diff options
Diffstat (limited to 'contrib/compiler-rt/lib/comparesf2.c')
-rw-r--r-- | contrib/compiler-rt/lib/comparesf2.c | 131 |
1 files changed, 131 insertions, 0 deletions
diff --git a/contrib/compiler-rt/lib/comparesf2.c b/contrib/compiler-rt/lib/comparesf2.c new file mode 100644 index 0000000..fd05724 --- /dev/null +++ b/contrib/compiler-rt/lib/comparesf2.c @@ -0,0 +1,131 @@ +//===-- lib/comparesf2.c - Single-precision comparisons -----------*- C -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the following soft-fp_t comparison routines: +// +// __eqsf2 __gesf2 __unordsf2 +// __lesf2 __gtsf2 +// __ltsf2 +// __nesf2 +// +// The semantics of the routines grouped in each column are identical, so there +// is a single implementation for each, and wrappers to provide the other names. +// +// The main routines behave as follows: +// +// __lesf2(a,b) returns -1 if a < b +// 0 if a == b +// 1 if a > b +// 1 if either a or b is NaN +// +// __gesf2(a,b) returns -1 if a < b +// 0 if a == b +// 1 if a > b +// -1 if either a or b is NaN +// +// __unordsf2(a,b) returns 0 if both a and b are numbers +// 1 if either a or b is NaN +// +// Note that __lesf2( ) and __gesf2( ) are identical except in their handling of +// NaN values. +// +//===----------------------------------------------------------------------===// + +#define SINGLE_PRECISION +#include "fp_lib.h" + +enum LE_RESULT { + LE_LESS = -1, + LE_EQUAL = 0, + LE_GREATER = 1, + LE_UNORDERED = 1 +}; + +enum LE_RESULT __lesf2(fp_t a, fp_t b) { + + const srep_t aInt = toRep(a); + const srep_t bInt = toRep(b); + const rep_t aAbs = aInt & absMask; + const rep_t bAbs = bInt & absMask; + + // If either a or b is NaN, they are unordered. + if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED; + + // If a and b are both zeros, they are equal. + if ((aAbs | bAbs) == 0) return LE_EQUAL; + + // If at least one of a and b is positive, we get the same result comparing + // a and b as signed integers as we would with a fp_ting-point compare. + if ((aInt & bInt) >= 0) { + if (aInt < bInt) return LE_LESS; + else if (aInt == bInt) return LE_EQUAL; + else return LE_GREATER; + } + + // Otherwise, both are negative, so we need to flip the sense of the + // comparison to get the correct result. (This assumes a twos- or ones- + // complement integer representation; if integers are represented in a + // sign-magnitude representation, then this flip is incorrect). + else { + if (aInt > bInt) return LE_LESS; + else if (aInt == bInt) return LE_EQUAL; + else return LE_GREATER; + } +} + +enum GE_RESULT { + GE_LESS = -1, + GE_EQUAL = 0, + GE_GREATER = 1, + GE_UNORDERED = -1 // Note: different from LE_UNORDERED +}; + +enum GE_RESULT __gesf2(fp_t a, fp_t b) { + + const srep_t aInt = toRep(a); + const srep_t bInt = toRep(b); + const rep_t aAbs = aInt & absMask; + const rep_t bAbs = bInt & absMask; + + if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED; + if ((aAbs | bAbs) == 0) return GE_EQUAL; + if ((aInt & bInt) >= 0) { + if (aInt < bInt) return GE_LESS; + else if (aInt == bInt) return GE_EQUAL; + else return GE_GREATER; + } else { + if (aInt > bInt) return GE_LESS; + else if (aInt == bInt) return GE_EQUAL; + else return GE_GREATER; + } +} + +int __unordsf2(fp_t a, fp_t b) { + const rep_t aAbs = toRep(a) & absMask; + const rep_t bAbs = toRep(b) & absMask; + return aAbs > infRep || bAbs > infRep; +} + +// The following are alternative names for the preceeding routines. + +enum LE_RESULT __eqsf2(fp_t a, fp_t b) { + return __lesf2(a, b); +} + +enum LE_RESULT __ltsf2(fp_t a, fp_t b) { + return __lesf2(a, b); +} + +enum LE_RESULT __nesf2(fp_t a, fp_t b) { + return __lesf2(a, b); +} + +enum GE_RESULT __gtsf2(fp_t a, fp_t b) { + return __gesf2(a, b); +} |