summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/loop.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/gcc/loop.c')
-rw-r--r--contrib/gcc/loop.c10846
1 files changed, 0 insertions, 10846 deletions
diff --git a/contrib/gcc/loop.c b/contrib/gcc/loop.c
deleted file mode 100644
index fa74b8e..0000000
--- a/contrib/gcc/loop.c
+++ /dev/null
@@ -1,10846 +0,0 @@
-/* Perform various loop optimizations, including strength reduction.
- Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
- 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 2, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING. If not, write to the Free
-Software Foundation, 59 Temple Place - Suite 330, Boston, MA
-02111-1307, USA. */
-
-/* This is the loop optimization pass of the compiler.
- It finds invariant computations within loops and moves them
- to the beginning of the loop. Then it identifies basic and
- general induction variables.
-
- Basic induction variables (BIVs) are a pseudo registers which are set within
- a loop only by incrementing or decrementing its value. General induction
- variables (GIVs) are pseudo registers with a value which is a linear function
- of a basic induction variable. BIVs are recognized by `basic_induction_var';
- GIVs by `general_induction_var'.
-
- Once induction variables are identified, strength reduction is applied to the
- general induction variables, and induction variable elimination is applied to
- the basic induction variables.
-
- It also finds cases where
- a register is set within the loop by zero-extending a narrower value
- and changes these to zero the entire register once before the loop
- and merely copy the low part within the loop.
-
- Most of the complexity is in heuristics to decide when it is worth
- while to do these things. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "rtl.h"
-#include "tm_p.h"
-#include "function.h"
-#include "expr.h"
-#include "hard-reg-set.h"
-#include "basic-block.h"
-#include "insn-config.h"
-#include "regs.h"
-#include "recog.h"
-#include "flags.h"
-#include "real.h"
-#include "loop.h"
-#include "cselib.h"
-#include "except.h"
-#include "toplev.h"
-#include "predict.h"
-#include "insn-flags.h"
-#include "optabs.h"
-#include "cfgloop.h"
-#include "ggc.h"
-
-/* Not really meaningful values, but at least something. */
-#ifndef SIMULTANEOUS_PREFETCHES
-#define SIMULTANEOUS_PREFETCHES 3
-#endif
-#ifndef PREFETCH_BLOCK
-#define PREFETCH_BLOCK 32
-#endif
-#ifndef HAVE_prefetch
-#define HAVE_prefetch 0
-#define CODE_FOR_prefetch 0
-#define gen_prefetch(a,b,c) (abort(), NULL_RTX)
-#endif
-
-/* Give up the prefetch optimizations once we exceed a given threshold.
- It is unlikely that we would be able to optimize something in a loop
- with so many detected prefetches. */
-#define MAX_PREFETCHES 100
-/* The number of prefetch blocks that are beneficial to fetch at once before
- a loop with a known (and low) iteration count. */
-#define PREFETCH_BLOCKS_BEFORE_LOOP_MAX 6
-/* For very tiny loops it is not worthwhile to prefetch even before the loop,
- since it is likely that the data are already in the cache. */
-#define PREFETCH_BLOCKS_BEFORE_LOOP_MIN 2
-
-/* Parameterize some prefetch heuristics so they can be turned on and off
- easily for performance testing on new architectures. These can be
- defined in target-dependent files. */
-
-/* Prefetch is worthwhile only when loads/stores are dense. */
-#ifndef PREFETCH_ONLY_DENSE_MEM
-#define PREFETCH_ONLY_DENSE_MEM 1
-#endif
-
-/* Define what we mean by "dense" loads and stores; This value divided by 256
- is the minimum percentage of memory references that worth prefetching. */
-#ifndef PREFETCH_DENSE_MEM
-#define PREFETCH_DENSE_MEM 220
-#endif
-
-/* Do not prefetch for a loop whose iteration count is known to be low. */
-#ifndef PREFETCH_NO_LOW_LOOPCNT
-#define PREFETCH_NO_LOW_LOOPCNT 1
-#endif
-
-/* Define what we mean by a "low" iteration count. */
-#ifndef PREFETCH_LOW_LOOPCNT
-#define PREFETCH_LOW_LOOPCNT 32
-#endif
-
-/* Do not prefetch for a loop that contains a function call; such a loop is
- probably not an internal loop. */
-#ifndef PREFETCH_NO_CALL
-#define PREFETCH_NO_CALL 1
-#endif
-
-/* Do not prefetch accesses with an extreme stride. */
-#ifndef PREFETCH_NO_EXTREME_STRIDE
-#define PREFETCH_NO_EXTREME_STRIDE 1
-#endif
-
-/* Define what we mean by an "extreme" stride. */
-#ifndef PREFETCH_EXTREME_STRIDE
-#define PREFETCH_EXTREME_STRIDE 4096
-#endif
-
-/* Define a limit to how far apart indices can be and still be merged
- into a single prefetch. */
-#ifndef PREFETCH_EXTREME_DIFFERENCE
-#define PREFETCH_EXTREME_DIFFERENCE 4096
-#endif
-
-/* Issue prefetch instructions before the loop to fetch data to be used
- in the first few loop iterations. */
-#ifndef PREFETCH_BEFORE_LOOP
-#define PREFETCH_BEFORE_LOOP 1
-#endif
-
-/* Do not handle reversed order prefetches (negative stride). */
-#ifndef PREFETCH_NO_REVERSE_ORDER
-#define PREFETCH_NO_REVERSE_ORDER 1
-#endif
-
-/* Prefetch even if the GIV is in conditional code. */
-#ifndef PREFETCH_CONDITIONAL
-#define PREFETCH_CONDITIONAL 1
-#endif
-
-#define LOOP_REG_LIFETIME(LOOP, REGNO) \
-((REGNO_LAST_LUID (REGNO) - REGNO_FIRST_LUID (REGNO)))
-
-#define LOOP_REG_GLOBAL_P(LOOP, REGNO) \
-((REGNO_LAST_LUID (REGNO) > INSN_LUID ((LOOP)->end) \
- || REGNO_FIRST_LUID (REGNO) < INSN_LUID ((LOOP)->start)))
-
-#define LOOP_REGNO_NREGS(REGNO, SET_DEST) \
-((REGNO) < FIRST_PSEUDO_REGISTER \
- ? (int) HARD_REGNO_NREGS ((REGNO), GET_MODE (SET_DEST)) : 1)
-
-
-/* Vector mapping INSN_UIDs to luids.
- The luids are like uids but increase monotonically always.
- We use them to see whether a jump comes from outside a given loop. */
-
-int *uid_luid;
-
-/* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
- number the insn is contained in. */
-
-struct loop **uid_loop;
-
-/* 1 + largest uid of any insn. */
-
-int max_uid_for_loop;
-
-/* Number of loops detected in current function. Used as index to the
- next few tables. */
-
-static int max_loop_num;
-
-/* Bound on pseudo register number before loop optimization.
- A pseudo has valid regscan info if its number is < max_reg_before_loop. */
-unsigned int max_reg_before_loop;
-
-/* The value to pass to the next call of reg_scan_update. */
-static int loop_max_reg;
-
-/* During the analysis of a loop, a chain of `struct movable's
- is made to record all the movable insns found.
- Then the entire chain can be scanned to decide which to move. */
-
-struct movable
-{
- rtx insn; /* A movable insn */
- rtx set_src; /* The expression this reg is set from. */
- rtx set_dest; /* The destination of this SET. */
- rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
- of any registers used within the LIBCALL. */
- int consec; /* Number of consecutive following insns
- that must be moved with this one. */
- unsigned int regno; /* The register it sets */
- short lifetime; /* lifetime of that register;
- may be adjusted when matching movables
- that load the same value are found. */
- short savings; /* Number of insns we can move for this reg,
- including other movables that force this
- or match this one. */
- ENUM_BITFIELD(machine_mode) savemode : 8; /* Nonzero means it is a mode for
- a low part that we should avoid changing when
- clearing the rest of the reg. */
- unsigned int cond : 1; /* 1 if only conditionally movable */
- unsigned int force : 1; /* 1 means MUST move this insn */
- unsigned int global : 1; /* 1 means reg is live outside this loop */
- /* If PARTIAL is 1, GLOBAL means something different:
- that the reg is live outside the range from where it is set
- to the following label. */
- unsigned int done : 1; /* 1 inhibits further processing of this */
-
- unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
- In particular, moving it does not make it
- invariant. */
- unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
- load SRC, rather than copying INSN. */
- unsigned int move_insn_first:1;/* Same as above, if this is necessary for the
- first insn of a consecutive sets group. */
- unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
- unsigned int insert_temp : 1; /* 1 means we copy to a new pseudo and replace
- the original insn with a copy from that
- pseudo, rather than deleting it. */
- struct movable *match; /* First entry for same value */
- struct movable *forces; /* An insn that must be moved if this is */
- struct movable *next;
-};
-
-
-FILE *loop_dump_stream;
-
-/* Forward declarations. */
-
-static void invalidate_loops_containing_label (rtx);
-static void find_and_verify_loops (rtx, struct loops *);
-static void mark_loop_jump (rtx, struct loop *);
-static void prescan_loop (struct loop *);
-static int reg_in_basic_block_p (rtx, rtx);
-static int consec_sets_invariant_p (const struct loop *, rtx, int, rtx);
-static int labels_in_range_p (rtx, int);
-static void count_one_set (struct loop_regs *, rtx, rtx, rtx *);
-static void note_addr_stored (rtx, rtx, void *);
-static void note_set_pseudo_multiple_uses (rtx, rtx, void *);
-static int loop_reg_used_before_p (const struct loop *, rtx, rtx);
-static rtx find_regs_nested (rtx, rtx);
-static void scan_loop (struct loop*, int);
-#if 0
-static void replace_call_address (rtx, rtx, rtx);
-#endif
-static rtx skip_consec_insns (rtx, int);
-static int libcall_benefit (rtx);
-static void ignore_some_movables (struct loop_movables *);
-static void force_movables (struct loop_movables *);
-static void combine_movables (struct loop_movables *, struct loop_regs *);
-static int num_unmoved_movables (const struct loop *);
-static int regs_match_p (rtx, rtx, struct loop_movables *);
-static int rtx_equal_for_loop_p (rtx, rtx, struct loop_movables *,
- struct loop_regs *);
-static void add_label_notes (rtx, rtx);
-static void move_movables (struct loop *loop, struct loop_movables *, int,
- int);
-static void loop_movables_add (struct loop_movables *, struct movable *);
-static void loop_movables_free (struct loop_movables *);
-static int count_nonfixed_reads (const struct loop *, rtx);
-static void loop_bivs_find (struct loop *);
-static void loop_bivs_init_find (struct loop *);
-static void loop_bivs_check (struct loop *);
-static void loop_givs_find (struct loop *);
-static void loop_givs_check (struct loop *);
-static int loop_biv_eliminable_p (struct loop *, struct iv_class *, int, int);
-static int loop_giv_reduce_benefit (struct loop *, struct iv_class *,
- struct induction *, rtx);
-static void loop_givs_dead_check (struct loop *, struct iv_class *);
-static void loop_givs_reduce (struct loop *, struct iv_class *);
-static void loop_givs_rescan (struct loop *, struct iv_class *, rtx *);
-static void loop_ivs_free (struct loop *);
-static void strength_reduce (struct loop *, int);
-static void find_single_use_in_loop (struct loop_regs *, rtx, rtx);
-static int valid_initial_value_p (rtx, rtx, int, rtx);
-static void find_mem_givs (const struct loop *, rtx, rtx, int, int);
-static void record_biv (struct loop *, struct induction *, rtx, rtx, rtx,
- rtx, rtx *, int, int);
-static void check_final_value (const struct loop *, struct induction *);
-static void loop_ivs_dump (const struct loop *, FILE *, int);
-static void loop_iv_class_dump (const struct iv_class *, FILE *, int);
-static void loop_biv_dump (const struct induction *, FILE *, int);
-static void loop_giv_dump (const struct induction *, FILE *, int);
-static void record_giv (const struct loop *, struct induction *, rtx, rtx,
- rtx, rtx, rtx, rtx, int, enum g_types, int, int,
- rtx *);
-static void update_giv_derive (const struct loop *, rtx);
-static HOST_WIDE_INT get_monotonic_increment (struct iv_class *);
-static bool biased_biv_fits_mode_p (const struct loop *, struct iv_class *,
- HOST_WIDE_INT, enum machine_mode,
- unsigned HOST_WIDE_INT);
-static bool biv_fits_mode_p (const struct loop *, struct iv_class *,
- HOST_WIDE_INT, enum machine_mode, bool);
-static bool extension_within_bounds_p (const struct loop *, struct iv_class *,
- HOST_WIDE_INT, rtx);
-static void check_ext_dependent_givs (const struct loop *, struct iv_class *);
-static int basic_induction_var (const struct loop *, rtx, enum machine_mode,
- rtx, rtx, rtx *, rtx *, rtx **);
-static rtx simplify_giv_expr (const struct loop *, rtx, rtx *, int *);
-static int general_induction_var (const struct loop *loop, rtx, rtx *, rtx *,
- rtx *, rtx *, int, int *, enum machine_mode);
-static int consec_sets_giv (const struct loop *, int, rtx, rtx, rtx, rtx *,
- rtx *, rtx *, rtx *);
-static int check_dbra_loop (struct loop *, int);
-static rtx express_from_1 (rtx, rtx, rtx);
-static rtx combine_givs_p (struct induction *, struct induction *);
-static int cmp_combine_givs_stats (const void *, const void *);
-static void combine_givs (struct loop_regs *, struct iv_class *);
-static int product_cheap_p (rtx, rtx);
-static int maybe_eliminate_biv (const struct loop *, struct iv_class *, int,
- int, int);
-static int maybe_eliminate_biv_1 (const struct loop *, rtx, rtx,
- struct iv_class *, int, basic_block, rtx);
-static int last_use_this_basic_block (rtx, rtx);
-static void record_initial (rtx, rtx, void *);
-static void update_reg_last_use (rtx, rtx);
-static rtx next_insn_in_loop (const struct loop *, rtx);
-static void loop_regs_scan (const struct loop *, int);
-static int count_insns_in_loop (const struct loop *);
-static int find_mem_in_note_1 (rtx *, void *);
-static rtx find_mem_in_note (rtx);
-static void load_mems (const struct loop *);
-static int insert_loop_mem (rtx *, void *);
-static int replace_loop_mem (rtx *, void *);
-static void replace_loop_mems (rtx, rtx, rtx, int);
-static int replace_loop_reg (rtx *, void *);
-static void replace_loop_regs (rtx insn, rtx, rtx);
-static void note_reg_stored (rtx, rtx, void *);
-static void try_copy_prop (const struct loop *, rtx, unsigned int);
-static void try_swap_copy_prop (const struct loop *, rtx, unsigned int);
-static rtx check_insn_for_givs (struct loop *, rtx, int, int);
-static rtx check_insn_for_bivs (struct loop *, rtx, int, int);
-static rtx gen_add_mult (rtx, rtx, rtx, rtx);
-static void loop_regs_update (const struct loop *, rtx);
-static int iv_add_mult_cost (rtx, rtx, rtx, rtx);
-
-static rtx loop_insn_emit_after (const struct loop *, basic_block, rtx, rtx);
-static rtx loop_call_insn_emit_before (const struct loop *, basic_block,
- rtx, rtx);
-static rtx loop_call_insn_hoist (const struct loop *, rtx);
-static rtx loop_insn_sink_or_swim (const struct loop *, rtx);
-
-static void loop_dump_aux (const struct loop *, FILE *, int);
-static void loop_delete_insns (rtx, rtx);
-static HOST_WIDE_INT remove_constant_addition (rtx *);
-static rtx gen_load_of_final_value (rtx, rtx);
-void debug_ivs (const struct loop *);
-void debug_iv_class (const struct iv_class *);
-void debug_biv (const struct induction *);
-void debug_giv (const struct induction *);
-void debug_loop (const struct loop *);
-void debug_loops (const struct loops *);
-
-typedef struct loop_replace_args
-{
- rtx match;
- rtx replacement;
- rtx insn;
-} loop_replace_args;
-
-/* Nonzero iff INSN is between START and END, inclusive. */
-#define INSN_IN_RANGE_P(INSN, START, END) \
- (INSN_UID (INSN) < max_uid_for_loop \
- && INSN_LUID (INSN) >= INSN_LUID (START) \
- && INSN_LUID (INSN) <= INSN_LUID (END))
-
-/* Indirect_jump_in_function is computed once per function. */
-static int indirect_jump_in_function;
-static int indirect_jump_in_function_p (rtx);
-
-static int compute_luids (rtx, rtx, int);
-
-static int biv_elimination_giv_has_0_offset (struct induction *,
- struct induction *, rtx);
-
-/* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
- copy the value of the strength reduced giv to its original register. */
-static int copy_cost;
-
-/* Cost of using a register, to normalize the benefits of a giv. */
-static int reg_address_cost;
-
-void
-init_loop (void)
-{
- rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
-
- reg_address_cost = address_cost (reg, SImode);
-
- copy_cost = COSTS_N_INSNS (1);
-}
-
-/* Compute the mapping from uids to luids.
- LUIDs are numbers assigned to insns, like uids,
- except that luids increase monotonically through the code.
- Start at insn START and stop just before END. Assign LUIDs
- starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
-static int
-compute_luids (rtx start, rtx end, int prev_luid)
-{
- int i;
- rtx insn;
-
- for (insn = start, i = prev_luid; insn != end; insn = NEXT_INSN (insn))
- {
- if (INSN_UID (insn) >= max_uid_for_loop)
- continue;
- /* Don't assign luids to line-number NOTEs, so that the distance in
- luids between two insns is not affected by -g. */
- if (GET_CODE (insn) != NOTE
- || NOTE_LINE_NUMBER (insn) <= 0)
- uid_luid[INSN_UID (insn)] = ++i;
- else
- /* Give a line number note the same luid as preceding insn. */
- uid_luid[INSN_UID (insn)] = i;
- }
- return i + 1;
-}
-
-/* Entry point of this file. Perform loop optimization
- on the current function. F is the first insn of the function
- and DUMPFILE is a stream for output of a trace of actions taken
- (or 0 if none should be output). */
-
-void
-loop_optimize (rtx f, FILE *dumpfile, int flags)
-{
- rtx insn;
- int i;
- struct loops loops_data;
- struct loops *loops = &loops_data;
- struct loop_info *loops_info;
-
- loop_dump_stream = dumpfile;
-
- init_recog_no_volatile ();
-
- max_reg_before_loop = max_reg_num ();
- loop_max_reg = max_reg_before_loop;
-
- regs_may_share = 0;
-
- /* Count the number of loops. */
-
- max_loop_num = 0;
- for (insn = f; insn; insn = NEXT_INSN (insn))
- {
- if (GET_CODE (insn) == NOTE
- && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
- max_loop_num++;
- }
-
- /* Don't waste time if no loops. */
- if (max_loop_num == 0)
- return;
-
- loops->num = max_loop_num;
-
- /* Get size to use for tables indexed by uids.
- Leave some space for labels allocated by find_and_verify_loops. */
- max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
-
- uid_luid = xcalloc (max_uid_for_loop, sizeof (int));
- uid_loop = xcalloc (max_uid_for_loop, sizeof (struct loop *));
-
- /* Allocate storage for array of loops. */
- loops->array = xcalloc (loops->num, sizeof (struct loop));
-
- /* Find and process each loop.
- First, find them, and record them in order of their beginnings. */
- find_and_verify_loops (f, loops);
-
- /* Allocate and initialize auxiliary loop information. */
- loops_info = xcalloc (loops->num, sizeof (struct loop_info));
- for (i = 0; i < (int) loops->num; i++)
- loops->array[i].aux = loops_info + i;
-
- /* Now find all register lifetimes. This must be done after
- find_and_verify_loops, because it might reorder the insns in the
- function. */
- reg_scan (f, max_reg_before_loop, 1);
-
- /* This must occur after reg_scan so that registers created by gcse
- will have entries in the register tables.
-
- We could have added a call to reg_scan after gcse_main in toplev.c,
- but moving this call to init_alias_analysis is more efficient. */
- init_alias_analysis ();
-
- /* See if we went too far. Note that get_max_uid already returns
- one more that the maximum uid of all insn. */
- if (get_max_uid () > max_uid_for_loop)
- abort ();
- /* Now reset it to the actual size we need. See above. */
- max_uid_for_loop = get_max_uid ();
-
- /* find_and_verify_loops has already called compute_luids, but it
- might have rearranged code afterwards, so we need to recompute
- the luids now. */
- compute_luids (f, NULL_RTX, 0);
-
- /* Don't leave gaps in uid_luid for insns that have been
- deleted. It is possible that the first or last insn
- using some register has been deleted by cross-jumping.
- Make sure that uid_luid for that former insn's uid
- points to the general area where that insn used to be. */
- for (i = 0; i < max_uid_for_loop; i++)
- {
- uid_luid[0] = uid_luid[i];
- if (uid_luid[0] != 0)
- break;
- }
- for (i = 0; i < max_uid_for_loop; i++)
- if (uid_luid[i] == 0)
- uid_luid[i] = uid_luid[i - 1];
-
- /* Determine if the function has indirect jump. On some systems
- this prevents low overhead loop instructions from being used. */
- indirect_jump_in_function = indirect_jump_in_function_p (f);
-
- /* Now scan the loops, last ones first, since this means inner ones are done
- before outer ones. */
- for (i = max_loop_num - 1; i >= 0; i--)
- {
- struct loop *loop = &loops->array[i];
-
- if (! loop->invalid && loop->end)
- {
- scan_loop (loop, flags);
- ggc_collect ();
- }
- }
-
- end_alias_analysis ();
-
- /* Clean up. */
- for (i = 0; i < (int) loops->num; i++)
- free (loops_info[i].mems);
-
- free (uid_luid);
- free (uid_loop);
- free (loops_info);
- free (loops->array);
-}
-
-/* Returns the next insn, in execution order, after INSN. START and
- END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
- respectively. LOOP->TOP, if non-NULL, is the top of the loop in the
- insn-stream; it is used with loops that are entered near the
- bottom. */
-
-static rtx
-next_insn_in_loop (const struct loop *loop, rtx insn)
-{
- insn = NEXT_INSN (insn);
-
- if (insn == loop->end)
- {
- if (loop->top)
- /* Go to the top of the loop, and continue there. */
- insn = loop->top;
- else
- /* We're done. */
- insn = NULL_RTX;
- }
-
- if (insn == loop->scan_start)
- /* We're done. */
- insn = NULL_RTX;
-
- return insn;
-}
-
-/* Find any register references hidden inside X and add them to
- the dependency list DEPS. This is used to look inside CLOBBER (MEM
- when checking whether a PARALLEL can be pulled out of a loop. */
-
-static rtx
-find_regs_nested (rtx deps, rtx x)
-{
- enum rtx_code code = GET_CODE (x);
- if (code == REG)
- deps = gen_rtx_EXPR_LIST (VOIDmode, x, deps);
- else
- {
- const char *fmt = GET_RTX_FORMAT (code);
- int i, j;
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- deps = find_regs_nested (deps, XEXP (x, i));
- else if (fmt[i] == 'E')
- for (j = 0; j < XVECLEN (x, i); j++)
- deps = find_regs_nested (deps, XVECEXP (x, i, j));
- }
- }
- return deps;
-}
-
-/* Optimize one loop described by LOOP. */
-
-/* ??? Could also move memory writes out of loops if the destination address
- is invariant, the source is invariant, the memory write is not volatile,
- and if we can prove that no read inside the loop can read this address
- before the write occurs. If there is a read of this address after the
- write, then we can also mark the memory read as invariant. */
-
-static void
-scan_loop (struct loop *loop, int flags)
-{
- struct loop_info *loop_info = LOOP_INFO (loop);
- struct loop_regs *regs = LOOP_REGS (loop);
- int i;
- rtx loop_start = loop->start;
- rtx loop_end = loop->end;
- rtx p;
- /* 1 if we are scanning insns that could be executed zero times. */
- int maybe_never = 0;
- /* 1 if we are scanning insns that might never be executed
- due to a subroutine call which might exit before they are reached. */
- int call_passed = 0;
- /* Number of insns in the loop. */
- int insn_count;
- int tem;
- rtx temp, update_start, update_end;
- /* The SET from an insn, if it is the only SET in the insn. */
- rtx set, set1;
- /* Chain describing insns movable in current loop. */
- struct loop_movables *movables = LOOP_MOVABLES (loop);
- /* Ratio of extra register life span we can justify
- for saving an instruction. More if loop doesn't call subroutines
- since in that case saving an insn makes more difference
- and more registers are available. */
- int threshold;
- /* Nonzero if we are scanning instructions in a sub-loop. */
- int loop_depth = 0;
- int in_libcall;
-
- loop->top = 0;
-
- movables->head = 0;
- movables->last = 0;
-
- /* Determine whether this loop starts with a jump down to a test at
- the end. This will occur for a small number of loops with a test
- that is too complex to duplicate in front of the loop.
-
- We search for the first insn or label in the loop, skipping NOTEs.
- However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
- (because we might have a loop executed only once that contains a
- loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
- (in case we have a degenerate loop).
-
- Note that if we mistakenly think that a loop is entered at the top
- when, in fact, it is entered at the exit test, the only effect will be
- slightly poorer optimization. Making the opposite error can generate
- incorrect code. Since very few loops now start with a jump to the
- exit test, the code here to detect that case is very conservative. */
-
- for (p = NEXT_INSN (loop_start);
- p != loop_end
- && GET_CODE (p) != CODE_LABEL && ! INSN_P (p)
- && (GET_CODE (p) != NOTE
- || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
- && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
- p = NEXT_INSN (p))
- ;
-
- loop->scan_start = p;
-
- /* If loop end is the end of the current function, then emit a
- NOTE_INSN_DELETED after loop_end and set loop->sink to the dummy
- note insn. This is the position we use when sinking insns out of
- the loop. */
- if (NEXT_INSN (loop->end) != 0)
- loop->sink = NEXT_INSN (loop->end);
- else
- loop->sink = emit_note_after (NOTE_INSN_DELETED, loop->end);
-
- /* Set up variables describing this loop. */
- prescan_loop (loop);
- threshold = (loop_info->has_call ? 1 : 2) * (1 + n_non_fixed_regs);
-
- /* If loop has a jump before the first label,
- the true entry is the target of that jump.
- Start scan from there.
- But record in LOOP->TOP the place where the end-test jumps
- back to so we can scan that after the end of the loop. */
- if (GET_CODE (p) == JUMP_INSN
- /* Loop entry must be unconditional jump (and not a RETURN) */
- && any_uncondjump_p (p)
- && JUMP_LABEL (p) != 0
- /* Check to see whether the jump actually
- jumps out of the loop (meaning it's no loop).
- This case can happen for things like
- do {..} while (0). If this label was generated previously
- by loop, we can't tell anything about it and have to reject
- the loop. */
- && INSN_IN_RANGE_P (JUMP_LABEL (p), loop_start, loop_end))
- {
- loop->top = next_label (loop->scan_start);
- loop->scan_start = JUMP_LABEL (p);
- }
-
- /* If LOOP->SCAN_START was an insn created by loop, we don't know its luid
- as required by loop_reg_used_before_p. So skip such loops. (This
- test may never be true, but it's best to play it safe.)
-
- Also, skip loops where we do not start scanning at a label. This
- test also rejects loops starting with a JUMP_INSN that failed the
- test above. */
-
- if (INSN_UID (loop->scan_start) >= max_uid_for_loop
- || GET_CODE (loop->scan_start) != CODE_LABEL)
- {
- if (loop_dump_stream)
- fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
- INSN_UID (loop_start), INSN_UID (loop_end));
- return;
- }
-
- /* Allocate extra space for REGs that might be created by load_mems.
- We allocate a little extra slop as well, in the hopes that we
- won't have to reallocate the regs array. */
- loop_regs_scan (loop, loop_info->mems_idx + 16);
- insn_count = count_insns_in_loop (loop);
-
- if (loop_dump_stream)
- {
- fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
- INSN_UID (loop_start), INSN_UID (loop_end), insn_count);
- if (loop->cont)
- fprintf (loop_dump_stream, "Continue at insn %d.\n",
- INSN_UID (loop->cont));
- }
-
- /* Scan through the loop finding insns that are safe to move.
- Set REGS->ARRAY[I].SET_IN_LOOP negative for the reg I being set, so that
- this reg will be considered invariant for subsequent insns.
- We consider whether subsequent insns use the reg
- in deciding whether it is worth actually moving.
-
- MAYBE_NEVER is nonzero if we have passed a conditional jump insn
- and therefore it is possible that the insns we are scanning
- would never be executed. At such times, we must make sure
- that it is safe to execute the insn once instead of zero times.
- When MAYBE_NEVER is 0, all insns will be executed at least once
- so that is not a problem. */
-
- for (in_libcall = 0, p = next_insn_in_loop (loop, loop->scan_start);
- p != NULL_RTX;
- p = next_insn_in_loop (loop, p))
- {
- if (in_libcall && INSN_P (p) && find_reg_note (p, REG_RETVAL, NULL_RTX))
- in_libcall--;
- if (GET_CODE (p) == INSN)
- {
- /* Do not scan past an optimization barrier. */
- if (GET_CODE (PATTERN (p)) == ASM_INPUT)
- break;
- temp = find_reg_note (p, REG_LIBCALL, NULL_RTX);
- if (temp)
- in_libcall++;
- if (! in_libcall
- && (set = single_set (p))
- && GET_CODE (SET_DEST (set)) == REG
-#ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
- && SET_DEST (set) != pic_offset_table_rtx
-#endif
- && ! regs->array[REGNO (SET_DEST (set))].may_not_optimize)
- {
- int tem1 = 0;
- int tem2 = 0;
- int move_insn = 0;
- int insert_temp = 0;
- rtx src = SET_SRC (set);
- rtx dependencies = 0;
-
- /* Figure out what to use as a source of this insn. If a
- REG_EQUIV note is given or if a REG_EQUAL note with a
- constant operand is specified, use it as the source and
- mark that we should move this insn by calling
- emit_move_insn rather that duplicating the insn.
-
- Otherwise, only use the REG_EQUAL contents if a REG_RETVAL
- note is present. */
- temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
- if (temp)
- src = XEXP (temp, 0), move_insn = 1;
- else
- {
- temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
- if (temp && CONSTANT_P (XEXP (temp, 0)))
- src = XEXP (temp, 0), move_insn = 1;
- if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
- {
- src = XEXP (temp, 0);
- /* A libcall block can use regs that don't appear in
- the equivalent expression. To move the libcall,
- we must move those regs too. */
- dependencies = libcall_other_reg (p, src);
- }
- }
-
- /* For parallels, add any possible uses to the dependencies, as
- we can't move the insn without resolving them first.
- MEMs inside CLOBBERs may also reference registers; these
- count as implicit uses. */
- if (GET_CODE (PATTERN (p)) == PARALLEL)
- {
- for (i = 0; i < XVECLEN (PATTERN (p), 0); i++)
- {
- rtx x = XVECEXP (PATTERN (p), 0, i);
- if (GET_CODE (x) == USE)
- dependencies
- = gen_rtx_EXPR_LIST (VOIDmode, XEXP (x, 0),
- dependencies);
- else if (GET_CODE (x) == CLOBBER
- && GET_CODE (XEXP (x, 0)) == MEM)
- dependencies = find_regs_nested (dependencies,
- XEXP (XEXP (x, 0), 0));
- }
- }
-
- if (/* The register is used in basic blocks other
- than the one where it is set (meaning that
- something after this point in the loop might
- depend on its value before the set). */
- ! reg_in_basic_block_p (p, SET_DEST (set))
- /* And the set is not guaranteed to be executed once
- the loop starts, or the value before the set is
- needed before the set occurs...
-
- ??? Note we have quadratic behavior here, mitigated
- by the fact that the previous test will often fail for
- large loops. Rather than re-scanning the entire loop
- each time for register usage, we should build tables
- of the register usage and use them here instead. */
- && (maybe_never
- || loop_reg_used_before_p (loop, set, p)))
- /* It is unsafe to move the set. However, it may be OK to
- move the source into a new pseudo, and substitute a
- reg-to-reg copy for the original insn.
-
- This code used to consider it OK to move a set of a variable
- which was not created by the user and not used in an exit
- test.
- That behavior is incorrect and was removed. */
- insert_temp = 1;
-
- /* Don't try to optimize a MODE_CC set with a constant
- source. It probably will be combined with a conditional
- jump. */
- if (GET_MODE_CLASS (GET_MODE (SET_DEST (set))) == MODE_CC
- && CONSTANT_P (src))
- ;
- /* Don't try to optimize a register that was made
- by loop-optimization for an inner loop.
- We don't know its life-span, so we can't compute
- the benefit. */
- else if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
- ;
- /* Don't move the source and add a reg-to-reg copy:
- - with -Os (this certainly increases size),
- - if the mode doesn't support copy operations (obviously),
- - if the source is already a reg (the motion will gain nothing),
- - if the source is a legitimate constant (likewise). */
- else if (insert_temp
- && (optimize_size
- || ! can_copy_p (GET_MODE (SET_SRC (set)))
- || GET_CODE (SET_SRC (set)) == REG
- || (CONSTANT_P (SET_SRC (set))
- && LEGITIMATE_CONSTANT_P (SET_SRC (set)))))
- ;
- else if ((tem = loop_invariant_p (loop, src))
- && (dependencies == 0
- || (tem2
- = loop_invariant_p (loop, dependencies)) != 0)
- && (regs->array[REGNO (SET_DEST (set))].set_in_loop == 1
- || (tem1
- = consec_sets_invariant_p
- (loop, SET_DEST (set),
- regs->array[REGNO (SET_DEST (set))].set_in_loop,
- p)))
- /* If the insn can cause a trap (such as divide by zero),
- can't move it unless it's guaranteed to be executed
- once loop is entered. Even a function call might
- prevent the trap insn from being reached
- (since it might exit!) */
- && ! ((maybe_never || call_passed)
- && may_trap_p (src)))
- {
- struct movable *m;
- int regno = REGNO (SET_DEST (set));
-
- /* A potential lossage is where we have a case where two insns
- can be combined as long as they are both in the loop, but
- we move one of them outside the loop. For large loops,
- this can lose. The most common case of this is the address
- of a function being called.
-
- Therefore, if this register is marked as being used
- exactly once if we are in a loop with calls
- (a "large loop"), see if we can replace the usage of
- this register with the source of this SET. If we can,
- delete this insn.
-
- Don't do this if P has a REG_RETVAL note or if we have
- SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
-
- if (loop_info->has_call
- && regs->array[regno].single_usage != 0
- && regs->array[regno].single_usage != const0_rtx
- && REGNO_FIRST_UID (regno) == INSN_UID (p)
- && (REGNO_LAST_UID (regno)
- == INSN_UID (regs->array[regno].single_usage))
- && regs->array[regno].set_in_loop == 1
- && GET_CODE (SET_SRC (set)) != ASM_OPERANDS
- && ! side_effects_p (SET_SRC (set))
- && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
- && (! SMALL_REGISTER_CLASSES
- || (! (GET_CODE (SET_SRC (set)) == REG
- && (REGNO (SET_SRC (set))
- < FIRST_PSEUDO_REGISTER))))
- && regno >= FIRST_PSEUDO_REGISTER
- /* This test is not redundant; SET_SRC (set) might be
- a call-clobbered register and the life of REGNO
- might span a call. */
- && ! modified_between_p (SET_SRC (set), p,
- regs->array[regno].single_usage)
- && no_labels_between_p (p,
- regs->array[regno].single_usage)
- && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
- regs->array[regno].single_usage))
- {
- /* Replace any usage in a REG_EQUAL note. Must copy
- the new source, so that we don't get rtx sharing
- between the SET_SOURCE and REG_NOTES of insn p. */
- REG_NOTES (regs->array[regno].single_usage)
- = (replace_rtx
- (REG_NOTES (regs->array[regno].single_usage),
- SET_DEST (set), copy_rtx (SET_SRC (set))));
-
- delete_insn (p);
- for (i = 0; i < LOOP_REGNO_NREGS (regno, SET_DEST (set));
- i++)
- regs->array[regno+i].set_in_loop = 0;
- continue;
- }
-
- m = xmalloc (sizeof (struct movable));
- m->next = 0;
- m->insn = p;
- m->set_src = src;
- m->dependencies = dependencies;
- m->set_dest = SET_DEST (set);
- m->force = 0;
- m->consec
- = regs->array[REGNO (SET_DEST (set))].set_in_loop - 1;
- m->done = 0;
- m->forces = 0;
- m->partial = 0;
- m->move_insn = move_insn;
- m->move_insn_first = 0;
- m->insert_temp = insert_temp;
- m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
- m->savemode = VOIDmode;
- m->regno = regno;
- /* Set M->cond if either loop_invariant_p
- or consec_sets_invariant_p returned 2
- (only conditionally invariant). */
- m->cond = ((tem | tem1 | tem2) > 1);
- m->global = LOOP_REG_GLOBAL_P (loop, regno);
- m->match = 0;
- m->lifetime = LOOP_REG_LIFETIME (loop, regno);
- m->savings = regs->array[regno].n_times_set;
- if (find_reg_note (p, REG_RETVAL, NULL_RTX))
- m->savings += libcall_benefit (p);
- for (i = 0; i < LOOP_REGNO_NREGS (regno, SET_DEST (set)); i++)
- regs->array[regno+i].set_in_loop = move_insn ? -2 : -1;
- /* Add M to the end of the chain MOVABLES. */
- loop_movables_add (movables, m);
-
- if (m->consec > 0)
- {
- /* It is possible for the first instruction to have a
- REG_EQUAL note but a non-invariant SET_SRC, so we must
- remember the status of the first instruction in case
- the last instruction doesn't have a REG_EQUAL note. */
- m->move_insn_first = m->move_insn;
-
- /* Skip this insn, not checking REG_LIBCALL notes. */
- p = next_nonnote_insn (p);
- /* Skip the consecutive insns, if there are any. */
- p = skip_consec_insns (p, m->consec);
- /* Back up to the last insn of the consecutive group. */
- p = prev_nonnote_insn (p);
-
- /* We must now reset m->move_insn, m->is_equiv, and
- possibly m->set_src to correspond to the effects of
- all the insns. */
- temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
- if (temp)
- m->set_src = XEXP (temp, 0), m->move_insn = 1;
- else
- {
- temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
- if (temp && CONSTANT_P (XEXP (temp, 0)))
- m->set_src = XEXP (temp, 0), m->move_insn = 1;
- else
- m->move_insn = 0;
-
- }
- m->is_equiv
- = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
- }
- }
- /* If this register is always set within a STRICT_LOW_PART
- or set to zero, then its high bytes are constant.
- So clear them outside the loop and within the loop
- just load the low bytes.
- We must check that the machine has an instruction to do so.
- Also, if the value loaded into the register
- depends on the same register, this cannot be done. */
- else if (SET_SRC (set) == const0_rtx
- && GET_CODE (NEXT_INSN (p)) == INSN
- && (set1 = single_set (NEXT_INSN (p)))
- && GET_CODE (set1) == SET
- && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
- && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
- && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
- == SET_DEST (set))
- && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
- {
- int regno = REGNO (SET_DEST (set));
- if (regs->array[regno].set_in_loop == 2)
- {
- struct movable *m;
- m = xmalloc (sizeof (struct movable));
- m->next = 0;
- m->insn = p;
- m->set_dest = SET_DEST (set);
- m->dependencies = 0;
- m->force = 0;
- m->consec = 0;
- m->done = 0;
- m->forces = 0;
- m->move_insn = 0;
- m->move_insn_first = 0;
- m->insert_temp = insert_temp;
- m->partial = 1;
- /* If the insn may not be executed on some cycles,
- we can't clear the whole reg; clear just high part.
- Not even if the reg is used only within this loop.
- Consider this:
- while (1)
- while (s != t) {
- if (foo ()) x = *s;
- use (x);
- }
- Clearing x before the inner loop could clobber a value
- being saved from the last time around the outer loop.
- However, if the reg is not used outside this loop
- and all uses of the register are in the same
- basic block as the store, there is no problem.
-
- If this insn was made by loop, we don't know its
- INSN_LUID and hence must make a conservative
- assumption. */
- m->global = (INSN_UID (p) >= max_uid_for_loop
- || LOOP_REG_GLOBAL_P (loop, regno)
- || (labels_in_range_p
- (p, REGNO_FIRST_LUID (regno))));
- if (maybe_never && m->global)
- m->savemode = GET_MODE (SET_SRC (set1));
- else
- m->savemode = VOIDmode;
- m->regno = regno;
- m->cond = 0;
- m->match = 0;
- m->lifetime = LOOP_REG_LIFETIME (loop, regno);
- m->savings = 1;
- for (i = 0;
- i < LOOP_REGNO_NREGS (regno, SET_DEST (set));
- i++)
- regs->array[regno+i].set_in_loop = -1;
- /* Add M to the end of the chain MOVABLES. */
- loop_movables_add (movables, m);
- }
- }
- }
- }
- /* Past a call insn, we get to insns which might not be executed
- because the call might exit. This matters for insns that trap.
- Constant and pure call insns always return, so they don't count. */
- else if (GET_CODE (p) == CALL_INSN && ! CONST_OR_PURE_CALL_P (p))
- call_passed = 1;
- /* Past a label or a jump, we get to insns for which we
- can't count on whether or how many times they will be
- executed during each iteration. Therefore, we can
- only move out sets of trivial variables
- (those not used after the loop). */
- /* Similar code appears twice in strength_reduce. */
- else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
- /* If we enter the loop in the middle, and scan around to the
- beginning, don't set maybe_never for that. This must be an
- unconditional jump, otherwise the code at the top of the
- loop might never be executed. Unconditional jumps are
- followed by a barrier then the loop_end. */
- && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop->top
- && NEXT_INSN (NEXT_INSN (p)) == loop_end
- && any_uncondjump_p (p)))
- maybe_never = 1;
- else if (GET_CODE (p) == NOTE)
- {
- /* At the virtual top of a converted loop, insns are again known to
- be executed: logically, the loop begins here even though the exit
- code has been duplicated. */
- if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
- maybe_never = call_passed = 0;
- else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
- loop_depth++;
- else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
- loop_depth--;
- }
- }
-
- /* If one movable subsumes another, ignore that other. */
-
- ignore_some_movables (movables);
-
- /* For each movable insn, see if the reg that it loads
- leads when it dies right into another conditionally movable insn.
- If so, record that the second insn "forces" the first one,
- since the second can be moved only if the first is. */
-
- force_movables (movables);
-
- /* See if there are multiple movable insns that load the same value.
- If there are, make all but the first point at the first one
- through the `match' field, and add the priorities of them
- all together as the priority of the first. */
-
- combine_movables (movables, regs);
-
- /* Now consider each movable insn to decide whether it is worth moving.
- Store 0 in regs->array[I].set_in_loop for each reg I that is moved.
-
- For machines with few registers this increases code size, so do not
- move moveables when optimizing for code size on such machines.
- (The 18 below is the value for i386.) */
-
- if (!optimize_size
- || (reg_class_size[GENERAL_REGS] > 18 && !loop_info->has_call))
- {
- move_movables (loop, movables, threshold, insn_count);
-
- /* Recalculate regs->array if move_movables has created new
- registers. */
- if (max_reg_num () > regs->num)
- {
- loop_regs_scan (loop, 0);
- for (update_start = loop_start;
- PREV_INSN (update_start)
- && GET_CODE (PREV_INSN (update_start)) != CODE_LABEL;
- update_start = PREV_INSN (update_start))
- ;
- update_end = NEXT_INSN (loop_end);
-
- reg_scan_update (update_start, update_end, loop_max_reg);
- loop_max_reg = max_reg_num ();
- }
- }
-
- /* Now candidates that still are negative are those not moved.
- Change regs->array[I].set_in_loop to indicate that those are not actually
- invariant. */
- for (i = 0; i < regs->num; i++)
- if (regs->array[i].set_in_loop < 0)
- regs->array[i].set_in_loop = regs->array[i].n_times_set;
-
- /* Now that we've moved some things out of the loop, we might be able to
- hoist even more memory references. */
- load_mems (loop);
-
- /* Recalculate regs->array if load_mems has created new registers. */
- if (max_reg_num () > regs->num)
- loop_regs_scan (loop, 0);
-
- for (update_start = loop_start;
- PREV_INSN (update_start)
- && GET_CODE (PREV_INSN (update_start)) != CODE_LABEL;
- update_start = PREV_INSN (update_start))
- ;
- update_end = NEXT_INSN (loop_end);
-
- reg_scan_update (update_start, update_end, loop_max_reg);
- loop_max_reg = max_reg_num ();
-
- if (flag_strength_reduce)
- {
- if (update_end && GET_CODE (update_end) == CODE_LABEL)
- /* Ensure our label doesn't go away. */
- LABEL_NUSES (update_end)++;
-
- strength_reduce (loop, flags);
-
- reg_scan_update (update_start, update_end, loop_max_reg);
- loop_max_reg = max_reg_num ();
-
- if (update_end && GET_CODE (update_end) == CODE_LABEL
- && --LABEL_NUSES (update_end) == 0)
- delete_related_insns (update_end);
- }
-
-
- /* The movable information is required for strength reduction. */
- loop_movables_free (movables);
-
- free (regs->array);
- regs->array = 0;
- regs->num = 0;
-}
-
-/* Add elements to *OUTPUT to record all the pseudo-regs
- mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
-
-void
-record_excess_regs (rtx in_this, rtx not_in_this, rtx *output)
-{
- enum rtx_code code;
- const char *fmt;
- int i;
-
- code = GET_CODE (in_this);
-
- switch (code)
- {
- case PC:
- case CC0:
- case CONST_INT:
- case CONST_DOUBLE:
- case CONST:
- case SYMBOL_REF:
- case LABEL_REF:
- return;
-
- case REG:
- if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
- && ! reg_mentioned_p (in_this, not_in_this))
- *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
- return;
-
- default:
- break;
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- int j;
-
- switch (fmt[i])
- {
- case 'E':
- for (j = 0; j < XVECLEN (in_this, i); j++)
- record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
- break;
-
- case 'e':
- record_excess_regs (XEXP (in_this, i), not_in_this, output);
- break;
- }
- }
-}
-
-/* Check what regs are referred to in the libcall block ending with INSN,
- aside from those mentioned in the equivalent value.
- If there are none, return 0.
- If there are one or more, return an EXPR_LIST containing all of them. */
-
-rtx
-libcall_other_reg (rtx insn, rtx equiv)
-{
- rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
- rtx p = XEXP (note, 0);
- rtx output = 0;
-
- /* First, find all the regs used in the libcall block
- that are not mentioned as inputs to the result. */
-
- while (p != insn)
- {
- if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
- || GET_CODE (p) == CALL_INSN)
- record_excess_regs (PATTERN (p), equiv, &output);
- p = NEXT_INSN (p);
- }
-
- return output;
-}
-
-/* Return 1 if all uses of REG
- are between INSN and the end of the basic block. */
-
-static int
-reg_in_basic_block_p (rtx insn, rtx reg)
-{
- int regno = REGNO (reg);
- rtx p;
-
- if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
- return 0;
-
- /* Search this basic block for the already recorded last use of the reg. */
- for (p = insn; p; p = NEXT_INSN (p))
- {
- switch (GET_CODE (p))
- {
- case NOTE:
- break;
-
- case INSN:
- case CALL_INSN:
- /* Ordinary insn: if this is the last use, we win. */
- if (REGNO_LAST_UID (regno) == INSN_UID (p))
- return 1;
- break;
-
- case JUMP_INSN:
- /* Jump insn: if this is the last use, we win. */
- if (REGNO_LAST_UID (regno) == INSN_UID (p))
- return 1;
- /* Otherwise, it's the end of the basic block, so we lose. */
- return 0;
-
- case CODE_LABEL:
- case BARRIER:
- /* It's the end of the basic block, so we lose. */
- return 0;
-
- default:
- break;
- }
- }
-
- /* The "last use" that was recorded can't be found after the first
- use. This can happen when the last use was deleted while
- processing an inner loop, this inner loop was then completely
- unrolled, and the outer loop is always exited after the inner loop,
- so that everything after the first use becomes a single basic block. */
- return 1;
-}
-
-/* Compute the benefit of eliminating the insns in the block whose
- last insn is LAST. This may be a group of insns used to compute a
- value directly or can contain a library call. */
-
-static int
-libcall_benefit (rtx last)
-{
- rtx insn;
- int benefit = 0;
-
- for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
- insn != last; insn = NEXT_INSN (insn))
- {
- if (GET_CODE (insn) == CALL_INSN)
- benefit += 10; /* Assume at least this many insns in a library
- routine. */
- else if (GET_CODE (insn) == INSN
- && GET_CODE (PATTERN (insn)) != USE
- && GET_CODE (PATTERN (insn)) != CLOBBER)
- benefit++;
- }
-
- return benefit;
-}
-
-/* Skip COUNT insns from INSN, counting library calls as 1 insn. */
-
-static rtx
-skip_consec_insns (rtx insn, int count)
-{
- for (; count > 0; count--)
- {
- rtx temp;
-
- /* If first insn of libcall sequence, skip to end. */
- /* Do this at start of loop, since INSN is guaranteed to
- be an insn here. */
- if (GET_CODE (insn) != NOTE
- && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
- insn = XEXP (temp, 0);
-
- do
- insn = NEXT_INSN (insn);
- while (GET_CODE (insn) == NOTE);
- }
-
- return insn;
-}
-
-/* Ignore any movable whose insn falls within a libcall
- which is part of another movable.
- We make use of the fact that the movable for the libcall value
- was made later and so appears later on the chain. */
-
-static void
-ignore_some_movables (struct loop_movables *movables)
-{
- struct movable *m, *m1;
-
- for (m = movables->head; m; m = m->next)
- {
- /* Is this a movable for the value of a libcall? */
- rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
- if (note)
- {
- rtx insn;
- /* Check for earlier movables inside that range,
- and mark them invalid. We cannot use LUIDs here because
- insns created by loop.c for prior loops don't have LUIDs.
- Rather than reject all such insns from movables, we just
- explicitly check each insn in the libcall (since invariant
- libcalls aren't that common). */
- for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
- for (m1 = movables->head; m1 != m; m1 = m1->next)
- if (m1->insn == insn)
- m1->done = 1;
- }
- }
-}
-
-/* For each movable insn, see if the reg that it loads
- leads when it dies right into another conditionally movable insn.
- If so, record that the second insn "forces" the first one,
- since the second can be moved only if the first is. */
-
-static void
-force_movables (struct loop_movables *movables)
-{
- struct movable *m, *m1;
-
- for (m1 = movables->head; m1; m1 = m1->next)
- /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
- if (!m1->partial && !m1->done)
- {
- int regno = m1->regno;
- for (m = m1->next; m; m = m->next)
- /* ??? Could this be a bug? What if CSE caused the
- register of M1 to be used after this insn?
- Since CSE does not update regno_last_uid,
- this insn M->insn might not be where it dies.
- But very likely this doesn't matter; what matters is
- that M's reg is computed from M1's reg. */
- if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
- && !m->done)
- break;
- if (m != 0 && m->set_src == m1->set_dest
- /* If m->consec, m->set_src isn't valid. */
- && m->consec == 0)
- m = 0;
-
- /* Increase the priority of the moving the first insn
- since it permits the second to be moved as well.
- Likewise for insns already forced by the first insn. */
- if (m != 0)
- {
- struct movable *m2;
-
- m->forces = m1;
- for (m2 = m1; m2; m2 = m2->forces)
- {
- m2->lifetime += m->lifetime;
- m2->savings += m->savings;
- }
- }
- }
-}
-
-/* Find invariant expressions that are equal and can be combined into
- one register. */
-
-static void
-combine_movables (struct loop_movables *movables, struct loop_regs *regs)
-{
- struct movable *m;
- char *matched_regs = xmalloc (regs->num);
- enum machine_mode mode;
-
- /* Regs that are set more than once are not allowed to match
- or be matched. I'm no longer sure why not. */
- /* Only pseudo registers are allowed to match or be matched,
- since move_movables does not validate the change. */
- /* Perhaps testing m->consec_sets would be more appropriate here? */
-
- for (m = movables->head; m; m = m->next)
- if (m->match == 0 && regs->array[m->regno].n_times_set == 1
- && m->regno >= FIRST_PSEUDO_REGISTER
- && !m->insert_temp
- && !m->partial)
- {
- struct movable *m1;
- int regno = m->regno;
-
- memset (matched_regs, 0, regs->num);
- matched_regs[regno] = 1;
-
- /* We want later insns to match the first one. Don't make the first
- one match any later ones. So start this loop at m->next. */
- for (m1 = m->next; m1; m1 = m1->next)
- if (m != m1 && m1->match == 0
- && !m1->insert_temp
- && regs->array[m1->regno].n_times_set == 1
- && m1->regno >= FIRST_PSEUDO_REGISTER
- /* A reg used outside the loop mustn't be eliminated. */
- && !m1->global
- /* A reg used for zero-extending mustn't be eliminated. */
- && !m1->partial
- && (matched_regs[m1->regno]
- ||
- (
- /* Can combine regs with different modes loaded from the
- same constant only if the modes are the same or
- if both are integer modes with M wider or the same
- width as M1. The check for integer is redundant, but
- safe, since the only case of differing destination
- modes with equal sources is when both sources are
- VOIDmode, i.e., CONST_INT. */
- (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
- || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
- && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
- && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
- >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
- /* See if the source of M1 says it matches M. */
- && ((GET_CODE (m1->set_src) == REG
- && matched_regs[REGNO (m1->set_src)])
- || rtx_equal_for_loop_p (m->set_src, m1->set_src,
- movables, regs))))
- && ((m->dependencies == m1->dependencies)
- || rtx_equal_p (m->dependencies, m1->dependencies)))
- {
- m->lifetime += m1->lifetime;
- m->savings += m1->savings;
- m1->done = 1;
- m1->match = m;
- matched_regs[m1->regno] = 1;
- }
- }
-
- /* Now combine the regs used for zero-extension.
- This can be done for those not marked `global'
- provided their lives don't overlap. */
-
- for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
- mode = GET_MODE_WIDER_MODE (mode))
- {
- struct movable *m0 = 0;
-
- /* Combine all the registers for extension from mode MODE.
- Don't combine any that are used outside this loop. */
- for (m = movables->head; m; m = m->next)
- if (m->partial && ! m->global
- && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
- {
- struct movable *m1;
-
- int first = REGNO_FIRST_LUID (m->regno);
- int last = REGNO_LAST_LUID (m->regno);
-
- if (m0 == 0)
- {
- /* First one: don't check for overlap, just record it. */
- m0 = m;
- continue;
- }
-
- /* Make sure they extend to the same mode.
- (Almost always true.) */
- if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
- continue;
-
- /* We already have one: check for overlap with those
- already combined together. */
- for (m1 = movables->head; m1 != m; m1 = m1->next)
- if (m1 == m0 || (m1->partial && m1->match == m0))
- if (! (REGNO_FIRST_LUID (m1->regno) > last
- || REGNO_LAST_LUID (m1->regno) < first))
- goto overlap;
-
- /* No overlap: we can combine this with the others. */
- m0->lifetime += m->lifetime;
- m0->savings += m->savings;
- m->done = 1;
- m->match = m0;
-
- overlap:
- ;
- }
- }
-
- /* Clean up. */
- free (matched_regs);
-}
-
-/* Returns the number of movable instructions in LOOP that were not
- moved outside the loop. */
-
-static int
-num_unmoved_movables (const struct loop *loop)
-{
- int num = 0;
- struct movable *m;
-
- for (m = LOOP_MOVABLES (loop)->head; m; m = m->next)
- if (!m->done)
- ++num;
-
- return num;
-}
-
-
-/* Return 1 if regs X and Y will become the same if moved. */
-
-static int
-regs_match_p (rtx x, rtx y, struct loop_movables *movables)
-{
- unsigned int xn = REGNO (x);
- unsigned int yn = REGNO (y);
- struct movable *mx, *my;
-
- for (mx = movables->head; mx; mx = mx->next)
- if (mx->regno == xn)
- break;
-
- for (my = movables->head; my; my = my->next)
- if (my->regno == yn)
- break;
-
- return (mx && my
- && ((mx->match == my->match && mx->match != 0)
- || mx->match == my
- || mx == my->match));
-}
-
-/* Return 1 if X and Y are identical-looking rtx's.
- This is the Lisp function EQUAL for rtx arguments.
-
- If two registers are matching movables or a movable register and an
- equivalent constant, consider them equal. */
-
-static int
-rtx_equal_for_loop_p (rtx x, rtx y, struct loop_movables *movables,
- struct loop_regs *regs)
-{
- int i;
- int j;
- struct movable *m;
- enum rtx_code code;
- const char *fmt;
-
- if (x == y)
- return 1;
- if (x == 0 || y == 0)
- return 0;
-
- code = GET_CODE (x);
-
- /* If we have a register and a constant, they may sometimes be
- equal. */
- if (GET_CODE (x) == REG && regs->array[REGNO (x)].set_in_loop == -2
- && CONSTANT_P (y))
- {
- for (m = movables->head; m; m = m->next)
- if (m->move_insn && m->regno == REGNO (x)
- && rtx_equal_p (m->set_src, y))
- return 1;
- }
- else if (GET_CODE (y) == REG && regs->array[REGNO (y)].set_in_loop == -2
- && CONSTANT_P (x))
- {
- for (m = movables->head; m; m = m->next)
- if (m->move_insn && m->regno == REGNO (y)
- && rtx_equal_p (m->set_src, x))
- return 1;
- }
-
- /* Otherwise, rtx's of different codes cannot be equal. */
- if (code != GET_CODE (y))
- return 0;
-
- /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
- (REG:SI x) and (REG:HI x) are NOT equivalent. */
-
- if (GET_MODE (x) != GET_MODE (y))
- return 0;
-
- /* These three types of rtx's can be compared nonrecursively. */
- if (code == REG)
- return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
-
- if (code == LABEL_REF)
- return XEXP (x, 0) == XEXP (y, 0);
- if (code == SYMBOL_REF)
- return XSTR (x, 0) == XSTR (y, 0);
-
- /* Compare the elements. If any pair of corresponding elements
- fail to match, return 0 for the whole things. */
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- switch (fmt[i])
- {
- case 'w':
- if (XWINT (x, i) != XWINT (y, i))
- return 0;
- break;
-
- case 'i':
- if (XINT (x, i) != XINT (y, i))
- return 0;
- break;
-
- case 'E':
- /* Two vectors must have the same length. */
- if (XVECLEN (x, i) != XVECLEN (y, i))
- return 0;
-
- /* And the corresponding elements must match. */
- for (j = 0; j < XVECLEN (x, i); j++)
- if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
- movables, regs) == 0)
- return 0;
- break;
-
- case 'e':
- if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables, regs)
- == 0)
- return 0;
- break;
-
- case 's':
- if (strcmp (XSTR (x, i), XSTR (y, i)))
- return 0;
- break;
-
- case 'u':
- /* These are just backpointers, so they don't matter. */
- break;
-
- case '0':
- break;
-
- /* It is believed that rtx's at this level will never
- contain anything but integers and other rtx's,
- except for within LABEL_REFs and SYMBOL_REFs. */
- default:
- abort ();
- }
- }
- return 1;
-}
-
-/* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
- insns in INSNS which use the reference. LABEL_NUSES for CODE_LABEL
- references is incremented once for each added note. */
-
-static void
-add_label_notes (rtx x, rtx insns)
-{
- enum rtx_code code = GET_CODE (x);
- int i, j;
- const char *fmt;
- rtx insn;
-
- if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
- {
- /* This code used to ignore labels that referred to dispatch tables to
- avoid flow generating (slightly) worse code.
-
- We no longer ignore such label references (see LABEL_REF handling in
- mark_jump_label for additional information). */
- for (insn = insns; insn; insn = NEXT_INSN (insn))
- if (reg_mentioned_p (XEXP (x, 0), insn))
- {
- REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
- REG_NOTES (insn));
- if (LABEL_P (XEXP (x, 0)))
- LABEL_NUSES (XEXP (x, 0))++;
- }
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- add_label_notes (XEXP (x, i), insns);
- else if (fmt[i] == 'E')
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- add_label_notes (XVECEXP (x, i, j), insns);
- }
-}
-
-/* Scan MOVABLES, and move the insns that deserve to be moved.
- If two matching movables are combined, replace one reg with the
- other throughout. */
-
-static void
-move_movables (struct loop *loop, struct loop_movables *movables,
- int threshold, int insn_count)
-{
- struct loop_regs *regs = LOOP_REGS (loop);
- int nregs = regs->num;
- rtx new_start = 0;
- struct movable *m;
- rtx p;
- rtx loop_start = loop->start;
- rtx loop_end = loop->end;
- /* Map of pseudo-register replacements to handle combining
- when we move several insns that load the same value
- into different pseudo-registers. */
- rtx *reg_map = xcalloc (nregs, sizeof (rtx));
- char *already_moved = xcalloc (nregs, sizeof (char));
-
- for (m = movables->head; m; m = m->next)
- {
- /* Describe this movable insn. */
-
- if (loop_dump_stream)
- {
- fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
- INSN_UID (m->insn), m->regno, m->lifetime);
- if (m->consec > 0)
- fprintf (loop_dump_stream, "consec %d, ", m->consec);
- if (m->cond)
- fprintf (loop_dump_stream, "cond ");
- if (m->force)
- fprintf (loop_dump_stream, "force ");
- if (m->global)
- fprintf (loop_dump_stream, "global ");
- if (m->done)
- fprintf (loop_dump_stream, "done ");
- if (m->move_insn)
- fprintf (loop_dump_stream, "move-insn ");
- if (m->match)
- fprintf (loop_dump_stream, "matches %d ",
- INSN_UID (m->match->insn));
- if (m->forces)
- fprintf (loop_dump_stream, "forces %d ",
- INSN_UID (m->forces->insn));
- }
-
- /* Ignore the insn if it's already done (it matched something else).
- Otherwise, see if it is now safe to move. */
-
- if (!m->done
- && (! m->cond
- || (1 == loop_invariant_p (loop, m->set_src)
- && (m->dependencies == 0
- || 1 == loop_invariant_p (loop, m->dependencies))
- && (m->consec == 0
- || 1 == consec_sets_invariant_p (loop, m->set_dest,
- m->consec + 1,
- m->insn))))
- && (! m->forces || m->forces->done))
- {
- int regno;
- rtx p;
- int savings = m->savings;
-
- /* We have an insn that is safe to move.
- Compute its desirability. */
-
- p = m->insn;
- regno = m->regno;
-
- if (loop_dump_stream)
- fprintf (loop_dump_stream, "savings %d ", savings);
-
- if (regs->array[regno].moved_once && loop_dump_stream)
- fprintf (loop_dump_stream, "halved since already moved ");
-
- /* An insn MUST be moved if we already moved something else
- which is safe only if this one is moved too: that is,
- if already_moved[REGNO] is nonzero. */
-
- /* An insn is desirable to move if the new lifetime of the
- register is no more than THRESHOLD times the old lifetime.
- If it's not desirable, it means the loop is so big
- that moving won't speed things up much,
- and it is liable to make register usage worse. */
-
- /* It is also desirable to move if it can be moved at no
- extra cost because something else was already moved. */
-
- if (already_moved[regno]
- || flag_move_all_movables
- || (threshold * savings * m->lifetime) >=
- (regs->array[regno].moved_once ? insn_count * 2 : insn_count)
- || (m->forces && m->forces->done
- && regs->array[m->forces->regno].n_times_set == 1))
- {
- int count;
- struct movable *m1;
- rtx first = NULL_RTX;
- rtx newreg = NULL_RTX;
-
- if (m->insert_temp)
- newreg = gen_reg_rtx (GET_MODE (m->set_dest));
-
- /* Now move the insns that set the reg. */
-
- if (m->partial && m->match)
- {
- rtx newpat, i1;
- rtx r1, r2;
- /* Find the end of this chain of matching regs.
- Thus, we load each reg in the chain from that one reg.
- And that reg is loaded with 0 directly,
- since it has ->match == 0. */
- for (m1 = m; m1->match; m1 = m1->match);
- newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
- SET_DEST (PATTERN (m1->insn)));
- i1 = loop_insn_hoist (loop, newpat);
-
- /* Mark the moved, invariant reg as being allowed to
- share a hard reg with the other matching invariant. */
- REG_NOTES (i1) = REG_NOTES (m->insn);
- r1 = SET_DEST (PATTERN (m->insn));
- r2 = SET_DEST (PATTERN (m1->insn));
- regs_may_share
- = gen_rtx_EXPR_LIST (VOIDmode, r1,
- gen_rtx_EXPR_LIST (VOIDmode, r2,
- regs_may_share));
- delete_insn (m->insn);
-
- if (new_start == 0)
- new_start = i1;
-
- if (loop_dump_stream)
- fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
- }
- /* If we are to re-generate the item being moved with a
- new move insn, first delete what we have and then emit
- the move insn before the loop. */
- else if (m->move_insn)
- {
- rtx i1, temp, seq;
-
- for (count = m->consec; count >= 0; count--)
- {
- /* If this is the first insn of a library call sequence,
- something is very wrong. */
- if (GET_CODE (p) != NOTE
- && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
- abort ();
-
- /* If this is the last insn of a libcall sequence, then
- delete every insn in the sequence except the last.
- The last insn is handled in the normal manner. */
- if (GET_CODE (p) != NOTE
- && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
- {
- temp = XEXP (temp, 0);
- while (temp != p)
- temp = delete_insn (temp);
- }
-
- temp = p;
- p = delete_insn (p);
-
- /* simplify_giv_expr expects that it can walk the insns
- at m->insn forwards and see this old sequence we are
- tossing here. delete_insn does preserve the next
- pointers, but when we skip over a NOTE we must fix
- it up. Otherwise that code walks into the non-deleted
- insn stream. */
- while (p && GET_CODE (p) == NOTE)
- p = NEXT_INSN (temp) = NEXT_INSN (p);
-
- if (m->insert_temp)
- {
- /* Replace the original insn with a move from
- our newly created temp. */
- start_sequence ();
- emit_move_insn (m->set_dest, newreg);
- seq = get_insns ();
- end_sequence ();
- emit_insn_before (seq, p);
- }
- }
-
- start_sequence ();
- emit_move_insn (m->insert_temp ? newreg : m->set_dest,
- m->set_src);
- seq = get_insns ();
- end_sequence ();
-
- add_label_notes (m->set_src, seq);
-
- i1 = loop_insn_hoist (loop, seq);
- if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
- set_unique_reg_note (i1,
- m->is_equiv ? REG_EQUIV : REG_EQUAL,
- m->set_src);
-
- if (loop_dump_stream)
- fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
-
- /* The more regs we move, the less we like moving them. */
- threshold -= 3;
- }
- else
- {
- for (count = m->consec; count >= 0; count--)
- {
- rtx i1, temp;
-
- /* If first insn of libcall sequence, skip to end. */
- /* Do this at start of loop, since p is guaranteed to
- be an insn here. */
- if (GET_CODE (p) != NOTE
- && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
- p = XEXP (temp, 0);
-
- /* If last insn of libcall sequence, move all
- insns except the last before the loop. The last
- insn is handled in the normal manner. */
- if (GET_CODE (p) != NOTE
- && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
- {
- rtx fn_address = 0;
- rtx fn_reg = 0;
- rtx fn_address_insn = 0;
-
- first = 0;
- for (temp = XEXP (temp, 0); temp != p;
- temp = NEXT_INSN (temp))
- {
- rtx body;
- rtx n;
- rtx next;
-
- if (GET_CODE (temp) == NOTE)
- continue;
-
- body = PATTERN (temp);
-
- /* Find the next insn after TEMP,
- not counting USE or NOTE insns. */
- for (next = NEXT_INSN (temp); next != p;
- next = NEXT_INSN (next))
- if (! (GET_CODE (next) == INSN
- && GET_CODE (PATTERN (next)) == USE)
- && GET_CODE (next) != NOTE)
- break;
-
- /* If that is the call, this may be the insn
- that loads the function address.
-
- Extract the function address from the insn
- that loads it into a register.
- If this insn was cse'd, we get incorrect code.
-
- So emit a new move insn that copies the
- function address into the register that the
- call insn will use. flow.c will delete any
- redundant stores that we have created. */
- if (GET_CODE (next) == CALL_INSN
- && GET_CODE (body) == SET
- && GET_CODE (SET_DEST (body)) == REG
- && (n = find_reg_note (temp, REG_EQUAL,
- NULL_RTX)))
- {
- fn_reg = SET_SRC (body);
- if (GET_CODE (fn_reg) != REG)
- fn_reg = SET_DEST (body);
- fn_address = XEXP (n, 0);
- fn_address_insn = temp;
- }
- /* We have the call insn.
- If it uses the register we suspect it might,
- load it with the correct address directly. */
- if (GET_CODE (temp) == CALL_INSN
- && fn_address != 0
- && reg_referenced_p (fn_reg, body))
- loop_insn_emit_after (loop, 0, fn_address_insn,
- gen_move_insn
- (fn_reg, fn_address));
-
- if (GET_CODE (temp) == CALL_INSN)
- {
- i1 = loop_call_insn_hoist (loop, body);
- /* Because the USAGE information potentially
- contains objects other than hard registers
- we need to copy it. */
- if (CALL_INSN_FUNCTION_USAGE (temp))
- CALL_INSN_FUNCTION_USAGE (i1)
- = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
- }
- else
- i1 = loop_insn_hoist (loop, body);
- if (first == 0)
- first = i1;
- if (temp == fn_address_insn)
- fn_address_insn = i1;
- REG_NOTES (i1) = REG_NOTES (temp);
- REG_NOTES (temp) = NULL;
- delete_insn (temp);
- }
- if (new_start == 0)
- new_start = first;
- }
- if (m->savemode != VOIDmode)
- {
- /* P sets REG to zero; but we should clear only
- the bits that are not covered by the mode
- m->savemode. */
- rtx reg = m->set_dest;
- rtx sequence;
- rtx tem;
-
- start_sequence ();
- tem = expand_simple_binop
- (GET_MODE (reg), AND, reg,
- GEN_INT ((((HOST_WIDE_INT) 1
- << GET_MODE_BITSIZE (m->savemode)))
- - 1),
- reg, 1, OPTAB_LIB_WIDEN);
- if (tem == 0)
- abort ();
- if (tem != reg)
- emit_move_insn (reg, tem);
- sequence = get_insns ();
- end_sequence ();
- i1 = loop_insn_hoist (loop, sequence);
- }
- else if (GET_CODE (p) == CALL_INSN)
- {
- i1 = loop_call_insn_hoist (loop, PATTERN (p));
- /* Because the USAGE information potentially
- contains objects other than hard registers
- we need to copy it. */
- if (CALL_INSN_FUNCTION_USAGE (p))
- CALL_INSN_FUNCTION_USAGE (i1)
- = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
- }
- else if (count == m->consec && m->move_insn_first)
- {
- rtx seq;
- /* The SET_SRC might not be invariant, so we must
- use the REG_EQUAL note. */
- start_sequence ();
- emit_move_insn (m->insert_temp ? newreg : m->set_dest,
- m->set_src);
- seq = get_insns ();
- end_sequence ();
-
- add_label_notes (m->set_src, seq);
-
- i1 = loop_insn_hoist (loop, seq);
- if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
- set_unique_reg_note (i1, m->is_equiv ? REG_EQUIV
- : REG_EQUAL, m->set_src);
- }
- else if (m->insert_temp)
- {
- rtx *reg_map2 = xcalloc (REGNO (newreg),
- sizeof(rtx));
- reg_map2 [m->regno] = newreg;
-
- i1 = loop_insn_hoist (loop, copy_rtx (PATTERN (p)));
- replace_regs (i1, reg_map2, REGNO (newreg), 1);
- free (reg_map2);
- }
- else
- i1 = loop_insn_hoist (loop, PATTERN (p));
-
- if (REG_NOTES (i1) == 0)
- {
- REG_NOTES (i1) = REG_NOTES (p);
- REG_NOTES (p) = NULL;
-
- /* If there is a REG_EQUAL note present whose value
- is not loop invariant, then delete it, since it
- may cause problems with later optimization passes.
- It is possible for cse to create such notes
- like this as a result of record_jump_cond. */
-
- if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
- && ! loop_invariant_p (loop, XEXP (temp, 0)))
- remove_note (i1, temp);
- }
-
- if (new_start == 0)
- new_start = i1;
-
- if (loop_dump_stream)
- fprintf (loop_dump_stream, " moved to %d",
- INSN_UID (i1));
-
- /* If library call, now fix the REG_NOTES that contain
- insn pointers, namely REG_LIBCALL on FIRST
- and REG_RETVAL on I1. */
- if ((temp = find_reg_note (i1, REG_RETVAL, NULL_RTX)))
- {
- XEXP (temp, 0) = first;
- temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
- XEXP (temp, 0) = i1;
- }
-
- temp = p;
- delete_insn (p);
- p = NEXT_INSN (p);
-
- /* simplify_giv_expr expects that it can walk the insns
- at m->insn forwards and see this old sequence we are
- tossing here. delete_insn does preserve the next
- pointers, but when we skip over a NOTE we must fix
- it up. Otherwise that code walks into the non-deleted
- insn stream. */
- while (p && GET_CODE (p) == NOTE)
- p = NEXT_INSN (temp) = NEXT_INSN (p);
-
- if (m->insert_temp)
- {
- rtx seq;
- /* Replace the original insn with a move from
- our newly created temp. */
- start_sequence ();
- emit_move_insn (m->set_dest, newreg);
- seq = get_insns ();
- end_sequence ();
- emit_insn_before (seq, p);
- }
- }
-
- /* The more regs we move, the less we like moving them. */
- threshold -= 3;
- }
-
- m->done = 1;
-
- if (!m->insert_temp)
- {
- /* Any other movable that loads the same register
- MUST be moved. */
- already_moved[regno] = 1;
-
- /* This reg has been moved out of one loop. */
- regs->array[regno].moved_once = 1;
-
- /* The reg set here is now invariant. */
- if (! m->partial)
- {
- int i;
- for (i = 0; i < LOOP_REGNO_NREGS (regno, m->set_dest); i++)
- regs->array[regno+i].set_in_loop = 0;
- }
-
- /* Change the length-of-life info for the register
- to say it lives at least the full length of this loop.
- This will help guide optimizations in outer loops. */
-
- if (REGNO_FIRST_LUID (regno) > INSN_LUID (loop_start))
- /* This is the old insn before all the moved insns.
- We can't use the moved insn because it is out of range
- in uid_luid. Only the old insns have luids. */
- REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
- if (REGNO_LAST_LUID (regno) < INSN_LUID (loop_end))
- REGNO_LAST_UID (regno) = INSN_UID (loop_end);
- }
-
- /* Combine with this moved insn any other matching movables. */
-
- if (! m->partial)
- for (m1 = movables->head; m1; m1 = m1->next)
- if (m1->match == m)
- {
- rtx temp;
-
- /* Schedule the reg loaded by M1
- for replacement so that shares the reg of M.
- If the modes differ (only possible in restricted
- circumstances, make a SUBREG.
-
- Note this assumes that the target dependent files
- treat REG and SUBREG equally, including within
- GO_IF_LEGITIMATE_ADDRESS and in all the
- predicates since we never verify that replacing the
- original register with a SUBREG results in a
- recognizable insn. */
- if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
- reg_map[m1->regno] = m->set_dest;
- else
- reg_map[m1->regno]
- = gen_lowpart_common (GET_MODE (m1->set_dest),
- m->set_dest);
-
- /* Get rid of the matching insn
- and prevent further processing of it. */
- m1->done = 1;
-
- /* If library call, delete all insns. */
- if ((temp = find_reg_note (m1->insn, REG_RETVAL,
- NULL_RTX)))
- delete_insn_chain (XEXP (temp, 0), m1->insn);
- else
- delete_insn (m1->insn);
-
- /* Any other movable that loads the same register
- MUST be moved. */
- already_moved[m1->regno] = 1;
-
- /* The reg merged here is now invariant,
- if the reg it matches is invariant. */
- if (! m->partial)
- {
- int i;
- for (i = 0;
- i < LOOP_REGNO_NREGS (regno, m1->set_dest);
- i++)
- regs->array[m1->regno+i].set_in_loop = 0;
- }
- }
- }
- else if (loop_dump_stream)
- fprintf (loop_dump_stream, "not desirable");
- }
- else if (loop_dump_stream && !m->match)
- fprintf (loop_dump_stream, "not safe");
-
- if (loop_dump_stream)
- fprintf (loop_dump_stream, "\n");
- }
-
- if (new_start == 0)
- new_start = loop_start;
-
- /* Go through all the instructions in the loop, making
- all the register substitutions scheduled in REG_MAP. */
- for (p = new_start; p != loop_end; p = NEXT_INSN (p))
- if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
- || GET_CODE (p) == CALL_INSN)
- {
- replace_regs (PATTERN (p), reg_map, nregs, 0);
- replace_regs (REG_NOTES (p), reg_map, nregs, 0);
- INSN_CODE (p) = -1;
- }
-
- /* Clean up. */
- free (reg_map);
- free (already_moved);
-}
-
-
-static void
-loop_movables_add (struct loop_movables *movables, struct movable *m)
-{
- if (movables->head == 0)
- movables->head = m;
- else
- movables->last->next = m;
- movables->last = m;
-}
-
-
-static void
-loop_movables_free (struct loop_movables *movables)
-{
- struct movable *m;
- struct movable *m_next;
-
- for (m = movables->head; m; m = m_next)
- {
- m_next = m->next;
- free (m);
- }
-}
-
-#if 0
-/* Scan X and replace the address of any MEM in it with ADDR.
- REG is the address that MEM should have before the replacement. */
-
-static void
-replace_call_address (rtx x, rtx reg, rtx addr)
-{
- enum rtx_code code;
- int i;
- const char *fmt;
-
- if (x == 0)
- return;
- code = GET_CODE (x);
- switch (code)
- {
- case PC:
- case CC0:
- case CONST_INT:
- case CONST_DOUBLE:
- case CONST:
- case SYMBOL_REF:
- case LABEL_REF:
- case REG:
- return;
-
- case SET:
- /* Short cut for very common case. */
- replace_call_address (XEXP (x, 1), reg, addr);
- return;
-
- case CALL:
- /* Short cut for very common case. */
- replace_call_address (XEXP (x, 0), reg, addr);
- return;
-
- case MEM:
- /* If this MEM uses a reg other than the one we expected,
- something is wrong. */
- if (XEXP (x, 0) != reg)
- abort ();
- XEXP (x, 0) = addr;
- return;
-
- default:
- break;
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- replace_call_address (XEXP (x, i), reg, addr);
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- replace_call_address (XVECEXP (x, i, j), reg, addr);
- }
- }
-}
-#endif
-
-/* Return the number of memory refs to addresses that vary
- in the rtx X. */
-
-static int
-count_nonfixed_reads (const struct loop *loop, rtx x)
-{
- enum rtx_code code;
- int i;
- const char *fmt;
- int value;
-
- if (x == 0)
- return 0;
-
- code = GET_CODE (x);
- switch (code)
- {
- case PC:
- case CC0:
- case CONST_INT:
- case CONST_DOUBLE:
- case CONST:
- case SYMBOL_REF:
- case LABEL_REF:
- case REG:
- return 0;
-
- case MEM:
- return ((loop_invariant_p (loop, XEXP (x, 0)) != 1)
- + count_nonfixed_reads (loop, XEXP (x, 0)));
-
- default:
- break;
- }
-
- value = 0;
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- value += count_nonfixed_reads (loop, XEXP (x, i));
- if (fmt[i] == 'E')
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- value += count_nonfixed_reads (loop, XVECEXP (x, i, j));
- }
- }
- return value;
-}
-
-/* Scan a loop setting the elements `cont', `vtop', `loops_enclosed',
- `has_call', `has_nonconst_call', `has_volatile', `has_tablejump',
- `unknown_address_altered', `unknown_constant_address_altered', and
- `num_mem_sets' in LOOP. Also, fill in the array `mems' and the
- list `store_mems' in LOOP. */
-
-static void
-prescan_loop (struct loop *loop)
-{
- int level = 1;
- rtx insn;
- struct loop_info *loop_info = LOOP_INFO (loop);
- rtx start = loop->start;
- rtx end = loop->end;
- /* The label after END. Jumping here is just like falling off the
- end of the loop. We use next_nonnote_insn instead of next_label
- as a hedge against the (pathological) case where some actual insn
- might end up between the two. */
- rtx exit_target = next_nonnote_insn (end);
-
- loop_info->has_indirect_jump = indirect_jump_in_function;
- loop_info->pre_header_has_call = 0;
- loop_info->has_call = 0;
- loop_info->has_nonconst_call = 0;
- loop_info->has_prefetch = 0;
- loop_info->has_volatile = 0;
- loop_info->has_tablejump = 0;
- loop_info->has_multiple_exit_targets = 0;
- loop->level = 1;
-
- loop_info->unknown_address_altered = 0;
- loop_info->unknown_constant_address_altered = 0;
- loop_info->store_mems = NULL_RTX;
- loop_info->first_loop_store_insn = NULL_RTX;
- loop_info->mems_idx = 0;
- loop_info->num_mem_sets = 0;
- /* If loop opts run twice, this was set on 1st pass for 2nd. */
- loop_info->preconditioned = NOTE_PRECONDITIONED (end);
-
- for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
- insn = PREV_INSN (insn))
- {
- if (GET_CODE (insn) == CALL_INSN)
- {
- loop_info->pre_header_has_call = 1;
- break;
- }
- }
-
- for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
- insn = NEXT_INSN (insn))
- {
- switch (GET_CODE (insn))
- {
- case NOTE:
- if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
- {
- ++level;
- /* Count number of loops contained in this one. */
- loop->level++;
- }
- else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
- --level;
- break;
-
- case CALL_INSN:
- if (! CONST_OR_PURE_CALL_P (insn))
- {
- loop_info->unknown_address_altered = 1;
- loop_info->has_nonconst_call = 1;
- }
- else if (pure_call_p (insn))
- loop_info->has_nonconst_call = 1;
- loop_info->has_call = 1;
- if (can_throw_internal (insn))
- loop_info->has_multiple_exit_targets = 1;
-
- /* Calls initializing constant objects have CLOBBER of MEM /u in the
- attached FUNCTION_USAGE expression list, not accounted for by the
- code above. We should note these to avoid missing dependencies in
- later references. */
- {
- rtx fusage_entry;
-
- for (fusage_entry = CALL_INSN_FUNCTION_USAGE (insn);
- fusage_entry; fusage_entry = XEXP (fusage_entry, 1))
- {
- rtx fusage = XEXP (fusage_entry, 0);
-
- if (GET_CODE (fusage) == CLOBBER
- && GET_CODE (XEXP (fusage, 0)) == MEM
- && RTX_UNCHANGING_P (XEXP (fusage, 0)))
- {
- note_stores (fusage, note_addr_stored, loop_info);
- if (! loop_info->first_loop_store_insn
- && loop_info->store_mems)
- loop_info->first_loop_store_insn = insn;
- }
- }
- }
- break;
-
- case JUMP_INSN:
- if (! loop_info->has_multiple_exit_targets)
- {
- rtx set = pc_set (insn);
-
- if (set)
- {
- rtx src = SET_SRC (set);
- rtx label1, label2;
-
- if (GET_CODE (src) == IF_THEN_ELSE)
- {
- label1 = XEXP (src, 1);
- label2 = XEXP (src, 2);
- }
- else
- {
- label1 = src;
- label2 = NULL_RTX;
- }
-
- do
- {
- if (label1 && label1 != pc_rtx)
- {
- if (GET_CODE (label1) != LABEL_REF)
- {
- /* Something tricky. */
- loop_info->has_multiple_exit_targets = 1;
- break;
- }
- else if (XEXP (label1, 0) != exit_target
- && LABEL_OUTSIDE_LOOP_P (label1))
- {
- /* A jump outside the current loop. */
- loop_info->has_multiple_exit_targets = 1;
- break;
- }
- }
-
- label1 = label2;
- label2 = NULL_RTX;
- }
- while (label1);
- }
- else
- {
- /* A return, or something tricky. */
- loop_info->has_multiple_exit_targets = 1;
- }
- }
- /* Fall through. */
-
- case INSN:
- if (volatile_refs_p (PATTERN (insn)))
- loop_info->has_volatile = 1;
-
- if (GET_CODE (insn) == JUMP_INSN
- && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
- || GET_CODE (PATTERN (insn)) == ADDR_VEC))
- loop_info->has_tablejump = 1;
-
- note_stores (PATTERN (insn), note_addr_stored, loop_info);
- if (! loop_info->first_loop_store_insn && loop_info->store_mems)
- loop_info->first_loop_store_insn = insn;
-
- if (flag_non_call_exceptions && can_throw_internal (insn))
- loop_info->has_multiple_exit_targets = 1;
- break;
-
- default:
- break;
- }
- }
-
- /* Now, rescan the loop, setting up the LOOP_MEMS array. */
- if (/* An exception thrown by a called function might land us
- anywhere. */
- ! loop_info->has_nonconst_call
- /* We don't want loads for MEMs moved to a location before the
- one at which their stack memory becomes allocated. (Note
- that this is not a problem for malloc, etc., since those
- require actual function calls. */
- && ! current_function_calls_alloca
- /* There are ways to leave the loop other than falling off the
- end. */
- && ! loop_info->has_multiple_exit_targets)
- for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
- insn = NEXT_INSN (insn))
- for_each_rtx (&insn, insert_loop_mem, loop_info);
-
- /* BLKmode MEMs are added to LOOP_STORE_MEM as necessary so
- that loop_invariant_p and load_mems can use true_dependence
- to determine what is really clobbered. */
- if (loop_info->unknown_address_altered)
- {
- rtx mem = gen_rtx_MEM (BLKmode, const0_rtx);
-
- loop_info->store_mems
- = gen_rtx_EXPR_LIST (VOIDmode, mem, loop_info->store_mems);
- }
- if (loop_info->unknown_constant_address_altered)
- {
- rtx mem = gen_rtx_MEM (BLKmode, const0_rtx);
-
- RTX_UNCHANGING_P (mem) = 1;
- loop_info->store_mems
- = gen_rtx_EXPR_LIST (VOIDmode, mem, loop_info->store_mems);
- }
-}
-
-/* Invalidate all loops containing LABEL. */
-
-static void
-invalidate_loops_containing_label (rtx label)
-{
- struct loop *loop;
- for (loop = uid_loop[INSN_UID (label)]; loop; loop = loop->outer)
- loop->invalid = 1;
-}
-
-/* Scan the function looking for loops. Record the start and end of each loop.
- Also mark as invalid loops any loops that contain a setjmp or are branched
- to from outside the loop. */
-
-static void
-find_and_verify_loops (rtx f, struct loops *loops)
-{
- rtx insn;
- rtx label;
- int num_loops;
- struct loop *current_loop;
- struct loop *next_loop;
- struct loop *loop;
-
- num_loops = loops->num;
-
- compute_luids (f, NULL_RTX, 0);
-
- /* If there are jumps to undefined labels,
- treat them as jumps out of any/all loops.
- This also avoids writing past end of tables when there are no loops. */
- uid_loop[0] = NULL;
-
- /* Find boundaries of loops, mark which loops are contained within
- loops, and invalidate loops that have setjmp. */
-
- num_loops = 0;
- current_loop = NULL;
- for (insn = f; insn; insn = NEXT_INSN (insn))
- {
- if (GET_CODE (insn) == NOTE)
- switch (NOTE_LINE_NUMBER (insn))
- {
- case NOTE_INSN_LOOP_BEG:
- next_loop = loops->array + num_loops;
- next_loop->num = num_loops;
- num_loops++;
- next_loop->start = insn;
- next_loop->outer = current_loop;
- current_loop = next_loop;
- break;
-
- case NOTE_INSN_LOOP_CONT:
- current_loop->cont = insn;
- break;
-
- case NOTE_INSN_LOOP_VTOP:
- current_loop->vtop = insn;
- break;
-
- case NOTE_INSN_LOOP_END:
- if (! current_loop)
- abort ();
-
- current_loop->end = insn;
- current_loop = current_loop->outer;
- break;
-
- default:
- break;
- }
-
- if (GET_CODE (insn) == CALL_INSN
- && find_reg_note (insn, REG_SETJMP, NULL))
- {
- /* In this case, we must invalidate our current loop and any
- enclosing loop. */
- for (loop = current_loop; loop; loop = loop->outer)
- {
- loop->invalid = 1;
- if (loop_dump_stream)
- fprintf (loop_dump_stream,
- "\nLoop at %d ignored due to setjmp.\n",
- INSN_UID (loop->start));
- }
- }
-
- /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
- enclosing loop, but this doesn't matter. */
- uid_loop[INSN_UID (insn)] = current_loop;
- }
-
- /* Any loop containing a label used in an initializer must be invalidated,
- because it can be jumped into from anywhere. */
- for (label = forced_labels; label; label = XEXP (label, 1))
- invalidate_loops_containing_label (XEXP (label, 0));
-
- /* Any loop containing a label used for an exception handler must be
- invalidated, because it can be jumped into from anywhere. */
- for_each_eh_label (invalidate_loops_containing_label);
-
- /* Now scan all insn's in the function. If any JUMP_INSN branches into a
- loop that it is not contained within, that loop is marked invalid.
- If any INSN or CALL_INSN uses a label's address, then the loop containing
- that label is marked invalid, because it could be jumped into from
- anywhere.
-
- Also look for blocks of code ending in an unconditional branch that
- exits the loop. If such a block is surrounded by a conditional
- branch around the block, move the block elsewhere (see below) and
- invert the jump to point to the code block. This may eliminate a
- label in our loop and will simplify processing by both us and a
- possible second cse pass. */
-
- for (insn = f; insn; insn = NEXT_INSN (insn))
- if (INSN_P (insn))
- {
- struct loop *this_loop = uid_loop[INSN_UID (insn)];
-
- if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
- {
- rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
- if (note)
- invalidate_loops_containing_label (XEXP (note, 0));
- }
-
- if (GET_CODE (insn) != JUMP_INSN)
- continue;
-
- mark_loop_jump (PATTERN (insn), this_loop);
-
- /* See if this is an unconditional branch outside the loop. */
- if (this_loop
- && (GET_CODE (PATTERN (insn)) == RETURN
- || (any_uncondjump_p (insn)
- && onlyjump_p (insn)
- && (uid_loop[INSN_UID (JUMP_LABEL (insn))]
- != this_loop)))
- && get_max_uid () < max_uid_for_loop)
- {
- rtx p;
- rtx our_next = next_real_insn (insn);
- rtx last_insn_to_move = NEXT_INSN (insn);
- struct loop *dest_loop;
- struct loop *outer_loop = NULL;
-
- /* Go backwards until we reach the start of the loop, a label,
- or a JUMP_INSN. */
- for (p = PREV_INSN (insn);
- GET_CODE (p) != CODE_LABEL
- && ! (GET_CODE (p) == NOTE
- && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
- && GET_CODE (p) != JUMP_INSN;
- p = PREV_INSN (p))
- ;
-
- /* Check for the case where we have a jump to an inner nested
- loop, and do not perform the optimization in that case. */
-
- if (JUMP_LABEL (insn))
- {
- dest_loop = uid_loop[INSN_UID (JUMP_LABEL (insn))];
- if (dest_loop)
- {
- for (outer_loop = dest_loop; outer_loop;
- outer_loop = outer_loop->outer)
- if (outer_loop == this_loop)
- break;
- }
- }
-
- /* Make sure that the target of P is within the current loop. */
-
- if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
- && uid_loop[INSN_UID (JUMP_LABEL (p))] != this_loop)
- outer_loop = this_loop;
-
- /* If we stopped on a JUMP_INSN to the next insn after INSN,
- we have a block of code to try to move.
-
- We look backward and then forward from the target of INSN
- to find a BARRIER at the same loop depth as the target.
- If we find such a BARRIER, we make a new label for the start
- of the block, invert the jump in P and point it to that label,
- and move the block of code to the spot we found. */
-
- if (! outer_loop
- && GET_CODE (p) == JUMP_INSN
- && JUMP_LABEL (p) != 0
- /* Just ignore jumps to labels that were never emitted.
- These always indicate compilation errors. */
- && INSN_UID (JUMP_LABEL (p)) != 0
- && any_condjump_p (p) && onlyjump_p (p)
- && next_real_insn (JUMP_LABEL (p)) == our_next
- /* If it's not safe to move the sequence, then we
- mustn't try. */
- && insns_safe_to_move_p (p, NEXT_INSN (insn),
- &last_insn_to_move))
- {
- rtx target
- = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
- struct loop *target_loop = uid_loop[INSN_UID (target)];
- rtx loc, loc2;
- rtx tmp;
-
- /* Search for possible garbage past the conditional jumps
- and look for the last barrier. */
- for (tmp = last_insn_to_move;
- tmp && GET_CODE (tmp) != CODE_LABEL; tmp = NEXT_INSN (tmp))
- if (GET_CODE (tmp) == BARRIER)
- last_insn_to_move = tmp;
-
- for (loc = target; loc; loc = PREV_INSN (loc))
- if (GET_CODE (loc) == BARRIER
- /* Don't move things inside a tablejump. */
- && ((loc2 = next_nonnote_insn (loc)) == 0
- || GET_CODE (loc2) != CODE_LABEL
- || (loc2 = next_nonnote_insn (loc2)) == 0
- || GET_CODE (loc2) != JUMP_INSN
- || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
- && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
- && uid_loop[INSN_UID (loc)] == target_loop)
- break;
-
- if (loc == 0)
- for (loc = target; loc; loc = NEXT_INSN (loc))
- if (GET_CODE (loc) == BARRIER
- /* Don't move things inside a tablejump. */
- && ((loc2 = next_nonnote_insn (loc)) == 0
- || GET_CODE (loc2) != CODE_LABEL
- || (loc2 = next_nonnote_insn (loc2)) == 0
- || GET_CODE (loc2) != JUMP_INSN
- || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
- && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
- && uid_loop[INSN_UID (loc)] == target_loop)
- break;
-
- if (loc)
- {
- rtx cond_label = JUMP_LABEL (p);
- rtx new_label = get_label_after (p);
-
- /* Ensure our label doesn't go away. */
- LABEL_NUSES (cond_label)++;
-
- /* Verify that uid_loop is large enough and that
- we can invert P. */
- if (invert_jump (p, new_label, 1))
- {
- rtx q, r;
-
- /* If no suitable BARRIER was found, create a suitable
- one before TARGET. Since TARGET is a fall through
- path, we'll need to insert a jump around our block
- and add a BARRIER before TARGET.
-
- This creates an extra unconditional jump outside
- the loop. However, the benefits of removing rarely
- executed instructions from inside the loop usually
- outweighs the cost of the extra unconditional jump
- outside the loop. */
- if (loc == 0)
- {
- rtx temp;
-
- temp = gen_jump (JUMP_LABEL (insn));
- temp = emit_jump_insn_before (temp, target);
- JUMP_LABEL (temp) = JUMP_LABEL (insn);
- LABEL_NUSES (JUMP_LABEL (insn))++;
- loc = emit_barrier_before (target);
- }
-
- /* Include the BARRIER after INSN and copy the
- block after LOC. */
- if (squeeze_notes (&new_label, &last_insn_to_move))
- abort ();
- reorder_insns (new_label, last_insn_to_move, loc);
-
- /* All those insns are now in TARGET_LOOP. */
- for (q = new_label;
- q != NEXT_INSN (last_insn_to_move);
- q = NEXT_INSN (q))
- uid_loop[INSN_UID (q)] = target_loop;
-
- /* The label jumped to by INSN is no longer a loop
- exit. Unless INSN does not have a label (e.g.,
- it is a RETURN insn), search loop->exit_labels
- to find its label_ref, and remove it. Also turn
- off LABEL_OUTSIDE_LOOP_P bit. */
- if (JUMP_LABEL (insn))
- {
- for (q = 0, r = this_loop->exit_labels;
- r;
- q = r, r = LABEL_NEXTREF (r))
- if (XEXP (r, 0) == JUMP_LABEL (insn))
- {
- LABEL_OUTSIDE_LOOP_P (r) = 0;
- if (q)
- LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
- else
- this_loop->exit_labels = LABEL_NEXTREF (r);
- break;
- }
-
- for (loop = this_loop; loop && loop != target_loop;
- loop = loop->outer)
- loop->exit_count--;
-
- /* If we didn't find it, then something is
- wrong. */
- if (! r)
- abort ();
- }
-
- /* P is now a jump outside the loop, so it must be put
- in loop->exit_labels, and marked as such.
- The easiest way to do this is to just call
- mark_loop_jump again for P. */
- mark_loop_jump (PATTERN (p), this_loop);
-
- /* If INSN now jumps to the insn after it,
- delete INSN. */
- if (JUMP_LABEL (insn) != 0
- && (next_real_insn (JUMP_LABEL (insn))
- == next_real_insn (insn)))
- delete_related_insns (insn);
- }
-
- /* Continue the loop after where the conditional
- branch used to jump, since the only branch insn
- in the block (if it still remains) is an inter-loop
- branch and hence needs no processing. */
- insn = NEXT_INSN (cond_label);
-
- if (--LABEL_NUSES (cond_label) == 0)
- delete_related_insns (cond_label);
-
- /* This loop will be continued with NEXT_INSN (insn). */
- insn = PREV_INSN (insn);
- }
- }
- }
- }
-}
-
-/* If any label in X jumps to a loop different from LOOP_NUM and any of the
- loops it is contained in, mark the target loop invalid.
-
- For speed, we assume that X is part of a pattern of a JUMP_INSN. */
-
-static void
-mark_loop_jump (rtx x, struct loop *loop)
-{
- struct loop *dest_loop;
- struct loop *outer_loop;
- int i;
-
- switch (GET_CODE (x))
- {
- case PC:
- case USE:
- case CLOBBER:
- case REG:
- case MEM:
- case CONST_INT:
- case CONST_DOUBLE:
- case RETURN:
- return;
-
- case CONST:
- /* There could be a label reference in here. */
- mark_loop_jump (XEXP (x, 0), loop);
- return;
-
- case PLUS:
- case MINUS:
- case MULT:
- mark_loop_jump (XEXP (x, 0), loop);
- mark_loop_jump (XEXP (x, 1), loop);
- return;
-
- case LO_SUM:
- /* This may refer to a LABEL_REF or SYMBOL_REF. */
- mark_loop_jump (XEXP (x, 1), loop);
- return;
-
- case SIGN_EXTEND:
- case ZERO_EXTEND:
- mark_loop_jump (XEXP (x, 0), loop);
- return;
-
- case LABEL_REF:
- dest_loop = uid_loop[INSN_UID (XEXP (x, 0))];
-
- /* Link together all labels that branch outside the loop. This
- is used by final_[bg]iv_value and the loop unrolling code. Also
- mark this LABEL_REF so we know that this branch should predict
- false. */
-
- /* A check to make sure the label is not in an inner nested loop,
- since this does not count as a loop exit. */
- if (dest_loop)
- {
- for (outer_loop = dest_loop; outer_loop;
- outer_loop = outer_loop->outer)
- if (outer_loop == loop)
- break;
- }
- else
- outer_loop = NULL;
-
- if (loop && ! outer_loop)
- {
- LABEL_OUTSIDE_LOOP_P (x) = 1;
- LABEL_NEXTREF (x) = loop->exit_labels;
- loop->exit_labels = x;
-
- for (outer_loop = loop;
- outer_loop && outer_loop != dest_loop;
- outer_loop = outer_loop->outer)
- outer_loop->exit_count++;
- }
-
- /* If this is inside a loop, but not in the current loop or one enclosed
- by it, it invalidates at least one loop. */
-
- if (! dest_loop)
- return;
-
- /* We must invalidate every nested loop containing the target of this
- label, except those that also contain the jump insn. */
-
- for (; dest_loop; dest_loop = dest_loop->outer)
- {
- /* Stop when we reach a loop that also contains the jump insn. */
- for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
- if (dest_loop == outer_loop)
- return;
-
- /* If we get here, we know we need to invalidate a loop. */
- if (loop_dump_stream && ! dest_loop->invalid)
- fprintf (loop_dump_stream,
- "\nLoop at %d ignored due to multiple entry points.\n",
- INSN_UID (dest_loop->start));
-
- dest_loop->invalid = 1;
- }
- return;
-
- case SET:
- /* If this is not setting pc, ignore. */
- if (SET_DEST (x) == pc_rtx)
- mark_loop_jump (SET_SRC (x), loop);
- return;
-
- case IF_THEN_ELSE:
- mark_loop_jump (XEXP (x, 1), loop);
- mark_loop_jump (XEXP (x, 2), loop);
- return;
-
- case PARALLEL:
- case ADDR_VEC:
- for (i = 0; i < XVECLEN (x, 0); i++)
- mark_loop_jump (XVECEXP (x, 0, i), loop);
- return;
-
- case ADDR_DIFF_VEC:
- for (i = 0; i < XVECLEN (x, 1); i++)
- mark_loop_jump (XVECEXP (x, 1, i), loop);
- return;
-
- default:
- /* Strictly speaking this is not a jump into the loop, only a possible
- jump out of the loop. However, we have no way to link the destination
- of this jump onto the list of exit labels. To be safe we mark this
- loop and any containing loops as invalid. */
- if (loop)
- {
- for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
- {
- if (loop_dump_stream && ! outer_loop->invalid)
- fprintf (loop_dump_stream,
- "\nLoop at %d ignored due to unknown exit jump.\n",
- INSN_UID (outer_loop->start));
- outer_loop->invalid = 1;
- }
- }
- return;
- }
-}
-
-/* Return nonzero if there is a label in the range from
- insn INSN to and including the insn whose luid is END
- INSN must have an assigned luid (i.e., it must not have
- been previously created by loop.c). */
-
-static int
-labels_in_range_p (rtx insn, int end)
-{
- while (insn && INSN_LUID (insn) <= end)
- {
- if (GET_CODE (insn) == CODE_LABEL)
- return 1;
- insn = NEXT_INSN (insn);
- }
-
- return 0;
-}
-
-/* Record that a memory reference X is being set. */
-
-static void
-note_addr_stored (rtx x, rtx y ATTRIBUTE_UNUSED,
- void *data ATTRIBUTE_UNUSED)
-{
- struct loop_info *loop_info = data;
-
- if (x == 0 || GET_CODE (x) != MEM)
- return;
-
- /* Count number of memory writes.
- This affects heuristics in strength_reduce. */
- loop_info->num_mem_sets++;
-
- /* BLKmode MEM means all memory is clobbered. */
- if (GET_MODE (x) == BLKmode)
- {
- if (RTX_UNCHANGING_P (x))
- loop_info->unknown_constant_address_altered = 1;
- else
- loop_info->unknown_address_altered = 1;
-
- return;
- }
-
- loop_info->store_mems = gen_rtx_EXPR_LIST (VOIDmode, x,
- loop_info->store_mems);
-}
-
-/* X is a value modified by an INSN that references a biv inside a loop
- exit test (ie, X is somehow related to the value of the biv). If X
- is a pseudo that is used more than once, then the biv is (effectively)
- used more than once. DATA is a pointer to a loop_regs structure. */
-
-static void
-note_set_pseudo_multiple_uses (rtx x, rtx y ATTRIBUTE_UNUSED, void *data)
-{
- struct loop_regs *regs = (struct loop_regs *) data;
-
- if (x == 0)
- return;
-
- while (GET_CODE (x) == STRICT_LOW_PART
- || GET_CODE (x) == SIGN_EXTRACT
- || GET_CODE (x) == ZERO_EXTRACT
- || GET_CODE (x) == SUBREG)
- x = XEXP (x, 0);
-
- if (GET_CODE (x) != REG || REGNO (x) < FIRST_PSEUDO_REGISTER)
- return;
-
- /* If we do not have usage information, or if we know the register
- is used more than once, note that fact for check_dbra_loop. */
- if (REGNO (x) >= max_reg_before_loop
- || ! regs->array[REGNO (x)].single_usage
- || regs->array[REGNO (x)].single_usage == const0_rtx)
- regs->multiple_uses = 1;
-}
-
-/* Return nonzero if the rtx X is invariant over the current loop.
-
- The value is 2 if we refer to something only conditionally invariant.
-
- A memory ref is invariant if it is not volatile and does not conflict
- with anything stored in `loop_info->store_mems'. */
-
-int
-loop_invariant_p (const struct loop *loop, rtx x)
-{
- struct loop_info *loop_info = LOOP_INFO (loop);
- struct loop_regs *regs = LOOP_REGS (loop);
- int i;
- enum rtx_code code;
- const char *fmt;
- int conditional = 0;
- rtx mem_list_entry;
-
- if (x == 0)
- return 1;
- code = GET_CODE (x);
- switch (code)
- {
- case CONST_INT:
- case CONST_DOUBLE:
- case SYMBOL_REF:
- case CONST:
- return 1;
-
- case LABEL_REF:
- /* A LABEL_REF is normally invariant, however, if we are unrolling
- loops, and this label is inside the loop, then it isn't invariant.
- This is because each unrolled copy of the loop body will have
- a copy of this label. If this was invariant, then an insn loading
- the address of this label into a register might get moved outside
- the loop, and then each loop body would end up using the same label.
-
- We don't know the loop bounds here though, so just fail for all
- labels. */
- if (flag_old_unroll_loops)
- return 0;
- else
- return 1;
-
- case PC:
- case CC0:
- case UNSPEC_VOLATILE:
- return 0;
-
- case REG:
- /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
- since the reg might be set by initialization within the loop. */
-
- if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
- || x == arg_pointer_rtx || x == pic_offset_table_rtx)
- && ! current_function_has_nonlocal_goto)
- return 1;
-
- if (LOOP_INFO (loop)->has_call
- && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
- return 0;
-
- /* Out-of-range regs can occur when we are called from unrolling.
- These registers created by the unroller are set in the loop,
- hence are never invariant.
- Other out-of-range regs can be generated by load_mems; those that
- are written to in the loop are not invariant, while those that are
- not written to are invariant. It would be easy for load_mems
- to set n_times_set correctly for these registers, however, there
- is no easy way to distinguish them from registers created by the
- unroller. */
-
- if (REGNO (x) >= (unsigned) regs->num)
- return 0;
-
- if (regs->array[REGNO (x)].set_in_loop < 0)
- return 2;
-
- return regs->array[REGNO (x)].set_in_loop == 0;
-
- case MEM:
- /* Volatile memory references must be rejected. Do this before
- checking for read-only items, so that volatile read-only items
- will be rejected also. */
- if (MEM_VOLATILE_P (x))
- return 0;
-
- /* See if there is any dependence between a store and this load. */
- mem_list_entry = loop_info->store_mems;
- while (mem_list_entry)
- {
- if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
- x, rtx_varies_p))
- return 0;
-
- mem_list_entry = XEXP (mem_list_entry, 1);
- }
-
- /* It's not invalidated by a store in memory
- but we must still verify the address is invariant. */
- break;
-
- case ASM_OPERANDS:
- /* Don't mess with insns declared volatile. */
- if (MEM_VOLATILE_P (x))
- return 0;
- break;
-
- default:
- break;
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- int tem = loop_invariant_p (loop, XEXP (x, i));
- if (tem == 0)
- return 0;
- if (tem == 2)
- conditional = 1;
- }
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- {
- int tem = loop_invariant_p (loop, XVECEXP (x, i, j));
- if (tem == 0)
- return 0;
- if (tem == 2)
- conditional = 1;
- }
-
- }
- }
-
- return 1 + conditional;
-}
-
-/* Return nonzero if all the insns in the loop that set REG
- are INSN and the immediately following insns,
- and if each of those insns sets REG in an invariant way
- (not counting uses of REG in them).
-
- The value is 2 if some of these insns are only conditionally invariant.
-
- We assume that INSN itself is the first set of REG
- and that its source is invariant. */
-
-static int
-consec_sets_invariant_p (const struct loop *loop, rtx reg, int n_sets,
- rtx insn)
-{
- struct loop_regs *regs = LOOP_REGS (loop);
- rtx p = insn;
- unsigned int regno = REGNO (reg);
- rtx temp;
- /* Number of sets we have to insist on finding after INSN. */
- int count = n_sets - 1;
- int old = regs->array[regno].set_in_loop;
- int value = 0;
- int this;
-
- /* If N_SETS hit the limit, we can't rely on its value. */
- if (n_sets == 127)
- return 0;
-
- regs->array[regno].set_in_loop = 0;
-
- while (count > 0)
- {
- enum rtx_code code;
- rtx set;
-
- p = NEXT_INSN (p);
- code = GET_CODE (p);
-
- /* If library call, skip to end of it. */
- if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
- p = XEXP (temp, 0);
-
- this = 0;
- if (code == INSN
- && (set = single_set (p))
- && GET_CODE (SET_DEST (set)) == REG
- && REGNO (SET_DEST (set)) == regno)
- {
- this = loop_invariant_p (loop, SET_SRC (set));
- if (this != 0)
- value |= this;
- else if ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX)))
- {
- /* If this is a libcall, then any invariant REG_EQUAL note is OK.
- If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
- notes are OK. */
- this = (CONSTANT_P (XEXP (temp, 0))
- || (find_reg_note (p, REG_RETVAL, NULL_RTX)
- && loop_invariant_p (loop, XEXP (temp, 0))));
- if (this != 0)
- value |= this;
- }
- }
- if (this != 0)
- count--;
- else if (code != NOTE)
- {
- regs->array[regno].set_in_loop = old;
- return 0;
- }
- }
-
- regs->array[regno].set_in_loop = old;
- /* If loop_invariant_p ever returned 2, we return 2. */
- return 1 + (value & 2);
-}
-
-#if 0
-/* I don't think this condition is sufficient to allow INSN
- to be moved, so we no longer test it. */
-
-/* Return 1 if all insns in the basic block of INSN and following INSN
- that set REG are invariant according to TABLE. */
-
-static int
-all_sets_invariant_p (rtx reg, rtx insn, short *table)
-{
- rtx p = insn;
- int regno = REGNO (reg);
-
- while (1)
- {
- enum rtx_code code;
- p = NEXT_INSN (p);
- code = GET_CODE (p);
- if (code == CODE_LABEL || code == JUMP_INSN)
- return 1;
- if (code == INSN && GET_CODE (PATTERN (p)) == SET
- && GET_CODE (SET_DEST (PATTERN (p))) == REG
- && REGNO (SET_DEST (PATTERN (p))) == regno)
- {
- if (! loop_invariant_p (loop, SET_SRC (PATTERN (p)), table))
- return 0;
- }
- }
-}
-#endif /* 0 */
-
-/* Look at all uses (not sets) of registers in X. For each, if it is
- the single use, set USAGE[REGNO] to INSN; if there was a previous use in
- a different insn, set USAGE[REGNO] to const0_rtx. */
-
-static void
-find_single_use_in_loop (struct loop_regs *regs, rtx insn, rtx x)
-{
- enum rtx_code code = GET_CODE (x);
- const char *fmt = GET_RTX_FORMAT (code);
- int i, j;
-
- if (code == REG)
- regs->array[REGNO (x)].single_usage
- = (regs->array[REGNO (x)].single_usage != 0
- && regs->array[REGNO (x)].single_usage != insn)
- ? const0_rtx : insn;
-
- else if (code == SET)
- {
- /* Don't count SET_DEST if it is a REG; otherwise count things
- in SET_DEST because if a register is partially modified, it won't
- show up as a potential movable so we don't care how USAGE is set
- for it. */
- if (GET_CODE (SET_DEST (x)) != REG)
- find_single_use_in_loop (regs, insn, SET_DEST (x));
- find_single_use_in_loop (regs, insn, SET_SRC (x));
- }
- else
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e' && XEXP (x, i) != 0)
- find_single_use_in_loop (regs, insn, XEXP (x, i));
- else if (fmt[i] == 'E')
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- find_single_use_in_loop (regs, insn, XVECEXP (x, i, j));
- }
-}
-
-/* Count and record any set in X which is contained in INSN. Update
- REGS->array[I].MAY_NOT_OPTIMIZE and LAST_SET for any register I set
- in X. */
-
-static void
-count_one_set (struct loop_regs *regs, rtx insn, rtx x, rtx *last_set)
-{
- if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
- /* Don't move a reg that has an explicit clobber.
- It's not worth the pain to try to do it correctly. */
- regs->array[REGNO (XEXP (x, 0))].may_not_optimize = 1;
-
- if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
- {
- rtx dest = SET_DEST (x);
- while (GET_CODE (dest) == SUBREG
- || GET_CODE (dest) == ZERO_EXTRACT
- || GET_CODE (dest) == SIGN_EXTRACT
- || GET_CODE (dest) == STRICT_LOW_PART)
- dest = XEXP (dest, 0);
- if (GET_CODE (dest) == REG)
- {
- int i;
- int regno = REGNO (dest);
- for (i = 0; i < LOOP_REGNO_NREGS (regno, dest); i++)
- {
- /* If this is the first setting of this reg
- in current basic block, and it was set before,
- it must be set in two basic blocks, so it cannot
- be moved out of the loop. */
- if (regs->array[regno].set_in_loop > 0
- && last_set[regno] == 0)
- regs->array[regno+i].may_not_optimize = 1;
- /* If this is not first setting in current basic block,
- see if reg was used in between previous one and this.
- If so, neither one can be moved. */
- if (last_set[regno] != 0
- && reg_used_between_p (dest, last_set[regno], insn))
- regs->array[regno+i].may_not_optimize = 1;
- if (regs->array[regno+i].set_in_loop < 127)
- ++regs->array[regno+i].set_in_loop;
- last_set[regno+i] = insn;
- }
- }
- }
-}
-
-/* Given a loop that is bounded by LOOP->START and LOOP->END and that
- is entered at LOOP->SCAN_START, return 1 if the register set in SET
- contained in insn INSN is used by any insn that precedes INSN in
- cyclic order starting from the loop entry point.
-
- We don't want to use INSN_LUID here because if we restrict INSN to those
- that have a valid INSN_LUID, it means we cannot move an invariant out
- from an inner loop past two loops. */
-
-static int
-loop_reg_used_before_p (const struct loop *loop, rtx set, rtx insn)
-{
- rtx reg = SET_DEST (set);
- rtx p;
-
- /* Scan forward checking for register usage. If we hit INSN, we
- are done. Otherwise, if we hit LOOP->END, wrap around to LOOP->START. */
- for (p = loop->scan_start; p != insn; p = NEXT_INSN (p))
- {
- if (INSN_P (p) && reg_overlap_mentioned_p (reg, PATTERN (p)))
- return 1;
-
- if (p == loop->end)
- p = loop->start;
- }
-
- return 0;
-}
-
-
-/* Information we collect about arrays that we might want to prefetch. */
-struct prefetch_info
-{
- struct iv_class *class; /* Class this prefetch is based on. */
- struct induction *giv; /* GIV this prefetch is based on. */
- rtx base_address; /* Start prefetching from this address plus
- index. */
- HOST_WIDE_INT index;
- HOST_WIDE_INT stride; /* Prefetch stride in bytes in each
- iteration. */
- unsigned int bytes_accessed; /* Sum of sizes of all accesses to this
- prefetch area in one iteration. */
- unsigned int total_bytes; /* Total bytes loop will access in this block.
- This is set only for loops with known
- iteration counts and is 0xffffffff
- otherwise. */
- int prefetch_in_loop; /* Number of prefetch insns in loop. */
- int prefetch_before_loop; /* Number of prefetch insns before loop. */
- unsigned int write : 1; /* 1 for read/write prefetches. */
-};
-
-/* Data used by check_store function. */
-struct check_store_data
-{
- rtx mem_address;
- int mem_write;
-};
-
-static void check_store (rtx, rtx, void *);
-static void emit_prefetch_instructions (struct loop *);
-static int rtx_equal_for_prefetch_p (rtx, rtx);
-
-/* Set mem_write when mem_address is found. Used as callback to
- note_stores. */
-static void
-check_store (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
-{
- struct check_store_data *d = (struct check_store_data *) data;
-
- if ((GET_CODE (x) == MEM) && rtx_equal_p (d->mem_address, XEXP (x, 0)))
- d->mem_write = 1;
-}
-
-/* Like rtx_equal_p, but attempts to swap commutative operands. This is
- important to get some addresses combined. Later more sophisticated
- transformations can be added when necessary.
-
- ??? Same trick with swapping operand is done at several other places.
- It can be nice to develop some common way to handle this. */
-
-static int
-rtx_equal_for_prefetch_p (rtx x, rtx y)
-{
- int i;
- int j;
- enum rtx_code code = GET_CODE (x);
- const char *fmt;
-
- if (x == y)
- return 1;
- if (code != GET_CODE (y))
- return 0;
-
- code = GET_CODE (x);
-
- if (GET_RTX_CLASS (code) == 'c')
- {
- return ((rtx_equal_for_prefetch_p (XEXP (x, 0), XEXP (y, 0))
- && rtx_equal_for_prefetch_p (XEXP (x, 1), XEXP (y, 1)))
- || (rtx_equal_for_prefetch_p (XEXP (x, 0), XEXP (y, 1))
- && rtx_equal_for_prefetch_p (XEXP (x, 1), XEXP (y, 0))));
- }
- /* Compare the elements. If any pair of corresponding elements fails to
- match, return 0 for the whole thing. */
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- switch (fmt[i])
- {
- case 'w':
- if (XWINT (x, i) != XWINT (y, i))
- return 0;
- break;
-
- case 'i':
- if (XINT (x, i) != XINT (y, i))
- return 0;
- break;
-
- case 'E':
- /* Two vectors must have the same length. */
- if (XVECLEN (x, i) != XVECLEN (y, i))
- return 0;
-
- /* And the corresponding elements must match. */
- for (j = 0; j < XVECLEN (x, i); j++)
- if (rtx_equal_for_prefetch_p (XVECEXP (x, i, j),
- XVECEXP (y, i, j)) == 0)
- return 0;
- break;
-
- case 'e':
- if (rtx_equal_for_prefetch_p (XEXP (x, i), XEXP (y, i)) == 0)
- return 0;
- break;
-
- case 's':
- if (strcmp (XSTR (x, i), XSTR (y, i)))
- return 0;
- break;
-
- case 'u':
- /* These are just backpointers, so they don't matter. */
- break;
-
- case '0':
- break;
-
- /* It is believed that rtx's at this level will never
- contain anything but integers and other rtx's,
- except for within LABEL_REFs and SYMBOL_REFs. */
- default:
- abort ();
- }
- }
- return 1;
-}
-
-/* Remove constant addition value from the expression X (when present)
- and return it. */
-
-static HOST_WIDE_INT
-remove_constant_addition (rtx *x)
-{
- HOST_WIDE_INT addval = 0;
- rtx exp = *x;
-
- /* Avoid clobbering a shared CONST expression. */
- if (GET_CODE (exp) == CONST)
- {
- if (GET_CODE (XEXP (exp, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (exp, 0), 0)) == SYMBOL_REF
- && GET_CODE (XEXP (XEXP (exp, 0), 1)) == CONST_INT)
- {
- *x = XEXP (XEXP (exp, 0), 0);
- return INTVAL (XEXP (XEXP (exp, 0), 1));
- }
- return 0;
- }
-
- if (GET_CODE (exp) == CONST_INT)
- {
- addval = INTVAL (exp);
- *x = const0_rtx;
- }
-
- /* For plus expression recurse on ourself. */
- else if (GET_CODE (exp) == PLUS)
- {
- addval += remove_constant_addition (&XEXP (exp, 0));
- addval += remove_constant_addition (&XEXP (exp, 1));
-
- /* In case our parameter was constant, remove extra zero from the
- expression. */
- if (XEXP (exp, 0) == const0_rtx)
- *x = XEXP (exp, 1);
- else if (XEXP (exp, 1) == const0_rtx)
- *x = XEXP (exp, 0);
- }
-
- return addval;
-}
-
-/* Attempt to identify accesses to arrays that are most likely to cause cache
- misses, and emit prefetch instructions a few prefetch blocks forward.
-
- To detect the arrays we use the GIV information that was collected by the
- strength reduction pass.
-
- The prefetch instructions are generated after the GIV information is done
- and before the strength reduction process. The new GIVs are injected into
- the strength reduction tables, so the prefetch addresses are optimized as
- well.
-
- GIVs are split into base address, stride, and constant addition values.
- GIVs with the same address, stride and close addition values are combined
- into a single prefetch. Also writes to GIVs are detected, so that prefetch
- for write instructions can be used for the block we write to, on machines
- that support write prefetches.
-
- Several heuristics are used to determine when to prefetch. They are
- controlled by defined symbols that can be overridden for each target. */
-
-static void
-emit_prefetch_instructions (struct loop *loop)
-{
- int num_prefetches = 0;
- int num_real_prefetches = 0;
- int num_real_write_prefetches = 0;
- int num_prefetches_before = 0;
- int num_write_prefetches_before = 0;
- int ahead = 0;
- int i;
- struct iv_class *bl;
- struct induction *iv;
- struct prefetch_info info[MAX_PREFETCHES];
- struct loop_ivs *ivs = LOOP_IVS (loop);
-
- if (!HAVE_prefetch || PREFETCH_BLOCK == 0)
- return;
-
- /* Consider only loops w/o calls. When a call is done, the loop is probably
- slow enough to read the memory. */
- if (PREFETCH_NO_CALL && LOOP_INFO (loop)->has_call)
- {
- if (loop_dump_stream)
- fprintf (loop_dump_stream, "Prefetch: ignoring loop: has call.\n");
-
- return;
- }
-
- /* Don't prefetch in loops known to have few iterations. */
- if (PREFETCH_NO_LOW_LOOPCNT
- && LOOP_INFO (loop)->n_iterations
- && LOOP_INFO (loop)->n_iterations <= PREFETCH_LOW_LOOPCNT)
- {
- if (loop_dump_stream)
- fprintf (loop_dump_stream,
- "Prefetch: ignoring loop: not enough iterations.\n");
- return;
- }
-
- /* Search all induction variables and pick those interesting for the prefetch
- machinery. */
- for (bl = ivs->list; bl; bl = bl->next)
- {
- struct induction *biv = bl->biv, *biv1;
- int basestride = 0;
-
- biv1 = biv;
-
- /* Expect all BIVs to be executed in each iteration. This makes our
- analysis more conservative. */
- while (biv1)
- {
- /* Discard non-constant additions that we can't handle well yet, and
- BIVs that are executed multiple times; such BIVs ought to be
- handled in the nested loop. We accept not_every_iteration BIVs,
- since these only result in larger strides and make our
- heuristics more conservative. */
- if (GET_CODE (biv->add_val) != CONST_INT)
- {
- if (loop_dump_stream)
- {
- fprintf (loop_dump_stream,
- "Prefetch: ignoring biv %d: non-constant addition at insn %d:",
- REGNO (biv->src_reg), INSN_UID (biv->insn));
- print_rtl (loop_dump_stream, biv->add_val);
- fprintf (loop_dump_stream, "\n");
- }
- break;
- }
-
- if (biv->maybe_multiple)
- {
- if (loop_dump_stream)
- {
- fprintf (loop_dump_stream,
- "Prefetch: ignoring biv %d: maybe_multiple at insn %i:",
- REGNO (biv->src_reg), INSN_UID (biv->insn));
- print_rtl (loop_dump_stream, biv->add_val);
- fprintf (loop_dump_stream, "\n");
- }
- break;
- }
-
- basestride += INTVAL (biv1->add_val);
- biv1 = biv1->next_iv;
- }
-
- if (biv1 || !basestride)
- continue;
-
- for (iv = bl->giv; iv; iv = iv->next_iv)
- {
- rtx address;
- rtx temp;
- HOST_WIDE_INT index = 0;
- int add = 1;
- HOST_WIDE_INT stride = 0;
- int stride_sign = 1;
- struct check_store_data d;
- const char *ignore_reason = NULL;
- int size = GET_MODE_SIZE (GET_MODE (iv));
-
- /* See whether an induction variable is interesting to us and if
- not, report the reason. */
- if (iv->giv_type != DEST_ADDR)
- ignore_reason = "giv is not a destination address";
-
- /* We are interested only in constant stride memory references
- in order to be able to compute density easily. */
- else if (GET_CODE (iv->mult_val) != CONST_INT)
- ignore_reason = "stride is not constant";
-
- else
- {
- stride = INTVAL (iv->mult_val) * basestride;
- if (stride < 0)
- {
- stride = -stride;
- stride_sign = -1;
- }
-
- /* On some targets, reversed order prefetches are not
- worthwhile. */
- if (PREFETCH_NO_REVERSE_ORDER && stride_sign < 0)
- ignore_reason = "reversed order stride";
-
- /* Prefetch of accesses with an extreme stride might not be
- worthwhile, either. */
- else if (PREFETCH_NO_EXTREME_STRIDE
- && stride > PREFETCH_EXTREME_STRIDE)
- ignore_reason = "extreme stride";
-
- /* Ignore GIVs with varying add values; we can't predict the
- value for the next iteration. */
- else if (!loop_invariant_p (loop, iv->add_val))
- ignore_reason = "giv has varying add value";
-
- /* Ignore GIVs in the nested loops; they ought to have been
- handled already. */
- else if (iv->maybe_multiple)
- ignore_reason = "giv is in nested loop";
- }
-
- if (ignore_reason != NULL)
- {
- if (loop_dump_stream)
- fprintf (loop_dump_stream,
- "Prefetch: ignoring giv at %d: %s.\n",
- INSN_UID (iv->insn), ignore_reason);
- continue;
- }
-
- /* Determine the pointer to the basic array we are examining. It is
- the sum of the BIV's initial value and the GIV's add_val. */
- address = copy_rtx (iv->add_val);
- temp = copy_rtx (bl->initial_value);
-
- address = simplify_gen_binary (PLUS, Pmode, temp, address);
- index = remove_constant_addition (&address);
-
- d.mem_write = 0;
- d.mem_address = *iv->location;
-
- /* When the GIV is not always executed, we might be better off by
- not dirtying the cache pages. */
- if (PREFETCH_CONDITIONAL || iv->always_executed)
- note_stores (PATTERN (iv->insn), check_store, &d);
- else
- {
- if (loop_dump_stream)
- fprintf (loop_dump_stream, "Prefetch: Ignoring giv at %d: %s\n",
- INSN_UID (iv->insn), "in conditional code.");
- continue;
- }
-
- /* Attempt to find another prefetch to the same array and see if we
- can merge this one. */
- for (i = 0; i < num_prefetches; i++)
- if (rtx_equal_for_prefetch_p (address, info[i].base_address)
- && stride == info[i].stride)
- {
- /* In case both access same array (same location
- just with small difference in constant indexes), merge
- the prefetches. Just do the later and the earlier will
- get prefetched from previous iteration.
- The artificial threshold should not be too small,
- but also not bigger than small portion of memory usually
- traversed by single loop. */
- if (index >= info[i].index
- && index - info[i].index < PREFETCH_EXTREME_DIFFERENCE)
- {
- info[i].write |= d.mem_write;
- info[i].bytes_accessed += size;
- info[i].index = index;
- info[i].giv = iv;
- info[i].class = bl;
- info[num_prefetches].base_address = address;
- add = 0;
- break;
- }
-
- if (index < info[i].index
- && info[i].index - index < PREFETCH_EXTREME_DIFFERENCE)
- {
- info[i].write |= d.mem_write;
- info[i].bytes_accessed += size;
- add = 0;
- break;
- }
- }
-
- /* Merging failed. */
- if (add)
- {
- info[num_prefetches].giv = iv;
- info[num_prefetches].class = bl;
- info[num_prefetches].index = index;
- info[num_prefetches].stride = stride;
- info[num_prefetches].base_address = address;
- info[num_prefetches].write = d.mem_write;
- info[num_prefetches].bytes_accessed = size;
- num_prefetches++;
- if (num_prefetches >= MAX_PREFETCHES)
- {
- if (loop_dump_stream)
- fprintf (loop_dump_stream,
- "Maximal number of prefetches exceeded.\n");
- return;
- }
- }
- }
- }
-
- for (i = 0; i < num_prefetches; i++)
- {
- int density;
-
- /* Attempt to calculate the total number of bytes fetched by all
- iterations of the loop. Avoid overflow. */
- if (LOOP_INFO (loop)->n_iterations
- && ((unsigned HOST_WIDE_INT) (0xffffffff / info[i].stride)
- >= LOOP_INFO (loop)->n_iterations))
- info[i].total_bytes = info[i].stride * LOOP_INFO (loop)->n_iterations;
- else
- info[i].total_bytes = 0xffffffff;
-
- density = info[i].bytes_accessed * 100 / info[i].stride;
-
- /* Prefetch might be worthwhile only when the loads/stores are dense. */
- if (PREFETCH_ONLY_DENSE_MEM)
- if (density * 256 > PREFETCH_DENSE_MEM * 100
- && (info[i].total_bytes / PREFETCH_BLOCK
- >= PREFETCH_BLOCKS_BEFORE_LOOP_MIN))
- {
- info[i].prefetch_before_loop = 1;
- info[i].prefetch_in_loop
- = (info[i].total_bytes / PREFETCH_BLOCK
- > PREFETCH_BLOCKS_BEFORE_LOOP_MAX);
- }
- else
- {
- info[i].prefetch_in_loop = 0, info[i].prefetch_before_loop = 0;
- if (loop_dump_stream)
- fprintf (loop_dump_stream,
- "Prefetch: ignoring giv at %d: %d%% density is too low.\n",
- INSN_UID (info[i].giv->insn), density);
- }
- else
- info[i].prefetch_in_loop = 1, info[i].prefetch_before_loop = 1;
-
- /* Find how many prefetch instructions we'll use within the loop. */
- if (info[i].prefetch_in_loop != 0)
- {
- info[i].prefetch_in_loop = ((info[i].stride + PREFETCH_BLOCK - 1)
- / PREFETCH_BLOCK);
- num_real_prefetches += info[i].prefetch_in_loop;
- if (info[i].write)
- num_real_write_prefetches += info[i].prefetch_in_loop;
- }
- }
-
- /* Determine how many iterations ahead to prefetch within the loop, based
- on how many prefetches we currently expect to do within the loop. */
- if (num_real_prefetches != 0)
- {
- if ((ahead = SIMULTANEOUS_PREFETCHES / num_real_prefetches) == 0)
- {
- if (loop_dump_stream)
- fprintf (loop_dump_stream,
- "Prefetch: ignoring prefetches within loop: ahead is zero; %d < %d\n",
- SIMULTANEOUS_PREFETCHES, num_real_prefetches);
- num_real_prefetches = 0, num_real_write_prefetches = 0;
- }
- }
- /* We'll also use AHEAD to determine how many prefetch instructions to
- emit before a loop, so don't leave it zero. */
- if (ahead == 0)
- ahead = PREFETCH_BLOCKS_BEFORE_LOOP_MAX;
-
- for (i = 0; i < num_prefetches; i++)
- {
- /* Update if we've decided not to prefetch anything within the loop. */
- if (num_real_prefetches == 0)
- info[i].prefetch_in_loop = 0;
-
- /* Find how many prefetch instructions we'll use before the loop. */
- if (info[i].prefetch_before_loop != 0)
- {
- int n = info[i].total_bytes / PREFETCH_BLOCK;
- if (n > ahead)
- n = ahead;
- info[i].prefetch_before_loop = n;
- num_prefetches_before += n;
- if (info[i].write)
- num_write_prefetches_before += n;
- }
-
- if (loop_dump_stream)
- {
- if (info[i].prefetch_in_loop == 0
- && info[i].prefetch_before_loop == 0)
- continue;
- fprintf (loop_dump_stream, "Prefetch insn: %d",
- INSN_UID (info[i].giv->insn));
- fprintf (loop_dump_stream,
- "; in loop: %d; before: %d; %s\n",
- info[i].prefetch_in_loop,
- info[i].prefetch_before_loop,
- info[i].write ? "read/write" : "read only");
- fprintf (loop_dump_stream,
- " density: %d%%; bytes_accessed: %u; total_bytes: %u\n",
- (int) (info[i].bytes_accessed * 100 / info[i].stride),
- info[i].bytes_accessed, info[i].total_bytes);
- fprintf (loop_dump_stream, " index: " HOST_WIDE_INT_PRINT_DEC
- "; stride: " HOST_WIDE_INT_PRINT_DEC "; address: ",
- info[i].index, info[i].stride);
- print_rtl (loop_dump_stream, info[i].base_address);
- fprintf (loop_dump_stream, "\n");
- }
- }
-
- if (num_real_prefetches + num_prefetches_before > 0)
- {
- /* Record that this loop uses prefetch instructions. */
- LOOP_INFO (loop)->has_prefetch = 1;
-
- if (loop_dump_stream)
- {
- fprintf (loop_dump_stream, "Real prefetches needed within loop: %d (write: %d)\n",
- num_real_prefetches, num_real_write_prefetches);
- fprintf (loop_dump_stream, "Real prefetches needed before loop: %d (write: %d)\n",
- num_prefetches_before, num_write_prefetches_before);
- }
- }
-
- for (i = 0; i < num_prefetches; i++)
- {
- int y;
-
- for (y = 0; y < info[i].prefetch_in_loop; y++)
- {
- rtx loc = copy_rtx (*info[i].giv->location);
- rtx insn;
- int bytes_ahead = PREFETCH_BLOCK * (ahead + y);
- rtx before_insn = info[i].giv->insn;
- rtx prev_insn = PREV_INSN (info[i].giv->insn);
- rtx seq;
-
- /* We can save some effort by offsetting the address on
- architectures with offsettable memory references. */
- if (offsettable_address_p (0, VOIDmode, loc))
- loc = plus_constant (loc, bytes_ahead);
- else
- {
- rtx reg = gen_reg_rtx (Pmode);
- loop_iv_add_mult_emit_before (loop, loc, const1_rtx,
- GEN_INT (bytes_ahead), reg,
- 0, before_insn);
- loc = reg;
- }
-
- start_sequence ();
- /* Make sure the address operand is valid for prefetch. */
- if (! (*insn_data[(int)CODE_FOR_prefetch].operand[0].predicate)
- (loc, insn_data[(int)CODE_FOR_prefetch].operand[0].mode))
- loc = force_reg (Pmode, loc);
- emit_insn (gen_prefetch (loc, GEN_INT (info[i].write),
- GEN_INT (3)));
- seq = get_insns ();
- end_sequence ();
- emit_insn_before (seq, before_insn);
-
- /* Check all insns emitted and record the new GIV
- information. */
- insn = NEXT_INSN (prev_insn);
- while (insn != before_insn)
- {
- insn = check_insn_for_givs (loop, insn,
- info[i].giv->always_executed,
- info[i].giv->maybe_multiple);
- insn = NEXT_INSN (insn);
- }
- }
-
- if (PREFETCH_BEFORE_LOOP)
- {
- /* Emit insns before the loop to fetch the first cache lines or,
- if we're not prefetching within the loop, everything we expect
- to need. */
- for (y = 0; y < info[i].prefetch_before_loop; y++)
- {
- rtx reg = gen_reg_rtx (Pmode);
- rtx loop_start = loop->start;
- rtx init_val = info[i].class->initial_value;
- rtx add_val = simplify_gen_binary (PLUS, Pmode,
- info[i].giv->add_val,
- GEN_INT (y * PREFETCH_BLOCK));
-
- /* Functions called by LOOP_IV_ADD_EMIT_BEFORE expect a
- non-constant INIT_VAL to have the same mode as REG, which
- in this case we know to be Pmode. */
- if (GET_MODE (init_val) != Pmode && !CONSTANT_P (init_val))
- {
- rtx seq;
-
- start_sequence ();
- init_val = convert_to_mode (Pmode, init_val, 0);
- seq = get_insns ();
- end_sequence ();
- loop_insn_emit_before (loop, 0, loop_start, seq);
- }
- loop_iv_add_mult_emit_before (loop, init_val,
- info[i].giv->mult_val,
- add_val, reg, 0, loop_start);
- emit_insn_before (gen_prefetch (reg, GEN_INT (info[i].write),
- GEN_INT (3)),
- loop_start);
- }
- }
- }
-
- return;
-}
-
-/* Communication with routines called via `note_stores'. */
-
-static rtx note_insn;
-
-/* Dummy register to have nonzero DEST_REG for DEST_ADDR type givs. */
-
-static rtx addr_placeholder;
-
-/* ??? Unfinished optimizations, and possible future optimizations,
- for the strength reduction code. */
-
-/* ??? The interaction of biv elimination, and recognition of 'constant'
- bivs, may cause problems. */
-
-/* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
- performance problems.
-
- Perhaps don't eliminate things that can be combined with an addressing
- mode. Find all givs that have the same biv, mult_val, and add_val;
- then for each giv, check to see if its only use dies in a following
- memory address. If so, generate a new memory address and check to see
- if it is valid. If it is valid, then store the modified memory address,
- otherwise, mark the giv as not done so that it will get its own iv. */
-
-/* ??? Could try to optimize branches when it is known that a biv is always
- positive. */
-
-/* ??? When replace a biv in a compare insn, we should replace with closest
- giv so that an optimized branch can still be recognized by the combiner,
- e.g. the VAX acb insn. */
-
-/* ??? Many of the checks involving uid_luid could be simplified if regscan
- was rerun in loop_optimize whenever a register was added or moved.
- Also, some of the optimizations could be a little less conservative. */
-
-/* Scan the loop body and call FNCALL for each insn. In the addition to the
- LOOP and INSN parameters pass MAYBE_MULTIPLE and NOT_EVERY_ITERATION to the
- callback.
-
- NOT_EVERY_ITERATION is 1 if current insn is not known to be executed at
- least once for every loop iteration except for the last one.
-
- MAYBE_MULTIPLE is 1 if current insn may be executed more than once for every
- loop iteration.
- */
-void
-for_each_insn_in_loop (struct loop *loop, loop_insn_callback fncall)
-{
- int not_every_iteration = 0;
- int maybe_multiple = 0;
- int past_loop_latch = 0;
- int loop_depth = 0;
- rtx p;
-
- /* If loop_scan_start points to the loop exit test, we have to be wary of
- subversive use of gotos inside expression statements. */
- if (prev_nonnote_insn (loop->scan_start) != prev_nonnote_insn (loop->start))
- maybe_multiple = back_branch_in_range_p (loop, loop->scan_start);
-
- /* Scan through loop and update NOT_EVERY_ITERATION and MAYBE_MULTIPLE. */
- for (p = next_insn_in_loop (loop, loop->scan_start);
- p != NULL_RTX;
- p = next_insn_in_loop (loop, p))
- {
- p = fncall (loop, p, not_every_iteration, maybe_multiple);
-
- /* Past CODE_LABEL, we get to insns that may be executed multiple
- times. The only way we can be sure that they can't is if every
- jump insn between here and the end of the loop either
- returns, exits the loop, is a jump to a location that is still
- behind the label, or is a jump to the loop start. */
-
- if (GET_CODE (p) == CODE_LABEL)
- {
- rtx insn = p;
-
- maybe_multiple = 0;
-
- while (1)
- {
- insn = NEXT_INSN (insn);
- if (insn == loop->scan_start)
- break;
- if (insn == loop->end)
- {
- if (loop->top != 0)
- insn = loop->top;
- else
- break;
- if (insn == loop->scan_start)
- break;
- }
-
- if (GET_CODE (insn) == JUMP_INSN
- && GET_CODE (PATTERN (insn)) != RETURN
- && (!any_condjump_p (insn)
- || (JUMP_LABEL (insn) != 0
- && JUMP_LABEL (insn) != loop->scan_start
- && !loop_insn_first_p (p, JUMP_LABEL (insn)))))
- {
- maybe_multiple = 1;
- break;
- }
- }
- }
-
- /* Past a jump, we get to insns for which we can't count
- on whether they will be executed during each iteration. */
- /* This code appears twice in strength_reduce. There is also similar
- code in scan_loop. */
- if (GET_CODE (p) == JUMP_INSN
- /* If we enter the loop in the middle, and scan around to the
- beginning, don't set not_every_iteration for that.
- This can be any kind of jump, since we want to know if insns
- will be executed if the loop is executed. */
- && !(JUMP_LABEL (p) == loop->top
- && ((NEXT_INSN (NEXT_INSN (p)) == loop->end
- && any_uncondjump_p (p))
- || (NEXT_INSN (p) == loop->end && any_condjump_p (p)))))
- {
- rtx label = 0;
-
- /* If this is a jump outside the loop, then it also doesn't
- matter. Check to see if the target of this branch is on the
- loop->exits_labels list. */
-
- for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
- if (XEXP (label, 0) == JUMP_LABEL (p))
- break;
-
- if (!label)
- not_every_iteration = 1;
- }
-
- else if (GET_CODE (p) == NOTE)
- {
- /* At the virtual top of a converted loop, insns are again known to
- be executed each iteration: logically, the loop begins here
- even though the exit code has been duplicated.
-
- Insns are also again known to be executed each iteration at
- the LOOP_CONT note. */
- if ((NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP
- || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_CONT)
- && loop_depth == 0)
- not_every_iteration = 0;
- else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
- loop_depth++;
- else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
- loop_depth--;
- }
-
- /* Note if we pass a loop latch. If we do, then we can not clear
- NOT_EVERY_ITERATION below when we pass the last CODE_LABEL in
- a loop since a jump before the last CODE_LABEL may have started
- a new loop iteration.
-
- Note that LOOP_TOP is only set for rotated loops and we need
- this check for all loops, so compare against the CODE_LABEL
- which immediately follows LOOP_START. */
- if (GET_CODE (p) == JUMP_INSN
- && JUMP_LABEL (p) == NEXT_INSN (loop->start))
- past_loop_latch = 1;
-
- /* Unlike in the code motion pass where MAYBE_NEVER indicates that
- an insn may never be executed, NOT_EVERY_ITERATION indicates whether
- or not an insn is known to be executed each iteration of the
- loop, whether or not any iterations are known to occur.
-
- Therefore, if we have just passed a label and have no more labels
- between here and the test insn of the loop, and we have not passed
- a jump to the top of the loop, then we know these insns will be
- executed each iteration. */
-
- if (not_every_iteration
- && !past_loop_latch
- && GET_CODE (p) == CODE_LABEL
- && no_labels_between_p (p, loop->end)
- && loop_insn_first_p (p, loop->cont))
- not_every_iteration = 0;
- }
-}
-
-static void
-loop_bivs_find (struct loop *loop)
-{
- struct loop_regs *regs = LOOP_REGS (loop);
- struct loop_ivs *ivs = LOOP_IVS (loop);
- /* Temporary list pointers for traversing ivs->list. */
- struct iv_class *bl, **backbl;
-
- ivs->list = 0;
-
- for_each_insn_in_loop (loop, check_insn_for_bivs);
-
- /* Scan ivs->list to remove all regs that proved not to be bivs.
- Make a sanity check against regs->n_times_set. */
- for (backbl = &ivs->list, bl = *backbl; bl; bl = bl->next)
- {
- if (REG_IV_TYPE (ivs, bl->regno) != BASIC_INDUCT
- /* Above happens if register modified by subreg, etc. */
- /* Make sure it is not recognized as a basic induction var: */
- || regs->array[bl->regno].n_times_set != bl->biv_count
- /* If never incremented, it is invariant that we decided not to
- move. So leave it alone. */
- || ! bl->incremented)
- {
- if (loop_dump_stream)
- fprintf (loop_dump_stream, "Biv %d: discarded, %s\n",
- bl->regno,
- (REG_IV_TYPE (ivs, bl->regno) != BASIC_INDUCT
- ? "not induction variable"
- : (! bl->incremented ? "never incremented"
- : "count error")));
-
- REG_IV_TYPE (ivs, bl->regno) = NOT_BASIC_INDUCT;
- *backbl = bl->next;
- }
- else
- {
- backbl = &bl->next;
-
- if (loop_dump_stream)
- fprintf (loop_dump_stream, "Biv %d: verified\n", bl->regno);
- }
- }
-}
-
-
-/* Determine how BIVS are initialized by looking through pre-header
- extended basic block. */
-static void
-loop_bivs_init_find (struct loop *loop)
-{
- struct loop_ivs *ivs = LOOP_IVS (loop);
- /* Temporary list pointers for traversing ivs->list. */
- struct iv_class *bl;
- int call_seen;
- rtx p;
-
- /* Find initial value for each biv by searching backwards from loop_start,
- halting at first label. Also record any test condition. */
-
- call_seen = 0;
- for (p = loop->start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
- {
- rtx test;
-
- note_insn = p;
-
- if (GET_CODE (p) == CALL_INSN)
- call_seen = 1;
-
- if (INSN_P (p))
- note_stores (PATTERN (p), record_initial, ivs);
-
- /* Record any test of a biv that branches around the loop if no store
- between it and the start of loop. We only care about tests with
- constants and registers and only certain of those. */
- if (GET_CODE (p) == JUMP_INSN
- && JUMP_LABEL (p) != 0
- && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop->end)
- && (test = get_condition_for_loop (loop, p)) != 0
- && GET_CODE (XEXP (test, 0)) == REG
- && REGNO (XEXP (test, 0)) < max_reg_before_loop
- && (bl = REG_IV_CLASS (ivs, REGNO (XEXP (test, 0)))) != 0
- && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop->start)
- && bl->init_insn == 0)
- {
- /* If an NE test, we have an initial value! */
- if (GET_CODE (test) == NE)
- {
- bl->init_insn = p;
- bl->init_set = gen_rtx_SET (VOIDmode,
- XEXP (test, 0), XEXP (test, 1));
- }
- else
- bl->initial_test = test;
- }
- }
-}
-
-
-/* Look at the each biv and see if we can say anything better about its
- initial value from any initializing insns set up above. (This is done
- in two passes to avoid missing SETs in a PARALLEL.) */
-static void
-loop_bivs_check (struct loop *loop)
-{
- struct loop_ivs *ivs = LOOP_IVS (loop);
- /* Temporary list pointers for traversing ivs->list. */
- struct iv_class *bl;
- struct iv_class **backbl;
-
- for (backbl = &ivs->list; (bl = *backbl); backbl = &bl->next)
- {
- rtx src;
- rtx note;
-
- if (! bl->init_insn)
- continue;
-
- /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
- is a constant, use the value of that. */
- if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
- && CONSTANT_P (XEXP (note, 0)))
- || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
- && CONSTANT_P (XEXP (note, 0))))
- src = XEXP (note, 0);
- else
- src = SET_SRC (bl->init_set);
-
- if (loop_dump_stream)
- fprintf (loop_dump_stream,
- "Biv %d: initialized at insn %d: initial value ",
- bl->regno, INSN_UID (bl->init_insn));
-
- if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
- || GET_MODE (src) == VOIDmode)
- && valid_initial_value_p (src, bl->init_insn,
- LOOP_INFO (loop)->pre_header_has_call,
- loop->start))
- {
- bl->initial_value = src;
-
- if (loop_dump_stream)
- {
- print_simple_rtl (loop_dump_stream, src);
- fputc ('\n', loop_dump_stream);
- }
- }
- /* If we can't make it a giv,
- let biv keep initial value of "itself". */
- else if (loop_dump_stream)
- fprintf (loop_dump_stream, "is complex\n");
- }
-}
-
-
-/* Search the loop for general induction variables. */
-
-static void
-loop_givs_find (struct loop* loop)
-{
- for_each_insn_in_loop (loop, check_insn_for_givs);
-}
-
-
-/* For each giv for which we still don't know whether or not it is
- replaceable, check to see if it is replaceable because its final value
- can be calculated. */
-
-static void
-loop_givs_check (struct loop *loop)
-{
- struct loop_ivs *ivs = LOOP_IVS (loop);
- struct iv_class *bl;
-
- for (bl = ivs->list; bl; bl = bl->next)
- {
- struct induction *v;
-
- for (v = bl->giv; v; v = v->next_iv)
- if (! v->replaceable && ! v->not_replaceable)
- check_final_value (loop, v);
- }
-}
-
-
-/* Return nonzero if it is possible to eliminate the biv BL provided
- all givs are reduced. This is possible if either the reg is not
- used outside the loop, or we can compute what its final value will
- be. */
-
-static int
-loop_biv_eliminable_p (struct loop *loop, struct iv_class *bl,
- int threshold, int insn_count)
-{
- /* For architectures with a decrement_and_branch_until_zero insn,
- don't do this if we put a REG_NONNEG note on the endtest for this
- biv. */
-
-#ifdef HAVE_decrement_and_branch_until_zero
- if (bl->nonneg)
- {
- if (loop_dump_stream)
- fprintf (loop_dump_stream,
- "Cannot eliminate nonneg biv %d.\n", bl->regno);
- return 0;
- }
-#endif
-
- /* Check that biv is used outside loop or if it has a final value.
- Compare against bl->init_insn rather than loop->start. We aren't
- concerned with any uses of the biv between init_insn and
- loop->start since these won't be affected by the value of the biv
- elsewhere in the function, so long as init_insn doesn't use the
- biv itself. */
-
- if ((REGNO_LAST_LUID (bl->regno) < INSN_LUID (loop->end)
- && bl->init_insn
- && INSN_UID (bl->init_insn) < max_uid_for_loop
- && REGNO_FIRST_LUID (bl->regno) >= INSN_LUID (bl->init_insn)
- && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
- || (bl->final_value = final_biv_value (loop, bl)))
- return maybe_eliminate_biv (loop, bl, 0, threshold, insn_count);
-
- if (loop_dump_stream)
- {
- fprintf (loop_dump_stream,
- "Cannot eliminate biv %d.\n",
- bl->regno);
- fprintf (loop_dump_stream,
- "First use: insn %d, last use: insn %d.\n",
- REGNO_FIRST_UID (bl->regno),
- REGNO_LAST_UID (bl->regno));
- }
- return 0;
-}
-
-
-/* Reduce each giv of BL that we have decided to reduce. */
-
-static void
-loop_givs_reduce (struct loop *loop, struct iv_class *bl)
-{
- struct induction *v;
-
- for (v = bl->giv; v; v = v->next_iv)
- {
- struct induction *tv;
- if (! v->ignore && v->same == 0)
- {
- int auto_inc_opt = 0;
-
- /* If the code for derived givs immediately below has already
- allocated a new_reg, we must keep it. */
- if (! v->new_reg)
- v->new_reg = gen_reg_rtx (v->mode);
-
-#ifdef AUTO_INC_DEC
- /* If the target has auto-increment addressing modes, and
- this is an address giv, then try to put the increment
- immediately after its use, so that flow can create an
- auto-increment addressing mode. */
- if (v->giv_type == DEST_ADDR && bl->biv_count == 1
- && bl->biv->always_executed && ! bl->biv->maybe_multiple
- /* We don't handle reversed biv's because bl->biv->insn
- does not have a valid INSN_LUID. */
- && ! bl->reversed
- && v->always_executed && ! v->maybe_multiple
- && INSN_UID (v->insn) < max_uid_for_loop)
- {
- /* If other giv's have been combined with this one, then
- this will work only if all uses of the other giv's occur
- before this giv's insn. This is difficult to check.
-
- We simplify this by looking for the common case where
- there is one DEST_REG giv, and this giv's insn is the
- last use of the dest_reg of that DEST_REG giv. If the
- increment occurs after the address giv, then we can
- perform the optimization. (Otherwise, the increment
- would have to go before other_giv, and we would not be
- able to combine it with the address giv to get an
- auto-inc address.) */
- if (v->combined_with)
- {
- struct induction *other_giv = 0;
-
- for (tv = bl->giv; tv; tv = tv->next_iv)
- if (tv->same == v)
- {
- if (other_giv)
- break;
- else
- other_giv = tv;
- }
- if (! tv && other_giv
- && REGNO (other_giv->dest_reg) < max_reg_before_loop
- && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
- == INSN_UID (v->insn))
- && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
- auto_inc_opt = 1;
- }
- /* Check for case where increment is before the address
- giv. Do this test in "loop order". */
- else if ((INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn)
- && (INSN_LUID (v->insn) < INSN_LUID (loop->scan_start)
- || (INSN_LUID (bl->biv->insn)
- > INSN_LUID (loop->scan_start))))
- || (INSN_LUID (v->insn) < INSN_LUID (loop->scan_start)
- && (INSN_LUID (loop->scan_start)
- < INSN_LUID (bl->biv->insn))))
- auto_inc_opt = -1;
- else
- auto_inc_opt = 1;
-
-#ifdef HAVE_cc0
- {
- rtx prev;
-
- /* We can't put an insn immediately after one setting
- cc0, or immediately before one using cc0. */
- if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
- || (auto_inc_opt == -1
- && (prev = prev_nonnote_insn (v->insn)) != 0
- && INSN_P (prev)
- && sets_cc0_p (PATTERN (prev))))
- auto_inc_opt = 0;
- }
-#endif
-
- if (auto_inc_opt)
- v->auto_inc_opt = 1;
- }
-#endif
-
- /* For each place where the biv is incremented, add an insn
- to increment the new, reduced reg for the giv. */
- for (tv = bl->biv; tv; tv = tv->next_iv)
- {
- rtx insert_before;
-
- /* Skip if location is the same as a previous one. */
- if (tv->same)
- continue;
- if (! auto_inc_opt)
- insert_before = NEXT_INSN (tv->insn);
- else if (auto_inc_opt == 1)
- insert_before = NEXT_INSN (v->insn);
- else
- insert_before = v->insn;
-
- if (tv->mult_val == const1_rtx)
- loop_iv_add_mult_emit_before (loop, tv->add_val, v->mult_val,
- v->new_reg, v->new_reg,
- 0, insert_before);
- else /* tv->mult_val == const0_rtx */
- /* A multiply is acceptable here
- since this is presumed to be seldom executed. */
- loop_iv_add_mult_emit_before (loop, tv->add_val, v->mult_val,
- v->add_val, v->new_reg,
- 0, insert_before);
- }
-
- /* Add code at loop start to initialize giv's reduced reg. */
-
- loop_iv_add_mult_hoist (loop,
- extend_value_for_giv (v, bl->initial_value),
- v->mult_val, v->add_val, v->new_reg);
- }
- }
-}
-
-
-/* Check for givs whose first use is their definition and whose
- last use is the definition of another giv. If so, it is likely
- dead and should not be used to derive another giv nor to
- eliminate a biv. */
-
-static void
-loop_givs_dead_check (struct loop *loop ATTRIBUTE_UNUSED, struct iv_class *bl)
-{
- struct induction *v;
-
- for (v = bl->giv; v; v = v->next_iv)
- {
- if (v->ignore
- || (v->same && v->same->ignore))
- continue;
-
- if (v->giv_type == DEST_REG
- && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
- {
- struct induction *v1;
-
- for (v1 = bl->giv; v1; v1 = v1->next_iv)
- if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
- v->maybe_dead = 1;
- }
- }
-}
-
-
-static void
-loop_givs_rescan (struct loop *loop, struct iv_class *bl, rtx *reg_map)
-{
- struct induction *v;
-
- for (v = bl->giv; v; v = v->next_iv)
- {
- if (v->same && v->same->ignore)
- v->ignore = 1;
-
- if (v->ignore)
- continue;
-
- /* Update expression if this was combined, in case other giv was
- replaced. */
- if (v->same)
- v->new_reg = replace_rtx (v->new_reg,
- v->same->dest_reg, v->same->new_reg);
-
- /* See if this register is known to be a pointer to something. If
- so, see if we can find the alignment. First see if there is a
- destination register that is a pointer. If so, this shares the
- alignment too. Next see if we can deduce anything from the
- computational information. If not, and this is a DEST_ADDR
- giv, at least we know that it's a pointer, though we don't know
- the alignment. */
- if (GET_CODE (v->new_reg) == REG
- && v->giv_type == DEST_REG
- && REG_POINTER (v->dest_reg))
- mark_reg_pointer (v->new_reg,
- REGNO_POINTER_ALIGN (REGNO (v->dest_reg)));
- else if (GET_CODE (v->new_reg) == REG
- && REG_POINTER (v->src_reg))
- {
- unsigned int align = REGNO_POINTER_ALIGN (REGNO (v->src_reg));
-
- if (align == 0
- || GET_CODE (v->add_val) != CONST_INT
- || INTVAL (v->add_val) % (align / BITS_PER_UNIT) != 0)
- align = 0;
-
- mark_reg_pointer (v->new_reg, align);
- }
- else if (GET_CODE (v->new_reg) == REG
- && GET_CODE (v->add_val) == REG
- && REG_POINTER (v->add_val))
- {
- unsigned int align = REGNO_POINTER_ALIGN (REGNO (v->add_val));
-
- if (align == 0 || GET_CODE (v->mult_val) != CONST_INT
- || INTVAL (v->mult_val) % (align / BITS_PER_UNIT) != 0)
- align = 0;
-
- mark_reg_pointer (v->new_reg, align);
- }
- else if (GET_CODE (v->new_reg) == REG && v->giv_type == DEST_ADDR)
- mark_reg_pointer (v->new_reg, 0);
-
- if (v->giv_type == DEST_ADDR)
- /* Store reduced reg as the address in the memref where we found
- this giv. */
- validate_change (v->insn, v->location, v->new_reg, 0);
- else if (v->replaceable)
- {
- reg_map[REGNO (v->dest_reg)] = v->new_reg;
- }
- else
- {
- rtx original_insn = v->insn;
- rtx note;
-
- /* Not replaceable; emit an insn to set the original giv reg from
- the reduced giv, same as above. */
- v->insn = loop_insn_emit_after (loop, 0, original_insn,
- gen_move_insn (v->dest_reg,
- v->new_reg));
-
- /* The original insn may have a REG_EQUAL note. This note is
- now incorrect and may result in invalid substitutions later.
- The original insn is dead, but may be part of a libcall
- sequence, which doesn't seem worth the bother of handling. */
- note = find_reg_note (original_insn, REG_EQUAL, NULL_RTX);
- if (note)
- remove_note (original_insn, note);
- }
-
- /* When a loop is reversed, givs which depend on the reversed
- biv, and which are live outside the loop, must be set to their
- correct final value. This insn is only needed if the giv is
- not replaceable. The correct final value is the same as the
- value that the giv starts the reversed loop with. */
- if (bl->reversed && ! v->replaceable)
- loop_iv_add_mult_sink (loop,
- extend_value_for_giv (v, bl->initial_value),
- v->mult_val, v->add_val, v->dest_reg);
- else if (v->final_value)
- loop_insn_sink_or_swim (loop,
- gen_load_of_final_value (v->dest_reg,
- v->final_value));
-
- if (loop_dump_stream)
- {
- fprintf (loop_dump_stream, "giv at %d reduced to ",
- INSN_UID (v->insn));
- print_simple_rtl (loop_dump_stream, v->new_reg);
- fprintf (loop_dump_stream, "\n");
- }
- }
-}
-
-
-static int
-loop_giv_reduce_benefit (struct loop *loop ATTRIBUTE_UNUSED,
- struct iv_class *bl, struct induction *v,
- rtx test_reg)
-{
- int add_cost;
- int benefit;
-
- benefit = v->benefit;
- PUT_MODE (test_reg, v->mode);
- add_cost = iv_add_mult_cost (bl->biv->add_val, v->mult_val,
- test_reg, test_reg);
-
- /* Reduce benefit if not replaceable, since we will insert a
- move-insn to replace the insn that calculates this giv. Don't do
- this unless the giv is a user variable, since it will often be
- marked non-replaceable because of the duplication of the exit
- code outside the loop. In such a case, the copies we insert are
- dead and will be deleted. So they don't have a cost. Similar
- situations exist. */
- /* ??? The new final_[bg]iv_value code does a much better job of
- finding replaceable giv's, and hence this code may no longer be
- necessary. */
- if (! v->replaceable && ! bl->eliminable
- && REG_USERVAR_P (v->dest_reg))
- benefit -= copy_cost;
-
- /* Decrease the benefit to count the add-insns that we will insert
- to increment the reduced reg for the giv. ??? This can
- overestimate the run-time cost of the additional insns, e.g. if
- there are multiple basic blocks that increment the biv, but only
- one of these blocks is executed during each iteration. There is
- no good way to detect cases like this with the current structure
- of the loop optimizer. This code is more accurate for
- determining code size than run-time benefits. */
- benefit -= add_cost * bl->biv_count;
-
- /* Decide whether to strength-reduce this giv or to leave the code
- unchanged (recompute it from the biv each time it is used). This
- decision can be made independently for each giv. */
-
-#ifdef AUTO_INC_DEC
- /* Attempt to guess whether autoincrement will handle some of the
- new add insns; if so, increase BENEFIT (undo the subtraction of
- add_cost that was done above). */
- if (v->giv_type == DEST_ADDR
- /* Increasing the benefit is risky, since this is only a guess.
- Avoid increasing register pressure in cases where there would
- be no other benefit from reducing this giv. */
- && benefit > 0
- && GET_CODE (v->mult_val) == CONST_INT)
- {
- int size = GET_MODE_SIZE (GET_MODE (v->mem));
-
- if (HAVE_POST_INCREMENT
- && INTVAL (v->mult_val) == size)
- benefit += add_cost * bl->biv_count;
- else if (HAVE_PRE_INCREMENT
- && INTVAL (v->mult_val) == size)
- benefit += add_cost * bl->biv_count;
- else if (HAVE_POST_DECREMENT
- && -INTVAL (v->mult_val) == size)
- benefit += add_cost * bl->biv_count;
- else if (HAVE_PRE_DECREMENT
- && -INTVAL (v->mult_val) == size)
- benefit += add_cost * bl->biv_count;
- }
-#endif
-
- return benefit;
-}
-
-
-/* Free IV structures for LOOP. */
-
-static void
-loop_ivs_free (struct loop *loop)
-{
- struct loop_ivs *ivs = LOOP_IVS (loop);
- struct iv_class *iv = ivs->list;
-
- free (ivs->regs);
-
- while (iv)
- {
- struct iv_class *next = iv->next;
- struct induction *induction;
- struct induction *next_induction;
-
- for (induction = iv->biv; induction; induction = next_induction)
- {
- next_induction = induction->next_iv;
- free (induction);
- }
- for (induction = iv->giv; induction; induction = next_induction)
- {
- next_induction = induction->next_iv;
- free (induction);
- }
-
- free (iv);
- iv = next;
- }
-}
-
-
-/* Perform strength reduction and induction variable elimination.
-
- Pseudo registers created during this function will be beyond the
- last valid index in several tables including
- REGS->ARRAY[I].N_TIMES_SET and REGNO_LAST_UID. This does not cause a
- problem here, because the added registers cannot be givs outside of
- their loop, and hence will never be reconsidered. But scan_loop
- must check regnos to make sure they are in bounds. */
-
-static void
-strength_reduce (struct loop *loop, int flags)
-{
- struct loop_info *loop_info = LOOP_INFO (loop);
- struct loop_regs *regs = LOOP_REGS (loop);
- struct loop_ivs *ivs = LOOP_IVS (loop);
- rtx p;
- /* Temporary list pointer for traversing ivs->list. */
- struct iv_class *bl;
- /* Ratio of extra register life span we can justify
- for saving an instruction. More if loop doesn't call subroutines
- since in that case saving an insn makes more difference
- and more registers are available. */
- /* ??? could set this to last value of threshold in move_movables */
- int threshold = (loop_info->has_call ? 1 : 2) * (3 + n_non_fixed_regs);
- /* Map of pseudo-register replacements. */
- rtx *reg_map = NULL;
- int reg_map_size;
- int unrolled_insn_copies = 0;
- rtx test_reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
- int insn_count = count_insns_in_loop (loop);
-
- addr_placeholder = gen_reg_rtx (Pmode);
-
- ivs->n_regs = max_reg_before_loop;
- ivs->regs = xcalloc (ivs->n_regs, sizeof (struct iv));
-
- /* Find all BIVs in loop. */
- loop_bivs_find (loop);
-
- /* Exit if there are no bivs. */
- if (! ivs->list)
- {
- /* Can still unroll the loop anyways, but indicate that there is no
- strength reduction info available. */
- if (flags & LOOP_UNROLL)
- unroll_loop (loop, insn_count, 0);
-
- loop_ivs_free (loop);
- return;
- }
-
- /* Determine how BIVS are initialized by looking through pre-header
- extended basic block. */
- loop_bivs_init_find (loop);
-
- /* Look at the each biv and see if we can say anything better about its
- initial value from any initializing insns set up above. */
- loop_bivs_check (loop);
-
- /* Search the loop for general induction variables. */
- loop_givs_find (loop);
-
- /* Try to calculate and save the number of loop iterations. This is
- set to zero if the actual number can not be calculated. This must
- be called after all giv's have been identified, since otherwise it may
- fail if the iteration variable is a giv. */
- loop_iterations (loop);
-
-#ifdef HAVE_prefetch
- if (flags & LOOP_PREFETCH)
- emit_prefetch_instructions (loop);
-#endif
-
- /* Now for each giv for which we still don't know whether or not it is
- replaceable, check to see if it is replaceable because its final value
- can be calculated. This must be done after loop_iterations is called,
- so that final_giv_value will work correctly. */
- loop_givs_check (loop);
-
- /* Try to prove that the loop counter variable (if any) is always
- nonnegative; if so, record that fact with a REG_NONNEG note
- so that "decrement and branch until zero" insn can be used. */
- check_dbra_loop (loop, insn_count);
-
- /* Create reg_map to hold substitutions for replaceable giv regs.
- Some givs might have been made from biv increments, so look at
- ivs->reg_iv_type for a suitable size. */
- reg_map_size = ivs->n_regs;
- reg_map = xcalloc (reg_map_size, sizeof (rtx));
-
- /* Examine each iv class for feasibility of strength reduction/induction
- variable elimination. */
-
- for (bl = ivs->list; bl; bl = bl->next)
- {
- struct induction *v;
- int benefit;
-
- /* Test whether it will be possible to eliminate this biv
- provided all givs are reduced. */
- bl->eliminable = loop_biv_eliminable_p (loop, bl, threshold, insn_count);
-
- /* This will be true at the end, if all givs which depend on this
- biv have been strength reduced.
- We can't (currently) eliminate the biv unless this is so. */
- bl->all_reduced = 1;
-
- /* Check each extension dependent giv in this class to see if its
- root biv is safe from wrapping in the interior mode. */
- check_ext_dependent_givs (loop, bl);
-
- /* Combine all giv's for this iv_class. */
- combine_givs (regs, bl);
-
- for (v = bl->giv; v; v = v->next_iv)
- {
- struct induction *tv;
-
- if (v->ignore || v->same)
- continue;
-
- benefit = loop_giv_reduce_benefit (loop, bl, v, test_reg);
-
- /* If an insn is not to be strength reduced, then set its ignore
- flag, and clear bl->all_reduced. */
-
- /* A giv that depends on a reversed biv must be reduced if it is
- used after the loop exit, otherwise, it would have the wrong
- value after the loop exit. To make it simple, just reduce all
- of such giv's whether or not we know they are used after the loop
- exit. */
-
- if (! flag_reduce_all_givs
- && v->lifetime * threshold * benefit < insn_count
- && ! bl->reversed)
- {
- if (loop_dump_stream)
- fprintf (loop_dump_stream,
- "giv of insn %d not worth while, %d vs %d.\n",
- INSN_UID (v->insn),
- v->lifetime * threshold * benefit, insn_count);
- v->ignore = 1;
- bl->all_reduced = 0;
- }
- else
- {
- /* Check that we can increment the reduced giv without a
- multiply insn. If not, reject it. */
-
- for (tv = bl->biv; tv; tv = tv->next_iv)
- if (tv->mult_val == const1_rtx
- && ! product_cheap_p (tv->add_val, v->mult_val))
- {
- if (loop_dump_stream)
- fprintf (loop_dump_stream,
- "giv of insn %d: would need a multiply.\n",
- INSN_UID (v->insn));
- v->ignore = 1;
- bl->all_reduced = 0;
- break;
- }
- }
- }
-
- /* Check for givs whose first use is their definition and whose
- last use is the definition of another giv. If so, it is likely
- dead and should not be used to derive another giv nor to
- eliminate a biv. */
- loop_givs_dead_check (loop, bl);
-
- /* Reduce each giv that we decided to reduce. */
- loop_givs_reduce (loop, bl);
-
- /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
- as not reduced.
-
- For each giv register that can be reduced now: if replaceable,
- substitute reduced reg wherever the old giv occurs;
- else add new move insn "giv_reg = reduced_reg". */
- loop_givs_rescan (loop, bl, reg_map);
-
- /* All the givs based on the biv bl have been reduced if they
- merit it. */
-
- /* For each giv not marked as maybe dead that has been combined with a
- second giv, clear any "maybe dead" mark on that second giv.
- v->new_reg will either be or refer to the register of the giv it
- combined with.
-
- Doing this clearing avoids problems in biv elimination where
- a giv's new_reg is a complex value that can't be put in the
- insn but the giv combined with (with a reg as new_reg) is
- marked maybe_dead. Since the register will be used in either
- case, we'd prefer it be used from the simpler giv. */
-
- for (v = bl->giv; v; v = v->next_iv)
- if (! v->maybe_dead && v->same)
- v->same->maybe_dead = 0;
-
- /* Try to eliminate the biv, if it is a candidate.
- This won't work if ! bl->all_reduced,
- since the givs we planned to use might not have been reduced.
-
- We have to be careful that we didn't initially think we could
- eliminate this biv because of a giv that we now think may be
- dead and shouldn't be used as a biv replacement.
-
- Also, there is the possibility that we may have a giv that looks
- like it can be used to eliminate a biv, but the resulting insn
- isn't valid. This can happen, for example, on the 88k, where a
- JUMP_INSN can compare a register only with zero. Attempts to
- replace it with a compare with a constant will fail.
-
- Note that in cases where this call fails, we may have replaced some
- of the occurrences of the biv with a giv, but no harm was done in
- doing so in the rare cases where it can occur. */
-
- if (bl->all_reduced == 1 && bl->eliminable
- && maybe_eliminate_biv (loop, bl, 1, threshold, insn_count))
- {
- /* ?? If we created a new test to bypass the loop entirely,
- or otherwise drop straight in, based on this test, then
- we might want to rewrite it also. This way some later
- pass has more hope of removing the initialization of this
- biv entirely. */
-
- /* If final_value != 0, then the biv may be used after loop end
- and we must emit an insn to set it just in case.
-
- Reversed bivs already have an insn after the loop setting their
- value, so we don't need another one. We can't calculate the
- proper final value for such a biv here anyways. */
- if (bl->final_value && ! bl->reversed)
- loop_insn_sink_or_swim (loop,
- gen_load_of_final_value (bl->biv->dest_reg,
- bl->final_value));
-
- if (loop_dump_stream)
- fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
- bl->regno);
- }
- /* See above note wrt final_value. But since we couldn't eliminate
- the biv, we must set the value after the loop instead of before. */
- else if (bl->final_value && ! bl->reversed)
- loop_insn_sink (loop, gen_load_of_final_value (bl->biv->dest_reg,
- bl->final_value));
- }
-
- /* Go through all the instructions in the loop, making all the
- register substitutions scheduled in REG_MAP. */
-
- for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
- if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
- || GET_CODE (p) == CALL_INSN)
- {
- replace_regs (PATTERN (p), reg_map, reg_map_size, 0);
- replace_regs (REG_NOTES (p), reg_map, reg_map_size, 0);
- INSN_CODE (p) = -1;
- }
-
- if (loop_info->n_iterations > 0)
- {
- /* When we completely unroll a loop we will likely not need the increment
- of the loop BIV and we will not need the conditional branch at the
- end of the loop. */
- unrolled_insn_copies = insn_count - 2;
-
-#ifdef HAVE_cc0
- /* When we completely unroll a loop on a HAVE_cc0 machine we will not
- need the comparison before the conditional branch at the end of the
- loop. */
- unrolled_insn_copies -= 1;
-#endif
-
- /* We'll need one copy for each loop iteration. */
- unrolled_insn_copies *= loop_info->n_iterations;
-
- /* A little slop to account for the ability to remove initialization
- code, better CSE, and other secondary benefits of completely
- unrolling some loops. */
- unrolled_insn_copies -= 1;
-
- /* Clamp the value. */
- if (unrolled_insn_copies < 0)
- unrolled_insn_copies = 0;
- }
-
- /* Unroll loops from within strength reduction so that we can use the
- induction variable information that strength_reduce has already
- collected. Always unroll loops that would be as small or smaller
- unrolled than when rolled. */
- if ((flags & LOOP_UNROLL)
- || ((flags & LOOP_AUTO_UNROLL)
- && loop_info->n_iterations > 0
- && unrolled_insn_copies <= insn_count))
- unroll_loop (loop, insn_count, 1);
-
-#ifdef HAVE_doloop_end
- if (HAVE_doloop_end && (flags & LOOP_BCT) && flag_branch_on_count_reg)
- doloop_optimize (loop);
-#endif /* HAVE_doloop_end */
-
- /* In case number of iterations is known, drop branch prediction note
- in the branch. Do that only in second loop pass, as loop unrolling
- may change the number of iterations performed. */
- if (flags & LOOP_BCT)
- {
- unsigned HOST_WIDE_INT n
- = loop_info->n_iterations / loop_info->unroll_number;
- if (n > 1)
- predict_insn (prev_nonnote_insn (loop->end), PRED_LOOP_ITERATIONS,
- REG_BR_PROB_BASE - REG_BR_PROB_BASE / n);
- }
-
- if (loop_dump_stream)
- fprintf (loop_dump_stream, "\n");
-
- loop_ivs_free (loop);
- if (reg_map)
- free (reg_map);
-}
-
-/*Record all basic induction variables calculated in the insn. */
-static rtx
-check_insn_for_bivs (struct loop *loop, rtx p, int not_every_iteration,
- int maybe_multiple)
-{
- struct loop_ivs *ivs = LOOP_IVS (loop);
- rtx set;
- rtx dest_reg;
- rtx inc_val;
- rtx mult_val;
- rtx *location;
-
- if (GET_CODE (p) == INSN
- && (set = single_set (p))
- && GET_CODE (SET_DEST (set)) == REG)
- {
- dest_reg = SET_DEST (set);
- if (REGNO (dest_reg) < max_reg_before_loop
- && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
- && REG_IV_TYPE (ivs, REGNO (dest_reg)) != NOT_BASIC_INDUCT)
- {
- if (basic_induction_var (loop, SET_SRC (set),
- GET_MODE (SET_SRC (set)),
- dest_reg, p, &inc_val, &mult_val,
- &location))
- {
- /* It is a possible basic induction variable.
- Create and initialize an induction structure for it. */
-
- struct induction *v = xmalloc (sizeof (struct induction));
-
- record_biv (loop, v, p, dest_reg, inc_val, mult_val, location,
- not_every_iteration, maybe_multiple);
- REG_IV_TYPE (ivs, REGNO (dest_reg)) = BASIC_INDUCT;
- }
- else if (REGNO (dest_reg) < ivs->n_regs)
- REG_IV_TYPE (ivs, REGNO (dest_reg)) = NOT_BASIC_INDUCT;
- }
- }
- return p;
-}
-
-/* Record all givs calculated in the insn.
- A register is a giv if: it is only set once, it is a function of a
- biv and a constant (or invariant), and it is not a biv. */
-static rtx
-check_insn_for_givs (struct loop *loop, rtx p, int not_every_iteration,
- int maybe_multiple)
-{
- struct loop_regs *regs = LOOP_REGS (loop);
-
- rtx set;
- /* Look for a general induction variable in a register. */
- if (GET_CODE (p) == INSN
- && (set = single_set (p))
- && GET_CODE (SET_DEST (set)) == REG
- && ! regs->array[REGNO (SET_DEST (set))].may_not_optimize)
- {
- rtx src_reg;
- rtx dest_reg;
- rtx add_val;
- rtx mult_val;
- rtx ext_val;
- int benefit;
- rtx regnote = 0;
- rtx last_consec_insn;
-
- dest_reg = SET_DEST (set);
- if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
- return p;
-
- if (/* SET_SRC is a giv. */
- (general_induction_var (loop, SET_SRC (set), &src_reg, &add_val,
- &mult_val, &ext_val, 0, &benefit, VOIDmode)
- /* Equivalent expression is a giv. */
- || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
- && general_induction_var (loop, XEXP (regnote, 0), &src_reg,
- &add_val, &mult_val, &ext_val, 0,
- &benefit, VOIDmode)))
- /* Don't try to handle any regs made by loop optimization.
- We have nothing on them in regno_first_uid, etc. */
- && REGNO (dest_reg) < max_reg_before_loop
- /* Don't recognize a BASIC_INDUCT_VAR here. */
- && dest_reg != src_reg
- /* This must be the only place where the register is set. */
- && (regs->array[REGNO (dest_reg)].n_times_set == 1
- /* or all sets must be consecutive and make a giv. */
- || (benefit = consec_sets_giv (loop, benefit, p,
- src_reg, dest_reg,
- &add_val, &mult_val, &ext_val,
- &last_consec_insn))))
- {
- struct induction *v = xmalloc (sizeof (struct induction));
-
- /* If this is a library call, increase benefit. */
- if (find_reg_note (p, REG_RETVAL, NULL_RTX))
- benefit += libcall_benefit (p);
-
- /* Skip the consecutive insns, if there are any. */
- if (regs->array[REGNO (dest_reg)].n_times_set != 1)
- p = last_consec_insn;
-
- record_giv (loop, v, p, src_reg, dest_reg, mult_val, add_val,
- ext_val, benefit, DEST_REG, not_every_iteration,
- maybe_multiple, (rtx*) 0);
-
- }
- }
-
- /* Look for givs which are memory addresses. */
- if (GET_CODE (p) == INSN)
- find_mem_givs (loop, PATTERN (p), p, not_every_iteration,
- maybe_multiple);
-
- /* Update the status of whether giv can derive other givs. This can
- change when we pass a label or an insn that updates a biv. */
- if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
- || GET_CODE (p) == CODE_LABEL)
- update_giv_derive (loop, p);
- return p;
-}
-
-/* Return 1 if X is a valid source for an initial value (or as value being
- compared against in an initial test).
-
- X must be either a register or constant and must not be clobbered between
- the current insn and the start of the loop.
-
- INSN is the insn containing X. */
-
-static int
-valid_initial_value_p (rtx x, rtx insn, int call_seen, rtx loop_start)
-{
- if (CONSTANT_P (x))
- return 1;
-
- /* Only consider pseudos we know about initialized in insns whose luids
- we know. */
- if (GET_CODE (x) != REG
- || REGNO (x) >= max_reg_before_loop)
- return 0;
-
- /* Don't use call-clobbered registers across a call which clobbers it. On
- some machines, don't use any hard registers at all. */
- if (REGNO (x) < FIRST_PSEUDO_REGISTER
- && (SMALL_REGISTER_CLASSES
- || (call_used_regs[REGNO (x)] && call_seen)))
- return 0;
-
- /* Don't use registers that have been clobbered before the start of the
- loop. */
- if (reg_set_between_p (x, insn, loop_start))
- return 0;
-
- return 1;
-}
-
-/* Scan X for memory refs and check each memory address
- as a possible giv. INSN is the insn whose pattern X comes from.
- NOT_EVERY_ITERATION is 1 if the insn might not be executed during
- every loop iteration. MAYBE_MULTIPLE is 1 if the insn might be executed
- more than once in each loop iteration. */
-
-static void
-find_mem_givs (const struct loop *loop, rtx x, rtx insn,
- int not_every_iteration, int maybe_multiple)
-{
- int i, j;
- enum rtx_code code;
- const char *fmt;
-
- if (x == 0)
- return;
-
- code = GET_CODE (x);
- switch (code)
- {
- case REG:
- case CONST_INT:
- case CONST:
- case CONST_DOUBLE:
- case SYMBOL_REF:
- case LABEL_REF:
- case PC:
- case CC0:
- case ADDR_VEC:
- case ADDR_DIFF_VEC:
- case USE:
- case CLOBBER:
- return;
-
- case MEM:
- {
- rtx src_reg;
- rtx add_val;
- rtx mult_val;
- rtx ext_val;
- int benefit;
-
- /* This code used to disable creating GIVs with mult_val == 1 and
- add_val == 0. However, this leads to lost optimizations when
- it comes time to combine a set of related DEST_ADDR GIVs, since
- this one would not be seen. */
-
- if (general_induction_var (loop, XEXP (x, 0), &src_reg, &add_val,
- &mult_val, &ext_val, 1, &benefit,
- GET_MODE (x)))
- {
- /* Found one; record it. */
- struct induction *v = xmalloc (sizeof (struct induction));
-
- record_giv (loop, v, insn, src_reg, addr_placeholder, mult_val,
- add_val, ext_val, benefit, DEST_ADDR,
- not_every_iteration, maybe_multiple, &XEXP (x, 0));
-
- v->mem = x;
- }
- }
- return;
-
- default:
- break;
- }
-
- /* Recursively scan the subexpressions for other mem refs. */
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- if (fmt[i] == 'e')
- find_mem_givs (loop, XEXP (x, i), insn, not_every_iteration,
- maybe_multiple);
- else if (fmt[i] == 'E')
- for (j = 0; j < XVECLEN (x, i); j++)
- find_mem_givs (loop, XVECEXP (x, i, j), insn, not_every_iteration,
- maybe_multiple);
-}
-
-/* Fill in the data about one biv update.
- V is the `struct induction' in which we record the biv. (It is
- allocated by the caller, with alloca.)
- INSN is the insn that sets it.
- DEST_REG is the biv's reg.
-
- MULT_VAL is const1_rtx if the biv is being incremented here, in which case
- INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
- being set to INC_VAL.
-
- NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
- executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
- can be executed more than once per iteration. If MAYBE_MULTIPLE
- and NOT_EVERY_ITERATION are both zero, we know that the biv update is
- executed exactly once per iteration. */
-
-static void
-record_biv (struct loop *loop, struct induction *v, rtx insn, rtx dest_reg,
- rtx inc_val, rtx mult_val, rtx *location,
- int not_every_iteration, int maybe_multiple)
-{
- struct loop_ivs *ivs = LOOP_IVS (loop);
- struct iv_class *bl;
-
- v->insn = insn;
- v->src_reg = dest_reg;
- v->dest_reg = dest_reg;
- v->mult_val = mult_val;
- v->add_val = inc_val;
- v->ext_dependent = NULL_RTX;
- v->location = location;
- v->mode = GET_MODE (dest_reg);
- v->always_computable = ! not_every_iteration;
- v->always_executed = ! not_every_iteration;
- v->maybe_multiple = maybe_multiple;
- v->same = 0;
-
- /* Add this to the reg's iv_class, creating a class
- if this is the first incrementation of the reg. */
-
- bl = REG_IV_CLASS (ivs, REGNO (dest_reg));
- if (bl == 0)
- {
- /* Create and initialize new iv_class. */
-
- bl = xmalloc (sizeof (struct iv_class));
-
- bl->regno = REGNO (dest_reg);
- bl->biv = 0;
- bl->giv = 0;
- bl->biv_count = 0;
- bl->giv_count = 0;
-
- /* Set initial value to the reg itself. */
- bl->initial_value = dest_reg;
- bl->final_value = 0;
- /* We haven't seen the initializing insn yet. */
- bl->init_insn = 0;
- bl->init_set = 0;
- bl->initial_test = 0;
- bl->incremented = 0;
- bl->eliminable = 0;
- bl->nonneg = 0;
- bl->reversed = 0;
- bl->total_benefit = 0;
-
- /* Add this class to ivs->list. */
- bl->next = ivs->list;
- ivs->list = bl;
-
- /* Put it in the array of biv register classes. */
- REG_IV_CLASS (ivs, REGNO (dest_reg)) = bl;
- }
- else
- {
- /* Check if location is the same as a previous one. */
- struct induction *induction;
- for (induction = bl->biv; induction; induction = induction->next_iv)
- if (location == induction->location)
- {
- v->same = induction;
- break;
- }
- }
-
- /* Update IV_CLASS entry for this biv. */
- v->next_iv = bl->biv;
- bl->biv = v;
- bl->biv_count++;
- if (mult_val == const1_rtx)
- bl->incremented = 1;
-
- if (loop_dump_stream)
- loop_biv_dump (v, loop_dump_stream, 0);
-}
-
-/* Fill in the data about one giv.
- V is the `struct induction' in which we record the giv. (It is
- allocated by the caller, with alloca.)
- INSN is the insn that sets it.
- BENEFIT estimates the savings from deleting this insn.
- TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
- into a register or is used as a memory address.
-
- SRC_REG is the biv reg which the giv is computed from.
- DEST_REG is the giv's reg (if the giv is stored in a reg).
- MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
- LOCATION points to the place where this giv's value appears in INSN. */
-
-static void
-record_giv (const struct loop *loop, struct induction *v, rtx insn,
- rtx src_reg, rtx dest_reg, rtx mult_val, rtx add_val,
- rtx ext_val, int benefit, enum g_types type,
- int not_every_iteration, int maybe_multiple, rtx *location)
-{
- struct loop_ivs *ivs = LOOP_IVS (loop);
- struct induction *b;
- struct iv_class *bl;
- rtx set = single_set (insn);
- rtx temp;
-
- /* Attempt to prove constantness of the values. Don't let simplify_rtx
- undo the MULT canonicalization that we performed earlier. */
- temp = simplify_rtx (add_val);
- if (temp
- && ! (GET_CODE (add_val) == MULT
- && GET_CODE (temp) == ASHIFT))
- add_val = temp;
-
- v->insn = insn;
- v->src_reg = src_reg;
- v->giv_type = type;
- v->dest_reg = dest_reg;
- v->mult_val = mult_val;
- v->add_val = add_val;
- v->ext_dependent = ext_val;
- v->benefit = benefit;
- v->location = location;
- v->cant_derive = 0;
- v->combined_with = 0;
- v->maybe_multiple = maybe_multiple;
- v->maybe_dead = 0;
- v->derive_adjustment = 0;
- v->same = 0;
- v->ignore = 0;
- v->new_reg = 0;
- v->final_value = 0;
- v->same_insn = 0;
- v->auto_inc_opt = 0;
- v->unrolled = 0;
- v->shared = 0;
-
- /* The v->always_computable field is used in update_giv_derive, to
- determine whether a giv can be used to derive another giv. For a
- DEST_REG giv, INSN computes a new value for the giv, so its value
- isn't computable if INSN insn't executed every iteration.
- However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
- it does not compute a new value. Hence the value is always computable
- regardless of whether INSN is executed each iteration. */
-
- if (type == DEST_ADDR)
- v->always_computable = 1;
- else
- v->always_computable = ! not_every_iteration;
-
- v->always_executed = ! not_every_iteration;
-
- if (type == DEST_ADDR)
- {
- v->mode = GET_MODE (*location);
- v->lifetime = 1;
- }
- else /* type == DEST_REG */
- {
- v->mode = GET_MODE (SET_DEST (set));
-
- v->lifetime = LOOP_REG_LIFETIME (loop, REGNO (dest_reg));
-
- /* If the lifetime is zero, it means that this register is
- really a dead store. So mark this as a giv that can be
- ignored. This will not prevent the biv from being eliminated. */
- if (v->lifetime == 0)
- v->ignore = 1;
-
- REG_IV_TYPE (ivs, REGNO (dest_reg)) = GENERAL_INDUCT;
- REG_IV_INFO (ivs, REGNO (dest_reg)) = v;
- }
-
- /* Add the giv to the class of givs computed from one biv. */
-
- bl = REG_IV_CLASS (ivs, REGNO (src_reg));
- if (bl)
- {
- v->next_iv = bl->giv;
- bl->giv = v;
- /* Don't count DEST_ADDR. This is supposed to count the number of
- insns that calculate givs. */
- if (type == DEST_REG)
- bl->giv_count++;
- bl->total_benefit += benefit;
- }
- else
- /* Fatal error, biv missing for this giv? */
- abort ();
-
- if (type == DEST_ADDR)
- {
- v->replaceable = 1;
- v->not_replaceable = 0;
- }
- else
- {
- /* The giv can be replaced outright by the reduced register only if all
- of the following conditions are true:
- - the insn that sets the giv is always executed on any iteration
- on which the giv is used at all
- (there are two ways to deduce this:
- either the insn is executed on every iteration,
- or all uses follow that insn in the same basic block),
- - the giv is not used outside the loop
- - no assignments to the biv occur during the giv's lifetime. */
-
- if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
- /* Previous line always fails if INSN was moved by loop opt. */
- && REGNO_LAST_LUID (REGNO (dest_reg))
- < INSN_LUID (loop->end)
- && (! not_every_iteration
- || last_use_this_basic_block (dest_reg, insn)))
- {
- /* Now check that there are no assignments to the biv within the
- giv's lifetime. This requires two separate checks. */
-
- /* Check each biv update, and fail if any are between the first
- and last use of the giv.
-
- If this loop contains an inner loop that was unrolled, then
- the insn modifying the biv may have been emitted by the loop
- unrolling code, and hence does not have a valid luid. Just
- mark the biv as not replaceable in this case. It is not very
- useful as a biv, because it is used in two different loops.
- It is very unlikely that we would be able to optimize the giv
- using this biv anyways. */
-
- v->replaceable = 1;
- v->not_replaceable = 0;
- for (b = bl->biv; b; b = b->next_iv)
- {
- if (INSN_UID (b->insn) >= max_uid_for_loop
- || ((INSN_LUID (b->insn)
- >= REGNO_FIRST_LUID (REGNO (dest_reg)))
- && (INSN_LUID (b->insn)
- <= REGNO_LAST_LUID (REGNO (dest_reg)))))
- {
- v->replaceable = 0;
- v->not_replaceable = 1;
- break;
- }
- }
-
- /* If there are any backwards branches that go from after the
- biv update to before it, then this giv is not replaceable. */
- if (v->replaceable)
- for (b = bl->biv; b; b = b->next_iv)
- if (back_branch_in_range_p (loop, b->insn))
- {
- v->replaceable = 0;
- v->not_replaceable = 1;
- break;
- }
- }
- else
- {
- /* May still be replaceable, we don't have enough info here to
- decide. */
- v->replaceable = 0;
- v->not_replaceable = 0;
- }
- }
-
- /* Record whether the add_val contains a const_int, for later use by
- combine_givs. */
- {
- rtx tem = add_val;
-
- v->no_const_addval = 1;
- if (tem == const0_rtx)
- ;
- else if (CONSTANT_P (add_val))
- v->no_const_addval = 0;
- if (GET_CODE (tem) == PLUS)
- {
- while (1)
- {
- if (GET_CODE (XEXP (tem, 0)) == PLUS)
- tem = XEXP (tem, 0);
- else if (GET_CODE (XEXP (tem, 1)) == PLUS)
- tem = XEXP (tem, 1);
- else
- break;
- }
- if (CONSTANT_P (XEXP (tem, 1)))
- v->no_const_addval = 0;
- }
- }
-
- if (loop_dump_stream)
- loop_giv_dump (v, loop_dump_stream, 0);
-}
-
-/* All this does is determine whether a giv can be made replaceable because
- its final value can be calculated. This code can not be part of record_giv
- above, because final_giv_value requires that the number of loop iterations
- be known, and that can not be accurately calculated until after all givs
- have been identified. */
-
-static void
-check_final_value (const struct loop *loop, struct induction *v)
-{
- rtx final_value = 0;
-
- /* DEST_ADDR givs will never reach here, because they are always marked
- replaceable above in record_giv. */
-
- /* The giv can be replaced outright by the reduced register only if all
- of the following conditions are true:
- - the insn that sets the giv is always executed on any iteration
- on which the giv is used at all
- (there are two ways to deduce this:
- either the insn is executed on every iteration,
- or all uses follow that insn in the same basic block),
- - its final value can be calculated (this condition is different
- than the one above in record_giv)
- - it's not used before the it's set
- - no assignments to the biv occur during the giv's lifetime. */
-
-#if 0
- /* This is only called now when replaceable is known to be false. */
- /* Clear replaceable, so that it won't confuse final_giv_value. */
- v->replaceable = 0;
-#endif
-
- if ((final_value = final_giv_value (loop, v))
- && (v->always_executed
- || last_use_this_basic_block (v->dest_reg, v->insn)))
- {
- int biv_increment_seen = 0, before_giv_insn = 0;
- rtx p = v->insn;
- rtx last_giv_use;
-
- v->replaceable = 1;
- v->not_replaceable = 0;
-
- /* When trying to determine whether or not a biv increment occurs
- during the lifetime of the giv, we can ignore uses of the variable
- outside the loop because final_value is true. Hence we can not
- use regno_last_uid and regno_first_uid as above in record_giv. */
-
- /* Search the loop to determine whether any assignments to the
- biv occur during the giv's lifetime. Start with the insn
- that sets the giv, and search around the loop until we come
- back to that insn again.
-
- Also fail if there is a jump within the giv's lifetime that jumps
- to somewhere outside the lifetime but still within the loop. This
- catches spaghetti code where the execution order is not linear, and
- hence the above test fails. Here we assume that the giv lifetime
- does not extend from one iteration of the loop to the next, so as
- to make the test easier. Since the lifetime isn't known yet,
- this requires two loops. See also record_giv above. */
-
- last_giv_use = v->insn;
-
- while (1)
- {
- p = NEXT_INSN (p);
- if (p == loop->end)
- {
- before_giv_insn = 1;
- p = NEXT_INSN (loop->start);
- }
- if (p == v->insn)
- break;
-
- if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
- || GET_CODE (p) == CALL_INSN)
- {
- /* It is possible for the BIV increment to use the GIV if we
- have a cycle. Thus we must be sure to check each insn for
- both BIV and GIV uses, and we must check for BIV uses
- first. */
-
- if (! biv_increment_seen
- && reg_set_p (v->src_reg, PATTERN (p)))
- biv_increment_seen = 1;
-
- if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
- {
- if (biv_increment_seen || before_giv_insn)
- {
- v->replaceable = 0;
- v->not_replaceable = 1;
- break;
- }
- last_giv_use = p;
- }
- }
- }
-
- /* Now that the lifetime of the giv is known, check for branches
- from within the lifetime to outside the lifetime if it is still
- replaceable. */
-
- if (v->replaceable)
- {
- p = v->insn;
- while (1)
- {
- p = NEXT_INSN (p);
- if (p == loop->end)
- p = NEXT_INSN (loop->start);
- if (p == last_giv_use)
- break;
-
- if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
- && LABEL_NAME (JUMP_LABEL (p))
- && ((loop_insn_first_p (JUMP_LABEL (p), v->insn)
- && loop_insn_first_p (loop->start, JUMP_LABEL (p)))
- || (loop_insn_first_p (last_giv_use, JUMP_LABEL (p))
- && loop_insn_first_p (JUMP_LABEL (p), loop->end))))
- {
- v->replaceable = 0;
- v->not_replaceable = 1;
-
- if (loop_dump_stream)
- fprintf (loop_dump_stream,
- "Found branch outside giv lifetime.\n");
-
- break;
- }
- }
- }
-
- /* If it is replaceable, then save the final value. */
- if (v->replaceable)
- v->final_value = final_value;
- }
-
- if (loop_dump_stream && v->replaceable)
- fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
- INSN_UID (v->insn), REGNO (v->dest_reg));
-}
-
-/* Update the status of whether a giv can derive other givs.
-
- We need to do something special if there is or may be an update to the biv
- between the time the giv is defined and the time it is used to derive
- another giv.
-
- In addition, a giv that is only conditionally set is not allowed to
- derive another giv once a label has been passed.
-
- The cases we look at are when a label or an update to a biv is passed. */
-
-static void
-update_giv_derive (const struct loop *loop, rtx p)
-{
- struct loop_ivs *ivs = LOOP_IVS (loop);
- struct iv_class *bl;
- struct induction *biv, *giv;
- rtx tem;
- int dummy;
-
- /* Search all IV classes, then all bivs, and finally all givs.
-
- There are three cases we are concerned with. First we have the situation
- of a giv that is only updated conditionally. In that case, it may not
- derive any givs after a label is passed.
-
- The second case is when a biv update occurs, or may occur, after the
- definition of a giv. For certain biv updates (see below) that are
- known to occur between the giv definition and use, we can adjust the
- giv definition. For others, or when the biv update is conditional,
- we must prevent the giv from deriving any other givs. There are two
- sub-cases within this case.
-
- If this is a label, we are concerned with any biv update that is done
- conditionally, since it may be done after the giv is defined followed by
- a branch here (actually, we need to pass both a jump and a label, but
- this extra tracking doesn't seem worth it).
-
- If this is a jump, we are concerned about any biv update that may be
- executed multiple times. We are actually only concerned about
- backward jumps, but it is probably not worth performing the test
- on the jump again here.
-
- If this is a biv update, we must adjust the giv status to show that a
- subsequent biv update was performed. If this adjustment cannot be done,
- the giv cannot derive further givs. */
-
- for (bl = ivs->list; bl; bl = bl->next)
- for (biv = bl->biv; biv; biv = biv->next_iv)
- if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
- || biv->insn == p)
- {
- /* Skip if location is the same as a previous one. */
- if (biv->same)
- continue;
-
- for (giv = bl->giv; giv; giv = giv->next_iv)
- {
- /* If cant_derive is already true, there is no point in
- checking all of these conditions again. */
- if (giv->cant_derive)
- continue;
-
- /* If this giv is conditionally set and we have passed a label,
- it cannot derive anything. */
- if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
- giv->cant_derive = 1;
-
- /* Skip givs that have mult_val == 0, since
- they are really invariants. Also skip those that are
- replaceable, since we know their lifetime doesn't contain
- any biv update. */
- else if (giv->mult_val == const0_rtx || giv->replaceable)
- continue;
-
- /* The only way we can allow this giv to derive another
- is if this is a biv increment and we can form the product
- of biv->add_val and giv->mult_val. In this case, we will
- be able to compute a compensation. */
- else if (biv->insn == p)
- {
- rtx ext_val_dummy;
-
- tem = 0;
- if (biv->mult_val == const1_rtx)
- tem = simplify_giv_expr (loop,
- gen_rtx_MULT (giv->mode,
- biv->add_val,
- giv->mult_val),
- &ext_val_dummy, &dummy);
-
- if (tem && giv->derive_adjustment)
- tem = simplify_giv_expr
- (loop,
- gen_rtx_PLUS (giv->mode, tem, giv->derive_adjustment),
- &ext_val_dummy, &dummy);
-
- if (tem)
- giv->derive_adjustment = tem;
- else
- giv->cant_derive = 1;
- }
- else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
- || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
- giv->cant_derive = 1;
- }
- }
-}
-
-/* Check whether an insn is an increment legitimate for a basic induction var.
- X is the source of insn P, or a part of it.
- MODE is the mode in which X should be interpreted.
-
- DEST_REG is the putative biv, also the destination of the insn.
- We accept patterns of these forms:
- REG = REG + INVARIANT (includes REG = REG - CONSTANT)
- REG = INVARIANT + REG
-
- If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
- store the additive term into *INC_VAL, and store the place where
- we found the additive term into *LOCATION.
-
- If X is an assignment of an invariant into DEST_REG, we set
- *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
-
- We also want to detect a BIV when it corresponds to a variable
- whose mode was promoted. In that case, an increment
- of the variable may be a PLUS that adds a SUBREG of that variable to
- an invariant and then sign- or zero-extends the result of the PLUS
- into the variable.
-
- Most GIVs in such cases will be in the promoted mode, since that is the
- probably the natural computation mode (and almost certainly the mode
- used for addresses) on the machine. So we view the pseudo-reg containing
- the variable as the BIV, as if it were simply incremented.
-
- Note that treating the entire pseudo as a BIV will result in making
- simple increments to any GIVs based on it. However, if the variable
- overflows in its declared mode but not its promoted mode, the result will
- be incorrect. This is acceptable if the variable is signed, since
- overflows in such cases are undefined, but not if it is unsigned, since
- those overflows are defined. So we only check for SIGN_EXTEND and
- not ZERO_EXTEND.
-
- If we cannot find a biv, we return 0. */
-
-static int
-basic_induction_var (const struct loop *loop, rtx x, enum machine_mode mode,
- rtx dest_reg, rtx p, rtx *inc_val, rtx *mult_val,
- rtx **location)
-{
- enum rtx_code code;
- rtx *argp, arg;
- rtx insn, set = 0, last, inc;
-
- code = GET_CODE (x);
- *location = NULL;
- switch (code)
- {
- case PLUS:
- if (rtx_equal_p (XEXP (x, 0), dest_reg)
- || (GET_CODE (XEXP (x, 0)) == SUBREG
- && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
- && SUBREG_REG (XEXP (x, 0)) == dest_reg))
- {
- argp = &XEXP (x, 1);
- }
- else if (rtx_equal_p (XEXP (x, 1), dest_reg)
- || (GET_CODE (XEXP (x, 1)) == SUBREG
- && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
- && SUBREG_REG (XEXP (x, 1)) == dest_reg))
- {
- argp = &XEXP (x, 0);
- }
- else
- return 0;
-
- arg = *argp;
- if (loop_invariant_p (loop, arg) != 1)
- return 0;
-
- /* convert_modes can emit new instructions, e.g. when arg is a loop
- invariant MEM and dest_reg has a different mode.
- These instructions would be emitted after the end of the function
- and then *inc_val would be an uninitialized pseudo.
- Detect this and bail in this case.
- Other alternatives to solve this can be introducing a convert_modes
- variant which is allowed to fail but not allowed to emit new
- instructions, emit these instructions before loop start and let
- it be garbage collected if *inc_val is never used or saving the
- *inc_val initialization sequence generated here and when *inc_val
- is going to be actually used, emit it at some suitable place. */
- last = get_last_insn ();
- inc = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
- if (get_last_insn () != last)
- {
- delete_insns_since (last);
- return 0;
- }
-
- *inc_val = inc;
- *mult_val = const1_rtx;
- *location = argp;
- return 1;
-
- case SUBREG:
- /* If what's inside the SUBREG is a BIV, then the SUBREG. This will
- handle addition of promoted variables.
- ??? The comment at the start of this function is wrong: promoted
- variable increments don't look like it says they do. */
- return basic_induction_var (loop, SUBREG_REG (x),
- GET_MODE (SUBREG_REG (x)),
- dest_reg, p, inc_val, mult_val, location);
-
- case REG:
- /* If this register is assigned in a previous insn, look at its
- source, but don't go outside the loop or past a label. */
-
- /* If this sets a register to itself, we would repeat any previous
- biv increment if we applied this strategy blindly. */
- if (rtx_equal_p (dest_reg, x))
- return 0;
-
- insn = p;
- while (1)
- {
- rtx dest;
- do
- {
- insn = PREV_INSN (insn);
- }
- while (insn && GET_CODE (insn) == NOTE
- && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
-
- if (!insn)
- break;
- set = single_set (insn);
- if (set == 0)
- break;
- dest = SET_DEST (set);
- if (dest == x
- || (GET_CODE (dest) == SUBREG
- && (GET_MODE_SIZE (GET_MODE (dest)) <= UNITS_PER_WORD)
- && (GET_MODE_CLASS (GET_MODE (dest)) == MODE_INT)
- && SUBREG_REG (dest) == x))
- return basic_induction_var (loop, SET_SRC (set),
- (GET_MODE (SET_SRC (set)) == VOIDmode
- ? GET_MODE (x)
- : GET_MODE (SET_SRC (set))),
- dest_reg, insn,
- inc_val, mult_val, location);
-
- while (GET_CODE (dest) == SIGN_EXTRACT
- || GET_CODE (dest) == ZERO_EXTRACT
- || GET_CODE (dest) == SUBREG
- || GET_CODE (dest) == STRICT_LOW_PART)
- dest = XEXP (dest, 0);
- if (dest == x)
- break;
- }
- /* Fall through. */
-
- /* Can accept constant setting of biv only when inside inner most loop.
- Otherwise, a biv of an inner loop may be incorrectly recognized
- as a biv of the outer loop,
- causing code to be moved INTO the inner loop. */
- case MEM:
- if (loop_invariant_p (loop, x) != 1)
- return 0;
- case CONST_INT:
- case SYMBOL_REF:
- case CONST:
- /* convert_modes aborts if we try to convert to or from CCmode, so just
- exclude that case. It is very unlikely that a condition code value
- would be a useful iterator anyways. convert_modes aborts if we try to
- convert a float mode to non-float or vice versa too. */
- if (loop->level == 1
- && GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (dest_reg))
- && GET_MODE_CLASS (mode) != MODE_CC)
- {
- /* Possible bug here? Perhaps we don't know the mode of X. */
- last = get_last_insn ();
- inc = convert_modes (GET_MODE (dest_reg), mode, x, 0);
- if (get_last_insn () != last)
- {
- delete_insns_since (last);
- return 0;
- }
-
- *inc_val = inc;
- *mult_val = const0_rtx;
- return 1;
- }
- else
- return 0;
-
- case SIGN_EXTEND:
- /* Ignore this BIV if signed arithmetic overflow is defined. */
- if (flag_wrapv)
- return 0;
- return basic_induction_var (loop, XEXP (x, 0), GET_MODE (XEXP (x, 0)),
- dest_reg, p, inc_val, mult_val, location);
-
- case ASHIFTRT:
- /* Similar, since this can be a sign extension. */
- for (insn = PREV_INSN (p);
- (insn && GET_CODE (insn) == NOTE
- && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
- insn = PREV_INSN (insn))
- ;
-
- if (insn)
- set = single_set (insn);
-
- if (! rtx_equal_p (dest_reg, XEXP (x, 0))
- && set && SET_DEST (set) == XEXP (x, 0)
- && GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) >= 0
- && GET_CODE (SET_SRC (set)) == ASHIFT
- && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
- return basic_induction_var (loop, XEXP (SET_SRC (set), 0),
- GET_MODE (XEXP (x, 0)),
- dest_reg, insn, inc_val, mult_val,
- location);
- return 0;
-
- default:
- return 0;
- }
-}
-
-/* A general induction variable (giv) is any quantity that is a linear
- function of a basic induction variable,
- i.e. giv = biv * mult_val + add_val.
- The coefficients can be any loop invariant quantity.
- A giv need not be computed directly from the biv;
- it can be computed by way of other givs. */
-
-/* Determine whether X computes a giv.
- If it does, return a nonzero value
- which is the benefit from eliminating the computation of X;
- set *SRC_REG to the register of the biv that it is computed from;
- set *ADD_VAL and *MULT_VAL to the coefficients,
- such that the value of X is biv * mult + add; */
-
-static int
-general_induction_var (const struct loop *loop, rtx x, rtx *src_reg,
- rtx *add_val, rtx *mult_val, rtx *ext_val,
- int is_addr, int *pbenefit,
- enum machine_mode addr_mode)
-{
- struct loop_ivs *ivs = LOOP_IVS (loop);
- rtx orig_x = x;
-
- /* If this is an invariant, forget it, it isn't a giv. */
- if (loop_invariant_p (loop, x) == 1)
- return 0;
-
- *pbenefit = 0;
- *ext_val = NULL_RTX;
- x = simplify_giv_expr (loop, x, ext_val, pbenefit);
- if (x == 0)
- return 0;
-
- switch (GET_CODE (x))
- {
- case USE:
- case CONST_INT:
- /* Since this is now an invariant and wasn't before, it must be a giv
- with MULT_VAL == 0. It doesn't matter which BIV we associate this
- with. */
- *src_reg = ivs->list->biv->dest_reg;
- *mult_val = const0_rtx;
- *add_val = x;
- break;
-
- case REG:
- /* This is equivalent to a BIV. */
- *src_reg = x;
- *mult_val = const1_rtx;
- *add_val = const0_rtx;
- break;
-
- case PLUS:
- /* Either (plus (biv) (invar)) or
- (plus (mult (biv) (invar_1)) (invar_2)). */
- if (GET_CODE (XEXP (x, 0)) == MULT)
- {
- *src_reg = XEXP (XEXP (x, 0), 0);
- *mult_val = XEXP (XEXP (x, 0), 1);
- }
- else
- {
- *src_reg = XEXP (x, 0);
- *mult_val = const1_rtx;
- }
- *add_val = XEXP (x, 1);
- break;
-
- case MULT:
- /* ADD_VAL is zero. */
- *src_reg = XEXP (x, 0);
- *mult_val = XEXP (x, 1);
- *add_val = const0_rtx;
- break;
-
- default:
- abort ();
- }
-
- /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
- unless they are CONST_INT). */
- if (GET_CODE (*add_val) == USE)
- *add_val = XEXP (*add_val, 0);
- if (GET_CODE (*mult_val) == USE)
- *mult_val = XEXP (*mult_val, 0);
-
- if (is_addr)
- *pbenefit += address_cost (orig_x, addr_mode) - reg_address_cost;
- else
- *pbenefit += rtx_cost (orig_x, SET);
-
- /* Always return true if this is a giv so it will be detected as such,
- even if the benefit is zero or negative. This allows elimination
- of bivs that might otherwise not be eliminated. */
- return 1;
-}
-
-/* Given an expression, X, try to form it as a linear function of a biv.
- We will canonicalize it to be of the form
- (plus (mult (BIV) (invar_1))
- (invar_2))
- with possible degeneracies.
-
- The invariant expressions must each be of a form that can be used as a
- machine operand. We surround then with a USE rtx (a hack, but localized
- and certainly unambiguous!) if not a CONST_INT for simplicity in this
- routine; it is the caller's responsibility to strip them.
-
- If no such canonicalization is possible (i.e., two biv's are used or an
- expression that is neither invariant nor a biv or giv), this routine
- returns 0.
-
- For a nonzero return, the result will have a code of CONST_INT, USE,
- REG (for a BIV), PLUS, or MULT. No other codes will occur.
-
- *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
-
-static rtx sge_plus (enum machine_mode, rtx, rtx);
-static rtx sge_plus_constant (rtx, rtx);
-
-static rtx
-simplify_giv_expr (const struct loop *loop, rtx x, rtx *ext_val, int *benefit)
-{
- struct loop_ivs *ivs = LOOP_IVS (loop);
- struct loop_regs *regs = LOOP_REGS (loop);
- enum machine_mode mode = GET_MODE (x);
- rtx arg0, arg1;
- rtx tem;
-
- /* If this is not an integer mode, or if we cannot do arithmetic in this
- mode, this can't be a giv. */
- if (mode != VOIDmode
- && (GET_MODE_CLASS (mode) != MODE_INT
- || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
- return NULL_RTX;
-
- switch (GET_CODE (x))
- {
- case PLUS:
- arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
- arg1 = simplify_giv_expr (loop, XEXP (x, 1), ext_val, benefit);
- if (arg0 == 0 || arg1 == 0)
- return NULL_RTX;
-
- /* Put constant last, CONST_INT last if both constant. */
- if ((GET_CODE (arg0) == USE
- || GET_CODE (arg0) == CONST_INT)
- && ! ((GET_CODE (arg0) == USE
- && GET_CODE (arg1) == USE)
- || GET_CODE (arg1) == CONST_INT))
- tem = arg0, arg0 = arg1, arg1 = tem;
-
- /* Handle addition of zero, then addition of an invariant. */
- if (arg1 == const0_rtx)
- return arg0;
- else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
- switch (GET_CODE (arg0))
- {
- case CONST_INT:
- case USE:
- /* Adding two invariants must result in an invariant, so enclose
- addition operation inside a USE and return it. */
- if (GET_CODE (arg0) == USE)
- arg0 = XEXP (arg0, 0);
- if (GET_CODE (arg1) == USE)
- arg1 = XEXP (arg1, 0);
-
- if (GET_CODE (arg0) == CONST_INT)
- tem = arg0, arg0 = arg1, arg1 = tem;
- if (GET_CODE (arg1) == CONST_INT)
- tem = sge_plus_constant (arg0, arg1);
- else
- tem = sge_plus (mode, arg0, arg1);
-
- if (GET_CODE (tem) != CONST_INT)
- tem = gen_rtx_USE (mode, tem);
- return tem;
-
- case REG:
- case MULT:
- /* biv + invar or mult + invar. Return sum. */
- return gen_rtx_PLUS (mode, arg0, arg1);
-
- case PLUS:
- /* (a + invar_1) + invar_2. Associate. */
- return
- simplify_giv_expr (loop,
- gen_rtx_PLUS (mode,
- XEXP (arg0, 0),
- gen_rtx_PLUS (mode,
- XEXP (arg0, 1),
- arg1)),
- ext_val, benefit);
-
- default:
- abort ();
- }
-
- /* Each argument must be either REG, PLUS, or MULT. Convert REG to
- MULT to reduce cases. */
- if (GET_CODE (arg0) == REG)
- arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
- if (GET_CODE (arg1) == REG)
- arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
-
- /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
- Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
- Recurse to associate the second PLUS. */
- if (GET_CODE (arg1) == MULT)
- tem = arg0, arg0 = arg1, arg1 = tem;
-
- if (GET_CODE (arg1) == PLUS)
- return
- simplify_giv_expr (loop,
- gen_rtx_PLUS (mode,
- gen_rtx_PLUS (mode, arg0,
- XEXP (arg1, 0)),
- XEXP (arg1, 1)),
- ext_val, benefit);
-
- /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
- if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
- return NULL_RTX;
-
- if (!rtx_equal_p (arg0, arg1))
- return NULL_RTX;
-
- return simplify_giv_expr (loop,
- gen_rtx_MULT (mode,
- XEXP (arg0, 0),
- gen_rtx_PLUS (mode,
- XEXP (arg0, 1),
- XEXP (arg1, 1))),
- ext_val, benefit);
-
- case MINUS:
- /* Handle "a - b" as "a + b * (-1)". */
- return simplify_giv_expr (loop,
- gen_rtx_PLUS (mode,
- XEXP (x, 0),
- gen_rtx_MULT (mode,
- XEXP (x, 1),
- constm1_rtx)),
- ext_val, benefit);
-
- case MULT:
- arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
- arg1 = simplify_giv_expr (loop, XEXP (x, 1), ext_val, benefit);
- if (arg0 == 0 || arg1 == 0)
- return NULL_RTX;
-
- /* Put constant last, CONST_INT last if both constant. */
- if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
- && GET_CODE (arg1) != CONST_INT)
- tem = arg0, arg0 = arg1, arg1 = tem;
-
- /* If second argument is not now constant, not giv. */
- if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
- return NULL_RTX;
-
- /* Handle multiply by 0 or 1. */
- if (arg1 == const0_rtx)
- return const0_rtx;
-
- else if (arg1 == const1_rtx)
- return arg0;
-
- switch (GET_CODE (arg0))
- {
- case REG:
- /* biv * invar. Done. */
- return gen_rtx_MULT (mode, arg0, arg1);
-
- case CONST_INT:
- /* Product of two constants. */
- return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
-
- case USE:
- /* invar * invar is a giv, but attempt to simplify it somehow. */
- if (GET_CODE (arg1) != CONST_INT)
- return NULL_RTX;
-
- arg0 = XEXP (arg0, 0);
- if (GET_CODE (arg0) == MULT)
- {
- /* (invar_0 * invar_1) * invar_2. Associate. */
- return simplify_giv_expr (loop,
- gen_rtx_MULT (mode,
- XEXP (arg0, 0),
- gen_rtx_MULT (mode,
- XEXP (arg0,
- 1),
- arg1)),
- ext_val, benefit);
- }
- /* Propagate the MULT expressions to the innermost nodes. */
- else if (GET_CODE (arg0) == PLUS)
- {
- /* (invar_0 + invar_1) * invar_2. Distribute. */
- return simplify_giv_expr (loop,
- gen_rtx_PLUS (mode,
- gen_rtx_MULT (mode,
- XEXP (arg0,
- 0),
- arg1),
- gen_rtx_MULT (mode,
- XEXP (arg0,
- 1),
- arg1)),
- ext_val, benefit);
- }
- return gen_rtx_USE (mode, gen_rtx_MULT (mode, arg0, arg1));
-
- case MULT:
- /* (a * invar_1) * invar_2. Associate. */
- return simplify_giv_expr (loop,
- gen_rtx_MULT (mode,
- XEXP (arg0, 0),
- gen_rtx_MULT (mode,
- XEXP (arg0, 1),
- arg1)),
- ext_val, benefit);
-
- case PLUS:
- /* (a + invar_1) * invar_2. Distribute. */
- return simplify_giv_expr (loop,
- gen_rtx_PLUS (mode,
- gen_rtx_MULT (mode,
- XEXP (arg0, 0),
- arg1),
- gen_rtx_MULT (mode,
- XEXP (arg0, 1),
- arg1)),
- ext_val, benefit);
-
- default:
- abort ();
- }
-
- case ASHIFT:
- /* Shift by constant is multiply by power of two. */
- if (GET_CODE (XEXP (x, 1)) != CONST_INT)
- return 0;
-
- return
- simplify_giv_expr (loop,
- gen_rtx_MULT (mode,
- XEXP (x, 0),
- GEN_INT ((HOST_WIDE_INT) 1
- << INTVAL (XEXP (x, 1)))),
- ext_val, benefit);
-
- case NEG:
- /* "-a" is "a * (-1)" */
- return simplify_giv_expr (loop,
- gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
- ext_val, benefit);
-
- case NOT:
- /* "~a" is "-a - 1". Silly, but easy. */
- return simplify_giv_expr (loop,
- gen_rtx_MINUS (mode,
- gen_rtx_NEG (mode, XEXP (x, 0)),
- const1_rtx),
- ext_val, benefit);
-
- case USE:
- /* Already in proper form for invariant. */
- return x;
-
- case SIGN_EXTEND:
- case ZERO_EXTEND:
- case TRUNCATE:
- /* Conditionally recognize extensions of simple IVs. After we've
- computed loop traversal counts and verified the range of the
- source IV, we'll reevaluate this as a GIV. */
- if (*ext_val == NULL_RTX)
- {
- arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
- if (arg0 && *ext_val == NULL_RTX && GET_CODE (arg0) == REG)
- {
- *ext_val = gen_rtx_fmt_e (GET_CODE (x), mode, arg0);
- return arg0;
- }
- }
- goto do_default;
-
- case REG:
- /* If this is a new register, we can't deal with it. */
- if (REGNO (x) >= max_reg_before_loop)
- return 0;
-
- /* Check for biv or giv. */
- switch (REG_IV_TYPE (ivs, REGNO (x)))
- {
- case BASIC_INDUCT:
- return x;
- case GENERAL_INDUCT:
- {
- struct induction *v = REG_IV_INFO (ivs, REGNO (x));
-
- /* Form expression from giv and add benefit. Ensure this giv
- can derive another and subtract any needed adjustment if so. */
-
- /* Increasing the benefit here is risky. The only case in which it
- is arguably correct is if this is the only use of V. In other
- cases, this will artificially inflate the benefit of the current
- giv, and lead to suboptimal code. Thus, it is disabled, since
- potentially not reducing an only marginally beneficial giv is
- less harmful than reducing many givs that are not really
- beneficial. */
- {
- rtx single_use = regs->array[REGNO (x)].single_usage;
- if (single_use && single_use != const0_rtx)
- *benefit += v->benefit;
- }
-
- if (v->cant_derive)
- return 0;
-
- tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
- v->src_reg, v->mult_val),
- v->add_val);
-
- if (v->derive_adjustment)
- tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
- arg0 = simplify_giv_expr (loop, tem, ext_val, benefit);
- if (*ext_val)
- {
- if (!v->ext_dependent)
- return arg0;
- }
- else
- {
- *ext_val = v->ext_dependent;
- return arg0;
- }
- return 0;
- }
-
- default:
- do_default:
- /* If it isn't an induction variable, and it is invariant, we
- may be able to simplify things further by looking through
- the bits we just moved outside the loop. */
- if (loop_invariant_p (loop, x) == 1)
- {
- struct movable *m;
- struct loop_movables *movables = LOOP_MOVABLES (loop);
-
- for (m = movables->head; m; m = m->next)
- if (rtx_equal_p (x, m->set_dest))
- {
- /* Ok, we found a match. Substitute and simplify. */
-
- /* If we match another movable, we must use that, as
- this one is going away. */
- if (m->match)
- return simplify_giv_expr (loop, m->match->set_dest,
- ext_val, benefit);
-
- /* If consec is nonzero, this is a member of a group of
- instructions that were moved together. We handle this
- case only to the point of seeking to the last insn and
- looking for a REG_EQUAL. Fail if we don't find one. */
- if (m->consec != 0)
- {
- int i = m->consec;
- tem = m->insn;
- do
- {
- tem = NEXT_INSN (tem);
- }
- while (--i > 0);
-
- tem = find_reg_note (tem, REG_EQUAL, NULL_RTX);
- if (tem)
- tem = XEXP (tem, 0);
- }
- else
- {
- tem = single_set (m->insn);
- if (tem)
- tem = SET_SRC (tem);
- }
-
- if (tem)
- {
- /* What we are most interested in is pointer
- arithmetic on invariants -- only take
- patterns we may be able to do something with. */
- if (GET_CODE (tem) == PLUS
- || GET_CODE (tem) == MULT
- || GET_CODE (tem) == ASHIFT
- || GET_CODE (tem) == CONST_INT
- || GET_CODE (tem) == SYMBOL_REF)
- {
- tem = simplify_giv_expr (loop, tem, ext_val,
- benefit);
- if (tem)
- return tem;
- }
- else if (GET_CODE (tem) == CONST
- && GET_CODE (XEXP (tem, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (tem, 0), 0)) == SYMBOL_REF
- && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)
- {
- tem = simplify_giv_expr (loop, XEXP (tem, 0),
- ext_val, benefit);
- if (tem)
- return tem;
- }
- }
- break;
- }
- }
- break;
- }
-
- /* Fall through to general case. */
- default:
- /* If invariant, return as USE (unless CONST_INT).
- Otherwise, not giv. */
- if (GET_CODE (x) == USE)
- x = XEXP (x, 0);
-
- if (loop_invariant_p (loop, x) == 1)
- {
- if (GET_CODE (x) == CONST_INT)
- return x;
- if (GET_CODE (x) == CONST
- && GET_CODE (XEXP (x, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
- x = XEXP (x, 0);
- return gen_rtx_USE (mode, x);
- }
- else
- return 0;
- }
-}
-
-/* This routine folds invariants such that there is only ever one
- CONST_INT in the summation. It is only used by simplify_giv_expr. */
-
-static rtx
-sge_plus_constant (rtx x, rtx c)
-{
- if (GET_CODE (x) == CONST_INT)
- return GEN_INT (INTVAL (x) + INTVAL (c));
- else if (GET_CODE (x) != PLUS)
- return gen_rtx_PLUS (GET_MODE (x), x, c);
- else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
- {
- return gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
- GEN_INT (INTVAL (XEXP (x, 1)) + INTVAL (c)));
- }
- else if (GET_CODE (XEXP (x, 0)) == PLUS
- || GET_CODE (XEXP (x, 1)) != PLUS)
- {
- return gen_rtx_PLUS (GET_MODE (x),
- sge_plus_constant (XEXP (x, 0), c), XEXP (x, 1));
- }
- else
- {
- return gen_rtx_PLUS (GET_MODE (x),
- sge_plus_constant (XEXP (x, 1), c), XEXP (x, 0));
- }
-}
-
-static rtx
-sge_plus (enum machine_mode mode, rtx x, rtx y)
-{
- while (GET_CODE (y) == PLUS)
- {
- rtx a = XEXP (y, 0);
- if (GET_CODE (a) == CONST_INT)
- x = sge_plus_constant (x, a);
- else
- x = gen_rtx_PLUS (mode, x, a);
- y = XEXP (y, 1);
- }
- if (GET_CODE (y) == CONST_INT)
- x = sge_plus_constant (x, y);
- else
- x = gen_rtx_PLUS (mode, x, y);
- return x;
-}
-
-/* Help detect a giv that is calculated by several consecutive insns;
- for example,
- giv = biv * M
- giv = giv + A
- The caller has already identified the first insn P as having a giv as dest;
- we check that all other insns that set the same register follow
- immediately after P, that they alter nothing else,
- and that the result of the last is still a giv.
-
- The value is 0 if the reg set in P is not really a giv.
- Otherwise, the value is the amount gained by eliminating
- all the consecutive insns that compute the value.
-
- FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
- SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
-
- The coefficients of the ultimate giv value are stored in
- *MULT_VAL and *ADD_VAL. */
-
-static int
-consec_sets_giv (const struct loop *loop, int first_benefit, rtx p,
- rtx src_reg, rtx dest_reg, rtx *add_val, rtx *mult_val,
- rtx *ext_val, rtx *last_consec_insn)
-{
- struct loop_ivs *ivs = LOOP_IVS (loop);
- struct loop_regs *regs = LOOP_REGS (loop);
- int count;
- enum rtx_code code;
- int benefit;
- rtx temp;
- rtx set;
-
- /* Indicate that this is a giv so that we can update the value produced in
- each insn of the multi-insn sequence.
-
- This induction structure will be used only by the call to
- general_induction_var below, so we can allocate it on our stack.
- If this is a giv, our caller will replace the induct var entry with
- a new induction structure. */
- struct induction *v;
-
- if (REG_IV_TYPE (ivs, REGNO (dest_reg)) != UNKNOWN_INDUCT)
- return 0;
-
- v = alloca (sizeof (struct induction));
- v->src_reg = src_reg;
- v->mult_val = *mult_val;
- v->add_val = *add_val;
- v->benefit = first_benefit;
- v->cant_derive = 0;
- v->derive_adjustment = 0;
- v->ext_dependent = NULL_RTX;
-
- REG_IV_TYPE (ivs, REGNO (dest_reg)) = GENERAL_INDUCT;
- REG_IV_INFO (ivs, REGNO (dest_reg)) = v;
-
- count = regs->array[REGNO (dest_reg)].n_times_set - 1;
-
- while (count > 0)
- {
- p = NEXT_INSN (p);
- code = GET_CODE (p);
-
- /* If libcall, skip to end of call sequence. */
- if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
- p = XEXP (temp, 0);
-
- if (code == INSN
- && (set = single_set (p))
- && GET_CODE (SET_DEST (set)) == REG
- && SET_DEST (set) == dest_reg
- && (general_induction_var (loop, SET_SRC (set), &src_reg,
- add_val, mult_val, ext_val, 0,
- &benefit, VOIDmode)
- /* Giv created by equivalent expression. */
- || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
- && general_induction_var (loop, XEXP (temp, 0), &src_reg,
- add_val, mult_val, ext_val, 0,
- &benefit, VOIDmode)))
- && src_reg == v->src_reg)
- {
- if (find_reg_note (p, REG_RETVAL, NULL_RTX))
- benefit += libcall_benefit (p);
-
- count--;
- v->mult_val = *mult_val;
- v->add_val = *add_val;
- v->benefit += benefit;
- }
- else if (code != NOTE)
- {
- /* Allow insns that set something other than this giv to a
- constant. Such insns are needed on machines which cannot
- include long constants and should not disqualify a giv. */
- if (code == INSN
- && (set = single_set (p))
- && SET_DEST (set) != dest_reg
- && CONSTANT_P (SET_SRC (set)))
- continue;
-
- REG_IV_TYPE (ivs, REGNO (dest_reg)) = UNKNOWN_INDUCT;
- return 0;
- }
- }
-
- REG_IV_TYPE (ivs, REGNO (dest_reg)) = UNKNOWN_INDUCT;
- *last_consec_insn = p;
- return v->benefit;
-}
-
-/* Return an rtx, if any, that expresses giv G2 as a function of the register
- represented by G1. If no such expression can be found, or it is clear that
- it cannot possibly be a valid address, 0 is returned.
-
- To perform the computation, we note that
- G1 = x * v + a and
- G2 = y * v + b
- where `v' is the biv.
-
- So G2 = (y/b) * G1 + (b - a*y/x).
-
- Note that MULT = y/x.
-
- Update: A and B are now allowed to be additive expressions such that
- B contains all variables in A. That is, computing B-A will not require
- subtracting variables. */
-
-static rtx
-express_from_1 (rtx a, rtx b, rtx mult)
-{
- /* If MULT is zero, then A*MULT is zero, and our expression is B. */
-
- if (mult == const0_rtx)
- return b;
-
- /* If MULT is not 1, we cannot handle A with non-constants, since we
- would then be required to subtract multiples of the registers in A.
- This is theoretically possible, and may even apply to some Fortran
- constructs, but it is a lot of work and we do not attempt it here. */
-
- if (mult != const1_rtx && GET_CODE (a) != CONST_INT)
- return NULL_RTX;
-
- /* In general these structures are sorted top to bottom (down the PLUS
- chain), but not left to right across the PLUS. If B is a higher
- order giv than A, we can strip one level and recurse. If A is higher
- order, we'll eventually bail out, but won't know that until the end.
- If they are the same, we'll strip one level around this loop. */
-
- while (GET_CODE (a) == PLUS && GET_CODE (b) == PLUS)
- {
- rtx ra, rb, oa, ob, tmp;
-
- ra = XEXP (a, 0), oa = XEXP (a, 1);
- if (GET_CODE (ra) == PLUS)
- tmp = ra, ra = oa, oa = tmp;
-
- rb = XEXP (b, 0), ob = XEXP (b, 1);
- if (GET_CODE (rb) == PLUS)
- tmp = rb, rb = ob, ob = tmp;
-
- if (rtx_equal_p (ra, rb))
- /* We matched: remove one reg completely. */
- a = oa, b = ob;
- else if (GET_CODE (ob) != PLUS && rtx_equal_p (ra, ob))
- /* An alternate match. */
- a = oa, b = rb;
- else if (GET_CODE (oa) != PLUS && rtx_equal_p (oa, rb))
- /* An alternate match. */
- a = ra, b = ob;
- else
- {
- /* Indicates an extra register in B. Strip one level from B and
- recurse, hoping B was the higher order expression. */
- ob = express_from_1 (a, ob, mult);
- if (ob == NULL_RTX)
- return NULL_RTX;
- return gen_rtx_PLUS (GET_MODE (b), rb, ob);
- }
- }
-
- /* Here we are at the last level of A, go through the cases hoping to
- get rid of everything but a constant. */
-
- if (GET_CODE (a) == PLUS)
- {
- rtx ra, oa;
-
- ra = XEXP (a, 0), oa = XEXP (a, 1);
- if (rtx_equal_p (oa, b))
- oa = ra;
- else if (!rtx_equal_p (ra, b))
- return NULL_RTX;
-
- if (GET_CODE (oa) != CONST_INT)
- return NULL_RTX;
-
- return GEN_INT (-INTVAL (oa) * INTVAL (mult));
- }
- else if (GET_CODE (a) == CONST_INT)
- {
- return plus_constant (b, -INTVAL (a) * INTVAL (mult));
- }
- else if (CONSTANT_P (a))
- {
- enum machine_mode mode_a = GET_MODE (a);
- enum machine_mode mode_b = GET_MODE (b);
- enum machine_mode mode = mode_b == VOIDmode ? mode_a : mode_b;
- return simplify_gen_binary (MINUS, mode, b, a);
- }
- else if (GET_CODE (b) == PLUS)
- {
- if (rtx_equal_p (a, XEXP (b, 0)))
- return XEXP (b, 1);
- else if (rtx_equal_p (a, XEXP (b, 1)))
- return XEXP (b, 0);
- else
- return NULL_RTX;
- }
- else if (rtx_equal_p (a, b))
- return const0_rtx;
-
- return NULL_RTX;
-}
-
-rtx
-express_from (struct induction *g1, struct induction *g2)
-{
- rtx mult, add;
-
- /* The value that G1 will be multiplied by must be a constant integer. Also,
- the only chance we have of getting a valid address is if b*c/a (see above
- for notation) is also an integer. */
- if (GET_CODE (g1->mult_val) == CONST_INT
- && GET_CODE (g2->mult_val) == CONST_INT)
- {
- if (g1->mult_val == const0_rtx
- || (g1->mult_val == constm1_rtx
- && INTVAL (g2->mult_val)
- == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
- || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
- return NULL_RTX;
- mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
- }
- else if (rtx_equal_p (g1->mult_val, g2->mult_val))
- mult = const1_rtx;
- else
- {
- /* ??? Find out if the one is a multiple of the other? */
- return NULL_RTX;
- }
-
- add = express_from_1 (g1->add_val, g2->add_val, mult);
- if (add == NULL_RTX)
- {
- /* Failed. If we've got a multiplication factor between G1 and G2,
- scale G1's addend and try again. */
- if (INTVAL (mult) > 1)
- {
- rtx g1_add_val = g1->add_val;
- if (GET_CODE (g1_add_val) == MULT
- && GET_CODE (XEXP (g1_add_val, 1)) == CONST_INT)
- {
- HOST_WIDE_INT m;
- m = INTVAL (mult) * INTVAL (XEXP (g1_add_val, 1));
- g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val),
- XEXP (g1_add_val, 0), GEN_INT (m));
- }
- else
- {
- g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val), g1_add_val,
- mult);
- }
-
- add = express_from_1 (g1_add_val, g2->add_val, const1_rtx);
- }
- }
- if (add == NULL_RTX)
- return NULL_RTX;
-
- /* Form simplified final result. */
- if (mult == const0_rtx)
- return add;
- else if (mult == const1_rtx)
- mult = g1->dest_reg;
- else
- mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
-
- if (add == const0_rtx)
- return mult;
- else
- {
- if (GET_CODE (add) == PLUS
- && CONSTANT_P (XEXP (add, 1)))
- {
- rtx tem = XEXP (add, 1);
- mult = gen_rtx_PLUS (g2->mode, mult, XEXP (add, 0));
- add = tem;
- }
-
- return gen_rtx_PLUS (g2->mode, mult, add);
- }
-}
-
-/* Return an rtx, if any, that expresses giv G2 as a function of the register
- represented by G1. This indicates that G2 should be combined with G1 and
- that G2 can use (either directly or via an address expression) a register
- used to represent G1. */
-
-static rtx
-combine_givs_p (struct induction *g1, struct induction *g2)
-{
- rtx comb, ret;
-
- /* With the introduction of ext dependent givs, we must care for modes.
- G2 must not use a wider mode than G1. */
- if (GET_MODE_SIZE (g1->mode) < GET_MODE_SIZE (g2->mode))
- return NULL_RTX;
-
- ret = comb = express_from (g1, g2);
- if (comb == NULL_RTX)
- return NULL_RTX;
- if (g1->mode != g2->mode)
- ret = gen_lowpart (g2->mode, comb);
-
- /* If these givs are identical, they can be combined. We use the results
- of express_from because the addends are not in a canonical form, so
- rtx_equal_p is a weaker test. */
- /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
- combination to be the other way round. */
- if (comb == g1->dest_reg
- && (g1->giv_type == DEST_REG || g2->giv_type == DEST_ADDR))
- {
- return ret;
- }
-
- /* If G2 can be expressed as a function of G1 and that function is valid
- as an address and no more expensive than using a register for G2,
- the expression of G2 in terms of G1 can be used. */
- if (ret != NULL_RTX
- && g2->giv_type == DEST_ADDR
- && memory_address_p (GET_MODE (g2->mem), ret))
- return ret;
-
- return NULL_RTX;
-}
-
-/* See if BL is monotonic and has a constant per-iteration increment.
- Return the increment if so, otherwise return 0. */
-
-static HOST_WIDE_INT
-get_monotonic_increment (struct iv_class *bl)
-{
- struct induction *v;
- rtx incr;
-
- /* Get the total increment and check that it is constant. */
- incr = biv_total_increment (bl);
- if (incr == 0 || GET_CODE (incr) != CONST_INT)
- return 0;
-
- for (v = bl->biv; v != 0; v = v->next_iv)
- {
- if (GET_CODE (v->add_val) != CONST_INT)
- return 0;
-
- if (INTVAL (v->add_val) < 0 && INTVAL (incr) >= 0)
- return 0;
-
- if (INTVAL (v->add_val) > 0 && INTVAL (incr) <= 0)
- return 0;
- }
- return INTVAL (incr);
-}
-
-
-/* Subroutine of biv_fits_mode_p. Return true if biv BL, when biased by
- BIAS, will never exceed the unsigned range of MODE. LOOP is the loop
- to which the biv belongs and INCR is its per-iteration increment. */
-
-static bool
-biased_biv_fits_mode_p (const struct loop *loop, struct iv_class *bl,
- HOST_WIDE_INT incr, enum machine_mode mode,
- unsigned HOST_WIDE_INT bias)
-{
- unsigned HOST_WIDE_INT initial, maximum, span, delta;
-
- /* We need to be able to manipulate MODE-size constants. */
- if (HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode))
- return false;
-
- /* The number of loop iterations must be constant. */
- if (LOOP_INFO (loop)->n_iterations == 0)
- return false;
-
- /* So must the biv's initial value. */
- if (bl->initial_value == 0 || GET_CODE (bl->initial_value) != CONST_INT)
- return false;
-
- initial = bias + INTVAL (bl->initial_value);
- maximum = GET_MODE_MASK (mode);
-
- /* Make sure that the initial value is within range. */
- if (initial > maximum)
- return false;
-
- /* Set up DELTA and SPAN such that the number of iterations * DELTA
- (calculated to arbitrary precision) must be <= SPAN. */
- if (incr < 0)
- {
- delta = -incr;
- span = initial;
- }
- else
- {
- delta = incr;
- /* Handle the special case in which MAXIMUM is the largest
- unsigned HOST_WIDE_INT and INITIAL is 0. */
- if (maximum + 1 == initial)
- span = LOOP_INFO (loop)->n_iterations * delta;
- else
- span = maximum + 1 - initial;
- }
- return (span / LOOP_INFO (loop)->n_iterations >= delta);
-}
-
-
-/* Return true if biv BL will never exceed the bounds of MODE. LOOP is
- the loop to which BL belongs and INCR is its per-iteration increment.
- UNSIGNEDP is true if the biv should be treated as unsigned. */
-
-static bool
-biv_fits_mode_p (const struct loop *loop, struct iv_class *bl,
- HOST_WIDE_INT incr, enum machine_mode mode, bool unsignedp)
-{
- struct loop_info *loop_info;
- unsigned HOST_WIDE_INT bias;
-
- /* A biv's value will always be limited to its natural mode.
- Larger modes will observe the same wrap-around. */
- if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (bl->biv->src_reg)))
- mode = GET_MODE (bl->biv->src_reg);
-
- loop_info = LOOP_INFO (loop);
-
- bias = (unsignedp ? 0 : (GET_MODE_MASK (mode) >> 1) + 1);
- if (biased_biv_fits_mode_p (loop, bl, incr, mode, bias))
- return true;
-
- if (mode == GET_MODE (bl->biv->src_reg)
- && bl->biv->src_reg == loop_info->iteration_var
- && loop_info->comparison_value
- && loop_invariant_p (loop, loop_info->comparison_value))
- {
- /* If the increment is +1, and the exit test is a <, the BIV
- cannot overflow. (For <=, we have the problematic case that
- the comparison value might be the maximum value of the range.) */
- if (incr == 1)
- {
- if (loop_info->comparison_code == LT)
- return true;
- if (loop_info->comparison_code == LTU && unsignedp)
- return true;
- }
-
- /* Likewise for increment -1 and exit test >. */
- if (incr == -1)
- {
- if (loop_info->comparison_code == GT)
- return true;
- if (loop_info->comparison_code == GTU && unsignedp)
- return true;
- }
- }
- return false;
-}
-
-
-/* Given that X is an extension or truncation of BL, return true
- if it is unaffected by overflow. LOOP is the loop to which
- BL belongs and INCR is its per-iteration increment. */
-
-static bool
-extension_within_bounds_p (const struct loop *loop, struct iv_class *bl,
- HOST_WIDE_INT incr, rtx x)
-{
- enum machine_mode mode;
- bool signedp, unsignedp;
-
- switch (GET_CODE (x))
- {
- case SIGN_EXTEND:
- case ZERO_EXTEND:
- mode = GET_MODE (XEXP (x, 0));
- signedp = (GET_CODE (x) == SIGN_EXTEND);
- unsignedp = (GET_CODE (x) == ZERO_EXTEND);
- break;
-
- case TRUNCATE:
- /* We don't know whether this value is being used as signed
- or unsigned, so check the conditions for both. */
- mode = GET_MODE (x);
- signedp = unsignedp = true;
- break;
-
- default:
- abort ();
- }
-
- return ((!signedp || biv_fits_mode_p (loop, bl, incr, mode, false))
- && (!unsignedp || biv_fits_mode_p (loop, bl, incr, mode, true)));
-}
-
-
-/* Check each extension dependent giv in this class to see if its
- root biv is safe from wrapping in the interior mode, which would
- make the giv illegal. */
-
-static void
-check_ext_dependent_givs (const struct loop *loop, struct iv_class *bl)
-{
- struct induction *v;
- HOST_WIDE_INT incr;
-
- incr = get_monotonic_increment (bl);
-
- /* Invalidate givs that fail the tests. */
- for (v = bl->giv; v; v = v->next_iv)
- if (v->ext_dependent)
- {
- if (incr != 0
- && extension_within_bounds_p (loop, bl, incr, v->ext_dependent))
- {
- if (loop_dump_stream)
- fprintf (loop_dump_stream,
- "Verified ext dependent giv at %d of reg %d\n",
- INSN_UID (v->insn), bl->regno);
- }
- else
- {
- if (loop_dump_stream)
- fprintf (loop_dump_stream,
- "Failed ext dependent giv at %d\n",
- INSN_UID (v->insn));
-
- v->ignore = 1;
- bl->all_reduced = 0;
- }
- }
-}
-
-/* Generate a version of VALUE in a mode appropriate for initializing V. */
-
-rtx
-extend_value_for_giv (struct induction *v, rtx value)
-{
- rtx ext_dep = v->ext_dependent;
-
- if (! ext_dep)
- return value;
-
- /* Recall that check_ext_dependent_givs verified that the known bounds
- of a biv did not overflow or wrap with respect to the extension for
- the giv. Therefore, constants need no additional adjustment. */
- if (CONSTANT_P (value) && GET_MODE (value) == VOIDmode)
- return value;
-
- /* Otherwise, we must adjust the value to compensate for the
- differing modes of the biv and the giv. */
- return gen_rtx_fmt_e (GET_CODE (ext_dep), GET_MODE (ext_dep), value);
-}
-
-struct combine_givs_stats
-{
- int giv_number;
- int total_benefit;
-};
-
-static int
-cmp_combine_givs_stats (const void *xp, const void *yp)
-{
- const struct combine_givs_stats * const x =
- (const struct combine_givs_stats *) xp;
- const struct combine_givs_stats * const y =
- (const struct combine_givs_stats *) yp;
- int d;
- d = y->total_benefit - x->total_benefit;
- /* Stabilize the sort. */
- if (!d)
- d = x->giv_number - y->giv_number;
- return d;
-}
-
-/* Check all pairs of givs for iv_class BL and see if any can be combined with
- any other. If so, point SAME to the giv combined with and set NEW_REG to
- be an expression (in terms of the other giv's DEST_REG) equivalent to the
- giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
-
-static void
-combine_givs (struct loop_regs *regs, struct iv_class *bl)
-{
- /* Additional benefit to add for being combined multiple times. */
- const int extra_benefit = 3;
-
- struct induction *g1, *g2, **giv_array;
- int i, j, k, giv_count;
- struct combine_givs_stats *stats;
- rtx *can_combine;
-
- /* Count givs, because bl->giv_count is incorrect here. */
- giv_count = 0;
- for (g1 = bl->giv; g1; g1 = g1->next_iv)
- if (!g1->ignore)
- giv_count++;
-
- giv_array = alloca (giv_count * sizeof (struct induction *));
- i = 0;
- for (g1 = bl->giv; g1; g1 = g1->next_iv)
- if (!g1->ignore)
- giv_array[i++] = g1;
-
- stats = xcalloc (giv_count, sizeof (*stats));
- can_combine = xcalloc (giv_count, giv_count * sizeof (rtx));
-
- for (i = 0; i < giv_count; i++)
- {
- int this_benefit;
- rtx single_use;
-
- g1 = giv_array[i];
- stats[i].giv_number = i;
-
- /* If a DEST_REG GIV is used only once, do not allow it to combine
- with anything, for in doing so we will gain nothing that cannot
- be had by simply letting the GIV with which we would have combined
- to be reduced on its own. The losage shows up in particular with
- DEST_ADDR targets on hosts with reg+reg addressing, though it can
- be seen elsewhere as well. */
- if (g1->giv_type == DEST_REG
- && (single_use = regs->array[REGNO (g1->dest_reg)].single_usage)
- && single_use != const0_rtx)
- continue;
-
- this_benefit = g1->benefit;
- /* Add an additional weight for zero addends. */
- if (g1->no_const_addval)
- this_benefit += 1;
-
- for (j = 0; j < giv_count; j++)
- {
- rtx this_combine;
-
- g2 = giv_array[j];
- if (g1 != g2
- && (this_combine = combine_givs_p (g1, g2)) != NULL_RTX)
- {
- can_combine[i * giv_count + j] = this_combine;
- this_benefit += g2->benefit + extra_benefit;
- }
- }
- stats[i].total_benefit = this_benefit;
- }
-
- /* Iterate, combining until we can't. */
-restart:
- qsort (stats, giv_count, sizeof (*stats), cmp_combine_givs_stats);
-
- if (loop_dump_stream)
- {
- fprintf (loop_dump_stream, "Sorted combine statistics:\n");
- for (k = 0; k < giv_count; k++)
- {
- g1 = giv_array[stats[k].giv_number];
- if (!g1->combined_with && !g1->same)
- fprintf (loop_dump_stream, " {%d, %d}",
- INSN_UID (giv_array[stats[k].giv_number]->insn),
- stats[k].total_benefit);
- }
- putc ('\n', loop_dump_stream);
- }
-
- for (k = 0; k < giv_count; k++)
- {
- int g1_add_benefit = 0;
-
- i = stats[k].giv_number;
- g1 = giv_array[i];
-
- /* If it has already been combined, skip. */
- if (g1->combined_with || g1->same)
- continue;
-
- for (j = 0; j < giv_count; j++)
- {
- g2 = giv_array[j];
- if (g1 != g2 && can_combine[i * giv_count + j]
- /* If it has already been combined, skip. */
- && ! g2->same && ! g2->combined_with)
- {
- int l;
-
- g2->new_reg = can_combine[i * giv_count + j];
- g2->same = g1;
- /* For destination, we now may replace by mem expression instead
- of register. This changes the costs considerably, so add the
- compensation. */
- if (g2->giv_type == DEST_ADDR)
- g2->benefit = (g2->benefit + reg_address_cost
- - address_cost (g2->new_reg,
- GET_MODE (g2->mem)));
- g1->combined_with++;
- g1->lifetime += g2->lifetime;
-
- g1_add_benefit += g2->benefit;
-
- /* ??? The new final_[bg]iv_value code does a much better job
- of finding replaceable giv's, and hence this code may no
- longer be necessary. */
- if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
- g1_add_benefit -= copy_cost;
-
- /* To help optimize the next set of combinations, remove
- this giv from the benefits of other potential mates. */
- for (l = 0; l < giv_count; ++l)
- {
- int m = stats[l].giv_number;
- if (can_combine[m * giv_count + j])
- stats[l].total_benefit -= g2->benefit + extra_benefit;
- }
-
- if (loop_dump_stream)
- fprintf (loop_dump_stream,
- "giv at %d combined with giv at %d; new benefit %d + %d, lifetime %d\n",
- INSN_UID (g2->insn), INSN_UID (g1->insn),
- g1->benefit, g1_add_benefit, g1->lifetime);
- }
- }
-
- /* To help optimize the next set of combinations, remove
- this giv from the benefits of other potential mates. */
- if (g1->combined_with)
- {
- for (j = 0; j < giv_count; ++j)
- {
- int m = stats[j].giv_number;
- if (can_combine[m * giv_count + i])
- stats[j].total_benefit -= g1->benefit + extra_benefit;
- }
-
- g1->benefit += g1_add_benefit;
-
- /* We've finished with this giv, and everything it touched.
- Restart the combination so that proper weights for the
- rest of the givs are properly taken into account. */
- /* ??? Ideally we would compact the arrays at this point, so
- as to not cover old ground. But sanely compacting
- can_combine is tricky. */
- goto restart;
- }
- }
-
- /* Clean up. */
- free (stats);
- free (can_combine);
-}
-
-/* Generate sequence for REG = B * M + A. B is the initial value of
- the basic induction variable, M a multiplicative constant, A an
- additive constant and REG the destination register. */
-
-static rtx
-gen_add_mult (rtx b, rtx m, rtx a, rtx reg)
-{
- rtx seq;
- rtx result;
-
- start_sequence ();
- /* Use unsigned arithmetic. */
- result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 1);
- if (reg != result)
- emit_move_insn (reg, result);
- seq = get_insns ();
- end_sequence ();
-
- return seq;
-}
-
-
-/* Update registers created in insn sequence SEQ. */
-
-static void
-loop_regs_update (const struct loop *loop ATTRIBUTE_UNUSED, rtx seq)
-{
- rtx insn;
-
- /* Update register info for alias analysis. */
-
- insn = seq;
- while (insn != NULL_RTX)
- {
- rtx set = single_set (insn);
-
- if (set && GET_CODE (SET_DEST (set)) == REG)
- record_base_value (REGNO (SET_DEST (set)), SET_SRC (set), 0);
-
- insn = NEXT_INSN (insn);
- }
-}
-
-
-/* EMIT code before BEFORE_BB/BEFORE_INSN to set REG = B * M + A. B
- is the initial value of the basic induction variable, M a
- multiplicative constant, A an additive constant and REG the
- destination register. */
-
-void
-loop_iv_add_mult_emit_before (const struct loop *loop, rtx b, rtx m, rtx a,
- rtx reg, basic_block before_bb, rtx before_insn)
-{
- rtx seq;
-
- if (! before_insn)
- {
- loop_iv_add_mult_hoist (loop, b, m, a, reg);
- return;
- }
-
- /* Use copy_rtx to prevent unexpected sharing of these rtx. */
- seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
-
- /* Increase the lifetime of any invariants moved further in code. */
- update_reg_last_use (a, before_insn);
- update_reg_last_use (b, before_insn);
- update_reg_last_use (m, before_insn);
-
- /* It is possible that the expansion created lots of new registers.
- Iterate over the sequence we just created and record them all. We
- must do this before inserting the sequence. */
- loop_regs_update (loop, seq);
-
- loop_insn_emit_before (loop, before_bb, before_insn, seq);
-}
-
-
-/* Emit insns in loop pre-header to set REG = B * M + A. B is the
- initial value of the basic induction variable, M a multiplicative
- constant, A an additive constant and REG the destination
- register. */
-
-void
-loop_iv_add_mult_sink (const struct loop *loop, rtx b, rtx m, rtx a, rtx reg)
-{
- rtx seq;
-
- /* Use copy_rtx to prevent unexpected sharing of these rtx. */
- seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
-
- /* Increase the lifetime of any invariants moved further in code.
- ???? Is this really necessary? */
- update_reg_last_use (a, loop->sink);
- update_reg_last_use (b, loop->sink);
- update_reg_last_use (m, loop->sink);
-
- /* It is possible that the expansion created lots of new registers.
- Iterate over the sequence we just created and record them all. We
- must do this before inserting the sequence. */
- loop_regs_update (loop, seq);
-
- loop_insn_sink (loop, seq);
-}
-
-
-/* Emit insns after loop to set REG = B * M + A. B is the initial
- value of the basic induction variable, M a multiplicative constant,
- A an additive constant and REG the destination register. */
-
-void
-loop_iv_add_mult_hoist (const struct loop *loop, rtx b, rtx m, rtx a, rtx reg)
-{
- rtx seq;
-
- /* Use copy_rtx to prevent unexpected sharing of these rtx. */
- seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
-
- /* It is possible that the expansion created lots of new registers.
- Iterate over the sequence we just created and record them all. We
- must do this before inserting the sequence. */
- loop_regs_update (loop, seq);
-
- loop_insn_hoist (loop, seq);
-}
-
-
-
-/* Similar to gen_add_mult, but compute cost rather than generating
- sequence. */
-
-static int
-iv_add_mult_cost (rtx b, rtx m, rtx a, rtx reg)
-{
- int cost = 0;
- rtx last, result;
-
- start_sequence ();
- result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 1);
- if (reg != result)
- emit_move_insn (reg, result);
- last = get_last_insn ();
- while (last)
- {
- rtx t = single_set (last);
- if (t)
- cost += rtx_cost (SET_SRC (t), SET);
- last = PREV_INSN (last);
- }
- end_sequence ();
- return cost;
-}
-
-/* Test whether A * B can be computed without
- an actual multiply insn. Value is 1 if so.
-
- ??? This function stinks because it generates a ton of wasted RTL
- ??? and as a result fragments GC memory to no end. There are other
- ??? places in the compiler which are invoked a lot and do the same
- ??? thing, generate wasted RTL just to see if something is possible. */
-
-static int
-product_cheap_p (rtx a, rtx b)
-{
- rtx tmp;
- int win, n_insns;
-
- /* If only one is constant, make it B. */
- if (GET_CODE (a) == CONST_INT)
- tmp = a, a = b, b = tmp;
-
- /* If first constant, both constant, so don't need multiply. */
- if (GET_CODE (a) == CONST_INT)
- return 1;
-
- /* If second not constant, neither is constant, so would need multiply. */
- if (GET_CODE (b) != CONST_INT)
- return 0;
-
- /* One operand is constant, so might not need multiply insn. Generate the
- code for the multiply and see if a call or multiply, or long sequence
- of insns is generated. */
-
- start_sequence ();
- expand_mult (GET_MODE (a), a, b, NULL_RTX, 1);
- tmp = get_insns ();
- end_sequence ();
-
- win = 1;
- if (INSN_P (tmp))
- {
- n_insns = 0;
- while (tmp != NULL_RTX)
- {
- rtx next = NEXT_INSN (tmp);
-
- if (++n_insns > 3
- || GET_CODE (tmp) != INSN
- || (GET_CODE (PATTERN (tmp)) == SET
- && GET_CODE (SET_SRC (PATTERN (tmp))) == MULT)
- || (GET_CODE (PATTERN (tmp)) == PARALLEL
- && GET_CODE (XVECEXP (PATTERN (tmp), 0, 0)) == SET
- && GET_CODE (SET_SRC (XVECEXP (PATTERN (tmp), 0, 0))) == MULT))
- {
- win = 0;
- break;
- }
-
- tmp = next;
- }
- }
- else if (GET_CODE (tmp) == SET
- && GET_CODE (SET_SRC (tmp)) == MULT)
- win = 0;
- else if (GET_CODE (tmp) == PARALLEL
- && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
- && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
- win = 0;
-
- return win;
-}
-
-/* Check to see if loop can be terminated by a "decrement and branch until
- zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
- Also try reversing an increment loop to a decrement loop
- to see if the optimization can be performed.
- Value is nonzero if optimization was performed. */
-
-/* This is useful even if the architecture doesn't have such an insn,
- because it might change a loops which increments from 0 to n to a loop
- which decrements from n to 0. A loop that decrements to zero is usually
- faster than one that increments from zero. */
-
-/* ??? This could be rewritten to use some of the loop unrolling procedures,
- such as approx_final_value, biv_total_increment, loop_iterations, and
- final_[bg]iv_value. */
-
-static int
-check_dbra_loop (struct loop *loop, int insn_count)
-{
- struct loop_info *loop_info = LOOP_INFO (loop);
- struct loop_regs *regs = LOOP_REGS (loop);
- struct loop_ivs *ivs = LOOP_IVS (loop);
- struct iv_class *bl;
- rtx reg;
- enum machine_mode mode;
- rtx jump_label;
- rtx final_value;
- rtx start_value;
- rtx new_add_val;
- rtx comparison;
- rtx before_comparison;
- rtx p;
- rtx jump;
- rtx first_compare;
- int compare_and_branch;
- rtx loop_start = loop->start;
- rtx loop_end = loop->end;
-
- /* If last insn is a conditional branch, and the insn before tests a
- register value, try to optimize it. Otherwise, we can't do anything. */
-
- jump = PREV_INSN (loop_end);
- comparison = get_condition_for_loop (loop, jump);
- if (comparison == 0)
- return 0;
- if (!onlyjump_p (jump))
- return 0;
-
- /* Try to compute whether the compare/branch at the loop end is one or
- two instructions. */
- get_condition (jump, &first_compare, false);
- if (first_compare == jump)
- compare_and_branch = 1;
- else if (first_compare == prev_nonnote_insn (jump))
- compare_and_branch = 2;
- else
- return 0;
-
- {
- /* If more than one condition is present to control the loop, then
- do not proceed, as this function does not know how to rewrite
- loop tests with more than one condition.
-
- Look backwards from the first insn in the last comparison
- sequence and see if we've got another comparison sequence. */
-
- rtx jump1;
- if ((jump1 = prev_nonnote_insn (first_compare)) != loop->cont)
- if (GET_CODE (jump1) == JUMP_INSN)
- return 0;
- }
-
- /* Check all of the bivs to see if the compare uses one of them.
- Skip biv's set more than once because we can't guarantee that
- it will be zero on the last iteration. Also skip if the biv is
- used between its update and the test insn. */
-
- for (bl = ivs->list; bl; bl = bl->next)
- {
- if (bl->biv_count == 1
- && ! bl->biv->maybe_multiple
- && bl->biv->dest_reg == XEXP (comparison, 0)
- && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
- first_compare))
- break;
- }
-
- /* Try swapping the comparison to identify a suitable biv. */
- if (!bl)
- for (bl = ivs->list; bl; bl = bl->next)
- if (bl->biv_count == 1
- && ! bl->biv->maybe_multiple
- && bl->biv->dest_reg == XEXP (comparison, 1)
- && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
- first_compare))
- {
- comparison = gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)),
- VOIDmode,
- XEXP (comparison, 1),
- XEXP (comparison, 0));
- break;
- }
-
- if (! bl)
- return 0;
-
- /* Look for the case where the basic induction variable is always
- nonnegative, and equals zero on the last iteration.
- In this case, add a reg_note REG_NONNEG, which allows the
- m68k DBRA instruction to be used. */
-
- if (((GET_CODE (comparison) == GT && XEXP (comparison, 1) == constm1_rtx)
- || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
- && GET_CODE (bl->biv->add_val) == CONST_INT
- && INTVAL (bl->biv->add_val) < 0)
- {
- /* Initial value must be greater than 0,
- init_val % -dec_value == 0 to ensure that it equals zero on
- the last iteration */
-
- if (GET_CODE (bl->initial_value) == CONST_INT
- && INTVAL (bl->initial_value) > 0
- && (INTVAL (bl->initial_value)
- % (-INTVAL (bl->biv->add_val))) == 0)
- {
- /* Register always nonnegative, add REG_NOTE to branch. */
- if (! find_reg_note (jump, REG_NONNEG, NULL_RTX))
- REG_NOTES (jump)
- = gen_rtx_EXPR_LIST (REG_NONNEG, bl->biv->dest_reg,
- REG_NOTES (jump));
- bl->nonneg = 1;
-
- return 1;
- }
-
- /* If the decrement is 1 and the value was tested as >= 0 before
- the loop, then we can safely optimize. */
- for (p = loop_start; p; p = PREV_INSN (p))
- {
- if (GET_CODE (p) == CODE_LABEL)
- break;
- if (GET_CODE (p) != JUMP_INSN)
- continue;
-
- before_comparison = get_condition_for_loop (loop, p);
- if (before_comparison
- && XEXP (before_comparison, 0) == bl->biv->dest_reg
- && (GET_CODE (before_comparison) == LT
- || GET_CODE (before_comparison) == LTU)
- && XEXP (before_comparison, 1) == const0_rtx
- && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
- && INTVAL (bl->biv->add_val) == -1)
- {
- if (! find_reg_note (jump, REG_NONNEG, NULL_RTX))
- REG_NOTES (jump)
- = gen_rtx_EXPR_LIST (REG_NONNEG, bl->biv->dest_reg,
- REG_NOTES (jump));
- bl->nonneg = 1;
-
- return 1;
- }
- }
- }
- else if (GET_CODE (bl->biv->add_val) == CONST_INT
- && INTVAL (bl->biv->add_val) > 0)
- {
- /* Try to change inc to dec, so can apply above optimization. */
- /* Can do this if:
- all registers modified are induction variables or invariant,
- all memory references have non-overlapping addresses
- (obviously true if only one write)
- allow 2 insns for the compare/jump at the end of the loop. */
- /* Also, we must avoid any instructions which use both the reversed
- biv and another biv. Such instructions will fail if the loop is
- reversed. We meet this condition by requiring that either
- no_use_except_counting is true, or else that there is only
- one biv. */
- int num_nonfixed_reads = 0;
- /* 1 if the iteration var is used only to count iterations. */
- int no_use_except_counting = 0;
- /* 1 if the loop has no memory store, or it has a single memory store
- which is reversible. */
- int reversible_mem_store = 1;
-
- if (bl->giv_count == 0
- && !loop->exit_count
- && !loop_info->has_multiple_exit_targets)
- {
- rtx bivreg = regno_reg_rtx[bl->regno];
- struct iv_class *blt;
-
- /* If there are no givs for this biv, and the only exit is the
- fall through at the end of the loop, then
- see if perhaps there are no uses except to count. */
- no_use_except_counting = 1;
- for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
- if (INSN_P (p))
- {
- rtx set = single_set (p);
-
- if (set && GET_CODE (SET_DEST (set)) == REG
- && REGNO (SET_DEST (set)) == bl->regno)
- /* An insn that sets the biv is okay. */
- ;
- else if (!reg_mentioned_p (bivreg, PATTERN (p)))
- /* An insn that doesn't mention the biv is okay. */
- ;
- else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
- || p == prev_nonnote_insn (loop_end))
- {
- /* If either of these insns uses the biv and sets a pseudo
- that has more than one usage, then the biv has uses
- other than counting since it's used to derive a value
- that is used more than one time. */
- note_stores (PATTERN (p), note_set_pseudo_multiple_uses,
- regs);
- if (regs->multiple_uses)
- {
- no_use_except_counting = 0;
- break;
- }
- }
- else
- {
- no_use_except_counting = 0;
- break;
- }
- }
-
- /* A biv has uses besides counting if it is used to set
- another biv. */
- for (blt = ivs->list; blt; blt = blt->next)
- if (blt->init_set
- && reg_mentioned_p (bivreg, SET_SRC (blt->init_set)))
- {
- no_use_except_counting = 0;
- break;
- }
- }
-
- if (no_use_except_counting)
- /* No need to worry about MEMs. */
- ;
- else if (loop_info->num_mem_sets <= 1)
- {
- for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
- if (INSN_P (p))
- num_nonfixed_reads += count_nonfixed_reads (loop, PATTERN (p));
-
- /* If the loop has a single store, and the destination address is
- invariant, then we can't reverse the loop, because this address
- might then have the wrong value at loop exit.
- This would work if the source was invariant also, however, in that
- case, the insn should have been moved out of the loop. */
-
- if (loop_info->num_mem_sets == 1)
- {
- struct induction *v;
-
- /* If we could prove that each of the memory locations
- written to was different, then we could reverse the
- store -- but we don't presently have any way of
- knowing that. */
- reversible_mem_store = 0;
-
- /* If the store depends on a register that is set after the
- store, it depends on the initial value, and is thus not
- reversible. */
- for (v = bl->giv; reversible_mem_store && v; v = v->next_iv)
- {
- if (v->giv_type == DEST_REG
- && reg_mentioned_p (v->dest_reg,
- PATTERN (loop_info->first_loop_store_insn))
- && loop_insn_first_p (loop_info->first_loop_store_insn,
- v->insn))
- reversible_mem_store = 0;
- }
- }
- }
- else
- return 0;
-
- /* This code only acts for innermost loops. Also it simplifies
- the memory address check by only reversing loops with
- zero or one memory access.
- Two memory accesses could involve parts of the same array,
- and that can't be reversed.
- If the biv is used only for counting, than we don't need to worry
- about all these things. */
-
- if ((num_nonfixed_reads <= 1
- && ! loop_info->has_nonconst_call
- && ! loop_info->has_prefetch
- && ! loop_info->has_volatile
- && reversible_mem_store
- && (bl->giv_count + bl->biv_count + loop_info->num_mem_sets
- + num_unmoved_movables (loop) + compare_and_branch == insn_count)
- && (bl == ivs->list && bl->next == 0))
- || (no_use_except_counting && ! loop_info->has_prefetch))
- {
- rtx tem;
-
- /* Loop can be reversed. */
- if (loop_dump_stream)
- fprintf (loop_dump_stream, "Can reverse loop\n");
-
- /* Now check other conditions:
-
- The increment must be a constant, as must the initial value,
- and the comparison code must be LT.
-
- This test can probably be improved since +/- 1 in the constant
- can be obtained by changing LT to LE and vice versa; this is
- confusing. */
-
- if (comparison
- /* for constants, LE gets turned into LT */
- && (GET_CODE (comparison) == LT
- || (GET_CODE (comparison) == LE
- && no_use_except_counting)
- || GET_CODE (comparison) == LTU))
- {
- HOST_WIDE_INT add_val, add_adjust, comparison_val = 0;
- rtx initial_value, comparison_value;
- int nonneg = 0;
- enum rtx_code cmp_code;
- int comparison_const_width;
- unsigned HOST_WIDE_INT comparison_sign_mask;
- bool keep_first_compare;
-
- add_val = INTVAL (bl->biv->add_val);
- comparison_value = XEXP (comparison, 1);
- if (GET_MODE (comparison_value) == VOIDmode)
- comparison_const_width
- = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison, 0)));
- else
- comparison_const_width
- = GET_MODE_BITSIZE (GET_MODE (comparison_value));
- if (comparison_const_width > HOST_BITS_PER_WIDE_INT)
- comparison_const_width = HOST_BITS_PER_WIDE_INT;
- comparison_sign_mask
- = (unsigned HOST_WIDE_INT) 1 << (comparison_const_width - 1);
-
- /* If the comparison value is not a loop invariant, then we
- can not reverse this loop.
-
- ??? If the insns which initialize the comparison value as
- a whole compute an invariant result, then we could move
- them out of the loop and proceed with loop reversal. */
- if (! loop_invariant_p (loop, comparison_value))
- return 0;
-
- if (GET_CODE (comparison_value) == CONST_INT)
- comparison_val = INTVAL (comparison_value);
- initial_value = bl->initial_value;
-
- /* Normalize the initial value if it is an integer and
- has no other use except as a counter. This will allow
- a few more loops to be reversed. */
- if (no_use_except_counting
- && GET_CODE (comparison_value) == CONST_INT
- && GET_CODE (initial_value) == CONST_INT)
- {
- comparison_val = comparison_val - INTVAL (bl->initial_value);
- /* The code below requires comparison_val to be a multiple
- of add_val in order to do the loop reversal, so
- round up comparison_val to a multiple of add_val.
- Since comparison_value is constant, we know that the
- current comparison code is LT. */
- comparison_val = comparison_val + add_val - 1;
- comparison_val
- -= (unsigned HOST_WIDE_INT) comparison_val % add_val;
- /* We postpone overflow checks for COMPARISON_VAL here;
- even if there is an overflow, we might still be able to
- reverse the loop, if converting the loop exit test to
- NE is possible. */
- initial_value = const0_rtx;
- }
-
- /* First check if we can do a vanilla loop reversal. */
- if (initial_value == const0_rtx
- && GET_CODE (comparison_value) == CONST_INT
- /* Now do postponed overflow checks on COMPARISON_VAL. */
- && ! (((comparison_val - add_val) ^ INTVAL (comparison_value))
- & comparison_sign_mask))
- {
- /* Register will always be nonnegative, with value
- 0 on last iteration */
- add_adjust = add_val;
- nonneg = 1;
- cmp_code = GE;
- }
- else
- return 0;
-
- if (GET_CODE (comparison) == LE)
- add_adjust -= add_val;
-
- /* If the initial value is not zero, or if the comparison
- value is not an exact multiple of the increment, then we
- can not reverse this loop. */
- if (initial_value == const0_rtx
- && GET_CODE (comparison_value) == CONST_INT)
- {
- if (((unsigned HOST_WIDE_INT) comparison_val % add_val) != 0)
- return 0;
- }
- else
- {
- if (! no_use_except_counting || add_val != 1)
- return 0;
- }
-
- final_value = comparison_value;
-
- /* Reset these in case we normalized the initial value
- and comparison value above. */
- if (GET_CODE (comparison_value) == CONST_INT
- && GET_CODE (initial_value) == CONST_INT)
- {
- comparison_value = GEN_INT (comparison_val);
- final_value
- = GEN_INT (comparison_val + INTVAL (bl->initial_value));
- }
- bl->initial_value = initial_value;
-
- /* Save some info needed to produce the new insns. */
- reg = bl->biv->dest_reg;
- mode = GET_MODE (reg);
- jump_label = condjump_label (PREV_INSN (loop_end));
- new_add_val = GEN_INT (-INTVAL (bl->biv->add_val));
-
- /* Set start_value; if this is not a CONST_INT, we need
- to generate a SUB.
- Initialize biv to start_value before loop start.
- The old initializing insn will be deleted as a
- dead store by flow.c. */
- if (initial_value == const0_rtx
- && GET_CODE (comparison_value) == CONST_INT)
- {
- start_value
- = gen_int_mode (comparison_val - add_adjust, mode);
- loop_insn_hoist (loop, gen_move_insn (reg, start_value));
- }
- else if (GET_CODE (initial_value) == CONST_INT)
- {
- rtx offset = GEN_INT (-INTVAL (initial_value) - add_adjust);
- rtx add_insn = gen_add3_insn (reg, comparison_value, offset);
-
- if (add_insn == 0)
- return 0;
-
- start_value
- = gen_rtx_PLUS (mode, comparison_value, offset);
- loop_insn_hoist (loop, add_insn);
- if (GET_CODE (comparison) == LE)
- final_value = gen_rtx_PLUS (mode, comparison_value,
- GEN_INT (add_val));
- }
- else if (! add_adjust)
- {
- rtx sub_insn = gen_sub3_insn (reg, comparison_value,
- initial_value);
-
- if (sub_insn == 0)
- return 0;
- start_value
- = gen_rtx_MINUS (mode, comparison_value, initial_value);
- loop_insn_hoist (loop, sub_insn);
- }
- else
- /* We could handle the other cases too, but it'll be
- better to have a testcase first. */
- return 0;
-
- /* We may not have a single insn which can increment a reg, so
- create a sequence to hold all the insns from expand_inc. */
- start_sequence ();
- expand_inc (reg, new_add_val);
- tem = get_insns ();
- end_sequence ();
-
- p = loop_insn_emit_before (loop, 0, bl->biv->insn, tem);
- delete_insn (bl->biv->insn);
-
- /* Update biv info to reflect its new status. */
- bl->biv->insn = p;
- bl->initial_value = start_value;
- bl->biv->add_val = new_add_val;
-
- /* Update loop info. */
- loop_info->initial_value = reg;
- loop_info->initial_equiv_value = reg;
- loop_info->final_value = const0_rtx;
- loop_info->final_equiv_value = const0_rtx;
- loop_info->comparison_value = const0_rtx;
- loop_info->comparison_code = cmp_code;
- loop_info->increment = new_add_val;
-
- /* Inc LABEL_NUSES so that delete_insn will
- not delete the label. */
- LABEL_NUSES (XEXP (jump_label, 0))++;
-
- /* If we have a separate comparison insn that does more
- than just set cc0, the result of the comparison might
- be used outside the loop. */
- keep_first_compare = (compare_and_branch == 2
-#ifdef HAVE_CC0
- && sets_cc0_p (first_compare) <= 0
-#endif
- );
-
- /* Emit an insn after the end of the loop to set the biv's
- proper exit value if it is used anywhere outside the loop. */
- if (keep_first_compare
- || (REGNO_LAST_UID (bl->regno) != INSN_UID (first_compare))
- || ! bl->init_insn
- || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
- loop_insn_sink (loop, gen_load_of_final_value (reg, final_value));
-
- if (keep_first_compare)
- loop_insn_sink (loop, PATTERN (first_compare));
-
- /* Delete compare/branch at end of loop. */
- delete_related_insns (PREV_INSN (loop_end));
- if (compare_and_branch == 2)
- delete_related_insns (first_compare);
-
- /* Add new compare/branch insn at end of loop. */
- start_sequence ();
- emit_cmp_and_jump_insns (reg, const0_rtx, cmp_code, NULL_RTX,
- mode, 0,
- XEXP (jump_label, 0));
- tem = get_insns ();
- end_sequence ();
- emit_jump_insn_before (tem, loop_end);
-
- for (tem = PREV_INSN (loop_end);
- tem && GET_CODE (tem) != JUMP_INSN;
- tem = PREV_INSN (tem))
- ;
-
- if (tem)
- JUMP_LABEL (tem) = XEXP (jump_label, 0);
-
- if (nonneg)
- {
- if (tem)
- {
- /* Increment of LABEL_NUSES done above. */
- /* Register is now always nonnegative,
- so add REG_NONNEG note to the branch. */
- REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, reg,
- REG_NOTES (tem));
- }
- bl->nonneg = 1;
- }
-
- /* No insn may reference both the reversed and another biv or it
- will fail (see comment near the top of the loop reversal
- code).
- Earlier on, we have verified that the biv has no use except
- counting, or it is the only biv in this function.
- However, the code that computes no_use_except_counting does
- not verify reg notes. It's possible to have an insn that
- references another biv, and has a REG_EQUAL note with an
- expression based on the reversed biv. To avoid this case,
- remove all REG_EQUAL notes based on the reversed biv
- here. */
- for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
- if (INSN_P (p))
- {
- rtx *pnote;
- rtx set = single_set (p);
- /* If this is a set of a GIV based on the reversed biv, any
- REG_EQUAL notes should still be correct. */
- if (! set
- || GET_CODE (SET_DEST (set)) != REG
- || (size_t) REGNO (SET_DEST (set)) >= ivs->n_regs
- || REG_IV_TYPE (ivs, REGNO (SET_DEST (set))) != GENERAL_INDUCT
- || REG_IV_INFO (ivs, REGNO (SET_DEST (set)))->src_reg != bl->biv->src_reg)
- for (pnote = &REG_NOTES (p); *pnote;)
- {
- if (REG_NOTE_KIND (*pnote) == REG_EQUAL
- && reg_mentioned_p (regno_reg_rtx[bl->regno],
- XEXP (*pnote, 0)))
- *pnote = XEXP (*pnote, 1);
- else
- pnote = &XEXP (*pnote, 1);
- }
- }
-
- /* Mark that this biv has been reversed. Each giv which depends
- on this biv, and which is also live past the end of the loop
- will have to be fixed up. */
-
- bl->reversed = 1;
-
- if (loop_dump_stream)
- {
- fprintf (loop_dump_stream, "Reversed loop");
- if (bl->nonneg)
- fprintf (loop_dump_stream, " and added reg_nonneg\n");
- else
- fprintf (loop_dump_stream, "\n");
- }
-
- return 1;
- }
- }
- }
-
- return 0;
-}
-
-/* Verify whether the biv BL appears to be eliminable,
- based on the insns in the loop that refer to it.
-
- If ELIMINATE_P is nonzero, actually do the elimination.
-
- THRESHOLD and INSN_COUNT are from loop_optimize and are used to
- determine whether invariant insns should be placed inside or at the
- start of the loop. */
-
-static int
-maybe_eliminate_biv (const struct loop *loop, struct iv_class *bl,
- int eliminate_p, int threshold, int insn_count)
-{
- struct loop_ivs *ivs = LOOP_IVS (loop);
- rtx reg = bl->biv->dest_reg;
- rtx p;
-
- /* Scan all insns in the loop, stopping if we find one that uses the
- biv in a way that we cannot eliminate. */
-
- for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
- {
- enum rtx_code code = GET_CODE (p);
- basic_block where_bb = 0;
- rtx where_insn = threshold >= insn_count ? 0 : p;
- rtx note;
-
- /* If this is a libcall that sets a giv, skip ahead to its end. */
- if (GET_RTX_CLASS (code) == 'i')
- {
- note = find_reg_note (p, REG_LIBCALL, NULL_RTX);
-
- if (note)
- {
- rtx last = XEXP (note, 0);
- rtx set = single_set (last);
-
- if (set && GET_CODE (SET_DEST (set)) == REG)
- {
- unsigned int regno = REGNO (SET_DEST (set));
-
- if (regno < ivs->n_regs
- && REG_IV_TYPE (ivs, regno) == GENERAL_INDUCT
- && REG_IV_INFO (ivs, regno)->src_reg == bl->biv->src_reg)
- p = last;
- }
- }
- }
-
- /* Closely examine the insn if the biv is mentioned. */
- if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
- && reg_mentioned_p (reg, PATTERN (p))
- && ! maybe_eliminate_biv_1 (loop, PATTERN (p), p, bl,
- eliminate_p, where_bb, where_insn))
- {
- if (loop_dump_stream)
- fprintf (loop_dump_stream,
- "Cannot eliminate biv %d: biv used in insn %d.\n",
- bl->regno, INSN_UID (p));
- break;
- }
-
- /* If we are eliminating, kill REG_EQUAL notes mentioning the biv. */
- if (eliminate_p
- && (note = find_reg_note (p, REG_EQUAL, NULL_RTX)) != NULL_RTX
- && reg_mentioned_p (reg, XEXP (note, 0)))
- remove_note (p, note);
- }
-
- if (p == loop->end)
- {
- if (loop_dump_stream)
- fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
- bl->regno, eliminate_p ? "was" : "can be");
- return 1;
- }
-
- return 0;
-}
-
-/* INSN and REFERENCE are instructions in the same insn chain.
- Return nonzero if INSN is first. */
-
-int
-loop_insn_first_p (rtx insn, rtx reference)
-{
- rtx p, q;
-
- for (p = insn, q = reference;;)
- {
- /* Start with test for not first so that INSN == REFERENCE yields not
- first. */
- if (q == insn || ! p)
- return 0;
- if (p == reference || ! q)
- return 1;
-
- /* Either of P or Q might be a NOTE. Notes have the same LUID as the
- previous insn, hence the <= comparison below does not work if
- P is a note. */
- if (INSN_UID (p) < max_uid_for_loop
- && INSN_UID (q) < max_uid_for_loop
- && GET_CODE (p) != NOTE)
- return INSN_LUID (p) <= INSN_LUID (q);
-
- if (INSN_UID (p) >= max_uid_for_loop
- || GET_CODE (p) == NOTE)
- p = NEXT_INSN (p);
- if (INSN_UID (q) >= max_uid_for_loop)
- q = NEXT_INSN (q);
- }
-}
-
-/* We are trying to eliminate BIV in INSN using GIV. Return nonzero if
- the offset that we have to take into account due to auto-increment /
- div derivation is zero. */
-static int
-biv_elimination_giv_has_0_offset (struct induction *biv,
- struct induction *giv, rtx insn)
-{
- /* If the giv V had the auto-inc address optimization applied
- to it, and INSN occurs between the giv insn and the biv
- insn, then we'd have to adjust the value used here.
- This is rare, so we don't bother to make this possible. */
- if (giv->auto_inc_opt
- && ((loop_insn_first_p (giv->insn, insn)
- && loop_insn_first_p (insn, biv->insn))
- || (loop_insn_first_p (biv->insn, insn)
- && loop_insn_first_p (insn, giv->insn))))
- return 0;
-
- return 1;
-}
-
-/* If BL appears in X (part of the pattern of INSN), see if we can
- eliminate its use. If so, return 1. If not, return 0.
-
- If BIV does not appear in X, return 1.
-
- If ELIMINATE_P is nonzero, actually do the elimination.
- WHERE_INSN/WHERE_BB indicate where extra insns should be added.
- Depending on how many items have been moved out of the loop, it
- will either be before INSN (when WHERE_INSN is nonzero) or at the
- start of the loop (when WHERE_INSN is zero). */
-
-static int
-maybe_eliminate_biv_1 (const struct loop *loop, rtx x, rtx insn,
- struct iv_class *bl, int eliminate_p,
- basic_block where_bb, rtx where_insn)
-{
- enum rtx_code code = GET_CODE (x);
- rtx reg = bl->biv->dest_reg;
- enum machine_mode mode = GET_MODE (reg);
- struct induction *v;
- rtx arg, tem;
-#ifdef HAVE_cc0
- rtx new;
-#endif
- int arg_operand;
- const char *fmt;
- int i, j;
-
- switch (code)
- {
- case REG:
- /* If we haven't already been able to do something with this BIV,
- we can't eliminate it. */
- if (x == reg)
- return 0;
- return 1;
-
- case SET:
- /* If this sets the BIV, it is not a problem. */
- if (SET_DEST (x) == reg)
- return 1;
-
- /* If this is an insn that defines a giv, it is also ok because
- it will go away when the giv is reduced. */
- for (v = bl->giv; v; v = v->next_iv)
- if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
- return 1;
-
-#ifdef HAVE_cc0
- if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
- {
- /* Can replace with any giv that was reduced and
- that has (MULT_VAL != 0) and (ADD_VAL == 0).
- Require a constant for MULT_VAL, so we know it's nonzero.
- ??? We disable this optimization to avoid potential
- overflows. */
-
- for (v = bl->giv; v; v = v->next_iv)
- if (GET_CODE (v->mult_val) == CONST_INT && v->mult_val != const0_rtx
- && v->add_val == const0_rtx
- && ! v->ignore && ! v->maybe_dead && v->always_computable
- && v->mode == mode
- && 0)
- {
- if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
- continue;
-
- if (! eliminate_p)
- return 1;
-
- /* If the giv has the opposite direction of change,
- then reverse the comparison. */
- if (INTVAL (v->mult_val) < 0)
- new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
- const0_rtx, v->new_reg);
- else
- new = v->new_reg;
-
- /* We can probably test that giv's reduced reg. */
- if (validate_change (insn, &SET_SRC (x), new, 0))
- return 1;
- }
-
- /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
- replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
- Require a constant for MULT_VAL, so we know it's nonzero.
- ??? Do this only if ADD_VAL is a pointer to avoid a potential
- overflow problem. */
-
- for (v = bl->giv; v; v = v->next_iv)
- if (GET_CODE (v->mult_val) == CONST_INT
- && v->mult_val != const0_rtx
- && ! v->ignore && ! v->maybe_dead && v->always_computable
- && v->mode == mode
- && (GET_CODE (v->add_val) == SYMBOL_REF
- || GET_CODE (v->add_val) == LABEL_REF
- || GET_CODE (v->add_val) == CONST
- || (GET_CODE (v->add_val) == REG
- && REG_POINTER (v->add_val))))
- {
- if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
- continue;
-
- if (! eliminate_p)
- return 1;
-
- /* If the giv has the opposite direction of change,
- then reverse the comparison. */
- if (INTVAL (v->mult_val) < 0)
- new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
- v->new_reg);
- else
- new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
- copy_rtx (v->add_val));
-
- /* Replace biv with the giv's reduced register. */
- update_reg_last_use (v->add_val, insn);
- if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
- return 1;
-
- /* Insn doesn't support that constant or invariant. Copy it
- into a register (it will be a loop invariant.) */
- tem = gen_reg_rtx (GET_MODE (v->new_reg));
-
- loop_insn_emit_before (loop, 0, where_insn,
- gen_move_insn (tem,
- copy_rtx (v->add_val)));
-
- /* Substitute the new register for its invariant value in
- the compare expression. */
- XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
- if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
- return 1;
- }
- }
-#endif
- break;
-
- case COMPARE:
- case EQ: case NE:
- case GT: case GE: case GTU: case GEU:
- case LT: case LE: case LTU: case LEU:
- /* See if either argument is the biv. */
- if (XEXP (x, 0) == reg)
- arg = XEXP (x, 1), arg_operand = 1;
- else if (XEXP (x, 1) == reg)
- arg = XEXP (x, 0), arg_operand = 0;
- else
- break;
-
- if (CONSTANT_P (arg))
- {
- /* First try to replace with any giv that has constant positive
- mult_val and constant add_val. We might be able to support
- negative mult_val, but it seems complex to do it in general. */
-
- for (v = bl->giv; v; v = v->next_iv)
- if (GET_CODE (v->mult_val) == CONST_INT
- && INTVAL (v->mult_val) > 0
- && (GET_CODE (v->add_val) == SYMBOL_REF
- || GET_CODE (v->add_val) == LABEL_REF
- || GET_CODE (v->add_val) == CONST
- || (GET_CODE (v->add_val) == REG
- && REG_POINTER (v->add_val)))
- && ! v->ignore && ! v->maybe_dead && v->always_computable
- && v->mode == mode)
- {
- if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
- continue;
-
- /* Don't eliminate if the linear combination that makes up
- the giv overflows when it is applied to ARG. */
- if (GET_CODE (arg) == CONST_INT)
- {
- rtx add_val;
-
- if (GET_CODE (v->add_val) == CONST_INT)
- add_val = v->add_val;
- else
- add_val = const0_rtx;
-
- if (const_mult_add_overflow_p (arg, v->mult_val,
- add_val, mode, 1))
- continue;
- }
-
- if (! eliminate_p)
- return 1;
-
- /* Replace biv with the giv's reduced reg. */
- validate_change (insn, &XEXP (x, 1 - arg_operand), v->new_reg, 1);
-
- /* If all constants are actually constant integers and
- the derived constant can be directly placed in the COMPARE,
- do so. */
- if (GET_CODE (arg) == CONST_INT
- && GET_CODE (v->add_val) == CONST_INT)
- {
- tem = expand_mult_add (arg, NULL_RTX, v->mult_val,
- v->add_val, mode, 1);
- }
- else
- {
- /* Otherwise, load it into a register. */
- tem = gen_reg_rtx (mode);
- loop_iv_add_mult_emit_before (loop, arg,
- v->mult_val, v->add_val,
- tem, where_bb, where_insn);
- }
-
- validate_change (insn, &XEXP (x, arg_operand), tem, 1);
-
- if (apply_change_group ())
- return 1;
- }
-
- /* Look for giv with positive constant mult_val and nonconst add_val.
- Insert insns to calculate new compare value.
- ??? Turn this off due to possible overflow. */
-
- for (v = bl->giv; v; v = v->next_iv)
- if (GET_CODE (v->mult_val) == CONST_INT
- && INTVAL (v->mult_val) > 0
- && ! v->ignore && ! v->maybe_dead && v->always_computable
- && v->mode == mode
- && 0)
- {
- rtx tem;
-
- if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
- continue;
-
- if (! eliminate_p)
- return 1;
-
- tem = gen_reg_rtx (mode);
-
- /* Replace biv with giv's reduced register. */
- validate_change (insn, &XEXP (x, 1 - arg_operand),
- v->new_reg, 1);
-
- /* Compute value to compare against. */
- loop_iv_add_mult_emit_before (loop, arg,
- v->mult_val, v->add_val,
- tem, where_bb, where_insn);
- /* Use it in this insn. */
- validate_change (insn, &XEXP (x, arg_operand), tem, 1);
- if (apply_change_group ())
- return 1;
- }
- }
- else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
- {
- if (loop_invariant_p (loop, arg) == 1)
- {
- /* Look for giv with constant positive mult_val and nonconst
- add_val. Insert insns to compute new compare value.
- ??? Turn this off due to possible overflow. */
-
- for (v = bl->giv; v; v = v->next_iv)
- if (GET_CODE (v->mult_val) == CONST_INT && INTVAL (v->mult_val) > 0
- && ! v->ignore && ! v->maybe_dead && v->always_computable
- && v->mode == mode
- && 0)
- {
- rtx tem;
-
- if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
- continue;
-
- if (! eliminate_p)
- return 1;
-
- tem = gen_reg_rtx (mode);
-
- /* Replace biv with giv's reduced register. */
- validate_change (insn, &XEXP (x, 1 - arg_operand),
- v->new_reg, 1);
-
- /* Compute value to compare against. */
- loop_iv_add_mult_emit_before (loop, arg,
- v->mult_val, v->add_val,
- tem, where_bb, where_insn);
- validate_change (insn, &XEXP (x, arg_operand), tem, 1);
- if (apply_change_group ())
- return 1;
- }
- }
-
- /* This code has problems. Basically, you can't know when
- seeing if we will eliminate BL, whether a particular giv
- of ARG will be reduced. If it isn't going to be reduced,
- we can't eliminate BL. We can try forcing it to be reduced,
- but that can generate poor code.
-
- The problem is that the benefit of reducing TV, below should
- be increased if BL can actually be eliminated, but this means
- we might have to do a topological sort of the order in which
- we try to process biv. It doesn't seem worthwhile to do
- this sort of thing now. */
-
-#if 0
- /* Otherwise the reg compared with had better be a biv. */
- if (GET_CODE (arg) != REG
- || REG_IV_TYPE (ivs, REGNO (arg)) != BASIC_INDUCT)
- return 0;
-
- /* Look for a pair of givs, one for each biv,
- with identical coefficients. */
- for (v = bl->giv; v; v = v->next_iv)
- {
- struct induction *tv;
-
- if (v->ignore || v->maybe_dead || v->mode != mode)
- continue;
-
- for (tv = REG_IV_CLASS (ivs, REGNO (arg))->giv; tv;
- tv = tv->next_iv)
- if (! tv->ignore && ! tv->maybe_dead
- && rtx_equal_p (tv->mult_val, v->mult_val)
- && rtx_equal_p (tv->add_val, v->add_val)
- && tv->mode == mode)
- {
- if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
- continue;
-
- if (! eliminate_p)
- return 1;
-
- /* Replace biv with its giv's reduced reg. */
- XEXP (x, 1 - arg_operand) = v->new_reg;
- /* Replace other operand with the other giv's
- reduced reg. */
- XEXP (x, arg_operand) = tv->new_reg;
- return 1;
- }
- }
-#endif
- }
-
- /* If we get here, the biv can't be eliminated. */
- return 0;
-
- case MEM:
- /* If this address is a DEST_ADDR giv, it doesn't matter if the
- biv is used in it, since it will be replaced. */
- for (v = bl->giv; v; v = v->next_iv)
- if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
- return 1;
- break;
-
- default:
- break;
- }
-
- /* See if any subexpression fails elimination. */
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- switch (fmt[i])
- {
- case 'e':
- if (! maybe_eliminate_biv_1 (loop, XEXP (x, i), insn, bl,
- eliminate_p, where_bb, where_insn))
- return 0;
- break;
-
- case 'E':
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- if (! maybe_eliminate_biv_1 (loop, XVECEXP (x, i, j), insn, bl,
- eliminate_p, where_bb, where_insn))
- return 0;
- break;
- }
- }
-
- return 1;
-}
-
-/* Return nonzero if the last use of REG
- is in an insn following INSN in the same basic block. */
-
-static int
-last_use_this_basic_block (rtx reg, rtx insn)
-{
- rtx n;
- for (n = insn;
- n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
- n = NEXT_INSN (n))
- {
- if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
- return 1;
- }
- return 0;
-}
-
-/* Called via `note_stores' to record the initial value of a biv. Here we
- just record the location of the set and process it later. */
-
-static void
-record_initial (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
-{
- struct loop_ivs *ivs = (struct loop_ivs *) data;
- struct iv_class *bl;
-
- if (GET_CODE (dest) != REG
- || REGNO (dest) >= ivs->n_regs
- || REG_IV_TYPE (ivs, REGNO (dest)) != BASIC_INDUCT)
- return;
-
- bl = REG_IV_CLASS (ivs, REGNO (dest));
-
- /* If this is the first set found, record it. */
- if (bl->init_insn == 0)
- {
- bl->init_insn = note_insn;
- bl->init_set = set;
- }
-}
-
-/* If any of the registers in X are "old" and currently have a last use earlier
- than INSN, update them to have a last use of INSN. Their actual last use
- will be the previous insn but it will not have a valid uid_luid so we can't
- use it. X must be a source expression only. */
-
-static void
-update_reg_last_use (rtx x, rtx insn)
-{
- /* Check for the case where INSN does not have a valid luid. In this case,
- there is no need to modify the regno_last_uid, as this can only happen
- when code is inserted after the loop_end to set a pseudo's final value,
- and hence this insn will never be the last use of x.
- ???? This comment is not correct. See for example loop_givs_reduce.
- This may insert an insn before another new insn. */
- if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
- && INSN_UID (insn) < max_uid_for_loop
- && REGNO_LAST_LUID (REGNO (x)) < INSN_LUID (insn))
- {
- REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
- }
- else
- {
- int i, j;
- const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
- for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- update_reg_last_use (XEXP (x, i), insn);
- else if (fmt[i] == 'E')
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- update_reg_last_use (XVECEXP (x, i, j), insn);
- }
- }
-}
-
-/* Given an insn INSN and condition COND, return the condition in a
- canonical form to simplify testing by callers. Specifically:
-
- (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
- (2) Both operands will be machine operands; (cc0) will have been replaced.
- (3) If an operand is a constant, it will be the second operand.
- (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
- for GE, GEU, and LEU.
-
- If the condition cannot be understood, or is an inequality floating-point
- comparison which needs to be reversed, 0 will be returned.
-
- If REVERSE is nonzero, then reverse the condition prior to canonizing it.
-
- If EARLIEST is nonzero, it is a pointer to a place where the earliest
- insn used in locating the condition was found. If a replacement test
- of the condition is desired, it should be placed in front of that
- insn and we will be sure that the inputs are still valid.
-
- If WANT_REG is nonzero, we wish the condition to be relative to that
- register, if possible. Therefore, do not canonicalize the condition
- further. If ALLOW_CC_MODE is nonzero, allow the condition returned
- to be a compare to a CC mode register. */
-
-rtx
-canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
- rtx want_reg, int allow_cc_mode)
-{
- enum rtx_code code;
- rtx prev = insn;
- rtx set;
- rtx tem;
- rtx op0, op1;
- int reverse_code = 0;
- enum machine_mode mode;
-
- code = GET_CODE (cond);
- mode = GET_MODE (cond);
- op0 = XEXP (cond, 0);
- op1 = XEXP (cond, 1);
-
- if (reverse)
- code = reversed_comparison_code (cond, insn);
- if (code == UNKNOWN)
- return 0;
-
- if (earliest)
- *earliest = insn;
-
- /* If we are comparing a register with zero, see if the register is set
- in the previous insn to a COMPARE or a comparison operation. Perform
- the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
- in cse.c */
-
- while (GET_RTX_CLASS (code) == '<'
- && op1 == CONST0_RTX (GET_MODE (op0))
- && op0 != want_reg)
- {
- /* Set nonzero when we find something of interest. */
- rtx x = 0;
-
-#ifdef HAVE_cc0
- /* If comparison with cc0, import actual comparison from compare
- insn. */
- if (op0 == cc0_rtx)
- {
- if ((prev = prev_nonnote_insn (prev)) == 0
- || GET_CODE (prev) != INSN
- || (set = single_set (prev)) == 0
- || SET_DEST (set) != cc0_rtx)
- return 0;
-
- op0 = SET_SRC (set);
- op1 = CONST0_RTX (GET_MODE (op0));
- if (earliest)
- *earliest = prev;
- }
-#endif
-
- /* If this is a COMPARE, pick up the two things being compared. */
- if (GET_CODE (op0) == COMPARE)
- {
- op1 = XEXP (op0, 1);
- op0 = XEXP (op0, 0);
- continue;
- }
- else if (GET_CODE (op0) != REG)
- break;
-
- /* Go back to the previous insn. Stop if it is not an INSN. We also
- stop if it isn't a single set or if it has a REG_INC note because
- we don't want to bother dealing with it. */
-
- if ((prev = prev_nonnote_insn (prev)) == 0
- || GET_CODE (prev) != INSN
- || FIND_REG_INC_NOTE (prev, NULL_RTX))
- break;
-
- set = set_of (op0, prev);
-
- if (set
- && (GET_CODE (set) != SET
- || !rtx_equal_p (SET_DEST (set), op0)))
- break;
-
- /* If this is setting OP0, get what it sets it to if it looks
- relevant. */
- if (set)
- {
- enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
-#ifdef FLOAT_STORE_FLAG_VALUE
- REAL_VALUE_TYPE fsfv;
-#endif
-
- /* ??? We may not combine comparisons done in a CCmode with
- comparisons not done in a CCmode. This is to aid targets
- like Alpha that have an IEEE compliant EQ instruction, and
- a non-IEEE compliant BEQ instruction. The use of CCmode is
- actually artificial, simply to prevent the combination, but
- should not affect other platforms.
-
- However, we must allow VOIDmode comparisons to match either
- CCmode or non-CCmode comparison, because some ports have
- modeless comparisons inside branch patterns.
-
- ??? This mode check should perhaps look more like the mode check
- in simplify_comparison in combine. */
-
- if ((GET_CODE (SET_SRC (set)) == COMPARE
- || (((code == NE
- || (code == LT
- && GET_MODE_CLASS (inner_mode) == MODE_INT
- && (GET_MODE_BITSIZE (inner_mode)
- <= HOST_BITS_PER_WIDE_INT)
- && (STORE_FLAG_VALUE
- & ((HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (inner_mode) - 1))))
-#ifdef FLOAT_STORE_FLAG_VALUE
- || (code == LT
- && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
- && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
- REAL_VALUE_NEGATIVE (fsfv)))
-#endif
- ))
- && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'))
- && (((GET_MODE_CLASS (mode) == MODE_CC)
- == (GET_MODE_CLASS (inner_mode) == MODE_CC))
- || mode == VOIDmode || inner_mode == VOIDmode))
- x = SET_SRC (set);
- else if (((code == EQ
- || (code == GE
- && (GET_MODE_BITSIZE (inner_mode)
- <= HOST_BITS_PER_WIDE_INT)
- && GET_MODE_CLASS (inner_mode) == MODE_INT
- && (STORE_FLAG_VALUE
- & ((HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (inner_mode) - 1))))
-#ifdef FLOAT_STORE_FLAG_VALUE
- || (code == GE
- && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
- && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
- REAL_VALUE_NEGATIVE (fsfv)))
-#endif
- ))
- && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'
- && (((GET_MODE_CLASS (mode) == MODE_CC)
- == (GET_MODE_CLASS (inner_mode) == MODE_CC))
- || mode == VOIDmode || inner_mode == VOIDmode))
-
- {
- reverse_code = 1;
- x = SET_SRC (set);
- }
- else
- break;
- }
-
- else if (reg_set_p (op0, prev))
- /* If this sets OP0, but not directly, we have to give up. */
- break;
-
- if (x)
- {
- if (GET_RTX_CLASS (GET_CODE (x)) == '<')
- code = GET_CODE (x);
- if (reverse_code)
- {
- code = reversed_comparison_code (x, prev);
- if (code == UNKNOWN)
- return 0;
- reverse_code = 0;
- }
-
- op0 = XEXP (x, 0), op1 = XEXP (x, 1);
- if (earliest)
- *earliest = prev;
- }
- }
-
- /* If constant is first, put it last. */
- if (CONSTANT_P (op0))
- code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
-
- /* If OP0 is the result of a comparison, we weren't able to find what
- was really being compared, so fail. */
- if (!allow_cc_mode
- && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
- return 0;
-
- /* Canonicalize any ordered comparison with integers involving equality
- if we can do computations in the relevant mode and we do not
- overflow. */
-
- if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
- && GET_CODE (op1) == CONST_INT
- && GET_MODE (op0) != VOIDmode
- && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
- {
- HOST_WIDE_INT const_val = INTVAL (op1);
- unsigned HOST_WIDE_INT uconst_val = const_val;
- unsigned HOST_WIDE_INT max_val
- = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
-
- switch (code)
- {
- case LE:
- if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
- code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
- break;
-
- /* When cross-compiling, const_val might be sign-extended from
- BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
- case GE:
- if ((HOST_WIDE_INT) (const_val & max_val)
- != (((HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
- code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
- break;
-
- case LEU:
- if (uconst_val < max_val)
- code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
- break;
-
- case GEU:
- if (uconst_val != 0)
- code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
- break;
-
- default:
- break;
- }
- }
-
- /* Never return CC0; return zero instead. */
- if (CC0_P (op0))
- return 0;
-
- return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
-}
-
-/* Given a jump insn JUMP, return the condition that will cause it to branch
- to its JUMP_LABEL. If the condition cannot be understood, or is an
- inequality floating-point comparison which needs to be reversed, 0 will
- be returned.
-
- If EARLIEST is nonzero, it is a pointer to a place where the earliest
- insn used in locating the condition was found. If a replacement test
- of the condition is desired, it should be placed in front of that
- insn and we will be sure that the inputs are still valid.
-
- If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
- compare CC mode register. */
-
-rtx
-get_condition (rtx jump, rtx *earliest, int allow_cc_mode)
-{
- rtx cond;
- int reverse;
- rtx set;
-
- /* If this is not a standard conditional jump, we can't parse it. */
- if (GET_CODE (jump) != JUMP_INSN
- || ! any_condjump_p (jump))
- return 0;
- set = pc_set (jump);
-
- cond = XEXP (SET_SRC (set), 0);
-
- /* If this branches to JUMP_LABEL when the condition is false, reverse
- the condition. */
- reverse
- = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
- && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
-
- return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
- allow_cc_mode);
-}
-
-/* Similar to above routine, except that we also put an invariant last
- unless both operands are invariants. */
-
-rtx
-get_condition_for_loop (const struct loop *loop, rtx x)
-{
- rtx comparison = get_condition (x, (rtx*) 0, false);
-
- if (comparison == 0
- || ! loop_invariant_p (loop, XEXP (comparison, 0))
- || loop_invariant_p (loop, XEXP (comparison, 1)))
- return comparison;
-
- return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
- XEXP (comparison, 1), XEXP (comparison, 0));
-}
-
-/* Scan the function and determine whether it has indirect (computed) jumps.
-
- This is taken mostly from flow.c; similar code exists elsewhere
- in the compiler. It may be useful to put this into rtlanal.c. */
-static int
-indirect_jump_in_function_p (rtx start)
-{
- rtx insn;
-
- for (insn = start; insn; insn = NEXT_INSN (insn))
- if (computed_jump_p (insn))
- return 1;
-
- return 0;
-}
-
-/* Add MEM to the LOOP_MEMS array, if appropriate. See the
- documentation for LOOP_MEMS for the definition of `appropriate'.
- This function is called from prescan_loop via for_each_rtx. */
-
-static int
-insert_loop_mem (rtx *mem, void *data ATTRIBUTE_UNUSED)
-{
- struct loop_info *loop_info = data;
- int i;
- rtx m = *mem;
-
- if (m == NULL_RTX)
- return 0;
-
- switch (GET_CODE (m))
- {
- case MEM:
- break;
-
- case CLOBBER:
- /* We're not interested in MEMs that are only clobbered. */
- return -1;
-
- case CONST_DOUBLE:
- /* We're not interested in the MEM associated with a
- CONST_DOUBLE, so there's no need to traverse into this. */
- return -1;
-
- case EXPR_LIST:
- /* We're not interested in any MEMs that only appear in notes. */
- return -1;
-
- default:
- /* This is not a MEM. */
- return 0;
- }
-
- /* See if we've already seen this MEM. */
- for (i = 0; i < loop_info->mems_idx; ++i)
- if (rtx_equal_p (m, loop_info->mems[i].mem))
- {
- if (MEM_VOLATILE_P (m) && !MEM_VOLATILE_P (loop_info->mems[i].mem))
- loop_info->mems[i].mem = m;
- if (GET_MODE (m) != GET_MODE (loop_info->mems[i].mem))
- /* The modes of the two memory accesses are different. If
- this happens, something tricky is going on, and we just
- don't optimize accesses to this MEM. */
- loop_info->mems[i].optimize = 0;
-
- return 0;
- }
-
- /* Resize the array, if necessary. */
- if (loop_info->mems_idx == loop_info->mems_allocated)
- {
- if (loop_info->mems_allocated != 0)
- loop_info->mems_allocated *= 2;
- else
- loop_info->mems_allocated = 32;
-
- loop_info->mems = xrealloc (loop_info->mems,
- loop_info->mems_allocated * sizeof (loop_mem_info));
- }
-
- /* Actually insert the MEM. */
- loop_info->mems[loop_info->mems_idx].mem = m;
- /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
- because we can't put it in a register. We still store it in the
- table, though, so that if we see the same address later, but in a
- non-BLK mode, we'll not think we can optimize it at that point. */
- loop_info->mems[loop_info->mems_idx].optimize = (GET_MODE (m) != BLKmode);
- loop_info->mems[loop_info->mems_idx].reg = NULL_RTX;
- ++loop_info->mems_idx;
-
- return 0;
-}
-
-
-/* Allocate REGS->ARRAY or reallocate it if it is too small.
-
- Increment REGS->ARRAY[I].SET_IN_LOOP at the index I of each
- register that is modified by an insn between FROM and TO. If the
- value of an element of REGS->array[I].SET_IN_LOOP becomes 127 or
- more, stop incrementing it, to avoid overflow.
-
- Store in REGS->ARRAY[I].SINGLE_USAGE the single insn in which
- register I is used, if it is only used once. Otherwise, it is set
- to 0 (for no uses) or const0_rtx for more than one use. This
- parameter may be zero, in which case this processing is not done.
-
- Set REGS->ARRAY[I].MAY_NOT_OPTIMIZE nonzero if we should not
- optimize register I. */
-
-static void
-loop_regs_scan (const struct loop *loop, int extra_size)
-{
- struct loop_regs *regs = LOOP_REGS (loop);
- int old_nregs;
- /* last_set[n] is nonzero iff reg n has been set in the current
- basic block. In that case, it is the insn that last set reg n. */
- rtx *last_set;
- rtx insn;
- int i;
-
- old_nregs = regs->num;
- regs->num = max_reg_num ();
-
- /* Grow the regs array if not allocated or too small. */
- if (regs->num >= regs->size)
- {
- regs->size = regs->num + extra_size;
-
- regs->array = xrealloc (regs->array, regs->size * sizeof (*regs->array));
-
- /* Zero the new elements. */
- memset (regs->array + old_nregs, 0,
- (regs->size - old_nregs) * sizeof (*regs->array));
- }
-
- /* Clear previously scanned fields but do not clear n_times_set. */
- for (i = 0; i < old_nregs; i++)
- {
- regs->array[i].set_in_loop = 0;
- regs->array[i].may_not_optimize = 0;
- regs->array[i].single_usage = NULL_RTX;
- }
-
- last_set = xcalloc (regs->num, sizeof (rtx));
-
- /* Scan the loop, recording register usage. */
- for (insn = loop->top ? loop->top : loop->start; insn != loop->end;
- insn = NEXT_INSN (insn))
- {
- if (INSN_P (insn))
- {
- /* Record registers that have exactly one use. */
- find_single_use_in_loop (regs, insn, PATTERN (insn));
-
- /* Include uses in REG_EQUAL notes. */
- if (REG_NOTES (insn))
- find_single_use_in_loop (regs, insn, REG_NOTES (insn));
-
- if (GET_CODE (PATTERN (insn)) == SET
- || GET_CODE (PATTERN (insn)) == CLOBBER)
- count_one_set (regs, insn, PATTERN (insn), last_set);
- else if (GET_CODE (PATTERN (insn)) == PARALLEL)
- {
- int i;
- for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
- count_one_set (regs, insn, XVECEXP (PATTERN (insn), 0, i),
- last_set);
- }
- }
-
- if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
- memset (last_set, 0, regs->num * sizeof (rtx));
-
- /* Invalidate all registers used for function argument passing.
- We check rtx_varies_p for the same reason as below, to allow
- optimizing PIC calculations. */
- if (GET_CODE (insn) == CALL_INSN)
- {
- rtx link;
- for (link = CALL_INSN_FUNCTION_USAGE (insn);
- link;
- link = XEXP (link, 1))
- {
- rtx op, reg;
-
- if (GET_CODE (op = XEXP (link, 0)) == USE
- && GET_CODE (reg = XEXP (op, 0)) == REG
- && rtx_varies_p (reg, 1))
- regs->array[REGNO (reg)].may_not_optimize = 1;
- }
- }
- }
-
- /* Invalidate all hard registers clobbered by calls. With one exception:
- a call-clobbered PIC register is still function-invariant for our
- purposes, since we can hoist any PIC calculations out of the loop.
- Thus the call to rtx_varies_p. */
- if (LOOP_INFO (loop)->has_call)
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
- && rtx_varies_p (regno_reg_rtx[i], 1))
- {
- regs->array[i].may_not_optimize = 1;
- regs->array[i].set_in_loop = 1;
- }
-
-#ifdef AVOID_CCMODE_COPIES
- /* Don't try to move insns which set CC registers if we should not
- create CCmode register copies. */
- for (i = regs->num - 1; i >= FIRST_PSEUDO_REGISTER; i--)
- if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
- regs->array[i].may_not_optimize = 1;
-#endif
-
- /* Set regs->array[I].n_times_set for the new registers. */
- for (i = old_nregs; i < regs->num; i++)
- regs->array[i].n_times_set = regs->array[i].set_in_loop;
-
- free (last_set);
-}
-
-/* Returns the number of real INSNs in the LOOP. */
-
-static int
-count_insns_in_loop (const struct loop *loop)
-{
- int count = 0;
- rtx insn;
-
- for (insn = loop->top ? loop->top : loop->start; insn != loop->end;
- insn = NEXT_INSN (insn))
- if (INSN_P (insn))
- ++count;
-
- return count;
-}
-
-/* Move MEMs into registers for the duration of the loop. */
-
-static void
-load_mems (const struct loop *loop)
-{
- struct loop_info *loop_info = LOOP_INFO (loop);
- struct loop_regs *regs = LOOP_REGS (loop);
- int maybe_never = 0;
- int i;
- rtx p, prev_ebb_head;
- rtx label = NULL_RTX;
- rtx end_label;
- /* Nonzero if the next instruction may never be executed. */
- int next_maybe_never = 0;
- unsigned int last_max_reg = max_reg_num ();
-
- if (loop_info->mems_idx == 0)
- return;
-
- /* We cannot use next_label here because it skips over normal insns. */
- end_label = next_nonnote_insn (loop->end);
- if (end_label && GET_CODE (end_label) != CODE_LABEL)
- end_label = NULL_RTX;
-
- /* Check to see if it's possible that some instructions in the loop are
- never executed. Also check if there is a goto out of the loop other
- than right after the end of the loop. */
- for (p = next_insn_in_loop (loop, loop->scan_start);
- p != NULL_RTX;
- p = next_insn_in_loop (loop, p))
- {
- if (GET_CODE (p) == CODE_LABEL)
- maybe_never = 1;
- else if (GET_CODE (p) == JUMP_INSN
- /* If we enter the loop in the middle, and scan
- around to the beginning, don't set maybe_never
- for that. This must be an unconditional jump,
- otherwise the code at the top of the loop might
- never be executed. Unconditional jumps are
- followed a by barrier then loop end. */
- && ! (GET_CODE (p) == JUMP_INSN
- && JUMP_LABEL (p) == loop->top
- && NEXT_INSN (NEXT_INSN (p)) == loop->end
- && any_uncondjump_p (p)))
- {
- /* If this is a jump outside of the loop but not right
- after the end of the loop, we would have to emit new fixup
- sequences for each such label. */
- if (/* If we can't tell where control might go when this
- JUMP_INSN is executed, we must be conservative. */
- !JUMP_LABEL (p)
- || (JUMP_LABEL (p) != end_label
- && (INSN_UID (JUMP_LABEL (p)) >= max_uid_for_loop
- || INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop->start)
- || INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop->end))))
- return;
-
- if (!any_condjump_p (p))
- /* Something complicated. */
- maybe_never = 1;
- else
- /* If there are any more instructions in the loop, they
- might not be reached. */
- next_maybe_never = 1;
- }
- else if (next_maybe_never)
- maybe_never = 1;
- }
-
- /* Find start of the extended basic block that enters the loop. */
- for (p = loop->start;
- PREV_INSN (p) && GET_CODE (p) != CODE_LABEL;
- p = PREV_INSN (p))
- ;
- prev_ebb_head = p;
-
- cselib_init ();
-
- /* Build table of mems that get set to constant values before the
- loop. */
- for (; p != loop->start; p = NEXT_INSN (p))
- cselib_process_insn (p);
-
- /* Actually move the MEMs. */
- for (i = 0; i < loop_info->mems_idx; ++i)
- {
- regset_head load_copies;
- regset_head store_copies;
- int written = 0;
- rtx reg;
- rtx mem = loop_info->mems[i].mem;
- rtx mem_list_entry;
-
- if (MEM_VOLATILE_P (mem)
- || loop_invariant_p (loop, XEXP (mem, 0)) != 1)
- /* There's no telling whether or not MEM is modified. */
- loop_info->mems[i].optimize = 0;
-
- /* Go through the MEMs written to in the loop to see if this
- one is aliased by one of them. */
- mem_list_entry = loop_info->store_mems;
- while (mem_list_entry)
- {
- if (rtx_equal_p (mem, XEXP (mem_list_entry, 0)))
- written = 1;
- else if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
- mem, rtx_varies_p))
- {
- /* MEM is indeed aliased by this store. */
- loop_info->mems[i].optimize = 0;
- break;
- }
- mem_list_entry = XEXP (mem_list_entry, 1);
- }
-
- if (flag_float_store && written
- && GET_MODE_CLASS (GET_MODE (mem)) == MODE_FLOAT)
- loop_info->mems[i].optimize = 0;
-
- /* If this MEM is written to, we must be sure that there
- are no reads from another MEM that aliases this one. */
- if (loop_info->mems[i].optimize && written)
- {
- int j;
-
- for (j = 0; j < loop_info->mems_idx; ++j)
- {
- if (j == i)
- continue;
- else if (true_dependence (mem,
- VOIDmode,
- loop_info->mems[j].mem,
- rtx_varies_p))
- {
- /* It's not safe to hoist loop_info->mems[i] out of
- the loop because writes to it might not be
- seen by reads from loop_info->mems[j]. */
- loop_info->mems[i].optimize = 0;
- break;
- }
- }
- }
-
- if (maybe_never && may_trap_p (mem))
- /* We can't access the MEM outside the loop; it might
- cause a trap that wouldn't have happened otherwise. */
- loop_info->mems[i].optimize = 0;
-
- if (!loop_info->mems[i].optimize)
- /* We thought we were going to lift this MEM out of the
- loop, but later discovered that we could not. */
- continue;
-
- INIT_REG_SET (&load_copies);
- INIT_REG_SET (&store_copies);
-
- /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
- order to keep scan_loop from moving stores to this MEM
- out of the loop just because this REG is neither a
- user-variable nor used in the loop test. */
- reg = gen_reg_rtx (GET_MODE (mem));
- REG_USERVAR_P (reg) = 1;
- loop_info->mems[i].reg = reg;
-
- /* Now, replace all references to the MEM with the
- corresponding pseudos. */
- maybe_never = 0;
- for (p = next_insn_in_loop (loop, loop->scan_start);
- p != NULL_RTX;
- p = next_insn_in_loop (loop, p))
- {
- if (INSN_P (p))
- {
- rtx set;
-
- set = single_set (p);
-
- /* See if this copies the mem into a register that isn't
- modified afterwards. We'll try to do copy propagation
- a little further on. */
- if (set
- /* @@@ This test is _way_ too conservative. */
- && ! maybe_never
- && GET_CODE (SET_DEST (set)) == REG
- && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
- && REGNO (SET_DEST (set)) < last_max_reg
- && regs->array[REGNO (SET_DEST (set))].n_times_set == 1
- && rtx_equal_p (SET_SRC (set), mem))
- SET_REGNO_REG_SET (&load_copies, REGNO (SET_DEST (set)));
-
- /* See if this copies the mem from a register that isn't
- modified afterwards. We'll try to remove the
- redundant copy later on by doing a little register
- renaming and copy propagation. This will help
- to untangle things for the BIV detection code. */
- if (set
- && ! maybe_never
- && GET_CODE (SET_SRC (set)) == REG
- && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER
- && REGNO (SET_SRC (set)) < last_max_reg
- && regs->array[REGNO (SET_SRC (set))].n_times_set == 1
- && rtx_equal_p (SET_DEST (set), mem))
- SET_REGNO_REG_SET (&store_copies, REGNO (SET_SRC (set)));
-
- /* If this is a call which uses / clobbers this memory
- location, we must not change the interface here. */
- if (GET_CODE (p) == CALL_INSN
- && reg_mentioned_p (loop_info->mems[i].mem,
- CALL_INSN_FUNCTION_USAGE (p)))
- {
- cancel_changes (0);
- loop_info->mems[i].optimize = 0;
- break;
- }
- else
- /* Replace the memory reference with the shadow register. */
- replace_loop_mems (p, loop_info->mems[i].mem,
- loop_info->mems[i].reg, written);
- }
-
- if (GET_CODE (p) == CODE_LABEL
- || GET_CODE (p) == JUMP_INSN)
- maybe_never = 1;
- }
-
- if (! loop_info->mems[i].optimize)
- ; /* We found we couldn't do the replacement, so do nothing. */
- else if (! apply_change_group ())
- /* We couldn't replace all occurrences of the MEM. */
- loop_info->mems[i].optimize = 0;
- else
- {
- /* Load the memory immediately before LOOP->START, which is
- the NOTE_LOOP_BEG. */
- cselib_val *e = cselib_lookup (mem, VOIDmode, 0);
- rtx set;
- rtx best = mem;
- int j;
- struct elt_loc_list *const_equiv = 0;
-
- if (e)
- {
- struct elt_loc_list *equiv;
- struct elt_loc_list *best_equiv = 0;
- for (equiv = e->locs; equiv; equiv = equiv->next)
- {
- if (CONSTANT_P (equiv->loc))
- const_equiv = equiv;
- else if (GET_CODE (equiv->loc) == REG
- /* Extending hard register lifetimes causes crash
- on SRC targets. Doing so on non-SRC is
- probably also not good idea, since we most
- probably have pseudoregister equivalence as
- well. */
- && REGNO (equiv->loc) >= FIRST_PSEUDO_REGISTER)
- best_equiv = equiv;
- }
- /* Use the constant equivalence if that is cheap enough. */
- if (! best_equiv)
- best_equiv = const_equiv;
- else if (const_equiv
- && (rtx_cost (const_equiv->loc, SET)
- <= rtx_cost (best_equiv->loc, SET)))
- {
- best_equiv = const_equiv;
- const_equiv = 0;
- }
-
- /* If best_equiv is nonzero, we know that MEM is set to a
- constant or register before the loop. We will use this
- knowledge to initialize the shadow register with that
- constant or reg rather than by loading from MEM. */
- if (best_equiv)
- best = copy_rtx (best_equiv->loc);
- }
-
- set = gen_move_insn (reg, best);
- set = loop_insn_hoist (loop, set);
- if (REG_P (best))
- {
- for (p = prev_ebb_head; p != loop->start; p = NEXT_INSN (p))
- if (REGNO_LAST_UID (REGNO (best)) == INSN_UID (p))
- {
- REGNO_LAST_UID (REGNO (best)) = INSN_UID (set);
- break;
- }
- }
-
- if (const_equiv)
- set_unique_reg_note (set, REG_EQUAL, copy_rtx (const_equiv->loc));
-
- if (written)
- {
- if (label == NULL_RTX)
- {
- label = gen_label_rtx ();
- emit_label_after (label, loop->end);
- }
-
- /* Store the memory immediately after END, which is
- the NOTE_LOOP_END. */
- set = gen_move_insn (copy_rtx (mem), reg);
- loop_insn_emit_after (loop, 0, label, set);
- }
-
- if (loop_dump_stream)
- {
- fprintf (loop_dump_stream, "Hoisted regno %d %s from ",
- REGNO (reg), (written ? "r/w" : "r/o"));
- print_rtl (loop_dump_stream, mem);
- fputc ('\n', loop_dump_stream);
- }
-
- /* Attempt a bit of copy propagation. This helps untangle the
- data flow, and enables {basic,general}_induction_var to find
- more bivs/givs. */
- EXECUTE_IF_SET_IN_REG_SET
- (&load_copies, FIRST_PSEUDO_REGISTER, j,
- {
- try_copy_prop (loop, reg, j);
- });
- CLEAR_REG_SET (&load_copies);
-
- EXECUTE_IF_SET_IN_REG_SET
- (&store_copies, FIRST_PSEUDO_REGISTER, j,
- {
- try_swap_copy_prop (loop, reg, j);
- });
- CLEAR_REG_SET (&store_copies);
- }
- }
-
- /* Now, we need to replace all references to the previous exit
- label with the new one. */
- if (label != NULL_RTX && end_label != NULL_RTX)
- for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
- if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == end_label)
- redirect_jump (p, label, false);
-
- cselib_finish ();
-}
-
-/* For communication between note_reg_stored and its caller. */
-struct note_reg_stored_arg
-{
- int set_seen;
- rtx reg;
-};
-
-/* Called via note_stores, record in SET_SEEN whether X, which is written,
- is equal to ARG. */
-static void
-note_reg_stored (rtx x, rtx setter ATTRIBUTE_UNUSED, void *arg)
-{
- struct note_reg_stored_arg *t = (struct note_reg_stored_arg *) arg;
- if (t->reg == x)
- t->set_seen = 1;
-}
-
-/* Try to replace every occurrence of pseudo REGNO with REPLACEMENT.
- There must be exactly one insn that sets this pseudo; it will be
- deleted if all replacements succeed and we can prove that the register
- is not used after the loop. */
-
-static void
-try_copy_prop (const struct loop *loop, rtx replacement, unsigned int regno)
-{
- /* This is the reg that we are copying from. */
- rtx reg_rtx = regno_reg_rtx[regno];
- rtx init_insn = 0;
- rtx insn;
- /* These help keep track of whether we replaced all uses of the reg. */
- int replaced_last = 0;
- int store_is_first = 0;
-
- for (insn = next_insn_in_loop (loop, loop->scan_start);
- insn != NULL_RTX;
- insn = next_insn_in_loop (loop, insn))
- {
- rtx set;
-
- /* Only substitute within one extended basic block from the initializing
- insn. */
- if (GET_CODE (insn) == CODE_LABEL && init_insn)
- break;
-
- if (! INSN_P (insn))
- continue;
-
- /* Is this the initializing insn? */
- set = single_set (insn);
- if (set
- && GET_CODE (SET_DEST (set)) == REG
- && REGNO (SET_DEST (set)) == regno)
- {
- if (init_insn)
- abort ();
-
- init_insn = insn;
- if (REGNO_FIRST_UID (regno) == INSN_UID (insn))
- store_is_first = 1;
- }
-
- /* Only substitute after seeing the initializing insn. */
- if (init_insn && insn != init_insn)
- {
- struct note_reg_stored_arg arg;
-
- replace_loop_regs (insn, reg_rtx, replacement);
- if (REGNO_LAST_UID (regno) == INSN_UID (insn))
- replaced_last = 1;
-
- /* Stop replacing when REPLACEMENT is modified. */
- arg.reg = replacement;
- arg.set_seen = 0;
- note_stores (PATTERN (insn), note_reg_stored, &arg);
- if (arg.set_seen)
- {
- rtx note = find_reg_note (insn, REG_EQUAL, NULL);
-
- /* It is possible that we've turned previously valid REG_EQUAL to
- invalid, as we change the REGNO to REPLACEMENT and unlike REGNO,
- REPLACEMENT is modified, we get different meaning. */
- if (note && reg_mentioned_p (replacement, XEXP (note, 0)))
- remove_note (insn, note);
- break;
- }
- }
- }
- if (! init_insn)
- abort ();
- if (apply_change_group ())
- {
- if (loop_dump_stream)
- fprintf (loop_dump_stream, " Replaced reg %d", regno);
- if (store_is_first && replaced_last)
- {
- rtx first;
- rtx retval_note;
-
- /* Assume we're just deleting INIT_INSN. */
- first = init_insn;
- /* Look for REG_RETVAL note. If we're deleting the end of
- the libcall sequence, the whole sequence can go. */
- retval_note = find_reg_note (init_insn, REG_RETVAL, NULL_RTX);
- /* If we found a REG_RETVAL note, find the first instruction
- in the sequence. */
- if (retval_note)
- first = XEXP (retval_note, 0);
-
- /* Delete the instructions. */
- loop_delete_insns (first, init_insn);
- }
- if (loop_dump_stream)
- fprintf (loop_dump_stream, ".\n");
- }
-}
-
-/* Replace all the instructions from FIRST up to and including LAST
- with NOTE_INSN_DELETED notes. */
-
-static void
-loop_delete_insns (rtx first, rtx last)
-{
- while (1)
- {
- if (loop_dump_stream)
- fprintf (loop_dump_stream, ", deleting init_insn (%d)",
- INSN_UID (first));
- delete_insn (first);
-
- /* If this was the LAST instructions we're supposed to delete,
- we're done. */
- if (first == last)
- break;
-
- first = NEXT_INSN (first);
- }
-}
-
-/* Try to replace occurrences of pseudo REGNO with REPLACEMENT within
- loop LOOP if the order of the sets of these registers can be
- swapped. There must be exactly one insn within the loop that sets
- this pseudo followed immediately by a move insn that sets
- REPLACEMENT with REGNO. */
-static void
-try_swap_copy_prop (const struct loop *loop, rtx replacement,
- unsigned int regno)
-{
- rtx insn;
- rtx set = NULL_RTX;
- unsigned int new_regno;
-
- new_regno = REGNO (replacement);
-
- for (insn = next_insn_in_loop (loop, loop->scan_start);
- insn != NULL_RTX;
- insn = next_insn_in_loop (loop, insn))
- {
- /* Search for the insn that copies REGNO to NEW_REGNO? */
- if (INSN_P (insn)
- && (set = single_set (insn))
- && GET_CODE (SET_DEST (set)) == REG
- && REGNO (SET_DEST (set)) == new_regno
- && GET_CODE (SET_SRC (set)) == REG
- && REGNO (SET_SRC (set)) == regno)
- break;
- }
-
- if (insn != NULL_RTX)
- {
- rtx prev_insn;
- rtx prev_set;
-
- /* Some DEF-USE info would come in handy here to make this
- function more general. For now, just check the previous insn
- which is the most likely candidate for setting REGNO. */
-
- prev_insn = PREV_INSN (insn);
-
- if (INSN_P (insn)
- && (prev_set = single_set (prev_insn))
- && GET_CODE (SET_DEST (prev_set)) == REG
- && REGNO (SET_DEST (prev_set)) == regno)
- {
- /* We have:
- (set (reg regno) (expr))
- (set (reg new_regno) (reg regno))
-
- so try converting this to:
- (set (reg new_regno) (expr))
- (set (reg regno) (reg new_regno))
-
- The former construct is often generated when a global
- variable used for an induction variable is shadowed by a
- register (NEW_REGNO). The latter construct improves the
- chances of GIV replacement and BIV elimination. */
-
- validate_change (prev_insn, &SET_DEST (prev_set),
- replacement, 1);
- validate_change (insn, &SET_DEST (set),
- SET_SRC (set), 1);
- validate_change (insn, &SET_SRC (set),
- replacement, 1);
-
- if (apply_change_group ())
- {
- if (loop_dump_stream)
- fprintf (loop_dump_stream,
- " Swapped set of reg %d at %d with reg %d at %d.\n",
- regno, INSN_UID (insn),
- new_regno, INSN_UID (prev_insn));
-
- /* Update first use of REGNO. */
- if (REGNO_FIRST_UID (regno) == INSN_UID (prev_insn))
- REGNO_FIRST_UID (regno) = INSN_UID (insn);
-
- /* Now perform copy propagation to hopefully
- remove all uses of REGNO within the loop. */
- try_copy_prop (loop, replacement, regno);
- }
- }
- }
-}
-
-/* Worker function for find_mem_in_note, called via for_each_rtx. */
-
-static int
-find_mem_in_note_1 (rtx *x, void *data)
-{
- if (*x != NULL_RTX && GET_CODE (*x) == MEM)
- {
- rtx *res = (rtx *) data;
- *res = *x;
- return 1;
- }
- return 0;
-}
-
-/* Returns the first MEM found in NOTE by depth-first search. */
-
-static rtx
-find_mem_in_note (rtx note)
-{
- if (note && for_each_rtx (&note, find_mem_in_note_1, &note))
- return note;
- return NULL_RTX;
-}
-
-/* Replace MEM with its associated pseudo register. This function is
- called from load_mems via for_each_rtx. DATA is actually a pointer
- to a structure describing the instruction currently being scanned
- and the MEM we are currently replacing. */
-
-static int
-replace_loop_mem (rtx *mem, void *data)
-{
- loop_replace_args *args = (loop_replace_args *) data;
- rtx m = *mem;
-
- if (m == NULL_RTX)
- return 0;
-
- switch (GET_CODE (m))
- {
- case MEM:
- break;
-
- case CONST_DOUBLE:
- /* We're not interested in the MEM associated with a
- CONST_DOUBLE, so there's no need to traverse into one. */
- return -1;
-
- default:
- /* This is not a MEM. */
- return 0;
- }
-
- if (!rtx_equal_p (args->match, m))
- /* This is not the MEM we are currently replacing. */
- return 0;
-
- /* Actually replace the MEM. */
- validate_change (args->insn, mem, args->replacement, 1);
-
- return 0;
-}
-
-static void
-replace_loop_mems (rtx insn, rtx mem, rtx reg, int written)
-{
- loop_replace_args args;
-
- args.insn = insn;
- args.match = mem;
- args.replacement = reg;
-
- for_each_rtx (&insn, replace_loop_mem, &args);
-
- /* If we hoist a mem write out of the loop, then REG_EQUAL
- notes referring to the mem are no longer valid. */
- if (written)
- {
- rtx note, sub;
- rtx *link;
-
- for (link = &REG_NOTES (insn); (note = *link); link = &XEXP (note, 1))
- {
- if (REG_NOTE_KIND (note) == REG_EQUAL
- && (sub = find_mem_in_note (note))
- && true_dependence (mem, VOIDmode, sub, rtx_varies_p))
- {
- /* Remove the note. */
- validate_change (NULL_RTX, link, XEXP (note, 1), 1);
- break;
- }
- }
- }
-}
-
-/* Replace one register with another. Called through for_each_rtx; PX points
- to the rtx being scanned. DATA is actually a pointer to
- a structure of arguments. */
-
-static int
-replace_loop_reg (rtx *px, void *data)
-{
- rtx x = *px;
- loop_replace_args *args = (loop_replace_args *) data;
-
- if (x == NULL_RTX)
- return 0;
-
- if (x == args->match)
- validate_change (args->insn, px, args->replacement, 1);
-
- return 0;
-}
-
-static void
-replace_loop_regs (rtx insn, rtx reg, rtx replacement)
-{
- loop_replace_args args;
-
- args.insn = insn;
- args.match = reg;
- args.replacement = replacement;
-
- for_each_rtx (&insn, replace_loop_reg, &args);
-}
-
-/* Emit insn for PATTERN after WHERE_INSN in basic block WHERE_BB
- (ignored in the interim). */
-
-static rtx
-loop_insn_emit_after (const struct loop *loop ATTRIBUTE_UNUSED,
- basic_block where_bb ATTRIBUTE_UNUSED, rtx where_insn,
- rtx pattern)
-{
- return emit_insn_after (pattern, where_insn);
-}
-
-
-/* If WHERE_INSN is nonzero emit insn for PATTERN before WHERE_INSN
- in basic block WHERE_BB (ignored in the interim) within the loop
- otherwise hoist PATTERN into the loop pre-header. */
-
-rtx
-loop_insn_emit_before (const struct loop *loop,
- basic_block where_bb ATTRIBUTE_UNUSED,
- rtx where_insn, rtx pattern)
-{
- if (! where_insn)
- return loop_insn_hoist (loop, pattern);
- return emit_insn_before (pattern, where_insn);
-}
-
-
-/* Emit call insn for PATTERN before WHERE_INSN in basic block
- WHERE_BB (ignored in the interim) within the loop. */
-
-static rtx
-loop_call_insn_emit_before (const struct loop *loop ATTRIBUTE_UNUSED,
- basic_block where_bb ATTRIBUTE_UNUSED,
- rtx where_insn, rtx pattern)
-{
- return emit_call_insn_before (pattern, where_insn);
-}
-
-
-/* Hoist insn for PATTERN into the loop pre-header. */
-
-rtx
-loop_insn_hoist (const struct loop *loop, rtx pattern)
-{
- return loop_insn_emit_before (loop, 0, loop->start, pattern);
-}
-
-
-/* Hoist call insn for PATTERN into the loop pre-header. */
-
-static rtx
-loop_call_insn_hoist (const struct loop *loop, rtx pattern)
-{
- return loop_call_insn_emit_before (loop, 0, loop->start, pattern);
-}
-
-
-/* Sink insn for PATTERN after the loop end. */
-
-rtx
-loop_insn_sink (const struct loop *loop, rtx pattern)
-{
- return loop_insn_emit_before (loop, 0, loop->sink, pattern);
-}
-
-/* bl->final_value can be either general_operand or PLUS of general_operand
- and constant. Emit sequence of instructions to load it into REG. */
-static rtx
-gen_load_of_final_value (rtx reg, rtx final_value)
-{
- rtx seq;
- start_sequence ();
- final_value = force_operand (final_value, reg);
- if (final_value != reg)
- emit_move_insn (reg, final_value);
- seq = get_insns ();
- end_sequence ();
- return seq;
-}
-
-/* If the loop has multiple exits, emit insn for PATTERN before the
- loop to ensure that it will always be executed no matter how the
- loop exits. Otherwise, emit the insn for PATTERN after the loop,
- since this is slightly more efficient. */
-
-static rtx
-loop_insn_sink_or_swim (const struct loop *loop, rtx pattern)
-{
- if (loop->exit_count)
- return loop_insn_hoist (loop, pattern);
- else
- return loop_insn_sink (loop, pattern);
-}
-
-static void
-loop_ivs_dump (const struct loop *loop, FILE *file, int verbose)
-{
- struct iv_class *bl;
- int iv_num = 0;
-
- if (! loop || ! file)
- return;
-
- for (bl = LOOP_IVS (loop)->list; bl; bl = bl->next)
- iv_num++;
-
- fprintf (file, "Loop %d: %d IV classes\n", loop->num, iv_num);
-
- for (bl = LOOP_IVS (loop)->list; bl; bl = bl->next)
- {
- loop_iv_class_dump (bl, file, verbose);
- fputc ('\n', file);
- }
-}
-
-
-static void
-loop_iv_class_dump (const struct iv_class *bl, FILE *file,
- int verbose ATTRIBUTE_UNUSED)
-{
- struct induction *v;
- rtx incr;
- int i;
-
- if (! bl || ! file)
- return;
-
- fprintf (file, "IV class for reg %d, benefit %d\n",
- bl->regno, bl->total_benefit);
-
- fprintf (file, " Init insn %d", INSN_UID (bl->init_insn));
- if (bl->initial_value)
- {
- fprintf (file, ", init val: ");
- print_simple_rtl (file, bl->initial_value);
- }
- if (bl->initial_test)
- {
- fprintf (file, ", init test: ");
- print_simple_rtl (file, bl->initial_test);
- }
- fputc ('\n', file);
-
- if (bl->final_value)
- {
- fprintf (file, " Final val: ");
- print_simple_rtl (file, bl->final_value);
- fputc ('\n', file);
- }
-
- if ((incr = biv_total_increment (bl)))
- {
- fprintf (file, " Total increment: ");
- print_simple_rtl (file, incr);
- fputc ('\n', file);
- }
-
- /* List the increments. */
- for (i = 0, v = bl->biv; v; v = v->next_iv, i++)
- {
- fprintf (file, " Inc%d: insn %d, incr: ", i, INSN_UID (v->insn));
- print_simple_rtl (file, v->add_val);
- fputc ('\n', file);
- }
-
- /* List the givs. */
- for (i = 0, v = bl->giv; v; v = v->next_iv, i++)
- {
- fprintf (file, " Giv%d: insn %d, benefit %d, ",
- i, INSN_UID (v->insn), v->benefit);
- if (v->giv_type == DEST_ADDR)
- print_simple_rtl (file, v->mem);
- else
- print_simple_rtl (file, single_set (v->insn));
- fputc ('\n', file);
- }
-}
-
-
-static void
-loop_biv_dump (const struct induction *v, FILE *file, int verbose)
-{
- if (! v || ! file)
- return;
-
- fprintf (file,
- "Biv %d: insn %d",
- REGNO (v->dest_reg), INSN_UID (v->insn));
- fprintf (file, " const ");
- print_simple_rtl (file, v->add_val);
-
- if (verbose && v->final_value)
- {
- fputc ('\n', file);
- fprintf (file, " final ");
- print_simple_rtl (file, v->final_value);
- }
-
- fputc ('\n', file);
-}
-
-
-static void
-loop_giv_dump (const struct induction *v, FILE *file, int verbose)
-{
- if (! v || ! file)
- return;
-
- if (v->giv_type == DEST_REG)
- fprintf (file, "Giv %d: insn %d",
- REGNO (v->dest_reg), INSN_UID (v->insn));
- else
- fprintf (file, "Dest address: insn %d",
- INSN_UID (v->insn));
-
- fprintf (file, " src reg %d benefit %d",
- REGNO (v->src_reg), v->benefit);
- fprintf (file, " lifetime %d",
- v->lifetime);
-
- if (v->replaceable)
- fprintf (file, " replaceable");
-
- if (v->no_const_addval)
- fprintf (file, " ncav");
-
- if (v->ext_dependent)
- {
- switch (GET_CODE (v->ext_dependent))
- {
- case SIGN_EXTEND:
- fprintf (file, " ext se");
- break;
- case ZERO_EXTEND:
- fprintf (file, " ext ze");
- break;
- case TRUNCATE:
- fprintf (file, " ext tr");
- break;
- default:
- abort ();
- }
- }
-
- fputc ('\n', file);
- fprintf (file, " mult ");
- print_simple_rtl (file, v->mult_val);
-
- fputc ('\n', file);
- fprintf (file, " add ");
- print_simple_rtl (file, v->add_val);
-
- if (verbose && v->final_value)
- {
- fputc ('\n', file);
- fprintf (file, " final ");
- print_simple_rtl (file, v->final_value);
- }
-
- fputc ('\n', file);
-}
-
-
-void
-debug_ivs (const struct loop *loop)
-{
- loop_ivs_dump (loop, stderr, 1);
-}
-
-
-void
-debug_iv_class (const struct iv_class *bl)
-{
- loop_iv_class_dump (bl, stderr, 1);
-}
-
-
-void
-debug_biv (const struct induction *v)
-{
- loop_biv_dump (v, stderr, 1);
-}
-
-
-void
-debug_giv (const struct induction *v)
-{
- loop_giv_dump (v, stderr, 1);
-}
-
-
-#define LOOP_BLOCK_NUM_1(INSN) \
-((INSN) ? (BLOCK_FOR_INSN (INSN) ? BLOCK_NUM (INSN) : - 1) : -1)
-
-/* The notes do not have an assigned block, so look at the next insn. */
-#define LOOP_BLOCK_NUM(INSN) \
-((INSN) ? (GET_CODE (INSN) == NOTE \
- ? LOOP_BLOCK_NUM_1 (next_nonnote_insn (INSN)) \
- : LOOP_BLOCK_NUM_1 (INSN)) \
- : -1)
-
-#define LOOP_INSN_UID(INSN) ((INSN) ? INSN_UID (INSN) : -1)
-
-static void
-loop_dump_aux (const struct loop *loop, FILE *file,
- int verbose ATTRIBUTE_UNUSED)
-{
- rtx label;
-
- if (! loop || ! file)
- return;
-
- /* Print diagnostics to compare our concept of a loop with
- what the loop notes say. */
- if (! PREV_INSN (BB_HEAD (loop->first))
- || GET_CODE (PREV_INSN (BB_HEAD (loop->first))) != NOTE
- || NOTE_LINE_NUMBER (PREV_INSN (BB_HEAD (loop->first)))
- != NOTE_INSN_LOOP_BEG)
- fprintf (file, ";; No NOTE_INSN_LOOP_BEG at %d\n",
- INSN_UID (PREV_INSN (BB_HEAD (loop->first))));
- if (! NEXT_INSN (BB_END (loop->last))
- || GET_CODE (NEXT_INSN (BB_END (loop->last))) != NOTE
- || NOTE_LINE_NUMBER (NEXT_INSN (BB_END (loop->last)))
- != NOTE_INSN_LOOP_END)
- fprintf (file, ";; No NOTE_INSN_LOOP_END at %d\n",
- INSN_UID (NEXT_INSN (BB_END (loop->last))));
-
- if (loop->start)
- {
- fprintf (file,
- ";; start %d (%d), cont dom %d (%d), cont %d (%d), vtop %d (%d), end %d (%d)\n",
- LOOP_BLOCK_NUM (loop->start),
- LOOP_INSN_UID (loop->start),
- LOOP_BLOCK_NUM (loop->cont),
- LOOP_INSN_UID (loop->cont),
- LOOP_BLOCK_NUM (loop->cont),
- LOOP_INSN_UID (loop->cont),
- LOOP_BLOCK_NUM (loop->vtop),
- LOOP_INSN_UID (loop->vtop),
- LOOP_BLOCK_NUM (loop->end),
- LOOP_INSN_UID (loop->end));
- fprintf (file, ";; top %d (%d), scan start %d (%d)\n",
- LOOP_BLOCK_NUM (loop->top),
- LOOP_INSN_UID (loop->top),
- LOOP_BLOCK_NUM (loop->scan_start),
- LOOP_INSN_UID (loop->scan_start));
- fprintf (file, ";; exit_count %d", loop->exit_count);
- if (loop->exit_count)
- {
- fputs (", labels:", file);
- for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
- {
- fprintf (file, " %d ",
- LOOP_INSN_UID (XEXP (label, 0)));
- }
- }
- fputs ("\n", file);
-
- /* This can happen when a marked loop appears as two nested loops,
- say from while (a || b) {}. The inner loop won't match
- the loop markers but the outer one will. */
- if (LOOP_BLOCK_NUM (loop->cont) != loop->latch->index)
- fprintf (file, ";; NOTE_INSN_LOOP_CONT not in loop latch\n");
- }
-}
-
-/* Call this function from the debugger to dump LOOP. */
-
-void
-debug_loop (const struct loop *loop)
-{
- flow_loop_dump (loop, stderr, loop_dump_aux, 1);
-}
-
-/* Call this function from the debugger to dump LOOPS. */
-
-void
-debug_loops (const struct loops *loops)
-{
- flow_loops_dump (loops, stderr, loop_dump_aux, 1);
-}
OpenPOWER on IntegriCloud