summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/config/frv/frv.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/gcc/config/frv/frv.c')
-rw-r--r--contrib/gcc/config/frv/frv.c9788
1 files changed, 9788 insertions, 0 deletions
diff --git a/contrib/gcc/config/frv/frv.c b/contrib/gcc/config/frv/frv.c
new file mode 100644
index 0000000..d09533a
--- /dev/null
+++ b/contrib/gcc/config/frv/frv.c
@@ -0,0 +1,9788 @@
+/* Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
+ Contributed by Red Hat, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+#include "config.h"
+#include "system.h"
+#include "rtl.h"
+#include "tree.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "real.h"
+#include "insn-config.h"
+#include "conditions.h"
+#include "insn-flags.h"
+#include "output.h"
+#include "insn-attr.h"
+#include "flags.h"
+#include "recog.h"
+#include "reload.h"
+#include "expr.h"
+#include "obstack.h"
+#include "except.h"
+#include "function.h"
+#include "optabs.h"
+#include "toplev.h"
+#include "basic-block.h"
+#include "tm_p.h"
+#include "ggc.h"
+#include <ctype.h>
+#include "target.h"
+#include "target-def.h"
+
+#ifndef FRV_INLINE
+#define FRV_INLINE inline
+#endif
+
+/* Temporary register allocation support structure. */
+typedef struct frv_tmp_reg_struct
+ {
+ HARD_REG_SET regs; /* possible registers to allocate */
+ int next_reg[N_REG_CLASSES]; /* next register to allocate per class */
+ }
+frv_tmp_reg_t;
+
+/* Register state information for VLIW re-packing phase. These values must fit
+ within an unsigned char. */
+#define REGSTATE_DEAD 0x00 /* register is currently dead */
+#define REGSTATE_CC_MASK 0x07 /* Mask to isolate CCn for cond exec */
+#define REGSTATE_LIVE 0x08 /* register is live */
+#define REGSTATE_MODIFIED 0x10 /* reg modified in current VLIW insn */
+#define REGSTATE_IF_TRUE 0x20 /* reg modified in cond exec true */
+#define REGSTATE_IF_FALSE 0x40 /* reg modified in cond exec false */
+#define REGSTATE_UNUSED 0x80 /* bit for hire */
+#define REGSTATE_MASK 0xff /* mask for the bits to set */
+
+ /* conditional expression used */
+#define REGSTATE_IF_EITHER (REGSTATE_IF_TRUE | REGSTATE_IF_FALSE)
+
+/* the following is not sure in the reg_state bytes, so can have a larger value
+ than 0xff. */
+#define REGSTATE_CONDJUMP 0x100 /* conditional jump done in VLIW insn */
+
+/* Used in frv_frame_accessor_t to indicate the direction of a register-to-
+ memory move. */
+enum frv_stack_op
+{
+ FRV_LOAD,
+ FRV_STORE
+};
+
+/* Information required by frv_frame_access. */
+typedef struct
+{
+ /* This field is FRV_LOAD if registers are to be loaded from the stack and
+ FRV_STORE if they should be stored onto the stack. FRV_STORE implies
+ the move is being done by the prologue code while FRV_LOAD implies it
+ is being done by the epilogue. */
+ enum frv_stack_op op;
+
+ /* The base register to use when accessing the stack. This may be the
+ frame pointer, stack pointer, or a temporary. The choice of register
+ depends on which part of the frame is being accessed and how big the
+ frame is. */
+ rtx base;
+
+ /* The offset of BASE from the bottom of the current frame, in bytes. */
+ int base_offset;
+} frv_frame_accessor_t;
+
+/* Define the information needed to generate branch and scc insns. This is
+ stored from the compare operation. */
+rtx frv_compare_op0;
+rtx frv_compare_op1;
+
+/* Conditional execution support gathered together in one structure */
+typedef struct
+ {
+ /* Linked list of insns to add if the conditional execution conversion was
+ successful. Each link points to an EXPR_LIST which points to the pattern
+ of the insn to add, and the insn to be inserted before. */
+ rtx added_insns_list;
+
+ /* Identify which registers are safe to allocate for if conversions to
+ conditional execution. We keep the last allocated register in the
+ register classes between COND_EXEC statements. This will mean we allocate
+ different registers for each different COND_EXEC group if we can. This
+ might allow the scheduler to intermix two different COND_EXEC sections. */
+ frv_tmp_reg_t tmp_reg;
+
+ /* For nested IFs, identify which CC registers are used outside of setting
+ via a compare isnsn, and using via a check insn. This will allow us to
+ know if we can rewrite the register to use a different register that will
+ be paired with the CR register controlling the nested IF-THEN blocks. */
+ HARD_REG_SET nested_cc_ok_rewrite;
+
+ /* Temporary registers allocated to hold constants during conditional
+ execution. */
+ rtx scratch_regs[FIRST_PSEUDO_REGISTER];
+
+ /* Current number of temp registers available. */
+ int cur_scratch_regs;
+
+ /* Number of nested conditional execution blocks */
+ int num_nested_cond_exec;
+
+ /* Map of insns that set up constants in scratch registers. */
+ bitmap scratch_insns_bitmap;
+
+ /* Conditional execution test register (CC0..CC7) */
+ rtx cr_reg;
+
+ /* Conditional execution compare register that is paired with cr_reg, so that
+ nested compares can be done. The csubcc and caddcc instructions don't
+ have enough bits to specify both a CC register to be set and a CR register
+ to do the test on, so the same bit number is used for both. Needless to
+ say, this is rather inconvient for GCC. */
+ rtx nested_cc_reg;
+
+ /* Extra CR registers used for &&, ||. */
+ rtx extra_int_cr;
+ rtx extra_fp_cr;
+
+ /* Previous CR used in nested if, to make sure we are dealing with the same
+ nested if as the previous statement. */
+ rtx last_nested_if_cr;
+ }
+frv_ifcvt_t;
+
+static /* GTY(()) */ frv_ifcvt_t frv_ifcvt;
+
+/* Map register number to smallest register class. */
+enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
+
+/* Map class letter into register class */
+enum reg_class reg_class_from_letter[256];
+
+/* Cached value of frv_stack_info */
+static frv_stack_t *frv_stack_cache = (frv_stack_t *)0;
+
+/* -mbranch-cost= support */
+const char *frv_branch_cost_string;
+int frv_branch_cost_int = DEFAULT_BRANCH_COST;
+
+/* -mcpu= support */
+const char *frv_cpu_string; /* -mcpu= option */
+frv_cpu_t frv_cpu_type = CPU_TYPE; /* value of -mcpu= */
+
+/* -mcond-exec-insns= support */
+const char *frv_condexec_insns_str; /* -mcond-exec-insns= option */
+int frv_condexec_insns = DEFAULT_CONDEXEC_INSNS; /* value of -mcond-exec-insns*/
+
+/* -mcond-exec-temps= support */
+const char *frv_condexec_temps_str; /* -mcond-exec-temps= option */
+int frv_condexec_temps = DEFAULT_CONDEXEC_TEMPS; /* value of -mcond-exec-temps*/
+
+/* -msched-lookahead=n */
+const char *frv_sched_lookahead_str; /* -msched-lookahead=n */
+int frv_sched_lookahead = 4; /* -msched-lookahead=n */
+
+/* Forward references */
+static int frv_default_flags_for_cpu PARAMS ((void));
+static int frv_string_begins_with PARAMS ((tree, const char *));
+static FRV_INLINE int symbol_ref_small_data_p PARAMS ((rtx));
+static FRV_INLINE int const_small_data_p PARAMS ((rtx));
+static FRV_INLINE int plus_small_data_p PARAMS ((rtx, rtx));
+static void frv_print_operand_memory_reference_reg
+ PARAMS ((FILE *, rtx));
+static void frv_print_operand_memory_reference PARAMS ((FILE *, rtx, int));
+static int frv_print_operand_jump_hint PARAMS ((rtx));
+static FRV_INLINE int frv_regno_ok_for_base_p PARAMS ((int, int));
+static rtx single_set_pattern PARAMS ((rtx));
+static int frv_function_contains_far_jump PARAMS ((void));
+static rtx frv_alloc_temp_reg PARAMS ((frv_tmp_reg_t *,
+ enum reg_class,
+ enum machine_mode,
+ int, int));
+static rtx frv_frame_offset_rtx PARAMS ((int));
+static rtx frv_frame_mem PARAMS ((enum machine_mode,
+ rtx, int));
+static rtx frv_dwarf_store PARAMS ((rtx, int));
+static void frv_frame_insn PARAMS ((rtx, rtx));
+static void frv_frame_access PARAMS ((frv_frame_accessor_t*,
+ rtx, int));
+static void frv_frame_access_multi PARAMS ((frv_frame_accessor_t*,
+ frv_stack_t *, int));
+static void frv_frame_access_standard_regs PARAMS ((enum frv_stack_op,
+ frv_stack_t *));
+static struct machine_function *frv_init_machine_status PARAMS ((void));
+static int frv_legitimate_memory_operand PARAMS ((rtx,
+ enum machine_mode,
+ int));
+static rtx frv_int_to_acc PARAMS ((enum insn_code,
+ int, rtx));
+static enum machine_mode frv_matching_accg_mode PARAMS ((enum machine_mode));
+static rtx frv_read_argument PARAMS ((tree *));
+static int frv_check_constant_argument PARAMS ((enum insn_code,
+ int, rtx));
+static rtx frv_legitimize_target PARAMS ((enum insn_code, rtx));
+static rtx frv_legitimize_argument PARAMS ((enum insn_code,
+ int, rtx));
+static rtx frv_expand_set_builtin PARAMS ((enum insn_code,
+ tree, rtx));
+static rtx frv_expand_unop_builtin PARAMS ((enum insn_code,
+ tree, rtx));
+static rtx frv_expand_binop_builtin PARAMS ((enum insn_code,
+ tree, rtx));
+static rtx frv_expand_cut_builtin PARAMS ((enum insn_code,
+ tree, rtx));
+static rtx frv_expand_binopimm_builtin PARAMS ((enum insn_code,
+ tree, rtx));
+static rtx frv_expand_voidbinop_builtin PARAMS ((enum insn_code,
+ tree));
+static rtx frv_expand_voidtriop_builtin PARAMS ((enum insn_code,
+ tree));
+static rtx frv_expand_voidaccop_builtin PARAMS ((enum insn_code,
+ tree));
+static rtx frv_expand_mclracc_builtin PARAMS ((tree));
+static rtx frv_expand_mrdacc_builtin PARAMS ((enum insn_code,
+ tree));
+static rtx frv_expand_mwtacc_builtin PARAMS ((enum insn_code,
+ tree));
+static rtx frv_expand_noargs_builtin PARAMS ((enum insn_code));
+static rtx frv_emit_comparison PARAMS ((enum rtx_code, rtx,
+ rtx));
+static int frv_clear_registers_used PARAMS ((rtx *, void *));
+static void frv_ifcvt_add_insn PARAMS ((rtx, rtx, int));
+static rtx frv_ifcvt_rewrite_mem PARAMS ((rtx,
+ enum machine_mode,
+ rtx));
+static rtx frv_ifcvt_load_value PARAMS ((rtx, rtx));
+static void frv_registers_update PARAMS ((rtx, unsigned char [],
+ int [], int *, int));
+static int frv_registers_used_p PARAMS ((rtx, unsigned char [],
+ int));
+static int frv_registers_set_p PARAMS ((rtx, unsigned char [],
+ int));
+static void frv_pack_insns PARAMS ((void));
+static void frv_function_prologue PARAMS ((FILE *, HOST_WIDE_INT));
+static void frv_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT));
+static bool frv_assemble_integer PARAMS ((rtx, unsigned, int));
+static const char * frv_strip_name_encoding PARAMS ((const char *));
+static void frv_encode_section_info PARAMS ((tree, int));
+static void frv_init_builtins PARAMS ((void));
+static rtx frv_expand_builtin PARAMS ((tree, rtx, rtx, enum machine_mode, int));
+static bool frv_in_small_data_p PARAMS ((tree));
+static void frv_asm_output_mi_thunk
+ PARAMS ((FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT, tree));
+
+/* Initialize the GCC target structure. */
+#undef TARGET_ASM_FUNCTION_PROLOGUE
+#define TARGET_ASM_FUNCTION_PROLOGUE frv_function_prologue
+#undef TARGET_ASM_FUNCTION_EPILOGUE
+#define TARGET_ASM_FUNCTION_EPILOGUE frv_function_epilogue
+#undef TARGET_ASM_INTEGER
+#define TARGET_ASM_INTEGER frv_assemble_integer
+#undef TARGET_STRIP_NAME_ENCODING
+#define TARGET_STRIP_NAME_ENCODING frv_strip_name_encoding
+#undef TARGET_ENCODE_SECTION_INFO
+#define TARGET_ENCODE_SECTION_INFO frv_encode_section_info
+#undef TARGET_INIT_BUILTINS
+#define TARGET_INIT_BUILTINS frv_init_builtins
+#undef TARGET_EXPAND_BUILTIN
+#define TARGET_EXPAND_BUILTIN frv_expand_builtin
+#undef TARGET_IN_SMALL_DATA_P
+#define TARGET_IN_SMALL_DATA_P frv_in_small_data_p
+
+#undef TARGET_ASM_OUTPUT_MI_THUNK
+#define TARGET_ASM_OUTPUT_MI_THUNK frv_asm_output_mi_thunk
+#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
+#define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
+
+struct gcc_target targetm = TARGET_INITIALIZER;
+
+/* Given a SYMBOL_REF, return true if it points to small data. */
+
+static FRV_INLINE int
+symbol_ref_small_data_p (x)
+ rtx x;
+{
+ return SDATA_NAME_P (XSTR (x, 0));
+}
+
+/* Given a CONST, return true if the symbol_ref points to small data. */
+
+static FRV_INLINE int
+const_small_data_p (x)
+ rtx x;
+{
+ rtx x0, x1;
+
+ if (GET_CODE (XEXP (x, 0)) != PLUS)
+ return FALSE;
+
+ x0 = XEXP (XEXP (x, 0), 0);
+ if (GET_CODE (x0) != SYMBOL_REF || !SDATA_NAME_P (XSTR (x0, 0)))
+ return FALSE;
+
+ x1 = XEXP (XEXP (x, 0), 1);
+ if (GET_CODE (x1) != CONST_INT
+ || !IN_RANGE_P (INTVAL (x1), -2048, 2047))
+ return FALSE;
+
+ return TRUE;
+}
+
+/* Given a PLUS, return true if this is a small data reference. */
+
+static FRV_INLINE int
+plus_small_data_p (op0, op1)
+ rtx op0;
+ rtx op1;
+{
+ if (GET_MODE (op0) == SImode
+ && GET_CODE (op0) == REG
+ && REGNO (op0) == SDA_BASE_REG)
+ {
+ if (GET_CODE (op1) == SYMBOL_REF)
+ return symbol_ref_small_data_p (op1);
+
+ if (GET_CODE (op1) == CONST)
+ return const_small_data_p (op1);
+ }
+
+ return FALSE;
+}
+
+
+static int
+frv_default_flags_for_cpu ()
+{
+ switch (frv_cpu_type)
+ {
+ case FRV_CPU_GENERIC:
+ return MASK_DEFAULT_FRV;
+
+ case FRV_CPU_FR500:
+ case FRV_CPU_TOMCAT:
+ return MASK_DEFAULT_FR500;
+
+ case FRV_CPU_FR400:
+ return MASK_DEFAULT_FR400;
+
+ case FRV_CPU_FR300:
+ case FRV_CPU_SIMPLE:
+ return MASK_DEFAULT_SIMPLE;
+ }
+ abort ();
+}
+
+/* Sometimes certain combinations of command options do not make
+ sense on a particular target machine. You can define a macro
+ `OVERRIDE_OPTIONS' to take account of this. This macro, if
+ defined, is executed once just after all the command options have
+ been parsed.
+
+ Don't use this macro to turn on various extra optimizations for
+ `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
+
+void
+frv_override_options ()
+{
+ int regno, i;
+
+ /* Set the cpu type */
+ if (frv_cpu_string)
+ {
+ if (strcmp (frv_cpu_string, "simple") == 0)
+ frv_cpu_type = FRV_CPU_SIMPLE;
+
+ else if (strcmp (frv_cpu_string, "tomcat") == 0)
+ frv_cpu_type = FRV_CPU_TOMCAT;
+
+ else if (strncmp (frv_cpu_string, "fr", sizeof ("fr")-1) != 0)
+ error ("Unknown cpu: -mcpu=%s", frv_cpu_string);
+
+ else
+ {
+ const char *p = frv_cpu_string + sizeof ("fr") - 1;
+ if (strcmp (p, "500") == 0)
+ frv_cpu_type = FRV_CPU_FR500;
+
+ else if (strcmp (p, "400") == 0)
+ frv_cpu_type = FRV_CPU_FR400;
+
+ else if (strcmp (p, "300") == 0)
+ frv_cpu_type = FRV_CPU_FR300;
+
+ else if (strcmp (p, "v") == 0)
+ frv_cpu_type = FRV_CPU_GENERIC;
+
+ else
+ error ("Unknown cpu: -mcpu=%s", frv_cpu_string);
+ }
+ }
+
+ target_flags |= (frv_default_flags_for_cpu () & ~target_flags_explicit);
+
+ /* -mlibrary-pic sets -fPIC and -G0 and also suppresses warnings from the
+ linker about linking pic and non-pic code. */
+ if (TARGET_LIBPIC)
+ {
+ if (!flag_pic) /* -fPIC */
+ flag_pic = 2;
+
+ if (! g_switch_set) /* -G0 */
+ {
+ g_switch_set = 1;
+ g_switch_value = 0;
+ }
+ }
+
+ /* Both -fpic and -gdwarf want to use .previous and the assembler only keeps
+ one level. */
+ if (write_symbols == DWARF_DEBUG && flag_pic)
+ error ("-fpic and -gdwarf are incompatible (-fpic and -g/-gdwarf-2 are fine)");
+
+ /* Change the branch cost value */
+ if (frv_branch_cost_string)
+ frv_branch_cost_int = atoi (frv_branch_cost_string);
+
+ /* Change the # of insns to be converted to conditional execution */
+ if (frv_condexec_insns_str)
+ frv_condexec_insns = atoi (frv_condexec_insns_str);
+
+ /* Change # of temporary registers used to hold integer constants */
+ if (frv_condexec_temps_str)
+ frv_condexec_temps = atoi (frv_condexec_temps_str);
+
+ /* Change scheduling look ahead. */
+ if (frv_sched_lookahead_str)
+ frv_sched_lookahead = atoi (frv_sched_lookahead_str);
+
+ /* A C expression whose value is a register class containing hard
+ register REGNO. In general there is more than one such class;
+ choose a class which is "minimal", meaning that no smaller class
+ also contains the register. */
+
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ {
+ enum reg_class class;
+
+ if (GPR_P (regno))
+ {
+ int gpr_reg = regno - GPR_FIRST;
+ if ((gpr_reg & 3) == 0)
+ class = QUAD_REGS;
+
+ else if ((gpr_reg & 1) == 0)
+ class = EVEN_REGS;
+
+ else
+ class = GPR_REGS;
+ }
+
+ else if (FPR_P (regno))
+ {
+ int fpr_reg = regno - GPR_FIRST;
+ if ((fpr_reg & 3) == 0)
+ class = QUAD_FPR_REGS;
+
+ else if ((fpr_reg & 1) == 0)
+ class = FEVEN_REGS;
+
+ else
+ class = FPR_REGS;
+ }
+
+ else if (regno == LR_REGNO)
+ class = LR_REG;
+
+ else if (regno == LCR_REGNO)
+ class = LCR_REG;
+
+ else if (ICC_P (regno))
+ class = ICC_REGS;
+
+ else if (FCC_P (regno))
+ class = FCC_REGS;
+
+ else if (ICR_P (regno))
+ class = ICR_REGS;
+
+ else if (FCR_P (regno))
+ class = FCR_REGS;
+
+ else if (ACC_P (regno))
+ {
+ int r = regno - ACC_FIRST;
+ if ((r & 3) == 0)
+ class = QUAD_ACC_REGS;
+ else if ((r & 1) == 0)
+ class = EVEN_ACC_REGS;
+ else
+ class = ACC_REGS;
+ }
+
+ else if (ACCG_P (regno))
+ class = ACCG_REGS;
+
+ else
+ class = NO_REGS;
+
+ regno_reg_class[regno] = class;
+ }
+
+ /* Check for small data option */
+ if (!g_switch_set)
+ g_switch_value = SDATA_DEFAULT_SIZE;
+
+ /* A C expression which defines the machine-dependent operand
+ constraint letters for register classes. If CHAR is such a
+ letter, the value should be the register class corresponding to
+ it. Otherwise, the value should be `NO_REGS'. The register
+ letter `r', corresponding to class `GENERAL_REGS', will not be
+ passed to this macro; you do not need to handle it.
+
+ The following letters are unavailable, due to being used as
+ constraints:
+ '0'..'9'
+ '<', '>'
+ 'E', 'F', 'G', 'H'
+ 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P'
+ 'Q', 'R', 'S', 'T', 'U'
+ 'V', 'X'
+ 'g', 'i', 'm', 'n', 'o', 'p', 'r', 's' */
+
+ for (i = 0; i < 256; i++)
+ reg_class_from_letter[i] = NO_REGS;
+
+ reg_class_from_letter['a'] = ACC_REGS;
+ reg_class_from_letter['b'] = EVEN_ACC_REGS;
+ reg_class_from_letter['c'] = CC_REGS;
+ reg_class_from_letter['d'] = GPR_REGS;
+ reg_class_from_letter['e'] = EVEN_REGS;
+ reg_class_from_letter['f'] = FPR_REGS;
+ reg_class_from_letter['h'] = FEVEN_REGS;
+ reg_class_from_letter['l'] = LR_REG;
+ reg_class_from_letter['q'] = QUAD_REGS;
+ reg_class_from_letter['t'] = ICC_REGS;
+ reg_class_from_letter['u'] = FCC_REGS;
+ reg_class_from_letter['v'] = ICR_REGS;
+ reg_class_from_letter['w'] = FCR_REGS;
+ reg_class_from_letter['x'] = QUAD_FPR_REGS;
+ reg_class_from_letter['y'] = LCR_REG;
+ reg_class_from_letter['z'] = SPR_REGS;
+ reg_class_from_letter['A'] = QUAD_ACC_REGS;
+ reg_class_from_letter['B'] = ACCG_REGS;
+ reg_class_from_letter['C'] = CR_REGS;
+
+ /* There is no single unaligned SI op for PIC code. Sometimes we
+ need to use ".4byte" and sometimes we need to use ".picptr".
+ See frv_assemble_integer for details. */
+ if (flag_pic)
+ targetm.asm_out.unaligned_op.si = 0;
+
+ init_machine_status = frv_init_machine_status;
+}
+
+
+/* Some machines may desire to change what optimizations are performed for
+ various optimization levels. This macro, if defined, is executed once just
+ after the optimization level is determined and before the remainder of the
+ command options have been parsed. Values set in this macro are used as the
+ default values for the other command line options.
+
+ LEVEL is the optimization level specified; 2 if `-O2' is specified, 1 if
+ `-O' is specified, and 0 if neither is specified.
+
+ SIZE is nonzero if `-Os' is specified, 0 otherwise.
+
+ You should not use this macro to change options that are not
+ machine-specific. These should uniformly selected by the same optimization
+ level on all supported machines. Use this macro to enable machbine-specific
+ optimizations.
+
+ *Do not examine `write_symbols' in this macro!* The debugging options are
+ *not supposed to alter the generated code. */
+
+/* On the FRV, possibly disable VLIW packing which is done by the 2nd
+ scheduling pass at the current time. */
+void
+frv_optimization_options (level, size)
+ int level;
+ int size ATTRIBUTE_UNUSED;
+{
+ if (level >= 2)
+ {
+#ifdef DISABLE_SCHED2
+ flag_schedule_insns_after_reload = 0;
+#endif
+#ifdef ENABLE_RCSP
+ flag_rcsp = 1;
+#endif
+ }
+}
+
+
+/* Return true if NAME (a STRING_CST node) begins with PREFIX. */
+
+static int
+frv_string_begins_with (name, prefix)
+ tree name;
+ const char *prefix;
+{
+ int prefix_len = strlen (prefix);
+
+ /* Remember: NAME's length includes the null terminator. */
+ return (TREE_STRING_LENGTH (name) > prefix_len
+ && strncmp (TREE_STRING_POINTER (name), prefix, prefix_len) == 0);
+}
+
+/* Encode section information of DECL, which is either a VAR_DECL,
+ FUNCTION_DECL, STRING_CST, CONSTRUCTOR, or ???.
+
+ For the FRV we want to record:
+
+ - whether the object lives in .sdata/.sbss.
+ objects living in .sdata/.sbss are prefixed with SDATA_FLAG_CHAR
+
+*/
+
+static void
+frv_encode_section_info (decl, first)
+ tree decl;
+ int first;
+{
+ if (! first)
+ return;
+ if (TREE_CODE (decl) == VAR_DECL)
+ {
+ int size = int_size_in_bytes (TREE_TYPE (decl));
+ tree section_name = DECL_SECTION_NAME (decl);
+ int is_small = 0;
+
+ /* Don't apply the -G flag to internal compiler structures. We
+ should leave such structures in the main data section, partly
+ for efficiency and partly because the size of some of them
+ (such as C++ typeinfos) is not known until later. */
+ if (!DECL_ARTIFICIAL (decl) && size > 0 && size <= g_switch_value)
+ is_small = 1;
+
+ /* If we already know which section the decl should be in, see if
+ it's a small data section. */
+ if (section_name)
+ {
+ if (TREE_CODE (section_name) == STRING_CST)
+ {
+ if (frv_string_begins_with (section_name, ".sdata"))
+ is_small = 1;
+ if (frv_string_begins_with (section_name, ".sbss"))
+ is_small = 1;
+ }
+ else
+ abort ();
+ }
+
+ if (is_small)
+ {
+ rtx sym_ref = XEXP (DECL_RTL (decl), 0);
+ char * str = xmalloc (2 + strlen (XSTR (sym_ref, 0)));
+
+ str[0] = SDATA_FLAG_CHAR;
+ strcpy (&str[1], XSTR (sym_ref, 0));
+ XSTR (sym_ref, 0) = str;
+ }
+ }
+}
+
+
+/* Zero or more C statements that may conditionally modify two variables
+ `fixed_regs' and `call_used_regs' (both of type `char []') after they have
+ been initialized from the two preceding macros.
+
+ This is necessary in case the fixed or call-clobbered registers depend on
+ target flags.
+
+ You need not define this macro if it has no work to do.
+
+ If the usage of an entire class of registers depends on the target flags,
+ you may indicate this to GCC by using this macro to modify `fixed_regs' and
+ `call_used_regs' to 1 for each of the registers in the classes which should
+ not be used by GCC. Also define the macro `REG_CLASS_FROM_LETTER' to return
+ `NO_REGS' if it is called with a letter for a class that shouldn't be used.
+
+ (However, if this class is not included in `GENERAL_REGS' and all of the
+ insn patterns whose constraints permit this class are controlled by target
+ switches, then GCC will automatically avoid using these registers when the
+ target switches are opposed to them.) */
+
+void
+frv_conditional_register_usage ()
+{
+ int i;
+
+ for (i = GPR_FIRST + NUM_GPRS; i <= GPR_LAST; i++)
+ fixed_regs[i] = call_used_regs[i] = 1;
+
+ for (i = FPR_FIRST + NUM_FPRS; i <= FPR_LAST; i++)
+ fixed_regs[i] = call_used_regs[i] = 1;
+
+ for (i = ACC_FIRST + NUM_ACCS; i <= ACC_LAST; i++)
+ fixed_regs[i] = call_used_regs[i] = 1;
+
+ for (i = ACCG_FIRST + NUM_ACCS; i <= ACCG_LAST; i++)
+ fixed_regs[i] = call_used_regs[i] = 1;
+
+ /* Reserve the registers used for conditional execution. At present, we need
+ 1 ICC and 1 ICR register. */
+ fixed_regs[ICC_TEMP] = call_used_regs[ICC_TEMP] = 1;
+ fixed_regs[ICR_TEMP] = call_used_regs[ICR_TEMP] = 1;
+
+ if (TARGET_FIXED_CC)
+ {
+ fixed_regs[ICC_FIRST] = call_used_regs[ICC_FIRST] = 1;
+ fixed_regs[FCC_FIRST] = call_used_regs[FCC_FIRST] = 1;
+ fixed_regs[ICR_FIRST] = call_used_regs[ICR_FIRST] = 1;
+ fixed_regs[FCR_FIRST] = call_used_regs[FCR_FIRST] = 1;
+ }
+
+#if 0
+ /* If -fpic, SDA_BASE_REG is the PIC register. */
+ if (g_switch_value == 0 && !flag_pic)
+ fixed_regs[SDA_BASE_REG] = call_used_regs[SDA_BASE_REG] = 0;
+
+ if (!flag_pic)
+ fixed_regs[PIC_REGNO] = call_used_regs[PIC_REGNO] = 0;
+#endif
+}
+
+
+/*
+ * Compute the stack frame layout
+ *
+ * Register setup:
+ * +---------------+-----------------------+-----------------------+
+ * |Register |type |caller-save/callee-save|
+ * +---------------+-----------------------+-----------------------+
+ * |GR0 |Zero register | - |
+ * |GR1 |Stack pointer(SP) | - |
+ * |GR2 |Frame pointer(FP) | - |
+ * |GR3 |Hidden parameter | caller save |
+ * |GR4-GR7 | - | caller save |
+ * |GR8-GR13 |Argument register | caller save |
+ * |GR14-GR15 | - | caller save |
+ * |GR16-GR31 | - | callee save |
+ * |GR32-GR47 | - | caller save |
+ * |GR48-GR63 | - | callee save |
+ * |FR0-FR15 | - | caller save |
+ * |FR16-FR31 | - | callee save |
+ * |FR32-FR47 | - | caller save |
+ * |FR48-FR63 | - | callee save |
+ * +---------------+-----------------------+-----------------------+
+ *
+ * Stack frame setup:
+ * Low
+ * SP-> |-----------------------------------|
+ * | Argument area |
+ * |-----------------------------------|
+ * | Register save area |
+ * |-----------------------------------|
+ * | Local variable save area |
+ * FP-> |-----------------------------------|
+ * | Old FP |
+ * |-----------------------------------|
+ * | Hidden parameter save area |
+ * |-----------------------------------|
+ * | Return address(LR) storage area |
+ * |-----------------------------------|
+ * | Padding for alignment |
+ * |-----------------------------------|
+ * | Register argument area |
+ * OLD SP-> |-----------------------------------|
+ * | Parameter area |
+ * |-----------------------------------|
+ * High
+ *
+ * Argument area/Parameter area:
+ *
+ * When a function is called, this area is used for argument transfer. When
+ * the argument is set up by the caller function, this area is referred to as
+ * the argument area. When the argument is referenced by the callee function,
+ * this area is referred to as the parameter area. The area is allocated when
+ * all arguments cannot be placed on the argument register at the time of
+ * argument transfer.
+ *
+ * Register save area:
+ *
+ * This is a register save area that must be guaranteed for the caller
+ * function. This area is not secured when the register save operation is not
+ * needed.
+ *
+ * Local variable save area:
+ *
+ * This is the area for local variables and temporary variables.
+ *
+ * Old FP:
+ *
+ * This area stores the FP value of the caller function.
+ *
+ * Hidden parameter save area:
+ *
+ * This area stores the start address of the return value storage
+ * area for a struct/union return function.
+ * When a struct/union is used as the return value, the caller
+ * function stores the return value storage area start address in
+ * register GR3 and passes it to the caller function.
+ * The callee function interprets the address stored in the GR3
+ * as the return value storage area start address.
+ * When register GR3 needs to be saved into memory, the callee
+ * function saves it in the hidden parameter save area. This
+ * area is not secured when the save operation is not needed.
+ *
+ * Return address(LR) storage area:
+ *
+ * This area saves the LR. The LR stores the address of a return to the caller
+ * function for the purpose of function calling.
+ *
+ * Argument register area:
+ *
+ * This area saves the argument register. This area is not secured when the
+ * save operation is not needed.
+ *
+ * Argument:
+ *
+ * Arguments, the count of which equals the count of argument registers (6
+ * words), are positioned in registers GR8 to GR13 and delivered to the callee
+ * function. When a struct/union return function is called, the return value
+ * area address is stored in register GR3. Arguments not placed in the
+ * argument registers will be stored in the stack argument area for transfer
+ * purposes. When an 8-byte type argument is to be delivered using registers,
+ * it is divided into two and placed in two registers for transfer. When
+ * argument registers must be saved to memory, the callee function secures an
+ * argument register save area in the stack. In this case, a continuous
+ * argument register save area must be established in the parameter area. The
+ * argument register save area must be allocated as needed to cover the size of
+ * the argument register to be saved. If the function has a variable count of
+ * arguments, it saves all argument registers in the argument register save
+ * area.
+ *
+ * Argument Extension Format:
+ *
+ * When an argument is to be stored in the stack, its type is converted to an
+ * extended type in accordance with the individual argument type. The argument
+ * is freed by the caller function after the return from the callee function is
+ * made.
+ *
+ * +-----------------------+---------------+------------------------+
+ * | Argument Type |Extended Type |Stack Storage Size(byte)|
+ * +-----------------------+---------------+------------------------+
+ * |char |int | 4 |
+ * |signed char |int | 4 |
+ * |unsigned char |int | 4 |
+ * |[signed] short int |int | 4 |
+ * |unsigned short int |int | 4 |
+ * |[signed] int |No extension | 4 |
+ * |unsigned int |No extension | 4 |
+ * |[signed] long int |No extension | 4 |
+ * |unsigned long int |No extension | 4 |
+ * |[signed] long long int |No extension | 8 |
+ * |unsigned long long int |No extension | 8 |
+ * |float |double | 8 |
+ * |double |No extension | 8 |
+ * |long double |No extension | 8 |
+ * |pointer |No extension | 4 |
+ * |struct/union |- | 4 (*1) |
+ * +-----------------------+---------------+------------------------+
+ *
+ * When a struct/union is to be delivered as an argument, the caller copies it
+ * to the local variable area and delivers the address of that area.
+ *
+ * Return Value:
+ *
+ * +-------------------------------+----------------------+
+ * |Return Value Type |Return Value Interface|
+ * +-------------------------------+----------------------+
+ * |void |None |
+ * |[signed|unsigned] char |GR8 |
+ * |[signed|unsigned] short int |GR8 |
+ * |[signed|unsigned] int |GR8 |
+ * |[signed|unsigned] long int |GR8 |
+ * |pointer |GR8 |
+ * |[signed|unsigned] long long int|GR8 & GR9 |
+ * |float |GR8 |
+ * |double |GR8 & GR9 |
+ * |long double |GR8 & GR9 |
+ * |struct/union |(*1) |
+ * +-------------------------------+----------------------+
+ *
+ * When a struct/union is used as the return value, the caller function stores
+ * the start address of the return value storage area into GR3 and then passes
+ * it to the callee function. The callee function interprets GR3 as the start
+ * address of the return value storage area. When this address needs to be
+ * saved in memory, the callee function secures the hidden parameter save area
+ * and saves the address in that area.
+ */
+
+frv_stack_t *
+frv_stack_info ()
+{
+ static frv_stack_t info, zero_info;
+ frv_stack_t *info_ptr = &info;
+ tree fndecl = current_function_decl;
+ int varargs_p = 0;
+ tree cur_arg;
+ tree next_arg;
+ int range;
+ int alignment;
+ int offset;
+
+ /* If we've already calculated the values and reload is complete, just return now */
+ if (frv_stack_cache)
+ return frv_stack_cache;
+
+ /* Zero all fields */
+ info = zero_info;
+
+ /* Set up the register range information */
+ info_ptr->regs[STACK_REGS_GPR].name = "gpr";
+ info_ptr->regs[STACK_REGS_GPR].first = LAST_ARG_REGNUM + 1;
+ info_ptr->regs[STACK_REGS_GPR].last = GPR_LAST;
+ info_ptr->regs[STACK_REGS_GPR].dword_p = TRUE;
+
+ info_ptr->regs[STACK_REGS_FPR].name = "fpr";
+ info_ptr->regs[STACK_REGS_FPR].first = FPR_FIRST;
+ info_ptr->regs[STACK_REGS_FPR].last = FPR_LAST;
+ info_ptr->regs[STACK_REGS_FPR].dword_p = TRUE;
+
+ info_ptr->regs[STACK_REGS_LR].name = "lr";
+ info_ptr->regs[STACK_REGS_LR].first = LR_REGNO;
+ info_ptr->regs[STACK_REGS_LR].last = LR_REGNO;
+ info_ptr->regs[STACK_REGS_LR].special_p = 1;
+
+ info_ptr->regs[STACK_REGS_CC].name = "cc";
+ info_ptr->regs[STACK_REGS_CC].first = CC_FIRST;
+ info_ptr->regs[STACK_REGS_CC].last = CC_LAST;
+ info_ptr->regs[STACK_REGS_CC].field_p = TRUE;
+
+ info_ptr->regs[STACK_REGS_LCR].name = "lcr";
+ info_ptr->regs[STACK_REGS_LCR].first = LCR_REGNO;
+ info_ptr->regs[STACK_REGS_LCR].last = LCR_REGNO;
+
+ info_ptr->regs[STACK_REGS_STDARG].name = "stdarg";
+ info_ptr->regs[STACK_REGS_STDARG].first = FIRST_ARG_REGNUM;
+ info_ptr->regs[STACK_REGS_STDARG].last = LAST_ARG_REGNUM;
+ info_ptr->regs[STACK_REGS_STDARG].dword_p = 1;
+ info_ptr->regs[STACK_REGS_STDARG].special_p = 1;
+
+ info_ptr->regs[STACK_REGS_STRUCT].name = "struct";
+ info_ptr->regs[STACK_REGS_STRUCT].first = STRUCT_VALUE_REGNUM;
+ info_ptr->regs[STACK_REGS_STRUCT].last = STRUCT_VALUE_REGNUM;
+ info_ptr->regs[STACK_REGS_STRUCT].special_p = 1;
+
+ info_ptr->regs[STACK_REGS_FP].name = "fp";
+ info_ptr->regs[STACK_REGS_FP].first = FRAME_POINTER_REGNUM;
+ info_ptr->regs[STACK_REGS_FP].last = FRAME_POINTER_REGNUM;
+ info_ptr->regs[STACK_REGS_FP].special_p = 1;
+
+ /* Determine if this is a stdarg function. If so, allocate space to store
+ the 6 arguments. */
+ if (cfun->stdarg)
+ varargs_p = 1;
+
+ else
+ {
+ /* Find the last argument, and see if it is __builtin_va_alist. */
+ for (cur_arg = DECL_ARGUMENTS (fndecl); cur_arg != (tree)0; cur_arg = next_arg)
+ {
+ next_arg = TREE_CHAIN (cur_arg);
+ if (next_arg == (tree)0)
+ {
+ if (DECL_NAME (cur_arg)
+ && !strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)), "__builtin_va_alist"))
+ varargs_p = 1;
+
+ break;
+ }
+ }
+ }
+
+ /* Iterate over all of the register ranges */
+ for (range = 0; range < STACK_REGS_MAX; range++)
+ {
+ frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]);
+ int first = reg_ptr->first;
+ int last = reg_ptr->last;
+ int size_1word = 0;
+ int size_2words = 0;
+ int regno;
+
+ /* Calculate which registers need to be saved & save area size */
+ switch (range)
+ {
+ default:
+ for (regno = first; regno <= last; regno++)
+ {
+ if ((regs_ever_live[regno] && !call_used_regs[regno])
+ || (current_function_calls_eh_return
+ && (regno >= FIRST_EH_REGNUM && regno <= LAST_EH_REGNUM))
+ || (flag_pic && cfun->uses_pic_offset_table && regno == PIC_REGNO))
+ {
+ info_ptr->save_p[regno] = REG_SAVE_1WORD;
+ size_1word += UNITS_PER_WORD;
+ }
+ }
+ break;
+
+ /* Calculate whether we need to create a frame after everything else
+ has been processed. */
+ case STACK_REGS_FP:
+ break;
+
+ case STACK_REGS_LR:
+ if (regs_ever_live[LR_REGNO]
+ || profile_flag
+ || frame_pointer_needed
+ || (flag_pic && cfun->uses_pic_offset_table))
+ {
+ info_ptr->save_p[LR_REGNO] = REG_SAVE_1WORD;
+ size_1word += UNITS_PER_WORD;
+ }
+ break;
+
+ case STACK_REGS_STDARG:
+ if (varargs_p)
+ {
+ /* If this is a stdarg function with an non varardic argument split
+ between registers and the stack, adjust the saved registers
+ downward */
+ last -= (ADDR_ALIGN (cfun->pretend_args_size, UNITS_PER_WORD)
+ / UNITS_PER_WORD);
+
+ for (regno = first; regno <= last; regno++)
+ {
+ info_ptr->save_p[regno] = REG_SAVE_1WORD;
+ size_1word += UNITS_PER_WORD;
+ }
+
+ info_ptr->stdarg_size = size_1word;
+ }
+ break;
+
+ case STACK_REGS_STRUCT:
+ if (cfun->returns_struct)
+ {
+ info_ptr->save_p[STRUCT_VALUE_REGNUM] = REG_SAVE_1WORD;
+ size_1word += UNITS_PER_WORD;
+ }
+ break;
+ }
+
+
+ if (size_1word)
+ {
+ /* If this is a field, it only takes one word */
+ if (reg_ptr->field_p)
+ size_1word = UNITS_PER_WORD;
+
+ /* Determine which register pairs can be saved together */
+ else if (reg_ptr->dword_p && TARGET_DWORD)
+ {
+ for (regno = first; regno < last; regno += 2)
+ {
+ if (info_ptr->save_p[regno] && info_ptr->save_p[regno+1])
+ {
+ size_2words += 2 * UNITS_PER_WORD;
+ size_1word -= 2 * UNITS_PER_WORD;
+ info_ptr->save_p[regno] = REG_SAVE_2WORDS;
+ info_ptr->save_p[regno+1] = REG_SAVE_NO_SAVE;
+ }
+ }
+ }
+
+ reg_ptr->size_1word = size_1word;
+ reg_ptr->size_2words = size_2words;
+
+ if (! reg_ptr->special_p)
+ {
+ info_ptr->regs_size_1word += size_1word;
+ info_ptr->regs_size_2words += size_2words;
+ }
+ }
+ }
+
+ /* Set up the sizes of each each field in the frame body, making the sizes
+ of each be divisible by the size of a dword if dword operations might
+ be used, or the size of a word otherwise. */
+ alignment = (TARGET_DWORD? 2 * UNITS_PER_WORD : UNITS_PER_WORD);
+
+ info_ptr->parameter_size = ADDR_ALIGN (cfun->outgoing_args_size, alignment);
+ info_ptr->regs_size = ADDR_ALIGN (info_ptr->regs_size_2words
+ + info_ptr->regs_size_1word,
+ alignment);
+ info_ptr->vars_size = ADDR_ALIGN (get_frame_size (), alignment);
+
+ info_ptr->pretend_size = cfun->pretend_args_size;
+
+ /* Work out the size of the frame, excluding the header. Both the frame
+ body and register parameter area will be dword-aligned. */
+ info_ptr->total_size
+ = (ADDR_ALIGN (info_ptr->parameter_size
+ + info_ptr->regs_size
+ + info_ptr->vars_size,
+ 2 * UNITS_PER_WORD)
+ + ADDR_ALIGN (info_ptr->pretend_size
+ + info_ptr->stdarg_size,
+ 2 * UNITS_PER_WORD));
+
+ /* See if we need to create a frame at all, if so add header area. */
+ if (info_ptr->total_size > 0
+ || info_ptr->regs[STACK_REGS_LR].size_1word > 0
+ || info_ptr->regs[STACK_REGS_STRUCT].size_1word > 0)
+ {
+ offset = info_ptr->parameter_size;
+ info_ptr->header_size = 4 * UNITS_PER_WORD;
+ info_ptr->total_size += 4 * UNITS_PER_WORD;
+
+ /* Calculate the offsets to save normal register pairs */
+ for (range = 0; range < STACK_REGS_MAX; range++)
+ {
+ frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]);
+ if (! reg_ptr->special_p)
+ {
+ int first = reg_ptr->first;
+ int last = reg_ptr->last;
+ int regno;
+
+ for (regno = first; regno <= last; regno++)
+ if (info_ptr->save_p[regno] == REG_SAVE_2WORDS
+ && regno != FRAME_POINTER_REGNUM
+ && (regno < FIRST_ARG_REGNUM
+ || regno > LAST_ARG_REGNUM))
+ {
+ info_ptr->reg_offset[regno] = offset;
+ offset += 2 * UNITS_PER_WORD;
+ }
+ }
+ }
+
+ /* Calculate the offsets to save normal single registers */
+ for (range = 0; range < STACK_REGS_MAX; range++)
+ {
+ frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]);
+ if (! reg_ptr->special_p)
+ {
+ int first = reg_ptr->first;
+ int last = reg_ptr->last;
+ int regno;
+
+ for (regno = first; regno <= last; regno++)
+ if (info_ptr->save_p[regno] == REG_SAVE_1WORD
+ && regno != FRAME_POINTER_REGNUM
+ && (regno < FIRST_ARG_REGNUM
+ || regno > LAST_ARG_REGNUM))
+ {
+ info_ptr->reg_offset[regno] = offset;
+ offset += UNITS_PER_WORD;
+ }
+ }
+ }
+
+ /* Calculate the offset to save the local variables at. */
+ offset = ADDR_ALIGN (offset, alignment);
+ if (info_ptr->vars_size)
+ {
+ info_ptr->vars_offset = offset;
+ offset += info_ptr->vars_size;
+ }
+
+ /* Align header to a dword-boundary. */
+ offset = ADDR_ALIGN (offset, 2 * UNITS_PER_WORD);
+
+ /* Calculate the offsets in the fixed frame. */
+ info_ptr->save_p[FRAME_POINTER_REGNUM] = REG_SAVE_1WORD;
+ info_ptr->reg_offset[FRAME_POINTER_REGNUM] = offset;
+ info_ptr->regs[STACK_REGS_FP].size_1word = UNITS_PER_WORD;
+
+ info_ptr->save_p[LR_REGNO] = REG_SAVE_1WORD;
+ info_ptr->reg_offset[LR_REGNO] = offset + 2*UNITS_PER_WORD;
+ info_ptr->regs[STACK_REGS_LR].size_1word = UNITS_PER_WORD;
+
+ if (cfun->returns_struct)
+ {
+ info_ptr->save_p[STRUCT_VALUE_REGNUM] = REG_SAVE_1WORD;
+ info_ptr->reg_offset[STRUCT_VALUE_REGNUM] = offset + UNITS_PER_WORD;
+ info_ptr->regs[STACK_REGS_STRUCT].size_1word = UNITS_PER_WORD;
+ }
+
+ /* Calculate the offsets to store the arguments passed in registers
+ for stdarg functions. The register pairs are first and the single
+ register if any is last. The register save area starts on a
+ dword-boundary. */
+ if (info_ptr->stdarg_size)
+ {
+ int first = info_ptr->regs[STACK_REGS_STDARG].first;
+ int last = info_ptr->regs[STACK_REGS_STDARG].last;
+ int regno;
+
+ /* Skip the header. */
+ offset += 4 * UNITS_PER_WORD;
+ for (regno = first; regno <= last; regno++)
+ {
+ if (info_ptr->save_p[regno] == REG_SAVE_2WORDS)
+ {
+ info_ptr->reg_offset[regno] = offset;
+ offset += 2 * UNITS_PER_WORD;
+ }
+ else if (info_ptr->save_p[regno] == REG_SAVE_1WORD)
+ {
+ info_ptr->reg_offset[regno] = offset;
+ offset += UNITS_PER_WORD;
+ }
+ }
+ }
+ }
+
+ if (reload_completed)
+ frv_stack_cache = info_ptr;
+
+ return info_ptr;
+}
+
+
+/* Print the information about the frv stack offsets, etc. when debugging. */
+
+void
+frv_debug_stack (info)
+ frv_stack_t *info;
+{
+ int range;
+
+ if (!info)
+ info = frv_stack_info ();
+
+ fprintf (stderr, "\nStack information for function %s:\n",
+ ((current_function_decl && DECL_NAME (current_function_decl))
+ ? IDENTIFIER_POINTER (DECL_NAME (current_function_decl))
+ : "<unknown>"));
+
+ fprintf (stderr, "\ttotal_size\t= %6d\n", info->total_size);
+ fprintf (stderr, "\tvars_size\t= %6d\n", info->vars_size);
+ fprintf (stderr, "\tparam_size\t= %6d\n", info->parameter_size);
+ fprintf (stderr, "\tregs_size\t= %6d, 1w = %3d, 2w = %3d\n",
+ info->regs_size, info->regs_size_1word, info->regs_size_2words);
+
+ fprintf (stderr, "\theader_size\t= %6d\n", info->header_size);
+ fprintf (stderr, "\tpretend_size\t= %6d\n", info->pretend_size);
+ fprintf (stderr, "\tvars_offset\t= %6d\n", info->vars_offset);
+ fprintf (stderr, "\tregs_offset\t= %6d\n", info->regs_offset);
+
+ for (range = 0; range < STACK_REGS_MAX; range++)
+ {
+ frv_stack_regs_t *regs = &(info->regs[range]);
+ if ((regs->size_1word + regs->size_2words) > 0)
+ {
+ int first = regs->first;
+ int last = regs->last;
+ int regno;
+
+ fprintf (stderr, "\t%s\tsize\t= %6d, 1w = %3d, 2w = %3d, save =",
+ regs->name, regs->size_1word + regs->size_2words,
+ regs->size_1word, regs->size_2words);
+
+ for (regno = first; regno <= last; regno++)
+ {
+ if (info->save_p[regno] == REG_SAVE_1WORD)
+ fprintf (stderr, " %s (%d)", reg_names[regno],
+ info->reg_offset[regno]);
+
+ else if (info->save_p[regno] == REG_SAVE_2WORDS)
+ fprintf (stderr, " %s-%s (%d)", reg_names[regno],
+ reg_names[regno+1], info->reg_offset[regno]);
+ }
+
+ fputc ('\n', stderr);
+ }
+ }
+
+ fflush (stderr);
+}
+
+
+
+
+/* The following variable value is TRUE if the next output insn should
+ finish cpu cycle. In order words the insn will have packing bit
+ (which means absence of asm code suffix `.p' on assembler. */
+
+static int frv_insn_packing_flag;
+
+/* True if the current function contains a far jump. */
+
+static int
+frv_function_contains_far_jump ()
+{
+ rtx insn = get_insns ();
+ while (insn != NULL
+ && !(GET_CODE (insn) == JUMP_INSN
+ /* Ignore tablejump patterns. */
+ && GET_CODE (PATTERN (insn)) != ADDR_VEC
+ && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC
+ && get_attr_far_jump (insn) == FAR_JUMP_YES))
+ insn = NEXT_INSN (insn);
+ return (insn != NULL);
+}
+
+/* For the FRV, this function makes sure that a function with far jumps
+ will return correctly. It also does the VLIW packing. */
+
+static void
+frv_function_prologue (file, size)
+ FILE *file;
+ HOST_WIDE_INT size ATTRIBUTE_UNUSED;
+{
+ /* If no frame was created, check whether the function uses a call
+ instruction to implement a far jump. If so, save the link in gr3 and
+ replace all returns to LR with returns to GR3. GR3 is used because it
+ is call-clobbered, because is not available to the register allocator,
+ and because all functions that take a hidden argument pointer will have
+ a stack frame. */
+ if (frv_stack_info ()->total_size == 0 && frv_function_contains_far_jump ())
+ {
+ rtx insn;
+
+ /* Just to check that the above comment is true. */
+ if (regs_ever_live[GPR_FIRST + 3])
+ abort ();
+
+ /* Generate the instruction that saves the link register. */
+ fprintf (file, "\tmovsg lr,gr3\n");
+
+ /* Replace the LR with GR3 in *return_internal patterns. The insn
+ will now return using jmpl @(gr3,0) rather than bralr. We cannot
+ simply emit a different assembly directive because bralr and jmpl
+ execute in different units. */
+ for (insn = get_insns(); insn != NULL; insn = NEXT_INSN (insn))
+ if (GET_CODE (insn) == JUMP_INSN)
+ {
+ rtx pattern = PATTERN (insn);
+ if (GET_CODE (pattern) == PARALLEL
+ && XVECLEN (pattern, 0) >= 2
+ && GET_CODE (XVECEXP (pattern, 0, 0)) == RETURN
+ && GET_CODE (XVECEXP (pattern, 0, 1)) == USE)
+ {
+ rtx address = XEXP (XVECEXP (pattern, 0, 1), 0);
+ if (GET_CODE (address) == REG && REGNO (address) == LR_REGNO)
+ REGNO (address) = GPR_FIRST + 3;
+ }
+ }
+ }
+
+ frv_pack_insns ();
+ frv_insn_packing_flag = TRUE;
+}
+
+
+/* Return the next available temporary register in a given class. */
+
+static rtx
+frv_alloc_temp_reg (info, class, mode, mark_as_used, no_abort)
+ frv_tmp_reg_t *info; /* which registers are available */
+ enum reg_class class; /* register class desired */
+ enum machine_mode mode; /* mode to allocate register with */
+ int mark_as_used; /* register not available after allocation */
+ int no_abort; /* return NULL instead of aborting */
+{
+ int regno = info->next_reg[ (int)class ];
+ int orig_regno = regno;
+ HARD_REG_SET *reg_in_class = &reg_class_contents[ (int)class ];
+ int i, nr;
+
+ for (;;)
+ {
+ if (TEST_HARD_REG_BIT (*reg_in_class, regno)
+ && TEST_HARD_REG_BIT (info->regs, regno))
+ break;
+
+ if (++regno >= FIRST_PSEUDO_REGISTER)
+ regno = 0;
+ if (regno == orig_regno)
+ {
+ if (no_abort)
+ return NULL_RTX;
+ else
+ abort ();
+ }
+ }
+
+ nr = HARD_REGNO_NREGS (regno, mode);
+ info->next_reg[ (int)class ] = regno + nr;
+
+ if (mark_as_used)
+ for (i = 0; i < nr; i++)
+ CLEAR_HARD_REG_BIT (info->regs, regno+i);
+
+ return gen_rtx_REG (mode, regno);
+}
+
+
+/* Return an rtx with the value OFFSET, which will either be a register or a
+ signed 12-bit integer. It can be used as the second operand in an "add"
+ instruction, or as the index in a load or store.
+
+ The function returns a constant rtx if OFFSET is small enough, otherwise
+ it loads the constant into register OFFSET_REGNO and returns that. */
+static rtx
+frv_frame_offset_rtx (offset)
+ int offset;
+{
+ rtx offset_rtx = GEN_INT (offset);
+ if (IN_RANGE_P (offset, -2048, 2047))
+ return offset_rtx;
+ else
+ {
+ rtx reg_rtx = gen_rtx_REG (SImode, OFFSET_REGNO);
+ if (IN_RANGE_P (offset, -32768, 32767))
+ emit_insn (gen_movsi (reg_rtx, offset_rtx));
+ else
+ {
+ emit_insn (gen_movsi_high (reg_rtx, offset_rtx));
+ emit_insn (gen_movsi_lo_sum (reg_rtx, offset_rtx));
+ }
+ return reg_rtx;
+ }
+}
+
+/* Generate (mem:MODE (plus:Pmode BASE (frv_frame_offset OFFSET)))). The
+ prologue and epilogue uses such expressions to access the stack. */
+static rtx
+frv_frame_mem (mode, base, offset)
+ enum machine_mode mode;
+ rtx base;
+ int offset;
+{
+ return gen_rtx_MEM (mode, gen_rtx_PLUS (Pmode,
+ base,
+ frv_frame_offset_rtx (offset)));
+}
+
+/* Generate a frame-related expression:
+
+ (set REG (mem (plus (sp) (const_int OFFSET)))).
+
+ Such expressions are used in FRAME_RELATED_EXPR notes for more complex
+ instructions. Marking the expressions as frame-related is superfluous if
+ the note contains just a single set. But if the note contains a PARALLEL
+ or SEQUENCE that has several sets, each set must be individually marked
+ as frame-related. */
+static rtx
+frv_dwarf_store (reg, offset)
+ rtx reg;
+ int offset;
+{
+ rtx set = gen_rtx_SET (VOIDmode,
+ gen_rtx_MEM (GET_MODE (reg),
+ plus_constant (stack_pointer_rtx,
+ offset)),
+ reg);
+ RTX_FRAME_RELATED_P (set) = 1;
+ return set;
+}
+
+/* Emit a frame-related instruction whose pattern is PATTERN. The
+ instruction is the last in a sequence that cumulatively performs the
+ operation described by DWARF_PATTERN. The instruction is marked as
+ frame-related and has a REG_FRAME_RELATED_EXPR note containing
+ DWARF_PATTERN. */
+static void
+frv_frame_insn (pattern, dwarf_pattern)
+ rtx pattern;
+ rtx dwarf_pattern;
+{
+ rtx insn = emit_insn (pattern);
+ RTX_FRAME_RELATED_P (insn) = 1;
+ REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
+ dwarf_pattern,
+ REG_NOTES (insn));
+}
+
+/* Emit instructions that transfer REG to or from the memory location (sp +
+ STACK_OFFSET). The register is stored in memory if ACCESSOR->OP is
+ FRV_STORE and loaded if it is FRV_LOAD. Only the prologue uses this
+ function to store registers and only the epilogue uses it to load them.
+
+ The caller sets up ACCESSOR so that BASE is equal to (sp + BASE_OFFSET).
+ The generated instruction will use BASE as its base register. BASE may
+ simply be the stack pointer, but if several accesses are being made to a
+ region far away from the stack pointer, it may be more efficient to set
+ up a temporary instead.
+
+ Store instructions will be frame-related and will be annotated with the
+ overall effect of the store. Load instructions will be followed by a
+ (use) to prevent later optimizations from zapping them.
+
+ The function takes care of the moves to and from SPRs, using TEMP_REGNO
+ as a temporary in such cases. */
+static void
+frv_frame_access (accessor, reg, stack_offset)
+ frv_frame_accessor_t *accessor;
+ rtx reg;
+ int stack_offset;
+{
+ enum machine_mode mode = GET_MODE (reg);
+ rtx mem = frv_frame_mem (mode,
+ accessor->base,
+ stack_offset - accessor->base_offset);
+
+ if (accessor->op == FRV_LOAD)
+ {
+ if (SPR_P (REGNO (reg)))
+ {
+ rtx temp = gen_rtx_REG (mode, TEMP_REGNO);
+ emit_insn (gen_rtx_SET (VOIDmode, temp, mem));
+ emit_insn (gen_rtx_SET (VOIDmode, reg, temp));
+ }
+ else
+ emit_insn (gen_rtx_SET (VOIDmode, reg, mem));
+ emit_insn (gen_rtx_USE (VOIDmode, reg));
+ }
+ else
+ {
+ if (SPR_P (REGNO (reg)))
+ {
+ rtx temp = gen_rtx_REG (mode, TEMP_REGNO);
+ emit_insn (gen_rtx_SET (VOIDmode, temp, reg));
+ frv_frame_insn (gen_rtx_SET (Pmode, mem, temp),
+ frv_dwarf_store (reg, stack_offset));
+ }
+ else if (GET_MODE (reg) == DImode)
+ {
+ /* For DImode saves, the dwarf2 version needs to be a SEQUENCE
+ with a separate save for each register. */
+ rtx reg1 = gen_rtx_REG (SImode, REGNO (reg));
+ rtx reg2 = gen_rtx_REG (SImode, REGNO (reg) + 1);
+ rtx set1 = frv_dwarf_store (reg1, stack_offset);
+ rtx set2 = frv_dwarf_store (reg2, stack_offset + 4);
+ frv_frame_insn (gen_rtx_SET (Pmode, mem, reg),
+ gen_rtx_PARALLEL (VOIDmode,
+ gen_rtvec (2, set1, set2)));
+ }
+ else
+ frv_frame_insn (gen_rtx_SET (Pmode, mem, reg),
+ frv_dwarf_store (reg, stack_offset));
+ }
+}
+
+/* A function that uses frv_frame_access to transfer a group of registers to
+ or from the stack. ACCESSOR is passed directly to frv_frame_access, INFO
+ is the stack information generated by frv_stack_info, and REG_SET is the
+ number of the register set to transfer. */
+static void
+frv_frame_access_multi (accessor, info, reg_set)
+ frv_frame_accessor_t *accessor;
+ frv_stack_t *info;
+ int reg_set;
+{
+ frv_stack_regs_t *regs_info;
+ int regno;
+
+ regs_info = &info->regs[reg_set];
+ for (regno = regs_info->first; regno <= regs_info->last; regno++)
+ if (info->save_p[regno])
+ frv_frame_access (accessor,
+ info->save_p[regno] == REG_SAVE_2WORDS
+ ? gen_rtx_REG (DImode, regno)
+ : gen_rtx_REG (SImode, regno),
+ info->reg_offset[regno]);
+}
+
+/* Save or restore callee-saved registers that are kept outside the frame
+ header. The function saves the registers if OP is FRV_STORE and restores
+ them if OP is FRV_LOAD. INFO is the stack information generated by
+ frv_stack_info. */
+static void
+frv_frame_access_standard_regs (op, info)
+ enum frv_stack_op op;
+ frv_stack_t *info;
+{
+ frv_frame_accessor_t accessor;
+
+ accessor.op = op;
+ accessor.base = stack_pointer_rtx;
+ accessor.base_offset = 0;
+ frv_frame_access_multi (&accessor, info, STACK_REGS_GPR);
+ frv_frame_access_multi (&accessor, info, STACK_REGS_FPR);
+ frv_frame_access_multi (&accessor, info, STACK_REGS_LCR);
+}
+
+
+/* Called after register allocation to add any instructions needed for the
+ prologue. Using a prologue insn is favored compared to putting all of the
+ instructions in the FUNCTION_PROLOGUE macro, since it allows the scheduler
+ to intermix instructions with the saves of the caller saved registers. In
+ some cases, it might be necessary to emit a barrier instruction as the last
+ insn to prevent such scheduling.
+
+ Also any insns generated here should have RTX_FRAME_RELATED_P(insn) = 1
+ so that the debug info generation code can handle them properly. */
+void
+frv_expand_prologue ()
+{
+ frv_stack_t *info = frv_stack_info ();
+ rtx sp = stack_pointer_rtx;
+ rtx fp = frame_pointer_rtx;
+ frv_frame_accessor_t accessor;
+
+ if (TARGET_DEBUG_STACK)
+ frv_debug_stack (info);
+
+ if (info->total_size == 0)
+ return;
+
+ /* We're interested in three areas of the frame here:
+
+ A: the register save area
+ B: the old FP
+ C: the header after B
+
+ If the frame pointer isn't used, we'll have to set up A, B and C
+ using the stack pointer. If the frame pointer is used, we'll access
+ them as follows:
+
+ A: set up using sp
+ B: set up using sp or a temporary (see below)
+ C: set up using fp
+
+ We set up B using the stack pointer if the frame is small enough.
+ Otherwise, it's more efficient to copy the old stack pointer into a
+ temporary and use that.
+
+ Note that it's important to make sure the prologue and epilogue use the
+ same registers to access A and C, since doing otherwise will confuse
+ the aliasing code. */
+
+ /* Set up ACCESSOR for accessing region B above. If the frame pointer
+ isn't used, the same method will serve for C. */
+ accessor.op = FRV_STORE;
+ if (frame_pointer_needed && info->total_size > 2048)
+ {
+ rtx insn;
+
+ accessor.base = gen_rtx_REG (Pmode, OLD_SP_REGNO);
+ accessor.base_offset = info->total_size;
+ insn = emit_insn (gen_movsi (accessor.base, sp));
+ }
+ else
+ {
+ accessor.base = stack_pointer_rtx;
+ accessor.base_offset = 0;
+ }
+
+ /* Allocate the stack space. */
+ {
+ rtx asm_offset = frv_frame_offset_rtx (-info->total_size);
+ rtx dwarf_offset = GEN_INT (-info->total_size);
+
+ frv_frame_insn (gen_stack_adjust (sp, sp, asm_offset),
+ gen_rtx_SET (Pmode,
+ sp,
+ gen_rtx_PLUS (Pmode, sp, dwarf_offset)));
+ }
+
+ /* If the frame pointer is needed, store the old one at (sp + FP_OFFSET)
+ and point the new one to that location. */
+ if (frame_pointer_needed)
+ {
+ int fp_offset = info->reg_offset[FRAME_POINTER_REGNUM];
+
+ /* ASM_SRC and DWARF_SRC both point to the frame header. ASM_SRC is
+ based on ACCESSOR.BASE but DWARF_SRC is always based on the stack
+ pointer. */
+ rtx asm_src = plus_constant (accessor.base,
+ fp_offset - accessor.base_offset);
+ rtx dwarf_src = plus_constant (sp, fp_offset);
+
+ /* Store the old frame pointer at (sp + FP_OFFSET). */
+ frv_frame_access (&accessor, fp, fp_offset);
+
+ /* Set up the new frame pointer. */
+ frv_frame_insn (gen_rtx_SET (VOIDmode, fp, asm_src),
+ gen_rtx_SET (VOIDmode, fp, dwarf_src));
+
+ /* Access region C from the frame pointer. */
+ accessor.base = fp;
+ accessor.base_offset = fp_offset;
+ }
+
+ /* Set up region C. */
+ frv_frame_access_multi (&accessor, info, STACK_REGS_STRUCT);
+ frv_frame_access_multi (&accessor, info, STACK_REGS_LR);
+ frv_frame_access_multi (&accessor, info, STACK_REGS_STDARG);
+
+ /* Set up region A. */
+ frv_frame_access_standard_regs (FRV_STORE, info);
+
+ /* If this is a varargs/stdarg function, issue a blockage to prevent the
+ scheduler from moving loads before the stores saving the registers. */
+ if (info->stdarg_size > 0)
+ emit_insn (gen_blockage ());
+
+ /* Set up pic register/small data register for this function. */
+ if (flag_pic && cfun->uses_pic_offset_table)
+ emit_insn (gen_pic_prologue (gen_rtx_REG (Pmode, PIC_REGNO),
+ gen_rtx_REG (Pmode, LR_REGNO),
+ gen_rtx_REG (SImode, OFFSET_REGNO)));
+}
+
+
+/* Under frv, all of the work is done via frv_expand_epilogue, but
+ this function provides a convient place to do cleanup. */
+
+static void
+frv_function_epilogue (file, size)
+ FILE *file ATTRIBUTE_UNUSED;
+ HOST_WIDE_INT size ATTRIBUTE_UNUSED;
+{
+ frv_stack_cache = (frv_stack_t *)0;
+
+ /* zap last used registers for conditional execution. */
+ memset ((PTR) &frv_ifcvt.tmp_reg, 0, sizeof (frv_ifcvt.tmp_reg));
+
+ /* release the bitmap of created insns. */
+ BITMAP_XFREE (frv_ifcvt.scratch_insns_bitmap);
+}
+
+
+/* Called after register allocation to add any instructions needed for the
+ epilogue. Using an epilogue insn is favored compared to putting all of the
+ instructions in the FUNCTION_PROLOGUE macro, since it allows the scheduler
+ to intermix instructions with the saves of the caller saved registers. In
+ some cases, it might be necessary to emit a barrier instruction as the last
+ insn to prevent such scheduling.
+
+ If SIBCALL_P is true, the final branch back to the calling function is
+ omitted, and is used for sibling call (aka tail call) sites. For sibcalls,
+ we must not clobber any arguments used for parameter passing or any stack
+ slots for arguments passed to the current function. */
+
+void
+frv_expand_epilogue (sibcall_p)
+ int sibcall_p;
+{
+ frv_stack_t *info = frv_stack_info ();
+ rtx fp = frame_pointer_rtx;
+ rtx sp = stack_pointer_rtx;
+ rtx return_addr;
+ int fp_offset;
+
+ fp_offset = info->reg_offset[FRAME_POINTER_REGNUM];
+
+ /* Restore the stack pointer to its original value if alloca or the like
+ is used. */
+ if (! current_function_sp_is_unchanging)
+ emit_insn (gen_addsi3 (sp, fp, frv_frame_offset_rtx (-fp_offset)));
+
+ /* Restore the callee-saved registers that were used in this function. */
+ frv_frame_access_standard_regs (FRV_LOAD, info);
+
+ /* Set RETURN_ADDR to the address we should return to. Set it to NULL if
+ no return instruction should be emitted. */
+ if (sibcall_p)
+ return_addr = 0;
+ else if (info->save_p[LR_REGNO])
+ {
+ int lr_offset;
+ rtx mem;
+
+ /* Use the same method to access the link register's slot as we did in
+ the prologue. In other words, use the frame pointer if available,
+ otherwise use the stack pointer.
+
+ LR_OFFSET is the offset of the link register's slot from the start
+ of the frame and MEM is a memory rtx for it. */
+ lr_offset = info->reg_offset[LR_REGNO];
+ if (frame_pointer_needed)
+ mem = frv_frame_mem (Pmode, fp, lr_offset - fp_offset);
+ else
+ mem = frv_frame_mem (Pmode, sp, lr_offset);
+
+ /* Load the old link register into a GPR. */
+ return_addr = gen_rtx_REG (Pmode, TEMP_REGNO);
+ emit_insn (gen_rtx_SET (VOIDmode, return_addr, mem));
+ }
+ else
+ return_addr = gen_rtx_REG (Pmode, LR_REGNO);
+
+ /* Restore the old frame pointer. Emit a USE afterwards to make sure
+ the load is preserved. */
+ if (frame_pointer_needed)
+ {
+ emit_insn (gen_rtx_SET (VOIDmode, fp, gen_rtx_MEM (Pmode, fp)));
+ emit_insn (gen_rtx_USE (VOIDmode, fp));
+ }
+
+ /* Deallocate the stack frame. */
+ if (info->total_size != 0)
+ {
+ rtx offset = frv_frame_offset_rtx (info->total_size);
+ emit_insn (gen_stack_adjust (sp, sp, offset));
+ }
+
+ /* If this function uses eh_return, add the final stack adjustment now. */
+ if (current_function_calls_eh_return)
+ emit_insn (gen_stack_adjust (sp, sp, EH_RETURN_STACKADJ_RTX));
+
+ if (return_addr)
+ emit_jump_insn (gen_epilogue_return (return_addr));
+}
+
+
+/* A C compound statement that outputs the assembler code for a thunk function,
+ used to implement C++ virtual function calls with multiple inheritance. The
+ thunk acts as a wrapper around a virtual function, adjusting the implicit
+ object parameter before handing control off to the real function.
+
+ First, emit code to add the integer DELTA to the location that contains the
+ incoming first argument. Assume that this argument contains a pointer, and
+ is the one used to pass the `this' pointer in C++. This is the incoming
+ argument *before* the function prologue, e.g. `%o0' on a sparc. The
+ addition must preserve the values of all other incoming arguments.
+
+ After the addition, emit code to jump to FUNCTION, which is a
+ `FUNCTION_DECL'. This is a direct pure jump, not a call, and does not touch
+ the return address. Hence returning from FUNCTION will return to whoever
+ called the current `thunk'.
+
+ The effect must be as if FUNCTION had been called directly with the adjusted
+ first argument. This macro is responsible for emitting all of the code for
+ a thunk function; `FUNCTION_PROLOGUE' and `FUNCTION_EPILOGUE' are not
+ invoked.
+
+ The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already been
+ extracted from it.) It might possibly be useful on some targets, but
+ probably not.
+
+ If you do not define this macro, the target-independent code in the C++
+ frontend will generate a less efficient heavyweight thunk that calls
+ FUNCTION instead of jumping to it. The generic approach does not support
+ varargs. */
+
+static void
+frv_asm_output_mi_thunk (file, thunk_fndecl, delta, vcall_offset, function)
+ FILE *file;
+ tree thunk_fndecl ATTRIBUTE_UNUSED;
+ HOST_WIDE_INT delta;
+ HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED;
+ tree function;
+{
+ const char *name_func = XSTR (XEXP (DECL_RTL (function), 0), 0);
+ const char *name_arg0 = reg_names[FIRST_ARG_REGNUM];
+ const char *name_jmp = reg_names[JUMP_REGNO];
+ const char *parallel = ((PACKING_FLAG_USED_P ()) ? ".p" : "");
+
+ /* Do the add using an addi if possible */
+ if (IN_RANGE_P (delta, -2048, 2047))
+ fprintf (file, "\taddi %s,#%d,%s\n", name_arg0, (int) delta, name_arg0);
+ else
+ {
+ const char *name_add = reg_names[TEMP_REGNO];
+ fprintf (file, "\tsethi%s #hi(", parallel);
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, delta);
+ fprintf (file, "),%s\n", name_add);
+ fprintf (file, "\tsetlo #lo(");
+ fprintf (file, HOST_WIDE_INT_PRINT_DEC, delta);
+ fprintf (file, "),%s\n", name_add);
+ fprintf (file, "\tadd %s,%s,%s\n", name_add, name_arg0, name_arg0);
+ }
+
+ if (!flag_pic)
+ {
+ fprintf (file, "\tsethi%s #hi(", parallel);
+ assemble_name (file, name_func);
+ fprintf (file, "),%s\n", name_jmp);
+
+ fprintf (file, "\tsetlo #lo(");
+ assemble_name (file, name_func);
+ fprintf (file, "),%s\n", name_jmp);
+ }
+ else
+ {
+ /* Use JUMP_REGNO as a temporary PIC register. */
+ const char *name_lr = reg_names[LR_REGNO];
+ const char *name_gppic = name_jmp;
+ const char *name_tmp = reg_names[TEMP_REGNO];
+
+ fprintf (file, "\tmovsg %s,%s\n", name_lr, name_tmp);
+ fprintf (file, "\tcall 1f\n");
+ fprintf (file, "1:\tmovsg %s,%s\n", name_lr, name_gppic);
+ fprintf (file, "\tmovgs %s,%s\n", name_tmp, name_lr);
+ fprintf (file, "\tsethi%s #gprelhi(1b),%s\n", parallel, name_tmp);
+ fprintf (file, "\tsetlo #gprello(1b),%s\n", name_tmp);
+ fprintf (file, "\tsub %s,%s,%s\n", name_gppic, name_tmp, name_gppic);
+
+ fprintf (file, "\tsethi%s #gprelhi(", parallel);
+ assemble_name (file, name_func);
+ fprintf (file, "),%s\n", name_tmp);
+
+ fprintf (file, "\tsetlo #gprello(");
+ assemble_name (file, name_func);
+ fprintf (file, "),%s\n", name_tmp);
+
+ fprintf (file, "\tadd %s,%s,%s\n", name_gppic, name_tmp, name_jmp);
+ }
+
+ /* Jump to the function address */
+ fprintf (file, "\tjmpl @(%s,%s)\n", name_jmp, reg_names[GPR_FIRST+0]);
+}
+
+
+/* A C expression which is nonzero if a function must have and use a frame
+ pointer. This expression is evaluated in the reload pass. If its value is
+ nonzero the function will have a frame pointer.
+
+ The expression can in principle examine the current function and decide
+ according to the facts, but on most machines the constant 0 or the constant
+ 1 suffices. Use 0 when the machine allows code to be generated with no
+ frame pointer, and doing so saves some time or space. Use 1 when there is
+ no possible advantage to avoiding a frame pointer.
+
+ In certain cases, the compiler does not know how to produce valid code
+ without a frame pointer. The compiler recognizes those cases and
+ automatically gives the function a frame pointer regardless of what
+ `FRAME_POINTER_REQUIRED' says. You don't need to worry about them.
+
+ In a function that does not require a frame pointer, the frame pointer
+ register can be allocated for ordinary usage, unless you mark it as a fixed
+ register. See `FIXED_REGISTERS' for more information. */
+
+/* On frv, create a frame whenever we need to create stack */
+
+int
+frv_frame_pointer_required ()
+{
+ if (! current_function_is_leaf)
+ return TRUE;
+
+ if (get_frame_size () != 0)
+ return TRUE;
+
+ if (cfun->stdarg)
+ return TRUE;
+
+ if (!current_function_sp_is_unchanging)
+ return TRUE;
+
+ if (flag_pic && cfun->uses_pic_offset_table)
+ return TRUE;
+
+ if (profile_flag)
+ return TRUE;
+
+ if (cfun->machine->frame_needed)
+ return TRUE;
+
+ return FALSE;
+}
+
+
+/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the
+ initial difference between the specified pair of registers. This macro must
+ be defined if `ELIMINABLE_REGS' is defined. */
+
+/* See frv_stack_info for more details on the frv stack frame. */
+
+int
+frv_initial_elimination_offset (from, to)
+ int from;
+ int to;
+{
+ frv_stack_t *info = frv_stack_info ();
+ int ret = 0;
+
+ if (to == STACK_POINTER_REGNUM && from == ARG_POINTER_REGNUM)
+ ret = info->total_size - info->pretend_size;
+
+ else if (to == STACK_POINTER_REGNUM && from == FRAME_POINTER_REGNUM)
+ ret = - info->reg_offset[FRAME_POINTER_REGNUM];
+
+ else if (to == FRAME_POINTER_REGNUM && from == ARG_POINTER_REGNUM)
+ ret = (info->total_size
+ - info->reg_offset[FRAME_POINTER_REGNUM]
+ - info->pretend_size);
+
+ else
+ abort ();
+
+ if (TARGET_DEBUG_STACK)
+ fprintf (stderr, "Eliminate %s to %s by adding %d\n",
+ reg_names [from], reg_names[to], ret);
+
+ return ret;
+}
+
+
+/* This macro offers an alternative to using `__builtin_saveregs' and defining
+ the macro `EXPAND_BUILTIN_SAVEREGS'. Use it to store the anonymous register
+ arguments into the stack so that all the arguments appear to have been
+ passed consecutively on the stack. Once this is done, you can use the
+ standard implementation of varargs that works for machines that pass all
+ their arguments on the stack.
+
+ The argument ARGS_SO_FAR is the `CUMULATIVE_ARGS' data structure, containing
+ the values that obtain after processing of the named arguments. The
+ arguments MODE and TYPE describe the last named argument--its machine mode
+ and its data type as a tree node.
+
+ The macro implementation should do two things: first, push onto the stack
+ all the argument registers *not* used for the named arguments, and second,
+ store the size of the data thus pushed into the `int'-valued variable whose
+ name is supplied as the argument PRETEND_ARGS_SIZE. The value that you
+ store here will serve as additional offset for setting up the stack frame.
+
+ Because you must generate code to push the anonymous arguments at compile
+ time without knowing their data types, `SETUP_INCOMING_VARARGS' is only
+ useful on machines that have just a single category of argument register and
+ use it uniformly for all data types.
+
+ If the argument SECOND_TIME is nonzero, it means that the arguments of the
+ function are being analyzed for the second time. This happens for an inline
+ function, which is not actually compiled until the end of the source file.
+ The macro `SETUP_INCOMING_VARARGS' should not generate any instructions in
+ this case. */
+
+void
+frv_setup_incoming_varargs (cum, mode, type, pretend_size, second_time)
+ CUMULATIVE_ARGS *cum;
+ enum machine_mode mode;
+ tree type ATTRIBUTE_UNUSED;
+ int *pretend_size;
+ int second_time;
+{
+ if (TARGET_DEBUG_ARG)
+ fprintf (stderr,
+ "setup_vararg: words = %2d, mode = %4s, pretend_size = %d, second_time = %d\n",
+ *cum, GET_MODE_NAME (mode), *pretend_size, second_time);
+}
+
+
+/* If defined, is a C expression that produces the machine-specific code for a
+ call to `__builtin_saveregs'. This code will be moved to the very beginning
+ of the function, before any parameter access are made. The return value of
+ this function should be an RTX that contains the value to use as the return
+ of `__builtin_saveregs'.
+
+ If this macro is not defined, the compiler will output an ordinary call to
+ the library function `__builtin_saveregs'. */
+
+rtx
+frv_expand_builtin_saveregs ()
+{
+ int offset = UNITS_PER_WORD * FRV_NUM_ARG_REGS;
+
+ if (TARGET_DEBUG_ARG)
+ fprintf (stderr, "expand_builtin_saveregs: offset from ap = %d\n",
+ offset);
+
+ return gen_rtx (PLUS, Pmode, virtual_incoming_args_rtx, GEN_INT (- offset));
+}
+
+
+/* Expand __builtin_va_start to do the va_start macro. */
+
+void
+frv_expand_builtin_va_start (valist, nextarg)
+ tree valist;
+ rtx nextarg;
+{
+ tree t;
+ int num = cfun->args_info - FIRST_ARG_REGNUM - FRV_NUM_ARG_REGS;
+
+ nextarg = gen_rtx_PLUS (Pmode, virtual_incoming_args_rtx,
+ GEN_INT (UNITS_PER_WORD * num));
+
+ if (TARGET_DEBUG_ARG)
+ {
+ fprintf (stderr, "va_start: args_info = %d, num = %d\n",
+ cfun->args_info, num);
+
+ debug_rtx (nextarg);
+ }
+
+ t = build (MODIFY_EXPR, TREE_TYPE (valist), valist,
+ make_tree (ptr_type_node, nextarg));
+ TREE_SIDE_EFFECTS (t) = 1;
+
+ expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
+}
+
+
+/* Expand __builtin_va_arg to do the va_arg macro. */
+
+rtx
+frv_expand_builtin_va_arg(valist, type)
+ tree valist;
+ tree type;
+{
+ rtx addr;
+ rtx mem;
+ rtx reg;
+
+ if (TARGET_DEBUG_ARG)
+ {
+ fprintf (stderr, "va_arg:\n");
+ debug_tree (type);
+ }
+
+ if (! AGGREGATE_TYPE_P (type))
+ return std_expand_builtin_va_arg (valist, type);
+
+ addr = std_expand_builtin_va_arg (valist, ptr_type_node);
+ mem = gen_rtx_MEM (Pmode, addr);
+ reg = gen_reg_rtx (Pmode);
+
+ set_mem_alias_set (mem, get_varargs_alias_set ());
+ emit_move_insn (reg, mem);
+
+ return reg;
+}
+
+
+/* Expand a block move operation, and return 1 if successful. Return 0
+ if we should let the compiler generate normal code.
+
+ operands[0] is the destination
+ operands[1] is the source
+ operands[2] is the length
+ operands[3] is the alignment */
+
+/* Maximum number of loads to do before doing the stores */
+#ifndef MAX_MOVE_REG
+#define MAX_MOVE_REG 4
+#endif
+
+/* Maximum number of total loads to do. */
+#ifndef TOTAL_MOVE_REG
+#define TOTAL_MOVE_REG 8
+#endif
+
+int
+frv_expand_block_move (operands)
+ rtx operands[];
+{
+ rtx orig_dest = operands[0];
+ rtx orig_src = operands[1];
+ rtx bytes_rtx = operands[2];
+ rtx align_rtx = operands[3];
+ int constp = (GET_CODE (bytes_rtx) == CONST_INT);
+ int align;
+ int bytes;
+ int offset;
+ int num_reg;
+ int i;
+ rtx src_reg;
+ rtx dest_reg;
+ rtx src_addr;
+ rtx dest_addr;
+ rtx src_mem;
+ rtx dest_mem;
+ rtx tmp_reg;
+ rtx stores[MAX_MOVE_REG];
+ int move_bytes;
+ enum machine_mode mode;
+
+ /* If this is not a fixed size move, just call memcpy */
+ if (! constp)
+ return FALSE;
+
+ /* If this is not a fixed size alignment, abort */
+ if (GET_CODE (align_rtx) != CONST_INT)
+ abort ();
+
+ align = INTVAL (align_rtx);
+
+ /* Anything to move? */
+ bytes = INTVAL (bytes_rtx);
+ if (bytes <= 0)
+ return TRUE;
+
+ /* Don't support real large moves. */
+ if (bytes > TOTAL_MOVE_REG*align)
+ return FALSE;
+
+ /* Move the address into scratch registers. */
+ dest_reg = copy_addr_to_reg (XEXP (orig_dest, 0));
+ src_reg = copy_addr_to_reg (XEXP (orig_src, 0));
+
+ num_reg = offset = 0;
+ for ( ; bytes > 0; (bytes -= move_bytes), (offset += move_bytes))
+ {
+ /* Calculate the correct offset for src/dest */
+ if (offset == 0)
+ {
+ src_addr = src_reg;
+ dest_addr = dest_reg;
+ }
+ else
+ {
+ src_addr = plus_constant (src_reg, offset);
+ dest_addr = plus_constant (dest_reg, offset);
+ }
+
+ /* Generate the appropriate load and store, saving the stores
+ for later. */
+ if (bytes >= 4 && align >= 4)
+ mode = SImode;
+ else if (bytes >= 2 && align >= 2)
+ mode = HImode;
+ else
+ mode = QImode;
+
+ move_bytes = GET_MODE_SIZE (mode);
+ tmp_reg = gen_reg_rtx (mode);
+ src_mem = change_address (orig_src, mode, src_addr);
+ dest_mem = change_address (orig_dest, mode, dest_addr);
+ emit_insn (gen_rtx_SET (VOIDmode, tmp_reg, src_mem));
+ stores[num_reg++] = gen_rtx_SET (VOIDmode, dest_mem, tmp_reg);
+
+ if (num_reg >= MAX_MOVE_REG)
+ {
+ for (i = 0; i < num_reg; i++)
+ emit_insn (stores[i]);
+ num_reg = 0;
+ }
+ }
+
+ for (i = 0; i < num_reg; i++)
+ emit_insn (stores[i]);
+
+ return TRUE;
+}
+
+
+/* Expand a block clear operation, and return 1 if successful. Return 0
+ if we should let the compiler generate normal code.
+
+ operands[0] is the destination
+ operands[1] is the length
+ operands[2] is the alignment */
+
+int
+frv_expand_block_clear (operands)
+ rtx operands[];
+{
+ rtx orig_dest = operands[0];
+ rtx bytes_rtx = operands[1];
+ rtx align_rtx = operands[2];
+ int constp = (GET_CODE (bytes_rtx) == CONST_INT);
+ int align;
+ int bytes;
+ int offset;
+ int num_reg;
+ rtx dest_reg;
+ rtx dest_addr;
+ rtx dest_mem;
+ int clear_bytes;
+ enum machine_mode mode;
+
+ /* If this is not a fixed size move, just call memcpy */
+ if (! constp)
+ return FALSE;
+
+ /* If this is not a fixed size alignment, abort */
+ if (GET_CODE (align_rtx) != CONST_INT)
+ abort ();
+
+ align = INTVAL (align_rtx);
+
+ /* Anything to move? */
+ bytes = INTVAL (bytes_rtx);
+ if (bytes <= 0)
+ return TRUE;
+
+ /* Don't support real large clears. */
+ if (bytes > TOTAL_MOVE_REG*align)
+ return FALSE;
+
+ /* Move the address into a scratch register. */
+ dest_reg = copy_addr_to_reg (XEXP (orig_dest, 0));
+
+ num_reg = offset = 0;
+ for ( ; bytes > 0; (bytes -= clear_bytes), (offset += clear_bytes))
+ {
+ /* Calculate the correct offset for src/dest */
+ dest_addr = ((offset == 0)
+ ? dest_reg
+ : plus_constant (dest_reg, offset));
+
+ /* Generate the appropriate store of gr0 */
+ if (bytes >= 4 && align >= 4)
+ mode = SImode;
+ else if (bytes >= 2 && align >= 2)
+ mode = HImode;
+ else
+ mode = QImode;
+
+ clear_bytes = GET_MODE_SIZE (mode);
+ dest_mem = change_address (orig_dest, mode, dest_addr);
+ emit_insn (gen_rtx_SET (VOIDmode, dest_mem, const0_rtx));
+ }
+
+ return TRUE;
+}
+
+
+/* The following variable is used to output modifiers of assembler
+ code of the current output insn.. */
+
+static rtx *frv_insn_operands;
+
+/* The following function is used to add assembler insn code suffix .p
+ if it is necessary. */
+
+const char *
+frv_asm_output_opcode (f, ptr)
+ FILE *f;
+ const char *ptr;
+{
+ int c;
+
+ if (! PACKING_FLAG_USED_P())
+ return ptr;
+
+ for (; *ptr && *ptr != ' ' && *ptr != '\t';)
+ {
+ c = *ptr++;
+ if (c == '%' && ((*ptr >= 'a' && *ptr <= 'z')
+ || (*ptr >= 'A' && *ptr <= 'Z')))
+ {
+ int letter = *ptr++;
+
+ c = atoi (ptr);
+ frv_print_operand (f, frv_insn_operands [c], letter);
+ while ((c = *ptr) >= '0' && c <= '9')
+ ptr++;
+ }
+ else
+ fputc (c, f);
+ }
+
+ if (!frv_insn_packing_flag)
+ fprintf (f, ".p");
+
+ return ptr;
+}
+
+/* The following function sets up the packing bit for the current
+ output insn. Remember that the function is not called for asm
+ insns. */
+
+void
+frv_final_prescan_insn (insn, opvec, noperands)
+ rtx insn;
+ rtx *opvec;
+ int noperands ATTRIBUTE_UNUSED;
+{
+ if (! PACKING_FLAG_USED_P())
+ return;
+
+ if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
+ return;
+
+ frv_insn_operands = opvec;
+
+ /* Look for the next printable instruction. frv_pack_insns () has set
+ things up so that any printable instruction will have TImode if it
+ starts a new packet and VOIDmode if it should be packed with the
+ previous instruction.
+
+ Printable instructions will be asm_operands or match one of the .md
+ patterns. Since asm instructions cannot be packed -- and will
+ therefore have TImode -- this loop terminates on any recognisable
+ instruction, and on any unrecognisable instruction with TImode. */
+ for (insn = NEXT_INSN (insn); insn; insn = NEXT_INSN (insn))
+ {
+ if (NOTE_P (insn))
+ continue;
+ else if (!INSN_P (insn))
+ break;
+ else if (GET_MODE (insn) == TImode || INSN_CODE (insn) != -1)
+ break;
+ }
+
+ /* Set frv_insn_packing_flag to FALSE if the next instruction should
+ be packed with this one. Set it to TRUE otherwise. If the next
+ instruction is an asm insntruction, this statement will set the
+ flag to TRUE, and that value will still hold when the asm operands
+ themselves are printed. */
+ frv_insn_packing_flag = ! (insn && INSN_P (insn)
+ && GET_MODE (insn) != TImode);
+}
+
+
+
+/* A C expression whose value is RTL representing the address in a stack frame
+ where the pointer to the caller's frame is stored. Assume that FRAMEADDR is
+ an RTL expression for the address of the stack frame itself.
+
+ If you don't define this macro, the default is to return the value of
+ FRAMEADDR--that is, the stack frame address is also the address of the stack
+ word that points to the previous frame. */
+
+/* The default is correct, but we need to make sure the frame gets created. */
+rtx
+frv_dynamic_chain_address (frame)
+ rtx frame;
+{
+ cfun->machine->frame_needed = 1;
+ return frame;
+}
+
+
+/* A C expression whose value is RTL representing the value of the return
+ address for the frame COUNT steps up from the current frame, after the
+ prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
+ pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
+ defined.
+
+ The value of the expression must always be the correct address when COUNT is
+ zero, but may be `NULL_RTX' if there is not way to determine the return
+ address of other frames. */
+
+rtx
+frv_return_addr_rtx (count, frame)
+ int count ATTRIBUTE_UNUSED;
+ rtx frame;
+{
+ cfun->machine->frame_needed = 1;
+ return gen_rtx_MEM (Pmode, plus_constant (frame, 8));
+}
+
+/* Given a memory reference MEMREF, interpret the referenced memory as
+ an array of MODE values, and return a reference to the element
+ specified by INDEX. Assume that any pre-modification implicit in
+ MEMREF has already happened.
+
+ MEMREF must be a legitimate operand for modes larger than SImode.
+ GO_IF_LEGITIMATE_ADDRESS forbids register+register addresses, which
+ this function cannot handle. */
+rtx
+frv_index_memory (memref, mode, index)
+ rtx memref;
+ enum machine_mode mode;
+ int index;
+{
+ rtx base = XEXP (memref, 0);
+ if (GET_CODE (base) == PRE_MODIFY)
+ base = XEXP (base, 0);
+ return change_address (memref, mode,
+ plus_constant (base, index * GET_MODE_SIZE (mode)));
+}
+
+
+/* Print a memory address as an operand to reference that memory location. */
+void
+frv_print_operand_address (stream, x)
+ FILE * stream;
+ rtx x;
+{
+ if (GET_CODE (x) == MEM)
+ x = XEXP (x, 0);
+
+ switch (GET_CODE (x))
+ {
+ case REG:
+ fputs (reg_names [ REGNO (x)], stream);
+ return;
+
+ case CONST_INT:
+ fprintf (stream, "%ld", (long) INTVAL (x));
+ return;
+
+ case SYMBOL_REF:
+ assemble_name (stream, XSTR (x, 0));
+ return;
+
+ case LABEL_REF:
+ case CONST:
+ output_addr_const (stream, x);
+ return;
+
+ default:
+ break;
+ }
+
+ fatal_insn ("Bad insn to frv_print_operand_address:", x);
+}
+
+
+static void
+frv_print_operand_memory_reference_reg (stream, x)
+ FILE *stream;
+ rtx x;
+{
+ int regno = true_regnum (x);
+ if (GPR_P (regno))
+ fputs (reg_names[regno], stream);
+ else
+ fatal_insn ("Bad register to frv_print_operand_memory_reference_reg:", x);
+}
+
+/* Print a memory reference suitable for the ld/st instructions. */
+
+static void
+frv_print_operand_memory_reference (stream, x, addr_offset)
+ FILE *stream;
+ rtx x;
+ int addr_offset;
+{
+ rtx x0 = NULL_RTX;
+ rtx x1 = NULL_RTX;
+
+ switch (GET_CODE (x))
+ {
+ case SUBREG:
+ case REG:
+ x0 = x;
+ break;
+
+ case PRE_MODIFY: /* (pre_modify (reg) (plus (reg) (reg))) */
+ x0 = XEXP (x, 0);
+ x1 = XEXP (XEXP (x, 1), 1);
+ break;
+
+ case CONST_INT:
+ x1 = x;
+ break;
+
+ case PLUS:
+ x0 = XEXP (x, 0);
+ x1 = XEXP (x, 1);
+ if (GET_CODE (x0) == CONST_INT)
+ {
+ x0 = XEXP (x, 1);
+ x1 = XEXP (x, 0);
+ }
+ break;
+
+ default:
+ fatal_insn ("Bad insn to frv_print_operand_memory_reference:", x);
+ break;
+
+ }
+
+ if (addr_offset)
+ {
+ if (!x1)
+ x1 = const0_rtx;
+ else if (GET_CODE (x1) != CONST_INT)
+ fatal_insn ("Bad insn to frv_print_operand_memory_reference:", x);
+ }
+
+ fputs ("@(", stream);
+ if (!x0)
+ fputs (reg_names[GPR_R0], stream);
+ else if (GET_CODE (x0) == REG || GET_CODE (x0) == SUBREG)
+ frv_print_operand_memory_reference_reg (stream, x0);
+ else
+ fatal_insn ("Bad insn to frv_print_operand_memory_reference:", x);
+
+ fputs (",", stream);
+ if (!x1)
+ fputs (reg_names [GPR_R0], stream);
+
+ else
+ {
+ switch (GET_CODE (x1))
+ {
+ case SUBREG:
+ case REG:
+ frv_print_operand_memory_reference_reg (stream, x1);
+ break;
+
+ case CONST_INT:
+ fprintf (stream, "%ld", (long) (INTVAL (x1) + addr_offset));
+ break;
+
+ case SYMBOL_REF:
+ if (x0 && GET_CODE (x0) == REG && REGNO (x0) == SDA_BASE_REG
+ && symbol_ref_small_data_p (x1))
+ {
+ fputs ("#gprel12(", stream);
+ assemble_name (stream, XSTR (x1, 0));
+ fputs (")", stream);
+ }
+ else
+ fatal_insn ("Bad insn to frv_print_operand_memory_reference:", x);
+ break;
+
+ case CONST:
+ if (x0 && GET_CODE (x0) == REG && REGNO (x0) == SDA_BASE_REG
+ && const_small_data_p (x1))
+ {
+ fputs ("#gprel12(", stream);
+ assemble_name (stream, XSTR (XEXP (XEXP (x1, 0), 0), 0));
+ fprintf (stream, "+%d)", INTVAL (XEXP (XEXP (x1, 0), 1)));
+ }
+ else
+ fatal_insn ("Bad insn to frv_print_operand_memory_reference:", x);
+ break;
+
+ default:
+ fatal_insn ("Bad insn to frv_print_operand_memory_reference:", x);
+ }
+ }
+
+ fputs (")", stream);
+}
+
+
+/* Return 2 for likely branches and 0 for non-likely branches */
+
+#define FRV_JUMP_LIKELY 2
+#define FRV_JUMP_NOT_LIKELY 0
+
+static int
+frv_print_operand_jump_hint (insn)
+ rtx insn;
+{
+ rtx note;
+ rtx labelref;
+ int ret;
+ HOST_WIDE_INT prob = -1;
+ enum { UNKNOWN, BACKWARD, FORWARD } jump_type = UNKNOWN;
+
+ if (GET_CODE (insn) != JUMP_INSN)
+ abort ();
+
+ /* Assume any non-conditional jump is likely. */
+ if (! any_condjump_p (insn))
+ ret = FRV_JUMP_LIKELY;
+
+ else
+ {
+ labelref = condjump_label (insn);
+ if (labelref)
+ {
+ rtx label = XEXP (labelref, 0);
+ jump_type = (insn_current_address > INSN_ADDRESSES (INSN_UID (label))
+ ? BACKWARD
+ : FORWARD);
+ }
+
+ note = find_reg_note (insn, REG_BR_PROB, 0);
+ if (!note)
+ ret = ((jump_type == BACKWARD) ? FRV_JUMP_LIKELY : FRV_JUMP_NOT_LIKELY);
+
+ else
+ {
+ prob = INTVAL (XEXP (note, 0));
+ ret = ((prob >= (REG_BR_PROB_BASE / 2))
+ ? FRV_JUMP_LIKELY
+ : FRV_JUMP_NOT_LIKELY);
+ }
+ }
+
+#if 0
+ if (TARGET_DEBUG)
+ {
+ char *direction;
+
+ switch (jump_type)
+ {
+ default:
+ case UNKNOWN: direction = "unknown jump direction"; break;
+ case BACKWARD: direction = "jump backward"; break;
+ case FORWARD: direction = "jump forward"; break;
+ }
+
+ fprintf (stderr,
+ "%s: uid %ld, %s, probability = %ld, max prob. = %ld, hint = %d\n",
+ IDENTIFIER_POINTER (DECL_NAME (current_function_decl)),
+ (long)INSN_UID (insn), direction, (long)prob,
+ (long)REG_BR_PROB_BASE, ret);
+ }
+#endif
+
+ return ret;
+}
+
+
+/* Print an operand to an assembler instruction.
+
+ `%' followed by a letter and a digit says to output an operand in an
+ alternate fashion. Four letters have standard, built-in meanings described
+ below. The machine description macro `PRINT_OPERAND' can define additional
+ letters with nonstandard meanings.
+
+ `%cDIGIT' can be used to substitute an operand that is a constant value
+ without the syntax that normally indicates an immediate operand.
+
+ `%nDIGIT' is like `%cDIGIT' except that the value of the constant is negated
+ before printing.
+
+ `%aDIGIT' can be used to substitute an operand as if it were a memory
+ reference, with the actual operand treated as the address. This may be
+ useful when outputting a "load address" instruction, because often the
+ assembler syntax for such an instruction requires you to write the operand
+ as if it were a memory reference.
+
+ `%lDIGIT' is used to substitute a `label_ref' into a jump instruction.
+
+ `%=' outputs a number which is unique to each instruction in the entire
+ compilation. This is useful for making local labels to be referred to more
+ than once in a single template that generates multiple assembler
+ instructions.
+
+ `%' followed by a punctuation character specifies a substitution that does
+ not use an operand. Only one case is standard: `%%' outputs a `%' into the
+ assembler code. Other nonstandard cases can be defined in the
+ `PRINT_OPERAND' macro. You must also define which punctuation characters
+ are valid with the `PRINT_OPERAND_PUNCT_VALID_P' macro. */
+
+void
+frv_print_operand (file, x, code)
+ FILE * file;
+ rtx x;
+ int code;
+{
+ HOST_WIDE_INT value;
+ int offset;
+
+ if (code != 0 && !isalpha (code))
+ value = 0;
+
+ else if (GET_CODE (x) == CONST_INT)
+ value = INTVAL (x);
+
+ else if (GET_CODE (x) == CONST_DOUBLE)
+ {
+ if (GET_MODE (x) == SFmode)
+ {
+ REAL_VALUE_TYPE rv;
+ long l;
+
+ REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
+ REAL_VALUE_TO_TARGET_SINGLE (rv, l);
+ value = l;
+ }
+
+ else if (GET_MODE (x) == VOIDmode)
+ value = CONST_DOUBLE_LOW (x);
+
+ else
+ fatal_insn ("Bad insn in frv_print_operand, bad const_double", x);
+ }
+
+ else
+ value = 0;
+
+ switch (code)
+ {
+
+ case '.':
+ /* Output r0 */
+ fputs (reg_names[GPR_R0], file);
+ break;
+
+ case '#':
+ fprintf (file, "%d", frv_print_operand_jump_hint (current_output_insn));
+ break;
+
+ case SDATA_FLAG_CHAR:
+ /* Output small data area base register (gr16). */
+ fputs (reg_names[SDA_BASE_REG], file);
+ break;
+
+ case '~':
+ /* Output pic register (gr17). */
+ fputs (reg_names[PIC_REGNO], file);
+ break;
+
+ case '*':
+ /* Output the temporary integer CCR register */
+ fputs (reg_names[ICR_TEMP], file);
+ break;
+
+ case '&':
+ /* Output the temporary integer CC register */
+ fputs (reg_names[ICC_TEMP], file);
+ break;
+
+ /* case 'a': print an address */
+
+ case 'C':
+ /* Print appropriate test for integer branch false operation */
+ switch (GET_CODE (x))
+ {
+ default:
+ fatal_insn ("Bad insn to frv_print_operand, 'C' modifier:", x);
+
+ case EQ: fputs ("ne", file); break;
+ case NE: fputs ("eq", file); break;
+ case LT: fputs ("ge", file); break;
+ case LE: fputs ("gt", file); break;
+ case GT: fputs ("le", file); break;
+ case GE: fputs ("lt", file); break;
+ case LTU: fputs ("nc", file); break;
+ case LEU: fputs ("hi", file); break;
+ case GTU: fputs ("ls", file); break;
+ case GEU: fputs ("c", file); break;
+ }
+ break;
+
+ /* case 'c': print a constant without the constant prefix. If
+ CONSTANT_ADDRESS_P(x) is not true, PRINT_OPERAND is called. */
+
+ case 'c':
+ /* Print appropriate test for integer branch true operation */
+ switch (GET_CODE (x))
+ {
+ default:
+ fatal_insn ("Bad insn to frv_print_operand, 'c' modifier:", x);
+
+ case EQ: fputs ("eq", file); break;
+ case NE: fputs ("ne", file); break;
+ case LT: fputs ("lt", file); break;
+ case LE: fputs ("le", file); break;
+ case GT: fputs ("gt", file); break;
+ case GE: fputs ("ge", file); break;
+ case LTU: fputs ("c", file); break;
+ case LEU: fputs ("ls", file); break;
+ case GTU: fputs ("hi", file); break;
+ case GEU: fputs ("nc", file); break;
+ }
+ break;
+
+ case 'e':
+ /* Print 1 for a NE and 0 for an EQ to give the final argument
+ for a conditional instruction. */
+ if (GET_CODE (x) == NE)
+ fputs ("1", file);
+
+ else if (GET_CODE (x) == EQ)
+ fputs ("0", file);
+
+ else
+ fatal_insn ("Bad insn to frv_print_operand, 'e' modifier:", x);
+ break;
+
+ case 'F':
+ /* Print appropriate test for floating point branch false operation */
+ switch (GET_CODE (x))
+ {
+ default:
+ fatal_insn ("Bad insn to frv_print_operand, 'F' modifier:", x);
+
+ case EQ: fputs ("ne", file); break;
+ case NE: fputs ("eq", file); break;
+ case LT: fputs ("uge", file); break;
+ case LE: fputs ("ug", file); break;
+ case GT: fputs ("ule", file); break;
+ case GE: fputs ("ul", file); break;
+ }
+ break;
+
+ case 'f':
+ /* Print appropriate test for floating point branch true operation */
+ switch (GET_CODE (x))
+ {
+ default:
+ fatal_insn ("Bad insn to frv_print_operand, 'f' modifier:", x);
+
+ case EQ: fputs ("eq", file); break;
+ case NE: fputs ("ne", file); break;
+ case LT: fputs ("lt", file); break;
+ case LE: fputs ("le", file); break;
+ case GT: fputs ("gt", file); break;
+ case GE: fputs ("ge", file); break;
+ }
+ break;
+
+ case 'I':
+ /* Print 'i' if the operand is a constant, or is a memory reference that
+ adds a constant */
+ if (GET_CODE (x) == MEM)
+ x = ((GET_CODE (XEXP (x, 0)) == PLUS)
+ ? XEXP (XEXP (x, 0), 1)
+ : XEXP (x, 0));
+
+ switch (GET_CODE (x))
+ {
+ default:
+ break;
+
+ case CONST_INT:
+ case SYMBOL_REF:
+ case CONST:
+ fputs ("i", file);
+ break;
+ }
+ break;
+
+ case 'i':
+ /* For jump instructions, print 'i' if the operand is a constant or
+ is an expression that adds a constant */
+ if (GET_CODE (x) == CONST_INT)
+ fputs ("i", file);
+
+ else
+ {
+ if (GET_CODE (x) == CONST_INT
+ || (GET_CODE (x) == PLUS
+ && (GET_CODE (XEXP (x, 1)) == CONST_INT
+ || GET_CODE (XEXP (x, 0)) == CONST_INT)))
+ fputs ("i", file);
+ }
+ break;
+
+ case 'L':
+ /* Print the lower register of a double word register pair */
+ if (GET_CODE (x) == REG)
+ fputs (reg_names[ REGNO (x)+1 ], file);
+ else
+ fatal_insn ("Bad insn to frv_print_operand, 'L' modifier:", x);
+ break;
+
+ /* case 'l': print a LABEL_REF */
+
+ case 'M':
+ case 'N':
+ /* Print a memory reference for ld/st/jmp, %N prints a memory reference
+ for the second word of double memory operations. */
+ offset = (code == 'M') ? 0 : UNITS_PER_WORD;
+ switch (GET_CODE (x))
+ {
+ default:
+ fatal_insn ("Bad insn to frv_print_operand, 'M/N' modifier:", x);
+
+ case MEM:
+ frv_print_operand_memory_reference (file, XEXP (x, 0), offset);
+ break;
+
+ case REG:
+ case SUBREG:
+ case CONST_INT:
+ case PLUS:
+ case SYMBOL_REF:
+ frv_print_operand_memory_reference (file, x, offset);
+ break;
+ }
+ break;
+
+ case 'O':
+ /* Print the opcode of a command. */
+ switch (GET_CODE (x))
+ {
+ default:
+ fatal_insn ("Bad insn to frv_print_operand, 'O' modifier:", x);
+
+ case PLUS: fputs ("add", file); break;
+ case MINUS: fputs ("sub", file); break;
+ case AND: fputs ("and", file); break;
+ case IOR: fputs ("or", file); break;
+ case XOR: fputs ("xor", file); break;
+ case ASHIFT: fputs ("sll", file); break;
+ case ASHIFTRT: fputs ("sra", file); break;
+ case LSHIFTRT: fputs ("srl", file); break;
+ }
+ break;
+
+ /* case 'n': negate and print a constant int */
+
+ case 'P':
+ /* Print PIC label using operand as the number. */
+ if (GET_CODE (x) != CONST_INT)
+ fatal_insn ("Bad insn to frv_print_operand, P modifier:", x);
+
+ fprintf (file, ".LCF%ld", (long)INTVAL (x));
+ break;
+
+ case 'U':
+ /* Print 'u' if the operand is a update load/store */
+ if (GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
+ fputs ("u", file);
+ break;
+
+ case 'z':
+ /* If value is 0, print gr0, otherwise it must be a register */
+ if (GET_CODE (x) == CONST_INT && INTVAL (x) == 0)
+ fputs (reg_names[GPR_R0], file);
+
+ else if (GET_CODE (x) == REG)
+ fputs (reg_names [REGNO (x)], file);
+
+ else
+ fatal_insn ("Bad insn in frv_print_operand, z case", x);
+ break;
+
+ case 'x':
+ /* Print constant in hex */
+ if (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
+ {
+ fprintf (file, "%s0x%.4lx", IMMEDIATE_PREFIX, (long) value);
+ break;
+ }
+
+ /* fall through */
+
+ case '\0':
+ if (GET_CODE (x) == REG)
+ fputs (reg_names [REGNO (x)], file);
+
+ else if (GET_CODE (x) == CONST_INT
+ || GET_CODE (x) == CONST_DOUBLE)
+ fprintf (file, "%s%ld", IMMEDIATE_PREFIX, (long) value);
+
+ else if (GET_CODE (x) == MEM)
+ frv_print_operand_address (file, XEXP (x, 0));
+
+ else if (CONSTANT_ADDRESS_P (x))
+ frv_print_operand_address (file, x);
+
+ else
+ fatal_insn ("Bad insn in frv_print_operand, 0 case", x);
+
+ break;
+
+ default:
+ fatal_insn ("frv_print_operand: unknown code", x);
+ break;
+ }
+
+ return;
+}
+
+
+/* A C statement (sans semicolon) for initializing the variable CUM for the
+ state at the beginning of the argument list. The variable has type
+ `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
+ of the function which will receive the args, or 0 if the args are to a
+ compiler support library function. The value of INDIRECT is nonzero when
+ processing an indirect call, for example a call through a function pointer.
+ The value of INDIRECT is zero for a call to an explicitly named function, a
+ library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
+ arguments for the function being compiled.
+
+ When processing a call to a compiler support library function, LIBNAME
+ identifies which one. It is a `symbol_ref' rtx which contains the name of
+ the function, as a string. LIBNAME is 0 when an ordinary C function call is
+ being processed. Thus, each time this macro is called, either LIBNAME or
+ FNTYPE is nonzero, but never both of them at once. */
+
+void
+frv_init_cumulative_args (cum, fntype, libname, indirect, incoming)
+ CUMULATIVE_ARGS *cum;
+ tree fntype;
+ rtx libname;
+ int indirect;
+ int incoming;
+{
+ *cum = FIRST_ARG_REGNUM;
+
+ if (TARGET_DEBUG_ARG)
+ {
+ fprintf (stderr, "\ninit_cumulative_args:");
+ if (indirect)
+ fputs (" indirect", stderr);
+
+ if (incoming)
+ fputs (" incoming", stderr);
+
+ if (fntype)
+ {
+ tree ret_type = TREE_TYPE (fntype);
+ fprintf (stderr, " return=%s,",
+ tree_code_name[ (int)TREE_CODE (ret_type) ]);
+ }
+
+ if (libname && GET_CODE (libname) == SYMBOL_REF)
+ fprintf (stderr, " libname=%s", XSTR (libname, 0));
+
+ if (cfun->returns_struct)
+ fprintf (stderr, " return-struct");
+
+ putc ('\n', stderr);
+ }
+}
+
+
+/* If defined, a C expression that gives the alignment boundary, in bits, of an
+ argument with the specified mode and type. If it is not defined,
+ `PARM_BOUNDARY' is used for all arguments. */
+
+int
+frv_function_arg_boundary (mode, type)
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+ tree type ATTRIBUTE_UNUSED;
+{
+ return BITS_PER_WORD;
+}
+
+
+/* A C expression that controls whether a function argument is passed in a
+ register, and which register.
+
+ The arguments are CUM, of type CUMULATIVE_ARGS, which summarizes (in a way
+ defined by INIT_CUMULATIVE_ARGS and FUNCTION_ARG_ADVANCE) all of the previous
+ arguments so far passed in registers; MODE, the machine mode of the argument;
+ TYPE, the data type of the argument as a tree node or 0 if that is not known
+ (which happens for C support library functions); and NAMED, which is 1 for an
+ ordinary argument and 0 for nameless arguments that correspond to `...' in the
+ called function's prototype.
+
+ The value of the expression should either be a `reg' RTX for the hard
+ register in which to pass the argument, or zero to pass the argument on the
+ stack.
+
+ For machines like the VAX and 68000, where normally all arguments are
+ pushed, zero suffices as a definition.
+
+ The usual way to make the ANSI library `stdarg.h' work on a machine where
+ some arguments are usually passed in registers, is to cause nameless
+ arguments to be passed on the stack instead. This is done by making
+ `FUNCTION_ARG' return 0 whenever NAMED is 0.
+
+ You may use the macro `MUST_PASS_IN_STACK (MODE, TYPE)' in the definition of
+ this macro to determine if this argument is of a type that must be passed in
+ the stack. If `REG_PARM_STACK_SPACE' is not defined and `FUNCTION_ARG'
+ returns nonzero for such an argument, the compiler will abort. If
+ `REG_PARM_STACK_SPACE' is defined, the argument will be computed in the
+ stack and then loaded into a register. */
+
+rtx
+frv_function_arg (cum, mode, type, named, incoming)
+ CUMULATIVE_ARGS *cum;
+ enum machine_mode mode;
+ tree type ATTRIBUTE_UNUSED;
+ int named;
+ int incoming ATTRIBUTE_UNUSED;
+{
+ enum machine_mode xmode = (mode == BLKmode) ? SImode : mode;
+ int arg_num = *cum;
+ rtx ret;
+ const char *debstr;
+
+ /* Return a marker for use in the call instruction. */
+ if (xmode == VOIDmode)
+ {
+ ret = const0_rtx;
+ debstr = "<0>";
+ }
+
+ else if (arg_num <= LAST_ARG_REGNUM)
+ {
+ ret = gen_rtx (REG, xmode, arg_num);
+ debstr = reg_names[arg_num];
+ }
+
+ else
+ {
+ ret = NULL_RTX;
+ debstr = "memory";
+ }
+
+ if (TARGET_DEBUG_ARG)
+ fprintf (stderr,
+ "function_arg: words = %2d, mode = %4s, named = %d, size = %3d, arg = %s\n",
+ arg_num, GET_MODE_NAME (mode), named, GET_MODE_SIZE (mode), debstr);
+
+ return ret;
+}
+
+
+/* A C statement (sans semicolon) to update the summarizer variable CUM to
+ advance past an argument in the argument list. The values MODE, TYPE and
+ NAMED describe that argument. Once this is done, the variable CUM is
+ suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
+
+ This macro need not do anything if the argument in question was passed on
+ the stack. The compiler knows how to track the amount of stack space used
+ for arguments without any special help. */
+
+void
+frv_function_arg_advance (cum, mode, type, named)
+ CUMULATIVE_ARGS *cum;
+ enum machine_mode mode;
+ tree type ATTRIBUTE_UNUSED;
+ int named;
+{
+ enum machine_mode xmode = (mode == BLKmode) ? SImode : mode;
+ int bytes = GET_MODE_SIZE (xmode);
+ int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+ int arg_num = *cum;
+
+ *cum = arg_num + words;
+
+ if (TARGET_DEBUG_ARG)
+ fprintf (stderr,
+ "function_adv: words = %2d, mode = %4s, named = %d, size = %3d\n",
+ arg_num, GET_MODE_NAME (mode), named, words * UNITS_PER_WORD);
+}
+
+
+/* A C expression for the number of words, at the beginning of an argument,
+ must be put in registers. The value must be zero for arguments that are
+ passed entirely in registers or that are entirely pushed on the stack.
+
+ On some machines, certain arguments must be passed partially in registers
+ and partially in memory. On these machines, typically the first N words of
+ arguments are passed in registers, and the rest on the stack. If a
+ multi-word argument (a `double' or a structure) crosses that boundary, its
+ first few words must be passed in registers and the rest must be pushed.
+ This macro tells the compiler when this occurs, and how many of the words
+ should go in registers.
+
+ `FUNCTION_ARG' for these arguments should return the first register to be
+ used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for
+ the called function. */
+
+int
+frv_function_arg_partial_nregs (cum, mode, type, named)
+ CUMULATIVE_ARGS *cum;
+ enum machine_mode mode;
+ tree type ATTRIBUTE_UNUSED;
+ int named ATTRIBUTE_UNUSED;
+{
+ enum machine_mode xmode = (mode == BLKmode) ? SImode : mode;
+ int bytes = GET_MODE_SIZE (xmode);
+ int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+ int arg_num = *cum;
+ int ret;
+
+ ret = ((arg_num <= LAST_ARG_REGNUM && arg_num + words > LAST_ARG_REGNUM+1)
+ ? LAST_ARG_REGNUM - arg_num + 1
+ : 0);
+
+ if (TARGET_DEBUG_ARG && ret)
+ fprintf (stderr, "function_arg_partial_nregs: %d\n", ret);
+
+ return ret;
+
+}
+
+
+
+/* A C expression that indicates when an argument must be passed by reference.
+ If nonzero for an argument, a copy of that argument is made in memory and a
+ pointer to the argument is passed instead of the argument itself. The
+ pointer is passed in whatever way is appropriate for passing a pointer to
+ that type.
+
+ On machines where `REG_PARM_STACK_SPACE' is not defined, a suitable
+ definition of this macro might be
+ #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
+ MUST_PASS_IN_STACK (MODE, TYPE) */
+
+int
+frv_function_arg_pass_by_reference (cum, mode, type, named)
+ CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED;
+ enum machine_mode mode;
+ tree type;
+ int named ATTRIBUTE_UNUSED;
+{
+ return MUST_PASS_IN_STACK (mode, type);
+}
+
+/* If defined, a C expression that indicates when it is the called function's
+ responsibility to make a copy of arguments passed by invisible reference.
+ Normally, the caller makes a copy and passes the address of the copy to the
+ routine being called. When FUNCTION_ARG_CALLEE_COPIES is defined and is
+ nonzero, the caller does not make a copy. Instead, it passes a pointer to
+ the "live" value. The called function must not modify this value. If it
+ can be determined that the value won't be modified, it need not make a copy;
+ otherwise a copy must be made. */
+
+int
+frv_function_arg_callee_copies (cum, mode, type, named)
+ CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+ tree type ATTRIBUTE_UNUSED;
+ int named ATTRIBUTE_UNUSED;
+{
+ return 0;
+}
+
+/* If defined, a C expression that indicates when it is more desirable to keep
+ an argument passed by invisible reference as a reference, rather than
+ copying it to a pseudo register. */
+
+int
+frv_function_arg_keep_as_reference (cum, mode, type, named)
+ CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+ tree type ATTRIBUTE_UNUSED;
+ int named ATTRIBUTE_UNUSED;
+{
+ return 0;
+}
+
+
+/* Return true if a register is ok to use as a base or index register. */
+
+static FRV_INLINE int
+frv_regno_ok_for_base_p (regno, strict_p)
+ int regno;
+ int strict_p;
+{
+ if (GPR_P (regno))
+ return TRUE;
+
+ if (strict_p)
+ return (reg_renumber[regno] >= 0 && GPR_P (reg_renumber[regno]));
+
+ if (regno == ARG_POINTER_REGNUM)
+ return TRUE;
+
+ return (regno >= FIRST_PSEUDO_REGISTER);
+}
+
+
+/* A C compound statement with a conditional `goto LABEL;' executed if X (an
+ RTX) is a legitimate memory address on the target machine for a memory
+ operand of mode MODE.
+
+ It usually pays to define several simpler macros to serve as subroutines for
+ this one. Otherwise it may be too complicated to understand.
+
+ This macro must exist in two variants: a strict variant and a non-strict
+ one. The strict variant is used in the reload pass. It must be defined so
+ that any pseudo-register that has not been allocated a hard register is
+ considered a memory reference. In contexts where some kind of register is
+ required, a pseudo-register with no hard register must be rejected.
+
+ The non-strict variant is used in other passes. It must be defined to
+ accept all pseudo-registers in every context where some kind of register is
+ required.
+
+ Compiler source files that want to use the strict variant of this macro
+ define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT'
+ conditional to define the strict variant in that case and the non-strict
+ variant otherwise.
+
+ Subroutines to check for acceptable registers for various purposes (one for
+ base registers, one for index registers, and so on) are typically among the
+ subroutines used to define `GO_IF_LEGITIMATE_ADDRESS'. Then only these
+ subroutine macros need have two variants; the higher levels of macros may be
+ the same whether strict or not.
+
+ Normally, constant addresses which are the sum of a `symbol_ref' and an
+ integer are stored inside a `const' RTX to mark them as constant.
+ Therefore, there is no need to recognize such sums specifically as
+ legitimate addresses. Normally you would simply recognize any `const' as
+ legitimate.
+
+ Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that
+ are not marked with `const'. It assumes that a naked `plus' indicates
+ indexing. If so, then you *must* reject such naked constant sums as
+ illegitimate addresses, so that none of them will be given to
+ `PRINT_OPERAND_ADDRESS'.
+
+ On some machines, whether a symbolic address is legitimate depends on the
+ section that the address refers to. On these machines, define the macro
+ `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
+ then check for it here. When you see a `const', you will have to look
+ inside it to find the `symbol_ref' in order to determine the section.
+
+ The best way to modify the name string is by adding text to the beginning,
+ with suitable punctuation to prevent any ambiguity. Allocate the new name
+ in `saveable_obstack'. You will have to modify `ASM_OUTPUT_LABELREF' to
+ remove and decode the added text and output the name accordingly, and define
+ `(* targetm.strip_name_encoding)' to access the original name string.
+
+ You can check the information stored here into the `symbol_ref' in the
+ definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and
+ `PRINT_OPERAND_ADDRESS'. */
+
+int
+frv_legitimate_address_p (mode, x, strict_p, condexec_p)
+ enum machine_mode mode;
+ rtx x;
+ int strict_p;
+ int condexec_p;
+{
+ rtx x0, x1;
+ int ret = 0;
+ HOST_WIDE_INT value;
+ unsigned regno0;
+
+ switch (GET_CODE (x))
+ {
+ default:
+ break;
+
+ case SUBREG:
+ x = SUBREG_REG (x);
+ if (GET_CODE (x) != REG)
+ break;
+
+ /* fall through */
+
+ case REG:
+ ret = frv_regno_ok_for_base_p (REGNO (x), strict_p);
+ break;
+
+ case PRE_MODIFY:
+ x0 = XEXP (x, 0);
+ x1 = XEXP (x, 1);
+ if (GET_CODE (x0) != REG
+ || ! frv_regno_ok_for_base_p (REGNO (x0), strict_p)
+ || GET_CODE (x1) != PLUS
+ || ! rtx_equal_p (x0, XEXP (x1, 0))
+ || GET_CODE (XEXP (x1, 1)) != REG
+ || ! frv_regno_ok_for_base_p (REGNO (XEXP (x1, 1)), strict_p))
+ break;
+
+ ret = 1;
+ break;
+
+ case CONST_INT:
+ /* 12 bit immediate */
+ if (condexec_p)
+ ret = FALSE;
+ else
+ {
+ ret = IN_RANGE_P (INTVAL (x), -2048, 2047);
+
+ /* If we can't use load/store double operations, make sure we can
+ address the second word. */
+ if (ret && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
+ ret = IN_RANGE_P (INTVAL (x) + GET_MODE_SIZE (mode) - 1,
+ -2048, 2047);
+ }
+ break;
+
+ case PLUS:
+ x0 = XEXP (x, 0);
+ x1 = XEXP (x, 1);
+
+ if (GET_CODE (x0) == SUBREG)
+ x0 = SUBREG_REG (x0);
+
+ if (GET_CODE (x0) != REG)
+ break;
+
+ regno0 = REGNO (x0);
+ if (!frv_regno_ok_for_base_p (regno0, strict_p))
+ break;
+
+ switch (GET_CODE (x1))
+ {
+ default:
+ break;
+
+ case SUBREG:
+ x1 = SUBREG_REG (x1);
+ if (GET_CODE (x1) != REG)
+ break;
+
+ /* fall through */
+
+ case REG:
+ /* Do not allow reg+reg addressing for modes > 1 word if we can't depend
+ on having move double instructions */
+ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
+ ret = FALSE;
+ else
+ ret = frv_regno_ok_for_base_p (REGNO (x1), strict_p);
+ break;
+
+ case CONST_INT:
+ /* 12 bit immediate */
+ if (condexec_p)
+ ret = FALSE;
+ else
+ {
+ value = INTVAL (x1);
+ ret = IN_RANGE_P (value, -2048, 2047);
+
+ /* If we can't use load/store double operations, make sure we can
+ address the second word. */
+ if (ret && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
+ ret = IN_RANGE_P (value + GET_MODE_SIZE (mode) - 1, -2048, 2047);
+ }
+ break;
+
+ case SYMBOL_REF:
+ if (!condexec_p
+ && regno0 == SDA_BASE_REG
+ && symbol_ref_small_data_p (x1))
+ ret = TRUE;
+ break;
+
+ case CONST:
+ if (!condexec_p && regno0 == SDA_BASE_REG && const_small_data_p (x1))
+ ret = TRUE;
+ break;
+
+ }
+ break;
+ }
+
+ if (TARGET_DEBUG_ADDR)
+ {
+ fprintf (stderr, "\n========== GO_IF_LEGITIMATE_ADDRESS, mode = %s, result = %d, addresses are %sstrict%s\n",
+ GET_MODE_NAME (mode), ret, (strict_p) ? "" : "not ",
+ (condexec_p) ? ", inside conditional code" : "");
+ debug_rtx (x);
+ }
+
+ return ret;
+}
+
+
+/* A C compound statement that attempts to replace X with a valid memory
+ address for an operand of mode MODE. WIN will be a C statement label
+ elsewhere in the code; the macro definition may use
+
+ GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
+
+ to avoid further processing if the address has become legitimate.
+
+ X will always be the result of a call to `break_out_memory_refs', and OLDX
+ will be the operand that was given to that function to produce X.
+
+ The code generated by this macro should not alter the substructure of X. If
+ it transforms X into a more legitimate form, it should assign X (which will
+ always be a C variable) a new value.
+
+ It is not necessary for this macro to come up with a legitimate address.
+ The compiler has standard ways of doing so in all cases. In fact, it is
+ safe for this macro to do nothing. But often a machine-dependent strategy
+ can generate better code. */
+
+rtx
+frv_legitimize_address (x, oldx, mode)
+ rtx x;
+ rtx oldx ATTRIBUTE_UNUSED;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ rtx ret = NULL_RTX;
+
+ /* Don't try to legitimize addresses if we are not optimizing, since the
+ address we generate is not a general operand, and will horribly mess
+ things up when force_reg is called to try and put it in a register because
+ we aren't optimizing. */
+ if (optimize
+ && ((GET_CODE (x) == SYMBOL_REF && symbol_ref_small_data_p (x))
+ || (GET_CODE (x) == CONST && const_small_data_p (x))))
+ {
+ ret = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, SDA_BASE_REG), x);
+ if (flag_pic)
+ cfun->uses_pic_offset_table = TRUE;
+ }
+
+ if (TARGET_DEBUG_ADDR && ret != NULL_RTX)
+ {
+ fprintf (stderr, "\n========== LEGITIMIZE_ADDRESS, mode = %s, modified address\n",
+ GET_MODE_NAME (mode));
+ debug_rtx (ret);
+ }
+
+ return ret;
+}
+
+/* Return 1 if operand is a valid FRV address. CONDEXEC_P is true if
+ the operand is used by a predicated instruction. */
+
+static int
+frv_legitimate_memory_operand (op, mode, condexec_p)
+ rtx op;
+ enum machine_mode mode;
+ int condexec_p;
+{
+ return ((GET_MODE (op) == mode || mode == VOIDmode)
+ && GET_CODE (op) == MEM
+ && frv_legitimate_address_p (mode, XEXP (op, 0),
+ reload_completed, condexec_p));
+}
+
+
+/* Return 1 is OP is a memory operand, or will be turned into one by
+ reload. */
+
+int frv_load_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (reload_in_progress)
+ {
+ rtx tmp = op;
+ if (GET_CODE (tmp) == SUBREG)
+ tmp = SUBREG_REG (tmp);
+ if (GET_CODE (tmp) == REG
+ && REGNO (tmp) >= FIRST_PSEUDO_REGISTER)
+ op = reg_equiv_memory_loc[REGNO (tmp)];
+ }
+
+ return op && memory_operand (op, mode);
+}
+
+
+/* Return 1 if operand is a GPR register or a FPR register. */
+
+int gpr_or_fpr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ if (GPR_P (regno) || FPR_P (regno) || regno >= FIRST_PSEUDO_REGISTER)
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Return 1 if operand is a GPR register or 12 bit signed immediate. */
+
+int gpr_or_int12_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_CODE (op) == CONST_INT)
+ return IN_RANGE_P (INTVAL (op), -2048, 2047);
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ return GPR_OR_PSEUDO_P (REGNO (op));
+}
+
+/* Return 1 if operand is a GPR register, or a FPR register, or a 12 bit
+ signed immediate. */
+
+int gpr_fpr_or_int12_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_CODE (op) == CONST_INT)
+ return IN_RANGE_P (INTVAL (op), -2048, 2047);
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ if (GPR_P (regno) || FPR_P (regno) || regno >= FIRST_PSEUDO_REGISTER)
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Return 1 if operand is a register or 6 bit signed immediate. */
+
+int fpr_or_int6_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_CODE (op) == CONST_INT)
+ return IN_RANGE_P (INTVAL (op), -32, 31);
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ return FPR_OR_PSEUDO_P (REGNO (op));
+}
+
+/* Return 1 if operand is a register or 10 bit signed immediate. */
+
+int gpr_or_int10_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_CODE (op) == CONST_INT)
+ return IN_RANGE_P (INTVAL (op), -512, 511);
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ return GPR_OR_PSEUDO_P (REGNO (op));
+}
+
+/* Return 1 if operand is a register or an integer immediate. */
+
+int gpr_or_int_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_CODE (op) == CONST_INT)
+ return TRUE;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ return GPR_OR_PSEUDO_P (REGNO (op));
+}
+
+/* Return 1 if operand is a 12 bit signed immediate. */
+
+int int12_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ if (GET_CODE (op) != CONST_INT)
+ return FALSE;
+
+ return IN_RANGE_P (INTVAL (op), -2048, 2047);
+}
+
+/* Return 1 if operand is a 6 bit signed immediate. */
+
+int int6_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ if (GET_CODE (op) != CONST_INT)
+ return FALSE;
+
+ return IN_RANGE_P (INTVAL (op), -32, 31);
+}
+
+/* Return 1 if operand is a 5 bit signed immediate. */
+
+int int5_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ return GET_CODE (op) == CONST_INT && IN_RANGE_P (INTVAL (op), -16, 15);
+}
+
+/* Return 1 if operand is a 5 bit unsigned immediate. */
+
+int uint5_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ return GET_CODE (op) == CONST_INT && IN_RANGE_P (INTVAL (op), 0, 31);
+}
+
+/* Return 1 if operand is a 4 bit unsigned immediate. */
+
+int uint4_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ return GET_CODE (op) == CONST_INT && IN_RANGE_P (INTVAL (op), 0, 15);
+}
+
+/* Return 1 if operand is a 1 bit unsigned immediate (0 or 1). */
+
+int uint1_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ return GET_CODE (op) == CONST_INT && IN_RANGE_P (INTVAL (op), 0, 1);
+}
+
+/* Return 1 if operand is an integer constant that takes 2 instructions
+ to load up and can be split into sethi/setlo instructions.. */
+
+int int_2word_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ HOST_WIDE_INT value;
+ REAL_VALUE_TYPE rv;
+ long l;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ break;
+
+ case LABEL_REF:
+ return (flag_pic == 0);
+
+ case CONST:
+ /* small data references are already 1 word */
+ return (flag_pic == 0) && (! const_small_data_p (op));
+
+ case SYMBOL_REF:
+ /* small data references are already 1 word */
+ return (flag_pic == 0) && (! symbol_ref_small_data_p (op));
+
+ case CONST_INT:
+ return ! IN_RANGE_P (INTVAL (op), -32768, 32767);
+
+ case CONST_DOUBLE:
+ if (GET_MODE (op) == SFmode)
+ {
+ REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
+ REAL_VALUE_TO_TARGET_SINGLE (rv, l);
+ value = l;
+ return ! IN_RANGE_P (value, -32768, 32767);
+ }
+ else if (GET_MODE (op) == VOIDmode)
+ {
+ value = CONST_DOUBLE_LOW (op);
+ return ! IN_RANGE_P (value, -32768, 32767);
+ }
+ break;
+ }
+
+ return FALSE;
+}
+
+/* Return 1 if operand is the pic address register. */
+int
+pic_register_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ if (! flag_pic)
+ return FALSE;
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ if (REGNO (op) != PIC_REGNO)
+ return FALSE;
+
+ return TRUE;
+}
+
+/* Return 1 if operand is a symbolic reference when a PIC option is specified
+ that takes 3 seperate instructions to form. */
+
+int pic_symbolic_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ if (! flag_pic)
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ break;
+
+ case LABEL_REF:
+ return TRUE;
+
+ case SYMBOL_REF:
+ /* small data references are already 1 word */
+ return ! symbol_ref_small_data_p (op);
+
+ case CONST:
+ /* small data references are already 1 word */
+ return ! const_small_data_p (op);
+ }
+
+ return FALSE;
+}
+
+/* Return 1 if operand is the small data register. */
+int
+small_data_register_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ if (REGNO (op) != SDA_BASE_REG)
+ return FALSE;
+
+ return TRUE;
+}
+
+/* Return 1 if operand is a symbolic reference to a small data area static or
+ global object. */
+
+int small_data_symbolic_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ switch (GET_CODE (op))
+ {
+ default:
+ break;
+
+ case CONST:
+ return const_small_data_p (op);
+
+ case SYMBOL_REF:
+ return symbol_ref_small_data_p (op);
+ }
+
+ return FALSE;
+}
+
+/* Return 1 if operand is a 16 bit unsigned immediate */
+
+int uint16_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ if (GET_CODE (op) != CONST_INT)
+ return FALSE;
+
+ return IN_RANGE_P (INTVAL (op), 0, 0xffff);
+}
+
+/* Return 1 if operand is an integer constant with the bottom 16 bits clear */
+
+int upper_int16_operand (op, mode)
+ rtx op;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+{
+ if (GET_CODE (op) != CONST_INT)
+ return FALSE;
+
+ return ((INTVAL (op) & 0xffff) == 0);
+}
+
+/* Return true if operand is a GPR register. */
+
+int
+integer_register_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ return GPR_OR_PSEUDO_P (REGNO (op));
+}
+
+/* Return true if operand is a GPR register. Do not allow SUBREG's
+ here, in order to prevent a combine bug. */
+
+int
+gpr_no_subreg_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ return GPR_OR_PSEUDO_P (REGNO (op));
+}
+
+/* Return true if operand is a FPR register. */
+
+int
+fpr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ return FPR_OR_PSEUDO_P (REGNO (op));
+}
+
+/* Return true if operand is an even GPR or FPR register. */
+
+int
+even_reg_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ return TRUE;
+
+ if (GPR_P (regno))
+ return (((regno - GPR_FIRST) & 1) == 0);
+
+ if (FPR_P (regno))
+ return (((regno - FPR_FIRST) & 1) == 0);
+
+ return FALSE;
+}
+
+/* Return true if operand is an odd GPR register. */
+
+int
+odd_reg_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ /* assume that reload will give us an even register */
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ return FALSE;
+
+ if (GPR_P (regno))
+ return (((regno - GPR_FIRST) & 1) != 0);
+
+ if (FPR_P (regno))
+ return (((regno - FPR_FIRST) & 1) != 0);
+
+ return FALSE;
+}
+
+/* Return true if operand is an even GPR register. */
+
+int
+even_gpr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ return TRUE;
+
+ if (! GPR_P (regno))
+ return FALSE;
+
+ return (((regno - GPR_FIRST) & 1) == 0);
+}
+
+/* Return true if operand is an odd GPR register. */
+
+int
+odd_gpr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ /* assume that reload will give us an even register */
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ return FALSE;
+
+ if (! GPR_P (regno))
+ return FALSE;
+
+ return (((regno - GPR_FIRST) & 1) != 0);
+}
+
+/* Return true if operand is a quad aligned FPR register. */
+
+int
+quad_fpr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ return TRUE;
+
+ if (! FPR_P (regno))
+ return FALSE;
+
+ return (((regno - FPR_FIRST) & 3) == 0);
+}
+
+/* Return true if operand is an even FPR register. */
+
+int
+even_fpr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ return TRUE;
+
+ if (! FPR_P (regno))
+ return FALSE;
+
+ return (((regno - FPR_FIRST) & 1) == 0);
+}
+
+/* Return true if operand is an odd FPR register. */
+
+int
+odd_fpr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ /* assume that reload will give us an even register */
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ return FALSE;
+
+ if (! FPR_P (regno))
+ return FALSE;
+
+ return (((regno - FPR_FIRST) & 1) != 0);
+}
+
+/* Return true if operand is a 2 word memory address that can be loaded in one
+ instruction to load or store. We assume the stack and frame pointers are
+ suitably aligned, and variables in the small data area. FIXME -- at some we
+ should recognize other globals and statics. We can't assume that any old
+ pointer is aligned, given that arguments could be passed on an odd word on
+ the stack and the address taken and passed through to another function. */
+
+int
+dbl_memory_one_insn_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ rtx addr;
+ rtx addr_reg;
+
+ if (! TARGET_DWORD)
+ return FALSE;
+
+ if (GET_CODE (op) != MEM)
+ return FALSE;
+
+ if (mode != VOIDmode && GET_MODE_SIZE (mode) != 2*UNITS_PER_WORD)
+ return FALSE;
+
+ addr = XEXP (op, 0);
+ if (GET_CODE (addr) == REG)
+ addr_reg = addr;
+
+ else if (GET_CODE (addr) == PLUS)
+ {
+ rtx addr0 = XEXP (addr, 0);
+ rtx addr1 = XEXP (addr, 1);
+
+ if (GET_CODE (addr0) != REG)
+ return FALSE;
+
+ if (plus_small_data_p (addr0, addr1))
+ return TRUE;
+
+ if (GET_CODE (addr1) != CONST_INT)
+ return FALSE;
+
+ if ((INTVAL (addr1) & 7) != 0)
+ return FALSE;
+
+ addr_reg = addr0;
+ }
+
+ else
+ return FALSE;
+
+ if (addr_reg == frame_pointer_rtx || addr_reg == stack_pointer_rtx)
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Return true if operand is a 2 word memory address that needs to
+ use two instructions to load or store. */
+
+int
+dbl_memory_two_insn_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_CODE (op) != MEM)
+ return FALSE;
+
+ if (mode != VOIDmode && GET_MODE_SIZE (mode) != 2*UNITS_PER_WORD)
+ return FALSE;
+
+ if (! TARGET_DWORD)
+ return TRUE;
+
+ return ! dbl_memory_one_insn_operand (op, mode);
+}
+
+/* Return true if operand is something that can be an output for a move
+ operation. */
+
+int
+move_destination_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ rtx subreg;
+ enum rtx_code code;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ break;
+
+ case SUBREG:
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ subreg = SUBREG_REG (op);
+ code = GET_CODE (subreg);
+ if (code == MEM)
+ return frv_legitimate_address_p (mode, XEXP (subreg, 0),
+ reload_completed, FALSE);
+
+ return (code == REG);
+
+ case REG:
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ return TRUE;
+
+ case MEM:
+ if (GET_CODE (XEXP (op, 0)) == ADDRESSOF)
+ return TRUE;
+
+ return frv_legitimate_memory_operand (op, mode, FALSE);
+ }
+
+ return FALSE;
+}
+
+/* Return true if operand is something that can be an input for a move
+ operation. */
+
+int
+move_source_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ rtx subreg;
+ enum rtx_code code;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ break;
+
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case CONST:
+ return immediate_operand (op, mode);
+
+ case SUBREG:
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ subreg = SUBREG_REG (op);
+ code = GET_CODE (subreg);
+ if (code == MEM)
+ return frv_legitimate_address_p (mode, XEXP (subreg, 0),
+ reload_completed, FALSE);
+
+ return (code == REG);
+
+ case REG:
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ return TRUE;
+
+ case MEM:
+ if (GET_CODE (XEXP (op, 0)) == ADDRESSOF)
+ return TRUE;
+
+ return frv_legitimate_memory_operand (op, mode, FALSE);
+ }
+
+ return FALSE;
+}
+
+/* Return true if operand is something that can be an output for a conditional
+ move operation. */
+
+int
+condexec_dest_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ rtx subreg;
+ enum rtx_code code;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ break;
+
+ case SUBREG:
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ subreg = SUBREG_REG (op);
+ code = GET_CODE (subreg);
+ if (code == MEM)
+ return frv_legitimate_address_p (mode, XEXP (subreg, 0),
+ reload_completed, TRUE);
+
+ return (code == REG);
+
+ case REG:
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ return TRUE;
+
+ case MEM:
+ if (GET_CODE (XEXP (op, 0)) == ADDRESSOF)
+ return TRUE;
+
+ return frv_legitimate_memory_operand (op, mode, TRUE);
+ }
+
+ return FALSE;
+}
+
+/* Return true if operand is something that can be an input for a conditional
+ move operation. */
+
+int
+condexec_source_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ rtx subreg;
+ enum rtx_code code;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ break;
+
+ case CONST_INT:
+ case CONST_DOUBLE:
+ return ZERO_P (op);
+
+ case SUBREG:
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ subreg = SUBREG_REG (op);
+ code = GET_CODE (subreg);
+ if (code == MEM)
+ return frv_legitimate_address_p (mode, XEXP (subreg, 0),
+ reload_completed, TRUE);
+
+ return (code == REG);
+
+ case REG:
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ return TRUE;
+
+ case MEM:
+ if (GET_CODE (XEXP (op, 0)) == ADDRESSOF)
+ return TRUE;
+
+ return frv_legitimate_memory_operand (op, mode, TRUE);
+ }
+
+ return FALSE;
+}
+
+/* Return true if operand is a register of any flavor or a 0 of the
+ appropriate type. */
+
+int
+reg_or_0_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ switch (GET_CODE (op))
+ {
+ default:
+ break;
+
+ case REG:
+ case SUBREG:
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ return register_operand (op, mode);
+
+ case CONST_INT:
+ case CONST_DOUBLE:
+ return ZERO_P (op);
+ }
+
+ return FALSE;
+}
+
+/* Return true if operand is the link register */
+
+int
+lr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (REGNO (op) != LR_REGNO && REGNO (op) < FIRST_PSEUDO_REGISTER)
+ return FALSE;
+
+ return TRUE;
+}
+
+/* Return true if operand is a gpr register or a valid memory operation. */
+
+int
+gpr_or_memory_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ return (integer_register_operand (op, mode)
+ || frv_legitimate_memory_operand (op, mode, FALSE));
+}
+
+/* Return true if operand is a fpr register or a valid memory operation. */
+
+int
+fpr_or_memory_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ return (fpr_operand (op, mode)
+ || frv_legitimate_memory_operand (op, mode, FALSE));
+}
+
+/* Return true if operand is an icc register */
+
+int
+icc_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ return ICC_OR_PSEUDO_P (regno);
+}
+
+/* Return true if operand is an fcc register */
+
+int
+fcc_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ return FCC_OR_PSEUDO_P (regno);
+}
+
+/* Return true if operand is either an fcc or icc register */
+
+int
+cc_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ if (CC_OR_PSEUDO_P (regno))
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Return true if operand is an integer CCR register */
+
+int
+icr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ return ICR_OR_PSEUDO_P (regno);
+}
+
+/* Return true if operand is an fcc register */
+
+int
+fcr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ return FCR_OR_PSEUDO_P (regno);
+}
+
+/* Return true if operand is either an fcc or icc register */
+
+int
+cr_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ if (CR_OR_PSEUDO_P (regno))
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Return true if operand is a memory reference suitable for a call. */
+
+int
+call_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_MODE (op) != mode && mode != VOIDmode && GET_CODE (op) != CONST_INT)
+ return FALSE;
+
+ if (GET_CODE (op) == SYMBOL_REF)
+ return TRUE;
+
+ /* Note this doesn't allow reg+reg or reg+imm12 addressing (which should
+ never occur anyway), but prevents reload from not handling the case
+ properly of a call through a pointer on a function that calls
+ vfork/setjmp, etc. due to the need to flush all of the registers to stack. */
+ return gpr_or_int12_operand (op, mode);
+}
+
+/* Return true if operator is an kind of relational operator */
+
+int
+relational_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ rtx op0;
+ rtx op1;
+ int regno;
+
+ if (mode != VOIDmode && mode != GET_MODE (op))
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case EQ:
+ case NE:
+ case LE:
+ case LT:
+ case GE:
+ case GT:
+ case LEU:
+ case LTU:
+ case GEU:
+ case GTU:
+ break;
+ }
+
+ op1 = XEXP (op, 1);
+ if (op1 != const0_rtx)
+ return FALSE;
+
+ op0 = XEXP (op, 0);
+ if (GET_CODE (op0) != REG)
+ return FALSE;
+
+ regno = REGNO (op0);
+ switch (GET_MODE (op0))
+ {
+ default:
+ break;
+
+ case CCmode:
+ case CC_UNSmode:
+ return ICC_OR_PSEUDO_P (regno);
+
+ case CC_FPmode:
+ return FCC_OR_PSEUDO_P (regno);
+
+ case CC_CCRmode:
+ return CR_OR_PSEUDO_P (regno);
+ }
+
+ return FALSE;
+}
+
+/* Return true if operator is a signed integer relational operator */
+
+int
+signed_relational_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ rtx op0;
+ rtx op1;
+ int regno;
+
+ if (mode != VOIDmode && mode != GET_MODE (op))
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case EQ:
+ case NE:
+ case LE:
+ case LT:
+ case GE:
+ case GT:
+ break;
+ }
+
+ op1 = XEXP (op, 1);
+ if (op1 != const0_rtx)
+ return FALSE;
+
+ op0 = XEXP (op, 0);
+ if (GET_CODE (op0) != REG)
+ return FALSE;
+
+ regno = REGNO (op0);
+ if (GET_MODE (op0) == CCmode && ICC_OR_PSEUDO_P (regno))
+ return TRUE;
+
+ if (GET_MODE (op0) == CC_CCRmode && CR_OR_PSEUDO_P (regno))
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Return true if operator is a signed integer relational operator */
+
+int
+unsigned_relational_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ rtx op0;
+ rtx op1;
+ int regno;
+
+ if (mode != VOIDmode && mode != GET_MODE (op))
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case LEU:
+ case LTU:
+ case GEU:
+ case GTU:
+ break;
+ }
+
+ op1 = XEXP (op, 1);
+ if (op1 != const0_rtx)
+ return FALSE;
+
+ op0 = XEXP (op, 0);
+ if (GET_CODE (op0) != REG)
+ return FALSE;
+
+ regno = REGNO (op0);
+ if (GET_MODE (op0) == CC_UNSmode && ICC_OR_PSEUDO_P (regno))
+ return TRUE;
+
+ if (GET_MODE (op0) == CC_CCRmode && CR_OR_PSEUDO_P (regno))
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Return true if operator is a floating point relational operator */
+
+int
+float_relational_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ rtx op0;
+ rtx op1;
+ int regno;
+
+ if (mode != VOIDmode && mode != GET_MODE (op))
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case EQ: case NE:
+ case LE: case LT:
+ case GE: case GT:
+#if 0
+ case UEQ: case UNE:
+ case ULE: case ULT:
+ case UGE: case UGT:
+ case ORDERED:
+ case UNORDERED:
+#endif
+ break;
+ }
+
+ op1 = XEXP (op, 1);
+ if (op1 != const0_rtx)
+ return FALSE;
+
+ op0 = XEXP (op, 0);
+ if (GET_CODE (op0) != REG)
+ return FALSE;
+
+ regno = REGNO (op0);
+ if (GET_MODE (op0) == CC_FPmode && FCC_OR_PSEUDO_P (regno))
+ return TRUE;
+
+ if (GET_MODE (op0) == CC_CCRmode && CR_OR_PSEUDO_P (regno))
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Return true if operator is EQ/NE of a conditional execution register. */
+
+int
+ccr_eqne_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ enum machine_mode op_mode = GET_MODE (op);
+ rtx op0;
+ rtx op1;
+ int regno;
+
+ if (mode != VOIDmode && op_mode != mode)
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case EQ:
+ case NE:
+ break;
+ }
+
+ op1 = XEXP (op, 1);
+ if (op1 != const0_rtx)
+ return FALSE;
+
+ op0 = XEXP (op, 0);
+ if (GET_CODE (op0) != REG)
+ return FALSE;
+
+ regno = REGNO (op0);
+ if (op_mode == CC_CCRmode && CR_OR_PSEUDO_P (regno))
+ return TRUE;
+
+ return FALSE;
+}
+
+/* Return true if operator is a minimum or maximum operator (both signed and
+ unsigned). */
+
+int
+minmax_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (mode != VOIDmode && mode != GET_MODE (op))
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case SMIN:
+ case SMAX:
+ case UMIN:
+ case UMAX:
+ break;
+ }
+
+ if (! integer_register_operand (XEXP (op, 0), mode))
+ return FALSE;
+
+ if (! gpr_or_int10_operand (XEXP (op, 1), mode))
+ return FALSE;
+
+ return TRUE;
+}
+
+/* Return true if operator is an integer binary operator that can executed
+ conditionally and takes 1 cycle. */
+
+int
+condexec_si_binary_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ enum machine_mode op_mode = GET_MODE (op);
+
+ if (mode != VOIDmode && op_mode != mode)
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case PLUS:
+ case MINUS:
+ case AND:
+ case IOR:
+ case XOR:
+ case ASHIFT:
+ case ASHIFTRT:
+ case LSHIFTRT:
+ return TRUE;
+ }
+}
+
+/* Return true if operator is an integer binary operator that can be
+ executed conditionally by a media instruction. */
+
+int
+condexec_si_media_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ enum machine_mode op_mode = GET_MODE (op);
+
+ if (mode != VOIDmode && op_mode != mode)
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case AND:
+ case IOR:
+ case XOR:
+ return TRUE;
+ }
+}
+
+/* Return true if operator is an integer division operator that can executed
+ conditionally. */
+
+int
+condexec_si_divide_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ enum machine_mode op_mode = GET_MODE (op);
+
+ if (mode != VOIDmode && op_mode != mode)
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case DIV:
+ case UDIV:
+ return TRUE;
+ }
+}
+
+/* Return true if operator is an integer unary operator that can executed
+ conditionally. */
+
+int
+condexec_si_unary_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ enum machine_mode op_mode = GET_MODE (op);
+
+ if (mode != VOIDmode && op_mode != mode)
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case NEG:
+ case NOT:
+ return TRUE;
+ }
+}
+
+/* Return true if operator is a conversion-type expression that can be
+ evaluated conditionally by floating-point instructions. */
+
+int
+condexec_sf_conv_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ enum machine_mode op_mode = GET_MODE (op);
+
+ if (mode != VOIDmode && op_mode != mode)
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case NEG:
+ case ABS:
+ return TRUE;
+ }
+}
+
+/* Return true if operator is an addition or subtraction expression.
+ Such expressions can be evaluated conditionally by floating-point
+ instructions. */
+
+int
+condexec_sf_add_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ enum machine_mode op_mode = GET_MODE (op);
+
+ if (mode != VOIDmode && op_mode != mode)
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case PLUS:
+ case MINUS:
+ return TRUE;
+ }
+}
+
+/* Return true if the memory operand is one that can be conditionally
+ executed. */
+
+int
+condexec_memory_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ enum machine_mode op_mode = GET_MODE (op);
+ rtx addr;
+
+ if (mode != VOIDmode && op_mode != mode)
+ return FALSE;
+
+ switch (op_mode)
+ {
+ default:
+ return FALSE;
+
+ case QImode:
+ case HImode:
+ case SImode:
+ case SFmode:
+ break;
+ }
+
+ if (GET_CODE (op) != MEM)
+ return FALSE;
+
+ addr = XEXP (op, 0);
+ if (GET_CODE (addr) == ADDRESSOF)
+ return TRUE;
+
+ return frv_legitimate_address_p (mode, addr, reload_completed, TRUE);
+}
+
+/* Return true if operator is an integer binary operator that can be combined
+ with a setcc operation. Do not allow the arithmetic operations that could
+ potentially overflow since the FR-V sets the condition code based on the
+ "true" value of the result, not the result after truncating to a 32-bit
+ register. */
+
+int
+intop_compare_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ enum machine_mode op_mode = GET_MODE (op);
+
+ if (mode != VOIDmode && op_mode != mode)
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case AND:
+ case IOR:
+ case XOR:
+ case ASHIFTRT:
+ case LSHIFTRT:
+ break;
+ }
+
+ if (! integer_register_operand (XEXP (op, 0), SImode))
+ return FALSE;
+
+ if (! gpr_or_int10_operand (XEXP (op, 1), SImode))
+ return FALSE;
+
+ return TRUE;
+}
+
+/* Return true if operator is an integer binary operator that can be combined
+ with a setcc operation inside of a conditional execution. */
+
+int
+condexec_intop_cmp_operator (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ enum machine_mode op_mode = GET_MODE (op);
+
+ if (mode != VOIDmode && op_mode != mode)
+ return FALSE;
+
+ switch (GET_CODE (op))
+ {
+ default:
+ return FALSE;
+
+ case AND:
+ case IOR:
+ case XOR:
+ case ASHIFTRT:
+ case LSHIFTRT:
+ break;
+ }
+
+ if (! integer_register_operand (XEXP (op, 0), SImode))
+ return FALSE;
+
+ if (! integer_register_operand (XEXP (op, 1), SImode))
+ return FALSE;
+
+ return TRUE;
+}
+
+/* Return 1 if operand is a valid ACC register number */
+
+int
+acc_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ return ACC_OR_PSEUDO_P (regno);
+}
+
+/* Return 1 if operand is a valid even ACC register number */
+
+int
+even_acc_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ return (ACC_OR_PSEUDO_P (regno) && ((regno - ACC_FIRST) & 1) == 0);
+}
+
+/* Return 1 if operand is zero or four */
+
+int
+quad_acc_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ int regno;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ regno = REGNO (op);
+ return (ACC_OR_PSEUDO_P (regno) && ((regno - ACC_FIRST) & 3) == 0);
+}
+
+/* Return 1 if operand is a valid ACCG register number */
+
+int
+accg_operand (op, mode)
+ rtx op;
+ enum machine_mode mode;
+{
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return FALSE;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) != REG)
+ return register_operand (op, mode);
+
+ op = SUBREG_REG (op);
+ }
+
+ if (GET_CODE (op) != REG)
+ return FALSE;
+
+ return ACCG_OR_PSEUDO_P (REGNO (op));
+}
+
+
+/* Return true if the bare return instruction can be used outside of the
+ epilog code. For frv, we only do it if there was no stack allocation. */
+
+int
+direct_return_p ()
+{
+ frv_stack_t *info;
+
+ if (!reload_completed)
+ return FALSE;
+
+ info = frv_stack_info ();
+ return (info->total_size == 0);
+}
+
+
+/* Emit code to handle a MOVSI, adding in the small data register or pic
+ register if needed to load up addresses. Return TRUE if the appropriate
+ instructions are emitted. */
+
+int
+frv_emit_movsi (dest, src)
+ rtx dest;
+ rtx src;
+{
+ int base_regno = -1;
+
+ if (!reload_in_progress
+ && !reload_completed
+ && !register_operand (dest, SImode)
+ && (!reg_or_0_operand (src, SImode)
+ /* Virtual registers will almost always be replaced by an
+ add instruction, so expose this to CSE by copying to
+ an intermediate register */
+ || (GET_CODE (src) == REG
+ && IN_RANGE_P (REGNO (src),
+ FIRST_VIRTUAL_REGISTER,
+ LAST_VIRTUAL_REGISTER))))
+ {
+ emit_insn (gen_rtx_SET (VOIDmode, dest, copy_to_mode_reg (SImode, src)));
+ return TRUE;
+ }
+
+ /* Explicitly add in the PIC or small data register if needed. */
+ switch (GET_CODE (src))
+ {
+ default:
+ break;
+
+ case LABEL_REF:
+ if (flag_pic)
+ base_regno = PIC_REGNO;
+
+ break;
+
+ case CONST:
+ if (const_small_data_p (src))
+ base_regno = SDA_BASE_REG;
+
+ else if (flag_pic)
+ base_regno = PIC_REGNO;
+
+ break;
+
+ case SYMBOL_REF:
+ if (symbol_ref_small_data_p (src))
+ base_regno = SDA_BASE_REG;
+
+ else if (flag_pic)
+ base_regno = PIC_REGNO;
+
+ break;
+ }
+
+ if (base_regno >= 0)
+ {
+ emit_insn (gen_rtx_SET (VOIDmode, dest,
+ gen_rtx_PLUS (Pmode,
+ gen_rtx_REG (Pmode, base_regno),
+ src)));
+
+ if (base_regno == PIC_REGNO)
+ cfun->uses_pic_offset_table = TRUE;
+
+ return TRUE;
+ }
+
+ return FALSE;
+}
+
+
+/* Return a string to output a single word move. */
+
+const char *
+output_move_single (operands, insn)
+ rtx operands[];
+ rtx insn;
+{
+ rtx dest = operands[0];
+ rtx src = operands[1];
+
+ if (GET_CODE (dest) == REG)
+ {
+ int dest_regno = REGNO (dest);
+ enum machine_mode mode = GET_MODE (dest);
+
+ if (GPR_P (dest_regno))
+ {
+ if (GET_CODE (src) == REG)
+ {
+ /* gpr <- some sort of register */
+ int src_regno = REGNO (src);
+
+ if (GPR_P (src_regno))
+ return "mov %1, %0";
+
+ else if (FPR_P (src_regno))
+ return "movfg %1, %0";
+
+ else if (SPR_P (src_regno))
+ return "movsg %1, %0";
+ }
+
+ else if (GET_CODE (src) == MEM)
+ {
+ /* gpr <- memory */
+ switch (mode)
+ {
+ default:
+ break;
+
+ case QImode:
+ return "ldsb%I1%U1 %M1,%0";
+
+ case HImode:
+ return "ldsh%I1%U1 %M1,%0";
+
+ case SImode:
+ case SFmode:
+ return "ld%I1%U1 %M1, %0";
+ }
+ }
+
+ else if (GET_CODE (src) == CONST_INT
+ || GET_CODE (src) == CONST_DOUBLE)
+ {
+ /* gpr <- integer/floating constant */
+ HOST_WIDE_INT value;
+
+ if (GET_CODE (src) == CONST_INT)
+ value = INTVAL (src);
+
+ else if (mode == SFmode)
+ {
+ REAL_VALUE_TYPE rv;
+ long l;
+
+ REAL_VALUE_FROM_CONST_DOUBLE (rv, src);
+ REAL_VALUE_TO_TARGET_SINGLE (rv, l);
+ value = l;
+ }
+
+ else
+ value = CONST_DOUBLE_LOW (src);
+
+ if (IN_RANGE_P (value, -32768, 32767))
+ return "setlos %1, %0";
+
+ return "#";
+ }
+
+ else if (GET_CODE (src) == SYMBOL_REF
+ || GET_CODE (src) == LABEL_REF
+ || GET_CODE (src) == CONST)
+ {
+ /* Silently fix up instances where the small data pointer is not
+ used in the address. */
+ if (small_data_symbolic_operand (src, GET_MODE (src)))
+ return "addi %@, #gprel12(%1), %0";
+
+ return "#";
+ }
+ }
+
+ else if (FPR_P (dest_regno))
+ {
+ if (GET_CODE (src) == REG)
+ {
+ /* fpr <- some sort of register */
+ int src_regno = REGNO (src);
+
+ if (GPR_P (src_regno))
+ return "movgf %1, %0";
+
+ else if (FPR_P (src_regno))
+ {
+ if (TARGET_HARD_FLOAT)
+ return "fmovs %1, %0";
+ else
+ return "mor %1, %1, %0";
+ }
+ }
+
+ else if (GET_CODE (src) == MEM)
+ {
+ /* fpr <- memory */
+ switch (mode)
+ {
+ default:
+ break;
+
+ case QImode:
+ return "ldbf%I1%U1 %M1,%0";
+
+ case HImode:
+ return "ldhf%I1%U1 %M1,%0";
+
+ case SImode:
+ case SFmode:
+ return "ldf%I1%U1 %M1, %0";
+ }
+ }
+
+ else if (ZERO_P (src))
+ return "movgf %., %0";
+ }
+
+ else if (SPR_P (dest_regno))
+ {
+ if (GET_CODE (src) == REG)
+ {
+ /* spr <- some sort of register */
+ int src_regno = REGNO (src);
+
+ if (GPR_P (src_regno))
+ return "movgs %1, %0";
+ }
+ }
+ }
+
+ else if (GET_CODE (dest) == MEM)
+ {
+ if (GET_CODE (src) == REG)
+ {
+ int src_regno = REGNO (src);
+ enum machine_mode mode = GET_MODE (dest);
+
+ if (GPR_P (src_regno))
+ {
+ switch (mode)
+ {
+ default:
+ break;
+
+ case QImode:
+ return "stb%I0%U0 %1, %M0";
+
+ case HImode:
+ return "sth%I0%U0 %1, %M0";
+
+ case SImode:
+ case SFmode:
+ return "st%I0%U0 %1, %M0";
+ }
+ }
+
+ else if (FPR_P (src_regno))
+ {
+ switch (mode)
+ {
+ default:
+ break;
+
+ case QImode:
+ return "stbf%I0%U0 %1, %M0";
+
+ case HImode:
+ return "sthf%I0%U0 %1, %M0";
+
+ case SImode:
+ case SFmode:
+ return "stf%I0%U0 %1, %M0";
+ }
+ }
+ }
+
+ else if (ZERO_P (src))
+ {
+ switch (GET_MODE (dest))
+ {
+ default:
+ break;
+
+ case QImode:
+ return "stb%I0%U0 %., %M0";
+
+ case HImode:
+ return "sth%I0%U0 %., %M0";
+
+ case SImode:
+ case SFmode:
+ return "st%I0%U0 %., %M0";
+ }
+ }
+ }
+
+ fatal_insn ("Bad output_move_single operand", insn);
+ return "";
+}
+
+
+/* Return a string to output a double word move. */
+
+const char *
+output_move_double (operands, insn)
+ rtx operands[];
+ rtx insn;
+{
+ rtx dest = operands[0];
+ rtx src = operands[1];
+ enum machine_mode mode = GET_MODE (dest);
+
+ if (GET_CODE (dest) == REG)
+ {
+ int dest_regno = REGNO (dest);
+
+ if (GPR_P (dest_regno))
+ {
+ if (GET_CODE (src) == REG)
+ {
+ /* gpr <- some sort of register */
+ int src_regno = REGNO (src);
+
+ if (GPR_P (src_regno))
+ return "#";
+
+ else if (FPR_P (src_regno))
+ {
+ if (((dest_regno - GPR_FIRST) & 1) == 0
+ && ((src_regno - FPR_FIRST) & 1) == 0)
+ return "movfgd %1, %0";
+
+ return "#";
+ }
+ }
+
+ else if (GET_CODE (src) == MEM)
+ {
+ /* gpr <- memory */
+ if (dbl_memory_one_insn_operand (src, mode))
+ return "ldd%I1%U1 %M1, %0";
+
+ return "#";
+ }
+
+ else if (GET_CODE (src) == CONST_INT
+ || GET_CODE (src) == CONST_DOUBLE)
+ return "#";
+ }
+
+ else if (FPR_P (dest_regno))
+ {
+ if (GET_CODE (src) == REG)
+ {
+ /* fpr <- some sort of register */
+ int src_regno = REGNO (src);
+
+ if (GPR_P (src_regno))
+ {
+ if (((dest_regno - FPR_FIRST) & 1) == 0
+ && ((src_regno - GPR_FIRST) & 1) == 0)
+ return "movgfd %1, %0";
+
+ return "#";
+ }
+
+ else if (FPR_P (src_regno))
+ {
+ if (TARGET_DOUBLE
+ && ((dest_regno - FPR_FIRST) & 1) == 0
+ && ((src_regno - FPR_FIRST) & 1) == 0)
+ return "fmovd %1, %0";
+
+ return "#";
+ }
+ }
+
+ else if (GET_CODE (src) == MEM)
+ {
+ /* fpr <- memory */
+ if (dbl_memory_one_insn_operand (src, mode))
+ return "lddf%I1%U1 %M1, %0";
+
+ return "#";
+ }
+
+ else if (ZERO_P (src))
+ return "#";
+ }
+ }
+
+ else if (GET_CODE (dest) == MEM)
+ {
+ if (GET_CODE (src) == REG)
+ {
+ int src_regno = REGNO (src);
+
+ if (GPR_P (src_regno))
+ {
+ if (((src_regno - GPR_FIRST) & 1) == 0
+ && dbl_memory_one_insn_operand (dest, mode))
+ return "std%I0%U0 %1, %M0";
+
+ return "#";
+ }
+
+ if (FPR_P (src_regno))
+ {
+ if (((src_regno - FPR_FIRST) & 1) == 0
+ && dbl_memory_one_insn_operand (dest, mode))
+ return "stdf%I0%U0 %1, %M0";
+
+ return "#";
+ }
+ }
+
+ else if (ZERO_P (src))
+ {
+ if (dbl_memory_one_insn_operand (dest, mode))
+ return "std%I0%U0 %., %M0";
+
+ return "#";
+ }
+ }
+
+ fatal_insn ("Bad output_move_double operand", insn);
+ return "";
+}
+
+
+/* Return a string to output a single word conditional move.
+ Operand0 -- EQ/NE of ccr register and 0
+ Operand1 -- CCR register
+ Operand2 -- destination
+ Operand3 -- source */
+
+const char *
+output_condmove_single (operands, insn)
+ rtx operands[];
+ rtx insn;
+{
+ rtx dest = operands[2];
+ rtx src = operands[3];
+
+ if (GET_CODE (dest) == REG)
+ {
+ int dest_regno = REGNO (dest);
+ enum machine_mode mode = GET_MODE (dest);
+
+ if (GPR_P (dest_regno))
+ {
+ if (GET_CODE (src) == REG)
+ {
+ /* gpr <- some sort of register */
+ int src_regno = REGNO (src);
+
+ if (GPR_P (src_regno))
+ return "cmov %z3, %2, %1, %e0";
+
+ else if (FPR_P (src_regno))
+ return "cmovfg %3, %2, %1, %e0";
+ }
+
+ else if (GET_CODE (src) == MEM)
+ {
+ /* gpr <- memory */
+ switch (mode)
+ {
+ default:
+ break;
+
+ case QImode:
+ return "cldsb%I3%U3 %M3, %2, %1, %e0";
+
+ case HImode:
+ return "cldsh%I3%U3 %M3, %2, %1, %e0";
+
+ case SImode:
+ case SFmode:
+ return "cld%I3%U3 %M3, %2, %1, %e0";
+ }
+ }
+
+ else if (ZERO_P (src))
+ return "cmov %., %2, %1, %e0";
+ }
+
+ else if (FPR_P (dest_regno))
+ {
+ if (GET_CODE (src) == REG)
+ {
+ /* fpr <- some sort of register */
+ int src_regno = REGNO (src);
+
+ if (GPR_P (src_regno))
+ return "cmovgf %3, %2, %1, %e0";
+
+ else if (FPR_P (src_regno))
+ {
+ if (TARGET_HARD_FLOAT)
+ return "cfmovs %3,%2,%1,%e0";
+ else
+ return "cmor %3, %3, %2, %1, %e0";
+ }
+ }
+
+ else if (GET_CODE (src) == MEM)
+ {
+ /* fpr <- memory */
+ if (mode == SImode || mode == SFmode)
+ return "cldf%I3%U3 %M3, %2, %1, %e0";
+ }
+
+ else if (ZERO_P (src))
+ return "cmovgf %., %2, %1, %e0";
+ }
+ }
+
+ else if (GET_CODE (dest) == MEM)
+ {
+ if (GET_CODE (src) == REG)
+ {
+ int src_regno = REGNO (src);
+ enum machine_mode mode = GET_MODE (dest);
+
+ if (GPR_P (src_regno))
+ {
+ switch (mode)
+ {
+ default:
+ break;
+
+ case QImode:
+ return "cstb%I2%U2 %3, %M2, %1, %e0";
+
+ case HImode:
+ return "csth%I2%U2 %3, %M2, %1, %e0";
+
+ case SImode:
+ case SFmode:
+ return "cst%I2%U2 %3, %M2, %1, %e0";
+ }
+ }
+
+ else if (FPR_P (src_regno) && (mode == SImode || mode == SFmode))
+ return "cstf%I2%U2 %3, %M2, %1, %e0";
+ }
+
+ else if (ZERO_P (src))
+ {
+ enum machine_mode mode = GET_MODE (dest);
+ switch (mode)
+ {
+ default:
+ break;
+
+ case QImode:
+ return "cstb%I2%U2 %., %M2, %1, %e0";
+
+ case HImode:
+ return "csth%I2%U2 %., %M2, %1, %e0";
+
+ case SImode:
+ case SFmode:
+ return "cst%I2%U2 %., %M2, %1, %e0";
+ }
+ }
+ }
+
+ fatal_insn ("Bad output_condmove_single operand", insn);
+ return "";
+}
+
+
+/* Emit the appropriate code to do a comparison, returning the register the
+ comparison was done it. */
+
+static rtx
+frv_emit_comparison (test, op0, op1)
+ enum rtx_code test;
+ rtx op0;
+ rtx op1;
+{
+ enum machine_mode cc_mode;
+ rtx cc_reg;
+
+ /* Floating point doesn't have comparison against a constant */
+ if (GET_MODE (op0) == CC_FPmode && GET_CODE (op1) != REG)
+ op1 = force_reg (GET_MODE (op0), op1);
+
+ /* Possibly disable using anything but a fixed register in order to work
+ around cse moving comparisons past function calls. */
+ cc_mode = SELECT_CC_MODE (test, op0, op1);
+ cc_reg = ((TARGET_ALLOC_CC)
+ ? gen_reg_rtx (cc_mode)
+ : gen_rtx_REG (cc_mode,
+ (cc_mode == CC_FPmode) ? FCC_FIRST : ICC_FIRST));
+
+ emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
+ gen_rtx_COMPARE (cc_mode, op0, op1)));
+
+ return cc_reg;
+}
+
+
+/* Emit code for a conditional branch. The comparison operands were previously
+ stored in frv_compare_op0 and frv_compare_op1.
+
+ XXX: I originally wanted to add a clobber of a CCR register to use in
+ conditional execution, but that confuses the rest of the compiler. */
+
+int
+frv_emit_cond_branch (test, label)
+ enum rtx_code test;
+ rtx label;
+{
+ rtx test_rtx;
+ rtx label_ref;
+ rtx if_else;
+ rtx cc_reg = frv_emit_comparison (test, frv_compare_op0, frv_compare_op1);
+ enum machine_mode cc_mode = GET_MODE (cc_reg);
+
+ /* Branches generate:
+ (set (pc)
+ (if_then_else (<test>, <cc_reg>, (const_int 0))
+ (label_ref <branch_label>)
+ (pc))) */
+ label_ref = gen_rtx_LABEL_REF (VOIDmode, label);
+ test_rtx = gen_rtx (test, cc_mode, cc_reg, const0_rtx);
+ if_else = gen_rtx_IF_THEN_ELSE (cc_mode, test_rtx, label_ref, pc_rtx);
+ emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, if_else));
+ return TRUE;
+}
+
+
+/* Emit code to set a gpr to 1/0 based on a comparison. The comparison
+ operands were previously stored in frv_compare_op0 and frv_compare_op1. */
+
+int
+frv_emit_scc (test, target)
+ enum rtx_code test;
+ rtx target;
+{
+ rtx set;
+ rtx test_rtx;
+ rtx clobber;
+ rtx cr_reg;
+ rtx cc_reg = frv_emit_comparison (test, frv_compare_op0, frv_compare_op1);
+
+ /* SCC instructions generate:
+ (parallel [(set <target> (<test>, <cc_reg>, (const_int 0))
+ (clobber (<ccr_reg>))]) */
+ test_rtx = gen_rtx_fmt_ee (test, SImode, cc_reg, const0_rtx);
+ set = gen_rtx_SET (VOIDmode, target, test_rtx);
+
+ cr_reg = ((TARGET_ALLOC_CC)
+ ? gen_reg_rtx (CC_CCRmode)
+ : gen_rtx_REG (CC_CCRmode,
+ ((GET_MODE (cc_reg) == CC_FPmode)
+ ? FCR_FIRST
+ : ICR_FIRST)));
+
+ clobber = gen_rtx_CLOBBER (VOIDmode, cr_reg);
+ emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber)));
+ return TRUE;
+}
+
+
+/* Split a SCC instruction into component parts, returning a SEQUENCE to hold
+ the seperate insns. */
+
+rtx
+frv_split_scc (dest, test, cc_reg, cr_reg, value)
+ rtx dest;
+ rtx test;
+ rtx cc_reg;
+ rtx cr_reg;
+ HOST_WIDE_INT value;
+{
+ rtx ret;
+
+ start_sequence ();
+
+ /* Set the appropriate CCR bit. */
+ emit_insn (gen_rtx_SET (VOIDmode,
+ cr_reg,
+ gen_rtx_fmt_ee (GET_CODE (test),
+ GET_MODE (cr_reg),
+ cc_reg,
+ const0_rtx)));
+
+ /* Move the value into the destination. */
+ emit_move_insn (dest, GEN_INT (value));
+
+ /* Move 0 into the destination if the test failed */
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_EQ (GET_MODE (cr_reg),
+ cr_reg,
+ const0_rtx),
+ gen_rtx_SET (VOIDmode, dest, const0_rtx)));
+
+ /* Finish up, return sequence. */
+ ret = get_insns ();
+ end_sequence ();
+ return ret;
+}
+
+
+/* Emit the code for a conditional move, return TRUE if we could do the
+ move. */
+
+int
+frv_emit_cond_move (dest, test_rtx, src1, src2)
+ rtx dest;
+ rtx test_rtx;
+ rtx src1;
+ rtx src2;
+{
+ rtx set;
+ rtx clobber_cc;
+ rtx test2;
+ rtx cr_reg;
+ rtx if_rtx;
+ enum rtx_code test = GET_CODE (test_rtx);
+ rtx cc_reg = frv_emit_comparison (test, frv_compare_op0, frv_compare_op1);
+ enum machine_mode cc_mode = GET_MODE (cc_reg);
+
+ /* Conditional move instructions generate:
+ (parallel [(set <target>
+ (if_then_else (<test> <cc_reg> (const_int 0))
+ <src1>
+ <src2>))
+ (clobber (<ccr_reg>))]) */
+
+ /* Handle various cases of conditional move involving two constants. */
+ if (GET_CODE (src1) == CONST_INT && GET_CODE (src2) == CONST_INT)
+ {
+ HOST_WIDE_INT value1 = INTVAL (src1);
+ HOST_WIDE_INT value2 = INTVAL (src2);
+
+ /* having 0 as one of the constants can be done by loading the other
+ constant, and optionally moving in gr0. */
+ if (value1 == 0 || value2 == 0)
+ ;
+
+ /* If the first value is within an addi range and also the difference
+ between the two fits in an addi's range, load up the difference, then
+ conditionally move in 0, and then unconditionally add the first
+ value. */
+ else if (IN_RANGE_P (value1, -2048, 2047)
+ && IN_RANGE_P (value2 - value1, -2048, 2047))
+ ;
+
+ /* If neither condition holds, just force the constant into a
+ register. */
+ else
+ {
+ src1 = force_reg (GET_MODE (dest), src1);
+ src2 = force_reg (GET_MODE (dest), src2);
+ }
+ }
+
+ /* If one value is a register, insure the other value is either 0 or a
+ register. */
+ else
+ {
+ if (GET_CODE (src1) == CONST_INT && INTVAL (src1) != 0)
+ src1 = force_reg (GET_MODE (dest), src1);
+
+ if (GET_CODE (src2) == CONST_INT && INTVAL (src2) != 0)
+ src2 = force_reg (GET_MODE (dest), src2);
+ }
+
+ test2 = gen_rtx_fmt_ee (test, cc_mode, cc_reg, const0_rtx);
+ if_rtx = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), test2, src1, src2);
+
+ set = gen_rtx_SET (VOIDmode, dest, if_rtx);
+
+ cr_reg = ((TARGET_ALLOC_CC)
+ ? gen_reg_rtx (CC_CCRmode)
+ : gen_rtx_REG (CC_CCRmode,
+ (cc_mode == CC_FPmode) ? FCR_FIRST : ICR_FIRST));
+
+ clobber_cc = gen_rtx_CLOBBER (VOIDmode, cr_reg);
+ emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber_cc)));
+ return TRUE;
+}
+
+
+/* Split a conditonal move into constituent parts, returning a SEQUENCE
+ containing all of the insns. */
+
+rtx
+frv_split_cond_move (operands)
+ rtx operands[];
+{
+ rtx dest = operands[0];
+ rtx test = operands[1];
+ rtx cc_reg = operands[2];
+ rtx src1 = operands[3];
+ rtx src2 = operands[4];
+ rtx cr_reg = operands[5];
+ rtx ret;
+ enum machine_mode cr_mode = GET_MODE (cr_reg);
+
+ start_sequence ();
+
+ /* Set the appropriate CCR bit. */
+ emit_insn (gen_rtx_SET (VOIDmode,
+ cr_reg,
+ gen_rtx_fmt_ee (GET_CODE (test),
+ GET_MODE (cr_reg),
+ cc_reg,
+ const0_rtx)));
+
+ /* Handle various cases of conditional move involving two constants. */
+ if (GET_CODE (src1) == CONST_INT && GET_CODE (src2) == CONST_INT)
+ {
+ HOST_WIDE_INT value1 = INTVAL (src1);
+ HOST_WIDE_INT value2 = INTVAL (src2);
+
+ /* having 0 as one of the constants can be done by loading the other
+ constant, and optionally moving in gr0. */
+ if (value1 == 0)
+ {
+ emit_move_insn (dest, src2);
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_NE (cr_mode, cr_reg,
+ const0_rtx),
+ gen_rtx_SET (VOIDmode, dest, src1)));
+ }
+
+ else if (value2 == 0)
+ {
+ emit_move_insn (dest, src1);
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_EQ (cr_mode, cr_reg,
+ const0_rtx),
+ gen_rtx_SET (VOIDmode, dest, src2)));
+ }
+
+ /* If the first value is within an addi range and also the difference
+ between the two fits in an addi's range, load up the difference, then
+ conditionally move in 0, and then unconditionally add the first
+ value. */
+ else if (IN_RANGE_P (value1, -2048, 2047)
+ && IN_RANGE_P (value2 - value1, -2048, 2047))
+ {
+ rtx dest_si = ((GET_MODE (dest) == SImode)
+ ? dest
+ : gen_rtx_SUBREG (SImode, dest, 0));
+
+ emit_move_insn (dest_si, GEN_INT (value2 - value1));
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_NE (cr_mode, cr_reg,
+ const0_rtx),
+ gen_rtx_SET (VOIDmode, dest_si,
+ const0_rtx)));
+ emit_insn (gen_addsi3 (dest_si, dest_si, src1));
+ }
+
+ else
+ abort ();
+ }
+ else
+ {
+ /* Emit the conditional move for the test being true if needed. */
+ if (! rtx_equal_p (dest, src1))
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_NE (cr_mode, cr_reg, const0_rtx),
+ gen_rtx_SET (VOIDmode, dest, src1)));
+
+ /* Emit the conditional move for the test being false if needed. */
+ if (! rtx_equal_p (dest, src2))
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_EQ (cr_mode, cr_reg, const0_rtx),
+ gen_rtx_SET (VOIDmode, dest, src2)));
+ }
+
+ /* Finish up, return sequence. */
+ ret = get_insns ();
+ end_sequence ();
+ return ret;
+}
+
+
+/* Split (set DEST SOURCE), where DEST is a double register and SOURCE is a
+ memory location that is not known to be dword-aligned. */
+void
+frv_split_double_load (dest, source)
+ rtx dest;
+ rtx source;
+{
+ int regno = REGNO (dest);
+ rtx dest1 = gen_highpart (SImode, dest);
+ rtx dest2 = gen_lowpart (SImode, dest);
+ rtx address = XEXP (source, 0);
+
+ /* If the address is pre-modified, load the lower-numbered register
+ first, then load the other register using an integer offset from
+ the modified base register. This order should always be safe,
+ since the pre-modification cannot affect the same registers as the
+ load does.
+
+ The situation for other loads is more complicated. Loading one
+ of the registers could affect the value of ADDRESS, so we must
+ be careful which order we do them in. */
+ if (GET_CODE (address) == PRE_MODIFY
+ || ! refers_to_regno_p (regno, regno + 1, address, NULL))
+ {
+ /* It is safe to load the lower-numbered register first. */
+ emit_move_insn (dest1, change_address (source, SImode, NULL));
+ emit_move_insn (dest2, frv_index_memory (source, SImode, 1));
+ }
+ else
+ {
+ /* ADDRESS is not pre-modified and the address depends on the
+ lower-numbered register. Load the higher-numbered register
+ first. */
+ emit_move_insn (dest2, frv_index_memory (source, SImode, 1));
+ emit_move_insn (dest1, change_address (source, SImode, NULL));
+ }
+}
+
+/* Split (set DEST SOURCE), where DEST refers to a dword memory location
+ and SOURCE is either a double register or the constant zero. */
+void
+frv_split_double_store (dest, source)
+ rtx dest;
+ rtx source;
+{
+ rtx dest1 = change_address (dest, SImode, NULL);
+ rtx dest2 = frv_index_memory (dest, SImode, 1);
+ if (ZERO_P (source))
+ {
+ emit_move_insn (dest1, CONST0_RTX (SImode));
+ emit_move_insn (dest2, CONST0_RTX (SImode));
+ }
+ else
+ {
+ emit_move_insn (dest1, gen_highpart (SImode, source));
+ emit_move_insn (dest2, gen_lowpart (SImode, source));
+ }
+}
+
+
+/* Split a min/max operation returning a SEQUENCE containing all of the
+ insns. */
+
+rtx
+frv_split_minmax (operands)
+ rtx operands[];
+{
+ rtx dest = operands[0];
+ rtx minmax = operands[1];
+ rtx src1 = operands[2];
+ rtx src2 = operands[3];
+ rtx cc_reg = operands[4];
+ rtx cr_reg = operands[5];
+ rtx ret;
+ enum rtx_code test_code;
+ enum machine_mode cr_mode = GET_MODE (cr_reg);
+
+ start_sequence ();
+
+ /* Figure out which test to use */
+ switch (GET_CODE (minmax))
+ {
+ default:
+ abort ();
+
+ case SMIN: test_code = LT; break;
+ case SMAX: test_code = GT; break;
+ case UMIN: test_code = LTU; break;
+ case UMAX: test_code = GTU; break;
+ }
+
+ /* Issue the compare instruction. */
+ emit_insn (gen_rtx_SET (VOIDmode,
+ cc_reg,
+ gen_rtx_COMPARE (GET_MODE (cc_reg),
+ src1, src2)));
+
+ /* Set the appropriate CCR bit. */
+ emit_insn (gen_rtx_SET (VOIDmode,
+ cr_reg,
+ gen_rtx_fmt_ee (test_code,
+ GET_MODE (cr_reg),
+ cc_reg,
+ const0_rtx)));
+
+ /* If are taking the min/max of a nonzero constant, load that first, and
+ then do a conditional move of the other value. */
+ if (GET_CODE (src2) == CONST_INT && INTVAL (src2) != 0)
+ {
+ if (rtx_equal_p (dest, src1))
+ abort ();
+
+ emit_move_insn (dest, src2);
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_NE (cr_mode, cr_reg, const0_rtx),
+ gen_rtx_SET (VOIDmode, dest, src1)));
+ }
+
+ /* Otherwise, do each half of the move. */
+ else
+ {
+ /* Emit the conditional move for the test being true if needed. */
+ if (! rtx_equal_p (dest, src1))
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_NE (cr_mode, cr_reg, const0_rtx),
+ gen_rtx_SET (VOIDmode, dest, src1)));
+
+ /* Emit the conditional move for the test being false if needed. */
+ if (! rtx_equal_p (dest, src2))
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_EQ (cr_mode, cr_reg, const0_rtx),
+ gen_rtx_SET (VOIDmode, dest, src2)));
+ }
+
+ /* Finish up, return sequence. */
+ ret = get_insns ();
+ end_sequence ();
+ return ret;
+}
+
+
+/* Split an integer abs operation returning a SEQUENCE containing all of the
+ insns. */
+
+rtx
+frv_split_abs (operands)
+ rtx operands[];
+{
+ rtx dest = operands[0];
+ rtx src = operands[1];
+ rtx cc_reg = operands[2];
+ rtx cr_reg = operands[3];
+ rtx ret;
+
+ start_sequence ();
+
+ /* Issue the compare < 0 instruction. */
+ emit_insn (gen_rtx_SET (VOIDmode,
+ cc_reg,
+ gen_rtx_COMPARE (CCmode, src, const0_rtx)));
+
+ /* Set the appropriate CCR bit. */
+ emit_insn (gen_rtx_SET (VOIDmode,
+ cr_reg,
+ gen_rtx_fmt_ee (LT, CC_CCRmode, cc_reg, const0_rtx)));
+
+ /* Emit the conditional negate if the value is negative */
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_NE (CC_CCRmode, cr_reg, const0_rtx),
+ gen_negsi2 (dest, src)));
+
+ /* Emit the conditional move for the test being false if needed. */
+ if (! rtx_equal_p (dest, src))
+ emit_insn (gen_rtx_COND_EXEC (VOIDmode,
+ gen_rtx_EQ (CC_CCRmode, cr_reg, const0_rtx),
+ gen_rtx_SET (VOIDmode, dest, src)));
+
+ /* Finish up, return sequence. */
+ ret = get_insns ();
+ end_sequence ();
+ return ret;
+}
+
+
+/* An internal function called by for_each_rtx to clear in a hard_reg set each
+ register used in an insn. */
+
+static int
+frv_clear_registers_used (ptr, data)
+ rtx *ptr;
+ void *data;
+{
+ if (GET_CODE (*ptr) == REG)
+ {
+ int regno = REGNO (*ptr);
+ HARD_REG_SET *p_regs = (HARD_REG_SET *)data;
+
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ int reg_max = regno + HARD_REGNO_NREGS (regno, GET_MODE (*ptr));
+
+ while (regno < reg_max)
+ {
+ CLEAR_HARD_REG_BIT (*p_regs, regno);
+ regno++;
+ }
+ }
+ }
+
+ return 0;
+}
+
+
+/* Initialize the extra fields provided by IFCVT_EXTRA_FIELDS. */
+
+/* On the FR-V, we don't have any extra fields per se, but it is useful hook to
+ initialize the static storage. */
+void
+frv_ifcvt_init_extra_fields (ce_info)
+ ce_if_block_t *ce_info ATTRIBUTE_UNUSED;
+{
+ frv_ifcvt.added_insns_list = NULL_RTX;
+ frv_ifcvt.cur_scratch_regs = 0;
+ frv_ifcvt.num_nested_cond_exec = 0;
+ frv_ifcvt.cr_reg = NULL_RTX;
+ frv_ifcvt.nested_cc_reg = NULL_RTX;
+ frv_ifcvt.extra_int_cr = NULL_RTX;
+ frv_ifcvt.extra_fp_cr = NULL_RTX;
+ frv_ifcvt.last_nested_if_cr = NULL_RTX;
+}
+
+
+/* Internal function to add a potenial insn to the list of insns to be inserted
+ if the conditional execution conversion is successful. */
+
+static void
+frv_ifcvt_add_insn (pattern, insn, before_p)
+ rtx pattern;
+ rtx insn;
+ int before_p;
+{
+ rtx link = alloc_EXPR_LIST (VOIDmode, pattern, insn);
+
+ link->jump = before_p; /* mark to add this before or after insn */
+ frv_ifcvt.added_insns_list = alloc_EXPR_LIST (VOIDmode, link,
+ frv_ifcvt.added_insns_list);
+
+ if (TARGET_DEBUG_COND_EXEC)
+ {
+ fprintf (stderr,
+ "\n:::::::::: frv_ifcvt_add_insn: add the following %s insn %d:\n",
+ (before_p) ? "before" : "after",
+ (int)INSN_UID (insn));
+
+ debug_rtx (pattern);
+ }
+}
+
+
+/* A C expression to modify the code described by the conditional if
+ information CE_INFO, possibly updating the tests in TRUE_EXPR, and
+ FALSE_EXPR for converting if-then and if-then-else code to conditional
+ instructions. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
+ tests cannot be converted. */
+
+void
+frv_ifcvt_modify_tests (ce_info, p_true, p_false)
+ ce_if_block_t *ce_info;
+ rtx *p_true;
+ rtx *p_false;
+{
+ basic_block test_bb = ce_info->test_bb; /* test basic block */
+ basic_block then_bb = ce_info->then_bb; /* THEN */
+ basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
+ basic_block join_bb = ce_info->join_bb; /* join block or NULL */
+ rtx true_expr = *p_true;
+ rtx cr;
+ rtx cc;
+ rtx nested_cc;
+ enum machine_mode mode = GET_MODE (true_expr);
+ int j;
+ basic_block *bb;
+ int num_bb;
+ frv_tmp_reg_t *tmp_reg = &frv_ifcvt.tmp_reg;
+ rtx check_insn;
+ rtx sub_cond_exec_reg;
+ enum rtx_code code;
+ enum rtx_code code_true;
+ enum rtx_code code_false;
+ enum reg_class cc_class;
+ enum reg_class cr_class;
+ int cc_first;
+ int cc_last;
+
+ /* Make sure we are only dealing with hard registers. Also honor the
+ -mno-cond-exec switch, and -mno-nested-cond-exec switches if
+ applicable. */
+ if (!reload_completed || TARGET_NO_COND_EXEC
+ || (TARGET_NO_NESTED_CE && ce_info->pass > 1))
+ goto fail;
+
+ /* Figure out which registers we can allocate for our own purposes. Only
+ consider registers that are not preserved across function calls and are
+ not fixed. However, allow the ICC/ICR temporary registers to be allocated
+ if we did not need to use them in reloading other registers. */
+ memset ((PTR) &tmp_reg->regs, 0, sizeof (tmp_reg->regs));
+ COPY_HARD_REG_SET (tmp_reg->regs, call_used_reg_set);
+ AND_COMPL_HARD_REG_SET (tmp_reg->regs, fixed_reg_set);
+ SET_HARD_REG_BIT (tmp_reg->regs, ICC_TEMP);
+ SET_HARD_REG_BIT (tmp_reg->regs, ICR_TEMP);
+
+ /* If this is a nested IF, we need to discover whether the CC registers that
+ are set/used inside of the block are used anywhere else. If not, we can
+ change them to be the CC register that is paired with the CR register that
+ controls the outermost IF block. */
+ if (ce_info->pass > 1)
+ {
+ CLEAR_HARD_REG_SET (frv_ifcvt.nested_cc_ok_rewrite);
+ for (j = CC_FIRST; j <= CC_LAST; j++)
+ if (TEST_HARD_REG_BIT (tmp_reg->regs, j))
+ {
+ if (REGNO_REG_SET_P (then_bb->global_live_at_start, j))
+ continue;
+
+ if (else_bb && REGNO_REG_SET_P (else_bb->global_live_at_start, j))
+ continue;
+
+ if (join_bb && REGNO_REG_SET_P (join_bb->global_live_at_start, j))
+ continue;
+
+ SET_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite, j);
+ }
+ }
+
+ for (j = 0; j < frv_ifcvt.cur_scratch_regs; j++)
+ frv_ifcvt.scratch_regs[j] = NULL_RTX;
+
+ frv_ifcvt.added_insns_list = NULL_RTX;
+ frv_ifcvt.cur_scratch_regs = 0;
+
+ bb = (basic_block *) alloca ((2 + ce_info->num_multiple_test_blocks)
+ * sizeof (basic_block));
+
+ if (join_bb)
+ {
+ int regno;
+
+ /* Remove anything live at the beginning of the join block from being
+ available for allocation. */
+ EXECUTE_IF_SET_IN_REG_SET (join_bb->global_live_at_start, 0, regno,
+ {
+ if (regno < FIRST_PSEUDO_REGISTER)
+ CLEAR_HARD_REG_BIT (tmp_reg->regs, regno);
+ });
+ }
+
+ /* Add in all of the blocks in multiple &&/|| blocks to be scanned. */
+ num_bb = 0;
+ if (ce_info->num_multiple_test_blocks)
+ {
+ basic_block multiple_test_bb = ce_info->last_test_bb;
+
+ while (multiple_test_bb != test_bb)
+ {
+ bb[num_bb++] = multiple_test_bb;
+ multiple_test_bb = multiple_test_bb->pred->src;
+ }
+ }
+
+ /* Add in the THEN and ELSE blocks to be scanned. */
+ bb[num_bb++] = then_bb;
+ if (else_bb)
+ bb[num_bb++] = else_bb;
+
+ sub_cond_exec_reg = NULL_RTX;
+ frv_ifcvt.num_nested_cond_exec = 0;
+
+ /* Scan all of the blocks for registers that must not be allocated. */
+ for (j = 0; j < num_bb; j++)
+ {
+ rtx last_insn = bb[j]->end;
+ rtx insn = bb[j]->head;
+ int regno;
+
+ if (rtl_dump_file)
+ fprintf (rtl_dump_file, "Scanning %s block %d, start %d, end %d\n",
+ (bb[j] == else_bb) ? "else" : ((bb[j] == then_bb) ? "then" : "test"),
+ (int) bb[j]->index,
+ (int) INSN_UID (bb[j]->head),
+ (int) INSN_UID (bb[j]->end));
+
+ /* Anything live at the beginning of the block is obviously unavailable
+ for allocation. */
+ EXECUTE_IF_SET_IN_REG_SET (bb[j]->global_live_at_start, 0, regno,
+ {
+ if (regno < FIRST_PSEUDO_REGISTER)
+ CLEAR_HARD_REG_BIT (tmp_reg->regs, regno);
+ });
+
+ /* loop through the insns in the block. */
+ for (;;)
+ {
+ /* Mark any new registers that are created as being unavailable for
+ allocation. Also see if the CC register used in nested IFs can be
+ reallocated. */
+ if (INSN_P (insn))
+ {
+ rtx pattern;
+ rtx set;
+ int skip_nested_if = FALSE;
+
+ for_each_rtx (&PATTERN (insn), frv_clear_registers_used,
+ (void *)&tmp_reg->regs);
+
+ pattern = PATTERN (insn);
+ if (GET_CODE (pattern) == COND_EXEC)
+ {
+ rtx reg = XEXP (COND_EXEC_TEST (pattern), 0);
+
+ if (reg != sub_cond_exec_reg)
+ {
+ sub_cond_exec_reg = reg;
+ frv_ifcvt.num_nested_cond_exec++;
+ }
+ }
+
+ set = single_set_pattern (pattern);
+ if (set)
+ {
+ rtx dest = SET_DEST (set);
+ rtx src = SET_SRC (set);
+
+ if (GET_CODE (dest) == REG)
+ {
+ int regno = REGNO (dest);
+ enum rtx_code src_code = GET_CODE (src);
+
+ if (CC_P (regno) && src_code == COMPARE)
+ skip_nested_if = TRUE;
+
+ else if (CR_P (regno)
+ && (src_code == IF_THEN_ELSE
+ || GET_RTX_CLASS (src_code) == '<'))
+ skip_nested_if = TRUE;
+ }
+ }
+
+ if (! skip_nested_if)
+ for_each_rtx (&PATTERN (insn), frv_clear_registers_used,
+ (void *)&frv_ifcvt.nested_cc_ok_rewrite);
+ }
+
+ if (insn == last_insn)
+ break;
+
+ insn = NEXT_INSN (insn);
+ }
+ }
+
+ /* If this is a nested if, rewrite the CC registers that are available to
+ include the ones that can be rewritten, to increase the chance of being
+ able to allocate a paired CC/CR register combination. */
+ if (ce_info->pass > 1)
+ {
+ for (j = CC_FIRST; j <= CC_LAST; j++)
+ if (TEST_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite, j))
+ SET_HARD_REG_BIT (tmp_reg->regs, j);
+ else
+ CLEAR_HARD_REG_BIT (tmp_reg->regs, j);
+ }
+
+ if (rtl_dump_file)
+ {
+ int num_gprs = 0;
+ fprintf (rtl_dump_file, "Available GPRs: ");
+
+ for (j = GPR_FIRST; j <= GPR_LAST; j++)
+ if (TEST_HARD_REG_BIT (tmp_reg->regs, j))
+ {
+ fprintf (rtl_dump_file, " %d [%s]", j, reg_names[j]);
+ if (++num_gprs > GPR_TEMP_NUM+2)
+ break;
+ }
+
+ fprintf (rtl_dump_file, "%s\nAvailable CRs: ",
+ (num_gprs > GPR_TEMP_NUM+2) ? " ..." : "");
+
+ for (j = CR_FIRST; j <= CR_LAST; j++)
+ if (TEST_HARD_REG_BIT (tmp_reg->regs, j))
+ fprintf (rtl_dump_file, " %d [%s]", j, reg_names[j]);
+
+ fputs ("\n", rtl_dump_file);
+
+ if (ce_info->pass > 1)
+ {
+ fprintf (rtl_dump_file, "Modifiable CCs: ");
+ for (j = CC_FIRST; j <= CC_LAST; j++)
+ if (TEST_HARD_REG_BIT (tmp_reg->regs, j))
+ fprintf (rtl_dump_file, " %d [%s]", j, reg_names[j]);
+
+ fprintf (rtl_dump_file, "\n%d nested COND_EXEC statements\n",
+ frv_ifcvt.num_nested_cond_exec);
+ }
+ }
+
+ /* Allocate the appropriate temporary condition code register. Try to
+ allocate the ICR/FCR register that corresponds to the ICC/FCC register so
+ that conditional cmp's can be done. */
+ if (mode == CCmode || mode == CC_UNSmode)
+ {
+ cr_class = ICR_REGS;
+ cc_class = ICC_REGS;
+ cc_first = ICC_FIRST;
+ cc_last = ICC_LAST;
+ }
+ else if (mode == CC_FPmode)
+ {
+ cr_class = FCR_REGS;
+ cc_class = FCC_REGS;
+ cc_first = FCC_FIRST;
+ cc_last = FCC_LAST;
+ }
+ else
+ {
+ cc_first = cc_last = 0;
+ cr_class = cc_class = NO_REGS;
+ }
+
+ cc = XEXP (true_expr, 0);
+ nested_cc = cr = NULL_RTX;
+ if (cc_class != NO_REGS)
+ {
+ /* For nested IFs and &&/||, see if we can find a CC and CR register pair
+ so we can execute a csubcc/caddcc/cfcmps instruction. */
+ int cc_regno;
+
+ for (cc_regno = cc_first; cc_regno <= cc_last; cc_regno++)
+ {
+ int cr_regno = cc_regno - CC_FIRST + CR_FIRST;
+
+ if (TEST_HARD_REG_BIT (frv_ifcvt.tmp_reg.regs, cc_regno)
+ && TEST_HARD_REG_BIT (frv_ifcvt.tmp_reg.regs, cr_regno))
+ {
+ frv_ifcvt.tmp_reg.next_reg[ (int)cr_class ] = cr_regno;
+ cr = frv_alloc_temp_reg (tmp_reg, cr_class, CC_CCRmode, TRUE,
+ TRUE);
+
+ frv_ifcvt.tmp_reg.next_reg[ (int)cc_class ] = cc_regno;
+ nested_cc = frv_alloc_temp_reg (tmp_reg, cc_class, CCmode,
+ TRUE, TRUE);
+ break;
+ }
+ }
+ }
+
+ if (! cr)
+ {
+ if (rtl_dump_file)
+ fprintf (rtl_dump_file, "Could not allocate a CR temporary register\n");
+
+ goto fail;
+ }
+
+ if (rtl_dump_file)
+ fprintf (rtl_dump_file,
+ "Will use %s for conditional execution, %s for nested comparisons\n",
+ reg_names[ REGNO (cr)],
+ (nested_cc) ? reg_names[ REGNO (nested_cc) ] : "<none>");
+
+ /* Set the CCR bit. Note for integer tests, we reverse the condition so that
+ in an IF-THEN-ELSE sequence, we are testing the TRUE case against the CCR
+ bit being true. We don't do this for floating point, because of NaNs. */
+ code = GET_CODE (true_expr);
+ if (GET_MODE (cc) != CC_FPmode)
+ {
+ code = reverse_condition (code);
+ code_true = EQ;
+ code_false = NE;
+ }
+ else
+ {
+ code_true = NE;
+ code_false = EQ;
+ }
+
+ check_insn = gen_rtx_SET (VOIDmode, cr,
+ gen_rtx_fmt_ee (code, CC_CCRmode, cc, const0_rtx));
+
+ /* Record the check insn to be inserted later. */
+ frv_ifcvt_add_insn (check_insn, test_bb->end, TRUE);
+
+ /* Update the tests. */
+ frv_ifcvt.cr_reg = cr;
+ frv_ifcvt.nested_cc_reg = nested_cc;
+ *p_true = gen_rtx_fmt_ee (code_true, CC_CCRmode, cr, const0_rtx);
+ *p_false = gen_rtx_fmt_ee (code_false, CC_CCRmode, cr, const0_rtx);
+ return;
+
+ /* Fail, don't do this conditional execution. */
+ fail:
+ *p_true = NULL_RTX;
+ *p_false = NULL_RTX;
+ if (rtl_dump_file)
+ fprintf (rtl_dump_file, "Disabling this conditional execution.\n");
+
+ return;
+}
+
+
+/* A C expression to modify the code described by the conditional if
+ information CE_INFO, for the basic block BB, possibly updating the tests in
+ TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
+ if-then-else code to conditional instructions. Set either TRUE_EXPR or
+ FALSE_EXPR to a null pointer if the tests cannot be converted. */
+
+/* p_true and p_false are given expressions of the form:
+
+ (and (eq:CC_CCR (reg:CC_CCR)
+ (const_int 0))
+ (eq:CC (reg:CC)
+ (const_int 0))) */
+
+void
+frv_ifcvt_modify_multiple_tests (ce_info, bb, p_true, p_false)
+ ce_if_block_t *ce_info;
+ basic_block bb;
+ rtx *p_true;
+ rtx *p_false;
+{
+ rtx old_true = XEXP (*p_true, 0);
+ rtx old_false = XEXP (*p_false, 0);
+ rtx true_expr = XEXP (*p_true, 1);
+ rtx false_expr = XEXP (*p_false, 1);
+ rtx test_expr;
+ rtx old_test;
+ rtx cr = XEXP (old_true, 0);
+ rtx check_insn;
+ rtx new_cr = NULL_RTX;
+ rtx *p_new_cr = (rtx *)0;
+ rtx if_else;
+ rtx compare;
+ rtx cc;
+ enum reg_class cr_class;
+ enum machine_mode mode = GET_MODE (true_expr);
+ rtx (*logical_func)(rtx, rtx, rtx);
+
+ if (TARGET_DEBUG_COND_EXEC)
+ {
+ fprintf (stderr,
+ "\n:::::::::: frv_ifcvt_modify_multiple_tests, before modification for %s\ntrue insn:\n",
+ ce_info->and_and_p ? "&&" : "||");
+
+ debug_rtx (*p_true);
+
+ fputs ("\nfalse insn:\n", stderr);
+ debug_rtx (*p_false);
+ }
+
+ if (TARGET_NO_MULTI_CE)
+ goto fail;
+
+ if (GET_CODE (cr) != REG)
+ goto fail;
+
+ if (mode == CCmode || mode == CC_UNSmode)
+ {
+ cr_class = ICR_REGS;
+ p_new_cr = &frv_ifcvt.extra_int_cr;
+ }
+ else if (mode == CC_FPmode)
+ {
+ cr_class = FCR_REGS;
+ p_new_cr = &frv_ifcvt.extra_fp_cr;
+ }
+ else
+ goto fail;
+
+ /* Allocate a temp CR, reusing a previously allocated temp CR if we have 3 or
+ more &&/|| tests. */
+ new_cr = *p_new_cr;
+ if (! new_cr)
+ {
+ new_cr = *p_new_cr = frv_alloc_temp_reg (&frv_ifcvt.tmp_reg, cr_class,
+ CC_CCRmode, TRUE, TRUE);
+ if (! new_cr)
+ goto fail;
+ }
+
+ if (ce_info->and_and_p)
+ {
+ old_test = old_false;
+ test_expr = true_expr;
+ logical_func = (GET_CODE (old_true) == EQ) ? gen_andcr : gen_andncr;
+ *p_true = gen_rtx_NE (CC_CCRmode, cr, const0_rtx);
+ *p_false = gen_rtx_EQ (CC_CCRmode, cr, const0_rtx);
+ }
+ else
+ {
+ old_test = old_false;
+ test_expr = false_expr;
+ logical_func = (GET_CODE (old_false) == EQ) ? gen_orcr : gen_orncr;
+ *p_true = gen_rtx_EQ (CC_CCRmode, cr, const0_rtx);
+ *p_false = gen_rtx_NE (CC_CCRmode, cr, const0_rtx);
+ }
+
+ /* First add the andcr/andncr/orcr/orncr, which will be added after the
+ conditional check instruction, due to frv_ifcvt_add_insn being a LIFO
+ stack. */
+ frv_ifcvt_add_insn ((*logical_func) (cr, cr, new_cr), bb->end, TRUE);
+
+ /* Now add the conditional check insn. */
+ cc = XEXP (test_expr, 0);
+ compare = gen_rtx_fmt_ee (GET_CODE (test_expr), CC_CCRmode, cc, const0_rtx);
+ if_else = gen_rtx_IF_THEN_ELSE (CC_CCRmode, old_test, compare, const0_rtx);
+
+ check_insn = gen_rtx_SET (VOIDmode, new_cr, if_else);
+
+ /* add the new check insn to the list of check insns that need to be
+ inserted. */
+ frv_ifcvt_add_insn (check_insn, bb->end, TRUE);
+
+ if (TARGET_DEBUG_COND_EXEC)
+ {
+ fputs ("\n:::::::::: frv_ifcvt_modify_multiple_tests, after modification\ntrue insn:\n",
+ stderr);
+
+ debug_rtx (*p_true);
+
+ fputs ("\nfalse insn:\n", stderr);
+ debug_rtx (*p_false);
+ }
+
+ return;
+
+ fail:
+ *p_true = *p_false = NULL_RTX;
+
+ /* If we allocated a CR register, release it. */
+ if (new_cr)
+ {
+ CLEAR_HARD_REG_BIT (frv_ifcvt.tmp_reg.regs, REGNO (new_cr));
+ *p_new_cr = NULL_RTX;
+ }
+
+ if (TARGET_DEBUG_COND_EXEC)
+ fputs ("\n:::::::::: frv_ifcvt_modify_multiple_tests, failed.\n", stderr);
+
+ return;
+}
+
+
+/* Return a register which will be loaded with a value if an IF block is
+ converted to conditional execution. This is used to rewrite instructions
+ that use constants to ones that just use registers. */
+
+static rtx
+frv_ifcvt_load_value (value, insn)
+ rtx value;
+ rtx insn ATTRIBUTE_UNUSED;
+{
+ int num_alloc = frv_ifcvt.cur_scratch_regs;
+ int i;
+ rtx reg;
+
+ /* We know gr0 == 0, so replace any errant uses. */
+ if (value == const0_rtx)
+ return gen_rtx_REG (SImode, GPR_FIRST);
+
+ /* First search all registers currently loaded to see if we have an
+ applicable constant. */
+ if (CONSTANT_P (value)
+ || (GET_CODE (value) == REG && REGNO (value) == LR_REGNO))
+ {
+ for (i = 0; i < num_alloc; i++)
+ {
+ if (rtx_equal_p (SET_SRC (frv_ifcvt.scratch_regs[i]), value))
+ return SET_DEST (frv_ifcvt.scratch_regs[i]);
+ }
+ }
+
+ /* Have we exhausted the number of registers available? */
+ if (num_alloc >= GPR_TEMP_NUM)
+ {
+ if (rtl_dump_file)
+ fprintf (rtl_dump_file, "Too many temporary registers allocated\n");
+
+ return NULL_RTX;
+ }
+
+ /* Allocate the new register. */
+ reg = frv_alloc_temp_reg (&frv_ifcvt.tmp_reg, GPR_REGS, SImode, TRUE, TRUE);
+ if (! reg)
+ {
+ if (rtl_dump_file)
+ fputs ("Could not find a scratch register\n", rtl_dump_file);
+
+ return NULL_RTX;
+ }
+
+ frv_ifcvt.cur_scratch_regs++;
+ frv_ifcvt.scratch_regs[num_alloc] = gen_rtx_SET (VOIDmode, reg, value);
+
+ if (rtl_dump_file)
+ {
+ if (GET_CODE (value) == CONST_INT)
+ fprintf (rtl_dump_file, "Register %s will hold %ld\n",
+ reg_names[ REGNO (reg)], (long)INTVAL (value));
+
+ else if (GET_CODE (value) == REG && REGNO (value) == LR_REGNO)
+ fprintf (rtl_dump_file, "Register %s will hold LR\n",
+ reg_names[ REGNO (reg)]);
+
+ else
+ fprintf (rtl_dump_file, "Register %s will hold a saved value\n",
+ reg_names[ REGNO (reg)]);
+ }
+
+ return reg;
+}
+
+
+/* Update a MEM used in conditional code that might contain an offset to put
+ the offset into a scratch register, so that the conditional load/store
+ operations can be used. This function returns the original pointer if the
+ MEM is valid to use in conditional code, NULL if we can't load up the offset
+ into a temporary register, or the new MEM if we were successful. */
+
+static rtx
+frv_ifcvt_rewrite_mem (mem, mode, insn)
+ rtx mem;
+ enum machine_mode mode;
+ rtx insn;
+{
+ rtx addr = XEXP (mem, 0);
+
+ if (!frv_legitimate_address_p (mode, addr, reload_completed, TRUE))
+ {
+ if (GET_CODE (addr) == PLUS)
+ {
+ rtx addr_op0 = XEXP (addr, 0);
+ rtx addr_op1 = XEXP (addr, 1);
+
+ if (plus_small_data_p (addr_op0, addr_op1))
+ addr = frv_ifcvt_load_value (addr, insn);
+
+ else if (GET_CODE (addr_op0) == REG && CONSTANT_P (addr_op1))
+ {
+ rtx reg = frv_ifcvt_load_value (addr_op1, insn);
+ if (!reg)
+ return NULL_RTX;
+
+ addr = gen_rtx_PLUS (Pmode, addr_op0, reg);
+ }
+
+ else
+ return NULL_RTX;
+ }
+
+ else if (CONSTANT_P (addr))
+ addr = frv_ifcvt_load_value (addr, insn);
+
+ else
+ return NULL_RTX;
+
+ if (addr == NULL_RTX)
+ return NULL_RTX;
+
+ else if (XEXP (mem, 0) != addr)
+ return change_address (mem, mode, addr);
+ }
+
+ return mem;
+}
+
+
+/* Given a PATTERN, return a SET expression if this PATTERN has only a single
+ SET, possibly conditionally executed. It may also have CLOBBERs, USEs. */
+
+static rtx
+single_set_pattern (pattern)
+ rtx pattern;
+{
+ rtx set;
+ int i;
+
+ if (GET_CODE (pattern) == COND_EXEC)
+ pattern = COND_EXEC_CODE (pattern);
+
+ if (GET_CODE (pattern) == SET)
+ return pattern;
+
+ else if (GET_CODE (pattern) == PARALLEL)
+ {
+ for (i = 0, set = 0; i < XVECLEN (pattern, 0); i++)
+ {
+ rtx sub = XVECEXP (pattern, 0, i);
+
+ switch (GET_CODE (sub))
+ {
+ case USE:
+ case CLOBBER:
+ break;
+
+ case SET:
+ if (set)
+ return 0;
+ else
+ set = sub;
+ break;
+
+ default:
+ return 0;
+ }
+ }
+ return set;
+ }
+
+ return 0;
+}
+
+
+/* A C expression to modify the code described by the conditional if
+ information CE_INFO with the new PATTERN in INSN. If PATTERN is a null
+ pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
+ insn cannot be converted to be executed conditionally. */
+
+rtx
+frv_ifcvt_modify_insn (ce_info, pattern, insn)
+ ce_if_block_t *ce_info ATTRIBUTE_UNUSED;
+ rtx pattern;
+ rtx insn;
+{
+ rtx orig_ce_pattern = pattern;
+ rtx set;
+ rtx op0;
+ rtx op1;
+ rtx test;
+
+ if (GET_CODE (pattern) != COND_EXEC)
+ abort ();
+
+ test = COND_EXEC_TEST (pattern);
+ if (GET_CODE (test) == AND)
+ {
+ rtx cr = frv_ifcvt.cr_reg;
+ rtx test_reg;
+
+ op0 = XEXP (test, 0);
+ if (! rtx_equal_p (cr, XEXP (op0, 0)))
+ goto fail;
+
+ op1 = XEXP (test, 1);
+ test_reg = XEXP (op1, 0);
+ if (GET_CODE (test_reg) != REG)
+ goto fail;
+
+ /* Is this the first nested if block in this sequence? If so, generate
+ an andcr or andncr. */
+ if (! frv_ifcvt.last_nested_if_cr)
+ {
+ rtx and_op;
+
+ frv_ifcvt.last_nested_if_cr = test_reg;
+ if (GET_CODE (op0) == NE)
+ and_op = gen_andcr (test_reg, cr, test_reg);
+ else
+ and_op = gen_andncr (test_reg, cr, test_reg);
+
+ frv_ifcvt_add_insn (and_op, insn, TRUE);
+ }
+
+ /* If this isn't the first statement in the nested if sequence, see if we
+ are dealing with the same register. */
+ else if (! rtx_equal_p (test_reg, frv_ifcvt.last_nested_if_cr))
+ goto fail;
+
+ COND_EXEC_TEST (pattern) = test = op1;
+ }
+
+ /* If this isn't a nested if, reset state variables. */
+ else
+ {
+ frv_ifcvt.last_nested_if_cr = NULL_RTX;
+ }
+
+ set = single_set_pattern (pattern);
+ if (set)
+ {
+ rtx dest = SET_DEST (set);
+ rtx src = SET_SRC (set);
+ enum machine_mode mode = GET_MODE (dest);
+
+ /* Check for normal binary operators */
+ if (mode == SImode
+ && (GET_RTX_CLASS (GET_CODE (src)) == '2'
+ || GET_RTX_CLASS (GET_CODE (src)) == 'c'))
+ {
+ op0 = XEXP (src, 0);
+ op1 = XEXP (src, 1);
+
+ /* Special case load of small data address which looks like:
+ r16+symbol_ref */
+ if (GET_CODE (src) == PLUS && plus_small_data_p (op0, op1))
+ {
+ src = frv_ifcvt_load_value (src, insn);
+ if (src)
+ COND_EXEC_CODE (pattern) = gen_rtx_SET (VOIDmode, dest, src);
+ else
+ goto fail;
+ }
+
+ else if (integer_register_operand (op0, SImode) && CONSTANT_P (op1))
+ {
+ op1 = frv_ifcvt_load_value (op1, insn);
+ if (op1)
+ COND_EXEC_CODE (pattern)
+ = gen_rtx_SET (VOIDmode, dest, gen_rtx_fmt_ee (GET_CODE (src),
+ GET_MODE (src),
+ op0, op1));
+ else
+ goto fail;
+ }
+ }
+
+ /* For multiply by a constant, we need to handle the sign extending
+ correctly. Add a USE of the value after the multiply to prevent flow
+ from cratering because only one register out of the two were used. */
+ else if (mode == DImode && GET_CODE (src) == MULT)
+ {
+ op0 = XEXP (src, 0);
+ op1 = XEXP (src, 1);
+ if (GET_CODE (op0) == SIGN_EXTEND && GET_CODE (op1) == CONST_INT)
+ {
+ op1 = frv_ifcvt_load_value (op1, insn);
+ if (op1)
+ {
+ op1 = gen_rtx_SIGN_EXTEND (DImode, op1);
+ COND_EXEC_CODE (pattern)
+ = gen_rtx_SET (VOIDmode, dest,
+ gen_rtx_MULT (DImode, op0, op1));
+ }
+ else
+ goto fail;
+ }
+
+ frv_ifcvt_add_insn (gen_rtx_USE (VOIDmode, dest), insn, FALSE);
+ }
+
+ /* If we are just loading a constant created for a nested conditional
+ execution statement, just load the constant without any conditional
+ execution, since we know that the constant will not interfere with any
+ other registers. */
+ else if (frv_ifcvt.scratch_insns_bitmap
+ && bitmap_bit_p (frv_ifcvt.scratch_insns_bitmap,
+ INSN_UID (insn)))
+ pattern = set;
+
+ else if (mode == QImode || mode == HImode || mode == SImode
+ || mode == SFmode)
+ {
+ int changed_p = FALSE;
+
+ /* Check for just loading up a constant */
+ if (CONSTANT_P (src) && integer_register_operand (dest, mode))
+ {
+ src = frv_ifcvt_load_value (src, insn);
+ if (!src)
+ goto fail;
+
+ changed_p = TRUE;
+ }
+
+ /* See if we need to fix up stores */
+ if (GET_CODE (dest) == MEM)
+ {
+ rtx new_mem = frv_ifcvt_rewrite_mem (dest, mode, insn);
+
+ if (!new_mem)
+ goto fail;
+
+ else if (new_mem != dest)
+ {
+ changed_p = TRUE;
+ dest = new_mem;
+ }
+ }
+
+ /* See if we need to fix up loads */
+ if (GET_CODE (src) == MEM)
+ {
+ rtx new_mem = frv_ifcvt_rewrite_mem (src, mode, insn);
+
+ if (!new_mem)
+ goto fail;
+
+ else if (new_mem != src)
+ {
+ changed_p = TRUE;
+ src = new_mem;
+ }
+ }
+
+ /* If either src or destination changed, redo SET. */
+ if (changed_p)
+ COND_EXEC_CODE (pattern) = gen_rtx_SET (VOIDmode, dest, src);
+ }
+
+ /* Rewrite a nested set cccr in terms of IF_THEN_ELSE. Also deal with
+ rewriting the CC register to be the same as the paired CC/CR register
+ for nested ifs. */
+ else if (mode == CC_CCRmode && GET_RTX_CLASS (GET_CODE (src)) == '<')
+ {
+ int regno = REGNO (XEXP (src, 0));
+ rtx if_else;
+
+ if (ce_info->pass > 1
+ && regno != (int)REGNO (frv_ifcvt.nested_cc_reg)
+ && TEST_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite, regno))
+ {
+ src = gen_rtx_fmt_ee (GET_CODE (src),
+ CC_CCRmode,
+ frv_ifcvt.nested_cc_reg,
+ XEXP (src, 1));
+ }
+
+ if_else = gen_rtx_IF_THEN_ELSE (CC_CCRmode, test, src, const0_rtx);
+ pattern = gen_rtx_SET (VOIDmode, dest, if_else);
+ }
+
+ /* Remap a nested compare instruction to use the paired CC/CR reg. */
+ else if (ce_info->pass > 1
+ && GET_CODE (dest) == REG
+ && CC_P (REGNO (dest))
+ && REGNO (dest) != REGNO (frv_ifcvt.nested_cc_reg)
+ && TEST_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite,
+ REGNO (dest))
+ && GET_CODE (src) == COMPARE)
+ {
+ PUT_MODE (frv_ifcvt.nested_cc_reg, GET_MODE (dest));
+ COND_EXEC_CODE (pattern)
+ = gen_rtx_SET (VOIDmode, frv_ifcvt.nested_cc_reg, copy_rtx (src));
+ }
+ }
+
+ if (TARGET_DEBUG_COND_EXEC)
+ {
+ rtx orig_pattern = PATTERN (insn);
+
+ PATTERN (insn) = pattern;
+ fprintf (stderr,
+ "\n:::::::::: frv_ifcvt_modify_insn: pass = %d, insn after modification:\n",
+ ce_info->pass);
+
+ debug_rtx (insn);
+ PATTERN (insn) = orig_pattern;
+ }
+
+ return pattern;
+
+ fail:
+ if (TARGET_DEBUG_COND_EXEC)
+ {
+ rtx orig_pattern = PATTERN (insn);
+
+ PATTERN (insn) = orig_ce_pattern;
+ fprintf (stderr,
+ "\n:::::::::: frv_ifcvt_modify_insn: pass = %d, insn could not be modified:\n",
+ ce_info->pass);
+
+ debug_rtx (insn);
+ PATTERN (insn) = orig_pattern;
+ }
+
+ return NULL_RTX;
+}
+
+
+/* A C expression to perform any final machine dependent modifications in
+ converting code to conditional execution in the code described by the
+ conditional if information CE_INFO. */
+
+void
+frv_ifcvt_modify_final (ce_info)
+ ce_if_block_t *ce_info ATTRIBUTE_UNUSED;
+{
+ rtx existing_insn;
+ rtx check_insn;
+ rtx p = frv_ifcvt.added_insns_list;
+ int i;
+
+ /* Loop inserting the check insns. The last check insn is the first test,
+ and is the appropriate place to insert constants. */
+ if (! p)
+ abort ();
+
+ do
+ {
+ rtx check_and_insert_insns = XEXP (p, 0);
+ rtx old_p = p;
+
+ check_insn = XEXP (check_and_insert_insns, 0);
+ existing_insn = XEXP (check_and_insert_insns, 1);
+ p = XEXP (p, 1);
+
+ /* The jump bit is used to say that the new insn is to be inserted BEFORE
+ the existing insn, otherwise it is to be inserted AFTER. */
+ if (check_and_insert_insns->jump)
+ {
+ emit_insn_before (check_insn, existing_insn);
+ check_and_insert_insns->jump = 0;
+ }
+ else
+ emit_insn_after (check_insn, existing_insn);
+
+ free_EXPR_LIST_node (check_and_insert_insns);
+ free_EXPR_LIST_node (old_p);
+ }
+ while (p != NULL_RTX);
+
+ /* Load up any constants needed into temp gprs */
+ for (i = 0; i < frv_ifcvt.cur_scratch_regs; i++)
+ {
+ rtx insn = emit_insn_before (frv_ifcvt.scratch_regs[i], existing_insn);
+ if (! frv_ifcvt.scratch_insns_bitmap)
+ frv_ifcvt.scratch_insns_bitmap = BITMAP_XMALLOC ();
+ bitmap_set_bit (frv_ifcvt.scratch_insns_bitmap, INSN_UID (insn));
+ frv_ifcvt.scratch_regs[i] = NULL_RTX;
+ }
+
+ frv_ifcvt.added_insns_list = NULL_RTX;
+ frv_ifcvt.cur_scratch_regs = 0;
+}
+
+
+/* A C expression to cancel any machine dependent modifications in converting
+ code to conditional execution in the code described by the conditional if
+ information CE_INFO. */
+
+void
+frv_ifcvt_modify_cancel (ce_info)
+ ce_if_block_t *ce_info ATTRIBUTE_UNUSED;
+{
+ int i;
+ rtx p = frv_ifcvt.added_insns_list;
+
+ /* Loop freeing up the EXPR_LIST's allocated. */
+ while (p != NULL_RTX)
+ {
+ rtx check_and_jump = XEXP (p, 0);
+ rtx old_p = p;
+
+ p = XEXP (p, 1);
+ free_EXPR_LIST_node (check_and_jump);
+ free_EXPR_LIST_node (old_p);
+ }
+
+ /* Release any temporary gprs allocated. */
+ for (i = 0; i < frv_ifcvt.cur_scratch_regs; i++)
+ frv_ifcvt.scratch_regs[i] = NULL_RTX;
+
+ frv_ifcvt.added_insns_list = NULL_RTX;
+ frv_ifcvt.cur_scratch_regs = 0;
+ return;
+}
+
+/* A C expression for the size in bytes of the trampoline, as an integer.
+ The template is:
+
+ setlo #0, <jmp_reg>
+ setlo #0, <static_chain>
+ sethi #0, <jmp_reg>
+ sethi #0, <static_chain>
+ jmpl @(gr0,<jmp_reg>) */
+
+int
+frv_trampoline_size ()
+{
+ return 5 /* instructions */ * 4 /* instruction size */;
+}
+
+
+/* A C statement to initialize the variable parts of a trampoline. ADDR is an
+ RTX for the address of the trampoline; FNADDR is an RTX for the address of
+ the nested function; STATIC_CHAIN is an RTX for the static chain value that
+ should be passed to the function when it is called.
+
+ The template is:
+
+ setlo #0, <jmp_reg>
+ setlo #0, <static_chain>
+ sethi #0, <jmp_reg>
+ sethi #0, <static_chain>
+ jmpl @(gr0,<jmp_reg>) */
+
+void
+frv_initialize_trampoline (addr, fnaddr, static_chain)
+ rtx addr;
+ rtx fnaddr;
+ rtx static_chain;
+{
+ rtx sc_reg = force_reg (Pmode, static_chain);
+
+ emit_library_call (gen_rtx_SYMBOL_REF (SImode, "__trampoline_setup"),
+ FALSE, VOIDmode, 4,
+ addr, Pmode,
+ GEN_INT (frv_trampoline_size ()), SImode,
+ fnaddr, Pmode,
+ sc_reg, Pmode);
+}
+
+
+/* Many machines have some registers that cannot be copied directly to or from
+ memory or even from other types of registers. An example is the `MQ'
+ register, which on most machines, can only be copied to or from general
+ registers, but not memory. Some machines allow copying all registers to and
+ from memory, but require a scratch register for stores to some memory
+ locations (e.g., those with symbolic address on the RT, and those with
+ certain symbolic address on the SPARC when compiling PIC). In some cases,
+ both an intermediate and a scratch register are required.
+
+ You should define these macros to indicate to the reload phase that it may
+ need to allocate at least one register for a reload in addition to the
+ register to contain the data. Specifically, if copying X to a register
+ CLASS in MODE requires an intermediate register, you should define
+ `SECONDARY_INPUT_RELOAD_CLASS' to return the largest register class all of
+ whose registers can be used as intermediate registers or scratch registers.
+
+ If copying a register CLASS in MODE to X requires an intermediate or scratch
+ register, `SECONDARY_OUTPUT_RELOAD_CLASS' should be defined to return the
+ largest register class required. If the requirements for input and output
+ reloads are the same, the macro `SECONDARY_RELOAD_CLASS' should be used
+ instead of defining both macros identically.
+
+ The values returned by these macros are often `GENERAL_REGS'. Return
+ `NO_REGS' if no spare register is needed; i.e., if X can be directly copied
+ to or from a register of CLASS in MODE without requiring a scratch register.
+ Do not define this macro if it would always return `NO_REGS'.
+
+ If a scratch register is required (either with or without an intermediate
+ register), you should define patterns for `reload_inM' or `reload_outM', as
+ required.. These patterns, which will normally be implemented with a
+ `define_expand', should be similar to the `movM' patterns, except that
+ operand 2 is the scratch register.
+
+ Define constraints for the reload register and scratch register that contain
+ a single register class. If the original reload register (whose class is
+ CLASS) can meet the constraint given in the pattern, the value returned by
+ these macros is used for the class of the scratch register. Otherwise, two
+ additional reload registers are required. Their classes are obtained from
+ the constraints in the insn pattern.
+
+ X might be a pseudo-register or a `subreg' of a pseudo-register, which could
+ either be in a hard register or in memory. Use `true_regnum' to find out;
+ it will return -1 if the pseudo is in memory and the hard register number if
+ it is in a register.
+
+ These macros should not be used in the case where a particular class of
+ registers can only be copied to memory and not to another class of
+ registers. In that case, secondary reload registers are not needed and
+ would not be helpful. Instead, a stack location must be used to perform the
+ copy and the `movM' pattern should use memory as an intermediate storage.
+ This case often occurs between floating-point and general registers. */
+
+enum reg_class
+frv_secondary_reload_class (class, mode, x, in_p)
+ enum reg_class class;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+ rtx x;
+ int in_p ATTRIBUTE_UNUSED;
+{
+ enum reg_class ret;
+
+ switch (class)
+ {
+ default:
+ ret = NO_REGS;
+ break;
+
+ /* Accumulators/Accumulator guard registers need to go through floating
+ point registers. */
+ case QUAD_REGS:
+ case EVEN_REGS:
+ case GPR_REGS:
+ ret = NO_REGS;
+ if (x && GET_CODE (x) == REG)
+ {
+ int regno = REGNO (x);
+
+ if (ACC_P (regno) || ACCG_P (regno))
+ ret = FPR_REGS;
+ }
+ break;
+
+ /* Nonzero constants should be loaded into an FPR through a GPR. */
+ case QUAD_FPR_REGS:
+ case FEVEN_REGS:
+ case FPR_REGS:
+ if (x && CONSTANT_P (x) && !ZERO_P (x))
+ ret = GPR_REGS;
+ else
+ ret = NO_REGS;
+ break;
+
+ /* All of these types need gpr registers. */
+ case ICC_REGS:
+ case FCC_REGS:
+ case CC_REGS:
+ case ICR_REGS:
+ case FCR_REGS:
+ case CR_REGS:
+ case LCR_REG:
+ case LR_REG:
+ ret = GPR_REGS;
+ break;
+
+ /* The accumulators need fpr registers */
+ case ACC_REGS:
+ case EVEN_ACC_REGS:
+ case QUAD_ACC_REGS:
+ case ACCG_REGS:
+ ret = FPR_REGS;
+ break;
+ }
+
+ return ret;
+}
+
+
+/* A C expression whose value is nonzero if pseudos that have been assigned to
+ registers of class CLASS would likely be spilled because registers of CLASS
+ are needed for spill registers.
+
+ The default value of this macro returns 1 if CLASS has exactly one register
+ and zero otherwise. On most machines, this default should be used. Only
+ define this macro to some other expression if pseudo allocated by
+ `local-alloc.c' end up in memory because their hard registers were needed
+ for spill registers. If this macro returns nonzero for those classes, those
+ pseudos will only be allocated by `global.c', which knows how to reallocate
+ the pseudo to another register. If there would not be another register
+ available for reallocation, you should not change the definition of this
+ macro since the only effect of such a definition would be to slow down
+ register allocation. */
+
+int
+frv_class_likely_spilled_p (class)
+ enum reg_class class;
+{
+ switch (class)
+ {
+ default:
+ break;
+
+ case ICC_REGS:
+ case FCC_REGS:
+ case CC_REGS:
+ case ICR_REGS:
+ case FCR_REGS:
+ case CR_REGS:
+ case LCR_REG:
+ case LR_REG:
+ case SPR_REGS:
+ case QUAD_ACC_REGS:
+ case EVEN_ACC_REGS:
+ case ACC_REGS:
+ case ACCG_REGS:
+ return TRUE;
+ }
+
+ return FALSE;
+}
+
+
+/* An expression for the alignment of a structure field FIELD if the
+ alignment computed in the usual way is COMPUTED. GNU CC uses this
+ value instead of the value in `BIGGEST_ALIGNMENT' or
+ `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only. */
+
+/* The definition type of the bit field data is either char, short, long or
+ long long. The maximum bit size is the number of bits of its own type.
+
+ The bit field data is assigned to a storage unit that has an adequate size
+ for bit field data retention and is located at the smallest address.
+
+ Consecutive bit field data are packed at consecutive bits having the same
+ storage unit, with regard to the type, beginning with the MSB and continuing
+ toward the LSB.
+
+ If a field to be assigned lies over a bit field type boundary, its
+ assignment is completed by aligning it with a boundary suitable for the
+ type.
+
+ When a bit field having a bit length of 0 is declared, it is forcibly
+ assigned to the next storage unit.
+
+ e.g)
+ struct {
+ int a:2;
+ int b:6;
+ char c:4;
+ int d:10;
+ int :0;
+ int f:2;
+ } x;
+
+ +0 +1 +2 +3
+ &x 00000000 00000000 00000000 00000000
+ MLM----L
+ a b
+ &x+4 00000000 00000000 00000000 00000000
+ M--L
+ c
+ &x+8 00000000 00000000 00000000 00000000
+ M----------L
+ d
+ &x+12 00000000 00000000 00000000 00000000
+ ML
+ f
+*/
+
+int
+frv_adjust_field_align (field, computed)
+ tree field;
+ int computed;
+{
+ /* C++ provides a null DECL_CONTEXT if the bit field is wider than its
+ type. */
+ if (DECL_BIT_FIELD (field) && DECL_CONTEXT (field))
+ {
+ tree parent = DECL_CONTEXT (field);
+ tree prev = NULL_TREE;
+ tree cur;
+
+ /* Loop finding the previous field to the current one */
+ for (cur = TYPE_FIELDS (parent); cur && cur != field; cur = TREE_CHAIN (cur))
+ {
+ if (TREE_CODE (cur) != FIELD_DECL)
+ continue;
+
+ prev = cur;
+ }
+
+ if (!cur)
+ abort ();
+
+ /* If this isn't a :0 field and if the previous element is a bitfield
+ also, see if the type is different, if so, we will need to align the
+ bit-field to the next boundary */
+ if (prev
+ && ! DECL_PACKED (field)
+ && ! integer_zerop (DECL_SIZE (field))
+ && DECL_BIT_FIELD_TYPE (field) != DECL_BIT_FIELD_TYPE (prev))
+ {
+ int prev_align = TYPE_ALIGN (TREE_TYPE (prev));
+ int cur_align = TYPE_ALIGN (TREE_TYPE (field));
+ computed = (prev_align > cur_align) ? prev_align : cur_align;
+ }
+ }
+
+ return computed;
+}
+
+
+/* A C expression that is nonzero if it is permissible to store a value of mode
+ MODE in hard register number REGNO (or in several registers starting with
+ that one). For a machine where all registers are equivalent, a suitable
+ definition is
+
+ #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
+
+ It is not necessary for this macro to check for the numbers of fixed
+ registers, because the allocation mechanism considers them to be always
+ occupied.
+
+ On some machines, double-precision values must be kept in even/odd register
+ pairs. The way to implement that is to define this macro to reject odd
+ register numbers for such modes.
+
+ The minimum requirement for a mode to be OK in a register is that the
+ `movMODE' instruction pattern support moves between the register and any
+ other hard register for which the mode is OK; and that moving a value into
+ the register and back out not alter it.
+
+ Since the same instruction used to move `SImode' will work for all narrower
+ integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
+ to distinguish between these modes, provided you define patterns `movhi',
+ etc., to take advantage of this. This is useful because of the interaction
+ between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
+ all integer modes to be tieable.
+
+ Many machines have special registers for floating point arithmetic. Often
+ people assume that floating point machine modes are allowed only in floating
+ point registers. This is not true. Any registers that can hold integers
+ can safely *hold* a floating point machine mode, whether or not floating
+ arithmetic can be done on it in those registers. Integer move instructions
+ can be used to move the values.
+
+ On some machines, though, the converse is true: fixed-point machine modes
+ may not go in floating registers. This is true if the floating registers
+ normalize any value stored in them, because storing a non-floating value
+ there would garble it. In this case, `HARD_REGNO_MODE_OK' should reject
+ fixed-point machine modes in floating registers. But if the floating
+ registers do not automatically normalize, if you can store any bit pattern
+ in one and retrieve it unchanged without a trap, then any machine mode may
+ go in a floating register, so you can define this macro to say so.
+
+ The primary significance of special floating registers is rather that they
+ are the registers acceptable in floating point arithmetic instructions.
+ However, this is of no concern to `HARD_REGNO_MODE_OK'. You handle it by
+ writing the proper constraints for those instructions.
+
+ On some machines, the floating registers are especially slow to access, so
+ that it is better to store a value in a stack frame than in such a register
+ if floating point arithmetic is not being done. As long as the floating
+ registers are not in class `GENERAL_REGS', they will not be used unless some
+ pattern's constraint asks for one. */
+
+int
+frv_hard_regno_mode_ok (regno, mode)
+ int regno;
+ enum machine_mode mode;
+{
+ int base;
+ int mask;
+
+ switch (mode)
+ {
+ case CCmode:
+ case CC_UNSmode:
+ return ICC_P (regno) || GPR_P (regno);
+
+ case CC_CCRmode:
+ return CR_P (regno) || GPR_P (regno);
+
+ case CC_FPmode:
+ return FCC_P (regno) || GPR_P (regno);
+
+ default:
+ break;
+ }
+
+ /* Set BASE to the first register in REGNO's class. Set MASK to the
+ bits that must be clear in (REGNO - BASE) for the register to be
+ well-aligned. */
+ if (INTEGRAL_MODE_P (mode) || FLOAT_MODE_P (mode) || VECTOR_MODE_P (mode))
+ {
+ if (ACCG_P (regno))
+ {
+ /* ACCGs store one byte. Two-byte quantities must start in
+ even-numbered registers, four-byte ones in registers whose
+ numbers are divisible by four, and so on. */
+ base = ACCG_FIRST;
+ mask = GET_MODE_SIZE (mode) - 1;
+ }
+ else
+ {
+ /* The other registers store one word. */
+ if (GPR_P (regno))
+ base = GPR_FIRST;
+
+ else if (FPR_P (regno))
+ base = FPR_FIRST;
+
+ else if (ACC_P (regno))
+ base = ACC_FIRST;
+
+ else
+ return 0;
+
+ /* Anything smaller than an SI is OK in any word-sized register. */
+ if (GET_MODE_SIZE (mode) < 4)
+ return 1;
+
+ mask = (GET_MODE_SIZE (mode) / 4) - 1;
+ }
+ return (((regno - base) & mask) == 0);
+ }
+
+ return 0;
+}
+
+
+/* A C expression for the number of consecutive hard registers, starting at
+ register number REGNO, required to hold a value of mode MODE.
+
+ On a machine where all registers are exactly one word, a suitable definition
+ of this macro is
+
+ #define HARD_REGNO_NREGS(REGNO, MODE) \
+ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
+ / UNITS_PER_WORD)) */
+
+/* On the FRV, make the CC_FP mode take 3 words in the integer registers, so
+ that we can build the appropriate instructions to properly reload the
+ values. Also, make the byte-sized accumulator guards use one guard
+ for each byte. */
+
+int
+frv_hard_regno_nregs (regno, mode)
+ int regno;
+ enum machine_mode mode;
+{
+ if (ACCG_P (regno))
+ return GET_MODE_SIZE (mode);
+ else
+ return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+}
+
+
+/* A C expression for the maximum number of consecutive registers of
+ class CLASS needed to hold a value of mode MODE.
+
+ This is closely related to the macro `HARD_REGNO_NREGS'. In fact, the value
+ of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
+ `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
+
+ This macro helps control the handling of multiple-word values in
+ the reload pass.
+
+ This declaration is required. */
+
+int
+frv_class_max_nregs (class, mode)
+ enum reg_class class;
+ enum machine_mode mode;
+{
+ if (class == ACCG_REGS)
+ /* An N-byte value requires N accumulator guards. */
+ return GET_MODE_SIZE (mode);
+ else
+ return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
+}
+
+
+/* A C expression that is nonzero if X is a legitimate constant for an
+ immediate operand on the target machine. You can assume that X satisfies
+ `CONSTANT_P', so you need not check this. In fact, `1' is a suitable
+ definition for this macro on machines where anything `CONSTANT_P' is valid. */
+
+int
+frv_legitimate_constant_p (x)
+ rtx x;
+{
+ enum machine_mode mode = GET_MODE (x);
+
+ /* All of the integer constants are ok */
+ if (GET_CODE (x) != CONST_DOUBLE)
+ return TRUE;
+
+ /* double integer constants are ok */
+ if (mode == VOIDmode || mode == DImode)
+ return TRUE;
+
+ /* 0 is always ok */
+ if (x == CONST0_RTX (mode))
+ return TRUE;
+
+ /* If floating point is just emulated, allow any constant, since it will be
+ constructed in the GPRs */
+ if (!TARGET_HAS_FPRS)
+ return TRUE;
+
+ if (mode == DFmode && !TARGET_DOUBLE)
+ return TRUE;
+
+ /* Otherwise store the constant away and do a load. */
+ return FALSE;
+}
+
+/* A C expression for the cost of moving data from a register in class FROM to
+ one in class TO. The classes are expressed using the enumeration values
+ such as `GENERAL_REGS'. A value of 4 is the default; other values are
+ interpreted relative to that.
+
+ It is not required that the cost always equal 2 when FROM is the same as TO;
+ on some machines it is expensive to move between registers if they are not
+ general registers.
+
+ If reload sees an insn consisting of a single `set' between two hard
+ registers, and if `REGISTER_MOVE_COST' applied to their classes returns a
+ value of 2, reload does not check to ensure that the constraints of the insn
+ are met. Setting a cost of other than 2 will allow reload to verify that
+ the constraints are met. You should do this if the `movM' pattern's
+ constraints do not allow such copying. */
+
+#define HIGH_COST 40
+#define MEDIUM_COST 3
+#define LOW_COST 1
+
+int
+frv_register_move_cost (from, to)
+ enum reg_class from;
+ enum reg_class to;
+{
+ switch (from)
+ {
+ default:
+ break;
+
+ case QUAD_REGS:
+ case EVEN_REGS:
+ case GPR_REGS:
+ switch (to)
+ {
+ default:
+ break;
+
+ case QUAD_REGS:
+ case EVEN_REGS:
+ case GPR_REGS:
+ return LOW_COST;
+
+ case FEVEN_REGS:
+ case FPR_REGS:
+ return LOW_COST;
+
+ case LCR_REG:
+ case LR_REG:
+ case SPR_REGS:
+ return LOW_COST;
+ }
+
+ case FEVEN_REGS:
+ case FPR_REGS:
+ switch (to)
+ {
+ default:
+ break;
+
+ case QUAD_REGS:
+ case EVEN_REGS:
+ case GPR_REGS:
+ case ACC_REGS:
+ case EVEN_ACC_REGS:
+ case QUAD_ACC_REGS:
+ case ACCG_REGS:
+ return MEDIUM_COST;
+
+ case FEVEN_REGS:
+ case FPR_REGS:
+ return LOW_COST;
+ }
+
+ case LCR_REG:
+ case LR_REG:
+ case SPR_REGS:
+ switch (to)
+ {
+ default:
+ break;
+
+ case QUAD_REGS:
+ case EVEN_REGS:
+ case GPR_REGS:
+ return MEDIUM_COST;
+ }
+
+ case ACC_REGS:
+ case EVEN_ACC_REGS:
+ case QUAD_ACC_REGS:
+ case ACCG_REGS:
+ switch (to)
+ {
+ default:
+ break;
+
+ case FEVEN_REGS:
+ case FPR_REGS:
+ return MEDIUM_COST;
+
+ }
+ }
+
+ return HIGH_COST;
+}
+
+/* Implementation of TARGET_ASM_INTEGER. In the FRV case we need to
+ use ".picptr" to generate safe relocations for PIC code. We also
+ need a fixup entry for aligned (non-debugging) code. */
+
+static bool
+frv_assemble_integer (value, size, aligned_p)
+ rtx value;
+ unsigned int size;
+ int aligned_p;
+{
+ if (flag_pic && size == UNITS_PER_WORD)
+ {
+ if (GET_CODE (value) == CONST
+ || GET_CODE (value) == SYMBOL_REF
+ || GET_CODE (value) == LABEL_REF)
+ {
+ if (aligned_p)
+ {
+ static int label_num = 0;
+ char buf[256];
+ const char *p;
+
+ ASM_GENERATE_INTERNAL_LABEL (buf, "LCP", label_num++);
+ p = (* targetm.strip_name_encoding) (buf);
+
+ fprintf (asm_out_file, "%s:\n", p);
+ fprintf (asm_out_file, "%s\n", FIXUP_SECTION_ASM_OP);
+ fprintf (asm_out_file, "\t.picptr\t%s\n", p);
+ fprintf (asm_out_file, "\t.previous\n");
+ }
+ assemble_integer_with_op ("\t.picptr\t", value);
+ return true;
+ }
+ if (!aligned_p)
+ {
+ /* We've set the unaligned SI op to NULL, so we always have to
+ handle the unaligned case here. */
+ assemble_integer_with_op ("\t.4byte\t", value);
+ return true;
+ }
+ }
+ return default_assemble_integer (value, size, aligned_p);
+}
+
+/* Function to set up the backend function structure. */
+
+static struct machine_function *
+frv_init_machine_status ()
+{
+ return ggc_alloc_cleared (sizeof (struct machine_function));
+}
+
+
+/* Update the register state information, to know about which registers are set
+ or clobbered. */
+
+static void
+frv_registers_update (x, reg_state, modified, p_num_mod, flag)
+ rtx x;
+ unsigned char reg_state[];
+ int modified[];
+ int *p_num_mod;
+ int flag;
+{
+ int regno, reg_max;
+ rtx reg;
+ rtx cond;
+ const char *format;
+ int length;
+ int j;
+
+ switch (GET_CODE (x))
+ {
+ default:
+ break;
+
+ /* Clobber just modifies a register, it doesn't make it live. */
+ case CLOBBER:
+ frv_registers_update (XEXP (x, 0), reg_state, modified, p_num_mod,
+ flag | REGSTATE_MODIFIED);
+ return;
+
+ /* Pre modify updates the first argument, just references the second. */
+ case PRE_MODIFY:
+ case SET:
+ frv_registers_update (XEXP (x, 0), reg_state, modified, p_num_mod,
+ flag | REGSTATE_MODIFIED | REGSTATE_LIVE);
+ frv_registers_update (XEXP (x, 1), reg_state, modified, p_num_mod, flag);
+ return;
+
+ /* For COND_EXEC, pass the appropriate flag to evaluate the conditional
+ statement, but just to be sure, make sure it is the type of cond_exec
+ we expect. */
+ case COND_EXEC:
+ cond = XEXP (x, 0);
+ if ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
+ && GET_CODE (XEXP (cond, 0)) == REG
+ && CR_P (REGNO (XEXP (cond, 0)))
+ && GET_CODE (XEXP (cond, 1)) == CONST_INT
+ && INTVAL (XEXP (cond, 1)) == 0
+ && (flag & (REGSTATE_MODIFIED | REGSTATE_IF_EITHER)) == 0)
+ {
+ frv_registers_update (cond, reg_state, modified, p_num_mod, flag);
+ flag |= ((REGNO (XEXP (cond, 0)) - CR_FIRST)
+ | ((GET_CODE (cond) == NE)
+ ? REGSTATE_IF_TRUE
+ : REGSTATE_IF_FALSE));
+
+ frv_registers_update (XEXP (x, 1), reg_state, modified, p_num_mod,
+ flag);
+ return;
+ }
+ else
+ fatal_insn ("frv_registers_update", x);
+
+ /* MEM resets the modification bits. */
+ case MEM:
+ flag &= ~REGSTATE_MODIFIED;
+ break;
+
+ /* See if we need to set the modified flag. */
+ case SUBREG:
+ reg = SUBREG_REG (x);
+ if (GET_CODE (reg) == REG)
+ {
+ regno = subreg_regno (x);
+ reg_max = REGNO (reg) + HARD_REGNO_NREGS (regno, GET_MODE (reg));
+ goto reg_common;
+ }
+ break;
+
+ case REG:
+ regno = REGNO (x);
+ reg_max = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
+ /* fall through */
+
+ reg_common:
+ if (flag & REGSTATE_MODIFIED)
+ {
+ flag &= REGSTATE_MASK;
+ while (regno < reg_max)
+ {
+ int rs = reg_state[regno];
+
+ if (flag != rs)
+ {
+ if ((rs & REGSTATE_MODIFIED) == 0)
+ {
+ modified[ *p_num_mod ] = regno;
+ (*p_num_mod)++;
+ }
+
+ /* If the previous register state had the register as
+ modified, possibly in some conditional execution context,
+ and the current insn modifies in some other context, or
+ outside of conditional execution, just mark the variable
+ as modified. */
+ else
+ flag &= ~(REGSTATE_IF_EITHER | REGSTATE_CC_MASK);
+
+ reg_state[regno] = (rs | flag);
+ }
+ regno++;
+ }
+ }
+ return;
+ }
+
+
+ length = GET_RTX_LENGTH (GET_CODE (x));
+ format = GET_RTX_FORMAT (GET_CODE (x));
+
+ for (j = 0; j < length; ++j)
+ {
+ switch (format[j])
+ {
+ case 'e':
+ frv_registers_update (XEXP (x, j), reg_state, modified, p_num_mod,
+ flag);
+ break;
+
+ case 'V':
+ case 'E':
+ if (XVEC (x, j) != 0)
+ {
+ int k;
+ for (k = 0; k < XVECLEN (x, j); ++k)
+ frv_registers_update (XVECEXP (x, j, k), reg_state, modified,
+ p_num_mod, flag);
+ }
+ break;
+
+ default:
+ /* Nothing to do. */
+ break;
+ }
+ }
+
+ return;
+}
+
+
+/* Return if any registers in a hard register set were used an insn. */
+
+static int
+frv_registers_used_p (x, reg_state, flag)
+ rtx x;
+ unsigned char reg_state[];
+ int flag;
+{
+ int regno, reg_max;
+ rtx reg;
+ rtx cond;
+ rtx dest;
+ const char *format;
+ int result;
+ int length;
+ int j;
+
+ switch (GET_CODE (x))
+ {
+ default:
+ break;
+
+ /* Skip clobber, that doesn't use the previous value */
+ case CLOBBER:
+ return FALSE;
+
+ /* For SET, if a conditional jump has occurred in the same insn, only
+ allow a set of a CR register if that register is not currently live.
+ This is because on the FR-V, B0/B1 instructions are always last.
+ Otherwise, don't look at the result, except within a MEM, but do look
+ at the source. */
+ case SET:
+ dest = SET_DEST (x);
+ if (flag & REGSTATE_CONDJUMP
+ && GET_CODE (dest) == REG && CR_P (REGNO (dest))
+ && (reg_state[ REGNO (dest) ] & REGSTATE_LIVE) != 0)
+ return TRUE;
+
+ if (GET_CODE (dest) == MEM)
+ {
+ result = frv_registers_used_p (XEXP (dest, 0), reg_state, flag);
+ if (result)
+ return result;
+ }
+
+ return frv_registers_used_p (SET_SRC (x), reg_state, flag);
+
+ /* For COND_EXEC, pass the appropriate flag to evaluate the conditional
+ statement, but just to be sure, make sure it is the type of cond_exec
+ we expect. */
+ case COND_EXEC:
+ cond = XEXP (x, 0);
+ if ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
+ && GET_CODE (XEXP (cond, 0)) == REG
+ && CR_P (REGNO (XEXP (cond, 0)))
+ && GET_CODE (XEXP (cond, 1)) == CONST_INT
+ && INTVAL (XEXP (cond, 1)) == 0
+ && (flag & (REGSTATE_MODIFIED | REGSTATE_IF_EITHER)) == 0)
+ {
+ result = frv_registers_used_p (cond, reg_state, flag);
+ if (result)
+ return result;
+
+ flag |= ((REGNO (XEXP (cond, 0)) - CR_FIRST)
+ | ((GET_CODE (cond) == NE)
+ ? REGSTATE_IF_TRUE
+ : REGSTATE_IF_FALSE));
+
+ return frv_registers_used_p (XEXP (x, 1), reg_state, flag);
+ }
+ else
+ fatal_insn ("frv_registers_used_p", x);
+
+ /* See if a register or subreg was modified in the same VLIW insn. */
+ case SUBREG:
+ reg = SUBREG_REG (x);
+ if (GET_CODE (reg) == REG)
+ {
+ regno = subreg_regno (x);
+ reg_max = REGNO (reg) + HARD_REGNO_NREGS (regno, GET_MODE (reg));
+ goto reg_common;
+ }
+ break;
+
+ case REG:
+ regno = REGNO (x);
+ reg_max = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
+ /* fall through */
+
+ reg_common:
+ while (regno < reg_max)
+ {
+ int rs = reg_state[regno];
+
+ if (rs & REGSTATE_MODIFIED)
+ {
+ int rs_if = rs & REGSTATE_IF_EITHER;
+ int flag_if = flag & REGSTATE_IF_EITHER;
+
+ /* Simple modification, no conditional execution */
+ if ((rs & REGSTATE_IF_EITHER) == 0)
+ return TRUE;
+
+ /* See if the variable is only modified in a conditional
+ execution expression opposite to the conditional execution
+ expression that governs this expression (ie, true vs. false
+ for the same CC register). If this isn't two halves of the
+ same conditional expression, consider the register
+ modified. */
+ if (((rs_if == REGSTATE_IF_TRUE && flag_if == REGSTATE_IF_FALSE)
+ || (rs_if == REGSTATE_IF_FALSE && flag_if == REGSTATE_IF_TRUE))
+ && ((rs & REGSTATE_CC_MASK) == (flag & REGSTATE_CC_MASK)))
+ ;
+ else
+ return TRUE;
+ }
+
+ regno++;
+ }
+ return FALSE;
+ }
+
+
+ length = GET_RTX_LENGTH (GET_CODE (x));
+ format = GET_RTX_FORMAT (GET_CODE (x));
+
+ for (j = 0; j < length; ++j)
+ {
+ switch (format[j])
+ {
+ case 'e':
+ result = frv_registers_used_p (XEXP (x, j), reg_state, flag);
+ if (result != 0)
+ return result;
+ break;
+
+ case 'V':
+ case 'E':
+ if (XVEC (x, j) != 0)
+ {
+ int k;
+ for (k = 0; k < XVECLEN (x, j); ++k)
+ {
+ result = frv_registers_used_p (XVECEXP (x, j, k), reg_state,
+ flag);
+ if (result != 0)
+ return result;
+ }
+ }
+ break;
+
+ default:
+ /* Nothing to do. */
+ break;
+ }
+ }
+
+ return 0;
+}
+
+/* Return if any registers in a hard register set were set in an insn. */
+
+static int
+frv_registers_set_p (x, reg_state, modify_p)
+ rtx x;
+ unsigned char reg_state[];
+ int modify_p;
+{
+ int regno, reg_max;
+ rtx reg;
+ rtx cond;
+ const char *format;
+ int length;
+ int j;
+
+ switch (GET_CODE (x))
+ {
+ default:
+ break;
+
+ case CLOBBER:
+ return frv_registers_set_p (XEXP (x, 0), reg_state, TRUE);
+
+ case PRE_MODIFY:
+ case SET:
+ return (frv_registers_set_p (XEXP (x, 0), reg_state, TRUE)
+ || frv_registers_set_p (XEXP (x, 1), reg_state, FALSE));
+
+ case COND_EXEC:
+ cond = XEXP (x, 0);
+ /* just to be sure, make sure it is the type of cond_exec we
+ expect. */
+ if ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
+ && GET_CODE (XEXP (cond, 0)) == REG
+ && CR_P (REGNO (XEXP (cond, 0)))
+ && GET_CODE (XEXP (cond, 1)) == CONST_INT
+ && INTVAL (XEXP (cond, 1)) == 0
+ && !modify_p)
+ return frv_registers_set_p (XEXP (x, 1), reg_state, modify_p);
+ else
+ fatal_insn ("frv_registers_set_p", x);
+
+ /* MEM resets the modification bits. */
+ case MEM:
+ modify_p = FALSE;
+ break;
+
+ /* See if we need to set the modified modify_p. */
+ case SUBREG:
+ reg = SUBREG_REG (x);
+ if (GET_CODE (reg) == REG)
+ {
+ regno = subreg_regno (x);
+ reg_max = REGNO (reg) + HARD_REGNO_NREGS (regno, GET_MODE (reg));
+ goto reg_common;
+ }
+ break;
+
+ case REG:
+ regno = REGNO (x);
+ reg_max = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
+ /* fall through */
+
+ reg_common:
+ if (modify_p)
+ while (regno < reg_max)
+ {
+ int rs = reg_state[regno];
+
+ if (rs & REGSTATE_MODIFIED)
+ return TRUE;
+ regno++;
+ }
+ return FALSE;
+ }
+
+
+ length = GET_RTX_LENGTH (GET_CODE (x));
+ format = GET_RTX_FORMAT (GET_CODE (x));
+
+ for (j = 0; j < length; ++j)
+ {
+ switch (format[j])
+ {
+ case 'e':
+ if (frv_registers_set_p (XEXP (x, j), reg_state, modify_p))
+ return TRUE;
+ break;
+
+ case 'V':
+ case 'E':
+ if (XVEC (x, j) != 0)
+ {
+ int k;
+ for (k = 0; k < XVECLEN (x, j); ++k)
+ if (frv_registers_set_p (XVECEXP (x, j, k), reg_state,
+ modify_p))
+ return TRUE;
+ }
+ break;
+
+ default:
+ /* Nothing to do. */
+ break;
+ }
+ }
+
+ return FALSE;
+}
+
+
+/* In rare cases, correct code generation requires extra machine dependent
+ processing between the second jump optimization pass and delayed branch
+ scheduling. On those machines, define this macro as a C statement to act on
+ the code starting at INSN. */
+
+/* On the FR-V, this pass is used to rescan the insn chain, and pack
+ conditional branches/calls/jumps, etc. with previous insns where it can. It
+ does not reorder the instructions. We assume the scheduler left the flow
+ information in a reasonable state. */
+
+static void
+frv_pack_insns ()
+{
+ state_t frv_state; /* frv state machine */
+ int cur_start_vliw_p; /* current insn starts a VLIW insn */
+ int next_start_vliw_p; /* next insn starts a VLIW insn */
+ int cur_condjump_p; /* flag if current insn is a cond jump*/
+ int next_condjump_p; /* flag if next insn is a cond jump */
+ rtx insn;
+ rtx link;
+ int j;
+ int num_mod = 0; /* # of modified registers */
+ int modified[FIRST_PSEUDO_REGISTER]; /* registers modified in current VLIW */
+ /* register state information */
+ unsigned char reg_state[FIRST_PSEUDO_REGISTER];
+
+ /* If we weren't going to pack the insns, don't bother with this pass. */
+ if (!optimize || !flag_schedule_insns_after_reload || TARGET_NO_VLIW_BRANCH)
+ return;
+
+ switch (frv_cpu_type)
+ {
+ default:
+ case FRV_CPU_FR300: /* FR300/simple are single issue */
+ case FRV_CPU_SIMPLE:
+ return;
+
+ case FRV_CPU_GENERIC: /* FR-V and FR500 are multi-issue */
+ case FRV_CPU_FR400:
+ case FRV_CPU_FR500:
+ case FRV_CPU_TOMCAT:
+ break;
+ }
+
+ /* Set up the instruction and register states. */
+ dfa_start ();
+ frv_state = (state_t) xmalloc (state_size ());
+ memset ((PTR) reg_state, REGSTATE_DEAD, sizeof (reg_state));
+
+ /* Go through the insns, and repack the insns. */
+ state_reset (frv_state);
+ cur_start_vliw_p = FALSE;
+ next_start_vliw_p = TRUE;
+ cur_condjump_p = 0;
+ next_condjump_p = 0;
+
+ for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
+ {
+ enum rtx_code code = GET_CODE (insn);
+ enum rtx_code pattern_code;
+
+ /* For basic block begin notes redo the live information, and skip other
+ notes. */
+ if (code == NOTE)
+ {
+ if (NOTE_LINE_NUMBER (insn) == (int)NOTE_INSN_BASIC_BLOCK)
+ {
+ regset live;
+
+ for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
+ reg_state[j] &= ~ REGSTATE_LIVE;
+
+ live = NOTE_BASIC_BLOCK (insn)->global_live_at_start;
+ EXECUTE_IF_SET_IN_REG_SET(live, 0, j,
+ {
+ reg_state[j] |= REGSTATE_LIVE;
+ });
+ }
+
+ continue;
+ }
+
+ /* things like labels reset everything. */
+ if (GET_RTX_CLASS (code) != 'i')
+ {
+ next_start_vliw_p = TRUE;
+ continue;
+ }
+
+ /* Clear the VLIW start flag on random USE and CLOBBER insns, which is
+ set on the USE insn that preceeds the return, and potentially on
+ CLOBBERs for setting multiword variables. Also skip the ADDR_VEC
+ holding the case table labels. */
+ pattern_code = GET_CODE (PATTERN (insn));
+ if (pattern_code == USE || pattern_code == CLOBBER
+ || pattern_code == ADDR_VEC || pattern_code == ADDR_DIFF_VEC)
+ {
+ CLEAR_VLIW_START (insn);
+ continue;
+ }
+
+ cur_start_vliw_p = next_start_vliw_p;
+ next_start_vliw_p = FALSE;
+
+ cur_condjump_p |= next_condjump_p;
+ next_condjump_p = 0;
+
+ /* Unconditional branches and calls end the current VLIW insn. */
+ if (code == CALL_INSN)
+ {
+ next_start_vliw_p = TRUE;
+
+ /* On a TOMCAT, calls must be alone in the VLIW insns. */
+ if (frv_cpu_type == FRV_CPU_TOMCAT)
+ cur_start_vliw_p = TRUE;
+ }
+ else if (code == JUMP_INSN)
+ {
+ if (any_condjump_p (insn))
+ next_condjump_p = REGSTATE_CONDJUMP;
+ else
+ next_start_vliw_p = TRUE;
+ }
+
+ /* Only allow setting a CCR register after a conditional branch. */
+ else if (((cur_condjump_p & REGSTATE_CONDJUMP) != 0)
+ && get_attr_type (insn) != TYPE_CCR)
+ cur_start_vliw_p = TRUE;
+
+ /* Determine if we need to start a new VLIW instruction. */
+ if (cur_start_vliw_p
+ /* Do not check for register conflicts in a setlo instruction
+ because any output or true dependencies will be with the
+ partnering sethi instruction, with which it can be packed.
+
+ Although output dependencies are rare they are still
+ possible. So check output dependencies in VLIW insn. */
+ || (get_attr_type (insn) != TYPE_SETLO
+ && (frv_registers_used_p (PATTERN (insn),
+ reg_state,
+ cur_condjump_p)
+ || frv_registers_set_p (PATTERN (insn), reg_state, FALSE)))
+ || state_transition (frv_state, insn) >= 0)
+ {
+ SET_VLIW_START (insn);
+ state_reset (frv_state);
+ state_transition (frv_state, insn);
+ cur_condjump_p = 0;
+
+ /* Update the modified registers. */
+ for (j = 0; j < num_mod; j++)
+ reg_state[ modified[j] ] &= ~(REGSTATE_CC_MASK
+ | REGSTATE_IF_EITHER
+ | REGSTATE_MODIFIED);
+
+ num_mod = 0;
+ }
+ else
+ CLEAR_VLIW_START (insn);
+
+ /* Record which registers are modified. */
+ frv_registers_update (PATTERN (insn), reg_state, modified, &num_mod, 0);
+
+ /* Process the death notices */
+ for (link = REG_NOTES (insn);
+ link != NULL_RTX;
+ link = XEXP (link, 1))
+ {
+ rtx reg = XEXP (link, 0);
+
+ if (REG_NOTE_KIND (link) == REG_DEAD && GET_CODE (reg) == REG)
+ {
+ int regno = REGNO (reg);
+ int n = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
+ for (; regno < n; regno++)
+ reg_state[regno] &= ~REGSTATE_LIVE;
+ }
+ }
+ }
+
+ free ((PTR) frv_state);
+ dfa_finish ();
+ return;
+}
+
+
+#define def_builtin(name, type, code) \
+ builtin_function ((name), (type), (code), BUILT_IN_MD, NULL, NULL)
+
+struct builtin_description
+{
+ enum insn_code icode;
+ const char *name;
+ enum frv_builtins code;
+ enum rtx_code comparison;
+ unsigned int flag;
+};
+
+/* Media intrinsics that take a single, constant argument. */
+
+static struct builtin_description bdesc_set[] =
+{
+ { CODE_FOR_mhdsets, "__MHDSETS", FRV_BUILTIN_MHDSETS, 0, 0 }
+};
+
+/* Media intrinsics that take just one argument. */
+
+static struct builtin_description bdesc_1arg[] =
+{
+ { CODE_FOR_mnot, "__MNOT", FRV_BUILTIN_MNOT, 0, 0 },
+ { CODE_FOR_munpackh, "__MUNPACKH", FRV_BUILTIN_MUNPACKH, 0, 0 },
+ { CODE_FOR_mbtoh, "__MBTOH", FRV_BUILTIN_MBTOH, 0, 0 },
+ { CODE_FOR_mhtob, "__MHTOB", FRV_BUILTIN_MHTOB, 0, 0 },
+ { CODE_FOR_mabshs, "__MABSHS", FRV_BUILTIN_MABSHS, 0, 0 }
+};
+
+/* Media intrinsics that take two arguments. */
+
+static struct builtin_description bdesc_2arg[] =
+{
+ { CODE_FOR_mand, "__MAND", FRV_BUILTIN_MAND, 0, 0 },
+ { CODE_FOR_mor, "__MOR", FRV_BUILTIN_MOR, 0, 0 },
+ { CODE_FOR_mxor, "__MXOR", FRV_BUILTIN_MXOR, 0, 0 },
+ { CODE_FOR_maveh, "__MAVEH", FRV_BUILTIN_MAVEH, 0, 0 },
+ { CODE_FOR_msaths, "__MSATHS", FRV_BUILTIN_MSATHS, 0, 0 },
+ { CODE_FOR_msathu, "__MSATHU", FRV_BUILTIN_MSATHU, 0, 0 },
+ { CODE_FOR_maddhss, "__MADDHSS", FRV_BUILTIN_MADDHSS, 0, 0 },
+ { CODE_FOR_maddhus, "__MADDHUS", FRV_BUILTIN_MADDHUS, 0, 0 },
+ { CODE_FOR_msubhss, "__MSUBHSS", FRV_BUILTIN_MSUBHSS, 0, 0 },
+ { CODE_FOR_msubhus, "__MSUBHUS", FRV_BUILTIN_MSUBHUS, 0, 0 },
+ { CODE_FOR_mqaddhss, "__MQADDHSS", FRV_BUILTIN_MQADDHSS, 0, 0 },
+ { CODE_FOR_mqaddhus, "__MQADDHUS", FRV_BUILTIN_MQADDHUS, 0, 0 },
+ { CODE_FOR_mqsubhss, "__MQSUBHSS", FRV_BUILTIN_MQSUBHSS, 0, 0 },
+ { CODE_FOR_mqsubhus, "__MQSUBHUS", FRV_BUILTIN_MQSUBHUS, 0, 0 },
+ { CODE_FOR_mpackh, "__MPACKH", FRV_BUILTIN_MPACKH, 0, 0 },
+ { CODE_FOR_mdpackh, "__MDPACKH", FRV_BUILTIN_MDPACKH, 0, 0 },
+ { CODE_FOR_mcop1, "__Mcop1", FRV_BUILTIN_MCOP1, 0, 0 },
+ { CODE_FOR_mcop2, "__Mcop2", FRV_BUILTIN_MCOP2, 0, 0 },
+ { CODE_FOR_mwcut, "__MWCUT", FRV_BUILTIN_MWCUT, 0, 0 },
+ { CODE_FOR_mqsaths, "__MQSATHS", FRV_BUILTIN_MQSATHS, 0, 0 }
+};
+
+/* Media intrinsics that take two arguments, the first being an ACC number. */
+
+static struct builtin_description bdesc_cut[] =
+{
+ { CODE_FOR_mcut, "__MCUT", FRV_BUILTIN_MCUT, 0, 0 },
+ { CODE_FOR_mcutss, "__MCUTSS", FRV_BUILTIN_MCUTSS, 0, 0 },
+ { CODE_FOR_mdcutssi, "__MDCUTSSI", FRV_BUILTIN_MDCUTSSI, 0, 0 }
+};
+
+/* Two-argument media intrinsics with an immediate second argument. */
+
+static struct builtin_description bdesc_2argimm[] =
+{
+ { CODE_FOR_mrotli, "__MROTLI", FRV_BUILTIN_MROTLI, 0, 0 },
+ { CODE_FOR_mrotri, "__MROTRI", FRV_BUILTIN_MROTRI, 0, 0 },
+ { CODE_FOR_msllhi, "__MSLLHI", FRV_BUILTIN_MSLLHI, 0, 0 },
+ { CODE_FOR_msrlhi, "__MSRLHI", FRV_BUILTIN_MSRLHI, 0, 0 },
+ { CODE_FOR_msrahi, "__MSRAHI", FRV_BUILTIN_MSRAHI, 0, 0 },
+ { CODE_FOR_mexpdhw, "__MEXPDHW", FRV_BUILTIN_MEXPDHW, 0, 0 },
+ { CODE_FOR_mexpdhd, "__MEXPDHD", FRV_BUILTIN_MEXPDHD, 0, 0 },
+ { CODE_FOR_mdrotli, "__MDROTLI", FRV_BUILTIN_MDROTLI, 0, 0 },
+ { CODE_FOR_mcplhi, "__MCPLHI", FRV_BUILTIN_MCPLHI, 0, 0 },
+ { CODE_FOR_mcpli, "__MCPLI", FRV_BUILTIN_MCPLI, 0, 0 },
+ { CODE_FOR_mhsetlos, "__MHSETLOS", FRV_BUILTIN_MHSETLOS, 0, 0 },
+ { CODE_FOR_mhsetloh, "__MHSETLOH", FRV_BUILTIN_MHSETLOH, 0, 0 },
+ { CODE_FOR_mhsethis, "__MHSETHIS", FRV_BUILTIN_MHSETHIS, 0, 0 },
+ { CODE_FOR_mhsethih, "__MHSETHIH", FRV_BUILTIN_MHSETHIH, 0, 0 },
+ { CODE_FOR_mhdseth, "__MHDSETH", FRV_BUILTIN_MHDSETH, 0, 0 }
+};
+
+/* Media intrinsics that take two arguments and return void, the first argument
+ being a pointer to 4 words in memory. */
+
+static struct builtin_description bdesc_void2arg[] =
+{
+ { CODE_FOR_mdunpackh, "__MDUNPACKH", FRV_BUILTIN_MDUNPACKH, 0, 0 },
+ { CODE_FOR_mbtohe, "__MBTOHE", FRV_BUILTIN_MBTOHE, 0, 0 },
+};
+
+/* Media intrinsics that take three arguments, the first being a const_int that
+ denotes an accumulator, and that return void. */
+
+static struct builtin_description bdesc_void3arg[] =
+{
+ { CODE_FOR_mcpxrs, "__MCPXRS", FRV_BUILTIN_MCPXRS, 0, 0 },
+ { CODE_FOR_mcpxru, "__MCPXRU", FRV_BUILTIN_MCPXRU, 0, 0 },
+ { CODE_FOR_mcpxis, "__MCPXIS", FRV_BUILTIN_MCPXIS, 0, 0 },
+ { CODE_FOR_mcpxiu, "__MCPXIU", FRV_BUILTIN_MCPXIU, 0, 0 },
+ { CODE_FOR_mmulhs, "__MMULHS", FRV_BUILTIN_MMULHS, 0, 0 },
+ { CODE_FOR_mmulhu, "__MMULHU", FRV_BUILTIN_MMULHU, 0, 0 },
+ { CODE_FOR_mmulxhs, "__MMULXHS", FRV_BUILTIN_MMULXHS, 0, 0 },
+ { CODE_FOR_mmulxhu, "__MMULXHU", FRV_BUILTIN_MMULXHU, 0, 0 },
+ { CODE_FOR_mmachs, "__MMACHS", FRV_BUILTIN_MMACHS, 0, 0 },
+ { CODE_FOR_mmachu, "__MMACHU", FRV_BUILTIN_MMACHU, 0, 0 },
+ { CODE_FOR_mmrdhs, "__MMRDHS", FRV_BUILTIN_MMRDHS, 0, 0 },
+ { CODE_FOR_mmrdhu, "__MMRDHU", FRV_BUILTIN_MMRDHU, 0, 0 },
+ { CODE_FOR_mqcpxrs, "__MQCPXRS", FRV_BUILTIN_MQCPXRS, 0, 0 },
+ { CODE_FOR_mqcpxru, "__MQCPXRU", FRV_BUILTIN_MQCPXRU, 0, 0 },
+ { CODE_FOR_mqcpxis, "__MQCPXIS", FRV_BUILTIN_MQCPXIS, 0, 0 },
+ { CODE_FOR_mqcpxiu, "__MQCPXIU", FRV_BUILTIN_MQCPXIU, 0, 0 },
+ { CODE_FOR_mqmulhs, "__MQMULHS", FRV_BUILTIN_MQMULHS, 0, 0 },
+ { CODE_FOR_mqmulhu, "__MQMULHU", FRV_BUILTIN_MQMULHU, 0, 0 },
+ { CODE_FOR_mqmulxhs, "__MQMULXHS", FRV_BUILTIN_MQMULXHS, 0, 0 },
+ { CODE_FOR_mqmulxhu, "__MQMULXHU", FRV_BUILTIN_MQMULXHU, 0, 0 },
+ { CODE_FOR_mqmachs, "__MQMACHS", FRV_BUILTIN_MQMACHS, 0, 0 },
+ { CODE_FOR_mqmachu, "__MQMACHU", FRV_BUILTIN_MQMACHU, 0, 0 },
+ { CODE_FOR_mqxmachs, "__MQXMACHS", FRV_BUILTIN_MQXMACHS, 0, 0 },
+ { CODE_FOR_mqxmacxhs, "__MQXMACXHS", FRV_BUILTIN_MQXMACXHS, 0, 0 },
+ { CODE_FOR_mqmacxhs, "__MQMACXHS", FRV_BUILTIN_MQMACXHS, 0, 0 }
+};
+
+/* Media intrinsics that take two accumulator numbers as argument and
+ return void. */
+
+static struct builtin_description bdesc_voidacc[] =
+{
+ { CODE_FOR_maddaccs, "__MADDACCS", FRV_BUILTIN_MADDACCS, 0, 0 },
+ { CODE_FOR_msubaccs, "__MSUBACCS", FRV_BUILTIN_MSUBACCS, 0, 0 },
+ { CODE_FOR_masaccs, "__MASACCS", FRV_BUILTIN_MASACCS, 0, 0 },
+ { CODE_FOR_mdaddaccs, "__MDADDACCS", FRV_BUILTIN_MDADDACCS, 0, 0 },
+ { CODE_FOR_mdsubaccs, "__MDSUBACCS", FRV_BUILTIN_MDSUBACCS, 0, 0 },
+ { CODE_FOR_mdasaccs, "__MDASACCS", FRV_BUILTIN_MDASACCS, 0, 0 }
+};
+
+/* Initialize media builtins. */
+
+static void
+frv_init_builtins ()
+{
+ tree endlink = void_list_node;
+ tree accumulator = integer_type_node;
+ tree integer = integer_type_node;
+ tree voidt = void_type_node;
+ tree uhalf = short_unsigned_type_node;
+ tree sword1 = long_integer_type_node;
+ tree uword1 = long_unsigned_type_node;
+ tree sword2 = long_long_integer_type_node;
+ tree uword2 = long_long_unsigned_type_node;
+ tree uword4 = build_pointer_type (uword1);
+
+#define UNARY(RET, T1) \
+ build_function_type (RET, tree_cons (NULL_TREE, T1, endlink))
+
+#define BINARY(RET, T1, T2) \
+ build_function_type (RET, tree_cons (NULL_TREE, T1, \
+ tree_cons (NULL_TREE, T2, endlink)))
+
+#define TRINARY(RET, T1, T2, T3) \
+ build_function_type (RET, tree_cons (NULL_TREE, T1, \
+ tree_cons (NULL_TREE, T2, \
+ tree_cons (NULL_TREE, T3, endlink))))
+
+ tree void_ftype_void = build_function_type (voidt, endlink);
+
+ tree void_ftype_acc = UNARY (voidt, accumulator);
+ tree void_ftype_uw4_uw1 = BINARY (voidt, uword4, uword1);
+ tree void_ftype_uw4_uw2 = BINARY (voidt, uword4, uword2);
+ tree void_ftype_acc_uw1 = BINARY (voidt, accumulator, uword1);
+ tree void_ftype_acc_acc = BINARY (voidt, accumulator, accumulator);
+ tree void_ftype_acc_uw1_uw1 = TRINARY (voidt, accumulator, uword1, uword1);
+ tree void_ftype_acc_sw1_sw1 = TRINARY (voidt, accumulator, sword1, sword1);
+ tree void_ftype_acc_uw2_uw2 = TRINARY (voidt, accumulator, uword2, uword2);
+ tree void_ftype_acc_sw2_sw2 = TRINARY (voidt, accumulator, sword2, sword2);
+
+ tree uw1_ftype_uw1 = UNARY (uword1, uword1);
+ tree uw1_ftype_sw1 = UNARY (uword1, sword1);
+ tree uw1_ftype_uw2 = UNARY (uword1, uword2);
+ tree uw1_ftype_acc = UNARY (uword1, accumulator);
+ tree uw1_ftype_uh_uh = BINARY (uword1, uhalf, uhalf);
+ tree uw1_ftype_uw1_uw1 = BINARY (uword1, uword1, uword1);
+ tree uw1_ftype_uw1_int = BINARY (uword1, uword1, integer);
+ tree uw1_ftype_acc_uw1 = BINARY (uword1, accumulator, uword1);
+ tree uw1_ftype_acc_sw1 = BINARY (uword1, accumulator, sword1);
+ tree uw1_ftype_uw2_uw1 = BINARY (uword1, uword2, uword1);
+ tree uw1_ftype_uw2_int = BINARY (uword1, uword2, integer);
+
+ tree sw1_ftype_int = UNARY (sword1, integer);
+ tree sw1_ftype_sw1_sw1 = BINARY (sword1, sword1, sword1);
+ tree sw1_ftype_sw1_int = BINARY (sword1, sword1, integer);
+
+ tree uw2_ftype_uw1 = UNARY (uword2, uword1);
+ tree uw2_ftype_uw1_int = BINARY (uword2, uword1, integer);
+ tree uw2_ftype_uw2_uw2 = BINARY (uword2, uword2, uword2);
+ tree uw2_ftype_uw2_int = BINARY (uword2, uword2, integer);
+ tree uw2_ftype_acc_int = BINARY (uword2, accumulator, integer);
+
+ tree sw2_ftype_sw2_sw2 = BINARY (sword2, sword2, sword2);
+
+ def_builtin ("__MAND", uw1_ftype_uw1_uw1, FRV_BUILTIN_MAND);
+ def_builtin ("__MOR", uw1_ftype_uw1_uw1, FRV_BUILTIN_MOR);
+ def_builtin ("__MXOR", uw1_ftype_uw1_uw1, FRV_BUILTIN_MXOR);
+ def_builtin ("__MNOT", uw1_ftype_uw1, FRV_BUILTIN_MNOT);
+ def_builtin ("__MROTLI", uw1_ftype_uw1_int, FRV_BUILTIN_MROTLI);
+ def_builtin ("__MROTRI", uw1_ftype_uw1_int, FRV_BUILTIN_MROTRI);
+ def_builtin ("__MWCUT", uw1_ftype_uw2_uw1, FRV_BUILTIN_MWCUT);
+ def_builtin ("__MAVEH", uw1_ftype_uw1_uw1, FRV_BUILTIN_MAVEH);
+ def_builtin ("__MSLLHI", uw1_ftype_uw1_int, FRV_BUILTIN_MSLLHI);
+ def_builtin ("__MSRLHI", uw1_ftype_uw1_int, FRV_BUILTIN_MSRLHI);
+ def_builtin ("__MSRAHI", sw1_ftype_sw1_int, FRV_BUILTIN_MSRAHI);
+ def_builtin ("__MSATHS", sw1_ftype_sw1_sw1, FRV_BUILTIN_MSATHS);
+ def_builtin ("__MSATHU", uw1_ftype_uw1_uw1, FRV_BUILTIN_MSATHU);
+ def_builtin ("__MADDHSS", sw1_ftype_sw1_sw1, FRV_BUILTIN_MADDHSS);
+ def_builtin ("__MADDHUS", uw1_ftype_uw1_uw1, FRV_BUILTIN_MADDHUS);
+ def_builtin ("__MSUBHSS", sw1_ftype_sw1_sw1, FRV_BUILTIN_MSUBHSS);
+ def_builtin ("__MSUBHUS", uw1_ftype_uw1_uw1, FRV_BUILTIN_MSUBHUS);
+ def_builtin ("__MMULHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMULHS);
+ def_builtin ("__MMULHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMULHU);
+ def_builtin ("__MMULXHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMULXHS);
+ def_builtin ("__MMULXHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMULXHU);
+ def_builtin ("__MMACHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMACHS);
+ def_builtin ("__MMACHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMACHU);
+ def_builtin ("__MMRDHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMRDHS);
+ def_builtin ("__MMRDHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMRDHU);
+ def_builtin ("__MQADDHSS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQADDHSS);
+ def_builtin ("__MQADDHUS", uw2_ftype_uw2_uw2, FRV_BUILTIN_MQADDHUS);
+ def_builtin ("__MQSUBHSS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQSUBHSS);
+ def_builtin ("__MQSUBHUS", uw2_ftype_uw2_uw2, FRV_BUILTIN_MQSUBHUS);
+ def_builtin ("__MQMULHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMULHS);
+ def_builtin ("__MQMULHU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQMULHU);
+ def_builtin ("__MQMULXHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMULXHS);
+ def_builtin ("__MQMULXHU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQMULXHU);
+ def_builtin ("__MQMACHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMACHS);
+ def_builtin ("__MQMACHU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQMACHU);
+ def_builtin ("__MCPXRS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MCPXRS);
+ def_builtin ("__MCPXRU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MCPXRU);
+ def_builtin ("__MCPXIS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MCPXIS);
+ def_builtin ("__MCPXIU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MCPXIU);
+ def_builtin ("__MQCPXRS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQCPXRS);
+ def_builtin ("__MQCPXRU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQCPXRU);
+ def_builtin ("__MQCPXIS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQCPXIS);
+ def_builtin ("__MQCPXIU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQCPXIU);
+ def_builtin ("__MCUT", uw1_ftype_acc_uw1, FRV_BUILTIN_MCUT);
+ def_builtin ("__MCUTSS", uw1_ftype_acc_sw1, FRV_BUILTIN_MCUTSS);
+ def_builtin ("__MEXPDHW", uw1_ftype_uw1_int, FRV_BUILTIN_MEXPDHW);
+ def_builtin ("__MEXPDHD", uw2_ftype_uw1_int, FRV_BUILTIN_MEXPDHD);
+ def_builtin ("__MPACKH", uw1_ftype_uh_uh, FRV_BUILTIN_MPACKH);
+ def_builtin ("__MUNPACKH", uw2_ftype_uw1, FRV_BUILTIN_MUNPACKH);
+ def_builtin ("__MDPACKH", uw2_ftype_uw2_uw2, FRV_BUILTIN_MDPACKH);
+ def_builtin ("__MDUNPACKH", void_ftype_uw4_uw2, FRV_BUILTIN_MDUNPACKH);
+ def_builtin ("__MBTOH", uw2_ftype_uw1, FRV_BUILTIN_MBTOH);
+ def_builtin ("__MHTOB", uw1_ftype_uw2, FRV_BUILTIN_MHTOB);
+ def_builtin ("__MBTOHE", void_ftype_uw4_uw1, FRV_BUILTIN_MBTOHE);
+ def_builtin ("__MCLRACC", void_ftype_acc, FRV_BUILTIN_MCLRACC);
+ def_builtin ("__MCLRACCA", void_ftype_void, FRV_BUILTIN_MCLRACCA);
+ def_builtin ("__MRDACC", uw1_ftype_acc, FRV_BUILTIN_MRDACC);
+ def_builtin ("__MRDACCG", uw1_ftype_acc, FRV_BUILTIN_MRDACCG);
+ def_builtin ("__MWTACC", void_ftype_acc_uw1, FRV_BUILTIN_MWTACC);
+ def_builtin ("__MWTACCG", void_ftype_acc_uw1, FRV_BUILTIN_MWTACCG);
+ def_builtin ("__Mcop1", uw1_ftype_uw1_uw1, FRV_BUILTIN_MCOP1);
+ def_builtin ("__Mcop2", uw1_ftype_uw1_uw1, FRV_BUILTIN_MCOP2);
+ def_builtin ("__MTRAP", void_ftype_void, FRV_BUILTIN_MTRAP);
+ def_builtin ("__MQXMACHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQXMACHS);
+ def_builtin ("__MQXMACXHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQXMACXHS);
+ def_builtin ("__MQMACXHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMACXHS);
+ def_builtin ("__MADDACCS", void_ftype_acc_acc, FRV_BUILTIN_MADDACCS);
+ def_builtin ("__MSUBACCS", void_ftype_acc_acc, FRV_BUILTIN_MSUBACCS);
+ def_builtin ("__MASACCS", void_ftype_acc_acc, FRV_BUILTIN_MASACCS);
+ def_builtin ("__MDADDACCS", void_ftype_acc_acc, FRV_BUILTIN_MDADDACCS);
+ def_builtin ("__MDSUBACCS", void_ftype_acc_acc, FRV_BUILTIN_MDSUBACCS);
+ def_builtin ("__MDASACCS", void_ftype_acc_acc, FRV_BUILTIN_MDASACCS);
+ def_builtin ("__MABSHS", uw1_ftype_sw1, FRV_BUILTIN_MABSHS);
+ def_builtin ("__MDROTLI", uw2_ftype_uw2_int, FRV_BUILTIN_MDROTLI);
+ def_builtin ("__MCPLHI", uw1_ftype_uw2_int, FRV_BUILTIN_MCPLHI);
+ def_builtin ("__MCPLI", uw1_ftype_uw2_int, FRV_BUILTIN_MCPLI);
+ def_builtin ("__MDCUTSSI", uw2_ftype_acc_int, FRV_BUILTIN_MDCUTSSI);
+ def_builtin ("__MQSATHS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQSATHS);
+ def_builtin ("__MHSETLOS", sw1_ftype_sw1_int, FRV_BUILTIN_MHSETLOS);
+ def_builtin ("__MHSETHIS", sw1_ftype_sw1_int, FRV_BUILTIN_MHSETHIS);
+ def_builtin ("__MHDSETS", sw1_ftype_int, FRV_BUILTIN_MHDSETS);
+ def_builtin ("__MHSETLOH", uw1_ftype_uw1_int, FRV_BUILTIN_MHSETLOH);
+ def_builtin ("__MHSETHIH", uw1_ftype_uw1_int, FRV_BUILTIN_MHSETHIH);
+ def_builtin ("__MHDSETH", uw1_ftype_uw1_int, FRV_BUILTIN_MHDSETH);
+
+#undef UNARY
+#undef BINARY
+#undef TRINARY
+}
+
+/* Convert an integer constant to an accumulator register. ICODE is the
+ code of the target instruction, OPNUM is the number of the
+ accumulator operand and OPVAL is the constant integer. Try both
+ ACC and ACCG registers; only report an error if neither fit the
+ instruction. */
+
+static rtx
+frv_int_to_acc (icode, opnum, opval)
+ enum insn_code icode;
+ int opnum;
+ rtx opval;
+{
+ rtx reg;
+
+ if (GET_CODE (opval) != CONST_INT)
+ {
+ error ("accumulator is not a constant integer");
+ return NULL_RTX;
+ }
+ if (! IN_RANGE_P (INTVAL (opval), 0, NUM_ACCS - 1))
+ {
+ error ("accumulator number is out of bounds");
+ return NULL_RTX;
+ }
+
+ reg = gen_rtx_REG (insn_data[icode].operand[opnum].mode,
+ ACC_FIRST + INTVAL (opval));
+ if (! (*insn_data[icode].operand[opnum].predicate) (reg, VOIDmode))
+ REGNO (reg) = ACCG_FIRST + INTVAL (opval);
+
+ if (! (*insn_data[icode].operand[opnum].predicate) (reg, VOIDmode))
+ {
+ error ("inappropriate accumulator for `%s'", insn_data[icode].name);
+ return NULL_RTX;
+ }
+ return reg;
+}
+
+/* If an ACC rtx has mode MODE, return the mode that the matching ACCG
+ should have. */
+
+static enum machine_mode
+frv_matching_accg_mode (mode)
+ enum machine_mode mode;
+{
+ switch (mode)
+ {
+ case V4SImode:
+ return V4QImode;
+
+ case DImode:
+ return HImode;
+
+ case SImode:
+ return QImode;
+
+ default:
+ abort ();
+ }
+}
+
+/* Return the accumulator guard that should be paired with accumulator
+ register ACC. The mode of the returned register is in the same
+ class as ACC, but is four times smaller. */
+
+rtx
+frv_matching_accg_for_acc (acc)
+ rtx acc;
+{
+ return gen_rtx_REG (frv_matching_accg_mode (GET_MODE (acc)),
+ REGNO (acc) - ACC_FIRST + ACCG_FIRST);
+}
+
+/* Read a value from the head of the tree list pointed to by ARGLISTPTR.
+ Return the value as an rtx and replace *ARGLISTPTR with the tail of the
+ list. */
+
+static rtx
+frv_read_argument (arglistptr)
+ tree *arglistptr;
+{
+ tree next = TREE_VALUE (*arglistptr);
+ *arglistptr = TREE_CHAIN (*arglistptr);
+ return expand_expr (next, NULL_RTX, VOIDmode, 0);
+}
+
+/* Return true if OPVAL can be used for operand OPNUM of instruction ICODE.
+ The instruction should require a constant operand of some sort. The
+ function prints an error if OPVAL is not valid. */
+
+static int
+frv_check_constant_argument (icode, opnum, opval)
+ enum insn_code icode;
+ int opnum;
+ rtx opval;
+{
+ if (GET_CODE (opval) != CONST_INT)
+ {
+ error ("`%s' expects a constant argument", insn_data[icode].name);
+ return FALSE;
+ }
+ if (! (*insn_data[icode].operand[opnum].predicate) (opval, VOIDmode))
+ {
+ error ("constant argument out of range for `%s'", insn_data[icode].name);
+ return FALSE;
+ }
+ return TRUE;
+}
+
+/* Return a legitimate rtx for instruction ICODE's return value. Use TARGET
+ if it's not null, has the right mode, and satisfies operand 0's
+ predicate. */
+
+static rtx
+frv_legitimize_target (icode, target)
+ enum insn_code icode;
+ rtx target;
+{
+ enum machine_mode mode = insn_data[icode].operand[0].mode;
+
+ if (! target
+ || GET_MODE (target) != mode
+ || ! (*insn_data[icode].operand[0].predicate) (target, mode))
+ return gen_reg_rtx (mode);
+ else
+ return target;
+}
+
+/* Given that ARG is being passed as operand OPNUM to instruction ICODE,
+ check whether ARG satisfies the operand's contraints. If it doesn't,
+ copy ARG to a temporary register and return that. Otherwise return ARG
+ itself. */
+
+static rtx
+frv_legitimize_argument (icode, opnum, arg)
+ enum insn_code icode;
+ int opnum;
+ rtx arg;
+{
+ enum machine_mode mode = insn_data[icode].operand[opnum].mode;
+
+ if ((*insn_data[icode].operand[opnum].predicate) (arg, mode))
+ return arg;
+ else
+ return copy_to_mode_reg (mode, arg);
+}
+
+/* Expand builtins that take a single, constant argument. At the moment,
+ only MHDSETS falls into this category. */
+
+static rtx
+frv_expand_set_builtin (icode, arglist, target)
+ enum insn_code icode;
+ tree arglist;
+ rtx target;
+{
+ rtx pat;
+ rtx op0 = frv_read_argument (&arglist);
+
+ if (! frv_check_constant_argument (icode, 1, op0))
+ return NULL_RTX;
+
+ target = frv_legitimize_target (icode, target);
+ pat = GEN_FCN (icode) (target, op0);
+ if (! pat)
+ return NULL_RTX;
+
+ emit_insn (pat);
+ return target;
+}
+
+/* Expand builtins that take one operand. */
+
+static rtx
+frv_expand_unop_builtin (icode, arglist, target)
+ enum insn_code icode;
+ tree arglist;
+ rtx target;
+{
+ rtx pat;
+ rtx op0 = frv_read_argument (&arglist);
+
+ target = frv_legitimize_target (icode, target);
+ op0 = frv_legitimize_argument (icode, 1, op0);
+ pat = GEN_FCN (icode) (target, op0);
+ if (! pat)
+ return NULL_RTX;
+
+ emit_insn (pat);
+ return target;
+}
+
+/* Expand builtins that take two operands. */
+
+static rtx
+frv_expand_binop_builtin (icode, arglist, target)
+ enum insn_code icode;
+ tree arglist;
+ rtx target;
+{
+ rtx pat;
+ rtx op0 = frv_read_argument (&arglist);
+ rtx op1 = frv_read_argument (&arglist);
+
+ target = frv_legitimize_target (icode, target);
+ op0 = frv_legitimize_argument (icode, 1, op0);
+ op1 = frv_legitimize_argument (icode, 2, op1);
+ pat = GEN_FCN (icode) (target, op0, op1);
+ if (! pat)
+ return NULL_RTX;
+
+ emit_insn (pat);
+ return target;
+}
+
+/* Expand cut-style builtins, which take two operands and an implicit ACCG
+ one. */
+
+static rtx
+frv_expand_cut_builtin (icode, arglist, target)
+ enum insn_code icode;
+ tree arglist;
+ rtx target;
+{
+ rtx pat;
+ rtx op0 = frv_read_argument (&arglist);
+ rtx op1 = frv_read_argument (&arglist);
+ rtx op2;
+
+ target = frv_legitimize_target (icode, target);
+ op0 = frv_int_to_acc (icode, 1, op0);
+ if (! op0)
+ return NULL_RTX;
+
+ if (icode == CODE_FOR_mdcutssi || GET_CODE (op1) == CONST_INT)
+ {
+ if (! frv_check_constant_argument (icode, 2, op1))
+ return NULL_RTX;
+ }
+ else
+ op1 = frv_legitimize_argument (icode, 2, op1);
+
+ op2 = frv_matching_accg_for_acc (op0);
+ pat = GEN_FCN (icode) (target, op0, op1, op2);
+ if (! pat)
+ return NULL_RTX;
+
+ emit_insn (pat);
+ return target;
+}
+
+/* Expand builtins that take two operands and the second is immediate. */
+
+static rtx
+frv_expand_binopimm_builtin (icode, arglist, target)
+ enum insn_code icode;
+ tree arglist;
+ rtx target;
+{
+ rtx pat;
+ rtx op0 = frv_read_argument (&arglist);
+ rtx op1 = frv_read_argument (&arglist);
+
+ if (! frv_check_constant_argument (icode, 2, op1))
+ return NULL_RTX;
+
+ target = frv_legitimize_target (icode, target);
+ op0 = frv_legitimize_argument (icode, 1, op0);
+ pat = GEN_FCN (icode) (target, op0, op1);
+ if (! pat)
+ return NULL_RTX;
+
+ emit_insn (pat);
+ return target;
+}
+
+/* Expand builtins that take two operands, the first operand being a pointer to
+ ints and return void. */
+
+static rtx
+frv_expand_voidbinop_builtin (icode, arglist)
+ enum insn_code icode;
+ tree arglist;
+{
+ rtx pat;
+ rtx op0 = frv_read_argument (&arglist);
+ rtx op1 = frv_read_argument (&arglist);
+ enum machine_mode mode0 = insn_data[icode].operand[0].mode;
+ rtx addr;
+
+ if (GET_CODE (op0) != MEM)
+ {
+ rtx reg = op0;
+
+ if (! offsettable_address_p (0, mode0, op0))
+ {
+ reg = gen_reg_rtx (Pmode);
+ emit_insn (gen_rtx_SET (VOIDmode, reg, op0));
+ }
+
+ op0 = gen_rtx_MEM (SImode, reg);
+ }
+
+ addr = XEXP (op0, 0);
+ if (! offsettable_address_p (0, mode0, addr))
+ addr = copy_to_mode_reg (Pmode, op0);
+
+ op0 = change_address (op0, V4SImode, addr);
+ op1 = frv_legitimize_argument (icode, 1, op1);
+ pat = GEN_FCN (icode) (op0, op1);
+ if (! pat)
+ return 0;
+
+ emit_insn (pat);
+ return 0;
+}
+
+/* Expand builtins that take three operands and return void. The first
+ argument must be a constant that describes a pair or quad accumulators. A
+ fourth argument is created that is the accumulator guard register that
+ corresponds to the accumulator. */
+
+static rtx
+frv_expand_voidtriop_builtin (icode, arglist)
+ enum insn_code icode;
+ tree arglist;
+{
+ rtx pat;
+ rtx op0 = frv_read_argument (&arglist);
+ rtx op1 = frv_read_argument (&arglist);
+ rtx op2 = frv_read_argument (&arglist);
+ rtx op3;
+
+ op0 = frv_int_to_acc (icode, 0, op0);
+ if (! op0)
+ return NULL_RTX;
+
+ op1 = frv_legitimize_argument (icode, 1, op1);
+ op2 = frv_legitimize_argument (icode, 2, op2);
+ op3 = frv_matching_accg_for_acc (op0);
+ pat = GEN_FCN (icode) (op0, op1, op2, op3);
+ if (! pat)
+ return NULL_RTX;
+
+ emit_insn (pat);
+ return NULL_RTX;
+}
+
+/* Expand builtins that perform accumulator-to-accumulator operations.
+ These builtins take two accumulator numbers as argument and return
+ void. */
+
+static rtx
+frv_expand_voidaccop_builtin (icode, arglist)
+ enum insn_code icode;
+ tree arglist;
+{
+ rtx pat;
+ rtx op0 = frv_read_argument (&arglist);
+ rtx op1 = frv_read_argument (&arglist);
+ rtx op2;
+ rtx op3;
+
+ op0 = frv_int_to_acc (icode, 0, op0);
+ if (! op0)
+ return NULL_RTX;
+
+ op1 = frv_int_to_acc (icode, 1, op1);
+ if (! op1)
+ return NULL_RTX;
+
+ op2 = frv_matching_accg_for_acc (op0);
+ op3 = frv_matching_accg_for_acc (op1);
+ pat = GEN_FCN (icode) (op0, op1, op2, op3);
+ if (! pat)
+ return NULL_RTX;
+
+ emit_insn (pat);
+ return NULL_RTX;
+}
+
+/* Expand the MCLRACC builtin. This builtin takes a single accumulator
+ number as argument. */
+
+static rtx
+frv_expand_mclracc_builtin (arglist)
+ tree arglist;
+{
+ enum insn_code icode = CODE_FOR_mclracc;
+ rtx pat;
+ rtx op0 = frv_read_argument (&arglist);
+
+ op0 = frv_int_to_acc (icode, 0, op0);
+ if (! op0)
+ return NULL_RTX;
+
+ pat = GEN_FCN (icode) (op0);
+ if (pat)
+ emit_insn (pat);
+
+ return NULL_RTX;
+}
+
+/* Expand builtins that take no arguments. */
+
+static rtx
+frv_expand_noargs_builtin (icode)
+ enum insn_code icode;
+{
+ rtx pat = GEN_FCN (icode) (GEN_INT (0));
+ if (pat)
+ emit_insn (pat);
+
+ return NULL_RTX;
+}
+
+/* Expand MRDACC and MRDACCG. These builtins take a single accumulator
+ number or accumulator guard number as argument and return an SI integer. */
+
+static rtx
+frv_expand_mrdacc_builtin (icode, arglist)
+ enum insn_code icode;
+ tree arglist;
+{
+ rtx pat;
+ rtx target = gen_reg_rtx (SImode);
+ rtx op0 = frv_read_argument (&arglist);
+
+ op0 = frv_int_to_acc (icode, 1, op0);
+ if (! op0)
+ return NULL_RTX;
+
+ pat = GEN_FCN (icode) (target, op0);
+ if (! pat)
+ return NULL_RTX;
+
+ emit_insn (pat);
+ return target;
+}
+
+/* Expand MWTACC and MWTACCG. These builtins take an accumulator or
+ accumulator guard as their first argument and an SImode value as their
+ second. */
+
+static rtx
+frv_expand_mwtacc_builtin (icode, arglist)
+ enum insn_code icode;
+ tree arglist;
+{
+ rtx pat;
+ rtx op0 = frv_read_argument (&arglist);
+ rtx op1 = frv_read_argument (&arglist);
+
+ op0 = frv_int_to_acc (icode, 0, op0);
+ if (! op0)
+ return NULL_RTX;
+
+ op1 = frv_legitimize_argument (icode, 1, op1);
+ pat = GEN_FCN (icode) (op0, op1);
+ if (pat)
+ emit_insn (pat);
+
+ return NULL_RTX;
+}
+
+/* Expand builtins. */
+
+static rtx
+frv_expand_builtin (exp, target, subtarget, mode, ignore)
+ tree exp;
+ rtx target;
+ rtx subtarget ATTRIBUTE_UNUSED;
+ enum machine_mode mode ATTRIBUTE_UNUSED;
+ int ignore ATTRIBUTE_UNUSED;
+{
+ tree arglist = TREE_OPERAND (exp, 1);
+ tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
+ unsigned fcode = (unsigned)DECL_FUNCTION_CODE (fndecl);
+ unsigned i;
+ struct builtin_description *d;
+
+ if (! TARGET_MEDIA)
+ {
+ error ("media functions are not available unless -mmedia is used");
+ return NULL_RTX;
+ }
+
+ switch (fcode)
+ {
+ case FRV_BUILTIN_MCOP1:
+ case FRV_BUILTIN_MCOP2:
+ case FRV_BUILTIN_MDUNPACKH:
+ case FRV_BUILTIN_MBTOHE:
+ if (! TARGET_MEDIA_REV1)
+ {
+ error ("this media function is only available on the fr500");
+ return NULL_RTX;
+ }
+ break;
+
+ case FRV_BUILTIN_MQXMACHS:
+ case FRV_BUILTIN_MQXMACXHS:
+ case FRV_BUILTIN_MQMACXHS:
+ case FRV_BUILTIN_MADDACCS:
+ case FRV_BUILTIN_MSUBACCS:
+ case FRV_BUILTIN_MASACCS:
+ case FRV_BUILTIN_MDADDACCS:
+ case FRV_BUILTIN_MDSUBACCS:
+ case FRV_BUILTIN_MDASACCS:
+ case FRV_BUILTIN_MABSHS:
+ case FRV_BUILTIN_MDROTLI:
+ case FRV_BUILTIN_MCPLHI:
+ case FRV_BUILTIN_MCPLI:
+ case FRV_BUILTIN_MDCUTSSI:
+ case FRV_BUILTIN_MQSATHS:
+ case FRV_BUILTIN_MHSETLOS:
+ case FRV_BUILTIN_MHSETLOH:
+ case FRV_BUILTIN_MHSETHIS:
+ case FRV_BUILTIN_MHSETHIH:
+ case FRV_BUILTIN_MHDSETS:
+ case FRV_BUILTIN_MHDSETH:
+ if (! TARGET_MEDIA_REV2)
+ {
+ error ("this media function is only available on the fr400");
+ return NULL_RTX;
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ /* Expand unique builtins. */
+
+ switch (fcode)
+ {
+ case FRV_BUILTIN_MTRAP:
+ return frv_expand_noargs_builtin (CODE_FOR_mtrap);
+
+ case FRV_BUILTIN_MCLRACC:
+ return frv_expand_mclracc_builtin (arglist);
+
+ case FRV_BUILTIN_MCLRACCA:
+ if (TARGET_ACC_8)
+ return frv_expand_noargs_builtin (CODE_FOR_mclracca8);
+ else
+ return frv_expand_noargs_builtin (CODE_FOR_mclracca4);
+
+ case FRV_BUILTIN_MRDACC:
+ return frv_expand_mrdacc_builtin (CODE_FOR_mrdacc, arglist);
+
+ case FRV_BUILTIN_MRDACCG:
+ return frv_expand_mrdacc_builtin (CODE_FOR_mrdaccg, arglist);
+
+ case FRV_BUILTIN_MWTACC:
+ return frv_expand_mwtacc_builtin (CODE_FOR_mwtacc, arglist);
+
+ case FRV_BUILTIN_MWTACCG:
+ return frv_expand_mwtacc_builtin (CODE_FOR_mwtaccg, arglist);
+
+ default:
+ break;
+ }
+
+ /* Expand groups of builtins. */
+
+ for (i = 0, d = bdesc_set; i < sizeof (bdesc_set) / sizeof *d; i++, d++)
+ if (d->code == fcode)
+ return frv_expand_set_builtin (d->icode, arglist, target);
+
+ for (i = 0, d = bdesc_1arg; i < sizeof (bdesc_1arg) / sizeof *d; i++, d++)
+ if (d->code == fcode)
+ return frv_expand_unop_builtin (d->icode, arglist, target);
+
+ for (i = 0, d = bdesc_2arg; i < sizeof (bdesc_2arg) / sizeof *d; i++, d++)
+ if (d->code == fcode)
+ return frv_expand_binop_builtin (d->icode, arglist, target);
+
+ for (i = 0, d = bdesc_cut; i < sizeof (bdesc_cut) / sizeof *d; i++, d++)
+ if (d->code == fcode)
+ return frv_expand_cut_builtin (d->icode, arglist, target);
+
+ for (i = 0, d = bdesc_2argimm;
+ i < sizeof (bdesc_2argimm) / sizeof *d;
+ i++, d++)
+ {
+ if (d->code == fcode)
+ return frv_expand_binopimm_builtin (d->icode, arglist, target);
+ }
+
+ for (i = 0, d = bdesc_void2arg;
+ i < sizeof (bdesc_void2arg) / sizeof *d;
+ i++, d++)
+ {
+ if (d->code == fcode)
+ return frv_expand_voidbinop_builtin (d->icode, arglist);
+ }
+
+ for (i = 0, d = bdesc_void3arg;
+ i < sizeof (bdesc_void3arg) / sizeof *d;
+ i++, d++)
+ {
+ if (d->code == fcode)
+ return frv_expand_voidtriop_builtin (d->icode, arglist);
+ }
+
+ for (i = 0, d = bdesc_voidacc;
+ i < sizeof (bdesc_voidacc) / sizeof *d;
+ i++, d++)
+ {
+ if (d->code == fcode)
+ return frv_expand_voidaccop_builtin (d->icode, arglist);
+ }
+ return 0;
+}
+
+static const char *
+frv_strip_name_encoding (str)
+ const char *str;
+{
+ while (*str == '*' || *str == SDATA_FLAG_CHAR)
+ str++;
+ return str;
+}
+
+static bool
+frv_in_small_data_p (decl)
+ tree decl;
+{
+ HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
+
+ return symbol_ref_small_data_p (XEXP (DECL_RTL (decl), 0))
+ && size > 0 && size <= g_switch_value;
+}
OpenPOWER on IntegriCloud