summaryrefslogtreecommitdiffstats
path: root/contrib/binutils/gas/config/tc-i386.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/binutils/gas/config/tc-i386.c')
-rw-r--r--contrib/binutils/gas/config/tc-i386.c3174
1 files changed, 3174 insertions, 0 deletions
diff --git a/contrib/binutils/gas/config/tc-i386.c b/contrib/binutils/gas/config/tc-i386.c
new file mode 100644
index 0000000..3981a2d
--- /dev/null
+++ b/contrib/binutils/gas/config/tc-i386.c
@@ -0,0 +1,3174 @@
+/* i386.c -- Assemble code for the Intel 80386
+ Copyright (C) 1989, 91, 92, 93, 94, 95, 96, 1997 Free Software Foundation.
+
+ This file is part of GAS, the GNU Assembler.
+
+ GAS is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2, or (at your option)
+ any later version.
+
+ GAS is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GAS; see the file COPYING. If not, write to the Free
+ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+ 02111-1307, USA. */
+
+/*
+ Intel 80386 machine specific gas.
+ Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
+ Bugs & suggestions are completely welcome. This is free software.
+ Please help us make it better.
+ */
+
+#include <ctype.h>
+
+#include "as.h"
+#include "subsegs.h"
+
+#include "obstack.h"
+#include "opcode/i386.h"
+
+#ifndef TC_RELOC
+#define TC_RELOC(X,Y) (Y)
+#endif
+
+static unsigned long mode_from_disp_size PARAMS ((unsigned long));
+static int fits_in_signed_byte PARAMS ((long));
+static int fits_in_unsigned_byte PARAMS ((long));
+static int fits_in_unsigned_word PARAMS ((long));
+static int fits_in_signed_word PARAMS ((long));
+static int smallest_imm_type PARAMS ((long));
+static void set_16bit_code_flag PARAMS ((int));
+#ifdef BFD_ASSEMBLER
+static bfd_reloc_code_real_type reloc
+ PARAMS ((int, int, bfd_reloc_code_real_type));
+#endif
+
+/* 'md_assemble ()' gathers together information and puts it into a
+ i386_insn. */
+
+struct _i386_insn
+ {
+ /* TM holds the template for the insn were currently assembling. */
+ template tm;
+ /* SUFFIX holds the opcode suffix (e.g. 'l' for 'movl') if given. */
+ char suffix;
+ /* Operands are coded with OPERANDS, TYPES, DISPS, IMMS, and REGS. */
+
+ /* OPERANDS gives the number of given operands. */
+ unsigned int operands;
+
+ /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
+ of given register, displacement, memory operands and immediate
+ operands. */
+ unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
+
+ /* TYPES [i] is the type (see above #defines) which tells us how to
+ search through DISPS [i] & IMMS [i] & REGS [i] for the required
+ operand. */
+ unsigned int types[MAX_OPERANDS];
+
+ /* Displacements (if given) for each operand. */
+ expressionS *disps[MAX_OPERANDS];
+
+ /* Relocation type for operand */
+#ifdef BFD_ASSEMBLER
+ enum bfd_reloc_code_real disp_reloc[MAX_OPERANDS];
+#else
+ int disp_reloc[MAX_OPERANDS];
+#endif
+
+ /* Immediate operands (if given) for each operand. */
+ expressionS *imms[MAX_OPERANDS];
+
+ /* Register operands (if given) for each operand. */
+ reg_entry *regs[MAX_OPERANDS];
+
+ /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
+ the base index byte below. */
+ reg_entry *base_reg;
+ reg_entry *index_reg;
+ unsigned int log2_scale_factor;
+
+ /* SEG gives the seg_entry of this insn. It is equal to zero unless
+ an explicit segment override is given. */
+ const seg_entry *seg; /* segment for memory operands (if given) */
+
+ /* PREFIX holds all the given prefix opcodes (usually null).
+ PREFIXES is the size of PREFIX. */
+ /* richfix: really unsigned? */
+ unsigned char prefix[MAX_PREFIXES];
+ unsigned int prefixes;
+
+ /* RM and IB are the modrm byte and the base index byte where the
+ addressing modes of this insn are encoded. */
+
+ modrm_byte rm;
+ base_index_byte bi;
+ };
+
+typedef struct _i386_insn i386_insn;
+
+/* This array holds the chars that always start a comment. If the
+ pre-processor is disabled, these aren't very useful */
+#if defined (TE_I386AIX) || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
+const char comment_chars[] = "#/";
+#else
+const char comment_chars[] = "#";
+#endif
+
+/* This array holds the chars that only start a comment at the beginning of
+ a line. If the line seems to have the form '# 123 filename'
+ .line and .file directives will appear in the pre-processed output */
+/* Note that input_file.c hand checks for '#' at the beginning of the
+ first line of the input file. This is because the compiler outputs
+ #NO_APP at the beginning of its output. */
+/* Also note that comments started like this one will always work if
+ '/' isn't otherwise defined. */
+#if defined (TE_I386AIX) || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
+const char line_comment_chars[] = "";
+#else
+const char line_comment_chars[] = "/";
+#endif
+const char line_separator_chars[] = "";
+
+/* Chars that can be used to separate mant from exp in floating point nums */
+const char EXP_CHARS[] = "eE";
+
+/* Chars that mean this number is a floating point constant */
+/* As in 0f12.456 */
+/* or 0d1.2345e12 */
+const char FLT_CHARS[] = "fFdDxX";
+
+/* tables for lexical analysis */
+static char opcode_chars[256];
+static char register_chars[256];
+static char operand_chars[256];
+static char space_chars[256];
+static char identifier_chars[256];
+static char digit_chars[256];
+
+/* lexical macros */
+#define is_opcode_char(x) (opcode_chars[(unsigned char) x])
+#define is_operand_char(x) (operand_chars[(unsigned char) x])
+#define is_register_char(x) (register_chars[(unsigned char) x])
+#define is_space_char(x) (space_chars[(unsigned char) x])
+#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
+#define is_digit_char(x) (digit_chars[(unsigned char) x])
+
+/* put here all non-digit non-letter charcters that may occur in an operand */
+static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
+
+static char *ordinal_names[] = {"first", "second", "third"}; /* for printfs */
+
+/* md_assemble() always leaves the strings it's passed unaltered. To
+ effect this we maintain a stack of saved characters that we've smashed
+ with '\0's (indicating end of strings for various sub-fields of the
+ assembler instruction). */
+static char save_stack[32];
+static char *save_stack_p; /* stack pointer */
+#define END_STRING_AND_SAVE(s) *save_stack_p++ = *s; *s = '\0'
+#define RESTORE_END_STRING(s) *s = *--save_stack_p
+
+/* The instruction we're assembling. */
+static i386_insn i;
+
+/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
+static expressionS disp_expressions[2], im_expressions[2];
+
+/* pointers to ebp & esp entries in reg_hash hash table */
+static reg_entry *ebp, *esp;
+
+static int this_operand; /* current operand we are working on */
+
+static int flag_do_long_jump; /* FIXME what does this do? */
+
+static int flag_16bit_code; /* 1 if we're writing 16-bit code, 0 if 32-bit */
+
+/* Interface to relax_segment.
+ There are 2 relax states for 386 jump insns: one for conditional &
+ one for unconditional jumps. This is because the these two types
+ of jumps add different sizes to frags when we're figuring out what
+ sort of jump to choose to reach a given label. */
+
+/* types */
+#define COND_JUMP 1 /* conditional jump */
+#define UNCOND_JUMP 2 /* unconditional jump */
+/* sizes */
+#define BYTE 0
+#define WORD 1
+#define DWORD 2
+#define UNKNOWN_SIZE 3
+
+#ifndef INLINE
+#ifdef __GNUC__
+#define INLINE __inline__
+#else
+#define INLINE
+#endif
+#endif
+
+#define ENCODE_RELAX_STATE(type,size) \
+ ((relax_substateT)((type<<2) | (size)))
+#define SIZE_FROM_RELAX_STATE(s) \
+ ( (((s) & 0x3) == BYTE ? 1 : (((s) & 0x3) == WORD ? 2 : 4)) )
+
+const relax_typeS md_relax_table[] =
+{
+/* The fields are:
+ 1) most positive reach of this state,
+ 2) most negative reach of this state,
+ 3) how many bytes this mode will add to the size of the current frag
+ 4) which index into the table to try if we can't fit into this one.
+ */
+ {1, 1, 0, 0},
+ {1, 1, 0, 0},
+ {1, 1, 0, 0},
+ {1, 1, 0, 0},
+
+ /* For now we don't use word displacement jumps; they may be
+ untrustworthy. */
+ {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, DWORD)},
+ /* word conditionals add 3 bytes to frag:
+ 2 opcode prefix; 1 displacement bytes */
+ {32767 + 2, -32768 + 2, 3, ENCODE_RELAX_STATE (COND_JUMP, DWORD)},
+ /* dword conditionals adds 4 bytes to frag:
+ 1 opcode prefix; 3 displacement bytes */
+ {0, 0, 4, 0},
+ {1, 1, 0, 0},
+
+ {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, DWORD)},
+ /* word jmp adds 2 bytes to frag:
+ 1 opcode prefix; 1 displacement bytes */
+ {32767 + 2, -32768 + 2, 2, ENCODE_RELAX_STATE (UNCOND_JUMP, DWORD)},
+ /* dword jmp adds 3 bytes to frag:
+ 0 opcode prefix; 3 displacement bytes */
+ {0, 0, 3, 0},
+ {1, 1, 0, 0},
+
+};
+
+
+void
+i386_align_code (fragP, count)
+ fragS *fragP;
+ int count;
+{
+ /* Various efficient no-op patterns for aligning code labels. */
+ /* Note: Don't try to assemble the instructions in the comments. */
+ /* 0L and 0w are not legal */
+ static const char f32_1[] =
+ {0x90}; /* nop */
+ static const char f32_2[] =
+ {0x89,0xf6}; /* movl %esi,%esi */
+ static const char f32_3[] =
+ {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
+ static const char f32_4[] =
+ {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
+ static const char f32_5[] =
+ {0x90, /* nop */
+ 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
+ static const char f32_6[] =
+ {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
+ static const char f32_7[] =
+ {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
+ static const char f32_8[] =
+ {0x90, /* nop */
+ 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
+ static const char f32_9[] =
+ {0x89,0xf6, /* movl %esi,%esi */
+ 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
+ static const char f32_10[] =
+ {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
+ 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
+ static const char f32_11[] =
+ {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
+ 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
+ static const char f32_12[] =
+ {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
+ 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
+ static const char f32_13[] =
+ {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
+ 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
+ static const char f32_14[] =
+ {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
+ 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
+ static const char f32_15[] =
+ {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
+ 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
+ static const char f16_4[] =
+ {0x8d,0xb6,0x00,0x00}; /* lea 0w(%si),%si */
+ static const char f16_5[] =
+ {0x90, /* nop */
+ 0x8d,0xb6,0x00,0x00}; /* lea 0w(%si),%si */
+ static const char f16_6[] =
+ {0x89,0xf6, /* mov %si,%si */
+ 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
+ static const char f16_7[] =
+ {0x8d,0x76,0x00, /* lea 0(%si),%si */
+ 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
+ static const char f16_8[] =
+ {0x8d,0xb6,0x00,0x00, /* lea 0w(%si),%si */
+ 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
+ static const char *const f32_patt[] = {
+ f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
+ f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
+ };
+ static const char *const f16_patt[] = {
+ f32_1, f32_2, f32_3, f16_4, f16_5, f16_6, f16_7, f16_8,
+ f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
+ };
+
+ if (count > 0 && count <= 15)
+ {
+ if (flag_16bit_code)
+ {
+ memcpy(fragP->fr_literal + fragP->fr_fix,
+ f16_patt[count - 1], count);
+ if (count > 8) /* adjust jump offset */
+ fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
+ }
+ else
+ memcpy(fragP->fr_literal + fragP->fr_fix,
+ f32_patt[count - 1], count);
+ fragP->fr_var = count;
+ }
+}
+
+static char *output_invalid PARAMS ((int c));
+static int i386_operand PARAMS ((char *operand_string));
+static reg_entry *parse_register PARAMS ((char *reg_string));
+#ifndef I386COFF
+static void s_bss PARAMS ((int));
+#endif
+
+symbolS *GOT_symbol; /* Pre-defined "__GLOBAL_OFFSET_TABLE" */
+
+static INLINE unsigned long
+mode_from_disp_size (t)
+ unsigned long t;
+{
+ return (t & Disp8) ? 1 : (t & Disp32) ? 2 : 0;
+}
+
+#if 0
+/* Not used. */
+/* convert opcode suffix ('b' 'w' 'l' typically) into type specifier */
+
+static INLINE unsigned long
+opcode_suffix_to_type (s)
+ unsigned long s;
+{
+ return (s == BYTE_OPCODE_SUFFIX
+ ? Byte : (s == WORD_OPCODE_SUFFIX
+ ? Word : DWord));
+} /* opcode_suffix_to_type() */
+#endif
+
+static INLINE int
+fits_in_signed_byte (num)
+ long num;
+{
+ return (num >= -128) && (num <= 127);
+} /* fits_in_signed_byte() */
+
+static INLINE int
+fits_in_unsigned_byte (num)
+ long num;
+{
+ return (num & 0xff) == num;
+} /* fits_in_unsigned_byte() */
+
+static INLINE int
+fits_in_unsigned_word (num)
+ long num;
+{
+ return (num & 0xffff) == num;
+} /* fits_in_unsigned_word() */
+
+static INLINE int
+fits_in_signed_word (num)
+ long num;
+{
+ return (-32768 <= num) && (num <= 32767);
+} /* fits_in_signed_word() */
+
+static int
+smallest_imm_type (num)
+ long num;
+{
+#if 0
+ /* This code is disabled because all the Imm1 forms in the opcode table
+ are slower on the i486, and they're the versions with the implicitly
+ specified single-position displacement, which has another syntax if
+ you really want to use that form. If you really prefer to have the
+ one-byte-shorter Imm1 form despite these problems, re-enable this
+ code. */
+ if (num == 1)
+ return Imm1 | Imm8 | Imm8S | Imm16 | Imm32;
+#endif
+ return (fits_in_signed_byte (num)
+ ? (Imm8S | Imm8 | Imm16 | Imm32)
+ : fits_in_unsigned_byte (num)
+ ? (Imm8 | Imm16 | Imm32)
+ : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
+ ? (Imm16 | Imm32)
+ : (Imm32));
+} /* smallest_imm_type() */
+
+static void
+set_16bit_code_flag (new_16bit_code_flag)
+ int new_16bit_code_flag;
+{
+ flag_16bit_code = new_16bit_code_flag;
+}
+
+const pseudo_typeS md_pseudo_table[] =
+{
+#ifndef I386COFF
+ {"bss", s_bss, 0},
+#endif
+#ifndef OBJ_AOUT
+ {"align", s_align_bytes, 0},
+#else
+ {"align", s_align_ptwo, 0},
+#endif
+ {"ffloat", float_cons, 'f'},
+ {"dfloat", float_cons, 'd'},
+ {"tfloat", float_cons, 'x'},
+ {"value", cons, 2},
+ {"noopt", s_ignore, 0},
+ {"optim", s_ignore, 0},
+ {"code16", set_16bit_code_flag, 1},
+ {"code32", set_16bit_code_flag, 0},
+ {0, 0, 0}
+};
+
+/* for interface with expression () */
+extern char *input_line_pointer;
+
+/* obstack for constructing various things in md_begin */
+struct obstack o;
+
+/* hash table for opcode lookup */
+static struct hash_control *op_hash;
+/* hash table for register lookup */
+static struct hash_control *reg_hash;
+/* hash table for prefix lookup */
+static struct hash_control *prefix_hash;
+
+
+void
+md_begin ()
+{
+ const char *hash_err;
+
+ obstack_begin (&o, 4096);
+
+ /* initialize op_hash hash table */
+ op_hash = hash_new ();
+
+ {
+ register const template *optab;
+ register templates *core_optab;
+ char *prev_name;
+
+ optab = i386_optab; /* setup for loop */
+ prev_name = optab->name;
+ obstack_grow (&o, optab, sizeof (template));
+ core_optab = (templates *) xmalloc (sizeof (templates));
+
+ for (optab++; optab < i386_optab_end; optab++)
+ {
+ if (!strcmp (optab->name, prev_name))
+ {
+ /* same name as before --> append to current template list */
+ obstack_grow (&o, optab, sizeof (template));
+ }
+ else
+ {
+ /* different name --> ship out current template list;
+ add to hash table; & begin anew */
+ /* Note: end must be set before start! since obstack_next_free
+ changes upon opstack_finish */
+ core_optab->end = (template *) obstack_next_free (&o);
+ core_optab->start = (template *) obstack_finish (&o);
+ hash_err = hash_insert (op_hash, prev_name, (char *) core_optab);
+ if (hash_err)
+ {
+ hash_error:
+ as_fatal ("Internal Error: Can't hash %s: %s", prev_name,
+ hash_err);
+ }
+ prev_name = optab->name;
+ core_optab = (templates *) xmalloc (sizeof (templates));
+ obstack_grow (&o, optab, sizeof (template));
+ }
+ }
+ }
+
+ /* initialize reg_hash hash table */
+ reg_hash = hash_new ();
+ {
+ register const reg_entry *regtab;
+
+ for (regtab = i386_regtab; regtab < i386_regtab_end; regtab++)
+ {
+ hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
+ if (hash_err)
+ goto hash_error;
+ }
+ }
+
+ esp = (reg_entry *) hash_find (reg_hash, "esp");
+ ebp = (reg_entry *) hash_find (reg_hash, "ebp");
+
+ /* initialize reg_hash hash table */
+ prefix_hash = hash_new ();
+ {
+ register const prefix_entry *prefixtab;
+
+ for (prefixtab = i386_prefixtab;
+ prefixtab < i386_prefixtab_end; prefixtab++)
+ {
+ hash_err = hash_insert (prefix_hash, prefixtab->prefix_name,
+ (PTR) prefixtab);
+ if (hash_err)
+ goto hash_error;
+ }
+ }
+
+ /* fill in lexical tables: opcode_chars, operand_chars, space_chars */
+ {
+ register int c;
+ register char *p;
+
+ for (c = 0; c < 256; c++)
+ {
+ if (islower (c) || isdigit (c))
+ {
+ opcode_chars[c] = c;
+ register_chars[c] = c;
+ }
+ else if (isupper (c))
+ {
+ opcode_chars[c] = tolower (c);
+ register_chars[c] = opcode_chars[c];
+ }
+ else if (c == PREFIX_SEPERATOR)
+ {
+ opcode_chars[c] = c;
+ }
+ else if (c == ')' || c == '(')
+ {
+ register_chars[c] = c;
+ }
+
+ if (isupper (c) || islower (c) || isdigit (c))
+ operand_chars[c] = c;
+
+ if (isdigit (c) || c == '-')
+ digit_chars[c] = c;
+
+ if (isalpha (c) || c == '_' || c == '.' || isdigit (c))
+ identifier_chars[c] = c;
+
+#ifdef LEX_AT
+ identifier_chars['@'] = '@';
+#endif
+
+ if (c == ' ' || c == '\t')
+ space_chars[c] = c;
+ }
+
+ for (p = operand_special_chars; *p != '\0'; p++)
+ operand_chars[(unsigned char) *p] = *p;
+ }
+
+#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
+ if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
+ {
+ record_alignment (text_section, 2);
+ record_alignment (data_section, 2);
+ record_alignment (bss_section, 2);
+ }
+#endif
+}
+
+void
+i386_print_statistics (file)
+ FILE *file;
+{
+ hash_print_statistics (file, "i386 opcode", op_hash);
+ hash_print_statistics (file, "i386 register", reg_hash);
+ hash_print_statistics (file, "i386 prefix", prefix_hash);
+}
+
+
+#ifdef DEBUG386
+
+/* debugging routines for md_assemble */
+static void pi PARAMS ((char *, i386_insn *));
+static void pte PARAMS ((template *));
+static void pt PARAMS ((unsigned int));
+static void pe PARAMS ((expressionS *));
+static void ps PARAMS ((symbolS *));
+
+static void
+pi (line, x)
+ char *line;
+ i386_insn *x;
+{
+ register template *p;
+ int i;
+
+ fprintf (stdout, "%s: template ", line);
+ pte (&x->tm);
+ fprintf (stdout, " modrm: mode %x reg %x reg/mem %x",
+ x->rm.mode, x->rm.reg, x->rm.regmem);
+ fprintf (stdout, " base %x index %x scale %x\n",
+ x->bi.base, x->bi.index, x->bi.scale);
+ for (i = 0; i < x->operands; i++)
+ {
+ fprintf (stdout, " #%d: ", i + 1);
+ pt (x->types[i]);
+ fprintf (stdout, "\n");
+ if (x->types[i]
+ & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX))
+ fprintf (stdout, "%s\n", x->regs[i]->reg_name);
+ if (x->types[i] & Imm)
+ pe (x->imms[i]);
+ if (x->types[i] & (Disp | Abs))
+ pe (x->disps[i]);
+ }
+}
+
+static void
+pte (t)
+ template *t;
+{
+ int i;
+ fprintf (stdout, " %d operands ", t->operands);
+ fprintf (stdout, "opcode %x ",
+ t->base_opcode);
+ if (t->extension_opcode != None)
+ fprintf (stdout, "ext %x ", t->extension_opcode);
+ if (t->opcode_modifier & D)
+ fprintf (stdout, "D");
+ if (t->opcode_modifier & W)
+ fprintf (stdout, "W");
+ fprintf (stdout, "\n");
+ for (i = 0; i < t->operands; i++)
+ {
+ fprintf (stdout, " #%d type ", i + 1);
+ pt (t->operand_types[i]);
+ fprintf (stdout, "\n");
+ }
+}
+
+static void
+pe (e)
+ expressionS *e;
+{
+ fprintf (stdout, " operation %d\n", e->X_op);
+ fprintf (stdout, " add_number %d (%x)\n",
+ e->X_add_number, e->X_add_number);
+ if (e->X_add_symbol)
+ {
+ fprintf (stdout, " add_symbol ");
+ ps (e->X_add_symbol);
+ fprintf (stdout, "\n");
+ }
+ if (e->X_op_symbol)
+ {
+ fprintf (stdout, " op_symbol ");
+ ps (e->X_op_symbol);
+ fprintf (stdout, "\n");
+ }
+}
+
+static void
+ps (s)
+ symbolS *s;
+{
+ fprintf (stdout, "%s type %s%s",
+ S_GET_NAME (s),
+ S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
+ segment_name (S_GET_SEGMENT (s)));
+}
+
+struct type_name
+ {
+ unsigned int mask;
+ char *tname;
+ }
+
+type_names[] =
+{
+ { Reg8, "r8" },
+ { Reg16, "r16" },
+ { Reg32, "r32" },
+ { Imm8, "i8" },
+ { Imm8S, "i8s" },
+ { Imm16, "i16" },
+ { Imm32, "i32" },
+ { Mem8, "Mem8" },
+ { Mem16, "Mem16" },
+ { Mem32, "Mem32" },
+ { BaseIndex, "BaseIndex" },
+ { Abs8, "Abs8" },
+ { Abs16, "Abs16" },
+ { Abs32, "Abs32" },
+ { Disp8, "d8" },
+ { Disp16, "d16" },
+ { Disp32, "d32" },
+ { SReg2, "SReg2" },
+ { SReg3, "SReg3" },
+ { Acc, "Acc" },
+ { InOutPortReg, "InOutPortReg" },
+ { ShiftCount, "ShiftCount" },
+ { Imm1, "i1" },
+ { Control, "control reg" },
+ { Test, "test reg" },
+ { FloatReg, "FReg" },
+ { FloatAcc, "FAcc" },
+ { JumpAbsolute, "Jump Absolute" },
+ { RegMMX, "rMMX" },
+ { 0, "" }
+};
+
+static void
+pt (t)
+ unsigned int t;
+{
+ register struct type_name *ty;
+
+ if (t == Unknown)
+ {
+ fprintf (stdout, "Unknown");
+ }
+ else
+ {
+ for (ty = type_names; ty->mask; ty++)
+ if (t & ty->mask)
+ fprintf (stdout, "%s, ", ty->tname);
+ }
+ fflush (stdout);
+}
+
+#endif /* DEBUG386 */
+
+#ifdef BFD_ASSEMBLER
+static bfd_reloc_code_real_type
+reloc (size, pcrel, other)
+ int size;
+ int pcrel;
+ bfd_reloc_code_real_type other;
+{
+ if (other != NO_RELOC) return other;
+
+ if (pcrel)
+ switch (size)
+ {
+ case 1: return BFD_RELOC_8_PCREL;
+ case 2: return BFD_RELOC_16_PCREL;
+ case 4: return BFD_RELOC_32_PCREL;
+ }
+ else
+ switch (size)
+ {
+ case 1: return BFD_RELOC_8;
+ case 2: return BFD_RELOC_16;
+ case 4: return BFD_RELOC_32;
+ }
+
+ as_bad ("Can not do %d byte %srelocation", size,
+ pcrel ? "pc-relative " : "");
+ return BFD_RELOC_NONE;
+}
+
+/*
+ * Here we decide which fixups can be adjusted to make them relative to
+ * the beginning of the section instead of the symbol. Basically we need
+ * to make sure that the dynamic relocations are done correctly, so in
+ * some cases we force the original symbol to be used.
+ */
+int
+tc_i386_fix_adjustable(fixP)
+ fixS * fixP;
+{
+#ifndef OBJ_AOUT
+ /* Prevent all adjustments to global symbols. */
+ if (S_IS_EXTERN (fixP->fx_addsy))
+ return 0;
+ if (S_IS_WEAK (fixP->fx_addsy))
+ return 0;
+#endif /* ! defined (OBJ_AOUT) */
+ /* adjust_reloc_syms doesn't know about the GOT */
+ if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
+ || fixP->fx_r_type == BFD_RELOC_386_PLT32
+ || fixP->fx_r_type == BFD_RELOC_386_GOT32)
+ return 0;
+ return 1;
+}
+#else
+#define reloc(SIZE,PCREL,OTHER) 0
+#define BFD_RELOC_32 0
+#define BFD_RELOC_32_PCREL 0
+#define BFD_RELOC_386_PLT32 0
+#define BFD_RELOC_386_GOT32 0
+#define BFD_RELOC_386_GOTOFF 0
+#endif
+
+/* This is the guts of the machine-dependent assembler. LINE points to a
+ machine dependent instruction. This function is supposed to emit
+ the frags/bytes it assembles to. */
+
+void
+md_assemble (line)
+ char *line;
+{
+ /* Holds template once we've found it. */
+ template *t;
+
+ /* Count the size of the instruction generated. */
+ int insn_size = 0;
+
+ /* Possible templates for current insn */
+ templates *current_templates = (templates *) 0;
+
+ int j;
+
+ /* Initialize globals. */
+ memset (&i, '\0', sizeof (i));
+ for (j = 0; j < MAX_OPERANDS; j++)
+ i.disp_reloc[j] = NO_RELOC;
+ memset (disp_expressions, '\0', sizeof (disp_expressions));
+ memset (im_expressions, '\0', sizeof (im_expressions));
+ save_stack_p = save_stack; /* reset stack pointer */
+
+ /* Fist parse an opcode & call i386_operand for the operands.
+ We assume that the scrubber has arranged it so that line[0] is the valid
+ start of a (possibly prefixed) opcode. */
+ {
+ char *l = line;
+
+ /* 1 if operand is pending after ','. */
+ unsigned int expecting_operand = 0;
+ /* 1 if we found a prefix only acceptable with string insns. */
+ unsigned int expecting_string_instruction = 0;
+ /* Non-zero if operand parens not balanced. */
+ unsigned int paren_not_balanced;
+ char *token_start = l;
+
+ while (!is_space_char (*l) && *l != END_OF_INSN)
+ {
+ if (!is_opcode_char (*l))
+ {
+ as_bad ("invalid character %s in opcode", output_invalid (*l));
+ return;
+ }
+ else if (*l != PREFIX_SEPERATOR)
+ {
+ *l = opcode_chars[(unsigned char) *l]; /* fold case of opcodes */
+ l++;
+ }
+ else
+ {
+ /* This opcode's got a prefix. */
+ unsigned int q;
+ prefix_entry *prefix;
+
+ if (l == token_start)
+ {
+ as_bad ("expecting prefix; got nothing");
+ return;
+ }
+ END_STRING_AND_SAVE (l);
+ prefix = (prefix_entry *) hash_find (prefix_hash, token_start);
+ if (!prefix)
+ {
+ as_bad ("no such opcode prefix ('%s')", token_start);
+ return;
+ }
+ RESTORE_END_STRING (l);
+ /* check for repeated prefix */
+ for (q = 0; q < i.prefixes; q++)
+ if (i.prefix[q] == prefix->prefix_code)
+ {
+ as_bad ("same prefix used twice; you don't really want this!");
+ return;
+ }
+ if (i.prefixes == MAX_PREFIXES)
+ {
+ as_bad ("too many opcode prefixes");
+ return;
+ }
+ i.prefix[i.prefixes++] = prefix->prefix_code;
+ if (prefix->prefix_code == REPE || prefix->prefix_code == REPNE)
+ expecting_string_instruction = 1;
+ /* skip past PREFIX_SEPERATOR and reset token_start */
+ token_start = ++l;
+ }
+ }
+ END_STRING_AND_SAVE (l);
+ if (token_start == l)
+ {
+ as_bad ("expecting opcode; got nothing");
+ return;
+ }
+
+ /* Lookup insn in hash; try intel & att naming conventions if appropriate;
+ that is: we only use the opcode suffix 'b' 'w' or 'l' if we need to. */
+ current_templates = (templates *) hash_find (op_hash, token_start);
+ if (!current_templates)
+ {
+ int last_index = strlen (token_start) - 1;
+ char last_char = token_start[last_index];
+ switch (last_char)
+ {
+ case DWORD_OPCODE_SUFFIX:
+ case WORD_OPCODE_SUFFIX:
+ case BYTE_OPCODE_SUFFIX:
+ token_start[last_index] = '\0';
+ current_templates = (templates *) hash_find (op_hash, token_start);
+ token_start[last_index] = last_char;
+ i.suffix = last_char;
+ }
+ if (!current_templates)
+ {
+ as_bad ("no such 386 instruction: `%s'", token_start);
+ return;
+ }
+ }
+ RESTORE_END_STRING (l);
+
+ /* check for rep/repne without a string instruction */
+ if (expecting_string_instruction &&
+ !IS_STRING_INSTRUCTION (current_templates->
+ start->base_opcode))
+ {
+ as_bad ("expecting string instruction after rep/repne");
+ return;
+ }
+
+ /* There may be operands to parse. */
+ if (*l != END_OF_INSN &&
+ /* For string instructions, we ignore any operands if given. This
+ kludges, for example, 'rep/movsb %ds:(%esi), %es:(%edi)' where
+ the operands are always going to be the same, and are not really
+ encoded in machine code. */
+ !IS_STRING_INSTRUCTION (current_templates->
+ start->base_opcode))
+ {
+ /* parse operands */
+ do
+ {
+ /* skip optional white space before operand */
+ while (!is_operand_char (*l) && *l != END_OF_INSN)
+ {
+ if (!is_space_char (*l))
+ {
+ as_bad ("invalid character %s before %s operand",
+ output_invalid (*l),
+ ordinal_names[i.operands]);
+ return;
+ }
+ l++;
+ }
+ token_start = l; /* after white space */
+ paren_not_balanced = 0;
+ while (paren_not_balanced || *l != ',')
+ {
+ if (*l == END_OF_INSN)
+ {
+ if (paren_not_balanced)
+ {
+ as_bad ("unbalanced parenthesis in %s operand.",
+ ordinal_names[i.operands]);
+ return;
+ }
+ else
+ break; /* we are done */
+ }
+ else if (!is_operand_char (*l) && !is_space_char (*l))
+ {
+ as_bad ("invalid character %s in %s operand",
+ output_invalid (*l),
+ ordinal_names[i.operands]);
+ return;
+ }
+ if (*l == '(')
+ ++paren_not_balanced;
+ if (*l == ')')
+ --paren_not_balanced;
+ l++;
+ }
+ if (l != token_start)
+ { /* yes, we've read in another operand */
+ unsigned int operand_ok;
+ this_operand = i.operands++;
+ if (i.operands > MAX_OPERANDS)
+ {
+ as_bad ("spurious operands; (%d operands/instruction max)",
+ MAX_OPERANDS);
+ return;
+ }
+ /* now parse operand adding info to 'i' as we go along */
+ END_STRING_AND_SAVE (l);
+ operand_ok = i386_operand (token_start);
+ RESTORE_END_STRING (l); /* restore old contents */
+ if (!operand_ok)
+ return;
+ }
+ else
+ {
+ if (expecting_operand)
+ {
+ expecting_operand_after_comma:
+ as_bad ("expecting operand after ','; got nothing");
+ return;
+ }
+ if (*l == ',')
+ {
+ as_bad ("expecting operand before ','; got nothing");
+ return;
+ }
+ }
+
+ /* now *l must be either ',' or END_OF_INSN */
+ if (*l == ',')
+ {
+ if (*++l == END_OF_INSN)
+ { /* just skip it, if it's \n complain */
+ goto expecting_operand_after_comma;
+ }
+ expecting_operand = 1;
+ }
+ }
+ while (*l != END_OF_INSN); /* until we get end of insn */
+ }
+ }
+
+ /* Now we've parsed the opcode into a set of templates, and have the
+ operands at hand.
+
+ Next, we find a template that matches the given insn,
+ making sure the overlap of the given operands types is consistent
+ with the template operand types. */
+
+#define MATCH(overlap,given_type) \
+ (overlap && \
+ (((overlap & (JumpAbsolute|BaseIndex|Mem8)) \
+ == (given_type & (JumpAbsolute|BaseIndex|Mem8))) \
+ || (overlap == InOutPortReg)))
+
+
+ /* If m0 and m1 are register matches they must be consistent
+ with the expected operand types t0 and t1.
+ That is, if both m0 & m1 are register matches
+ i.e. ( ((m0 & (Reg)) && (m1 & (Reg)) ) ?
+ then, either 1. or 2. must be true:
+ 1. the expected operand type register overlap is null:
+ (t0 & t1 & Reg) == 0
+ AND
+ the given register overlap is null:
+ (m0 & m1 & Reg) == 0
+ 2. the expected operand type register overlap == the given
+ operand type overlap: (t0 & t1 & m0 & m1 & Reg).
+ */
+#define CONSISTENT_REGISTER_MATCH(m0, m1, t0, t1) \
+ ( ((m0 & (Reg)) && (m1 & (Reg))) ? \
+ ( ((t0 & t1 & (Reg)) == 0 && (m0 & m1 & (Reg)) == 0) || \
+ ((t0 & t1) & (m0 & m1) & (Reg)) \
+ ) : 1)
+ {
+ register unsigned int overlap0, overlap1;
+ expressionS *exp;
+ unsigned int overlap2;
+ unsigned int found_reverse_match;
+
+ overlap0 = overlap1 = overlap2 = found_reverse_match = 0;
+ for (t = current_templates->start;
+ t < current_templates->end;
+ t++)
+ {
+ /* must have right number of operands */
+ if (i.operands != t->operands)
+ continue;
+ else if (!t->operands)
+ break; /* 0 operands always matches */
+
+ overlap0 = i.types[0] & t->operand_types[0];
+ switch (t->operands)
+ {
+ case 1:
+ if (!MATCH (overlap0, i.types[0]))
+ continue;
+ break;
+ case 2:
+ case 3:
+ overlap1 = i.types[1] & t->operand_types[1];
+ if (!MATCH (overlap0, i.types[0]) ||
+ !MATCH (overlap1, i.types[1]) ||
+ !CONSISTENT_REGISTER_MATCH (overlap0, overlap1,
+ t->operand_types[0],
+ t->operand_types[1]))
+ {
+
+ /* check if other direction is valid ... */
+ if (!(t->opcode_modifier & COMES_IN_BOTH_DIRECTIONS))
+ continue;
+
+ /* try reversing direction of operands */
+ overlap0 = i.types[0] & t->operand_types[1];
+ overlap1 = i.types[1] & t->operand_types[0];
+ if (!MATCH (overlap0, i.types[0]) ||
+ !MATCH (overlap1, i.types[1]) ||
+ !CONSISTENT_REGISTER_MATCH (overlap0, overlap1,
+ t->operand_types[0],
+ t->operand_types[1]))
+ {
+ /* does not match either direction */
+ continue;
+ }
+ /* found a reverse match here -- slip through */
+ /* found_reverse_match holds which of D or FloatD we've found */
+ found_reverse_match = t->opcode_modifier & COMES_IN_BOTH_DIRECTIONS;
+ } /* endif: not forward match */
+ /* found either forward/reverse 2 operand match here */
+ if (t->operands == 3)
+ {
+ overlap2 = i.types[2] & t->operand_types[2];
+ if (!MATCH (overlap2, i.types[2]) ||
+ !CONSISTENT_REGISTER_MATCH (overlap0, overlap2,
+ t->operand_types[0],
+ t->operand_types[2]) ||
+ !CONSISTENT_REGISTER_MATCH (overlap1, overlap2,
+ t->operand_types[1],
+ t->operand_types[2]))
+ continue;
+ }
+ /* found either forward/reverse 2 or 3 operand match here:
+ slip through to break */
+ }
+ break; /* we've found a match; break out of loop */
+ } /* for (t = ... */
+ if (t == current_templates->end)
+ { /* we found no match */
+ as_bad ("operands given don't match any known 386 instruction");
+ return;
+ }
+
+ /* Copy the template we found (we may change it!). */
+ i.tm = *t;
+ t = &i.tm; /* alter new copy of template */
+
+ /* If the matched instruction specifies an explicit opcode suffix,
+ use it - and make sure none has already been specified. */
+ if (t->opcode_modifier & (Data16|Data32))
+ {
+ if (i.suffix)
+ {
+ as_bad ("extraneous opcode suffix given");
+ return;
+ }
+ if (t->opcode_modifier & Data16)
+ i.suffix = WORD_OPCODE_SUFFIX;
+ else
+ i.suffix = DWORD_OPCODE_SUFFIX;
+ }
+
+ /* If there's no opcode suffix we try to invent one based on register
+ operands. */
+ if (!i.suffix && i.reg_operands)
+ {
+ /* We take i.suffix from the LAST register operand specified. This
+ assumes that the last register operands is the destination register
+ operand. */
+ int op;
+ for (op = 0; op < MAX_OPERANDS; op++)
+ if (i.types[op] & Reg)
+ {
+ i.suffix = ((i.types[op] & Reg8) ? BYTE_OPCODE_SUFFIX :
+ (i.types[op] & Reg16) ? WORD_OPCODE_SUFFIX :
+ DWORD_OPCODE_SUFFIX);
+ }
+ }
+ else if (i.suffix != 0
+ && i.reg_operands != 0
+ && (i.types[i.operands - 1] & Reg) != 0)
+ {
+ int bad;
+
+ /* If the last operand is a register, make sure it is
+ compatible with the suffix. */
+
+ bad = 0;
+ switch (i.suffix)
+ {
+ default:
+ abort ();
+ case BYTE_OPCODE_SUFFIX:
+ /* If this is an eight bit register, it's OK. If it's the
+ 16 or 32 bit version of an eight bit register, we will
+ just use the low portion, and that's OK too. */
+ if ((i.types[i.operands - 1] & Reg8) == 0
+ && i.regs[i.operands - 1]->reg_num >= 4)
+ bad = 1;
+ break;
+ case WORD_OPCODE_SUFFIX:
+ case DWORD_OPCODE_SUFFIX:
+ /* We don't insist on the presence or absence of the e
+ prefix on the register, but we reject eight bit
+ registers. */
+ if ((i.types[i.operands - 1] & Reg8) != 0)
+ bad = 1;
+ }
+ if (bad)
+ as_bad ("register does not match opcode suffix");
+ }
+
+ /* Make still unresolved immediate matches conform to size of immediate
+ given in i.suffix. Note: overlap2 cannot be an immediate!
+ We assume this. */
+ if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32))
+ && overlap0 != Imm8 && overlap0 != Imm8S
+ && overlap0 != Imm16 && overlap0 != Imm32)
+ {
+ if (!i.suffix)
+ {
+ as_bad ("no opcode suffix given; can't determine immediate size");
+ return;
+ }
+ overlap0 &= (i.suffix == BYTE_OPCODE_SUFFIX ? (Imm8 | Imm8S) :
+ (i.suffix == WORD_OPCODE_SUFFIX ? Imm16 : Imm32));
+ }
+ if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32))
+ && overlap1 != Imm8 && overlap1 != Imm8S
+ && overlap1 != Imm16 && overlap1 != Imm32)
+ {
+ if (!i.suffix)
+ {
+ as_bad ("no opcode suffix given; can't determine immediate size");
+ return;
+ }
+ overlap1 &= (i.suffix == BYTE_OPCODE_SUFFIX ? (Imm8 | Imm8S) :
+ (i.suffix == WORD_OPCODE_SUFFIX ? Imm16 : Imm32));
+ }
+
+ i.types[0] = overlap0;
+ i.types[1] = overlap1;
+ i.types[2] = overlap2;
+
+ if (overlap0 & ImplicitRegister)
+ i.reg_operands--;
+ if (overlap1 & ImplicitRegister)
+ i.reg_operands--;
+ if (overlap2 & ImplicitRegister)
+ i.reg_operands--;
+ if (overlap0 & Imm1)
+ i.imm_operands = 0; /* kludge for shift insns */
+
+ if (found_reverse_match)
+ {
+ unsigned int save;
+ save = t->operand_types[0];
+ t->operand_types[0] = t->operand_types[1];
+ t->operand_types[1] = save;
+ }
+
+ /* Finalize opcode. First, we change the opcode based on the operand
+ size given by i.suffix: we never have to change things for byte insns,
+ or when no opcode suffix is need to size the operands. */
+
+ if (!i.suffix && (t->opcode_modifier & W))
+ {
+ as_bad ("no opcode suffix given and no register operands; can't size instruction");
+ return;
+ }
+
+ if (i.suffix && i.suffix != BYTE_OPCODE_SUFFIX)
+ {
+ /* Select between byte and word/dword operations. */
+ if (t->opcode_modifier & W)
+ t->base_opcode |= W;
+ /* Now select between word & dword operations via the
+ operand size prefix. */
+ if ((i.suffix == WORD_OPCODE_SUFFIX) ^ flag_16bit_code)
+ {
+ if (i.prefixes == MAX_PREFIXES)
+ {
+ as_bad ("%d prefixes given and 'w' opcode suffix gives too many prefixes",
+ MAX_PREFIXES);
+ return;
+ }
+ i.prefix[i.prefixes++] = WORD_PREFIX_OPCODE;
+ }
+ }
+
+ /* For insns with operands there are more diddles to do to the opcode. */
+ if (i.operands)
+ {
+ /* Default segment register this instruction will use
+ for memory accesses. 0 means unknown.
+ This is only for optimizing out unnecessary segment overrides. */
+ const seg_entry *default_seg = 0;
+
+ /* True if this instruction uses a memory addressing mode,
+ and therefore may need an address-size prefix. */
+ int uses_mem_addrmode = 0;
+
+
+ /* If we found a reverse match we must alter the opcode direction bit
+ found_reverse_match holds bit to set (different for int &
+ float insns). */
+
+ if (found_reverse_match)
+ {
+ t->base_opcode |= found_reverse_match;
+ }
+
+ /* The imul $imm, %reg instruction is converted into
+ imul $imm, %reg, %reg. */
+ if (t->opcode_modifier & imulKludge)
+ {
+ /* Pretend we saw the 3 operand case. */
+ i.regs[2] = i.regs[1];
+ i.reg_operands = 2;
+ }
+
+ /* The clr %reg instruction is converted into xor %reg, %reg. */
+ if (t->opcode_modifier & iclrKludge)
+ {
+ i.regs[1] = i.regs[0];
+ i.reg_operands = 2;
+ }
+
+ /* Certain instructions expect the destination to be in the i.rm.reg
+ field. This is by far the exceptional case. For these
+ instructions, if the source operand is a register, we must reverse
+ the i.rm.reg and i.rm.regmem fields. We accomplish this by faking
+ that the two register operands were given in the reverse order. */
+ if ((t->opcode_modifier & ReverseRegRegmem) && i.reg_operands == 2)
+ {
+ unsigned int first_reg_operand = (i.types[0] & Reg) ? 0 : 1;
+ unsigned int second_reg_operand = first_reg_operand + 1;
+ reg_entry *tmp = i.regs[first_reg_operand];
+ i.regs[first_reg_operand] = i.regs[second_reg_operand];
+ i.regs[second_reg_operand] = tmp;
+ }
+
+ if (t->opcode_modifier & ShortForm)
+ {
+ /* The register or float register operand is in operand 0 or 1. */
+ unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
+ /* Register goes in low 3 bits of opcode. */
+ t->base_opcode |= i.regs[op]->reg_num;
+ }
+ else if (t->opcode_modifier & ShortFormW)
+ {
+ /* Short form with 0x8 width bit. Register is always dest. operand */
+ t->base_opcode |= i.regs[1]->reg_num;
+ if (i.suffix == WORD_OPCODE_SUFFIX ||
+ i.suffix == DWORD_OPCODE_SUFFIX)
+ t->base_opcode |= 0x8;
+ }
+ else if (t->opcode_modifier & Seg2ShortForm)
+ {
+ if (t->base_opcode == POP_SEG_SHORT && i.regs[0]->reg_num == 1)
+ {
+ as_bad ("you can't 'pop cs' on the 386.");
+ return;
+ }
+ t->base_opcode |= (i.regs[0]->reg_num << 3);
+ }
+ else if (t->opcode_modifier & Seg3ShortForm)
+ {
+ /* 'push %fs' is 0x0fa0; 'pop %fs' is 0x0fa1.
+ 'push %gs' is 0x0fa8; 'pop %fs' is 0x0fa9.
+ So, only if i.regs[0]->reg_num == 5 (%gs) do we need
+ to change the opcode. */
+ if (i.regs[0]->reg_num == 5)
+ t->base_opcode |= 0x08;
+ }
+ else if ((t->base_opcode & ~DW) == MOV_AX_DISP32)
+ {
+ /* This is a special non-modrm instruction
+ that addresses memory with a 32-bit displacement mode anyway,
+ and thus requires an address-size prefix if in 16-bit mode. */
+ uses_mem_addrmode = 1;
+ default_seg = &ds;
+ }
+ else if (t->opcode_modifier & Modrm)
+ {
+ /* The opcode is completed (modulo t->extension_opcode which must
+ be put into the modrm byte.
+ Now, we make the modrm & index base bytes based on all the info
+ we've collected. */
+
+ /* i.reg_operands MUST be the number of real register operands;
+ implicit registers do not count. */
+ if (i.reg_operands == 2)
+ {
+ unsigned int source, dest;
+ source = ((i.types[0]
+ & (Reg
+ | SReg2
+ | SReg3
+ | Control
+ | Debug
+ | Test
+ | RegMMX))
+ ? 0 : 1);
+ dest = source + 1;
+ i.rm.mode = 3;
+ /* We must be careful to make sure that all
+ segment/control/test/debug/MMX registers go into
+ the i.rm.reg field (despite the whether they are
+ source or destination operands). */
+ if (i.regs[dest]->reg_type
+ & (SReg2 | SReg3 | Control | Debug | Test | RegMMX))
+ {
+ i.rm.reg = i.regs[dest]->reg_num;
+ i.rm.regmem = i.regs[source]->reg_num;
+ }
+ else
+ {
+ i.rm.reg = i.regs[source]->reg_num;
+ i.rm.regmem = i.regs[dest]->reg_num;
+ }
+ }
+ else
+ { /* if it's not 2 reg operands... */
+ if (i.mem_operands)
+ {
+ unsigned int fake_zero_displacement = 0;
+ unsigned int op = (i.types[0] & Mem) ? 0 : ((i.types[1] & Mem) ? 1 : 2);
+
+ /* Encode memory operand into modrm byte and base index
+ byte. */
+
+ if (i.base_reg == esp && !i.index_reg)
+ {
+ /* <disp>(%esp) becomes two byte modrm with no index
+ register. */
+ i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
+ i.rm.mode = mode_from_disp_size (i.types[op]);
+ i.bi.base = ESP_REG_NUM;
+ i.bi.index = NO_INDEX_REGISTER;
+ i.bi.scale = 0; /* Must be zero! */
+ }
+ else if (i.base_reg == ebp && !i.index_reg)
+ {
+ if (!(i.types[op] & Disp))
+ {
+ /* Must fake a zero byte displacement. There is
+ no direct way to code '(%ebp)' directly. */
+ fake_zero_displacement = 1;
+ /* fake_zero_displacement code does not set this. */
+ i.types[op] |= Disp8;
+ }
+ i.rm.mode = mode_from_disp_size (i.types[op]);
+ i.rm.regmem = EBP_REG_NUM;
+ }
+ else if (!i.base_reg && (i.types[op] & BaseIndex))
+ {
+ /* There are three cases here.
+ Case 1: '<32bit disp>(,1)' -- indirect absolute.
+ (Same as cases 2 & 3 with NO index register)
+ Case 2: <32bit disp> (,<index>) -- no base register with disp
+ Case 3: (, <index>) --- no base register;
+ no disp (must add 32bit 0 disp). */
+ i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
+ i.rm.mode = 0; /* 32bit mode */
+ i.bi.base = NO_BASE_REGISTER;
+ i.types[op] &= ~Disp;
+ i.types[op] |= Disp32; /* Must be 32bit! */
+ if (i.index_reg)
+ { /* case 2 or case 3 */
+ i.bi.index = i.index_reg->reg_num;
+ i.bi.scale = i.log2_scale_factor;
+ if (i.disp_operands == 0)
+ fake_zero_displacement = 1; /* case 3 */
+ }
+ else
+ {
+ i.bi.index = NO_INDEX_REGISTER;
+ i.bi.scale = 0;
+ }
+ }
+ else if (i.disp_operands && !i.base_reg && !i.index_reg)
+ {
+ /* Operand is just <32bit disp> */
+ i.rm.regmem = EBP_REG_NUM;
+ i.rm.mode = 0;
+ i.types[op] &= ~Disp;
+ i.types[op] |= Disp32;
+ }
+ else
+ {
+ /* It's not a special case; rev'em up. */
+ i.rm.regmem = i.base_reg->reg_num;
+ i.rm.mode = mode_from_disp_size (i.types[op]);
+ if (i.index_reg)
+ {
+ i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
+ i.bi.base = i.base_reg->reg_num;
+ i.bi.index = i.index_reg->reg_num;
+ i.bi.scale = i.log2_scale_factor;
+ if (i.base_reg == ebp && i.disp_operands == 0)
+ { /* pace */
+ fake_zero_displacement = 1;
+ i.types[op] |= Disp8;
+ i.rm.mode = mode_from_disp_size (i.types[op]);
+ }
+ }
+ }
+ if (fake_zero_displacement)
+ {
+ /* Fakes a zero displacement assuming that i.types[op]
+ holds the correct displacement size. */
+ exp = &disp_expressions[i.disp_operands++];
+ i.disps[op] = exp;
+ exp->X_op = O_constant;
+ exp->X_add_number = 0;
+ exp->X_add_symbol = (symbolS *) 0;
+ exp->X_op_symbol = (symbolS *) 0;
+ }
+
+ /* Find the default segment for the memory operand.
+ Used to optimize out explicit segment specifications. */
+ if (i.seg)
+ {
+ unsigned int seg_index;
+
+ if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING)
+ {
+ seg_index = (i.rm.mode << 3) | i.bi.base;
+ default_seg = two_byte_segment_defaults[seg_index];
+ }
+ else
+ {
+ seg_index = (i.rm.mode << 3) | i.rm.regmem;
+ default_seg = one_byte_segment_defaults[seg_index];
+ }
+ }
+ }
+
+ /* Fill in i.rm.reg or i.rm.regmem field with register
+ operand (if any) based on
+ t->extension_opcode. Again, we must be careful to
+ make sure that segment/control/debug/test/MMX
+ registers are coded into the i.rm.reg field. */
+ if (i.reg_operands)
+ {
+ unsigned int op =
+ ((i.types[0]
+ & (Reg | SReg2 | SReg3 | Control | Debug
+ | Test | RegMMX))
+ ? 0
+ : ((i.types[1]
+ & (Reg | SReg2 | SReg3 | Control | Debug
+ | Test | RegMMX))
+ ? 1
+ : 2));
+ /* If there is an extension opcode to put here, the
+ register number must be put into the regmem field. */
+ if (t->extension_opcode != None)
+ i.rm.regmem = i.regs[op]->reg_num;
+ else
+ i.rm.reg = i.regs[op]->reg_num;
+
+ /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
+ we must set it to 3 to indicate this is a register
+ operand int the regmem field */
+ if (!i.mem_operands)
+ i.rm.mode = 3;
+ }
+
+ /* Fill in i.rm.reg field with extension opcode (if any). */
+ if (t->extension_opcode != None)
+ i.rm.reg = t->extension_opcode;
+ }
+
+ if (i.rm.mode != 3)
+ uses_mem_addrmode = 1;
+ }
+
+ /* GAS currently doesn't support 16-bit memory addressing modes at all,
+ so if we're writing 16-bit code and using a memory addressing mode,
+ always spew out an address size prefix. */
+ if (uses_mem_addrmode && flag_16bit_code)
+ {
+ if (i.prefixes == MAX_PREFIXES)
+ {
+ as_bad ("%d prefixes given and address size override gives too many prefixes",
+ MAX_PREFIXES);
+ return;
+ }
+ i.prefix[i.prefixes++] = ADDR_PREFIX_OPCODE;
+ }
+
+ /* If a segment was explicitly specified,
+ and the specified segment is not the default,
+ use an opcode prefix to select it.
+ If we never figured out what the default segment is,
+ then default_seg will be zero at this point,
+ and the specified segment prefix will always be used. */
+ if ((i.seg) && (i.seg != default_seg))
+ {
+ if (i.prefixes == MAX_PREFIXES)
+ {
+ as_bad ("%d prefixes given and %s segment override gives too many prefixes",
+ MAX_PREFIXES, i.seg->seg_name);
+ return;
+ }
+ i.prefix[i.prefixes++] = i.seg->seg_prefix;
+ }
+ }
+ }
+
+ /* Handle conversion of 'int $3' --> special int3 insn. */
+ if (t->base_opcode == INT_OPCODE && i.imms[0]->X_add_number == 3)
+ {
+ t->base_opcode = INT3_OPCODE;
+ i.imm_operands = 0;
+ }
+
+ /* We are ready to output the insn. */
+ {
+ register char *p;
+
+ /* Output jumps. */
+ if (t->opcode_modifier & Jump)
+ {
+ unsigned long n = i.disps[0]->X_add_number;
+
+ if (i.disps[0]->X_op == O_constant)
+ {
+ if (fits_in_signed_byte (n))
+ {
+ p = frag_more (2);
+ insn_size += 2;
+ p[0] = t->base_opcode;
+ p[1] = n;
+ }
+ else
+ { /* It's an absolute word/dword displacement. */
+
+ /* Use only 16-bit jumps for 16-bit code,
+ because text segments are limited to 64K anyway;
+ use only 32-bit jumps for 32-bit code,
+ because they're faster. */
+ int jmp_size = flag_16bit_code ? 2 : 4;
+ if (flag_16bit_code && !fits_in_signed_word (n))
+ {
+ as_bad ("16-bit jump out of range");
+ return;
+ }
+
+ if (t->base_opcode == JUMP_PC_RELATIVE)
+ { /* pace */
+ /* unconditional jump */
+ p = frag_more (1 + jmp_size);
+ insn_size += 1 + jmp_size;
+ p[0] = (char) 0xe9;
+ md_number_to_chars (&p[1], (valueT) n, jmp_size);
+ }
+ else
+ {
+ /* conditional jump */
+ p = frag_more (2 + jmp_size);
+ insn_size += 2 + jmp_size;
+ p[0] = TWO_BYTE_OPCODE_ESCAPE;
+ p[1] = t->base_opcode + 0x10;
+ md_number_to_chars (&p[2], (valueT) n, jmp_size);
+ }
+ }
+ }
+ else
+ {
+ if (flag_16bit_code)
+ {
+ FRAG_APPEND_1_CHAR (WORD_PREFIX_OPCODE);
+ insn_size += 1;
+ }
+
+ /* It's a symbol; end frag & setup for relax.
+ Make sure there are more than 6 chars left in the current frag;
+ if not we'll have to start a new one. */
+ frag_grow (7);
+ p = frag_more (1);
+ insn_size += 1;
+ p[0] = t->base_opcode;
+ frag_var (rs_machine_dependent,
+ 6, /* 2 opcode/prefix + 4 displacement */
+ 1,
+ ((unsigned char) *p == JUMP_PC_RELATIVE
+ ? ENCODE_RELAX_STATE (UNCOND_JUMP, BYTE)
+ : ENCODE_RELAX_STATE (COND_JUMP, BYTE)),
+ i.disps[0]->X_add_symbol,
+ (offsetT) n, p);
+ }
+ }
+ else if (t->opcode_modifier & (JumpByte | JumpDword))
+ {
+ int size = (t->opcode_modifier & JumpByte) ? 1 : 4;
+ unsigned long n = i.disps[0]->X_add_number;
+ unsigned char *q;
+
+ /* The jcx/jecx instruction might need a data size prefix. */
+ for (q = i.prefix; q < i.prefix + i.prefixes; q++)
+ {
+ if (*q == WORD_PREFIX_OPCODE)
+ {
+ FRAG_APPEND_1_CHAR (WORD_PREFIX_OPCODE);
+ insn_size += 1;
+ break;
+ }
+ }
+
+ if ((size == 4) && (flag_16bit_code))
+ {
+ FRAG_APPEND_1_CHAR (WORD_PREFIX_OPCODE);
+ insn_size += 1;
+ }
+
+ if (fits_in_unsigned_byte (t->base_opcode))
+ {
+ FRAG_APPEND_1_CHAR (t->base_opcode);
+ insn_size += 1;
+ }
+ else
+ {
+ p = frag_more (2); /* opcode can be at most two bytes */
+ insn_size += 2;
+ /* put out high byte first: can't use md_number_to_chars! */
+ *p++ = (t->base_opcode >> 8) & 0xff;
+ *p = t->base_opcode & 0xff;
+ }
+
+ p = frag_more (size);
+ insn_size += size;
+ if (i.disps[0]->X_op == O_constant)
+ {
+ md_number_to_chars (p, (valueT) n, size);
+ if (size == 1 && !fits_in_signed_byte (n))
+ {
+ as_bad ("loop/jecx only takes byte displacement; %lu shortened to %d",
+ n, *p);
+ }
+ }
+ else
+ {
+ fix_new_exp (frag_now, p - frag_now->fr_literal, size,
+ i.disps[0], 1, reloc (size, 1, i.disp_reloc[0]));
+
+ }
+ }
+ else if (t->opcode_modifier & JumpInterSegment)
+ {
+ if (flag_16bit_code)
+ {
+ FRAG_APPEND_1_CHAR (WORD_PREFIX_OPCODE);
+ insn_size += 1;
+ }
+
+ p = frag_more (1 + 2 + 4); /* 1 opcode; 2 segment; 4 offset */
+ insn_size += 1 + 2 + 4;
+ p[0] = t->base_opcode;
+ if (i.imms[1]->X_op == O_constant)
+ md_number_to_chars (p + 1, (valueT) i.imms[1]->X_add_number, 4);
+ else
+ fix_new_exp (frag_now, p + 1 - frag_now->fr_literal, 4,
+ i.imms[1], 0, BFD_RELOC_32);
+ if (i.imms[0]->X_op != O_constant)
+ as_bad ("can't handle non absolute segment in long call/jmp");
+ md_number_to_chars (p + 5, (valueT) i.imms[0]->X_add_number, 2);
+ }
+ else
+ {
+ /* Output normal instructions here. */
+ unsigned char *q;
+
+ /* First the prefix bytes. */
+ for (q = i.prefix; q < i.prefix + i.prefixes; q++)
+ {
+ p = frag_more (1);
+ insn_size += 1;
+ md_number_to_chars (p, (valueT) *q, 1);
+ }
+
+ /* Now the opcode; be careful about word order here! */
+ if (fits_in_unsigned_byte (t->base_opcode))
+ {
+ FRAG_APPEND_1_CHAR (t->base_opcode);
+ insn_size += 1;
+ }
+ else if (fits_in_unsigned_word (t->base_opcode))
+ {
+ p = frag_more (2);
+ insn_size += 2;
+ /* put out high byte first: can't use md_number_to_chars! */
+ *p++ = (t->base_opcode >> 8) & 0xff;
+ *p = t->base_opcode & 0xff;
+ }
+ else
+ { /* opcode is either 3 or 4 bytes */
+ if (t->base_opcode & 0xff000000)
+ {
+ p = frag_more (4);
+ insn_size += 4;
+ *p++ = (t->base_opcode >> 24) & 0xff;
+ }
+ else
+ {
+ p = frag_more (3);
+ insn_size += 3;
+ }
+ *p++ = (t->base_opcode >> 16) & 0xff;
+ *p++ = (t->base_opcode >> 8) & 0xff;
+ *p = (t->base_opcode) & 0xff;
+ }
+
+ /* Now the modrm byte and base index byte (if present). */
+ if (t->opcode_modifier & Modrm)
+ {
+ p = frag_more (1);
+ insn_size += 1;
+ /* md_number_to_chars (p, i.rm, 1); */
+ md_number_to_chars (p,
+ (valueT) (i.rm.regmem << 0
+ | i.rm.reg << 3
+ | i.rm.mode << 6),
+ 1);
+ /* If i.rm.regmem == ESP (4) && i.rm.mode != Mode 3 (Register mode)
+ ==> need second modrm byte. */
+ if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING && i.rm.mode != 3)
+ {
+ p = frag_more (1);
+ insn_size += 1;
+ /* md_number_to_chars (p, i.bi, 1); */
+ md_number_to_chars (p, (valueT) (i.bi.base << 0
+ | i.bi.index << 3
+ | i.bi.scale << 6),
+ 1);
+ }
+ }
+
+ if (i.disp_operands)
+ {
+ register unsigned int n;
+
+ for (n = 0; n < i.operands; n++)
+ {
+ if (i.disps[n])
+ {
+ if (i.disps[n]->X_op == O_constant)
+ {
+ if (i.types[n] & (Disp8 | Abs8))
+ {
+ p = frag_more (1);
+ insn_size += 1;
+ md_number_to_chars (p,
+ (valueT) i.disps[n]->X_add_number,
+ 1);
+ }
+ else if (i.types[n] & (Disp16 | Abs16))
+ {
+ p = frag_more (2);
+ insn_size += 2;
+ md_number_to_chars (p,
+ (valueT) i.disps[n]->X_add_number,
+ 2);
+ }
+ else
+ { /* Disp32|Abs32 */
+ p = frag_more (4);
+ insn_size += 4;
+ md_number_to_chars (p,
+ (valueT) i.disps[n]->X_add_number,
+ 4);
+ }
+ }
+ else
+ { /* not absolute_section */
+ /* need a 32-bit fixup (don't support 8bit non-absolute disps) */
+ p = frag_more (4);
+ insn_size += 4;
+ fix_new_exp (frag_now, p - frag_now->fr_literal, 4,
+ i.disps[n], 0,
+ TC_RELOC(i.disp_reloc[n], BFD_RELOC_32));
+ }
+ }
+ }
+ } /* end displacement output */
+
+ /* output immediate */
+ if (i.imm_operands)
+ {
+ register unsigned int n;
+
+ for (n = 0; n < i.operands; n++)
+ {
+ if (i.imms[n])
+ {
+ if (i.imms[n]->X_op == O_constant)
+ {
+ if (i.types[n] & (Imm8 | Imm8S))
+ {
+ p = frag_more (1);
+ insn_size += 1;
+ md_number_to_chars (p,
+ (valueT) i.imms[n]->X_add_number,
+ 1);
+ }
+ else if (i.types[n] & Imm16)
+ {
+ p = frag_more (2);
+ insn_size += 2;
+ md_number_to_chars (p,
+ (valueT) i.imms[n]->X_add_number,
+ 2);
+ }
+ else
+ {
+ p = frag_more (4);
+ insn_size += 4;
+ md_number_to_chars (p,
+ (valueT) i.imms[n]->X_add_number,
+ 4);
+ }
+ }
+ else
+ { /* not absolute_section */
+ /* Need a 32-bit fixup (don't support 8bit
+ non-absolute ims). Try to support other
+ sizes ... */
+ int r_type;
+ int size;
+ int pcrel = 0;
+
+ if (i.types[n] & (Imm8 | Imm8S))
+ size = 1;
+ else if (i.types[n] & Imm16)
+ size = 2;
+ else
+ size = 4;
+ r_type = reloc (size, 0, i.disp_reloc[0]);
+ p = frag_more (size);
+ insn_size += size;
+#ifdef BFD_ASSEMBLER
+ if (r_type == BFD_RELOC_32
+ && GOT_symbol
+ && GOT_symbol == i.imms[n]->X_add_symbol
+ && (i.imms[n]->X_op == O_symbol
+ || (i.imms[n]->X_op == O_add
+ && (i.imms[n]->X_op_symbol->sy_value.X_op
+ == O_subtract))))
+ {
+ r_type = BFD_RELOC_386_GOTPC;
+ i.imms[n]->X_add_number += 3;
+ }
+#endif
+ fix_new_exp (frag_now, p - frag_now->fr_literal, size,
+ i.imms[n], pcrel, r_type);
+ }
+ }
+ }
+ } /* end immediate output */
+ }
+
+#ifdef DEBUG386
+ if (flag_debug)
+ {
+ pi (line, &i);
+ }
+#endif /* DEBUG386 */
+ }
+}
+
+/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
+ on error. */
+
+static int
+i386_operand (operand_string)
+ char *operand_string;
+{
+ register char *op_string = operand_string;
+
+ /* Address of '\0' at end of operand_string. */
+ char *end_of_operand_string = operand_string + strlen (operand_string);
+
+ /* Start and end of displacement string expression (if found). */
+ char *displacement_string_start = NULL;
+ char *displacement_string_end = NULL;
+
+ /* We check for an absolute prefix (differentiating,
+ for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
+ if (*op_string == ABSOLUTE_PREFIX)
+ {
+ op_string++;
+ i.types[this_operand] |= JumpAbsolute;
+ }
+
+ /* Check if operand is a register. */
+ if (*op_string == REGISTER_PREFIX)
+ {
+ register reg_entry *r;
+ if (!(r = parse_register (op_string)))
+ {
+ as_bad ("bad register name ('%s')", op_string);
+ return 0;
+ }
+ /* Check for segment override, rather than segment register by
+ searching for ':' after %<x>s where <x> = s, c, d, e, f, g. */
+ if ((r->reg_type & (SReg2 | SReg3)) && op_string[3] == ':')
+ {
+ switch (r->reg_num)
+ {
+ case 0:
+ i.seg = (seg_entry *) & es;
+ break;
+ case 1:
+ i.seg = (seg_entry *) & cs;
+ break;
+ case 2:
+ i.seg = (seg_entry *) & ss;
+ break;
+ case 3:
+ i.seg = (seg_entry *) & ds;
+ break;
+ case 4:
+ i.seg = (seg_entry *) & fs;
+ break;
+ case 5:
+ i.seg = (seg_entry *) & gs;
+ break;
+ }
+ op_string += 4; /* skip % <x> s : */
+ operand_string = op_string; /* Pretend given string starts here. */
+ if (!is_digit_char (*op_string) && !is_identifier_char (*op_string)
+ && *op_string != '(' && *op_string != ABSOLUTE_PREFIX)
+ {
+ as_bad ("bad memory operand after segment override");
+ return 0;
+ }
+ /* Handle case of %es:*foo. */
+ if (*op_string == ABSOLUTE_PREFIX)
+ {
+ op_string++;
+ i.types[this_operand] |= JumpAbsolute;
+ }
+ goto do_memory_reference;
+ }
+ i.types[this_operand] |= r->reg_type;
+ i.regs[this_operand] = r;
+ i.reg_operands++;
+ }
+ else if (*op_string == IMMEDIATE_PREFIX)
+ { /* ... or an immediate */
+ char *save_input_line_pointer;
+ segT exp_seg = 0;
+ expressionS *exp;
+
+ if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
+ {
+ as_bad ("only 1 or 2 immediate operands are allowed");
+ return 0;
+ }
+
+ exp = &im_expressions[i.imm_operands++];
+ i.imms[this_operand] = exp;
+ save_input_line_pointer = input_line_pointer;
+ input_line_pointer = ++op_string; /* must advance op_string! */
+ SKIP_WHITESPACE ();
+ exp_seg = expression (exp);
+ input_line_pointer = save_input_line_pointer;
+
+ if (exp->X_op == O_absent)
+ {
+ /* missing or bad expr becomes absolute 0 */
+ as_bad ("missing or invalid immediate expression '%s' taken as 0",
+ operand_string);
+ exp->X_op = O_constant;
+ exp->X_add_number = 0;
+ exp->X_add_symbol = (symbolS *) 0;
+ exp->X_op_symbol = (symbolS *) 0;
+ i.types[this_operand] |= Imm;
+ }
+ else if (exp->X_op == O_constant)
+ {
+ i.types[this_operand] |=
+ smallest_imm_type ((unsigned long) exp->X_add_number);
+ }
+#ifdef OBJ_AOUT
+ else if (exp_seg != text_section
+ && exp_seg != data_section
+ && exp_seg != bss_section
+ && exp_seg != undefined_section
+#ifdef BFD_ASSEMBLER
+ && ! bfd_is_com_section (exp_seg)
+#endif
+ )
+ {
+ seg_unimplemented:
+ as_bad ("Unimplemented segment type %d in parse_operand", exp_seg);
+ return 0;
+ }
+#endif
+ else
+ {
+ /* this is an address ==> 32bit */
+ i.types[this_operand] |= Imm32;
+ }
+ /* shorten this type of this operand if the instruction wants
+ * fewer bits than are present in the immediate. The bit field
+ * code can put out 'andb $0xffffff, %al', for example. pace
+ * also 'movw $foo,(%eax)'
+ */
+ switch (i.suffix)
+ {
+ case WORD_OPCODE_SUFFIX:
+ i.types[this_operand] |= Imm16;
+ break;
+ case BYTE_OPCODE_SUFFIX:
+ i.types[this_operand] |= Imm16 | Imm8 | Imm8S;
+ break;
+ }
+ }
+ else if (is_digit_char (*op_string) || is_identifier_char (*op_string)
+ || *op_string == '(')
+ {
+ /* This is a memory reference of some sort. */
+ register char *base_string;
+ unsigned int found_base_index_form;
+
+ do_memory_reference:
+ if (i.mem_operands == MAX_MEMORY_OPERANDS)
+ {
+ as_bad ("more than 1 memory reference in instruction");
+ return 0;
+ }
+ i.mem_operands++;
+
+ /* Determine type of memory operand from opcode_suffix;
+ no opcode suffix implies general memory references. */
+ switch (i.suffix)
+ {
+ case BYTE_OPCODE_SUFFIX:
+ i.types[this_operand] |= Mem8;
+ break;
+ case WORD_OPCODE_SUFFIX:
+ i.types[this_operand] |= Mem16;
+ break;
+ case DWORD_OPCODE_SUFFIX:
+ default:
+ i.types[this_operand] |= Mem32;
+ }
+
+ /* Check for base index form. We detect the base index form by
+ looking for an ')' at the end of the operand, searching
+ for the '(' matching it, and finding a REGISTER_PREFIX or ','
+ after it. */
+ base_string = end_of_operand_string - 1;
+ found_base_index_form = 0;
+ if (*base_string == ')')
+ {
+ unsigned int parens_balanced = 1;
+ /* We've already checked that the number of left & right ()'s are
+ equal, so this loop will not be infinite. */
+ do
+ {
+ base_string--;
+ if (*base_string == ')')
+ parens_balanced++;
+ if (*base_string == '(')
+ parens_balanced--;
+ }
+ while (parens_balanced);
+ base_string++; /* Skip past '('. */
+ if (*base_string == REGISTER_PREFIX || *base_string == ',')
+ found_base_index_form = 1;
+ }
+
+ /* If we can't parse a base index register expression, we've found
+ a pure displacement expression. We set up displacement_string_start
+ and displacement_string_end for the code below. */
+ if (!found_base_index_form)
+ {
+ displacement_string_start = op_string;
+ displacement_string_end = end_of_operand_string;
+ }
+ else
+ {
+ char *base_reg_name, *index_reg_name, *num_string;
+ int num;
+
+ i.types[this_operand] |= BaseIndex;
+
+ /* If there is a displacement set-up for it to be parsed later. */
+ if (base_string != op_string + 1)
+ {
+ displacement_string_start = op_string;
+ displacement_string_end = base_string - 1;
+ }
+
+ /* Find base register (if any). */
+ if (*base_string != ',')
+ {
+ base_reg_name = base_string++;
+ /* skip past register name & parse it */
+ while (isalpha (*base_string))
+ base_string++;
+ if (base_string == base_reg_name + 1)
+ {
+ as_bad ("can't find base register name after '(%c'",
+ REGISTER_PREFIX);
+ return 0;
+ }
+ END_STRING_AND_SAVE (base_string);
+ if (!(i.base_reg = parse_register (base_reg_name)))
+ {
+ as_bad ("bad base register name ('%s')", base_reg_name);
+ return 0;
+ }
+ RESTORE_END_STRING (base_string);
+ }
+
+ /* Now check seperator; must be ',' ==> index reg
+ OR num ==> no index reg. just scale factor
+ OR ')' ==> end. (scale factor = 1) */
+ if (*base_string != ',' && *base_string != ')')
+ {
+ as_bad ("expecting ',' or ')' after base register in `%s'",
+ operand_string);
+ return 0;
+ }
+
+ /* There may index reg here; and there may be a scale factor. */
+ if (*base_string == ',' && *(base_string + 1) == REGISTER_PREFIX)
+ {
+ index_reg_name = ++base_string;
+ while (isalpha (*++base_string));
+ END_STRING_AND_SAVE (base_string);
+ if (!(i.index_reg = parse_register (index_reg_name)))
+ {
+ as_bad ("bad index register name ('%s')", index_reg_name);
+ return 0;
+ }
+ RESTORE_END_STRING (base_string);
+ }
+
+ /* Check for scale factor. */
+ if (*base_string == ',' && isdigit (*(base_string + 1)))
+ {
+ num_string = ++base_string;
+ while (is_digit_char (*base_string))
+ base_string++;
+ if (base_string == num_string)
+ {
+ as_bad ("can't find a scale factor after ','");
+ return 0;
+ }
+ END_STRING_AND_SAVE (base_string);
+ /* We've got a scale factor. */
+ if (!sscanf (num_string, "%d", &num))
+ {
+ as_bad ("can't parse scale factor from '%s'", num_string);
+ return 0;
+ }
+ RESTORE_END_STRING (base_string);
+ switch (num)
+ { /* must be 1 digit scale */
+ case 1:
+ i.log2_scale_factor = 0;
+ break;
+ case 2:
+ i.log2_scale_factor = 1;
+ break;
+ case 4:
+ i.log2_scale_factor = 2;
+ break;
+ case 8:
+ i.log2_scale_factor = 3;
+ break;
+ default:
+ as_bad ("expecting scale factor of 1, 2, 4, 8; got %d", num);
+ return 0;
+ }
+ }
+ else
+ {
+ if (!i.index_reg && *base_string == ',')
+ {
+ as_bad ("expecting index register or scale factor after ','; got '%c'",
+ *(base_string + 1));
+ return 0;
+ }
+ }
+ }
+
+ /* If there's an expression begining the operand, parse it,
+ assuming displacement_string_start and displacement_string_end
+ are meaningful. */
+ if (displacement_string_start)
+ {
+ register expressionS *exp;
+ segT exp_seg = 0;
+ char *save_input_line_pointer;
+ exp = &disp_expressions[i.disp_operands];
+ i.disps[this_operand] = exp;
+ i.disp_reloc[this_operand] = NO_RELOC;
+ i.disp_operands++;
+ save_input_line_pointer = input_line_pointer;
+ input_line_pointer = displacement_string_start;
+ END_STRING_AND_SAVE (displacement_string_end);
+#ifndef LEX_AT
+ {
+ /*
+ * We can have operands of the form
+ * <symbol>@GOTOFF+<nnn>
+ * Take the easy way out here and copy everything
+ * into a temporary buffer...
+ */
+ register char *cp;
+ if ((cp = strchr (input_line_pointer,'@')) != NULL) {
+ char tmpbuf[BUFSIZ];
+
+ if(!GOT_symbol)
+ GOT_symbol = symbol_find_or_make(GLOBAL_OFFSET_TABLE_NAME);
+
+ if (strncmp(cp+1, "PLT", 3) == 0) {
+ i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
+ *cp = '\0';
+ strcpy(tmpbuf, input_line_pointer);
+ strcat(tmpbuf, cp+1+3);
+ *cp = '@';
+ } else if (strncmp(cp+1, "GOTOFF", 6) == 0) {
+ i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
+ *cp = '\0';
+ strcpy(tmpbuf, input_line_pointer);
+ strcat(tmpbuf, cp+1+6);
+ *cp = '@';
+ } else if (strncmp(cp+1, "GOT", 3) == 0) {
+ i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
+ *cp = '\0';
+ strcpy(tmpbuf, input_line_pointer);
+ strcat(tmpbuf, cp+1+3);
+ *cp = '@';
+ } else
+ as_bad("Bad reloc specifier '%s' in expression", cp+1);
+ input_line_pointer = tmpbuf;
+ }
+ }
+#endif
+ exp_seg = expression (exp);
+
+#ifdef BFD_ASSEMBLER
+ /* We do this to make sure that the section symbol is in
+ the symbol table. We will ultimately change the relocation
+ to be relative to the beginning of the section */
+ if (i.disp_reloc[this_operand] == BFD_RELOC_386_GOTOFF)
+ {
+ if (S_IS_LOCAL(exp->X_add_symbol)
+ && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
+ section_symbol(exp->X_add_symbol->bsym->section);
+ assert (exp->X_op == O_symbol);
+ exp->X_op = O_subtract;
+ exp->X_op_symbol = GOT_symbol;
+ i.disp_reloc[this_operand] = BFD_RELOC_32;
+ }
+#endif
+
+ if (*input_line_pointer)
+ as_bad ("Ignoring junk '%s' after expression", input_line_pointer);
+ RESTORE_END_STRING (displacement_string_end);
+ input_line_pointer = save_input_line_pointer;
+ if (exp->X_op == O_absent)
+ {
+ /* missing expr becomes absolute 0 */
+ as_bad ("missing or invalid displacement '%s' taken as 0",
+ operand_string);
+ i.types[this_operand] |= (Disp | Abs);
+ exp->X_op = O_constant;
+ exp->X_add_number = 0;
+ exp->X_add_symbol = (symbolS *) 0;
+ exp->X_op_symbol = (symbolS *) 0;
+ }
+ else if (exp->X_op == O_constant)
+ {
+ i.types[this_operand] |= SMALLEST_DISP_TYPE (exp->X_add_number);
+ }
+ else if (exp_seg == text_section
+ || exp_seg == data_section
+ || exp_seg == bss_section
+ || exp_seg == undefined_section)
+ {
+ i.types[this_operand] |= Disp32;
+ }
+ else
+ {
+#ifndef OBJ_AOUT
+ i.types[this_operand] |= Disp32;
+#else
+ goto seg_unimplemented;
+#endif
+ }
+ }
+
+ /* Make sure the memory operand we've been dealt is valid. */
+ if (i.base_reg && i.index_reg &&
+ !(i.base_reg->reg_type & i.index_reg->reg_type & Reg))
+ {
+ as_bad ("register size mismatch in (base,index,scale) expression");
+ return 0;
+ }
+ /*
+ * special case for (%dx) while doing input/output op
+ */
+ if ((i.base_reg &&
+ (i.base_reg->reg_type == (Reg16 | InOutPortReg)) &&
+ (i.index_reg == 0)))
+ {
+ i.types[this_operand] |= InOutPortReg;
+ return 1;
+ }
+ if ((i.base_reg && (i.base_reg->reg_type & Reg32) == 0) ||
+ (i.index_reg && (i.index_reg->reg_type & Reg32) == 0))
+ {
+ as_bad ("base/index register must be 32 bit register");
+ return 0;
+ }
+ if (i.index_reg && i.index_reg == esp)
+ {
+ as_bad ("%s may not be used as an index register", esp->reg_name);
+ return 0;
+ }
+ }
+ else
+ { /* it's not a memory operand; argh! */
+ as_bad ("invalid char %s begining %s operand '%s'",
+ output_invalid (*op_string), ordinal_names[this_operand],
+ op_string);
+ return 0;
+ }
+ return 1; /* normal return */
+}
+
+/*
+ * md_estimate_size_before_relax()
+ *
+ * Called just before relax().
+ * Any symbol that is now undefined will not become defined.
+ * Return the correct fr_subtype in the frag.
+ * Return the initial "guess for fr_var" to caller.
+ * The guess for fr_var is ACTUALLY the growth beyond fr_fix.
+ * Whatever we do to grow fr_fix or fr_var contributes to our returned value.
+ * Although it may not be explicit in the frag, pretend fr_var starts with a
+ * 0 value.
+ */
+int
+md_estimate_size_before_relax (fragP, segment)
+ register fragS *fragP;
+ register segT segment;
+{
+ register unsigned char *opcode;
+ register int old_fr_fix;
+
+ old_fr_fix = fragP->fr_fix;
+ opcode = (unsigned char *) fragP->fr_opcode;
+ /* We've already got fragP->fr_subtype right; all we have to do is check
+ for un-relaxable symbols. */
+ if (S_GET_SEGMENT (fragP->fr_symbol) != segment)
+ {
+ /* symbol is undefined in this segment */
+ switch (opcode[0])
+ {
+ case JUMP_PC_RELATIVE: /* make jmp (0xeb) a dword displacement jump */
+ opcode[0] = 0xe9; /* dword disp jmp */
+ fragP->fr_fix += 4;
+ fix_new (fragP, old_fr_fix, 4,
+ fragP->fr_symbol,
+ fragP->fr_offset, 1,
+ (GOT_symbol && /* Not quite right - we should switch on
+ presence of @PLT, but I cannot see how
+ to get to that from here. We should have
+ done this in md_assemble to really
+ get it right all of the time, but I
+ think it does not matter that much, as
+ this will be right most of the time. ERY*/
+ S_GET_SEGMENT(fragP->fr_symbol) == undefined_section)?
+ BFD_RELOC_386_PLT32 : BFD_RELOC_32_PCREL);
+ break;
+
+ default:
+ /* This changes the byte-displacement jump 0x7N -->
+ the dword-displacement jump 0x0f8N */
+ opcode[1] = opcode[0] + 0x10;
+ opcode[0] = TWO_BYTE_OPCODE_ESCAPE; /* two-byte escape */
+ fragP->fr_fix += 1 + 4; /* we've added an opcode byte */
+ fix_new (fragP, old_fr_fix + 1, 4,
+ fragP->fr_symbol,
+ fragP->fr_offset, 1,
+ (GOT_symbol && /* Not quite right - we should switch on
+ presence of @PLT, but I cannot see how
+ to get to that from here. ERY */
+ S_GET_SEGMENT(fragP->fr_symbol) == undefined_section)?
+ BFD_RELOC_386_PLT32 : BFD_RELOC_32_PCREL);
+ break;
+ }
+ frag_wane (fragP);
+ }
+ return (fragP->fr_var + fragP->fr_fix - old_fr_fix);
+} /* md_estimate_size_before_relax() */
+
+/*
+ * md_convert_frag();
+ *
+ * Called after relax() is finished.
+ * In: Address of frag.
+ * fr_type == rs_machine_dependent.
+ * fr_subtype is what the address relaxed to.
+ *
+ * Out: Any fixSs and constants are set up.
+ * Caller will turn frag into a ".space 0".
+ */
+#ifndef BFD_ASSEMBLER
+void
+md_convert_frag (headers, sec, fragP)
+ object_headers *headers;
+ segT sec;
+ register fragS *fragP;
+#else
+void
+md_convert_frag (abfd, sec, fragP)
+ bfd *abfd;
+ segT sec;
+ register fragS *fragP;
+#endif
+{
+ register unsigned char *opcode;
+ unsigned char *where_to_put_displacement = NULL;
+ unsigned int target_address;
+ unsigned int opcode_address;
+ unsigned int extension = 0;
+ int displacement_from_opcode_start;
+
+ opcode = (unsigned char *) fragP->fr_opcode;
+
+ /* Address we want to reach in file space. */
+ target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
+#ifdef BFD_ASSEMBLER /* not needed otherwise? */
+ target_address += fragP->fr_symbol->sy_frag->fr_address;
+#endif
+
+ /* Address opcode resides at in file space. */
+ opcode_address = fragP->fr_address + fragP->fr_fix;
+
+ /* Displacement from opcode start to fill into instruction. */
+ displacement_from_opcode_start = target_address - opcode_address;
+
+ switch (fragP->fr_subtype)
+ {
+ case ENCODE_RELAX_STATE (COND_JUMP, BYTE):
+ case ENCODE_RELAX_STATE (UNCOND_JUMP, BYTE):
+ /* don't have to change opcode */
+ extension = 1; /* 1 opcode + 1 displacement */
+ where_to_put_displacement = &opcode[1];
+ break;
+
+ case ENCODE_RELAX_STATE (COND_JUMP, WORD):
+ opcode[1] = TWO_BYTE_OPCODE_ESCAPE;
+ opcode[2] = opcode[0] + 0x10;
+ opcode[0] = WORD_PREFIX_OPCODE;
+ extension = 4; /* 3 opcode + 2 displacement */
+ where_to_put_displacement = &opcode[3];
+ break;
+
+ case ENCODE_RELAX_STATE (UNCOND_JUMP, WORD):
+ opcode[1] = 0xe9;
+ opcode[0] = WORD_PREFIX_OPCODE;
+ extension = 3; /* 2 opcode + 2 displacement */
+ where_to_put_displacement = &opcode[2];
+ break;
+
+ case ENCODE_RELAX_STATE (COND_JUMP, DWORD):
+ opcode[1] = opcode[0] + 0x10;
+ opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
+ extension = 5; /* 2 opcode + 4 displacement */
+ where_to_put_displacement = &opcode[2];
+ break;
+
+ case ENCODE_RELAX_STATE (UNCOND_JUMP, DWORD):
+ opcode[0] = 0xe9;
+ extension = 4; /* 1 opcode + 4 displacement */
+ where_to_put_displacement = &opcode[1];
+ break;
+
+ default:
+ BAD_CASE (fragP->fr_subtype);
+ break;
+ }
+ /* now put displacement after opcode */
+ md_number_to_chars ((char *) where_to_put_displacement,
+ (valueT) (displacement_from_opcode_start - extension),
+ SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
+ fragP->fr_fix += extension;
+}
+
+
+int md_short_jump_size = 2; /* size of byte displacement jmp */
+int md_long_jump_size = 5; /* size of dword displacement jmp */
+const int md_reloc_size = 8; /* Size of relocation record */
+
+void
+md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
+ char *ptr;
+ addressT from_addr, to_addr;
+ fragS *frag;
+ symbolS *to_symbol;
+{
+ long offset;
+
+ offset = to_addr - (from_addr + 2);
+ md_number_to_chars (ptr, (valueT) 0xeb, 1); /* opcode for byte-disp jump */
+ md_number_to_chars (ptr + 1, (valueT) offset, 1);
+}
+
+void
+md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
+ char *ptr;
+ addressT from_addr, to_addr;
+ fragS *frag;
+ symbolS *to_symbol;
+{
+ long offset;
+
+ if (flag_do_long_jump)
+ {
+ offset = to_addr - S_GET_VALUE (to_symbol);
+ md_number_to_chars (ptr, (valueT) 0xe9, 1);/* opcode for long jmp */
+ md_number_to_chars (ptr + 1, (valueT) offset, 4);
+ fix_new (frag, (ptr + 1) - frag->fr_literal, 4,
+ to_symbol, (offsetT) 0, 0, BFD_RELOC_32);
+ }
+ else
+ {
+ offset = to_addr - (from_addr + 5);
+ md_number_to_chars (ptr, (valueT) 0xe9, 1);
+ md_number_to_chars (ptr + 1, (valueT) offset, 4);
+ }
+}
+
+/* Apply a fixup (fixS) to segment data, once it has been determined
+ by our caller that we have all the info we need to fix it up.
+
+ On the 386, immediates, displacements, and data pointers are all in
+ the same (little-endian) format, so we don't need to care about which
+ we are handling. */
+
+int
+md_apply_fix3 (fixP, valp, seg)
+ fixS *fixP; /* The fix we're to put in. */
+ valueT *valp; /* Pointer to the value of the bits. */
+ segT seg; /* Segment fix is from. */
+{
+ register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
+ valueT value = *valp;
+
+#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
+ /*
+ * This is a hack. There should be a better way to
+ * handle this.
+ */
+ if (fixP->fx_r_type == BFD_RELOC_32_PCREL && fixP->fx_addsy)
+ {
+#ifndef OBJ_AOUT
+ if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
+ value += fixP->fx_where + fixP->fx_frag->fr_address;
+#endif
+#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
+ if (OUTPUT_FLAVOR == bfd_target_elf_flavour
+ && (S_GET_SEGMENT (fixP->fx_addsy) == seg
+ || (fixP->fx_addsy->bsym->flags & BSF_SECTION_SYM) != 0))
+ {
+ /* Yes, we add the values in twice. This is because
+ bfd_perform_relocation subtracts them out again. I think
+ bfd_perform_relocation is broken, but I don't dare change
+ it. FIXME. */
+ value += fixP->fx_where + fixP->fx_frag->fr_address;
+ }
+#endif
+ }
+
+ /* Fix a few things - the dynamic linker expects certain values here,
+ and we must not dissappoint it. */
+#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
+ if (OUTPUT_FLAVOR == bfd_target_elf_flavour
+ && fixP->fx_addsy)
+ switch(fixP->fx_r_type) {
+ case BFD_RELOC_386_PLT32:
+ /* Make the jump instruction point to the address of the operand. At
+ runtime we merely add the offset to the actual PLT entry. */
+ value = 0xfffffffc;
+ break;
+ case BFD_RELOC_386_GOTPC:
+/*
+ * This is tough to explain. We end up with this one if we have
+ * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
+ * here is to obtain the absolute address of the GOT, and it is strongly
+ * preferable from a performance point of view to avoid using a runtime
+ * relocation for this. The actual sequence of instructions often look
+ * something like:
+ *
+ * call .L66
+ * .L66:
+ * popl %ebx
+ * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
+ *
+ * The call and pop essentially return the absolute address of
+ * the label .L66 and store it in %ebx. The linker itself will
+ * ultimately change the first operand of the addl so that %ebx points to
+ * the GOT, but to keep things simple, the .o file must have this operand
+ * set so that it generates not the absolute address of .L66, but the
+ * absolute address of itself. This allows the linker itself simply
+ * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
+ * added in, and the addend of the relocation is stored in the operand
+ * field for the instruction itself.
+ *
+ * Our job here is to fix the operand so that it would add the correct
+ * offset so that %ebx would point to itself. The thing that is tricky is
+ * that .-.L66 will point to the beginning of the instruction, so we need
+ * to further modify the operand so that it will point to itself.
+ * There are other cases where you have something like:
+ *
+ * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
+ *
+ * and here no correction would be required. Internally in the assembler
+ * we treat operands of this form as not being pcrel since the '.' is
+ * explicitly mentioned, and I wonder whether it would simplify matters
+ * to do it this way. Who knows. In earlier versions of the PIC patches,
+ * the pcrel_adjust field was used to store the correction, but since the
+ * expression is not pcrel, I felt it would be confusing to do it this way.
+ */
+ value -= 1;
+ break;
+ case BFD_RELOC_386_GOT32:
+ value = 0; /* Fully resolved at runtime. No addend. */
+ break;
+ case BFD_RELOC_386_GOTOFF:
+ break;
+
+ default:
+ break;
+ }
+#endif
+
+#endif
+ md_number_to_chars (p, value, fixP->fx_size);
+
+ return 1;
+}
+
+#if 0
+/* This is never used. */
+long /* Knows about the byte order in a word. */
+md_chars_to_number (con, nbytes)
+ unsigned char con[]; /* Low order byte 1st. */
+ int nbytes; /* Number of bytes in the input. */
+{
+ long retval;
+ for (retval = 0, con += nbytes - 1; nbytes--; con--)
+ {
+ retval <<= BITS_PER_CHAR;
+ retval |= *con;
+ }
+ return retval;
+}
+#endif /* 0 */
+
+
+#define MAX_LITTLENUMS 6
+
+/* Turn the string pointed to by litP into a floating point constant of type
+ type, and emit the appropriate bytes. The number of LITTLENUMS emitted
+ is stored in *sizeP . An error message is returned, or NULL on OK. */
+char *
+md_atof (type, litP, sizeP)
+ char type;
+ char *litP;
+ int *sizeP;
+{
+ int prec;
+ LITTLENUM_TYPE words[MAX_LITTLENUMS];
+ LITTLENUM_TYPE *wordP;
+ char *t;
+
+ switch (type)
+ {
+ case 'f':
+ case 'F':
+ prec = 2;
+ break;
+
+ case 'd':
+ case 'D':
+ prec = 4;
+ break;
+
+ case 'x':
+ case 'X':
+ prec = 5;
+ break;
+
+ default:
+ *sizeP = 0;
+ return "Bad call to md_atof ()";
+ }
+ t = atof_ieee (input_line_pointer, type, words);
+ if (t)
+ input_line_pointer = t;
+
+ *sizeP = prec * sizeof (LITTLENUM_TYPE);
+ /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
+ the bigendian 386. */
+ for (wordP = words + prec - 1; prec--;)
+ {
+ md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
+ litP += sizeof (LITTLENUM_TYPE);
+ }
+ return 0;
+}
+
+char output_invalid_buf[8];
+
+static char *
+output_invalid (c)
+ char c;
+{
+ if (isprint (c))
+ sprintf (output_invalid_buf, "'%c'", c);
+ else
+ sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
+ return output_invalid_buf;
+}
+
+/* reg_string starts *before* REGISTER_PREFIX */
+static reg_entry *
+parse_register (reg_string)
+ char *reg_string;
+{
+ register char *s = reg_string;
+ register char *p;
+ char reg_name_given[MAX_REG_NAME_SIZE];
+
+ s++; /* skip REGISTER_PREFIX */
+ for (p = reg_name_given; is_register_char (*s); p++, s++)
+ {
+ *p = register_chars[(unsigned char) *s];
+ if (p >= reg_name_given + MAX_REG_NAME_SIZE)
+ return (reg_entry *) 0;
+ }
+ *p = '\0';
+ return (reg_entry *) hash_find (reg_hash, reg_name_given);
+}
+
+#ifdef OBJ_ELF
+CONST char *md_shortopts = "kmVQ:";
+#else
+CONST char *md_shortopts = "m";
+#endif
+struct option md_longopts[] = {
+ {NULL, no_argument, NULL, 0}
+};
+size_t md_longopts_size = sizeof(md_longopts);
+
+int
+md_parse_option (c, arg)
+ int c;
+ char *arg;
+{
+ switch (c)
+ {
+ case 'm':
+ flag_do_long_jump = 1;
+ break;
+
+#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
+ /* -k: Ignore for FreeBSD compatibility. */
+ case 'k':
+ break;
+
+ /* -V: SVR4 argument to print version ID. */
+ case 'V':
+ print_version_id ();
+ break;
+
+ /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
+ should be emitted or not. FIXME: Not implemented. */
+ case 'Q':
+ break;
+#endif
+
+ default:
+ return 0;
+ }
+ return 1;
+}
+
+void
+md_show_usage (stream)
+ FILE *stream;
+{
+ fprintf (stream, "\
+-m do long jump\n");
+}
+
+#ifdef BFD_ASSEMBLER
+#ifdef OBJ_MAYBE_ELF
+#ifdef OBJ_MAYBE_COFF
+
+/* Pick the target format to use. */
+
+const char *
+i386_target_format ()
+{
+ switch (OUTPUT_FLAVOR)
+ {
+ case bfd_target_coff_flavour:
+ return "coff-i386";
+ case bfd_target_elf_flavour:
+ return "elf32-i386";
+ default:
+ abort ();
+ return NULL;
+ }
+}
+
+#endif /* OBJ_MAYBE_COFF */
+#endif /* OBJ_MAYBE_ELF */
+#endif /* BFD_ASSEMBLER */
+
+/* ARGSUSED */
+symbolS *
+md_undefined_symbol (name)
+ char *name;
+{
+ if (*name == '_' && *(name+1) == 'G'
+ && strcmp(name, GLOBAL_OFFSET_TABLE_NAME) == 0)
+ {
+ if(!GOT_symbol)
+ {
+ if(symbol_find(name))
+ as_bad("GOT already in symbol table");
+ GOT_symbol = symbol_new (name, undefined_section,
+ (valueT) 0, &zero_address_frag);
+ };
+ return GOT_symbol;
+ }
+ return 0;
+}
+
+/* Round up a section size to the appropriate boundary. */
+valueT
+md_section_align (segment, size)
+ segT segment;
+ valueT size;
+{
+#ifdef OBJ_AOUT
+#ifdef BFD_ASSEMBLER
+ /* For a.out, force the section size to be aligned. If we don't do
+ this, BFD will align it for us, but it will not write out the
+ final bytes of the section. This may be a bug in BFD, but it is
+ easier to fix it here since that is how the other a.out targets
+ work. */
+ int align;
+
+ align = bfd_get_section_alignment (stdoutput, segment);
+ size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
+#endif
+#endif
+
+ return size;
+}
+
+/* Exactly what point is a PC-relative offset relative TO? On the
+ i386, they're relative to the address of the offset, plus its
+ size. (??? Is this right? FIXME-SOON!) */
+long
+md_pcrel_from (fixP)
+ fixS *fixP;
+{
+ return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
+}
+
+#ifndef I386COFF
+
+static void
+s_bss (ignore)
+ int ignore;
+{
+ register int temp;
+
+ temp = get_absolute_expression ();
+ subseg_set (bss_section, (subsegT) temp);
+ demand_empty_rest_of_line ();
+}
+
+#endif
+
+
+#ifdef BFD_ASSEMBLER
+
+void
+i386_validate_fix (fixp)
+ fixS *fixp;
+{
+ if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
+ {
+ fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
+ fixp->fx_subsy = 0;
+ }
+}
+
+#define F(SZ,PCREL) (((SZ) << 1) + (PCREL))
+#define MAP(SZ,PCREL,TYPE) case F(SZ,PCREL): code = (TYPE); break
+
+arelent *
+tc_gen_reloc (section, fixp)
+ asection *section;
+ fixS *fixp;
+{
+ arelent *rel;
+ bfd_reloc_code_real_type code;
+
+ switch(fixp->fx_r_type)
+ {
+ case BFD_RELOC_386_PLT32:
+ case BFD_RELOC_386_GOT32:
+ case BFD_RELOC_386_GOTOFF:
+ case BFD_RELOC_386_GOTPC:
+ code = fixp->fx_r_type;
+ break;
+ default:
+ switch (F (fixp->fx_size, fixp->fx_pcrel))
+ {
+ MAP (1, 0, BFD_RELOC_8);
+ MAP (2, 0, BFD_RELOC_16);
+ MAP (4, 0, BFD_RELOC_32);
+ MAP (1, 1, BFD_RELOC_8_PCREL);
+ MAP (2, 1, BFD_RELOC_16_PCREL);
+ MAP (4, 1, BFD_RELOC_32_PCREL);
+ default:
+ as_bad ("Can not do %d byte %srelocation", fixp->fx_size,
+ fixp->fx_pcrel ? "pc-relative " : "");
+ }
+ }
+#undef MAP
+#undef F
+
+ if (code == BFD_RELOC_32
+ && GOT_symbol
+ && fixp->fx_addsy == GOT_symbol)
+ code = BFD_RELOC_386_GOTPC;
+
+ rel = (arelent *) xmalloc (sizeof (arelent));
+ rel->sym_ptr_ptr = &fixp->fx_addsy->bsym;
+ rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
+ if (fixp->fx_pcrel)
+ rel->addend = fixp->fx_addnumber;
+ else
+ rel->addend = 0;
+
+ rel->howto = bfd_reloc_type_lookup (stdoutput, code);
+ if (rel->howto == NULL)
+ {
+ as_bad_where (fixp->fx_file, fixp->fx_line,
+ "Cannot represent relocation type %s",
+ bfd_get_reloc_code_name (code));
+ /* Set howto to a garbage value so that we can keep going. */
+ rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
+ assert (rel->howto != NULL);
+ }
+
+ return rel;
+}
+
+#else /* ! BFD_ASSEMBLER */
+
+#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
+void
+tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
+ char *where;
+ fixS *fixP;
+ relax_addressT segment_address_in_file;
+{
+ /*
+ * In: length of relocation (or of address) in chars: 1, 2 or 4.
+ * Out: GNU LD relocation length code: 0, 1, or 2.
+ */
+
+ static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
+ long r_symbolnum;
+
+ know (fixP->fx_addsy != NULL);
+
+ md_number_to_chars (where,
+ (valueT) (fixP->fx_frag->fr_address
+ + fixP->fx_where - segment_address_in_file),
+ 4);
+
+ r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
+ ? S_GET_TYPE (fixP->fx_addsy)
+ : fixP->fx_addsy->sy_number);
+
+ where[6] = (r_symbolnum >> 16) & 0x0ff;
+ where[5] = (r_symbolnum >> 8) & 0x0ff;
+ where[4] = r_symbolnum & 0x0ff;
+ where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
+ | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
+ | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
+}
+
+#endif /* OBJ_AOUT or OBJ_BOUT */
+
+#if defined (I386COFF)
+
+short
+tc_coff_fix2rtype (fixP)
+ fixS *fixP;
+{
+ if (fixP->fx_r_type == R_IMAGEBASE)
+ return R_IMAGEBASE;
+
+ return (fixP->fx_pcrel ?
+ (fixP->fx_size == 1 ? R_PCRBYTE :
+ fixP->fx_size == 2 ? R_PCRWORD :
+ R_PCRLONG) :
+ (fixP->fx_size == 1 ? R_RELBYTE :
+ fixP->fx_size == 2 ? R_RELWORD :
+ R_DIR32));
+}
+
+int
+tc_coff_sizemachdep (frag)
+ fragS *frag;
+{
+ if (frag->fr_next)
+ return (frag->fr_next->fr_address - frag->fr_address);
+ else
+ return 0;
+}
+
+#endif /* I386COFF */
+
+#endif /* BFD_ASSEMBLER? */
+
+/* end of tc-i386.c */
OpenPOWER on IntegriCloud