c;
+ if (flag_ra_biased)
+ {
+ int nregs = HARD_REGNO_NREGS (c, GET_MODE (web->orig_x));
+ for (wl = web->conflict_list; wl; wl = wl->next)
+ {
+ struct web *ptarget = alias (wl->t);
+ int i;
+ for (i = 0; i < nregs; i++)
+ SET_HARD_REG_BIT (ptarget->bias_colors, c + i);
+ }
+ }
+ }
+ if (web->regno >= max_normal_pseudo && web->type == SPILLED)
+ {
+ web->color = an_unusable_color;
+ remove_list (web->dlink, &WEBS(SPILLED));
+ put_web (web, COLORED);
+ }
+ if (web->type == SPILLED && flag_ra_optimistic_coalescing
+ && web->is_coalesced)
+ {
+ ra_debug_msg (DUMP_COLORIZE, "breaking aliases to web %d:", web->id);
+ restore_conflicts_from_coalesce (web);
+ break_aliases_to_web (web);
+ insert_coalesced_conflicts ();
+ ra_debug_msg (DUMP_COLORIZE, "\n");
+ remove_list (web->dlink, &WEBS(SPILLED));
+ put_web (web, SELECT);
+ web->color = -1;
+ }
+}
+
+/* Assign the colors to all nodes on the select stack. And update the
+ colors of coalesced webs. */
+
+static void
+assign_colors ()
+{
+ struct dlist *d;
+
+ while (WEBS(SELECT))
+ {
+ struct web *web;
+ d = pop_list (&WEBS(SELECT));
+ web = DLIST_WEB (d);
+ colorize_one_web (DLIST_WEB (d), 1);
+ }
+
+ for (d = WEBS(COALESCED); d; d = d->next)
+ {
+ struct web *a = alias (DLIST_WEB (d));
+ DLIST_WEB (d)->color = a->color;
+ }
+}
+
+/* WEB is a spilled web. Look if we can improve the cost of the graph,
+ by coloring WEB, even if we then need to spill some of it's neighbors.
+ For this we calculate the cost for each color C, that results when we
+ _would_ give WEB color C (i.e. the cost of the then spilled neighbors).
+ If the lowest cost among them is smaller than the spillcost of WEB, we
+ do that recoloring, and instead spill the neighbors.
+
+ This can sometime help, when due to irregularities in register file,
+ and due to multi word pseudos, the colorization is suboptimal. But
+ be aware, that currently this pass is quite slow. */
+
+static void
+try_recolor_web (web)
+ struct web *web;
+{
+ struct conflict_link *wl;
+ unsigned HOST_WIDE_INT *cost_neighbors;
+ unsigned int *min_color;
+ int newcol, c;
+ HARD_REG_SET precolored_neighbors, spill_temps;
+ HARD_REG_SET possible_begin, wide_seen;
+ cost_neighbors = (unsigned HOST_WIDE_INT *)
+ xcalloc (FIRST_PSEUDO_REGISTER, sizeof (cost_neighbors[0]));
+ /* For each hard-regs count the number of preceding hardregs, which
+ would overlap this color, if used in WEB's mode. */
+ min_color = (unsigned int *) xcalloc (FIRST_PSEUDO_REGISTER, sizeof (int));
+ CLEAR_HARD_REG_SET (possible_begin);
+ for (c = 0; c < FIRST_PSEUDO_REGISTER; c++)
+ {
+ int i, nregs;
+ if (!HARD_REGNO_MODE_OK (c, GET_MODE (web->orig_x)))
+ continue;
+ nregs = HARD_REGNO_NREGS (c, GET_MODE (web->orig_x));
+ for (i = 0; i < nregs; i++)
+ if (!TEST_HARD_REG_BIT (web->usable_regs, c + i))
+ break;
+ if (i < nregs || nregs == 0)
+ continue;
+ SET_HARD_REG_BIT (possible_begin, c);
+ for (; nregs--;)
+ if (!min_color[c + nregs])
+ min_color[c + nregs] = 1 + c;
+ }
+ CLEAR_HARD_REG_SET (precolored_neighbors);
+ CLEAR_HARD_REG_SET (spill_temps);
+ CLEAR_HARD_REG_SET (wide_seen);
+ for (wl = web->conflict_list; wl; wl = wl->next)
+ {
+ HARD_REG_SET dont_begin;
+ struct web *web2 = alias (wl->t);
+ struct conflict_link *nn;
+ int c1, c2;
+ int wide_p = 0;
+ if (wl->t->type == COALESCED || web2->type != COLORED)
+ {
+ if (web2->type == PRECOLORED)
+ {
+ c1 = min_color[web2->color];
+ c1 = (c1 == 0) ? web2->color : (c1 - 1);
+ c2 = web2->color;
+ for (; c1 <= c2; c1++)
+ SET_HARD_REG_BIT (precolored_neighbors, c1);
+ }
+ continue;
+ }
+ /* Mark colors for which some wide webs are involved. For
+ those the independent sets are not simply one-node graphs, so
+ they can't be recolored independ from their neighborhood. This
+ means, that our cost calculation can be incorrect (assuming it
+ can avoid spilling a web because it thinks some colors are available,
+ although it's neighbors which itself need recoloring might take
+ away exactly those colors). */
+ if (web2->add_hardregs)
+ wide_p = 1;
+ for (nn = web2->conflict_list; nn && !wide_p; nn = nn->next)
+ if (alias (nn->t)->add_hardregs)
+ wide_p = 1;
+ calculate_dont_begin (web2, &dont_begin);
+ c1 = min_color[web2->color];
+ /* Note that min_color[] contains 1-based values (zero means
+ undef). */
+ c1 = c1 == 0 ? web2->color : (c1 - 1);
+ c2 = web2->color + HARD_REGNO_NREGS (web2->color, GET_MODE
+ (web2->orig_x)) - 1;
+ for (; c1 <= c2; c1++)
+ if (TEST_HARD_REG_BIT (possible_begin, c1))
+ {
+ int nregs;
+ HARD_REG_SET colors;
+ nregs = HARD_REGNO_NREGS (c1, GET_MODE (web->orig_x));
+ COPY_HARD_REG_SET (colors, web2->usable_regs);
+ for (; nregs--;)
+ CLEAR_HARD_REG_BIT (colors, c1 + nregs);
+ if (wide_p)
+ SET_HARD_REG_BIT (wide_seen, c1);
+ if (get_free_reg (dont_begin, colors,
+ GET_MODE (web2->orig_x)) < 0)
+ {
+ if (web2->spill_temp)
+ SET_HARD_REG_BIT (spill_temps, c1);
+ else
+ cost_neighbors[c1] += web2->spill_cost;
+ }
+ }
+ }
+ newcol = -1;
+ for (c = 0; c < FIRST_PSEUDO_REGISTER; c++)
+ if (TEST_HARD_REG_BIT (possible_begin, c)
+ && !TEST_HARD_REG_BIT (precolored_neighbors, c)
+ && !TEST_HARD_REG_BIT (spill_temps, c)
+ && (newcol == -1
+ || cost_neighbors[c] < cost_neighbors[newcol]))
+ newcol = c;
+ if (newcol >= 0 && cost_neighbors[newcol] < web->spill_cost)
+ {
+ int nregs = HARD_REGNO_NREGS (newcol, GET_MODE (web->orig_x));
+ unsigned HOST_WIDE_INT cost = 0;
+ int *old_colors;
+ struct conflict_link *wl_next;
+ ra_debug_msg (DUMP_COLORIZE, "try to set web %d to color %d\n", web->id,
+ newcol);
+ remove_list (web->dlink, &WEBS(SPILLED));
+ put_web (web, COLORED);
+ web->color = newcol;
+ old_colors = (int *) xcalloc (num_webs, sizeof (int));
+ for (wl = web->conflict_list; wl; wl = wl_next)
+ {
+ struct web *web2 = alias (wl->t);
+ /* If web2 is a coalesce-target, and will become spilled
+ below in colorize_one_web(), and the current conflict wl
+ between web and web2 was only the result of that coalescing
+ this conflict will be deleted, making wl invalid. So save
+ the next conflict right now. Note that if web2 has indeed
+ such state, then wl->next can not be deleted in this
+ iteration. */
+ wl_next = wl->next;
+ if (web2->type == COLORED)
+ {
+ int nregs2 = HARD_REGNO_NREGS (web2->color, GET_MODE
+ (web2->orig_x));
+ if (web->color >= web2->color + nregs2
+ || web2->color >= web->color + nregs)
+ continue;
+ old_colors[web2->id] = web2->color + 1;
+ web2->color = -1;
+ remove_list (web2->dlink, &WEBS(COLORED));
+ web2->type = SELECT;
+ /* Allow webs to be spilled. */
+ if (web2->spill_temp == 0 || web2->spill_temp == 2)
+ web2->was_spilled = 1;
+ colorize_one_web (web2, 1);
+ if (web2->type == SPILLED)
+ cost += web2->spill_cost;
+ }
+ }
+ /* The actual cost may be smaller than the guessed one, because
+ partial conflicts could result in some conflicting webs getting
+ a color, where we assumed it must be spilled. See the comment
+ above what happens, when wide webs are involved, and why in that
+ case there might actually be some webs spilled although thought to
+ be colorable. */
+ if (cost > cost_neighbors[newcol]
+ && nregs == 1 && !TEST_HARD_REG_BIT (wide_seen, newcol))
+ abort ();
+ /* But if the new spill-cost is higher than our own, then really loose.
+ Respill us and recolor neighbors as before. */
+ if (cost > web->spill_cost)
+ {
+ ra_debug_msg (DUMP_COLORIZE,
+ "reset coloring of web %d, too expensive\n", web->id);
+ remove_list (web->dlink, &WEBS(COLORED));
+ web->color = -1;
+ put_web (web, SPILLED);
+ for (wl = web->conflict_list; wl; wl = wl->next)
+ {
+ struct web *web2 = alias (wl->t);
+ if (old_colors[web2->id])
+ {
+ if (web2->type == SPILLED)
+ {
+ remove_list (web2->dlink, &WEBS(SPILLED));
+ web2->color = old_colors[web2->id] - 1;
+ put_web (web2, COLORED);
+ }
+ else if (web2->type == COLORED)
+ web2->color = old_colors[web2->id] - 1;
+ else if (web2->type == SELECT)
+ /* This means, that WEB2 once was a part of a coalesced
+ web, which got spilled in the above colorize_one_web()
+ call, and whose parts then got splitted and put back
+ onto the SELECT stack. As the cause for that splitting
+ (the coloring of WEB) was worthless, we should again
+ coalesce the parts, as they were before. For now we
+ simply leave them SELECTed, for our caller to take
+ care. */
+ ;
+ else
+ abort ();
+ }
+ }
+ }
+ free (old_colors);
+ }
+ free (min_color);
+ free (cost_neighbors);
+}
+
+/* This ensures that all conflicts of coalesced webs are seen from
+ the webs coalesced into. combine() only adds the conflicts which
+ at the time of combining were not already SELECTed or COALESCED
+ to not destroy num_conflicts. Here we add all remaining conflicts
+ and thereby destroy num_conflicts. This should be used when num_conflicts
+ isn't used anymore, e.g. on a completely colored graph. */
+
+static void
+insert_coalesced_conflicts ()
+{
+ struct dlist *d;
+ for (d = WEBS(COALESCED); 0 && d; d = d->next)
+ {
+ struct web *web = DLIST_WEB (d);
+ struct web *aweb = alias (web);
+ struct conflict_link *wl;
+ for (wl = web->conflict_list; wl; wl = wl->next)
+ {
+ struct web *tweb = aweb;
+ int i;
+ int nregs = 1 + web->add_hardregs;
+ if (aweb->type == PRECOLORED)
+ nregs = HARD_REGNO_NREGS (aweb->color, GET_MODE (web->orig_x));
+ for (i = 0; i < nregs; i++)
+ {
+ if (aweb->type == PRECOLORED)
+ tweb = hardreg2web[i + aweb->color];
+ /* There might be some conflict edges laying around
+ where the usable_regs don't intersect. This can happen
+ when first some webs were coalesced and conflicts
+ propagated, then some combining narrowed usable_regs and
+ further coalescing ignored those conflicts. Now there are
+ some edges to COALESCED webs but not to it's alias.
+ So abort only when they really should conflict. */
+ if ((!(tweb->type == PRECOLORED
+ || TEST_BIT (sup_igraph, tweb->id * num_webs + wl->t->id))
+ || !(wl->t->type == PRECOLORED
+ || TEST_BIT (sup_igraph,
+ wl->t->id * num_webs + tweb->id)))
+ && hard_regs_intersect_p (&tweb->usable_regs,
+ &wl->t->usable_regs))
+ abort ();
+ /*if (wl->sub == NULL)
+ record_conflict (tweb, wl->t);
+ else
+ {
+ struct sub_conflict *sl;
+ for (sl = wl->sub; sl; sl = sl->next)
+ record_conflict (tweb, sl->t);
+ }*/
+ if (aweb->type != PRECOLORED)
+ break;
+ }
+ }
+ }
+}
+
+/* A function suitable to pass to qsort(). Compare the spill costs
+ of webs W1 and W2. When used by qsort, this would order webs with
+ largest cost first. */
+
+static int
+comp_webs_maxcost (w1, w2)
+ const void *w1, *w2;
+{
+ struct web *web1 = *(struct web **)w1;
+ struct web *web2 = *(struct web **)w2;
+ if (web1->spill_cost > web2->spill_cost)
+ return -1;
+ else if (web1->spill_cost < web2->spill_cost)
+ return 1;
+ else
+ return 0;
+}
+
+/* This tries to recolor all spilled webs. See try_recolor_web()
+ how this is done. This just calls it for each spilled web. */
+
+static void
+recolor_spills ()
+{
+ unsigned int i, num;
+ struct web **order2web;
+ num = num_webs - num_subwebs;
+ order2web = (struct web **) xmalloc (num * sizeof (order2web[0]));
+ for (i = 0; i < num; i++)
+ {
+ order2web[i] = id2web[i];
+ /* If we aren't breaking aliases, combine() wasn't merging the
+ spill_costs. So do that here to have sane measures. */
+ if (!flag_ra_merge_spill_costs && id2web[i]->type == COALESCED)
+ alias (id2web[i])->spill_cost += id2web[i]->spill_cost;
+ }
+ qsort (order2web, num, sizeof (order2web[0]), comp_webs_maxcost);
+ insert_coalesced_conflicts ();
+ dump_graph_cost (DUMP_COSTS, "before spill-recolor");
+ for (i = 0; i < num; i++)
+ {
+ struct web *web = order2web[i];
+ if (web->type == SPILLED)
+ try_recolor_web (web);
+ }
+ /* It might have been decided in try_recolor_web() (in colorize_one_web())
+ that a coalesced web should be spilled, so it was put on the
+ select stack. Those webs need recoloring again, and all remaining
+ coalesced webs might need their color updated, so simply call
+ assign_colors() again. */
+ assign_colors ();
+ free (order2web);
+}
+
+/* This checks the current color assignment for obvious errors,
+ like two conflicting webs overlapping in colors, or the used colors
+ not being in usable regs. */
+
+static void
+check_colors ()
+{
+ unsigned int i;
+ for (i = 0; i < num_webs - num_subwebs; i++)
+ {
+ struct web *web = id2web[i];
+ struct web *aweb = alias (web);
+ struct conflict_link *wl;
+ int nregs, c;
+ if (aweb->type == SPILLED || web->regno >= max_normal_pseudo)
+ continue;
+ else if (aweb->type == COLORED)
+ nregs = HARD_REGNO_NREGS (aweb->color, GET_MODE (web->orig_x));
+ else if (aweb->type == PRECOLORED)
+ nregs = 1;
+ else
+ abort ();
+ /* The color must be valid for the original usable_regs. */
+ for (c = 0; c < nregs; c++)
+ if (!TEST_HARD_REG_BIT (web->usable_regs, aweb->color + c))
+ abort ();
+ /* Search the original (pre-coalesce) conflict list. In the current
+ one some inprecise conflicts may be noted (due to combine() or
+ insert_coalesced_conflicts() relocating partial conflicts) making
+ it look like some wide webs are in conflict and having the same
+ color. */
+ wl = (web->have_orig_conflicts ? web->orig_conflict_list
+ : web->conflict_list);
+ for (; wl; wl = wl->next)
+ if (wl->t->regno >= max_normal_pseudo)
+ continue;
+ else if (!wl->sub)
+ {
+ struct web *web2 = alias (wl->t);
+ int nregs2;
+ if (web2->type == COLORED)
+ nregs2 = HARD_REGNO_NREGS (web2->color, GET_MODE (web2->orig_x));
+ else if (web2->type == PRECOLORED)
+ nregs2 = 1;
+ else
+ continue;
+ if (aweb->color >= web2->color + nregs2
+ || web2->color >= aweb->color + nregs)
+ continue;
+ abort ();
+ }
+ else
+ {
+ struct sub_conflict *sl;
+ int scol = aweb->color;
+ int tcol = alias (wl->t)->color;
+ if (alias (wl->t)->type == SPILLED)
+ continue;
+ for (sl = wl->sub; sl; sl = sl->next)
+ {
+ int ssize = HARD_REGNO_NREGS (scol, GET_MODE (sl->s->orig_x));
+ int tsize = HARD_REGNO_NREGS (tcol, GET_MODE (sl->t->orig_x));
+ int sofs = 0, tofs = 0;
+ if (SUBWEB_P (sl->t)
+ && GET_MODE_SIZE (GET_MODE (sl->t->orig_x)) >= UNITS_PER_WORD)
+ tofs = (SUBREG_BYTE (sl->t->orig_x) / UNITS_PER_WORD);
+ if (SUBWEB_P (sl->s)
+ && GET_MODE_SIZE (GET_MODE (sl->s->orig_x))
+ >= UNITS_PER_WORD)
+ sofs = (SUBREG_BYTE (sl->s->orig_x) / UNITS_PER_WORD);
+ if ((tcol + tofs >= scol + sofs + ssize)
+ || (scol + sofs >= tcol + tofs + tsize))
+ continue;
+ abort ();
+ }
+ }
+ }
+}
+
+/* WEB was a coalesced web. Make it unaliased again, and put it
+ back onto SELECT stack. */
+
+static void
+unalias_web (web)
+ struct web *web;
+{
+ web->alias = NULL;
+ web->is_coalesced = 0;
+ web->color = -1;
+ /* Well, initially everything was spilled, so it isn't incorrect,
+ that also the individual parts can be spilled.
+ XXX this isn't entirely correct, as we also relaxed the
+ spill_temp flag in combine(), which might have made components
+ spill, although they were a short or spilltemp web. */
+ web->was_spilled = 1;
+ remove_list (web->dlink, &WEBS(COALESCED));
+ /* Spilltemps must be colored right now (i.e. as early as possible),
+ other webs can be deferred to the end (the code building the
+ stack assumed that in this stage only one web was colored). */
+ if (web->spill_temp && web->spill_temp != 2)
+ put_web (web, SELECT);
+ else
+ put_web_at_end (web, SELECT);
+}
+
+/* WEB is a _target_ for coalescing which got spilled.
+ Break all aliases to WEB, and restore some of its member to the state
+ they were before coalescing. Due to the suboptimal structure of
+ the interference graph we need to go through all coalesced webs.
+ Somewhen we'll change this to be more sane. */
+
+static void
+break_aliases_to_web (web)
+ struct web *web;
+{
+ struct dlist *d, *d_next;
+ if (web->type != SPILLED)
+ abort ();
+ for (d = WEBS(COALESCED); d; d = d_next)
+ {
+ struct web *other = DLIST_WEB (d);
+ d_next = d->next;
+ /* Beware: Don't use alias() here. We really want to check only
+ one level of aliasing, i.e. only break up webs directly
+ aliased to WEB, not also those aliased through other webs. */
+ if (other->alias == web)
+ {
+ unalias_web (other);
+ ra_debug_msg (DUMP_COLORIZE, " %d", other->id);
+ }
+ }
+ web->spill_temp = web->orig_spill_temp;
+ web->spill_cost = web->orig_spill_cost;
+ /* Beware: The following possibly widens usable_regs again. While
+ it was narrower there might have been some conflicts added which got
+ ignored because of non-intersecting hardregsets. All those conflicts
+ would now matter again. Fortunately we only add conflicts when
+ coalescing, which is also the time of narrowing. And we remove all
+ those added conflicts again now that we unalias this web.
+ Therefore this is safe to do. */
+ COPY_HARD_REG_SET (web->usable_regs, web->orig_usable_regs);
+ web->is_coalesced = 0;
+ web->num_aliased = 0;
+ web->was_spilled = 1;
+ /* Reset is_coalesced flag for webs which itself are target of coalescing.
+ It was cleared above if it was coalesced to WEB. */
+ for (d = WEBS(COALESCED); d; d = d->next)
+ DLIST_WEB (d)->alias->is_coalesced = 1;
+}
+
+/* WEB is a web coalesced into a precolored one. Break that alias,
+ making WEB SELECTed again. Also restores the conflicts which resulted
+ from initially coalescing both. */
+
+static void
+break_precolored_alias (web)
+ struct web *web;
+{
+ struct web *pre = web->alias;
+ struct conflict_link *wl;
+ unsigned int c = pre->color;
+ unsigned int nregs = HARD_REGNO_NREGS (c, GET_MODE (web->orig_x));
+ if (pre->type != PRECOLORED)
+ abort ();
+ unalias_web (web);
+ /* Now we need to look at each conflict X of WEB, if it conflicts
+ with [PRE, PRE+nregs), and remove such conflicts, of X has not other
+ conflicts, which are coalesced into those precolored webs. */
+ for (wl = web->conflict_list; wl; wl = wl->next)
+ {
+ struct web *x = wl->t;
+ struct web *y;
+ unsigned int i;
+ struct conflict_link *wl2;
+ struct conflict_link **pcl;
+ HARD_REG_SET regs;
+ if (!x->have_orig_conflicts)
+ continue;
+ /* First look at which colors can not go away, due to other coalesces
+ still existing. */
+ CLEAR_HARD_REG_SET (regs);
+ for (i = 0; i < nregs; i++)
+ SET_HARD_REG_BIT (regs, c + i);
+ for (wl2 = x->conflict_list; wl2; wl2 = wl2->next)
+ if (wl2->t->type == COALESCED && alias (wl2->t)->type == PRECOLORED)
+ CLEAR_HARD_REG_BIT (regs, alias (wl2->t)->color);
+ /* Now also remove the colors of those conflicts which already
+ were there before coalescing at all. */
+ for (wl2 = x->orig_conflict_list; wl2; wl2 = wl2->next)
+ if (wl2->t->type == PRECOLORED)
+ CLEAR_HARD_REG_BIT (regs, wl2->t->color);
+ /* The colors now still set are those for which WEB was the last
+ cause, i.e. those which can be removed. */
+ y = NULL;
+ for (i = 0; i < nregs; i++)
+ if (TEST_HARD_REG_BIT (regs, c + i))
+ {
+ struct web *sub;
+ y = hardreg2web[c + i];
+ RESET_BIT (sup_igraph, x->id * num_webs + y->id);
+ RESET_BIT (sup_igraph, y->id * num_webs + x->id);
+ RESET_BIT (igraph, igraph_index (x->id, y->id));
+ for (sub = x->subreg_next; sub; sub = sub->subreg_next)
+ RESET_BIT (igraph, igraph_index (sub->id, y->id));
+ }
+ if (!y)
+ continue;
+ pcl = &(x->conflict_list);
+ while (*pcl)
+ {
+ struct web *y = (*pcl)->t;
+ if (y->type != PRECOLORED || !TEST_HARD_REG_BIT (regs, y->color))
+ pcl = &((*pcl)->next);
+ else
+ *pcl = (*pcl)->next;
+ }
+ }
+}
+
+/* WEB is a spilled web which was target for coalescing.
+ Delete all interference edges which were added due to that coalescing,
+ and break up the coalescing. */
+
+static void
+restore_conflicts_from_coalesce (web)
+ struct web *web;
+{
+ struct conflict_link **pcl;
+ struct conflict_link *wl;
+ pcl = &(web->conflict_list);
+ /* No original conflict list means no conflict was added at all
+ after building the graph. So neither we nor any neighbors have
+ conflicts due to this coalescing. */
+ if (!web->have_orig_conflicts)
+ return;
+ while (*pcl)
+ {
+ struct web *other = (*pcl)->t;
+ for (wl = web->orig_conflict_list; wl; wl = wl->next)
+ if (wl->t == other)
+ break;
+ if (wl)
+ {
+ /* We found this conflict also in the original list, so this
+ was no new conflict. */
+ pcl = &((*pcl)->next);
+ }
+ else
+ {
+ /* This is a new conflict, so delete it from us and
+ the neighbor. */
+ struct conflict_link **opcl;
+ struct conflict_link *owl;
+ struct sub_conflict *sl;
+ wl = *pcl;
+ *pcl = wl->next;
+ if (!other->have_orig_conflicts && other->type != PRECOLORED)
+ abort ();
+ for (owl = other->orig_conflict_list; owl; owl = owl->next)
+ if (owl->t == web)
+ break;
+ if (owl)
+ abort ();
+ opcl = &(other->conflict_list);
+ while (*opcl)
+ {
+ if ((*opcl)->t == web)
+ {
+ owl = *opcl;
+ *opcl = owl->next;
+ break;
+ }
+ else
+ {
+ opcl = &((*opcl)->next);
+ }
+ }
+ if (!owl && other->type != PRECOLORED)
+ abort ();
+ /* wl and owl contain the edge data to be deleted. */
+ RESET_BIT (sup_igraph, web->id * num_webs + other->id);
+ RESET_BIT (sup_igraph, other->id * num_webs + web->id);
+ RESET_BIT (igraph, igraph_index (web->id, other->id));
+ for (sl = wl->sub; sl; sl = sl->next)
+ RESET_BIT (igraph, igraph_index (sl->s->id, sl->t->id));
+ if (other->type != PRECOLORED)
+ {
+ for (sl = owl->sub; sl; sl = sl->next)
+ RESET_BIT (igraph, igraph_index (sl->s->id, sl->t->id));
+ }
+ }
+ }
+
+ /* We must restore usable_regs because record_conflict will use it. */
+ COPY_HARD_REG_SET (web->usable_regs, web->orig_usable_regs);
+ /* We might have deleted some conflicts above, which really are still
+ there (diamond pattern coalescing). This is because we don't reference
+ count interference edges but some of them were the result of different
+ coalesces. */
+ for (wl = web->conflict_list; wl; wl = wl->next)
+ if (wl->t->type == COALESCED)
+ {
+ struct web *tweb;
+ for (tweb = wl->t->alias; tweb; tweb = tweb->alias)
+ {
+ if (wl->sub == NULL)
+ record_conflict (web, tweb);
+ else
+ {
+ struct sub_conflict *sl;
+ for (sl = wl->sub; sl; sl = sl->next)
+ {
+ struct web *sweb = NULL;
+ if (SUBWEB_P (sl->t))
+ sweb = find_subweb (tweb, sl->t->orig_x);
+ if (!sweb)
+ sweb = tweb;
+ record_conflict (sl->s, sweb);
+ }
+ }
+ if (tweb->type != COALESCED)
+ break;
+ }
+ }
+}
+
+/* Repeatedly break aliases for spilled webs, which were target for
+ coalescing, and recolorize the resulting parts. Do this as long as
+ there are any spilled coalesce targets. */
+
+static void
+break_coalesced_spills ()
+{
+ int changed = 0;
+ while (1)
+ {
+ struct dlist *d;
+ struct web *web;
+ for (d = WEBS(SPILLED); d; d = d->next)
+ if (DLIST_WEB (d)->is_coalesced)
+ break;
+ if (!d)
+ break;
+ changed = 1;
+ web = DLIST_WEB (d);
+ ra_debug_msg (DUMP_COLORIZE, "breaking aliases to web %d:", web->id);
+ restore_conflicts_from_coalesce (web);
+ break_aliases_to_web (web);
+ /* WEB was a spilled web and isn't anymore. Everything coalesced
+ to WEB is now SELECTed and might potentially get a color.
+ If those other webs were itself targets of coalescing it might be
+ that there are still some conflicts from aliased webs missing,
+ because they were added in combine() right into the now
+ SELECTed web. So we need to add those missing conflicts here. */
+ insert_coalesced_conflicts ();
+ ra_debug_msg (DUMP_COLORIZE, "\n");
+ remove_list (d, &WEBS(SPILLED));
+ put_web (web, SELECT);
+ web->color = -1;
+ while (WEBS(SELECT))
+ {
+ d = pop_list (&WEBS(SELECT));
+ colorize_one_web (DLIST_WEB (d), 1);
+ }
+ }
+ if (changed)
+ {
+ struct dlist *d;
+ for (d = WEBS(COALESCED); d; d = d->next)
+ {
+ struct web *a = alias (DLIST_WEB (d));
+ DLIST_WEB (d)->color = a->color;
+ }
+ }
+ dump_graph_cost (DUMP_COSTS, "after alias-breaking");
+}
+
+/* A structure for fast hashing of a pair of webs.
+ Used to cumulate savings (from removing copy insns) for coalesced webs.
+ All the pairs are also put into a single linked list. */
+struct web_pair
+{
+ struct web_pair *next_hash;
+ struct web_pair *next_list;
+ struct web *smaller;
+ struct web *larger;
+ unsigned int conflicts;
+ unsigned HOST_WIDE_INT cost;
+};
+
+/* The actual hash table. */
+#define WEB_PAIR_HASH_SIZE 8192
+static struct web_pair *web_pair_hash[WEB_PAIR_HASH_SIZE];
+static struct web_pair *web_pair_list;
+static unsigned int num_web_pairs;
+
+/* Clear the hash table of web pairs. */
+
+static void
+init_web_pairs ()
+{
+ memset (web_pair_hash, 0, sizeof web_pair_hash);
+ num_web_pairs = 0;
+ web_pair_list = NULL;
+}
+
+/* Given two webs connected by a move with cost COST which together
+ have CONFLICTS conflicts, add that pair to the hash table, or if
+ already in, cumulate the costs and conflict number. */
+
+static void
+add_web_pair_cost (web1, web2, cost, conflicts)
+ struct web *web1, *web2;
+ unsigned HOST_WIDE_INT cost;
+ unsigned int conflicts;
+{
+ unsigned int hash;
+ struct web_pair *p;
+ if (web1->id > web2->id)
+ {
+ struct web *h = web1;
+ web1 = web2;
+ web2 = h;
+ }
+ hash = (web1->id * num_webs + web2->id) % WEB_PAIR_HASH_SIZE;
+ for (p = web_pair_hash[hash]; p; p = p->next_hash)
+ if (p->smaller == web1 && p->larger == web2)
+ {
+ p->cost += cost;
+ p->conflicts += conflicts;
+ return;
+ }
+ p = (struct web_pair *) ra_alloc (sizeof *p);
+ p->next_hash = web_pair_hash[hash];
+ p->next_list = web_pair_list;
+ p->smaller = web1;
+ p->larger = web2;
+ p->conflicts = conflicts;
+ p->cost = cost;
+ web_pair_hash[hash] = p;
+ web_pair_list = p;
+ num_web_pairs++;
+}
+
+/* Suitable to be passed to qsort(). Sort web pairs so, that those
+ with more conflicts and higher cost (which actually is a saving
+ when the moves are removed) come first. */
+
+static int
+comp_web_pairs (w1, w2)
+ const void *w1, *w2;
+{
+ struct web_pair *p1 = *(struct web_pair **)w1;
+ struct web_pair *p2 = *(struct web_pair **)w2;
+ if (p1->conflicts > p2->conflicts)
+ return -1;
+ else if (p1->conflicts < p2->conflicts)
+ return 1;
+ else if (p1->cost > p2->cost)
+ return -1;
+ else if (p1->cost < p2->cost)
+ return 1;
+ else
+ return 0;
+}
+
+/* Given the list of web pairs, begin to combine them from the one
+ with the most savings. */
+
+static void
+sort_and_combine_web_pairs (for_move)
+ int for_move;
+{
+ unsigned int i;
+ struct web_pair **sorted;
+ struct web_pair *p;
+ if (!num_web_pairs)
+ return;
+ sorted = (struct web_pair **) xmalloc (num_web_pairs * sizeof (sorted[0]));
+ for (p = web_pair_list, i = 0; p; p = p->next_list)
+ sorted[i++] = p;
+ if (i != num_web_pairs)
+ abort ();
+ qsort (sorted, num_web_pairs, sizeof (sorted[0]), comp_web_pairs);
+
+ /* After combining one pair, we actually should adjust the savings
+ of the other pairs, if they are connected to one of the just coalesced
+ pair. Later. */
+ for (i = 0; i < num_web_pairs; i++)
+ {
+ struct web *w1, *w2;
+ p = sorted[i];
+ w1 = alias (p->smaller);
+ w2 = alias (p->larger);
+ if (!for_move && (w1->type == PRECOLORED || w2->type == PRECOLORED))
+ continue;
+ else if (w2->type == PRECOLORED)
+ {
+ struct web *h = w1;
+ w1 = w2;
+ w2 = h;
+ }
+ if (w1 != w2
+ && !TEST_BIT (sup_igraph, w1->id * num_webs + w2->id)
+ && !TEST_BIT (sup_igraph, w2->id * num_webs + w1->id)
+ && w2->type != PRECOLORED
+ && hard_regs_intersect_p (&w1->usable_regs, &w2->usable_regs))
+ {
+ if (w1->type != PRECOLORED
+ || (w1->type == PRECOLORED && ok (w2, w1)))
+ combine (w1, w2);
+ else if (w1->type == PRECOLORED)
+ SET_HARD_REG_BIT (w2->prefer_colors, w1->color);
+ }
+ }
+ free (sorted);
+}
+
+/* Greedily coalesce all moves possible. Begin with the web pair
+ giving the most saving if coalesced. */
+
+static void
+aggressive_coalesce ()
+{
+ struct dlist *d;
+ struct move *m;
+ init_web_pairs ();
+ while ((d = pop_list (&mv_worklist)) != NULL)
+ if ((m = DLIST_MOVE (d)))
+ {
+ struct web *s = alias (m->source_web);
+ struct web *t = alias (m->target_web);
+ if (t->type == PRECOLORED)
+ {
+ struct web *h = s;
+ s = t;
+ t = h;
+ }
+ if (s != t
+ && t->type != PRECOLORED
+ && !TEST_BIT (sup_igraph, s->id * num_webs + t->id)
+ && !TEST_BIT (sup_igraph, t->id * num_webs + s->id))
+ {
+ if ((s->type == PRECOLORED && ok (t, s))
+ || s->type != PRECOLORED)
+ {
+ put_move (m, MV_COALESCED);
+ add_web_pair_cost (s, t, BLOCK_FOR_INSN (m->insn)->frequency,
+ 0);
+ }
+ else if (s->type == PRECOLORED)
+ /* It is !ok(t, s). But later when coloring the graph it might
+ be possible to take that color. So we remember the preferred
+ color to try that first. */
+ {
+ put_move (m, CONSTRAINED);
+ SET_HARD_REG_BIT (t->prefer_colors, s->color);
+ }
+ }
+ else
+ {
+ put_move (m, CONSTRAINED);
+ }
+ }
+ sort_and_combine_web_pairs (1);
+}
+
+/* This is the difference between optimistic coalescing and
+ optimistic coalescing+. Extended coalesce tries to coalesce also
+ non-conflicting nodes, not related by a move. The criteria here is,
+ the one web must be a source, the other a destination of the same insn.
+ This actually makes sense, as (because they are in the same insn) they
+ share many of their neighbors, and if they are coalesced, reduce the
+ number of conflicts of those neighbors by one. For this we sort the
+ candidate pairs again according to savings (and this time also conflict
+ number).
+
+ This is also a comparatively slow operation, as we need to go through
+ all insns, and for each insn, through all defs and uses. */
+
+static void
+extended_coalesce_2 ()
+{
+ rtx insn;
+ struct ra_insn_info info;
+ unsigned int n;
+ init_web_pairs ();
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ if (INSN_P (insn) && (info = insn_df[INSN_UID (insn)]).num_defs)
+ for (n = 0; n < info.num_defs; n++)
+ {
+ struct web *dest = def2web[DF_REF_ID (info.defs[n])];
+ dest = alias (find_web_for_subweb (dest));
+ if (dest->type != PRECOLORED && dest->regno < max_normal_pseudo)
+ {
+ unsigned int n2;
+ for (n2 = 0; n2 < info.num_uses; n2++)
+ {
+ struct web *source = use2web[DF_REF_ID (info.uses[n2])];
+ source = alias (find_web_for_subweb (source));
+ if (source->type != PRECOLORED
+ && source != dest
+ && source->regno < max_normal_pseudo
+ /* Coalesced webs end up using the same REG rtx in
+ emit_colors(). So we can only coalesce something
+ of equal modes. */
+ && GET_MODE (source->orig_x) == GET_MODE (dest->orig_x)
+ && !TEST_BIT (sup_igraph,
+ dest->id * num_webs + source->id)
+ && !TEST_BIT (sup_igraph,
+ source->id * num_webs + dest->id)
+ && hard_regs_intersect_p (&source->usable_regs,
+ &dest->usable_regs))
+ add_web_pair_cost (dest, source,
+ BLOCK_FOR_INSN (insn)->frequency,
+ dest->num_conflicts
+ + source->num_conflicts);
+ }
+ }
+ }
+ sort_and_combine_web_pairs (0);
+}
+
+/* Check if we forgot to coalesce some moves. */
+
+static void
+check_uncoalesced_moves ()
+{
+ struct move_list *ml;
+ struct move *m;
+ for (ml = wl_moves; ml; ml = ml->next)
+ if ((m = ml->move))
+ {
+ struct web *s = alias (m->source_web);
+ struct web *t = alias (m->target_web);
+ if (t->type == PRECOLORED)
+ {
+ struct web *h = s;
+ s = t;
+ t = h;
+ }
+ if (s != t
+ && m->type != CONSTRAINED
+ /* Following can happen when a move was coalesced, but later
+ broken up again. Then s!=t, but m is still MV_COALESCED. */
+ && m->type != MV_COALESCED
+ && t->type != PRECOLORED
+ && ((s->type == PRECOLORED && ok (t, s))
+ || s->type != PRECOLORED)
+ && !TEST_BIT (sup_igraph, s->id * num_webs + t->id)
+ && !TEST_BIT (sup_igraph, t->id * num_webs + s->id))
+ abort ();
+ }
+}
+
+/* The toplevel function in this file. Precondition is, that
+ the interference graph is built completely by ra-build.c. This
+ produces a list of spilled, colored and coalesced nodes. */
+
+void
+ra_colorize_graph (df)
+ struct df *df;
+{
+ if (rtl_dump_file)
+ dump_igraph (df);
+ build_worklists (df);
+
+ /* With optimistic coalescing we coalesce everything we can. */
+ if (flag_ra_optimistic_coalescing)
+ {
+ aggressive_coalesce ();
+ extended_coalesce_2 ();
+ }
+
+ /* Now build the select stack. */
+ do
+ {
+ simplify ();
+ if (mv_worklist)
+ coalesce ();
+ else if (WEBS(FREEZE))
+ freeze ();
+ else if (WEBS(SPILL))
+ select_spill ();
+ }
+ while (WEBS(SIMPLIFY) || WEBS(SIMPLIFY_FAT) || WEBS(SIMPLIFY_SPILL)
+ || mv_worklist || WEBS(FREEZE) || WEBS(SPILL));
+ if (flag_ra_optimistic_coalescing)
+ check_uncoalesced_moves ();
+
+ /* Actually colorize the webs from the select stack. */
+ assign_colors ();
+ check_colors ();
+ dump_graph_cost (DUMP_COSTS, "initially");
+ if (flag_ra_break_aliases)
+ break_coalesced_spills ();
+ check_colors ();
+
+ /* And try to improve the cost by recoloring spilled webs. */
+ recolor_spills ();
+ dump_graph_cost (DUMP_COSTS, "after spill-recolor");
+ check_colors ();
+}
+
+/* Initialize this module. */
+
+void ra_colorize_init ()
+{
+ /* FIXME: Choose spill heuristic for platform if we have one */
+ spill_heuristic = default_spill_heuristic;
+}
+
+/* Free all memory. (Note that we don't need to free any per pass
+ memory). */
+
+void
+ra_colorize_free_all ()
+{
+ struct dlist *d;
+ while ((d = pop_list (&WEBS(FREE))) != NULL)
+ put_web (DLIST_WEB (d), INITIAL);
+ while ((d = pop_list (&WEBS(INITIAL))) != NULL)
+ {
+ struct web *web =DLIST_WEB (d);
+ struct web *wnext;
+ web->orig_conflict_list = NULL;
+ web->conflict_list = NULL;
+ for (web = web->subreg_next; web; web = wnext)
+ {
+ wnext = web->subreg_next;
+ free (web);
+ }
+ free (DLIST_WEB (d));
+ }
+}
+
+/*
+vim:cinoptions={.5s,g0,p5,t0,(0,^-0.5s,n-0.5s:tw=78:cindent:sw=4:
+*/
OpenPOWER on IntegriCloud