diff options
Diffstat (limited to 'contrib/gcc/gcse.c')
-rw-r--r-- | contrib/gcc/gcse.c | 6724 |
1 files changed, 6724 insertions, 0 deletions
diff --git a/contrib/gcc/gcse.c b/contrib/gcc/gcse.c new file mode 100644 index 0000000..b28273d --- /dev/null +++ b/contrib/gcc/gcse.c @@ -0,0 +1,6724 @@ +/* Global common subexpression elimination/Partial redundancy elimination + and global constant/copy propagation for GNU compiler. + Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 + Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 2, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING. If not, write to the Free +Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA +02110-1301, USA. */ + +/* TODO + - reordering of memory allocation and freeing to be more space efficient + - do rough calc of how many regs are needed in each block, and a rough + calc of how many regs are available in each class and use that to + throttle back the code in cases where RTX_COST is minimal. + - a store to the same address as a load does not kill the load if the + source of the store is also the destination of the load. Handling this + allows more load motion, particularly out of loops. + - ability to realloc sbitmap vectors would allow one initial computation + of reg_set_in_block with only subsequent additions, rather than + recomputing it for each pass + +*/ + +/* References searched while implementing this. + + Compilers Principles, Techniques and Tools + Aho, Sethi, Ullman + Addison-Wesley, 1988 + + Global Optimization by Suppression of Partial Redundancies + E. Morel, C. Renvoise + communications of the acm, Vol. 22, Num. 2, Feb. 1979 + + A Portable Machine-Independent Global Optimizer - Design and Measurements + Frederick Chow + Stanford Ph.D. thesis, Dec. 1983 + + A Fast Algorithm for Code Movement Optimization + D.M. Dhamdhere + SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988 + + A Solution to a Problem with Morel and Renvoise's + Global Optimization by Suppression of Partial Redundancies + K-H Drechsler, M.P. Stadel + ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988 + + Practical Adaptation of the Global Optimization + Algorithm of Morel and Renvoise + D.M. Dhamdhere + ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991 + + Efficiently Computing Static Single Assignment Form and the Control + Dependence Graph + R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck + ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991 + + Lazy Code Motion + J. Knoop, O. Ruthing, B. Steffen + ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI + + What's In a Region? Or Computing Control Dependence Regions in Near-Linear + Time for Reducible Flow Control + Thomas Ball + ACM Letters on Programming Languages and Systems, + Vol. 2, Num. 1-4, Mar-Dec 1993 + + An Efficient Representation for Sparse Sets + Preston Briggs, Linda Torczon + ACM Letters on Programming Languages and Systems, + Vol. 2, Num. 1-4, Mar-Dec 1993 + + A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion + K-H Drechsler, M.P. Stadel + ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993 + + Partial Dead Code Elimination + J. Knoop, O. Ruthing, B. Steffen + ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994 + + Effective Partial Redundancy Elimination + P. Briggs, K.D. Cooper + ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994 + + The Program Structure Tree: Computing Control Regions in Linear Time + R. Johnson, D. Pearson, K. Pingali + ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994 + + Optimal Code Motion: Theory and Practice + J. Knoop, O. Ruthing, B. Steffen + ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994 + + The power of assignment motion + J. Knoop, O. Ruthing, B. Steffen + ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI + + Global code motion / global value numbering + C. Click + ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI + + Value Driven Redundancy Elimination + L.T. Simpson + Rice University Ph.D. thesis, Apr. 1996 + + Value Numbering + L.T. Simpson + Massively Scalar Compiler Project, Rice University, Sep. 1996 + + High Performance Compilers for Parallel Computing + Michael Wolfe + Addison-Wesley, 1996 + + Advanced Compiler Design and Implementation + Steven Muchnick + Morgan Kaufmann, 1997 + + Building an Optimizing Compiler + Robert Morgan + Digital Press, 1998 + + People wishing to speed up the code here should read: + Elimination Algorithms for Data Flow Analysis + B.G. Ryder, M.C. Paull + ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986 + + How to Analyze Large Programs Efficiently and Informatively + D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck + ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI + + People wishing to do something different can find various possibilities + in the above papers and elsewhere. +*/ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "toplev.h" + +#include "rtl.h" +#include "tree.h" +#include "tm_p.h" +#include "regs.h" +#include "hard-reg-set.h" +#include "flags.h" +#include "real.h" +#include "insn-config.h" +#include "recog.h" +#include "basic-block.h" +#include "output.h" +#include "function.h" +#include "expr.h" +#include "except.h" +#include "ggc.h" +#include "params.h" +#include "cselib.h" +#include "intl.h" +#include "obstack.h" +#include "timevar.h" +#include "tree-pass.h" +#include "hashtab.h" + +/* Propagate flow information through back edges and thus enable PRE's + moving loop invariant calculations out of loops. + + Originally this tended to create worse overall code, but several + improvements during the development of PRE seem to have made following + back edges generally a win. + + Note much of the loop invariant code motion done here would normally + be done by loop.c, which has more heuristics for when to move invariants + out of loops. At some point we might need to move some of those + heuristics into gcse.c. */ + +/* We support GCSE via Partial Redundancy Elimination. PRE optimizations + are a superset of those done by GCSE. + + We perform the following steps: + + 1) Compute basic block information. + + 2) Compute table of places where registers are set. + + 3) Perform copy/constant propagation. + + 4) Perform global cse using lazy code motion if not optimizing + for size, or code hoisting if we are. + + 5) Perform another pass of copy/constant propagation. + + Two passes of copy/constant propagation are done because the first one + enables more GCSE and the second one helps to clean up the copies that + GCSE creates. This is needed more for PRE than for Classic because Classic + GCSE will try to use an existing register containing the common + subexpression rather than create a new one. This is harder to do for PRE + because of the code motion (which Classic GCSE doesn't do). + + Expressions we are interested in GCSE-ing are of the form + (set (pseudo-reg) (expression)). + Function want_to_gcse_p says what these are. + + PRE handles moving invariant expressions out of loops (by treating them as + partially redundant). + + Eventually it would be nice to replace cse.c/gcse.c with SSA (static single + assignment) based GVN (global value numbering). L. T. Simpson's paper + (Rice University) on value numbering is a useful reference for this. + + ********************** + + We used to support multiple passes but there are diminishing returns in + doing so. The first pass usually makes 90% of the changes that are doable. + A second pass can make a few more changes made possible by the first pass. + Experiments show any further passes don't make enough changes to justify + the expense. + + A study of spec92 using an unlimited number of passes: + [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83, + [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2, + [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1 + + It was found doing copy propagation between each pass enables further + substitutions. + + PRE is quite expensive in complicated functions because the DFA can take + a while to converge. Hence we only perform one pass. The parameter + max-gcse-passes can be modified if one wants to experiment. + + ********************** + + The steps for PRE are: + + 1) Build the hash table of expressions we wish to GCSE (expr_hash_table). + + 2) Perform the data flow analysis for PRE. + + 3) Delete the redundant instructions + + 4) Insert the required copies [if any] that make the partially + redundant instructions fully redundant. + + 5) For other reaching expressions, insert an instruction to copy the value + to a newly created pseudo that will reach the redundant instruction. + + The deletion is done first so that when we do insertions we + know which pseudo reg to use. + + Various papers have argued that PRE DFA is expensive (O(n^2)) and others + argue it is not. The number of iterations for the algorithm to converge + is typically 2-4 so I don't view it as that expensive (relatively speaking). + + PRE GCSE depends heavily on the second CSE pass to clean up the copies + we create. To make an expression reach the place where it's redundant, + the result of the expression is copied to a new register, and the redundant + expression is deleted by replacing it with this new register. Classic GCSE + doesn't have this problem as much as it computes the reaching defs of + each register in each block and thus can try to use an existing + register. */ + +/* GCSE global vars. */ + +/* Note whether or not we should run jump optimization after gcse. We + want to do this for two cases. + + * If we changed any jumps via cprop. + + * If we added any labels via edge splitting. */ +static int run_jump_opt_after_gcse; + +/* An obstack for our working variables. */ +static struct obstack gcse_obstack; + +struct reg_use {rtx reg_rtx; }; + +/* Hash table of expressions. */ + +struct expr +{ + /* The expression (SET_SRC for expressions, PATTERN for assignments). */ + rtx expr; + /* Index in the available expression bitmaps. */ + int bitmap_index; + /* Next entry with the same hash. */ + struct expr *next_same_hash; + /* List of anticipatable occurrences in basic blocks in the function. + An "anticipatable occurrence" is one that is the first occurrence in the + basic block, the operands are not modified in the basic block prior + to the occurrence and the output is not used between the start of + the block and the occurrence. */ + struct occr *antic_occr; + /* List of available occurrence in basic blocks in the function. + An "available occurrence" is one that is the last occurrence in the + basic block and the operands are not modified by following statements in + the basic block [including this insn]. */ + struct occr *avail_occr; + /* Non-null if the computation is PRE redundant. + The value is the newly created pseudo-reg to record a copy of the + expression in all the places that reach the redundant copy. */ + rtx reaching_reg; +}; + +/* Occurrence of an expression. + There is one per basic block. If a pattern appears more than once the + last appearance is used [or first for anticipatable expressions]. */ + +struct occr +{ + /* Next occurrence of this expression. */ + struct occr *next; + /* The insn that computes the expression. */ + rtx insn; + /* Nonzero if this [anticipatable] occurrence has been deleted. */ + char deleted_p; + /* Nonzero if this [available] occurrence has been copied to + reaching_reg. */ + /* ??? This is mutually exclusive with deleted_p, so they could share + the same byte. */ + char copied_p; +}; + +/* Expression and copy propagation hash tables. + Each hash table is an array of buckets. + ??? It is known that if it were an array of entries, structure elements + `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is + not clear whether in the final analysis a sufficient amount of memory would + be saved as the size of the available expression bitmaps would be larger + [one could build a mapping table without holes afterwards though]. + Someday I'll perform the computation and figure it out. */ + +struct hash_table +{ + /* The table itself. + This is an array of `expr_hash_table_size' elements. */ + struct expr **table; + + /* Size of the hash table, in elements. */ + unsigned int size; + + /* Number of hash table elements. */ + unsigned int n_elems; + + /* Whether the table is expression of copy propagation one. */ + int set_p; +}; + +/* Expression hash table. */ +static struct hash_table expr_hash_table; + +/* Copy propagation hash table. */ +static struct hash_table set_hash_table; + +/* Mapping of uids to cuids. + Only real insns get cuids. */ +static int *uid_cuid; + +/* Highest UID in UID_CUID. */ +static int max_uid; + +/* Get the cuid of an insn. */ +#ifdef ENABLE_CHECKING +#define INSN_CUID(INSN) \ + (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)]) +#else +#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)]) +#endif + +/* Number of cuids. */ +static int max_cuid; + +/* Mapping of cuids to insns. */ +static rtx *cuid_insn; + +/* Get insn from cuid. */ +#define CUID_INSN(CUID) (cuid_insn[CUID]) + +/* Maximum register number in function prior to doing gcse + 1. + Registers created during this pass have regno >= max_gcse_regno. + This is named with "gcse" to not collide with global of same name. */ +static unsigned int max_gcse_regno; + +/* Table of registers that are modified. + + For each register, each element is a list of places where the pseudo-reg + is set. + + For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only + requires knowledge of which blocks kill which regs [and thus could use + a bitmap instead of the lists `reg_set_table' uses]. + + `reg_set_table' and could be turned into an array of bitmaps (num-bbs x + num-regs) [however perhaps it may be useful to keep the data as is]. One + advantage of recording things this way is that `reg_set_table' is fairly + sparse with respect to pseudo regs but for hard regs could be fairly dense + [relatively speaking]. And recording sets of pseudo-regs in lists speeds + up functions like compute_transp since in the case of pseudo-regs we only + need to iterate over the number of times a pseudo-reg is set, not over the + number of basic blocks [clearly there is a bit of a slow down in the cases + where a pseudo is set more than once in a block, however it is believed + that the net effect is to speed things up]. This isn't done for hard-regs + because recording call-clobbered hard-regs in `reg_set_table' at each + function call can consume a fair bit of memory, and iterating over + hard-regs stored this way in compute_transp will be more expensive. */ + +typedef struct reg_set +{ + /* The next setting of this register. */ + struct reg_set *next; + /* The index of the block where it was set. */ + int bb_index; +} reg_set; + +static reg_set **reg_set_table; + +/* Size of `reg_set_table'. + The table starts out at max_gcse_regno + slop, and is enlarged as + necessary. */ +static int reg_set_table_size; + +/* Amount to grow `reg_set_table' by when it's full. */ +#define REG_SET_TABLE_SLOP 100 + +/* This is a list of expressions which are MEMs and will be used by load + or store motion. + Load motion tracks MEMs which aren't killed by + anything except itself. (i.e., loads and stores to a single location). + We can then allow movement of these MEM refs with a little special + allowance. (all stores copy the same value to the reaching reg used + for the loads). This means all values used to store into memory must have + no side effects so we can re-issue the setter value. + Store Motion uses this structure as an expression table to track stores + which look interesting, and might be moveable towards the exit block. */ + +struct ls_expr +{ + struct expr * expr; /* Gcse expression reference for LM. */ + rtx pattern; /* Pattern of this mem. */ + rtx pattern_regs; /* List of registers mentioned by the mem. */ + rtx loads; /* INSN list of loads seen. */ + rtx stores; /* INSN list of stores seen. */ + struct ls_expr * next; /* Next in the list. */ + int invalid; /* Invalid for some reason. */ + int index; /* If it maps to a bitmap index. */ + unsigned int hash_index; /* Index when in a hash table. */ + rtx reaching_reg; /* Register to use when re-writing. */ +}; + +/* Array of implicit set patterns indexed by basic block index. */ +static rtx *implicit_sets; + +/* Head of the list of load/store memory refs. */ +static struct ls_expr * pre_ldst_mems = NULL; + +/* Hashtable for the load/store memory refs. */ +static htab_t pre_ldst_table = NULL; + +/* Bitmap containing one bit for each register in the program. + Used when performing GCSE to track which registers have been set since + the start of the basic block. */ +static regset reg_set_bitmap; + +/* For each block, a bitmap of registers set in the block. + This is used by compute_transp. + It is computed during hash table computation and not by compute_sets + as it includes registers added since the last pass (or between cprop and + gcse) and it's currently not easy to realloc sbitmap vectors. */ +static sbitmap *reg_set_in_block; + +/* Array, indexed by basic block number for a list of insns which modify + memory within that block. */ +static rtx * modify_mem_list; +static bitmap modify_mem_list_set; + +/* This array parallels modify_mem_list, but is kept canonicalized. */ +static rtx * canon_modify_mem_list; + +/* Bitmap indexed by block numbers to record which blocks contain + function calls. */ +static bitmap blocks_with_calls; + +/* Various variables for statistics gathering. */ + +/* Memory used in a pass. + This isn't intended to be absolutely precise. Its intent is only + to keep an eye on memory usage. */ +static int bytes_used; + +/* GCSE substitutions made. */ +static int gcse_subst_count; +/* Number of copy instructions created. */ +static int gcse_create_count; +/* Number of local constants propagated. */ +static int local_const_prop_count; +/* Number of local copies propagated. */ +static int local_copy_prop_count; +/* Number of global constants propagated. */ +static int global_const_prop_count; +/* Number of global copies propagated. */ +static int global_copy_prop_count; + +/* For available exprs */ +static sbitmap *ae_kill, *ae_gen; + +static void compute_can_copy (void); +static void *gmalloc (size_t) ATTRIBUTE_MALLOC; +static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC; +static void *grealloc (void *, size_t); +static void *gcse_alloc (unsigned long); +static void alloc_gcse_mem (void); +static void free_gcse_mem (void); +static void alloc_reg_set_mem (int); +static void free_reg_set_mem (void); +static void record_one_set (int, rtx); +static void record_set_info (rtx, rtx, void *); +static void compute_sets (void); +static void hash_scan_insn (rtx, struct hash_table *, int); +static void hash_scan_set (rtx, rtx, struct hash_table *); +static void hash_scan_clobber (rtx, rtx, struct hash_table *); +static void hash_scan_call (rtx, rtx, struct hash_table *); +static int want_to_gcse_p (rtx); +static bool can_assign_to_reg_p (rtx); +static bool gcse_constant_p (rtx); +static int oprs_unchanged_p (rtx, rtx, int); +static int oprs_anticipatable_p (rtx, rtx); +static int oprs_available_p (rtx, rtx); +static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int, + struct hash_table *); +static void insert_set_in_table (rtx, rtx, struct hash_table *); +static unsigned int hash_expr (rtx, enum machine_mode, int *, int); +static unsigned int hash_set (int, int); +static int expr_equiv_p (rtx, rtx); +static void record_last_reg_set_info (rtx, int); +static void record_last_mem_set_info (rtx); +static void record_last_set_info (rtx, rtx, void *); +static void compute_hash_table (struct hash_table *); +static void alloc_hash_table (int, struct hash_table *, int); +static void free_hash_table (struct hash_table *); +static void compute_hash_table_work (struct hash_table *); +static void dump_hash_table (FILE *, const char *, struct hash_table *); +static struct expr *lookup_set (unsigned int, struct hash_table *); +static struct expr *next_set (unsigned int, struct expr *); +static void reset_opr_set_tables (void); +static int oprs_not_set_p (rtx, rtx); +static void mark_call (rtx); +static void mark_set (rtx, rtx); +static void mark_clobber (rtx, rtx); +static void mark_oprs_set (rtx); +static void alloc_cprop_mem (int, int); +static void free_cprop_mem (void); +static void compute_transp (rtx, int, sbitmap *, int); +static void compute_transpout (void); +static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *, + struct hash_table *); +static void compute_cprop_data (void); +static void find_used_regs (rtx *, void *); +static int try_replace_reg (rtx, rtx, rtx); +static struct expr *find_avail_set (int, rtx); +static int cprop_jump (basic_block, rtx, rtx, rtx, rtx); +static void mems_conflict_for_gcse_p (rtx, rtx, void *); +static int load_killed_in_block_p (basic_block, int, rtx, int); +static void canon_list_insert (rtx, rtx, void *); +static int cprop_insn (rtx, int); +static int cprop (int); +static void find_implicit_sets (void); +static int one_cprop_pass (int, bool, bool); +static bool constprop_register (rtx, rtx, rtx, bool); +static struct expr *find_bypass_set (int, int); +static bool reg_killed_on_edge (rtx, edge); +static int bypass_block (basic_block, rtx, rtx); +static int bypass_conditional_jumps (void); +static void alloc_pre_mem (int, int); +static void free_pre_mem (void); +static void compute_pre_data (void); +static int pre_expr_reaches_here_p (basic_block, struct expr *, + basic_block); +static void insert_insn_end_bb (struct expr *, basic_block, int); +static void pre_insert_copy_insn (struct expr *, rtx); +static void pre_insert_copies (void); +static int pre_delete (void); +static int pre_gcse (void); +static int one_pre_gcse_pass (int); +static void add_label_notes (rtx, rtx); +static void alloc_code_hoist_mem (int, int); +static void free_code_hoist_mem (void); +static void compute_code_hoist_vbeinout (void); +static void compute_code_hoist_data (void); +static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *); +static void hoist_code (void); +static int one_code_hoisting_pass (void); +static rtx process_insert_insn (struct expr *); +static int pre_edge_insert (struct edge_list *, struct expr **); +static int pre_expr_reaches_here_p_work (basic_block, struct expr *, + basic_block, char *); +static struct ls_expr * ldst_entry (rtx); +static void free_ldst_entry (struct ls_expr *); +static void free_ldst_mems (void); +static void print_ldst_list (FILE *); +static struct ls_expr * find_rtx_in_ldst (rtx); +static int enumerate_ldsts (void); +static inline struct ls_expr * first_ls_expr (void); +static inline struct ls_expr * next_ls_expr (struct ls_expr *); +static int simple_mem (rtx); +static void invalidate_any_buried_refs (rtx); +static void compute_ld_motion_mems (void); +static void trim_ld_motion_mems (void); +static void update_ld_motion_stores (struct expr *); +static void reg_set_info (rtx, rtx, void *); +static void reg_clear_last_set (rtx, rtx, void *); +static bool store_ops_ok (rtx, int *); +static rtx extract_mentioned_regs (rtx); +static rtx extract_mentioned_regs_helper (rtx, rtx); +static void find_moveable_store (rtx, int *, int *); +static int compute_store_table (void); +static bool load_kills_store (rtx, rtx, int); +static bool find_loads (rtx, rtx, int); +static bool store_killed_in_insn (rtx, rtx, rtx, int); +static bool store_killed_after (rtx, rtx, rtx, basic_block, int *, rtx *); +static bool store_killed_before (rtx, rtx, rtx, basic_block, int *); +static void build_store_vectors (void); +static void insert_insn_start_bb (rtx, basic_block); +static int insert_store (struct ls_expr *, edge); +static void remove_reachable_equiv_notes (basic_block, struct ls_expr *); +static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *); +static void delete_store (struct ls_expr *, basic_block); +static void free_store_memory (void); +static void store_motion (void); +static void free_insn_expr_list_list (rtx *); +static void clear_modify_mem_tables (void); +static void free_modify_mem_tables (void); +static rtx gcse_emit_move_after (rtx, rtx, rtx); +static void local_cprop_find_used_regs (rtx *, void *); +static bool do_local_cprop (rtx, rtx, bool, rtx*); +static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*); +static void local_cprop_pass (bool); +static bool is_too_expensive (const char *); + + +/* Entry point for global common subexpression elimination. + F is the first instruction in the function. Return nonzero if a + change is mode. */ + +static int +gcse_main (rtx f ATTRIBUTE_UNUSED) +{ + int changed, pass; + /* Bytes used at start of pass. */ + int initial_bytes_used; + /* Maximum number of bytes used by a pass. */ + int max_pass_bytes; + /* Point to release obstack data from for each pass. */ + char *gcse_obstack_bottom; + + /* We do not construct an accurate cfg in functions which call + setjmp, so just punt to be safe. */ + if (current_function_calls_setjmp) + return 0; + + /* Assume that we do not need to run jump optimizations after gcse. */ + run_jump_opt_after_gcse = 0; + + /* Identify the basic block information for this function, including + successors and predecessors. */ + max_gcse_regno = max_reg_num (); + + if (dump_file) + dump_flow_info (dump_file, dump_flags); + + /* Return if there's nothing to do, or it is too expensive. */ + if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1 + || is_too_expensive (_("GCSE disabled"))) + return 0; + + gcc_obstack_init (&gcse_obstack); + bytes_used = 0; + + /* We need alias. */ + init_alias_analysis (); + /* Record where pseudo-registers are set. This data is kept accurate + during each pass. ??? We could also record hard-reg information here + [since it's unchanging], however it is currently done during hash table + computation. + + It may be tempting to compute MEM set information here too, but MEM sets + will be subject to code motion one day and thus we need to compute + information about memory sets when we build the hash tables. */ + + alloc_reg_set_mem (max_gcse_regno); + compute_sets (); + + pass = 0; + initial_bytes_used = bytes_used; + max_pass_bytes = 0; + gcse_obstack_bottom = gcse_alloc (1); + changed = 1; + while (changed && pass < MAX_GCSE_PASSES) + { + changed = 0; + if (dump_file) + fprintf (dump_file, "GCSE pass %d\n\n", pass + 1); + + /* Initialize bytes_used to the space for the pred/succ lists, + and the reg_set_table data. */ + bytes_used = initial_bytes_used; + + /* Each pass may create new registers, so recalculate each time. */ + max_gcse_regno = max_reg_num (); + + alloc_gcse_mem (); + + /* Don't allow constant propagation to modify jumps + during this pass. */ + timevar_push (TV_CPROP1); + changed = one_cprop_pass (pass + 1, false, false); + timevar_pop (TV_CPROP1); + + if (optimize_size) + /* Do nothing. */ ; + else + { + timevar_push (TV_PRE); + changed |= one_pre_gcse_pass (pass + 1); + /* We may have just created new basic blocks. Release and + recompute various things which are sized on the number of + basic blocks. */ + if (changed) + { + free_modify_mem_tables (); + modify_mem_list = gcalloc (last_basic_block, sizeof (rtx)); + canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx)); + } + free_reg_set_mem (); + alloc_reg_set_mem (max_reg_num ()); + compute_sets (); + run_jump_opt_after_gcse = 1; + timevar_pop (TV_PRE); + } + + if (max_pass_bytes < bytes_used) + max_pass_bytes = bytes_used; + + /* Free up memory, then reallocate for code hoisting. We can + not re-use the existing allocated memory because the tables + will not have info for the insns or registers created by + partial redundancy elimination. */ + free_gcse_mem (); + + /* It does not make sense to run code hoisting unless we are optimizing + for code size -- it rarely makes programs faster, and can make + them bigger if we did partial redundancy elimination (when optimizing + for space, we don't run the partial redundancy algorithms). */ + if (optimize_size) + { + timevar_push (TV_HOIST); + max_gcse_regno = max_reg_num (); + alloc_gcse_mem (); + changed |= one_code_hoisting_pass (); + free_gcse_mem (); + + if (max_pass_bytes < bytes_used) + max_pass_bytes = bytes_used; + timevar_pop (TV_HOIST); + } + + if (dump_file) + { + fprintf (dump_file, "\n"); + fflush (dump_file); + } + + obstack_free (&gcse_obstack, gcse_obstack_bottom); + pass++; + } + + /* Do one last pass of copy propagation, including cprop into + conditional jumps. */ + + max_gcse_regno = max_reg_num (); + alloc_gcse_mem (); + /* This time, go ahead and allow cprop to alter jumps. */ + timevar_push (TV_CPROP2); + one_cprop_pass (pass + 1, true, false); + timevar_pop (TV_CPROP2); + free_gcse_mem (); + + if (dump_file) + { + fprintf (dump_file, "GCSE of %s: %d basic blocks, ", + current_function_name (), n_basic_blocks); + fprintf (dump_file, "%d pass%s, %d bytes\n\n", + pass, pass > 1 ? "es" : "", max_pass_bytes); + } + + obstack_free (&gcse_obstack, NULL); + free_reg_set_mem (); + + /* We are finished with alias. */ + end_alias_analysis (); + allocate_reg_info (max_reg_num (), FALSE, FALSE); + + if (!optimize_size && flag_gcse_sm) + { + timevar_push (TV_LSM); + store_motion (); + timevar_pop (TV_LSM); + } + + /* Record where pseudo-registers are set. */ + return run_jump_opt_after_gcse; +} + +/* Misc. utilities. */ + +/* Nonzero for each mode that supports (set (reg) (reg)). + This is trivially true for integer and floating point values. + It may or may not be true for condition codes. */ +static char can_copy[(int) NUM_MACHINE_MODES]; + +/* Compute which modes support reg/reg copy operations. */ + +static void +compute_can_copy (void) +{ + int i; +#ifndef AVOID_CCMODE_COPIES + rtx reg, insn; +#endif + memset (can_copy, 0, NUM_MACHINE_MODES); + + start_sequence (); + for (i = 0; i < NUM_MACHINE_MODES; i++) + if (GET_MODE_CLASS (i) == MODE_CC) + { +#ifdef AVOID_CCMODE_COPIES + can_copy[i] = 0; +#else + reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1); + insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg)); + if (recog (PATTERN (insn), insn, NULL) >= 0) + can_copy[i] = 1; +#endif + } + else + can_copy[i] = 1; + + end_sequence (); +} + +/* Returns whether the mode supports reg/reg copy operations. */ + +bool +can_copy_p (enum machine_mode mode) +{ + static bool can_copy_init_p = false; + + if (! can_copy_init_p) + { + compute_can_copy (); + can_copy_init_p = true; + } + + return can_copy[mode] != 0; +} + +/* Cover function to xmalloc to record bytes allocated. */ + +static void * +gmalloc (size_t size) +{ + bytes_used += size; + return xmalloc (size); +} + +/* Cover function to xcalloc to record bytes allocated. */ + +static void * +gcalloc (size_t nelem, size_t elsize) +{ + bytes_used += nelem * elsize; + return xcalloc (nelem, elsize); +} + +/* Cover function to xrealloc. + We don't record the additional size since we don't know it. + It won't affect memory usage stats much anyway. */ + +static void * +grealloc (void *ptr, size_t size) +{ + return xrealloc (ptr, size); +} + +/* Cover function to obstack_alloc. */ + +static void * +gcse_alloc (unsigned long size) +{ + bytes_used += size; + return obstack_alloc (&gcse_obstack, size); +} + +/* Allocate memory for the cuid mapping array, + and reg/memory set tracking tables. + + This is called at the start of each pass. */ + +static void +alloc_gcse_mem (void) +{ + int i; + basic_block bb; + rtx insn; + + /* Find the largest UID and create a mapping from UIDs to CUIDs. + CUIDs are like UIDs except they increase monotonically, have no gaps, + and only apply to real insns. + (Actually, there are gaps, for insn that are not inside a basic block. + but we should never see those anyway, so this is OK.) */ + + max_uid = get_max_uid (); + uid_cuid = gcalloc (max_uid + 1, sizeof (int)); + i = 0; + FOR_EACH_BB (bb) + FOR_BB_INSNS (bb, insn) + { + if (INSN_P (insn)) + uid_cuid[INSN_UID (insn)] = i++; + else + uid_cuid[INSN_UID (insn)] = i; + } + + /* Create a table mapping cuids to insns. */ + + max_cuid = i; + cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx)); + i = 0; + FOR_EACH_BB (bb) + FOR_BB_INSNS (bb, insn) + if (INSN_P (insn)) + CUID_INSN (i++) = insn; + + /* Allocate vars to track sets of regs. */ + reg_set_bitmap = BITMAP_ALLOC (NULL); + + /* Allocate vars to track sets of regs, memory per block. */ + reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno); + /* Allocate array to keep a list of insns which modify memory in each + basic block. */ + modify_mem_list = gcalloc (last_basic_block, sizeof (rtx)); + canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx)); + modify_mem_list_set = BITMAP_ALLOC (NULL); + blocks_with_calls = BITMAP_ALLOC (NULL); +} + +/* Free memory allocated by alloc_gcse_mem. */ + +static void +free_gcse_mem (void) +{ + free (uid_cuid); + free (cuid_insn); + + BITMAP_FREE (reg_set_bitmap); + + sbitmap_vector_free (reg_set_in_block); + free_modify_mem_tables (); + BITMAP_FREE (modify_mem_list_set); + BITMAP_FREE (blocks_with_calls); +} + +/* Compute the local properties of each recorded expression. + + Local properties are those that are defined by the block, irrespective of + other blocks. + + An expression is transparent in a block if its operands are not modified + in the block. + + An expression is computed (locally available) in a block if it is computed + at least once and expression would contain the same value if the + computation was moved to the end of the block. + + An expression is locally anticipatable in a block if it is computed at + least once and expression would contain the same value if the computation + was moved to the beginning of the block. + + We call this routine for cprop, pre and code hoisting. They all compute + basically the same information and thus can easily share this code. + + TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local + properties. If NULL, then it is not necessary to compute or record that + particular property. + + TABLE controls which hash table to look at. If it is set hash table, + additionally, TRANSP is computed as ~TRANSP, since this is really cprop's + ABSALTERED. */ + +static void +compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc, + struct hash_table *table) +{ + unsigned int i; + + /* Initialize any bitmaps that were passed in. */ + if (transp) + { + if (table->set_p) + sbitmap_vector_zero (transp, last_basic_block); + else + sbitmap_vector_ones (transp, last_basic_block); + } + + if (comp) + sbitmap_vector_zero (comp, last_basic_block); + if (antloc) + sbitmap_vector_zero (antloc, last_basic_block); + + for (i = 0; i < table->size; i++) + { + struct expr *expr; + + for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash) + { + int indx = expr->bitmap_index; + struct occr *occr; + + /* The expression is transparent in this block if it is not killed. + We start by assuming all are transparent [none are killed], and + then reset the bits for those that are. */ + if (transp) + compute_transp (expr->expr, indx, transp, table->set_p); + + /* The occurrences recorded in antic_occr are exactly those that + we want to set to nonzero in ANTLOC. */ + if (antloc) + for (occr = expr->antic_occr; occr != NULL; occr = occr->next) + { + SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx); + + /* While we're scanning the table, this is a good place to + initialize this. */ + occr->deleted_p = 0; + } + + /* The occurrences recorded in avail_occr are exactly those that + we want to set to nonzero in COMP. */ + if (comp) + for (occr = expr->avail_occr; occr != NULL; occr = occr->next) + { + SET_BIT (comp[BLOCK_NUM (occr->insn)], indx); + + /* While we're scanning the table, this is a good place to + initialize this. */ + occr->copied_p = 0; + } + + /* While we're scanning the table, this is a good place to + initialize this. */ + expr->reaching_reg = 0; + } + } +} + +/* Register set information. + + `reg_set_table' records where each register is set or otherwise + modified. */ + +static struct obstack reg_set_obstack; + +static void +alloc_reg_set_mem (int n_regs) +{ + reg_set_table_size = n_regs + REG_SET_TABLE_SLOP; + reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *)); + + gcc_obstack_init (®_set_obstack); +} + +static void +free_reg_set_mem (void) +{ + free (reg_set_table); + obstack_free (®_set_obstack, NULL); +} + +/* Record REGNO in the reg_set table. */ + +static void +record_one_set (int regno, rtx insn) +{ + /* Allocate a new reg_set element and link it onto the list. */ + struct reg_set *new_reg_info; + + /* If the table isn't big enough, enlarge it. */ + if (regno >= reg_set_table_size) + { + int new_size = regno + REG_SET_TABLE_SLOP; + + reg_set_table = grealloc (reg_set_table, + new_size * sizeof (struct reg_set *)); + memset (reg_set_table + reg_set_table_size, 0, + (new_size - reg_set_table_size) * sizeof (struct reg_set *)); + reg_set_table_size = new_size; + } + + new_reg_info = obstack_alloc (®_set_obstack, sizeof (struct reg_set)); + bytes_used += sizeof (struct reg_set); + new_reg_info->bb_index = BLOCK_NUM (insn); + new_reg_info->next = reg_set_table[regno]; + reg_set_table[regno] = new_reg_info; +} + +/* Called from compute_sets via note_stores to handle one SET or CLOBBER in + an insn. The DATA is really the instruction in which the SET is + occurring. */ + +static void +record_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data) +{ + rtx record_set_insn = (rtx) data; + + if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER) + record_one_set (REGNO (dest), record_set_insn); +} + +/* Scan the function and record each set of each pseudo-register. + + This is called once, at the start of the gcse pass. See the comments for + `reg_set_table' for further documentation. */ + +static void +compute_sets (void) +{ + basic_block bb; + rtx insn; + + FOR_EACH_BB (bb) + FOR_BB_INSNS (bb, insn) + if (INSN_P (insn)) + note_stores (PATTERN (insn), record_set_info, insn); +} + +/* Hash table support. */ + +struct reg_avail_info +{ + basic_block last_bb; + int first_set; + int last_set; +}; + +static struct reg_avail_info *reg_avail_info; +static basic_block current_bb; + + +/* See whether X, the source of a set, is something we want to consider for + GCSE. */ + +static int +want_to_gcse_p (rtx x) +{ +#ifdef STACK_REGS + /* On register stack architectures, don't GCSE constants from the + constant pool, as the benefits are often swamped by the overhead + of shuffling the register stack between basic blocks. */ + if (IS_STACK_MODE (GET_MODE (x))) + x = avoid_constant_pool_reference (x); +#endif + + switch (GET_CODE (x)) + { + case REG: + case SUBREG: + case CONST_INT: + case CONST_DOUBLE: + case CONST_VECTOR: + case CALL: + return 0; + + default: + return can_assign_to_reg_p (x); + } +} + +/* Used internally by can_assign_to_reg_p. */ + +static GTY(()) rtx test_insn; + +/* Return true if we can assign X to a pseudo register. */ + +static bool +can_assign_to_reg_p (rtx x) +{ + int num_clobbers = 0; + int icode; + + /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */ + if (general_operand (x, GET_MODE (x))) + return 1; + else if (GET_MODE (x) == VOIDmode) + return 0; + + /* Otherwise, check if we can make a valid insn from it. First initialize + our test insn if we haven't already. */ + if (test_insn == 0) + { + test_insn + = make_insn_raw (gen_rtx_SET (VOIDmode, + gen_rtx_REG (word_mode, + FIRST_PSEUDO_REGISTER * 2), + const0_rtx)); + NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0; + } + + /* Now make an insn like the one we would make when GCSE'ing and see if + valid. */ + PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x)); + SET_SRC (PATTERN (test_insn)) = x; + return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0 + && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode))); +} + +/* Return nonzero if the operands of expression X are unchanged from the + start of INSN's basic block up to but not including INSN (if AVAIL_P == 0), + or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */ + +static int +oprs_unchanged_p (rtx x, rtx insn, int avail_p) +{ + int i, j; + enum rtx_code code; + const char *fmt; + + if (x == 0) + return 1; + + code = GET_CODE (x); + switch (code) + { + case REG: + { + struct reg_avail_info *info = ®_avail_info[REGNO (x)]; + + if (info->last_bb != current_bb) + return 1; + if (avail_p) + return info->last_set < INSN_CUID (insn); + else + return info->first_set >= INSN_CUID (insn); + } + + case MEM: + if (load_killed_in_block_p (current_bb, INSN_CUID (insn), + x, avail_p)) + return 0; + else + return oprs_unchanged_p (XEXP (x, 0), insn, avail_p); + + case PRE_DEC: + case PRE_INC: + case POST_DEC: + case POST_INC: + case PRE_MODIFY: + case POST_MODIFY: + return 0; + + case PC: + case CC0: /*FIXME*/ + case CONST: + case CONST_INT: + case CONST_DOUBLE: + case CONST_VECTOR: + case SYMBOL_REF: + case LABEL_REF: + case ADDR_VEC: + case ADDR_DIFF_VEC: + return 1; + + default: + break; + } + + for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--) + { + if (fmt[i] == 'e') + { + /* If we are about to do the last recursive call needed at this + level, change it into iteration. This function is called enough + to be worth it. */ + if (i == 0) + return oprs_unchanged_p (XEXP (x, i), insn, avail_p); + + else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p)) + return 0; + } + else if (fmt[i] == 'E') + for (j = 0; j < XVECLEN (x, i); j++) + if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p)) + return 0; + } + + return 1; +} + +/* Used for communication between mems_conflict_for_gcse_p and + load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a + conflict between two memory references. */ +static int gcse_mems_conflict_p; + +/* Used for communication between mems_conflict_for_gcse_p and + load_killed_in_block_p. A memory reference for a load instruction, + mems_conflict_for_gcse_p will see if a memory store conflicts with + this memory load. */ +static rtx gcse_mem_operand; + +/* DEST is the output of an instruction. If it is a memory reference, and + possibly conflicts with the load found in gcse_mem_operand, then set + gcse_mems_conflict_p to a nonzero value. */ + +static void +mems_conflict_for_gcse_p (rtx dest, rtx setter ATTRIBUTE_UNUSED, + void *data ATTRIBUTE_UNUSED) +{ + while (GET_CODE (dest) == SUBREG + || GET_CODE (dest) == ZERO_EXTRACT + || GET_CODE (dest) == STRICT_LOW_PART) + dest = XEXP (dest, 0); + + /* If DEST is not a MEM, then it will not conflict with the load. Note + that function calls are assumed to clobber memory, but are handled + elsewhere. */ + if (! MEM_P (dest)) + return; + + /* If we are setting a MEM in our list of specially recognized MEMs, + don't mark as killed this time. */ + + if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL) + { + if (!find_rtx_in_ldst (dest)) + gcse_mems_conflict_p = 1; + return; + } + + if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand, + rtx_addr_varies_p)) + gcse_mems_conflict_p = 1; +} + +/* Return nonzero if the expression in X (a memory reference) is killed + in block BB before or after the insn with the CUID in UID_LIMIT. + AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills + before UID_LIMIT. + + To check the entire block, set UID_LIMIT to max_uid + 1 and + AVAIL_P to 0. */ + +static int +load_killed_in_block_p (basic_block bb, int uid_limit, rtx x, int avail_p) +{ + rtx list_entry = modify_mem_list[bb->index]; + + /* If this is a readonly then we aren't going to be changing it. */ + if (MEM_READONLY_P (x)) + return 0; + + while (list_entry) + { + rtx setter; + /* Ignore entries in the list that do not apply. */ + if ((avail_p + && INSN_CUID (XEXP (list_entry, 0)) < uid_limit) + || (! avail_p + && INSN_CUID (XEXP (list_entry, 0)) > uid_limit)) + { + list_entry = XEXP (list_entry, 1); + continue; + } + + setter = XEXP (list_entry, 0); + + /* If SETTER is a call everything is clobbered. Note that calls + to pure functions are never put on the list, so we need not + worry about them. */ + if (CALL_P (setter)) + return 1; + + /* SETTER must be an INSN of some kind that sets memory. Call + note_stores to examine each hunk of memory that is modified. + + The note_stores interface is pretty limited, so we have to + communicate via global variables. Yuk. */ + gcse_mem_operand = x; + gcse_mems_conflict_p = 0; + note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL); + if (gcse_mems_conflict_p) + return 1; + list_entry = XEXP (list_entry, 1); + } + return 0; +} + +/* Return nonzero if the operands of expression X are unchanged from + the start of INSN's basic block up to but not including INSN. */ + +static int +oprs_anticipatable_p (rtx x, rtx insn) +{ + return oprs_unchanged_p (x, insn, 0); +} + +/* Return nonzero if the operands of expression X are unchanged from + INSN to the end of INSN's basic block. */ + +static int +oprs_available_p (rtx x, rtx insn) +{ + return oprs_unchanged_p (x, insn, 1); +} + +/* Hash expression X. + + MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean + indicating if a volatile operand is found or if the expression contains + something we don't want to insert in the table. HASH_TABLE_SIZE is + the current size of the hash table to be probed. */ + +static unsigned int +hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p, + int hash_table_size) +{ + unsigned int hash; + + *do_not_record_p = 0; + + hash = hash_rtx (x, mode, do_not_record_p, + NULL, /*have_reg_qty=*/false); + return hash % hash_table_size; +} + +/* Hash a set of register REGNO. + + Sets are hashed on the register that is set. This simplifies the PRE copy + propagation code. + + ??? May need to make things more elaborate. Later, as necessary. */ + +static unsigned int +hash_set (int regno, int hash_table_size) +{ + unsigned int hash; + + hash = regno; + return hash % hash_table_size; +} + +/* Return nonzero if exp1 is equivalent to exp2. */ + +static int +expr_equiv_p (rtx x, rtx y) +{ + return exp_equiv_p (x, y, 0, true); +} + +/* Insert expression X in INSN in the hash TABLE. + If it is already present, record it as the last occurrence in INSN's + basic block. + + MODE is the mode of the value X is being stored into. + It is only used if X is a CONST_INT. + + ANTIC_P is nonzero if X is an anticipatable expression. + AVAIL_P is nonzero if X is an available expression. */ + +static void +insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p, + int avail_p, struct hash_table *table) +{ + int found, do_not_record_p; + unsigned int hash; + struct expr *cur_expr, *last_expr = NULL; + struct occr *antic_occr, *avail_occr; + + hash = hash_expr (x, mode, &do_not_record_p, table->size); + + /* Do not insert expression in table if it contains volatile operands, + or if hash_expr determines the expression is something we don't want + to or can't handle. */ + if (do_not_record_p) + return; + + cur_expr = table->table[hash]; + found = 0; + + while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x))) + { + /* If the expression isn't found, save a pointer to the end of + the list. */ + last_expr = cur_expr; + cur_expr = cur_expr->next_same_hash; + } + + if (! found) + { + cur_expr = gcse_alloc (sizeof (struct expr)); + bytes_used += sizeof (struct expr); + if (table->table[hash] == NULL) + /* This is the first pattern that hashed to this index. */ + table->table[hash] = cur_expr; + else + /* Add EXPR to end of this hash chain. */ + last_expr->next_same_hash = cur_expr; + + /* Set the fields of the expr element. */ + cur_expr->expr = x; + cur_expr->bitmap_index = table->n_elems++; + cur_expr->next_same_hash = NULL; + cur_expr->antic_occr = NULL; + cur_expr->avail_occr = NULL; + } + + /* Now record the occurrence(s). */ + if (antic_p) + { + antic_occr = cur_expr->antic_occr; + + if (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn)) + antic_occr = NULL; + + if (antic_occr) + /* Found another instance of the expression in the same basic block. + Prefer the currently recorded one. We want the first one in the + block and the block is scanned from start to end. */ + ; /* nothing to do */ + else + { + /* First occurrence of this expression in this basic block. */ + antic_occr = gcse_alloc (sizeof (struct occr)); + bytes_used += sizeof (struct occr); + antic_occr->insn = insn; + antic_occr->next = cur_expr->antic_occr; + antic_occr->deleted_p = 0; + cur_expr->antic_occr = antic_occr; + } + } + + if (avail_p) + { + avail_occr = cur_expr->avail_occr; + + if (avail_occr && BLOCK_NUM (avail_occr->insn) == BLOCK_NUM (insn)) + { + /* Found another instance of the expression in the same basic block. + Prefer this occurrence to the currently recorded one. We want + the last one in the block and the block is scanned from start + to end. */ + avail_occr->insn = insn; + } + else + { + /* First occurrence of this expression in this basic block. */ + avail_occr = gcse_alloc (sizeof (struct occr)); + bytes_used += sizeof (struct occr); + avail_occr->insn = insn; + avail_occr->next = cur_expr->avail_occr; + avail_occr->deleted_p = 0; + cur_expr->avail_occr = avail_occr; + } + } +} + +/* Insert pattern X in INSN in the hash table. + X is a SET of a reg to either another reg or a constant. + If it is already present, record it as the last occurrence in INSN's + basic block. */ + +static void +insert_set_in_table (rtx x, rtx insn, struct hash_table *table) +{ + int found; + unsigned int hash; + struct expr *cur_expr, *last_expr = NULL; + struct occr *cur_occr; + + gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x))); + + hash = hash_set (REGNO (SET_DEST (x)), table->size); + + cur_expr = table->table[hash]; + found = 0; + + while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x))) + { + /* If the expression isn't found, save a pointer to the end of + the list. */ + last_expr = cur_expr; + cur_expr = cur_expr->next_same_hash; + } + + if (! found) + { + cur_expr = gcse_alloc (sizeof (struct expr)); + bytes_used += sizeof (struct expr); + if (table->table[hash] == NULL) + /* This is the first pattern that hashed to this index. */ + table->table[hash] = cur_expr; + else + /* Add EXPR to end of this hash chain. */ + last_expr->next_same_hash = cur_expr; + + /* Set the fields of the expr element. + We must copy X because it can be modified when copy propagation is + performed on its operands. */ + cur_expr->expr = copy_rtx (x); + cur_expr->bitmap_index = table->n_elems++; + cur_expr->next_same_hash = NULL; + cur_expr->antic_occr = NULL; + cur_expr->avail_occr = NULL; + } + + /* Now record the occurrence. */ + cur_occr = cur_expr->avail_occr; + + if (cur_occr && BLOCK_NUM (cur_occr->insn) == BLOCK_NUM (insn)) + { + /* Found another instance of the expression in the same basic block. + Prefer this occurrence to the currently recorded one. We want + the last one in the block and the block is scanned from start + to end. */ + cur_occr->insn = insn; + } + else + { + /* First occurrence of this expression in this basic block. */ + cur_occr = gcse_alloc (sizeof (struct occr)); + bytes_used += sizeof (struct occr); + + cur_occr->insn = insn; + cur_occr->next = cur_expr->avail_occr; + cur_occr->deleted_p = 0; + cur_expr->avail_occr = cur_occr; + } +} + +/* Determine whether the rtx X should be treated as a constant for + the purposes of GCSE's constant propagation. */ + +static bool +gcse_constant_p (rtx x) +{ + /* Consider a COMPARE of two integers constant. */ + if (GET_CODE (x) == COMPARE + && GET_CODE (XEXP (x, 0)) == CONST_INT + && GET_CODE (XEXP (x, 1)) == CONST_INT) + return true; + + /* Consider a COMPARE of the same registers is a constant + if they are not floating point registers. */ + if (GET_CODE(x) == COMPARE + && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1)) + && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1)) + && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0))) + && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1)))) + return true; + + return CONSTANT_P (x); +} + +/* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or + expression one). */ + +static void +hash_scan_set (rtx pat, rtx insn, struct hash_table *table) +{ + rtx src = SET_SRC (pat); + rtx dest = SET_DEST (pat); + rtx note; + + if (GET_CODE (src) == CALL) + hash_scan_call (src, insn, table); + + else if (REG_P (dest)) + { + unsigned int regno = REGNO (dest); + rtx tmp; + + /* See if a REG_NOTE shows this equivalent to a simpler expression. + This allows us to do a single GCSE pass and still eliminate + redundant constants, addresses or other expressions that are + constructed with multiple instructions. */ + note = find_reg_equal_equiv_note (insn); + if (note != 0 + && (table->set_p + ? gcse_constant_p (XEXP (note, 0)) + : want_to_gcse_p (XEXP (note, 0)))) + src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src); + + /* Only record sets of pseudo-regs in the hash table. */ + if (! table->set_p + && regno >= FIRST_PSEUDO_REGISTER + /* Don't GCSE something if we can't do a reg/reg copy. */ + && can_copy_p (GET_MODE (dest)) + /* GCSE commonly inserts instruction after the insn. We can't + do that easily for EH_REGION notes so disable GCSE on these + for now. */ + && !find_reg_note (insn, REG_EH_REGION, NULL_RTX) + /* Is SET_SRC something we want to gcse? */ + && want_to_gcse_p (src) + /* Don't CSE a nop. */ + && ! set_noop_p (pat) + /* Don't GCSE if it has attached REG_EQUIV note. + At this point this only function parameters should have + REG_EQUIV notes and if the argument slot is used somewhere + explicitly, it means address of parameter has been taken, + so we should not extend the lifetime of the pseudo. */ + && (note == NULL_RTX || ! MEM_P (XEXP (note, 0)))) + { + /* An expression is not anticipatable if its operands are + modified before this insn or if this is not the only SET in + this insn. */ + int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn); + /* An expression is not available if its operands are + subsequently modified, including this insn. It's also not + available if this is a branch, because we can't insert + a set after the branch. */ + int avail_p = (oprs_available_p (src, insn) + && ! JUMP_P (insn)); + + insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table); + } + + /* Record sets for constant/copy propagation. */ + else if (table->set_p + && regno >= FIRST_PSEUDO_REGISTER + && ((REG_P (src) + && REGNO (src) >= FIRST_PSEUDO_REGISTER + && can_copy_p (GET_MODE (dest)) + && REGNO (src) != regno) + || gcse_constant_p (src)) + /* A copy is not available if its src or dest is subsequently + modified. Here we want to search from INSN+1 on, but + oprs_available_p searches from INSN on. */ + && (insn == BB_END (BLOCK_FOR_INSN (insn)) + || ((tmp = next_nonnote_insn (insn)) != NULL_RTX + && oprs_available_p (pat, tmp)))) + insert_set_in_table (pat, insn, table); + } + /* In case of store we want to consider the memory value as available in + the REG stored in that memory. This makes it possible to remove + redundant loads from due to stores to the same location. */ + else if (flag_gcse_las && REG_P (src) && MEM_P (dest)) + { + unsigned int regno = REGNO (src); + + /* Do not do this for constant/copy propagation. */ + if (! table->set_p + /* Only record sets of pseudo-regs in the hash table. */ + && regno >= FIRST_PSEUDO_REGISTER + /* Don't GCSE something if we can't do a reg/reg copy. */ + && can_copy_p (GET_MODE (src)) + /* GCSE commonly inserts instruction after the insn. We can't + do that easily for EH_REGION notes so disable GCSE on these + for now. */ + && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX) + /* Is SET_DEST something we want to gcse? */ + && want_to_gcse_p (dest) + /* Don't CSE a nop. */ + && ! set_noop_p (pat) + /* Don't GCSE if it has attached REG_EQUIV note. + At this point this only function parameters should have + REG_EQUIV notes and if the argument slot is used somewhere + explicitly, it means address of parameter has been taken, + so we should not extend the lifetime of the pseudo. */ + && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0 + || ! MEM_P (XEXP (note, 0)))) + { + /* Stores are never anticipatable. */ + int antic_p = 0; + /* An expression is not available if its operands are + subsequently modified, including this insn. It's also not + available if this is a branch, because we can't insert + a set after the branch. */ + int avail_p = oprs_available_p (dest, insn) + && ! JUMP_P (insn); + + /* Record the memory expression (DEST) in the hash table. */ + insert_expr_in_table (dest, GET_MODE (dest), insn, + antic_p, avail_p, table); + } + } +} + +static void +hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED, + struct hash_table *table ATTRIBUTE_UNUSED) +{ + /* Currently nothing to do. */ +} + +static void +hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED, + struct hash_table *table ATTRIBUTE_UNUSED) +{ + /* Currently nothing to do. */ +} + +/* Process INSN and add hash table entries as appropriate. + + Only available expressions that set a single pseudo-reg are recorded. + + Single sets in a PARALLEL could be handled, but it's an extra complication + that isn't dealt with right now. The trick is handling the CLOBBERs that + are also in the PARALLEL. Later. + + If SET_P is nonzero, this is for the assignment hash table, + otherwise it is for the expression hash table. + If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should + not record any expressions. */ + +static void +hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block) +{ + rtx pat = PATTERN (insn); + int i; + + if (in_libcall_block) + return; + + /* Pick out the sets of INSN and for other forms of instructions record + what's been modified. */ + + if (GET_CODE (pat) == SET) + hash_scan_set (pat, insn, table); + else if (GET_CODE (pat) == PARALLEL) + for (i = 0; i < XVECLEN (pat, 0); i++) + { + rtx x = XVECEXP (pat, 0, i); + + if (GET_CODE (x) == SET) + hash_scan_set (x, insn, table); + else if (GET_CODE (x) == CLOBBER) + hash_scan_clobber (x, insn, table); + else if (GET_CODE (x) == CALL) + hash_scan_call (x, insn, table); + } + + else if (GET_CODE (pat) == CLOBBER) + hash_scan_clobber (pat, insn, table); + else if (GET_CODE (pat) == CALL) + hash_scan_call (pat, insn, table); +} + +static void +dump_hash_table (FILE *file, const char *name, struct hash_table *table) +{ + int i; + /* Flattened out table, so it's printed in proper order. */ + struct expr **flat_table; + unsigned int *hash_val; + struct expr *expr; + + flat_table = xcalloc (table->n_elems, sizeof (struct expr *)); + hash_val = xmalloc (table->n_elems * sizeof (unsigned int)); + + for (i = 0; i < (int) table->size; i++) + for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash) + { + flat_table[expr->bitmap_index] = expr; + hash_val[expr->bitmap_index] = i; + } + + fprintf (file, "%s hash table (%d buckets, %d entries)\n", + name, table->size, table->n_elems); + + for (i = 0; i < (int) table->n_elems; i++) + if (flat_table[i] != 0) + { + expr = flat_table[i]; + fprintf (file, "Index %d (hash value %d)\n ", + expr->bitmap_index, hash_val[i]); + print_rtl (file, expr->expr); + fprintf (file, "\n"); + } + + fprintf (file, "\n"); + + free (flat_table); + free (hash_val); +} + +/* Record register first/last/block set information for REGNO in INSN. + + first_set records the first place in the block where the register + is set and is used to compute "anticipatability". + + last_set records the last place in the block where the register + is set and is used to compute "availability". + + last_bb records the block for which first_set and last_set are + valid, as a quick test to invalidate them. + + reg_set_in_block records whether the register is set in the block + and is used to compute "transparency". */ + +static void +record_last_reg_set_info (rtx insn, int regno) +{ + struct reg_avail_info *info = ®_avail_info[regno]; + int cuid = INSN_CUID (insn); + + info->last_set = cuid; + if (info->last_bb != current_bb) + { + info->last_bb = current_bb; + info->first_set = cuid; + SET_BIT (reg_set_in_block[current_bb->index], regno); + } +} + + +/* Record all of the canonicalized MEMs of record_last_mem_set_info's insn. + Note we store a pair of elements in the list, so they have to be + taken off pairwise. */ + +static void +canon_list_insert (rtx dest ATTRIBUTE_UNUSED, rtx unused1 ATTRIBUTE_UNUSED, + void * v_insn) +{ + rtx dest_addr, insn; + int bb; + + while (GET_CODE (dest) == SUBREG + || GET_CODE (dest) == ZERO_EXTRACT + || GET_CODE (dest) == STRICT_LOW_PART) + dest = XEXP (dest, 0); + + /* If DEST is not a MEM, then it will not conflict with a load. Note + that function calls are assumed to clobber memory, but are handled + elsewhere. */ + + if (! MEM_P (dest)) + return; + + dest_addr = get_addr (XEXP (dest, 0)); + dest_addr = canon_rtx (dest_addr); + insn = (rtx) v_insn; + bb = BLOCK_NUM (insn); + + canon_modify_mem_list[bb] = + alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]); + canon_modify_mem_list[bb] = + alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]); +} + +/* Record memory modification information for INSN. We do not actually care + about the memory location(s) that are set, or even how they are set (consider + a CALL_INSN). We merely need to record which insns modify memory. */ + +static void +record_last_mem_set_info (rtx insn) +{ + int bb = BLOCK_NUM (insn); + + /* load_killed_in_block_p will handle the case of calls clobbering + everything. */ + modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]); + bitmap_set_bit (modify_mem_list_set, bb); + + if (CALL_P (insn)) + { + /* Note that traversals of this loop (other than for free-ing) + will break after encountering a CALL_INSN. So, there's no + need to insert a pair of items, as canon_list_insert does. */ + canon_modify_mem_list[bb] = + alloc_INSN_LIST (insn, canon_modify_mem_list[bb]); + bitmap_set_bit (blocks_with_calls, bb); + } + else + note_stores (PATTERN (insn), canon_list_insert, (void*) insn); +} + +/* Called from compute_hash_table via note_stores to handle one + SET or CLOBBER in an insn. DATA is really the instruction in which + the SET is taking place. */ + +static void +record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data) +{ + rtx last_set_insn = (rtx) data; + + if (GET_CODE (dest) == SUBREG) + dest = SUBREG_REG (dest); + + if (REG_P (dest)) + record_last_reg_set_info (last_set_insn, REGNO (dest)); + else if (MEM_P (dest) + /* Ignore pushes, they clobber nothing. */ + && ! push_operand (dest, GET_MODE (dest))) + record_last_mem_set_info (last_set_insn); +} + +/* Top level function to create an expression or assignment hash table. + + Expression entries are placed in the hash table if + - they are of the form (set (pseudo-reg) src), + - src is something we want to perform GCSE on, + - none of the operands are subsequently modified in the block + + Assignment entries are placed in the hash table if + - they are of the form (set (pseudo-reg) src), + - src is something we want to perform const/copy propagation on, + - none of the operands or target are subsequently modified in the block + + Currently src must be a pseudo-reg or a const_int. + + TABLE is the table computed. */ + +static void +compute_hash_table_work (struct hash_table *table) +{ + unsigned int i; + + /* While we compute the hash table we also compute a bit array of which + registers are set in which blocks. + ??? This isn't needed during const/copy propagation, but it's cheap to + compute. Later. */ + sbitmap_vector_zero (reg_set_in_block, last_basic_block); + + /* re-Cache any INSN_LIST nodes we have allocated. */ + clear_modify_mem_tables (); + /* Some working arrays used to track first and last set in each block. */ + reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info)); + + for (i = 0; i < max_gcse_regno; ++i) + reg_avail_info[i].last_bb = NULL; + + FOR_EACH_BB (current_bb) + { + rtx insn; + unsigned int regno; + int in_libcall_block; + + /* First pass over the instructions records information used to + determine when registers and memory are first and last set. + ??? hard-reg reg_set_in_block computation + could be moved to compute_sets since they currently don't change. */ + + FOR_BB_INSNS (current_bb, insn) + { + if (! INSN_P (insn)) + continue; + + if (CALL_P (insn)) + { + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)) + record_last_reg_set_info (insn, regno); + + mark_call (insn); + } + + note_stores (PATTERN (insn), record_last_set_info, insn); + } + + /* Insert implicit sets in the hash table. */ + if (table->set_p + && implicit_sets[current_bb->index] != NULL_RTX) + hash_scan_set (implicit_sets[current_bb->index], + BB_HEAD (current_bb), table); + + /* The next pass builds the hash table. */ + in_libcall_block = 0; + FOR_BB_INSNS (current_bb, insn) + if (INSN_P (insn)) + { + if (find_reg_note (insn, REG_LIBCALL, NULL_RTX)) + in_libcall_block = 1; + else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX)) + in_libcall_block = 0; + hash_scan_insn (insn, table, in_libcall_block); + if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX)) + in_libcall_block = 0; + } + } + + free (reg_avail_info); + reg_avail_info = NULL; +} + +/* Allocate space for the set/expr hash TABLE. + N_INSNS is the number of instructions in the function. + It is used to determine the number of buckets to use. + SET_P determines whether set or expression table will + be created. */ + +static void +alloc_hash_table (int n_insns, struct hash_table *table, int set_p) +{ + int n; + + table->size = n_insns / 4; + if (table->size < 11) + table->size = 11; + + /* Attempt to maintain efficient use of hash table. + Making it an odd number is simplest for now. + ??? Later take some measurements. */ + table->size |= 1; + n = table->size * sizeof (struct expr *); + table->table = gmalloc (n); + table->set_p = set_p; +} + +/* Free things allocated by alloc_hash_table. */ + +static void +free_hash_table (struct hash_table *table) +{ + free (table->table); +} + +/* Compute the hash TABLE for doing copy/const propagation or + expression hash table. */ + +static void +compute_hash_table (struct hash_table *table) +{ + /* Initialize count of number of entries in hash table. */ + table->n_elems = 0; + memset (table->table, 0, table->size * sizeof (struct expr *)); + + compute_hash_table_work (table); +} + +/* Expression tracking support. */ + +/* Lookup REGNO in the set TABLE. The result is a pointer to the + table entry, or NULL if not found. */ + +static struct expr * +lookup_set (unsigned int regno, struct hash_table *table) +{ + unsigned int hash = hash_set (regno, table->size); + struct expr *expr; + + expr = table->table[hash]; + + while (expr && REGNO (SET_DEST (expr->expr)) != regno) + expr = expr->next_same_hash; + + return expr; +} + +/* Return the next entry for REGNO in list EXPR. */ + +static struct expr * +next_set (unsigned int regno, struct expr *expr) +{ + do + expr = expr->next_same_hash; + while (expr && REGNO (SET_DEST (expr->expr)) != regno); + + return expr; +} + +/* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node + types may be mixed. */ + +static void +free_insn_expr_list_list (rtx *listp) +{ + rtx list, next; + + for (list = *listp; list ; list = next) + { + next = XEXP (list, 1); + if (GET_CODE (list) == EXPR_LIST) + free_EXPR_LIST_node (list); + else + free_INSN_LIST_node (list); + } + + *listp = NULL; +} + +/* Clear canon_modify_mem_list and modify_mem_list tables. */ +static void +clear_modify_mem_tables (void) +{ + unsigned i; + bitmap_iterator bi; + + EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi) + { + free_INSN_LIST_list (modify_mem_list + i); + free_insn_expr_list_list (canon_modify_mem_list + i); + } + bitmap_clear (modify_mem_list_set); + bitmap_clear (blocks_with_calls); +} + +/* Release memory used by modify_mem_list_set. */ + +static void +free_modify_mem_tables (void) +{ + clear_modify_mem_tables (); + free (modify_mem_list); + free (canon_modify_mem_list); + modify_mem_list = 0; + canon_modify_mem_list = 0; +} + +/* Reset tables used to keep track of what's still available [since the + start of the block]. */ + +static void +reset_opr_set_tables (void) +{ + /* Maintain a bitmap of which regs have been set since beginning of + the block. */ + CLEAR_REG_SET (reg_set_bitmap); + + /* Also keep a record of the last instruction to modify memory. + For now this is very trivial, we only record whether any memory + location has been modified. */ + clear_modify_mem_tables (); +} + +/* Return nonzero if the operands of X are not set before INSN in + INSN's basic block. */ + +static int +oprs_not_set_p (rtx x, rtx insn) +{ + int i, j; + enum rtx_code code; + const char *fmt; + + if (x == 0) + return 1; + + code = GET_CODE (x); + switch (code) + { + case PC: + case CC0: + case CONST: + case CONST_INT: + case CONST_DOUBLE: + case CONST_VECTOR: + case SYMBOL_REF: + case LABEL_REF: + case ADDR_VEC: + case ADDR_DIFF_VEC: + return 1; + + case MEM: + if (load_killed_in_block_p (BLOCK_FOR_INSN (insn), + INSN_CUID (insn), x, 0)) + return 0; + else + return oprs_not_set_p (XEXP (x, 0), insn); + + case REG: + return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x)); + + default: + break; + } + + for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--) + { + if (fmt[i] == 'e') + { + /* If we are about to do the last recursive call + needed at this level, change it into iteration. + This function is called enough to be worth it. */ + if (i == 0) + return oprs_not_set_p (XEXP (x, i), insn); + + if (! oprs_not_set_p (XEXP (x, i), insn)) + return 0; + } + else if (fmt[i] == 'E') + for (j = 0; j < XVECLEN (x, i); j++) + if (! oprs_not_set_p (XVECEXP (x, i, j), insn)) + return 0; + } + + return 1; +} + +/* Mark things set by a CALL. */ + +static void +mark_call (rtx insn) +{ + if (! CONST_OR_PURE_CALL_P (insn)) + record_last_mem_set_info (insn); +} + +/* Mark things set by a SET. */ + +static void +mark_set (rtx pat, rtx insn) +{ + rtx dest = SET_DEST (pat); + + while (GET_CODE (dest) == SUBREG + || GET_CODE (dest) == ZERO_EXTRACT + || GET_CODE (dest) == STRICT_LOW_PART) + dest = XEXP (dest, 0); + + if (REG_P (dest)) + SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest)); + else if (MEM_P (dest)) + record_last_mem_set_info (insn); + + if (GET_CODE (SET_SRC (pat)) == CALL) + mark_call (insn); +} + +/* Record things set by a CLOBBER. */ + +static void +mark_clobber (rtx pat, rtx insn) +{ + rtx clob = XEXP (pat, 0); + + while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART) + clob = XEXP (clob, 0); + + if (REG_P (clob)) + SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob)); + else + record_last_mem_set_info (insn); +} + +/* Record things set by INSN. + This data is used by oprs_not_set_p. */ + +static void +mark_oprs_set (rtx insn) +{ + rtx pat = PATTERN (insn); + int i; + + if (GET_CODE (pat) == SET) + mark_set (pat, insn); + else if (GET_CODE (pat) == PARALLEL) + for (i = 0; i < XVECLEN (pat, 0); i++) + { + rtx x = XVECEXP (pat, 0, i); + + if (GET_CODE (x) == SET) + mark_set (x, insn); + else if (GET_CODE (x) == CLOBBER) + mark_clobber (x, insn); + else if (GET_CODE (x) == CALL) + mark_call (insn); + } + + else if (GET_CODE (pat) == CLOBBER) + mark_clobber (pat, insn); + else if (GET_CODE (pat) == CALL) + mark_call (insn); +} + + +/* Compute copy/constant propagation working variables. */ + +/* Local properties of assignments. */ +static sbitmap *cprop_pavloc; +static sbitmap *cprop_absaltered; + +/* Global properties of assignments (computed from the local properties). */ +static sbitmap *cprop_avin; +static sbitmap *cprop_avout; + +/* Allocate vars used for copy/const propagation. N_BLOCKS is the number of + basic blocks. N_SETS is the number of sets. */ + +static void +alloc_cprop_mem (int n_blocks, int n_sets) +{ + cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets); + cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets); + + cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets); + cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets); +} + +/* Free vars used by copy/const propagation. */ + +static void +free_cprop_mem (void) +{ + sbitmap_vector_free (cprop_pavloc); + sbitmap_vector_free (cprop_absaltered); + sbitmap_vector_free (cprop_avin); + sbitmap_vector_free (cprop_avout); +} + +/* For each block, compute whether X is transparent. X is either an + expression or an assignment [though we don't care which, for this context + an assignment is treated as an expression]. For each block where an + element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX + bit in BMAP. */ + +static void +compute_transp (rtx x, int indx, sbitmap *bmap, int set_p) +{ + int i, j; + basic_block bb; + enum rtx_code code; + reg_set *r; + const char *fmt; + + /* repeat is used to turn tail-recursion into iteration since GCC + can't do it when there's no return value. */ + repeat: + + if (x == 0) + return; + + code = GET_CODE (x); + switch (code) + { + case REG: + if (set_p) + { + if (REGNO (x) < FIRST_PSEUDO_REGISTER) + { + FOR_EACH_BB (bb) + if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x))) + SET_BIT (bmap[bb->index], indx); + } + else + { + for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next) + SET_BIT (bmap[r->bb_index], indx); + } + } + else + { + if (REGNO (x) < FIRST_PSEUDO_REGISTER) + { + FOR_EACH_BB (bb) + if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x))) + RESET_BIT (bmap[bb->index], indx); + } + else + { + for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next) + RESET_BIT (bmap[r->bb_index], indx); + } + } + + return; + + case MEM: + if (! MEM_READONLY_P (x)) + { + bitmap_iterator bi; + unsigned bb_index; + + /* First handle all the blocks with calls. We don't need to + do any list walking for them. */ + EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi) + { + if (set_p) + SET_BIT (bmap[bb_index], indx); + else + RESET_BIT (bmap[bb_index], indx); + } + + /* Now iterate over the blocks which have memory modifications + but which do not have any calls. */ + EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set, + blocks_with_calls, + 0, bb_index, bi) + { + rtx list_entry = canon_modify_mem_list[bb_index]; + + while (list_entry) + { + rtx dest, dest_addr; + + /* LIST_ENTRY must be an INSN of some kind that sets memory. + Examine each hunk of memory that is modified. */ + + dest = XEXP (list_entry, 0); + list_entry = XEXP (list_entry, 1); + dest_addr = XEXP (list_entry, 0); + + if (canon_true_dependence (dest, GET_MODE (dest), dest_addr, + x, rtx_addr_varies_p)) + { + if (set_p) + SET_BIT (bmap[bb_index], indx); + else + RESET_BIT (bmap[bb_index], indx); + break; + } + list_entry = XEXP (list_entry, 1); + } + } + } + + x = XEXP (x, 0); + goto repeat; + + case PC: + case CC0: /*FIXME*/ + case CONST: + case CONST_INT: + case CONST_DOUBLE: + case CONST_VECTOR: + case SYMBOL_REF: + case LABEL_REF: + case ADDR_VEC: + case ADDR_DIFF_VEC: + return; + + default: + break; + } + + for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--) + { + if (fmt[i] == 'e') + { + /* If we are about to do the last recursive call + needed at this level, change it into iteration. + This function is called enough to be worth it. */ + if (i == 0) + { + x = XEXP (x, i); + goto repeat; + } + + compute_transp (XEXP (x, i), indx, bmap, set_p); + } + else if (fmt[i] == 'E') + for (j = 0; j < XVECLEN (x, i); j++) + compute_transp (XVECEXP (x, i, j), indx, bmap, set_p); + } +} + +/* Top level routine to do the dataflow analysis needed by copy/const + propagation. */ + +static void +compute_cprop_data (void) +{ + compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table); + compute_available (cprop_pavloc, cprop_absaltered, + cprop_avout, cprop_avin); +} + +/* Copy/constant propagation. */ + +/* Maximum number of register uses in an insn that we handle. */ +#define MAX_USES 8 + +/* Table of uses found in an insn. + Allocated statically to avoid alloc/free complexity and overhead. */ +static struct reg_use reg_use_table[MAX_USES]; + +/* Index into `reg_use_table' while building it. */ +static int reg_use_count; + +/* Set up a list of register numbers used in INSN. The found uses are stored + in `reg_use_table'. `reg_use_count' is initialized to zero before entry, + and contains the number of uses in the table upon exit. + + ??? If a register appears multiple times we will record it multiple times. + This doesn't hurt anything but it will slow things down. */ + +static void +find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED) +{ + int i, j; + enum rtx_code code; + const char *fmt; + rtx x = *xptr; + + /* repeat is used to turn tail-recursion into iteration since GCC + can't do it when there's no return value. */ + repeat: + if (x == 0) + return; + + code = GET_CODE (x); + if (REG_P (x)) + { + if (reg_use_count == MAX_USES) + return; + + reg_use_table[reg_use_count].reg_rtx = x; + reg_use_count++; + } + + /* Recursively scan the operands of this expression. */ + + for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--) + { + if (fmt[i] == 'e') + { + /* If we are about to do the last recursive call + needed at this level, change it into iteration. + This function is called enough to be worth it. */ + if (i == 0) + { + x = XEXP (x, 0); + goto repeat; + } + + find_used_regs (&XEXP (x, i), data); + } + else if (fmt[i] == 'E') + for (j = 0; j < XVECLEN (x, i); j++) + find_used_regs (&XVECEXP (x, i, j), data); + } +} + +/* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO. + Returns nonzero is successful. */ + +static int +try_replace_reg (rtx from, rtx to, rtx insn) +{ + rtx note = find_reg_equal_equiv_note (insn); + rtx src = 0; + int success = 0; + rtx set = single_set (insn); + + validate_replace_src_group (from, to, insn); + if (num_changes_pending () && apply_change_group ()) + success = 1; + + /* Try to simplify SET_SRC if we have substituted a constant. */ + if (success && set && CONSTANT_P (to)) + { + src = simplify_rtx (SET_SRC (set)); + + if (src) + validate_change (insn, &SET_SRC (set), src, 0); + } + + /* If there is already a REG_EQUAL note, update the expression in it + with our replacement. */ + if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL) + XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to); + + if (!success && set && reg_mentioned_p (from, SET_SRC (set))) + { + /* If above failed and this is a single set, try to simplify the source of + the set given our substitution. We could perhaps try this for multiple + SETs, but it probably won't buy us anything. */ + src = simplify_replace_rtx (SET_SRC (set), from, to); + + if (!rtx_equal_p (src, SET_SRC (set)) + && validate_change (insn, &SET_SRC (set), src, 0)) + success = 1; + + /* If we've failed to do replacement, have a single SET, don't already + have a note, and have no special SET, add a REG_EQUAL note to not + lose information. */ + if (!success && note == 0 && set != 0 + && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT + && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART) + note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src)); + } + + /* REG_EQUAL may get simplified into register. + We don't allow that. Remove that note. This code ought + not to happen, because previous code ought to synthesize + reg-reg move, but be on the safe side. */ + if (note && REG_NOTE_KIND (note) == REG_EQUAL && REG_P (XEXP (note, 0))) + remove_note (insn, note); + + return success; +} + +/* Find a set of REGNOs that are available on entry to INSN's block. Returns + NULL no such set is found. */ + +static struct expr * +find_avail_set (int regno, rtx insn) +{ + /* SET1 contains the last set found that can be returned to the caller for + use in a substitution. */ + struct expr *set1 = 0; + + /* Loops are not possible here. To get a loop we would need two sets + available at the start of the block containing INSN. i.e. we would + need two sets like this available at the start of the block: + + (set (reg X) (reg Y)) + (set (reg Y) (reg X)) + + This can not happen since the set of (reg Y) would have killed the + set of (reg X) making it unavailable at the start of this block. */ + while (1) + { + rtx src; + struct expr *set = lookup_set (regno, &set_hash_table); + + /* Find a set that is available at the start of the block + which contains INSN. */ + while (set) + { + if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index)) + break; + set = next_set (regno, set); + } + + /* If no available set was found we've reached the end of the + (possibly empty) copy chain. */ + if (set == 0) + break; + + gcc_assert (GET_CODE (set->expr) == SET); + + src = SET_SRC (set->expr); + + /* We know the set is available. + Now check that SRC is ANTLOC (i.e. none of the source operands + have changed since the start of the block). + + If the source operand changed, we may still use it for the next + iteration of this loop, but we may not use it for substitutions. */ + + if (gcse_constant_p (src) || oprs_not_set_p (src, insn)) + set1 = set; + + /* If the source of the set is anything except a register, then + we have reached the end of the copy chain. */ + if (! REG_P (src)) + break; + + /* Follow the copy chain, i.e. start another iteration of the loop + and see if we have an available copy into SRC. */ + regno = REGNO (src); + } + + /* SET1 holds the last set that was available and anticipatable at + INSN. */ + return set1; +} + +/* Subroutine of cprop_insn that tries to propagate constants into + JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL + it is the instruction that immediately precedes JUMP, and must be a + single SET of a register. FROM is what we will try to replace, + SRC is the constant we will try to substitute for it. Returns nonzero + if a change was made. */ + +static int +cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src) +{ + rtx new, set_src, note_src; + rtx set = pc_set (jump); + rtx note = find_reg_equal_equiv_note (jump); + + if (note) + { + note_src = XEXP (note, 0); + if (GET_CODE (note_src) == EXPR_LIST) + note_src = NULL_RTX; + } + else note_src = NULL_RTX; + + /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */ + set_src = note_src ? note_src : SET_SRC (set); + + /* First substitute the SETCC condition into the JUMP instruction, + then substitute that given values into this expanded JUMP. */ + if (setcc != NULL_RTX + && !modified_between_p (from, setcc, jump) + && !modified_between_p (src, setcc, jump)) + { + rtx setcc_src; + rtx setcc_set = single_set (setcc); + rtx setcc_note = find_reg_equal_equiv_note (setcc); + setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST) + ? XEXP (setcc_note, 0) : SET_SRC (setcc_set); + set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set), + setcc_src); + } + else + setcc = NULL_RTX; + + new = simplify_replace_rtx (set_src, from, src); + + /* If no simplification can be made, then try the next register. */ + if (rtx_equal_p (new, SET_SRC (set))) + return 0; + + /* If this is now a no-op delete it, otherwise this must be a valid insn. */ + if (new == pc_rtx) + delete_insn (jump); + else + { + /* Ensure the value computed inside the jump insn to be equivalent + to one computed by setcc. */ + if (setcc && modified_in_p (new, setcc)) + return 0; + if (! validate_change (jump, &SET_SRC (set), new, 0)) + { + /* When (some) constants are not valid in a comparison, and there + are two registers to be replaced by constants before the entire + comparison can be folded into a constant, we need to keep + intermediate information in REG_EQUAL notes. For targets with + separate compare insns, such notes are added by try_replace_reg. + When we have a combined compare-and-branch instruction, however, + we need to attach a note to the branch itself to make this + optimization work. */ + + if (!rtx_equal_p (new, note_src)) + set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new)); + return 0; + } + + /* Remove REG_EQUAL note after simplification. */ + if (note_src) + remove_note (jump, note); + + /* If this has turned into an unconditional jump, + then put a barrier after it so that the unreachable + code will be deleted. */ + if (GET_CODE (SET_SRC (set)) == LABEL_REF) + emit_barrier_after (jump); + } + +#ifdef HAVE_cc0 + /* Delete the cc0 setter. */ + if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc)))) + delete_insn (setcc); +#endif + + run_jump_opt_after_gcse = 1; + + global_const_prop_count++; + if (dump_file != NULL) + { + fprintf (dump_file, + "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ", + REGNO (from), INSN_UID (jump)); + print_rtl (dump_file, src); + fprintf (dump_file, "\n"); + } + purge_dead_edges (bb); + + return 1; +} + +static bool +constprop_register (rtx insn, rtx from, rtx to, bool alter_jumps) +{ + rtx sset; + + /* Check for reg or cc0 setting instructions followed by + conditional branch instructions first. */ + if (alter_jumps + && (sset = single_set (insn)) != NULL + && NEXT_INSN (insn) + && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn))) + { + rtx dest = SET_DEST (sset); + if ((REG_P (dest) || CC0_P (dest)) + && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to)) + return 1; + } + + /* Handle normal insns next. */ + if (NONJUMP_INSN_P (insn) + && try_replace_reg (from, to, insn)) + return 1; + + /* Try to propagate a CONST_INT into a conditional jump. + We're pretty specific about what we will handle in this + code, we can extend this as necessary over time. + + Right now the insn in question must look like + (set (pc) (if_then_else ...)) */ + else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn)) + return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to); + return 0; +} + +/* Perform constant and copy propagation on INSN. + The result is nonzero if a change was made. */ + +static int +cprop_insn (rtx insn, int alter_jumps) +{ + struct reg_use *reg_used; + int changed = 0; + rtx note; + + if (!INSN_P (insn)) + return 0; + + reg_use_count = 0; + note_uses (&PATTERN (insn), find_used_regs, NULL); + + note = find_reg_equal_equiv_note (insn); + + /* We may win even when propagating constants into notes. */ + if (note) + find_used_regs (&XEXP (note, 0), NULL); + + for (reg_used = ®_use_table[0]; reg_use_count > 0; + reg_used++, reg_use_count--) + { + unsigned int regno = REGNO (reg_used->reg_rtx); + rtx pat, src; + struct expr *set; + + /* Ignore registers created by GCSE. + We do this because ... */ + if (regno >= max_gcse_regno) + continue; + + /* If the register has already been set in this block, there's + nothing we can do. */ + if (! oprs_not_set_p (reg_used->reg_rtx, insn)) + continue; + + /* Find an assignment that sets reg_used and is available + at the start of the block. */ + set = find_avail_set (regno, insn); + if (! set) + continue; + + pat = set->expr; + /* ??? We might be able to handle PARALLELs. Later. */ + gcc_assert (GET_CODE (pat) == SET); + + src = SET_SRC (pat); + + /* Constant propagation. */ + if (gcse_constant_p (src)) + { + if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps)) + { + changed = 1; + global_const_prop_count++; + if (dump_file != NULL) + { + fprintf (dump_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno); + fprintf (dump_file, "insn %d with constant ", INSN_UID (insn)); + print_rtl (dump_file, src); + fprintf (dump_file, "\n"); + } + if (INSN_DELETED_P (insn)) + return 1; + } + } + else if (REG_P (src) + && REGNO (src) >= FIRST_PSEUDO_REGISTER + && REGNO (src) != regno) + { + if (try_replace_reg (reg_used->reg_rtx, src, insn)) + { + changed = 1; + global_copy_prop_count++; + if (dump_file != NULL) + { + fprintf (dump_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d", + regno, INSN_UID (insn)); + fprintf (dump_file, " with reg %d\n", REGNO (src)); + } + + /* The original insn setting reg_used may or may not now be + deletable. We leave the deletion to flow. */ + /* FIXME: If it turns out that the insn isn't deletable, + then we may have unnecessarily extended register lifetimes + and made things worse. */ + } + } + } + + return changed; +} + +/* Like find_used_regs, but avoid recording uses that appear in + input-output contexts such as zero_extract or pre_dec. This + restricts the cases we consider to those for which local cprop + can legitimately make replacements. */ + +static void +local_cprop_find_used_regs (rtx *xptr, void *data) +{ + rtx x = *xptr; + + if (x == 0) + return; + + switch (GET_CODE (x)) + { + case ZERO_EXTRACT: + case SIGN_EXTRACT: + case STRICT_LOW_PART: + return; + + case PRE_DEC: + case PRE_INC: + case POST_DEC: + case POST_INC: + case PRE_MODIFY: + case POST_MODIFY: + /* Can only legitimately appear this early in the context of + stack pushes for function arguments, but handle all of the + codes nonetheless. */ + return; + + case SUBREG: + /* Setting a subreg of a register larger than word_mode leaves + the non-written words unchanged. */ + if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD) + return; + break; + + default: + break; + } + + find_used_regs (xptr, data); +} + +/* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall; + their REG_EQUAL notes need updating. */ + +static bool +do_local_cprop (rtx x, rtx insn, bool alter_jumps, rtx *libcall_sp) +{ + rtx newreg = NULL, newcnst = NULL; + + /* Rule out USE instructions and ASM statements as we don't want to + change the hard registers mentioned. */ + if (REG_P (x) + && (REGNO (x) >= FIRST_PSEUDO_REGISTER + || (GET_CODE (PATTERN (insn)) != USE + && asm_noperands (PATTERN (insn)) < 0))) + { + cselib_val *val = cselib_lookup (x, GET_MODE (x), 0); + struct elt_loc_list *l; + + if (!val) + return false; + for (l = val->locs; l; l = l->next) + { + rtx this_rtx = l->loc; + rtx note; + + /* Don't CSE non-constant values out of libcall blocks. */ + if (l->in_libcall && ! CONSTANT_P (this_rtx)) + continue; + + if (gcse_constant_p (this_rtx)) + newcnst = this_rtx; + if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER + /* Don't copy propagate if it has attached REG_EQUIV note. + At this point this only function parameters should have + REG_EQUIV notes and if the argument slot is used somewhere + explicitly, it means address of parameter has been taken, + so we should not extend the lifetime of the pseudo. */ + && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX)) + || ! MEM_P (XEXP (note, 0)))) + newreg = this_rtx; + } + if (newcnst && constprop_register (insn, x, newcnst, alter_jumps)) + { + /* If we find a case where we can't fix the retval REG_EQUAL notes + match the new register, we either have to abandon this replacement + or fix delete_trivially_dead_insns to preserve the setting insn, + or make it delete the REG_EUAQL note, and fix up all passes that + require the REG_EQUAL note there. */ + bool adjusted; + + adjusted = adjust_libcall_notes (x, newcnst, insn, libcall_sp); + gcc_assert (adjusted); + + if (dump_file != NULL) + { + fprintf (dump_file, "LOCAL CONST-PROP: Replacing reg %d in ", + REGNO (x)); + fprintf (dump_file, "insn %d with constant ", + INSN_UID (insn)); + print_rtl (dump_file, newcnst); + fprintf (dump_file, "\n"); + } + local_const_prop_count++; + return true; + } + else if (newreg && newreg != x && try_replace_reg (x, newreg, insn)) + { + adjust_libcall_notes (x, newreg, insn, libcall_sp); + if (dump_file != NULL) + { + fprintf (dump_file, + "LOCAL COPY-PROP: Replacing reg %d in insn %d", + REGNO (x), INSN_UID (insn)); + fprintf (dump_file, " with reg %d\n", REGNO (newreg)); + } + local_copy_prop_count++; + return true; + } + } + return false; +} + +/* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall; + their REG_EQUAL notes need updating to reflect that OLDREG has been + replaced with NEWVAL in INSN. Return true if all substitutions could + be made. */ +static bool +adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp) +{ + rtx end; + + while ((end = *libcall_sp++)) + { + rtx note = find_reg_equal_equiv_note (end); + + if (! note) + continue; + + if (REG_P (newval)) + { + if (reg_set_between_p (newval, PREV_INSN (insn), end)) + { + do + { + note = find_reg_equal_equiv_note (end); + if (! note) + continue; + if (reg_mentioned_p (newval, XEXP (note, 0))) + return false; + } + while ((end = *libcall_sp++)); + return true; + } + } + XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), oldreg, newval); + insn = end; + } + return true; +} + +#define MAX_NESTED_LIBCALLS 9 + +/* Do local const/copy propagation (i.e. within each basic block). + If ALTER_JUMPS is true, allow propagating into jump insns, which + could modify the CFG. */ + +static void +local_cprop_pass (bool alter_jumps) +{ + basic_block bb; + rtx insn; + struct reg_use *reg_used; + rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp; + bool changed = false; + + cselib_init (false); + libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS]; + *libcall_sp = 0; + FOR_EACH_BB (bb) + { + FOR_BB_INSNS (bb, insn) + { + if (INSN_P (insn)) + { + rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX); + + if (note) + { + gcc_assert (libcall_sp != libcall_stack); + *--libcall_sp = XEXP (note, 0); + } + note = find_reg_note (insn, REG_RETVAL, NULL_RTX); + if (note) + libcall_sp++; + note = find_reg_equal_equiv_note (insn); + do + { + reg_use_count = 0; + note_uses (&PATTERN (insn), local_cprop_find_used_regs, + NULL); + if (note) + local_cprop_find_used_regs (&XEXP (note, 0), NULL); + + for (reg_used = ®_use_table[0]; reg_use_count > 0; + reg_used++, reg_use_count--) + if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps, + libcall_sp)) + { + changed = true; + break; + } + if (INSN_DELETED_P (insn)) + break; + } + while (reg_use_count); + } + cselib_process_insn (insn); + } + + /* Forget everything at the end of a basic block. Make sure we are + not inside a libcall, they should never cross basic blocks. */ + cselib_clear_table (); + gcc_assert (libcall_sp == &libcall_stack[MAX_NESTED_LIBCALLS]); + } + + cselib_finish (); + + /* Global analysis may get into infinite loops for unreachable blocks. */ + if (changed && alter_jumps) + { + delete_unreachable_blocks (); + free_reg_set_mem (); + alloc_reg_set_mem (max_reg_num ()); + compute_sets (); + } +} + +/* Forward propagate copies. This includes copies and constants. Return + nonzero if a change was made. */ + +static int +cprop (int alter_jumps) +{ + int changed; + basic_block bb; + rtx insn; + + /* Note we start at block 1. */ + if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR) + { + if (dump_file != NULL) + fprintf (dump_file, "\n"); + return 0; + } + + changed = 0; + FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb) + { + /* Reset tables used to keep track of what's still valid [since the + start of the block]. */ + reset_opr_set_tables (); + + FOR_BB_INSNS (bb, insn) + if (INSN_P (insn)) + { + changed |= cprop_insn (insn, alter_jumps); + + /* Keep track of everything modified by this insn. */ + /* ??? Need to be careful w.r.t. mods done to INSN. Don't + call mark_oprs_set if we turned the insn into a NOTE. */ + if (! NOTE_P (insn)) + mark_oprs_set (insn); + } + } + + if (dump_file != NULL) + fprintf (dump_file, "\n"); + + return changed; +} + +/* Similar to get_condition, only the resulting condition must be + valid at JUMP, instead of at EARLIEST. + + This differs from noce_get_condition in ifcvt.c in that we prefer not to + settle for the condition variable in the jump instruction being integral. + We prefer to be able to record the value of a user variable, rather than + the value of a temporary used in a condition. This could be solved by + recording the value of *every* register scanned by canonicalize_condition, + but this would require some code reorganization. */ + +rtx +fis_get_condition (rtx jump) +{ + return get_condition (jump, NULL, false, true); +} + +/* Check the comparison COND to see if we can safely form an implicit set from + it. COND is either an EQ or NE comparison. */ + +static bool +implicit_set_cond_p (rtx cond) +{ + enum machine_mode mode = GET_MODE (XEXP (cond, 0)); + rtx cst = XEXP (cond, 1); + + /* We can't perform this optimization if either operand might be or might + contain a signed zero. */ + if (HONOR_SIGNED_ZEROS (mode)) + { + /* It is sufficient to check if CST is or contains a zero. We must + handle float, complex, and vector. If any subpart is a zero, then + the optimization can't be performed. */ + /* ??? The complex and vector checks are not implemented yet. We just + always return zero for them. */ + if (GET_CODE (cst) == CONST_DOUBLE) + { + REAL_VALUE_TYPE d; + REAL_VALUE_FROM_CONST_DOUBLE (d, cst); + if (REAL_VALUES_EQUAL (d, dconst0)) + return 0; + } + else + return 0; + } + + return gcse_constant_p (cst); +} + +/* Find the implicit sets of a function. An "implicit set" is a constraint + on the value of a variable, implied by a conditional jump. For example, + following "if (x == 2)", the then branch may be optimized as though the + conditional performed an "explicit set", in this example, "x = 2". This + function records the set patterns that are implicit at the start of each + basic block. */ + +static void +find_implicit_sets (void) +{ + basic_block bb, dest; + unsigned int count; + rtx cond, new; + + count = 0; + FOR_EACH_BB (bb) + /* Check for more than one successor. */ + if (EDGE_COUNT (bb->succs) > 1) + { + cond = fis_get_condition (BB_END (bb)); + + if (cond + && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE) + && REG_P (XEXP (cond, 0)) + && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER + && implicit_set_cond_p (cond)) + { + dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest + : FALLTHRU_EDGE (bb)->dest; + + if (dest && single_pred_p (dest) + && dest != EXIT_BLOCK_PTR) + { + new = gen_rtx_SET (VOIDmode, XEXP (cond, 0), + XEXP (cond, 1)); + implicit_sets[dest->index] = new; + if (dump_file) + { + fprintf(dump_file, "Implicit set of reg %d in ", + REGNO (XEXP (cond, 0))); + fprintf(dump_file, "basic block %d\n", dest->index); + } + count++; + } + } + } + + if (dump_file) + fprintf (dump_file, "Found %d implicit sets\n", count); +} + +/* Perform one copy/constant propagation pass. + PASS is the pass count. If CPROP_JUMPS is true, perform constant + propagation into conditional jumps. If BYPASS_JUMPS is true, + perform conditional jump bypassing optimizations. */ + +static int +one_cprop_pass (int pass, bool cprop_jumps, bool bypass_jumps) +{ + int changed = 0; + + global_const_prop_count = local_const_prop_count = 0; + global_copy_prop_count = local_copy_prop_count = 0; + + local_cprop_pass (cprop_jumps); + + /* Determine implicit sets. */ + implicit_sets = XCNEWVEC (rtx, last_basic_block); + find_implicit_sets (); + + alloc_hash_table (max_cuid, &set_hash_table, 1); + compute_hash_table (&set_hash_table); + + /* Free implicit_sets before peak usage. */ + free (implicit_sets); + implicit_sets = NULL; + + if (dump_file) + dump_hash_table (dump_file, "SET", &set_hash_table); + if (set_hash_table.n_elems > 0) + { + alloc_cprop_mem (last_basic_block, set_hash_table.n_elems); + compute_cprop_data (); + changed = cprop (cprop_jumps); + if (bypass_jumps) + changed |= bypass_conditional_jumps (); + free_cprop_mem (); + } + + free_hash_table (&set_hash_table); + + if (dump_file) + { + fprintf (dump_file, "CPROP of %s, pass %d: %d bytes needed, ", + current_function_name (), pass, bytes_used); + fprintf (dump_file, "%d local const props, %d local copy props, ", + local_const_prop_count, local_copy_prop_count); + fprintf (dump_file, "%d global const props, %d global copy props\n\n", + global_const_prop_count, global_copy_prop_count); + } + /* Global analysis may get into infinite loops for unreachable blocks. */ + if (changed && cprop_jumps) + delete_unreachable_blocks (); + + return changed; +} + +/* Bypass conditional jumps. */ + +/* The value of last_basic_block at the beginning of the jump_bypass + pass. The use of redirect_edge_and_branch_force may introduce new + basic blocks, but the data flow analysis is only valid for basic + block indices less than bypass_last_basic_block. */ + +static int bypass_last_basic_block; + +/* Find a set of REGNO to a constant that is available at the end of basic + block BB. Returns NULL if no such set is found. Based heavily upon + find_avail_set. */ + +static struct expr * +find_bypass_set (int regno, int bb) +{ + struct expr *result = 0; + + for (;;) + { + rtx src; + struct expr *set = lookup_set (regno, &set_hash_table); + + while (set) + { + if (TEST_BIT (cprop_avout[bb], set->bitmap_index)) + break; + set = next_set (regno, set); + } + + if (set == 0) + break; + + gcc_assert (GET_CODE (set->expr) == SET); + + src = SET_SRC (set->expr); + if (gcse_constant_p (src)) + result = set; + + if (! REG_P (src)) + break; + + regno = REGNO (src); + } + return result; +} + + +/* Subroutine of bypass_block that checks whether a pseudo is killed by + any of the instructions inserted on an edge. Jump bypassing places + condition code setters on CFG edges using insert_insn_on_edge. This + function is required to check that our data flow analysis is still + valid prior to commit_edge_insertions. */ + +static bool +reg_killed_on_edge (rtx reg, edge e) +{ + rtx insn; + + for (insn = e->insns.r; insn; insn = NEXT_INSN (insn)) + if (INSN_P (insn) && reg_set_p (reg, insn)) + return true; + + return false; +} + +/* Subroutine of bypass_conditional_jumps that attempts to bypass the given + basic block BB which has more than one predecessor. If not NULL, SETCC + is the first instruction of BB, which is immediately followed by JUMP_INSN + JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB. + Returns nonzero if a change was made. + + During the jump bypassing pass, we may place copies of SETCC instructions + on CFG edges. The following routine must be careful to pay attention to + these inserted insns when performing its transformations. */ + +static int +bypass_block (basic_block bb, rtx setcc, rtx jump) +{ + rtx insn, note; + edge e, edest; + int i, change; + int may_be_loop_header; + unsigned removed_p; + edge_iterator ei; + + insn = (setcc != NULL) ? setcc : jump; + + /* Determine set of register uses in INSN. */ + reg_use_count = 0; + note_uses (&PATTERN (insn), find_used_regs, NULL); + note = find_reg_equal_equiv_note (insn); + if (note) + find_used_regs (&XEXP (note, 0), NULL); + + may_be_loop_header = false; + FOR_EACH_EDGE (e, ei, bb->preds) + if (e->flags & EDGE_DFS_BACK) + { + may_be_loop_header = true; + break; + } + + change = 0; + for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); ) + { + removed_p = 0; + + if (e->flags & EDGE_COMPLEX) + { + ei_next (&ei); + continue; + } + + /* We can't redirect edges from new basic blocks. */ + if (e->src->index >= bypass_last_basic_block) + { + ei_next (&ei); + continue; + } + + /* The irreducible loops created by redirecting of edges entering the + loop from outside would decrease effectiveness of some of the following + optimizations, so prevent this. */ + if (may_be_loop_header + && !(e->flags & EDGE_DFS_BACK)) + { + ei_next (&ei); + continue; + } + + for (i = 0; i < reg_use_count; i++) + { + struct reg_use *reg_used = ®_use_table[i]; + unsigned int regno = REGNO (reg_used->reg_rtx); + basic_block dest, old_dest; + struct expr *set; + rtx src, new; + + if (regno >= max_gcse_regno) + continue; + + set = find_bypass_set (regno, e->src->index); + + if (! set) + continue; + + /* Check the data flow is valid after edge insertions. */ + if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e)) + continue; + + src = SET_SRC (pc_set (jump)); + + if (setcc != NULL) + src = simplify_replace_rtx (src, + SET_DEST (PATTERN (setcc)), + SET_SRC (PATTERN (setcc))); + + new = simplify_replace_rtx (src, reg_used->reg_rtx, + SET_SRC (set->expr)); + + /* Jump bypassing may have already placed instructions on + edges of the CFG. We can't bypass an outgoing edge that + has instructions associated with it, as these insns won't + get executed if the incoming edge is redirected. */ + + if (new == pc_rtx) + { + edest = FALLTHRU_EDGE (bb); + dest = edest->insns.r ? NULL : edest->dest; + } + else if (GET_CODE (new) == LABEL_REF) + { + dest = BLOCK_FOR_INSN (XEXP (new, 0)); + /* Don't bypass edges containing instructions. */ + edest = find_edge (bb, dest); + if (edest && edest->insns.r) + dest = NULL; + } + else + dest = NULL; + + /* Avoid unification of the edge with other edges from original + branch. We would end up emitting the instruction on "both" + edges. */ + + if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc))) + && find_edge (e->src, dest)) + dest = NULL; + + old_dest = e->dest; + if (dest != NULL + && dest != old_dest + && dest != EXIT_BLOCK_PTR) + { + redirect_edge_and_branch_force (e, dest); + + /* Copy the register setter to the redirected edge. + Don't copy CC0 setters, as CC0 is dead after jump. */ + if (setcc) + { + rtx pat = PATTERN (setcc); + if (!CC0_P (SET_DEST (pat))) + insert_insn_on_edge (copy_insn (pat), e); + } + + if (dump_file != NULL) + { + fprintf (dump_file, "JUMP-BYPASS: Proved reg %d " + "in jump_insn %d equals constant ", + regno, INSN_UID (jump)); + print_rtl (dump_file, SET_SRC (set->expr)); + fprintf (dump_file, "\nBypass edge from %d->%d to %d\n", + e->src->index, old_dest->index, dest->index); + } + change = 1; + removed_p = 1; + break; + } + } + if (!removed_p) + ei_next (&ei); + } + return change; +} + +/* Find basic blocks with more than one predecessor that only contain a + single conditional jump. If the result of the comparison is known at + compile-time from any incoming edge, redirect that edge to the + appropriate target. Returns nonzero if a change was made. + + This function is now mis-named, because we also handle indirect jumps. */ + +static int +bypass_conditional_jumps (void) +{ + basic_block bb; + int changed; + rtx setcc; + rtx insn; + rtx dest; + + /* Note we start at block 1. */ + if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR) + return 0; + + bypass_last_basic_block = last_basic_block; + mark_dfs_back_edges (); + + changed = 0; + FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, + EXIT_BLOCK_PTR, next_bb) + { + /* Check for more than one predecessor. */ + if (!single_pred_p (bb)) + { + setcc = NULL_RTX; + FOR_BB_INSNS (bb, insn) + if (NONJUMP_INSN_P (insn)) + { + if (setcc) + break; + if (GET_CODE (PATTERN (insn)) != SET) + break; + + dest = SET_DEST (PATTERN (insn)); + if (REG_P (dest) || CC0_P (dest)) + setcc = insn; + else + break; + } + else if (JUMP_P (insn)) + { + if ((any_condjump_p (insn) || computed_jump_p (insn)) + && onlyjump_p (insn)) + changed |= bypass_block (bb, setcc, insn); + break; + } + else if (INSN_P (insn)) + break; + } + } + + /* If we bypassed any register setting insns, we inserted a + copy on the redirected edge. These need to be committed. */ + if (changed) + commit_edge_insertions(); + + return changed; +} + +/* Compute PRE+LCM working variables. */ + +/* Local properties of expressions. */ +/* Nonzero for expressions that are transparent in the block. */ +static sbitmap *transp; + +/* Nonzero for expressions that are transparent at the end of the block. + This is only zero for expressions killed by abnormal critical edge + created by a calls. */ +static sbitmap *transpout; + +/* Nonzero for expressions that are computed (available) in the block. */ +static sbitmap *comp; + +/* Nonzero for expressions that are locally anticipatable in the block. */ +static sbitmap *antloc; + +/* Nonzero for expressions where this block is an optimal computation + point. */ +static sbitmap *pre_optimal; + +/* Nonzero for expressions which are redundant in a particular block. */ +static sbitmap *pre_redundant; + +/* Nonzero for expressions which should be inserted on a specific edge. */ +static sbitmap *pre_insert_map; + +/* Nonzero for expressions which should be deleted in a specific block. */ +static sbitmap *pre_delete_map; + +/* Contains the edge_list returned by pre_edge_lcm. */ +static struct edge_list *edge_list; + +/* Redundant insns. */ +static sbitmap pre_redundant_insns; + +/* Allocate vars used for PRE analysis. */ + +static void +alloc_pre_mem (int n_blocks, int n_exprs) +{ + transp = sbitmap_vector_alloc (n_blocks, n_exprs); + comp = sbitmap_vector_alloc (n_blocks, n_exprs); + antloc = sbitmap_vector_alloc (n_blocks, n_exprs); + + pre_optimal = NULL; + pre_redundant = NULL; + pre_insert_map = NULL; + pre_delete_map = NULL; + ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs); + + /* pre_insert and pre_delete are allocated later. */ +} + +/* Free vars used for PRE analysis. */ + +static void +free_pre_mem (void) +{ + sbitmap_vector_free (transp); + sbitmap_vector_free (comp); + + /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */ + + if (pre_optimal) + sbitmap_vector_free (pre_optimal); + if (pre_redundant) + sbitmap_vector_free (pre_redundant); + if (pre_insert_map) + sbitmap_vector_free (pre_insert_map); + if (pre_delete_map) + sbitmap_vector_free (pre_delete_map); + + transp = comp = NULL; + pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL; +} + +/* Top level routine to do the dataflow analysis needed by PRE. */ + +static void +compute_pre_data (void) +{ + sbitmap trapping_expr; + basic_block bb; + unsigned int ui; + + compute_local_properties (transp, comp, antloc, &expr_hash_table); + sbitmap_vector_zero (ae_kill, last_basic_block); + + /* Collect expressions which might trap. */ + trapping_expr = sbitmap_alloc (expr_hash_table.n_elems); + sbitmap_zero (trapping_expr); + for (ui = 0; ui < expr_hash_table.size; ui++) + { + struct expr *e; + for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash) + if (may_trap_p (e->expr)) + SET_BIT (trapping_expr, e->bitmap_index); + } + + /* Compute ae_kill for each basic block using: + + ~(TRANSP | COMP) + */ + + FOR_EACH_BB (bb) + { + edge e; + edge_iterator ei; + + /* If the current block is the destination of an abnormal edge, we + kill all trapping expressions because we won't be able to properly + place the instruction on the edge. So make them neither + anticipatable nor transparent. This is fairly conservative. */ + FOR_EACH_EDGE (e, ei, bb->preds) + if (e->flags & EDGE_ABNORMAL) + { + sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr); + sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr); + break; + } + + sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]); + sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]); + } + + edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc, + ae_kill, &pre_insert_map, &pre_delete_map); + sbitmap_vector_free (antloc); + antloc = NULL; + sbitmap_vector_free (ae_kill); + ae_kill = NULL; + sbitmap_free (trapping_expr); +} + +/* PRE utilities */ + +/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach + block BB. + + VISITED is a pointer to a working buffer for tracking which BB's have + been visited. It is NULL for the top-level call. + + We treat reaching expressions that go through blocks containing the same + reaching expression as "not reaching". E.g. if EXPR is generated in blocks + 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block + 2 as not reaching. The intent is to improve the probability of finding + only one reaching expression and to reduce register lifetimes by picking + the closest such expression. */ + +static int +pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited) +{ + edge pred; + edge_iterator ei; + + FOR_EACH_EDGE (pred, ei, bb->preds) + { + basic_block pred_bb = pred->src; + + if (pred->src == ENTRY_BLOCK_PTR + /* Has predecessor has already been visited? */ + || visited[pred_bb->index]) + ;/* Nothing to do. */ + + /* Does this predecessor generate this expression? */ + else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index)) + { + /* Is this the occurrence we're looking for? + Note that there's only one generating occurrence per block + so we just need to check the block number. */ + if (occr_bb == pred_bb) + return 1; + + visited[pred_bb->index] = 1; + } + /* Ignore this predecessor if it kills the expression. */ + else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index)) + visited[pred_bb->index] = 1; + + /* Neither gen nor kill. */ + else + { + visited[pred_bb->index] = 1; + if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited)) + return 1; + } + } + + /* All paths have been checked. */ + return 0; +} + +/* The wrapper for pre_expr_reaches_here_work that ensures that any + memory allocated for that function is returned. */ + +static int +pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb) +{ + int rval; + char *visited = XCNEWVEC (char, last_basic_block); + + rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited); + + free (visited); + return rval; +} + + +/* Given an expr, generate RTL which we can insert at the end of a BB, + or on an edge. Set the block number of any insns generated to + the value of BB. */ + +static rtx +process_insert_insn (struct expr *expr) +{ + rtx reg = expr->reaching_reg; + rtx exp = copy_rtx (expr->expr); + rtx pat; + + start_sequence (); + + /* If the expression is something that's an operand, like a constant, + just copy it to a register. */ + if (general_operand (exp, GET_MODE (reg))) + emit_move_insn (reg, exp); + + /* Otherwise, make a new insn to compute this expression and make sure the + insn will be recognized (this also adds any needed CLOBBERs). Copy the + expression to make sure we don't have any sharing issues. */ + else + { + rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp)); + + if (insn_invalid_p (insn)) + gcc_unreachable (); + } + + + pat = get_insns (); + end_sequence (); + + return pat; +} + +/* Add EXPR to the end of basic block BB. + + This is used by both the PRE and code hoisting. + + For PRE, we want to verify that the expr is either transparent + or locally anticipatable in the target block. This check makes + no sense for code hoisting. */ + +static void +insert_insn_end_bb (struct expr *expr, basic_block bb, int pre) +{ + rtx insn = BB_END (bb); + rtx new_insn; + rtx reg = expr->reaching_reg; + int regno = REGNO (reg); + rtx pat, pat_end; + + pat = process_insert_insn (expr); + gcc_assert (pat && INSN_P (pat)); + + pat_end = pat; + while (NEXT_INSN (pat_end) != NULL_RTX) + pat_end = NEXT_INSN (pat_end); + + /* If the last insn is a jump, insert EXPR in front [taking care to + handle cc0, etc. properly]. Similarly we need to care trapping + instructions in presence of non-call exceptions. */ + + if (JUMP_P (insn) + || (NONJUMP_INSN_P (insn) + && (!single_succ_p (bb) + || single_succ_edge (bb)->flags & EDGE_ABNORMAL))) + { +#ifdef HAVE_cc0 + rtx note; +#endif + /* It should always be the case that we can put these instructions + anywhere in the basic block with performing PRE optimizations. + Check this. */ + gcc_assert (!NONJUMP_INSN_P (insn) || !pre + || TEST_BIT (antloc[bb->index], expr->bitmap_index) + || TEST_BIT (transp[bb->index], expr->bitmap_index)); + + /* If this is a jump table, then we can't insert stuff here. Since + we know the previous real insn must be the tablejump, we insert + the new instruction just before the tablejump. */ + if (GET_CODE (PATTERN (insn)) == ADDR_VEC + || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC) + insn = prev_real_insn (insn); + +#ifdef HAVE_cc0 + /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts + if cc0 isn't set. */ + note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX); + if (note) + insn = XEXP (note, 0); + else + { + rtx maybe_cc0_setter = prev_nonnote_insn (insn); + if (maybe_cc0_setter + && INSN_P (maybe_cc0_setter) + && sets_cc0_p (PATTERN (maybe_cc0_setter))) + insn = maybe_cc0_setter; + } +#endif + /* FIXME: What if something in cc0/jump uses value set in new insn? */ + new_insn = emit_insn_before_noloc (pat, insn); + } + + /* Likewise if the last insn is a call, as will happen in the presence + of exception handling. */ + else if (CALL_P (insn) + && (!single_succ_p (bb) + || single_succ_edge (bb)->flags & EDGE_ABNORMAL)) + { + /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers, + we search backward and place the instructions before the first + parameter is loaded. Do this for everyone for consistency and a + presumption that we'll get better code elsewhere as well. + + It should always be the case that we can put these instructions + anywhere in the basic block with performing PRE optimizations. + Check this. */ + + gcc_assert (!pre + || TEST_BIT (antloc[bb->index], expr->bitmap_index) + || TEST_BIT (transp[bb->index], expr->bitmap_index)); + + /* Since different machines initialize their parameter registers + in different orders, assume nothing. Collect the set of all + parameter registers. */ + insn = find_first_parameter_load (insn, BB_HEAD (bb)); + + /* If we found all the parameter loads, then we want to insert + before the first parameter load. + + If we did not find all the parameter loads, then we might have + stopped on the head of the block, which could be a CODE_LABEL. + If we inserted before the CODE_LABEL, then we would be putting + the insn in the wrong basic block. In that case, put the insn + after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */ + while (LABEL_P (insn) + || NOTE_INSN_BASIC_BLOCK_P (insn)) + insn = NEXT_INSN (insn); + + new_insn = emit_insn_before_noloc (pat, insn); + } + else + new_insn = emit_insn_after_noloc (pat, insn); + + while (1) + { + if (INSN_P (pat)) + { + add_label_notes (PATTERN (pat), new_insn); + note_stores (PATTERN (pat), record_set_info, pat); + } + if (pat == pat_end) + break; + pat = NEXT_INSN (pat); + } + + gcse_create_count++; + + if (dump_file) + { + fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ", + bb->index, INSN_UID (new_insn)); + fprintf (dump_file, "copying expression %d to reg %d\n", + expr->bitmap_index, regno); + } +} + +/* Insert partially redundant expressions on edges in the CFG to make + the expressions fully redundant. */ + +static int +pre_edge_insert (struct edge_list *edge_list, struct expr **index_map) +{ + int e, i, j, num_edges, set_size, did_insert = 0; + sbitmap *inserted; + + /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge + if it reaches any of the deleted expressions. */ + + set_size = pre_insert_map[0]->size; + num_edges = NUM_EDGES (edge_list); + inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems); + sbitmap_vector_zero (inserted, num_edges); + + for (e = 0; e < num_edges; e++) + { + int indx; + basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e); + + for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS) + { + SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i]; + + for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1) + if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX) + { + struct expr *expr = index_map[j]; + struct occr *occr; + + /* Now look at each deleted occurrence of this expression. */ + for (occr = expr->antic_occr; occr != NULL; occr = occr->next) + { + if (! occr->deleted_p) + continue; + + /* Insert this expression on this edge if it would + reach the deleted occurrence in BB. */ + if (!TEST_BIT (inserted[e], j)) + { + rtx insn; + edge eg = INDEX_EDGE (edge_list, e); + + /* We can't insert anything on an abnormal and + critical edge, so we insert the insn at the end of + the previous block. There are several alternatives + detailed in Morgans book P277 (sec 10.5) for + handling this situation. This one is easiest for + now. */ + + if (eg->flags & EDGE_ABNORMAL) + insert_insn_end_bb (index_map[j], bb, 0); + else + { + insn = process_insert_insn (index_map[j]); + insert_insn_on_edge (insn, eg); + } + + if (dump_file) + { + fprintf (dump_file, "PRE/HOIST: edge (%d,%d), ", + bb->index, + INDEX_EDGE_SUCC_BB (edge_list, e)->index); + fprintf (dump_file, "copy expression %d\n", + expr->bitmap_index); + } + + update_ld_motion_stores (expr); + SET_BIT (inserted[e], j); + did_insert = 1; + gcse_create_count++; + } + } + } + } + } + + sbitmap_vector_free (inserted); + return did_insert; +} + +/* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG. + Given "old_reg <- expr" (INSN), instead of adding after it + reaching_reg <- old_reg + it's better to do the following: + reaching_reg <- expr + old_reg <- reaching_reg + because this way copy propagation can discover additional PRE + opportunities. But if this fails, we try the old way. + When "expr" is a store, i.e. + given "MEM <- old_reg", instead of adding after it + reaching_reg <- old_reg + it's better to add it before as follows: + reaching_reg <- old_reg + MEM <- reaching_reg. */ + +static void +pre_insert_copy_insn (struct expr *expr, rtx insn) +{ + rtx reg = expr->reaching_reg; + int regno = REGNO (reg); + int indx = expr->bitmap_index; + rtx pat = PATTERN (insn); + rtx set, first_set, new_insn; + rtx old_reg; + int i; + + /* This block matches the logic in hash_scan_insn. */ + switch (GET_CODE (pat)) + { + case SET: + set = pat; + break; + + case PARALLEL: + /* Search through the parallel looking for the set whose + source was the expression that we're interested in. */ + first_set = NULL_RTX; + set = NULL_RTX; + for (i = 0; i < XVECLEN (pat, 0); i++) + { + rtx x = XVECEXP (pat, 0, i); + if (GET_CODE (x) == SET) + { + /* If the source was a REG_EQUAL or REG_EQUIV note, we + may not find an equivalent expression, but in this + case the PARALLEL will have a single set. */ + if (first_set == NULL_RTX) + first_set = x; + if (expr_equiv_p (SET_SRC (x), expr->expr)) + { + set = x; + break; + } + } + } + + gcc_assert (first_set); + if (set == NULL_RTX) + set = first_set; + break; + + default: + gcc_unreachable (); + } + + if (REG_P (SET_DEST (set))) + { + old_reg = SET_DEST (set); + /* Check if we can modify the set destination in the original insn. */ + if (validate_change (insn, &SET_DEST (set), reg, 0)) + { + new_insn = gen_move_insn (old_reg, reg); + new_insn = emit_insn_after (new_insn, insn); + + /* Keep register set table up to date. */ + record_one_set (regno, insn); + } + else + { + new_insn = gen_move_insn (reg, old_reg); + new_insn = emit_insn_after (new_insn, insn); + + /* Keep register set table up to date. */ + record_one_set (regno, new_insn); + } + } + else /* This is possible only in case of a store to memory. */ + { + old_reg = SET_SRC (set); + new_insn = gen_move_insn (reg, old_reg); + + /* Check if we can modify the set source in the original insn. */ + if (validate_change (insn, &SET_SRC (set), reg, 0)) + new_insn = emit_insn_before (new_insn, insn); + else + new_insn = emit_insn_after (new_insn, insn); + + /* Keep register set table up to date. */ + record_one_set (regno, new_insn); + } + + gcse_create_count++; + + if (dump_file) + fprintf (dump_file, + "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n", + BLOCK_NUM (insn), INSN_UID (new_insn), indx, + INSN_UID (insn), regno); +} + +/* Copy available expressions that reach the redundant expression + to `reaching_reg'. */ + +static void +pre_insert_copies (void) +{ + unsigned int i, added_copy; + struct expr *expr; + struct occr *occr; + struct occr *avail; + + /* For each available expression in the table, copy the result to + `reaching_reg' if the expression reaches a deleted one. + + ??? The current algorithm is rather brute force. + Need to do some profiling. */ + + for (i = 0; i < expr_hash_table.size; i++) + for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash) + { + /* If the basic block isn't reachable, PPOUT will be TRUE. However, + we don't want to insert a copy here because the expression may not + really be redundant. So only insert an insn if the expression was + deleted. This test also avoids further processing if the + expression wasn't deleted anywhere. */ + if (expr->reaching_reg == NULL) + continue; + + /* Set when we add a copy for that expression. */ + added_copy = 0; + + for (occr = expr->antic_occr; occr != NULL; occr = occr->next) + { + if (! occr->deleted_p) + continue; + + for (avail = expr->avail_occr; avail != NULL; avail = avail->next) + { + rtx insn = avail->insn; + + /* No need to handle this one if handled already. */ + if (avail->copied_p) + continue; + + /* Don't handle this one if it's a redundant one. */ + if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn))) + continue; + + /* Or if the expression doesn't reach the deleted one. */ + if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn), + expr, + BLOCK_FOR_INSN (occr->insn))) + continue; + + added_copy = 1; + + /* Copy the result of avail to reaching_reg. */ + pre_insert_copy_insn (expr, insn); + avail->copied_p = 1; + } + } + + if (added_copy) + update_ld_motion_stores (expr); + } +} + +/* Emit move from SRC to DEST noting the equivalence with expression computed + in INSN. */ +static rtx +gcse_emit_move_after (rtx src, rtx dest, rtx insn) +{ + rtx new; + rtx set = single_set (insn), set2; + rtx note; + rtx eqv; + + /* This should never fail since we're creating a reg->reg copy + we've verified to be valid. */ + + new = emit_insn_after (gen_move_insn (dest, src), insn); + + /* Note the equivalence for local CSE pass. */ + set2 = single_set (new); + if (!set2 || !rtx_equal_p (SET_DEST (set2), dest)) + return new; + if ((note = find_reg_equal_equiv_note (insn))) + eqv = XEXP (note, 0); + else + eqv = SET_SRC (set); + + set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv)); + + return new; +} + +/* Delete redundant computations. + Deletion is done by changing the insn to copy the `reaching_reg' of + the expression into the result of the SET. It is left to later passes + (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it. + + Returns nonzero if a change is made. */ + +static int +pre_delete (void) +{ + unsigned int i; + int changed; + struct expr *expr; + struct occr *occr; + + changed = 0; + for (i = 0; i < expr_hash_table.size; i++) + for (expr = expr_hash_table.table[i]; + expr != NULL; + expr = expr->next_same_hash) + { + int indx = expr->bitmap_index; + + /* We only need to search antic_occr since we require + ANTLOC != 0. */ + + for (occr = expr->antic_occr; occr != NULL; occr = occr->next) + { + rtx insn = occr->insn; + rtx set; + basic_block bb = BLOCK_FOR_INSN (insn); + + /* We only delete insns that have a single_set. */ + if (TEST_BIT (pre_delete_map[bb->index], indx) + && (set = single_set (insn)) != 0) + { + /* Create a pseudo-reg to store the result of reaching + expressions into. Get the mode for the new pseudo from + the mode of the original destination pseudo. */ + if (expr->reaching_reg == NULL) + expr->reaching_reg + = gen_reg_rtx (GET_MODE (SET_DEST (set))); + + gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn); + delete_insn (insn); + occr->deleted_p = 1; + SET_BIT (pre_redundant_insns, INSN_CUID (insn)); + changed = 1; + gcse_subst_count++; + + if (dump_file) + { + fprintf (dump_file, + "PRE: redundant insn %d (expression %d) in ", + INSN_UID (insn), indx); + fprintf (dump_file, "bb %d, reaching reg is %d\n", + bb->index, REGNO (expr->reaching_reg)); + } + } + } + } + + return changed; +} + +/* Perform GCSE optimizations using PRE. + This is called by one_pre_gcse_pass after all the dataflow analysis + has been done. + + This is based on the original Morel-Renvoise paper Fred Chow's thesis, and + lazy code motion from Knoop, Ruthing and Steffen as described in Advanced + Compiler Design and Implementation. + + ??? A new pseudo reg is created to hold the reaching expression. The nice + thing about the classical approach is that it would try to use an existing + reg. If the register can't be adequately optimized [i.e. we introduce + reload problems], one could add a pass here to propagate the new register + through the block. + + ??? We don't handle single sets in PARALLELs because we're [currently] not + able to copy the rest of the parallel when we insert copies to create full + redundancies from partial redundancies. However, there's no reason why we + can't handle PARALLELs in the cases where there are no partial + redundancies. */ + +static int +pre_gcse (void) +{ + unsigned int i; + int did_insert, changed; + struct expr **index_map; + struct expr *expr; + + /* Compute a mapping from expression number (`bitmap_index') to + hash table entry. */ + + index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems); + for (i = 0; i < expr_hash_table.size; i++) + for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash) + index_map[expr->bitmap_index] = expr; + + /* Reset bitmap used to track which insns are redundant. */ + pre_redundant_insns = sbitmap_alloc (max_cuid); + sbitmap_zero (pre_redundant_insns); + + /* Delete the redundant insns first so that + - we know what register to use for the new insns and for the other + ones with reaching expressions + - we know which insns are redundant when we go to create copies */ + + changed = pre_delete (); + + did_insert = pre_edge_insert (edge_list, index_map); + + /* In other places with reaching expressions, copy the expression to the + specially allocated pseudo-reg that reaches the redundant expr. */ + pre_insert_copies (); + if (did_insert) + { + commit_edge_insertions (); + changed = 1; + } + + free (index_map); + sbitmap_free (pre_redundant_insns); + return changed; +} + +/* Top level routine to perform one PRE GCSE pass. + + Return nonzero if a change was made. */ + +static int +one_pre_gcse_pass (int pass) +{ + int changed = 0; + + gcse_subst_count = 0; + gcse_create_count = 0; + + alloc_hash_table (max_cuid, &expr_hash_table, 0); + add_noreturn_fake_exit_edges (); + if (flag_gcse_lm) + compute_ld_motion_mems (); + + compute_hash_table (&expr_hash_table); + trim_ld_motion_mems (); + if (dump_file) + dump_hash_table (dump_file, "Expression", &expr_hash_table); + + if (expr_hash_table.n_elems > 0) + { + alloc_pre_mem (last_basic_block, expr_hash_table.n_elems); + compute_pre_data (); + changed |= pre_gcse (); + free_edge_list (edge_list); + free_pre_mem (); + } + + free_ldst_mems (); + remove_fake_exit_edges (); + free_hash_table (&expr_hash_table); + + if (dump_file) + { + fprintf (dump_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ", + current_function_name (), pass, bytes_used); + fprintf (dump_file, "%d substs, %d insns created\n", + gcse_subst_count, gcse_create_count); + } + + return changed; +} + +/* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN. + If notes are added to an insn which references a CODE_LABEL, the + LABEL_NUSES count is incremented. We have to add REG_LABEL notes, + because the following loop optimization pass requires them. */ + +/* ??? If there was a jump optimization pass after gcse and before loop, + then we would not need to do this here, because jump would add the + necessary REG_LABEL notes. */ + +static void +add_label_notes (rtx x, rtx insn) +{ + enum rtx_code code = GET_CODE (x); + int i, j; + const char *fmt; + + if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x)) + { + /* This code used to ignore labels that referred to dispatch tables to + avoid flow generating (slightly) worse code. + + We no longer ignore such label references (see LABEL_REF handling in + mark_jump_label for additional information). */ + + REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0), + REG_NOTES (insn)); + if (LABEL_P (XEXP (x, 0))) + LABEL_NUSES (XEXP (x, 0))++; + return; + } + + for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--) + { + if (fmt[i] == 'e') + add_label_notes (XEXP (x, i), insn); + else if (fmt[i] == 'E') + for (j = XVECLEN (x, i) - 1; j >= 0; j--) + add_label_notes (XVECEXP (x, i, j), insn); + } +} + +/* Compute transparent outgoing information for each block. + + An expression is transparent to an edge unless it is killed by + the edge itself. This can only happen with abnormal control flow, + when the edge is traversed through a call. This happens with + non-local labels and exceptions. + + This would not be necessary if we split the edge. While this is + normally impossible for abnormal critical edges, with some effort + it should be possible with exception handling, since we still have + control over which handler should be invoked. But due to increased + EH table sizes, this may not be worthwhile. */ + +static void +compute_transpout (void) +{ + basic_block bb; + unsigned int i; + struct expr *expr; + + sbitmap_vector_ones (transpout, last_basic_block); + + FOR_EACH_BB (bb) + { + /* Note that flow inserted a nop a the end of basic blocks that + end in call instructions for reasons other than abnormal + control flow. */ + if (! CALL_P (BB_END (bb))) + continue; + + for (i = 0; i < expr_hash_table.size; i++) + for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash) + if (MEM_P (expr->expr)) + { + if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF + && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0))) + continue; + + /* ??? Optimally, we would use interprocedural alias + analysis to determine if this mem is actually killed + by this call. */ + RESET_BIT (transpout[bb->index], expr->bitmap_index); + } + } +} + +/* Code Hoisting variables and subroutines. */ + +/* Very busy expressions. */ +static sbitmap *hoist_vbein; +static sbitmap *hoist_vbeout; + +/* Hoistable expressions. */ +static sbitmap *hoist_exprs; + +/* ??? We could compute post dominators and run this algorithm in + reverse to perform tail merging, doing so would probably be + more effective than the tail merging code in jump.c. + + It's unclear if tail merging could be run in parallel with + code hoisting. It would be nice. */ + +/* Allocate vars used for code hoisting analysis. */ + +static void +alloc_code_hoist_mem (int n_blocks, int n_exprs) +{ + antloc = sbitmap_vector_alloc (n_blocks, n_exprs); + transp = sbitmap_vector_alloc (n_blocks, n_exprs); + comp = sbitmap_vector_alloc (n_blocks, n_exprs); + + hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs); + hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs); + hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs); + transpout = sbitmap_vector_alloc (n_blocks, n_exprs); +} + +/* Free vars used for code hoisting analysis. */ + +static void +free_code_hoist_mem (void) +{ + sbitmap_vector_free (antloc); + sbitmap_vector_free (transp); + sbitmap_vector_free (comp); + + sbitmap_vector_free (hoist_vbein); + sbitmap_vector_free (hoist_vbeout); + sbitmap_vector_free (hoist_exprs); + sbitmap_vector_free (transpout); + + free_dominance_info (CDI_DOMINATORS); +} + +/* Compute the very busy expressions at entry/exit from each block. + + An expression is very busy if all paths from a given point + compute the expression. */ + +static void +compute_code_hoist_vbeinout (void) +{ + int changed, passes; + basic_block bb; + + sbitmap_vector_zero (hoist_vbeout, last_basic_block); + sbitmap_vector_zero (hoist_vbein, last_basic_block); + + passes = 0; + changed = 1; + + while (changed) + { + changed = 0; + + /* We scan the blocks in the reverse order to speed up + the convergence. */ + FOR_EACH_BB_REVERSE (bb) + { + changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index], + hoist_vbeout[bb->index], transp[bb->index]); + if (bb->next_bb != EXIT_BLOCK_PTR) + sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index); + } + + passes++; + } + + if (dump_file) + fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes); +} + +/* Top level routine to do the dataflow analysis needed by code hoisting. */ + +static void +compute_code_hoist_data (void) +{ + compute_local_properties (transp, comp, antloc, &expr_hash_table); + compute_transpout (); + compute_code_hoist_vbeinout (); + calculate_dominance_info (CDI_DOMINATORS); + if (dump_file) + fprintf (dump_file, "\n"); +} + +/* Determine if the expression identified by EXPR_INDEX would + reach BB unimpared if it was placed at the end of EXPR_BB. + + It's unclear exactly what Muchnick meant by "unimpared". It seems + to me that the expression must either be computed or transparent in + *every* block in the path(s) from EXPR_BB to BB. Any other definition + would allow the expression to be hoisted out of loops, even if + the expression wasn't a loop invariant. + + Contrast this to reachability for PRE where an expression is + considered reachable if *any* path reaches instead of *all* + paths. */ + +static int +hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited) +{ + edge pred; + edge_iterator ei; + int visited_allocated_locally = 0; + + + if (visited == NULL) + { + visited_allocated_locally = 1; + visited = XCNEWVEC (char, last_basic_block); + } + + FOR_EACH_EDGE (pred, ei, bb->preds) + { + basic_block pred_bb = pred->src; + + if (pred->src == ENTRY_BLOCK_PTR) + break; + else if (pred_bb == expr_bb) + continue; + else if (visited[pred_bb->index]) + continue; + + /* Does this predecessor generate this expression? */ + else if (TEST_BIT (comp[pred_bb->index], expr_index)) + break; + else if (! TEST_BIT (transp[pred_bb->index], expr_index)) + break; + + /* Not killed. */ + else + { + visited[pred_bb->index] = 1; + if (! hoist_expr_reaches_here_p (expr_bb, expr_index, + pred_bb, visited)) + break; + } + } + if (visited_allocated_locally) + free (visited); + + return (pred == NULL); +} + +/* Actually perform code hoisting. */ + +static void +hoist_code (void) +{ + basic_block bb, dominated; + basic_block *domby; + unsigned int domby_len; + unsigned int i,j; + struct expr **index_map; + struct expr *expr; + + sbitmap_vector_zero (hoist_exprs, last_basic_block); + + /* Compute a mapping from expression number (`bitmap_index') to + hash table entry. */ + + index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems); + for (i = 0; i < expr_hash_table.size; i++) + for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash) + index_map[expr->bitmap_index] = expr; + + /* Walk over each basic block looking for potentially hoistable + expressions, nothing gets hoisted from the entry block. */ + FOR_EACH_BB (bb) + { + int found = 0; + int insn_inserted_p; + + domby_len = get_dominated_by (CDI_DOMINATORS, bb, &domby); + /* Examine each expression that is very busy at the exit of this + block. These are the potentially hoistable expressions. */ + for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++) + { + int hoistable = 0; + + if (TEST_BIT (hoist_vbeout[bb->index], i) + && TEST_BIT (transpout[bb->index], i)) + { + /* We've found a potentially hoistable expression, now + we look at every block BB dominates to see if it + computes the expression. */ + for (j = 0; j < domby_len; j++) + { + dominated = domby[j]; + /* Ignore self dominance. */ + if (bb == dominated) + continue; + /* We've found a dominated block, now see if it computes + the busy expression and whether or not moving that + expression to the "beginning" of that block is safe. */ + if (!TEST_BIT (antloc[dominated->index], i)) + continue; + + /* Note if the expression would reach the dominated block + unimpared if it was placed at the end of BB. + + Keep track of how many times this expression is hoistable + from a dominated block into BB. */ + if (hoist_expr_reaches_here_p (bb, i, dominated, NULL)) + hoistable++; + } + + /* If we found more than one hoistable occurrence of this + expression, then note it in the bitmap of expressions to + hoist. It makes no sense to hoist things which are computed + in only one BB, and doing so tends to pessimize register + allocation. One could increase this value to try harder + to avoid any possible code expansion due to register + allocation issues; however experiments have shown that + the vast majority of hoistable expressions are only movable + from two successors, so raising this threshold is likely + to nullify any benefit we get from code hoisting. */ + if (hoistable > 1) + { + SET_BIT (hoist_exprs[bb->index], i); + found = 1; + } + } + } + /* If we found nothing to hoist, then quit now. */ + if (! found) + { + free (domby); + continue; + } + + /* Loop over all the hoistable expressions. */ + for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++) + { + /* We want to insert the expression into BB only once, so + note when we've inserted it. */ + insn_inserted_p = 0; + + /* These tests should be the same as the tests above. */ + if (TEST_BIT (hoist_exprs[bb->index], i)) + { + /* We've found a potentially hoistable expression, now + we look at every block BB dominates to see if it + computes the expression. */ + for (j = 0; j < domby_len; j++) + { + dominated = domby[j]; + /* Ignore self dominance. */ + if (bb == dominated) + continue; + + /* We've found a dominated block, now see if it computes + the busy expression and whether or not moving that + expression to the "beginning" of that block is safe. */ + if (!TEST_BIT (antloc[dominated->index], i)) + continue; + + /* The expression is computed in the dominated block and + it would be safe to compute it at the start of the + dominated block. Now we have to determine if the + expression would reach the dominated block if it was + placed at the end of BB. */ + if (hoist_expr_reaches_here_p (bb, i, dominated, NULL)) + { + struct expr *expr = index_map[i]; + struct occr *occr = expr->antic_occr; + rtx insn; + rtx set; + + /* Find the right occurrence of this expression. */ + while (BLOCK_FOR_INSN (occr->insn) != dominated && occr) + occr = occr->next; + + gcc_assert (occr); + insn = occr->insn; + set = single_set (insn); + gcc_assert (set); + + /* Create a pseudo-reg to store the result of reaching + expressions into. Get the mode for the new pseudo + from the mode of the original destination pseudo. */ + if (expr->reaching_reg == NULL) + expr->reaching_reg + = gen_reg_rtx (GET_MODE (SET_DEST (set))); + + gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn); + delete_insn (insn); + occr->deleted_p = 1; + if (!insn_inserted_p) + { + insert_insn_end_bb (index_map[i], bb, 0); + insn_inserted_p = 1; + } + } + } + } + } + free (domby); + } + + free (index_map); +} + +/* Top level routine to perform one code hoisting (aka unification) pass + + Return nonzero if a change was made. */ + +static int +one_code_hoisting_pass (void) +{ + int changed = 0; + + alloc_hash_table (max_cuid, &expr_hash_table, 0); + compute_hash_table (&expr_hash_table); + if (dump_file) + dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table); + + if (expr_hash_table.n_elems > 0) + { + alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems); + compute_code_hoist_data (); + hoist_code (); + free_code_hoist_mem (); + } + + free_hash_table (&expr_hash_table); + + return changed; +} + +/* Here we provide the things required to do store motion towards + the exit. In order for this to be effective, gcse also needed to + be taught how to move a load when it is kill only by a store to itself. + + int i; + float a[10]; + + void foo(float scale) + { + for (i=0; i<10; i++) + a[i] *= scale; + } + + 'i' is both loaded and stored to in the loop. Normally, gcse cannot move + the load out since its live around the loop, and stored at the bottom + of the loop. + + The 'Load Motion' referred to and implemented in this file is + an enhancement to gcse which when using edge based lcm, recognizes + this situation and allows gcse to move the load out of the loop. + + Once gcse has hoisted the load, store motion can then push this + load towards the exit, and we end up with no loads or stores of 'i' + in the loop. */ + +static hashval_t +pre_ldst_expr_hash (const void *p) +{ + int do_not_record_p = 0; + const struct ls_expr *x = p; + return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false); +} + +static int +pre_ldst_expr_eq (const void *p1, const void *p2) +{ + const struct ls_expr *ptr1 = p1, *ptr2 = p2; + return expr_equiv_p (ptr1->pattern, ptr2->pattern); +} + +/* This will search the ldst list for a matching expression. If it + doesn't find one, we create one and initialize it. */ + +static struct ls_expr * +ldst_entry (rtx x) +{ + int do_not_record_p = 0; + struct ls_expr * ptr; + unsigned int hash; + void **slot; + struct ls_expr e; + + hash = hash_rtx (x, GET_MODE (x), &do_not_record_p, + NULL, /*have_reg_qty=*/false); + + e.pattern = x; + slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT); + if (*slot) + return (struct ls_expr *)*slot; + + ptr = XNEW (struct ls_expr); + + ptr->next = pre_ldst_mems; + ptr->expr = NULL; + ptr->pattern = x; + ptr->pattern_regs = NULL_RTX; + ptr->loads = NULL_RTX; + ptr->stores = NULL_RTX; + ptr->reaching_reg = NULL_RTX; + ptr->invalid = 0; + ptr->index = 0; + ptr->hash_index = hash; + pre_ldst_mems = ptr; + *slot = ptr; + + return ptr; +} + +/* Free up an individual ldst entry. */ + +static void +free_ldst_entry (struct ls_expr * ptr) +{ + free_INSN_LIST_list (& ptr->loads); + free_INSN_LIST_list (& ptr->stores); + + free (ptr); +} + +/* Free up all memory associated with the ldst list. */ + +static void +free_ldst_mems (void) +{ + if (pre_ldst_table) + htab_delete (pre_ldst_table); + pre_ldst_table = NULL; + + while (pre_ldst_mems) + { + struct ls_expr * tmp = pre_ldst_mems; + + pre_ldst_mems = pre_ldst_mems->next; + + free_ldst_entry (tmp); + } + + pre_ldst_mems = NULL; +} + +/* Dump debugging info about the ldst list. */ + +static void +print_ldst_list (FILE * file) +{ + struct ls_expr * ptr; + + fprintf (file, "LDST list: \n"); + + for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr)) + { + fprintf (file, " Pattern (%3d): ", ptr->index); + + print_rtl (file, ptr->pattern); + + fprintf (file, "\n Loads : "); + + if (ptr->loads) + print_rtl (file, ptr->loads); + else + fprintf (file, "(nil)"); + + fprintf (file, "\n Stores : "); + + if (ptr->stores) + print_rtl (file, ptr->stores); + else + fprintf (file, "(nil)"); + + fprintf (file, "\n\n"); + } + + fprintf (file, "\n"); +} + +/* Returns 1 if X is in the list of ldst only expressions. */ + +static struct ls_expr * +find_rtx_in_ldst (rtx x) +{ + struct ls_expr e; + void **slot; + if (!pre_ldst_table) + return NULL; + e.pattern = x; + slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT); + if (!slot || ((struct ls_expr *)*slot)->invalid) + return NULL; + return *slot; +} + +/* Assign each element of the list of mems a monotonically increasing value. */ + +static int +enumerate_ldsts (void) +{ + struct ls_expr * ptr; + int n = 0; + + for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next) + ptr->index = n++; + + return n; +} + +/* Return first item in the list. */ + +static inline struct ls_expr * +first_ls_expr (void) +{ + return pre_ldst_mems; +} + +/* Return the next item in the list after the specified one. */ + +static inline struct ls_expr * +next_ls_expr (struct ls_expr * ptr) +{ + return ptr->next; +} + +/* Load Motion for loads which only kill themselves. */ + +/* Return true if x is a simple MEM operation, with no registers or + side effects. These are the types of loads we consider for the + ld_motion list, otherwise we let the usual aliasing take care of it. */ + +static int +simple_mem (rtx x) +{ + if (! MEM_P (x)) + return 0; + + if (MEM_VOLATILE_P (x)) + return 0; + + if (GET_MODE (x) == BLKmode) + return 0; + + /* If we are handling exceptions, we must be careful with memory references + that may trap. If we are not, the behavior is undefined, so we may just + continue. */ + if (flag_non_call_exceptions && may_trap_p (x)) + return 0; + + if (side_effects_p (x)) + return 0; + + /* Do not consider function arguments passed on stack. */ + if (reg_mentioned_p (stack_pointer_rtx, x)) + return 0; + + if (flag_float_store && FLOAT_MODE_P (GET_MODE (x))) + return 0; + + return 1; +} + +/* Make sure there isn't a buried reference in this pattern anywhere. + If there is, invalidate the entry for it since we're not capable + of fixing it up just yet.. We have to be sure we know about ALL + loads since the aliasing code will allow all entries in the + ld_motion list to not-alias itself. If we miss a load, we will get + the wrong value since gcse might common it and we won't know to + fix it up. */ + +static void +invalidate_any_buried_refs (rtx x) +{ + const char * fmt; + int i, j; + struct ls_expr * ptr; + + /* Invalidate it in the list. */ + if (MEM_P (x) && simple_mem (x)) + { + ptr = ldst_entry (x); + ptr->invalid = 1; + } + + /* Recursively process the insn. */ + fmt = GET_RTX_FORMAT (GET_CODE (x)); + + for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) + { + if (fmt[i] == 'e') + invalidate_any_buried_refs (XEXP (x, i)); + else if (fmt[i] == 'E') + for (j = XVECLEN (x, i) - 1; j >= 0; j--) + invalidate_any_buried_refs (XVECEXP (x, i, j)); + } +} + +/* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple + being defined as MEM loads and stores to symbols, with no side effects + and no registers in the expression. For a MEM destination, we also + check that the insn is still valid if we replace the destination with a + REG, as is done in update_ld_motion_stores. If there are any uses/defs + which don't match this criteria, they are invalidated and trimmed out + later. */ + +static void +compute_ld_motion_mems (void) +{ + struct ls_expr * ptr; + basic_block bb; + rtx insn; + + pre_ldst_mems = NULL; + pre_ldst_table = htab_create (13, pre_ldst_expr_hash, + pre_ldst_expr_eq, NULL); + + FOR_EACH_BB (bb) + { + FOR_BB_INSNS (bb, insn) + { + if (INSN_P (insn)) + { + if (GET_CODE (PATTERN (insn)) == SET) + { + rtx src = SET_SRC (PATTERN (insn)); + rtx dest = SET_DEST (PATTERN (insn)); + + /* Check for a simple LOAD... */ + if (MEM_P (src) && simple_mem (src)) + { + ptr = ldst_entry (src); + if (REG_P (dest)) + ptr->loads = alloc_INSN_LIST (insn, ptr->loads); + else + ptr->invalid = 1; + } + else + { + /* Make sure there isn't a buried load somewhere. */ + invalidate_any_buried_refs (src); + } + + /* Check for stores. Don't worry about aliased ones, they + will block any movement we might do later. We only care + about this exact pattern since those are the only + circumstance that we will ignore the aliasing info. */ + if (MEM_P (dest) && simple_mem (dest)) + { + ptr = ldst_entry (dest); + + if (! MEM_P (src) + && GET_CODE (src) != ASM_OPERANDS + /* Check for REG manually since want_to_gcse_p + returns 0 for all REGs. */ + && can_assign_to_reg_p (src)) + ptr->stores = alloc_INSN_LIST (insn, ptr->stores); + else + ptr->invalid = 1; + } + } + else + invalidate_any_buried_refs (PATTERN (insn)); + } + } + } +} + +/* Remove any references that have been either invalidated or are not in the + expression list for pre gcse. */ + +static void +trim_ld_motion_mems (void) +{ + struct ls_expr * * last = & pre_ldst_mems; + struct ls_expr * ptr = pre_ldst_mems; + + while (ptr != NULL) + { + struct expr * expr; + + /* Delete if entry has been made invalid. */ + if (! ptr->invalid) + { + /* Delete if we cannot find this mem in the expression list. */ + unsigned int hash = ptr->hash_index % expr_hash_table.size; + + for (expr = expr_hash_table.table[hash]; + expr != NULL; + expr = expr->next_same_hash) + if (expr_equiv_p (expr->expr, ptr->pattern)) + break; + } + else + expr = (struct expr *) 0; + + if (expr) + { + /* Set the expression field if we are keeping it. */ + ptr->expr = expr; + last = & ptr->next; + ptr = ptr->next; + } + else + { + *last = ptr->next; + htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index); + free_ldst_entry (ptr); + ptr = * last; + } + } + + /* Show the world what we've found. */ + if (dump_file && pre_ldst_mems != NULL) + print_ldst_list (dump_file); +} + +/* This routine will take an expression which we are replacing with + a reaching register, and update any stores that are needed if + that expression is in the ld_motion list. Stores are updated by + copying their SRC to the reaching register, and then storing + the reaching register into the store location. These keeps the + correct value in the reaching register for the loads. */ + +static void +update_ld_motion_stores (struct expr * expr) +{ + struct ls_expr * mem_ptr; + + if ((mem_ptr = find_rtx_in_ldst (expr->expr))) + { + /* We can try to find just the REACHED stores, but is shouldn't + matter to set the reaching reg everywhere... some might be + dead and should be eliminated later. */ + + /* We replace (set mem expr) with (set reg expr) (set mem reg) + where reg is the reaching reg used in the load. We checked in + compute_ld_motion_mems that we can replace (set mem expr) with + (set reg expr) in that insn. */ + rtx list = mem_ptr->stores; + + for ( ; list != NULL_RTX; list = XEXP (list, 1)) + { + rtx insn = XEXP (list, 0); + rtx pat = PATTERN (insn); + rtx src = SET_SRC (pat); + rtx reg = expr->reaching_reg; + rtx copy, new; + + /* If we've already copied it, continue. */ + if (expr->reaching_reg == src) + continue; + + if (dump_file) + { + fprintf (dump_file, "PRE: store updated with reaching reg "); + print_rtl (dump_file, expr->reaching_reg); + fprintf (dump_file, ":\n "); + print_inline_rtx (dump_file, insn, 8); + fprintf (dump_file, "\n"); + } + + copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat))); + new = emit_insn_before (copy, insn); + record_one_set (REGNO (reg), new); + SET_SRC (pat) = reg; + + /* un-recognize this pattern since it's probably different now. */ + INSN_CODE (insn) = -1; + gcse_create_count++; + } + } +} + +/* Store motion code. */ + +#define ANTIC_STORE_LIST(x) ((x)->loads) +#define AVAIL_STORE_LIST(x) ((x)->stores) +#define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg) + +/* This is used to communicate the target bitvector we want to use in the + reg_set_info routine when called via the note_stores mechanism. */ +static int * regvec; + +/* And current insn, for the same routine. */ +static rtx compute_store_table_current_insn; + +/* Used in computing the reverse edge graph bit vectors. */ +static sbitmap * st_antloc; + +/* Global holding the number of store expressions we are dealing with. */ +static int num_stores; + +/* Checks to set if we need to mark a register set. Called from + note_stores. */ + +static void +reg_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, + void *data) +{ + sbitmap bb_reg = data; + + if (GET_CODE (dest) == SUBREG) + dest = SUBREG_REG (dest); + + if (REG_P (dest)) + { + regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn); + if (bb_reg) + SET_BIT (bb_reg, REGNO (dest)); + } +} + +/* Clear any mark that says that this insn sets dest. Called from + note_stores. */ + +static void +reg_clear_last_set (rtx dest, rtx setter ATTRIBUTE_UNUSED, + void *data) +{ + int *dead_vec = data; + + if (GET_CODE (dest) == SUBREG) + dest = SUBREG_REG (dest); + + if (REG_P (dest) && + dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn)) + dead_vec[REGNO (dest)] = 0; +} + +/* Return zero if some of the registers in list X are killed + due to set of registers in bitmap REGS_SET. */ + +static bool +store_ops_ok (rtx x, int *regs_set) +{ + rtx reg; + + for (; x; x = XEXP (x, 1)) + { + reg = XEXP (x, 0); + if (regs_set[REGNO(reg)]) + return false; + } + + return true; +} + +/* Returns a list of registers mentioned in X. */ +static rtx +extract_mentioned_regs (rtx x) +{ + return extract_mentioned_regs_helper (x, NULL_RTX); +} + +/* Helper for extract_mentioned_regs; ACCUM is used to accumulate used + registers. */ +static rtx +extract_mentioned_regs_helper (rtx x, rtx accum) +{ + int i; + enum rtx_code code; + const char * fmt; + + /* Repeat is used to turn tail-recursion into iteration. */ + repeat: + + if (x == 0) + return accum; + + code = GET_CODE (x); + switch (code) + { + case REG: + return alloc_EXPR_LIST (0, x, accum); + + case MEM: + x = XEXP (x, 0); + goto repeat; + + case PRE_DEC: + case PRE_INC: + case POST_DEC: + case POST_INC: + /* We do not run this function with arguments having side effects. */ + gcc_unreachable (); + + case PC: + case CC0: /*FIXME*/ + case CONST: + case CONST_INT: + case CONST_DOUBLE: + case CONST_VECTOR: + case SYMBOL_REF: + case LABEL_REF: + case ADDR_VEC: + case ADDR_DIFF_VEC: + return accum; + + default: + break; + } + + i = GET_RTX_LENGTH (code) - 1; + fmt = GET_RTX_FORMAT (code); + + for (; i >= 0; i--) + { + if (fmt[i] == 'e') + { + rtx tem = XEXP (x, i); + + /* If we are about to do the last recursive call + needed at this level, change it into iteration. */ + if (i == 0) + { + x = tem; + goto repeat; + } + + accum = extract_mentioned_regs_helper (tem, accum); + } + else if (fmt[i] == 'E') + { + int j; + + for (j = 0; j < XVECLEN (x, i); j++) + accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum); + } + } + + return accum; +} + +/* Determine whether INSN is MEM store pattern that we will consider moving. + REGS_SET_BEFORE is bitmap of registers set before (and including) the + current insn, REGS_SET_AFTER is bitmap of registers set after (and + including) the insn in this basic block. We must be passing through BB from + head to end, as we are using this fact to speed things up. + + The results are stored this way: + + -- the first anticipatable expression is added into ANTIC_STORE_LIST + -- if the processed expression is not anticipatable, NULL_RTX is added + there instead, so that we can use it as indicator that no further + expression of this type may be anticipatable + -- if the expression is available, it is added as head of AVAIL_STORE_LIST; + consequently, all of them but this head are dead and may be deleted. + -- if the expression is not available, the insn due to that it fails to be + available is stored in reaching_reg. + + The things are complicated a bit by fact that there already may be stores + to the same MEM from other blocks; also caller must take care of the + necessary cleanup of the temporary markers after end of the basic block. + */ + +static void +find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after) +{ + struct ls_expr * ptr; + rtx dest, set, tmp; + int check_anticipatable, check_available; + basic_block bb = BLOCK_FOR_INSN (insn); + + set = single_set (insn); + if (!set) + return; + + dest = SET_DEST (set); + + if (! MEM_P (dest) || MEM_VOLATILE_P (dest) + || GET_MODE (dest) == BLKmode) + return; + + if (side_effects_p (dest)) + return; + + /* If we are handling exceptions, we must be careful with memory references + that may trap. If we are not, the behavior is undefined, so we may just + continue. */ + if (flag_non_call_exceptions && may_trap_p (dest)) + return; + + /* Even if the destination cannot trap, the source may. In this case we'd + need to handle updating the REG_EH_REGION note. */ + if (find_reg_note (insn, REG_EH_REGION, NULL_RTX)) + return; + + /* Make sure that the SET_SRC of this store insns can be assigned to + a register, or we will fail later on in replace_store_insn, which + assumes that we can do this. But sometimes the target machine has + oddities like MEM read-modify-write instruction. See for example + PR24257. */ + if (!can_assign_to_reg_p (SET_SRC (set))) + return; + + ptr = ldst_entry (dest); + if (!ptr->pattern_regs) + ptr->pattern_regs = extract_mentioned_regs (dest); + + /* Do not check for anticipatability if we either found one anticipatable + store already, or tested for one and found out that it was killed. */ + check_anticipatable = 0; + if (!ANTIC_STORE_LIST (ptr)) + check_anticipatable = 1; + else + { + tmp = XEXP (ANTIC_STORE_LIST (ptr), 0); + if (tmp != NULL_RTX + && BLOCK_FOR_INSN (tmp) != bb) + check_anticipatable = 1; + } + if (check_anticipatable) + { + if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before)) + tmp = NULL_RTX; + else + tmp = insn; + ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp, + ANTIC_STORE_LIST (ptr)); + } + + /* It is not necessary to check whether store is available if we did + it successfully before; if we failed before, do not bother to check + until we reach the insn that caused us to fail. */ + check_available = 0; + if (!AVAIL_STORE_LIST (ptr)) + check_available = 1; + else + { + tmp = XEXP (AVAIL_STORE_LIST (ptr), 0); + if (BLOCK_FOR_INSN (tmp) != bb) + check_available = 1; + } + if (check_available) + { + /* Check that we have already reached the insn at that the check + failed last time. */ + if (LAST_AVAIL_CHECK_FAILURE (ptr)) + { + for (tmp = BB_END (bb); + tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr); + tmp = PREV_INSN (tmp)) + continue; + if (tmp == insn) + check_available = 0; + } + else + check_available = store_killed_after (dest, ptr->pattern_regs, insn, + bb, regs_set_after, + &LAST_AVAIL_CHECK_FAILURE (ptr)); + } + if (!check_available) + AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr)); +} + +/* Find available and anticipatable stores. */ + +static int +compute_store_table (void) +{ + int ret; + basic_block bb; + unsigned regno; + rtx insn, pat, tmp; + int *last_set_in, *already_set; + struct ls_expr * ptr, **prev_next_ptr_ptr; + + max_gcse_regno = max_reg_num (); + + reg_set_in_block = sbitmap_vector_alloc (last_basic_block, + max_gcse_regno); + sbitmap_vector_zero (reg_set_in_block, last_basic_block); + pre_ldst_mems = 0; + pre_ldst_table = htab_create (13, pre_ldst_expr_hash, + pre_ldst_expr_eq, NULL); + last_set_in = XCNEWVEC (int, max_gcse_regno); + already_set = XNEWVEC (int, max_gcse_regno); + + /* Find all the stores we care about. */ + FOR_EACH_BB (bb) + { + /* First compute the registers set in this block. */ + regvec = last_set_in; + + FOR_BB_INSNS (bb, insn) + { + if (! INSN_P (insn)) + continue; + + if (CALL_P (insn)) + { + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)) + { + last_set_in[regno] = INSN_UID (insn); + SET_BIT (reg_set_in_block[bb->index], regno); + } + } + + pat = PATTERN (insn); + compute_store_table_current_insn = insn; + note_stores (pat, reg_set_info, reg_set_in_block[bb->index]); + } + + /* Now find the stores. */ + memset (already_set, 0, sizeof (int) * max_gcse_regno); + regvec = already_set; + FOR_BB_INSNS (bb, insn) + { + if (! INSN_P (insn)) + continue; + + if (CALL_P (insn)) + { + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)) + already_set[regno] = 1; + } + + pat = PATTERN (insn); + note_stores (pat, reg_set_info, NULL); + + /* Now that we've marked regs, look for stores. */ + find_moveable_store (insn, already_set, last_set_in); + + /* Unmark regs that are no longer set. */ + compute_store_table_current_insn = insn; + note_stores (pat, reg_clear_last_set, last_set_in); + if (CALL_P (insn)) + { + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno) + && last_set_in[regno] == INSN_UID (insn)) + last_set_in[regno] = 0; + } + } + +#ifdef ENABLE_CHECKING + /* last_set_in should now be all-zero. */ + for (regno = 0; regno < max_gcse_regno; regno++) + gcc_assert (!last_set_in[regno]); +#endif + + /* Clear temporary marks. */ + for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr)) + { + LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX; + if (ANTIC_STORE_LIST (ptr) + && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX) + ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1); + } + } + + /* Remove the stores that are not available anywhere, as there will + be no opportunity to optimize them. */ + for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems; + ptr != NULL; + ptr = *prev_next_ptr_ptr) + { + if (!AVAIL_STORE_LIST (ptr)) + { + *prev_next_ptr_ptr = ptr->next; + htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index); + free_ldst_entry (ptr); + } + else + prev_next_ptr_ptr = &ptr->next; + } + + ret = enumerate_ldsts (); + + if (dump_file) + { + fprintf (dump_file, "ST_avail and ST_antic (shown under loads..)\n"); + print_ldst_list (dump_file); + } + + free (last_set_in); + free (already_set); + return ret; +} + +/* Check to see if the load X is aliased with STORE_PATTERN. + AFTER is true if we are checking the case when STORE_PATTERN occurs + after the X. */ + +static bool +load_kills_store (rtx x, rtx store_pattern, int after) +{ + if (after) + return anti_dependence (x, store_pattern); + else + return true_dependence (store_pattern, GET_MODE (store_pattern), x, + rtx_addr_varies_p); +} + +/* Go through the entire insn X, looking for any loads which might alias + STORE_PATTERN. Return true if found. + AFTER is true if we are checking the case when STORE_PATTERN occurs + after the insn X. */ + +static bool +find_loads (rtx x, rtx store_pattern, int after) +{ + const char * fmt; + int i, j; + int ret = false; + + if (!x) + return false; + + if (GET_CODE (x) == SET) + x = SET_SRC (x); + + if (MEM_P (x)) + { + if (load_kills_store (x, store_pattern, after)) + return true; + } + + /* Recursively process the insn. */ + fmt = GET_RTX_FORMAT (GET_CODE (x)); + + for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--) + { + if (fmt[i] == 'e') + ret |= find_loads (XEXP (x, i), store_pattern, after); + else if (fmt[i] == 'E') + for (j = XVECLEN (x, i) - 1; j >= 0; j--) + ret |= find_loads (XVECEXP (x, i, j), store_pattern, after); + } + return ret; +} + +/* Check if INSN kills the store pattern X (is aliased with it). + AFTER is true if we are checking the case when store X occurs + after the insn. Return true if it does. */ + +static bool +store_killed_in_insn (rtx x, rtx x_regs, rtx insn, int after) +{ + rtx reg, base, note; + + if (!INSN_P (insn)) + return false; + + if (CALL_P (insn)) + { + /* A normal or pure call might read from pattern, + but a const call will not. */ + if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn)) + return true; + + /* But even a const call reads its parameters. Check whether the + base of some of registers used in mem is stack pointer. */ + for (reg = x_regs; reg; reg = XEXP (reg, 1)) + { + base = find_base_term (XEXP (reg, 0)); + if (!base + || (GET_CODE (base) == ADDRESS + && GET_MODE (base) == Pmode + && XEXP (base, 0) == stack_pointer_rtx)) + return true; + } + + return false; + } + + if (GET_CODE (PATTERN (insn)) == SET) + { + rtx pat = PATTERN (insn); + rtx dest = SET_DEST (pat); + + if (GET_CODE (dest) == ZERO_EXTRACT) + dest = XEXP (dest, 0); + + /* Check for memory stores to aliased objects. */ + if (MEM_P (dest) + && !expr_equiv_p (dest, x)) + { + if (after) + { + if (output_dependence (dest, x)) + return true; + } + else + { + if (output_dependence (x, dest)) + return true; + } + } + if (find_loads (SET_SRC (pat), x, after)) + return true; + } + else if (find_loads (PATTERN (insn), x, after)) + return true; + + /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory + location aliased with X, then this insn kills X. */ + note = find_reg_equal_equiv_note (insn); + if (! note) + return false; + note = XEXP (note, 0); + + /* However, if the note represents a must alias rather than a may + alias relationship, then it does not kill X. */ + if (expr_equiv_p (note, x)) + return false; + + /* See if there are any aliased loads in the note. */ + return find_loads (note, x, after); +} + +/* Returns true if the expression X is loaded or clobbered on or after INSN + within basic block BB. REGS_SET_AFTER is bitmap of registers set in + or after the insn. X_REGS is list of registers mentioned in X. If the store + is killed, return the last insn in that it occurs in FAIL_INSN. */ + +static bool +store_killed_after (rtx x, rtx x_regs, rtx insn, basic_block bb, + int *regs_set_after, rtx *fail_insn) +{ + rtx last = BB_END (bb), act; + + if (!store_ops_ok (x_regs, regs_set_after)) + { + /* We do not know where it will happen. */ + if (fail_insn) + *fail_insn = NULL_RTX; + return true; + } + + /* Scan from the end, so that fail_insn is determined correctly. */ + for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act)) + if (store_killed_in_insn (x, x_regs, act, false)) + { + if (fail_insn) + *fail_insn = act; + return true; + } + + return false; +} + +/* Returns true if the expression X is loaded or clobbered on or before INSN + within basic block BB. X_REGS is list of registers mentioned in X. + REGS_SET_BEFORE is bitmap of registers set before or in this insn. */ +static bool +store_killed_before (rtx x, rtx x_regs, rtx insn, basic_block bb, + int *regs_set_before) +{ + rtx first = BB_HEAD (bb); + + if (!store_ops_ok (x_regs, regs_set_before)) + return true; + + for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn)) + if (store_killed_in_insn (x, x_regs, insn, true)) + return true; + + return false; +} + +/* Fill in available, anticipatable, transparent and kill vectors in + STORE_DATA, based on lists of available and anticipatable stores. */ +static void +build_store_vectors (void) +{ + basic_block bb; + int *regs_set_in_block; + rtx insn, st; + struct ls_expr * ptr; + unsigned regno; + + /* Build the gen_vector. This is any store in the table which is not killed + by aliasing later in its block. */ + ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores); + sbitmap_vector_zero (ae_gen, last_basic_block); + + st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores); + sbitmap_vector_zero (st_antloc, last_basic_block); + + for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr)) + { + for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1)) + { + insn = XEXP (st, 0); + bb = BLOCK_FOR_INSN (insn); + + /* If we've already seen an available expression in this block, + we can delete this one (It occurs earlier in the block). We'll + copy the SRC expression to an unused register in case there + are any side effects. */ + if (TEST_BIT (ae_gen[bb->index], ptr->index)) + { + rtx r = gen_reg_rtx (GET_MODE (ptr->pattern)); + if (dump_file) + fprintf (dump_file, "Removing redundant store:\n"); + replace_store_insn (r, XEXP (st, 0), bb, ptr); + continue; + } + SET_BIT (ae_gen[bb->index], ptr->index); + } + + for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1)) + { + insn = XEXP (st, 0); + bb = BLOCK_FOR_INSN (insn); + SET_BIT (st_antloc[bb->index], ptr->index); + } + } + + ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores); + sbitmap_vector_zero (ae_kill, last_basic_block); + + transp = sbitmap_vector_alloc (last_basic_block, num_stores); + sbitmap_vector_zero (transp, last_basic_block); + regs_set_in_block = XNEWVEC (int, max_gcse_regno); + + FOR_EACH_BB (bb) + { + for (regno = 0; regno < max_gcse_regno; regno++) + regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno); + + for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr)) + { + if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb), + bb, regs_set_in_block, NULL)) + { + /* It should not be necessary to consider the expression + killed if it is both anticipatable and available. */ + if (!TEST_BIT (st_antloc[bb->index], ptr->index) + || !TEST_BIT (ae_gen[bb->index], ptr->index)) + SET_BIT (ae_kill[bb->index], ptr->index); + } + else + SET_BIT (transp[bb->index], ptr->index); + } + } + + free (regs_set_in_block); + + if (dump_file) + { + dump_sbitmap_vector (dump_file, "st_antloc", "", st_antloc, last_basic_block); + dump_sbitmap_vector (dump_file, "st_kill", "", ae_kill, last_basic_block); + dump_sbitmap_vector (dump_file, "Transpt", "", transp, last_basic_block); + dump_sbitmap_vector (dump_file, "st_avloc", "", ae_gen, last_basic_block); + } +} + +/* Insert an instruction at the beginning of a basic block, and update + the BB_HEAD if needed. */ + +static void +insert_insn_start_bb (rtx insn, basic_block bb) +{ + /* Insert at start of successor block. */ + rtx prev = PREV_INSN (BB_HEAD (bb)); + rtx before = BB_HEAD (bb); + while (before != 0) + { + if (! LABEL_P (before) + && (! NOTE_P (before) + || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK)) + break; + prev = before; + if (prev == BB_END (bb)) + break; + before = NEXT_INSN (before); + } + + insn = emit_insn_after_noloc (insn, prev); + + if (dump_file) + { + fprintf (dump_file, "STORE_MOTION insert store at start of BB %d:\n", + bb->index); + print_inline_rtx (dump_file, insn, 6); + fprintf (dump_file, "\n"); + } +} + +/* This routine will insert a store on an edge. EXPR is the ldst entry for + the memory reference, and E is the edge to insert it on. Returns nonzero + if an edge insertion was performed. */ + +static int +insert_store (struct ls_expr * expr, edge e) +{ + rtx reg, insn; + basic_block bb; + edge tmp; + edge_iterator ei; + + /* We did all the deleted before this insert, so if we didn't delete a + store, then we haven't set the reaching reg yet either. */ + if (expr->reaching_reg == NULL_RTX) + return 0; + + if (e->flags & EDGE_FAKE) + return 0; + + reg = expr->reaching_reg; + insn = gen_move_insn (copy_rtx (expr->pattern), reg); + + /* If we are inserting this expression on ALL predecessor edges of a BB, + insert it at the start of the BB, and reset the insert bits on the other + edges so we don't try to insert it on the other edges. */ + bb = e->dest; + FOR_EACH_EDGE (tmp, ei, e->dest->preds) + if (!(tmp->flags & EDGE_FAKE)) + { + int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest); + + gcc_assert (index != EDGE_INDEX_NO_EDGE); + if (! TEST_BIT (pre_insert_map[index], expr->index)) + break; + } + + /* If tmp is NULL, we found an insertion on every edge, blank the + insertion vector for these edges, and insert at the start of the BB. */ + if (!tmp && bb != EXIT_BLOCK_PTR) + { + FOR_EACH_EDGE (tmp, ei, e->dest->preds) + { + int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest); + RESET_BIT (pre_insert_map[index], expr->index); + } + insert_insn_start_bb (insn, bb); + return 0; + } + + /* We can't put stores in the front of blocks pointed to by abnormal + edges since that may put a store where one didn't used to be. */ + gcc_assert (!(e->flags & EDGE_ABNORMAL)); + + insert_insn_on_edge (insn, e); + + if (dump_file) + { + fprintf (dump_file, "STORE_MOTION insert insn on edge (%d, %d):\n", + e->src->index, e->dest->index); + print_inline_rtx (dump_file, insn, 6); + fprintf (dump_file, "\n"); + } + + return 1; +} + +/* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the + memory location in SMEXPR set in basic block BB. + + This could be rather expensive. */ + +static void +remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr) +{ + edge_iterator *stack, ei; + int sp; + edge act; + sbitmap visited = sbitmap_alloc (last_basic_block); + rtx last, insn, note; + rtx mem = smexpr->pattern; + + stack = XNEWVEC (edge_iterator, n_basic_blocks); + sp = 0; + ei = ei_start (bb->succs); + + sbitmap_zero (visited); + + act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL); + while (1) + { + if (!act) + { + if (!sp) + { + free (stack); + sbitmap_free (visited); + return; + } + act = ei_edge (stack[--sp]); + } + bb = act->dest; + + if (bb == EXIT_BLOCK_PTR + || TEST_BIT (visited, bb->index)) + { + if (!ei_end_p (ei)) + ei_next (&ei); + act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL; + continue; + } + SET_BIT (visited, bb->index); + + if (TEST_BIT (st_antloc[bb->index], smexpr->index)) + { + for (last = ANTIC_STORE_LIST (smexpr); + BLOCK_FOR_INSN (XEXP (last, 0)) != bb; + last = XEXP (last, 1)) + continue; + last = XEXP (last, 0); + } + else + last = NEXT_INSN (BB_END (bb)); + + for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn)) + if (INSN_P (insn)) + { + note = find_reg_equal_equiv_note (insn); + if (!note || !expr_equiv_p (XEXP (note, 0), mem)) + continue; + + if (dump_file) + fprintf (dump_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n", + INSN_UID (insn)); + remove_note (insn, note); + } + + if (!ei_end_p (ei)) + ei_next (&ei); + act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL; + + if (EDGE_COUNT (bb->succs) > 0) + { + if (act) + stack[sp++] = ei; + ei = ei_start (bb->succs); + act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL); + } + } +} + +/* This routine will replace a store with a SET to a specified register. */ + +static void +replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr) +{ + rtx insn, mem, note, set, ptr, pair; + + mem = smexpr->pattern; + insn = gen_move_insn (reg, SET_SRC (single_set (del))); + insn = emit_insn_after (insn, del); + + if (dump_file) + { + fprintf (dump_file, + "STORE_MOTION delete insn in BB %d:\n ", bb->index); + print_inline_rtx (dump_file, del, 6); + fprintf (dump_file, "\nSTORE MOTION replaced with insn:\n "); + print_inline_rtx (dump_file, insn, 6); + fprintf (dump_file, "\n"); + } + + for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1)) + if (XEXP (ptr, 0) == del) + { + XEXP (ptr, 0) = insn; + break; + } + + /* Move the notes from the deleted insn to its replacement, and patch + up the LIBCALL notes. */ + REG_NOTES (insn) = REG_NOTES (del); + + note = find_reg_note (insn, REG_RETVAL, NULL_RTX); + if (note) + { + pair = XEXP (note, 0); + note = find_reg_note (pair, REG_LIBCALL, NULL_RTX); + XEXP (note, 0) = insn; + } + note = find_reg_note (insn, REG_LIBCALL, NULL_RTX); + if (note) + { + pair = XEXP (note, 0); + note = find_reg_note (pair, REG_RETVAL, NULL_RTX); + XEXP (note, 0) = insn; + } + + delete_insn (del); + + /* Now we must handle REG_EQUAL notes whose contents is equal to the mem; + they are no longer accurate provided that they are reached by this + definition, so drop them. */ + for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn)) + if (INSN_P (insn)) + { + set = single_set (insn); + if (!set) + continue; + if (expr_equiv_p (SET_DEST (set), mem)) + return; + note = find_reg_equal_equiv_note (insn); + if (!note || !expr_equiv_p (XEXP (note, 0), mem)) + continue; + + if (dump_file) + fprintf (dump_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n", + INSN_UID (insn)); + remove_note (insn, note); + } + remove_reachable_equiv_notes (bb, smexpr); +} + + +/* Delete a store, but copy the value that would have been stored into + the reaching_reg for later storing. */ + +static void +delete_store (struct ls_expr * expr, basic_block bb) +{ + rtx reg, i, del; + + if (expr->reaching_reg == NULL_RTX) + expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern)); + + reg = expr->reaching_reg; + + for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1)) + { + del = XEXP (i, 0); + if (BLOCK_FOR_INSN (del) == bb) + { + /* We know there is only one since we deleted redundant + ones during the available computation. */ + replace_store_insn (reg, del, bb, expr); + break; + } + } +} + +/* Free memory used by store motion. */ + +static void +free_store_memory (void) +{ + free_ldst_mems (); + + if (ae_gen) + sbitmap_vector_free (ae_gen); + if (ae_kill) + sbitmap_vector_free (ae_kill); + if (transp) + sbitmap_vector_free (transp); + if (st_antloc) + sbitmap_vector_free (st_antloc); + if (pre_insert_map) + sbitmap_vector_free (pre_insert_map); + if (pre_delete_map) + sbitmap_vector_free (pre_delete_map); + if (reg_set_in_block) + sbitmap_vector_free (reg_set_in_block); + + ae_gen = ae_kill = transp = st_antloc = NULL; + pre_insert_map = pre_delete_map = reg_set_in_block = NULL; +} + +/* Perform store motion. Much like gcse, except we move expressions the + other way by looking at the flowgraph in reverse. */ + +static void +store_motion (void) +{ + basic_block bb; + int x; + struct ls_expr * ptr; + int update_flow = 0; + + if (dump_file) + { + fprintf (dump_file, "before store motion\n"); + print_rtl (dump_file, get_insns ()); + } + + init_alias_analysis (); + + /* Find all the available and anticipatable stores. */ + num_stores = compute_store_table (); + if (num_stores == 0) + { + htab_delete (pre_ldst_table); + pre_ldst_table = NULL; + sbitmap_vector_free (reg_set_in_block); + end_alias_analysis (); + return; + } + + /* Now compute kill & transp vectors. */ + build_store_vectors (); + add_noreturn_fake_exit_edges (); + connect_infinite_loops_to_exit (); + + edge_list = pre_edge_rev_lcm (num_stores, transp, ae_gen, + st_antloc, ae_kill, &pre_insert_map, + &pre_delete_map); + + /* Now we want to insert the new stores which are going to be needed. */ + for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr)) + { + /* If any of the edges we have above are abnormal, we can't move this + store. */ + for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--) + if (TEST_BIT (pre_insert_map[x], ptr->index) + && (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL)) + break; + + if (x >= 0) + { + if (dump_file != NULL) + fprintf (dump_file, + "Can't replace store %d: abnormal edge from %d to %d\n", + ptr->index, INDEX_EDGE (edge_list, x)->src->index, + INDEX_EDGE (edge_list, x)->dest->index); + continue; + } + + /* Now we want to insert the new stores which are going to be needed. */ + + FOR_EACH_BB (bb) + if (TEST_BIT (pre_delete_map[bb->index], ptr->index)) + delete_store (ptr, bb); + + for (x = 0; x < NUM_EDGES (edge_list); x++) + if (TEST_BIT (pre_insert_map[x], ptr->index)) + update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x)); + } + + if (update_flow) + commit_edge_insertions (); + + free_store_memory (); + free_edge_list (edge_list); + remove_fake_exit_edges (); + end_alias_analysis (); +} + + +/* Entry point for jump bypassing optimization pass. */ + +static int +bypass_jumps (void) +{ + int changed; + + /* We do not construct an accurate cfg in functions which call + setjmp, so just punt to be safe. */ + if (current_function_calls_setjmp) + return 0; + + /* Identify the basic block information for this function, including + successors and predecessors. */ + max_gcse_regno = max_reg_num (); + + if (dump_file) + dump_flow_info (dump_file, dump_flags); + + /* Return if there's nothing to do, or it is too expensive. */ + if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1 + || is_too_expensive (_ ("jump bypassing disabled"))) + return 0; + + gcc_obstack_init (&gcse_obstack); + bytes_used = 0; + + /* We need alias. */ + init_alias_analysis (); + + /* Record where pseudo-registers are set. This data is kept accurate + during each pass. ??? We could also record hard-reg information here + [since it's unchanging], however it is currently done during hash table + computation. + + It may be tempting to compute MEM set information here too, but MEM sets + will be subject to code motion one day and thus we need to compute + information about memory sets when we build the hash tables. */ + + alloc_reg_set_mem (max_gcse_regno); + compute_sets (); + + max_gcse_regno = max_reg_num (); + alloc_gcse_mem (); + changed = one_cprop_pass (MAX_GCSE_PASSES + 2, true, true); + free_gcse_mem (); + + if (dump_file) + { + fprintf (dump_file, "BYPASS of %s: %d basic blocks, ", + current_function_name (), n_basic_blocks); + fprintf (dump_file, "%d bytes\n\n", bytes_used); + } + + obstack_free (&gcse_obstack, NULL); + free_reg_set_mem (); + + /* We are finished with alias. */ + end_alias_analysis (); + allocate_reg_info (max_reg_num (), FALSE, FALSE); + + return changed; +} + +/* Return true if the graph is too expensive to optimize. PASS is the + optimization about to be performed. */ + +static bool +is_too_expensive (const char *pass) +{ + /* Trying to perform global optimizations on flow graphs which have + a high connectivity will take a long time and is unlikely to be + particularly useful. + + In normal circumstances a cfg should have about twice as many + edges as blocks. But we do not want to punish small functions + which have a couple switch statements. Rather than simply + threshold the number of blocks, uses something with a more + graceful degradation. */ + if (n_edges > 20000 + n_basic_blocks * 4) + { + warning (OPT_Wdisabled_optimization, + "%s: %d basic blocks and %d edges/basic block", + pass, n_basic_blocks, n_edges / n_basic_blocks); + + return true; + } + + /* If allocating memory for the cprop bitmap would take up too much + storage it's better just to disable the optimization. */ + if ((n_basic_blocks + * SBITMAP_SET_SIZE (max_reg_num ()) + * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY) + { + warning (OPT_Wdisabled_optimization, + "%s: %d basic blocks and %d registers", + pass, n_basic_blocks, max_reg_num ()); + + return true; + } + + return false; +} + +static bool +gate_handle_jump_bypass (void) +{ + return optimize > 0 && flag_gcse; +} + +/* Perform jump bypassing and control flow optimizations. */ +static unsigned int +rest_of_handle_jump_bypass (void) +{ + cleanup_cfg (CLEANUP_EXPENSIVE); + reg_scan (get_insns (), max_reg_num ()); + + if (bypass_jumps ()) + { + rebuild_jump_labels (get_insns ()); + cleanup_cfg (CLEANUP_EXPENSIVE); + delete_trivially_dead_insns (get_insns (), max_reg_num ()); + } + return 0; +} + +struct tree_opt_pass pass_jump_bypass = +{ + "bypass", /* name */ + gate_handle_jump_bypass, /* gate */ + rest_of_handle_jump_bypass, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + TV_BYPASS, /* tv_id */ + 0, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func | + TODO_ggc_collect | TODO_verify_flow, /* todo_flags_finish */ + 'G' /* letter */ +}; + + +static bool +gate_handle_gcse (void) +{ + return optimize > 0 && flag_gcse; +} + + +static unsigned int +rest_of_handle_gcse (void) +{ + int save_csb, save_cfj; + int tem2 = 0, tem; + + tem = gcse_main (get_insns ()); + rebuild_jump_labels (get_insns ()); + delete_trivially_dead_insns (get_insns (), max_reg_num ()); + + save_csb = flag_cse_skip_blocks; + save_cfj = flag_cse_follow_jumps; + flag_cse_skip_blocks = flag_cse_follow_jumps = 0; + + /* If -fexpensive-optimizations, re-run CSE to clean up things done + by gcse. */ + if (flag_expensive_optimizations) + { + timevar_push (TV_CSE); + reg_scan (get_insns (), max_reg_num ()); + tem2 = cse_main (get_insns (), max_reg_num ()); + purge_all_dead_edges (); + delete_trivially_dead_insns (get_insns (), max_reg_num ()); + timevar_pop (TV_CSE); + cse_not_expected = !flag_rerun_cse_after_loop; + } + + /* If gcse or cse altered any jumps, rerun jump optimizations to clean + things up. */ + if (tem || tem2) + { + timevar_push (TV_JUMP); + rebuild_jump_labels (get_insns ()); + delete_dead_jumptables (); + cleanup_cfg (CLEANUP_EXPENSIVE); + timevar_pop (TV_JUMP); + } + + flag_cse_skip_blocks = save_csb; + flag_cse_follow_jumps = save_cfj; + return 0; +} + +struct tree_opt_pass pass_gcse = +{ + "gcse1", /* name */ + gate_handle_gcse, /* gate */ + rest_of_handle_gcse, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + TV_GCSE, /* tv_id */ + 0, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func | + TODO_verify_flow | TODO_ggc_collect, /* todo_flags_finish */ + 'G' /* letter */ +}; + + +#include "gt-gcse.h" |