summaryrefslogtreecommitdiffstats
path: root/contrib/binutils/bfd/elflink.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/binutils/bfd/elflink.h')
-rw-r--r--contrib/binutils/bfd/elflink.h8532
1 files changed, 8532 insertions, 0 deletions
diff --git a/contrib/binutils/bfd/elflink.h b/contrib/binutils/bfd/elflink.h
new file mode 100644
index 0000000..6887e50
--- /dev/null
+++ b/contrib/binutils/bfd/elflink.h
@@ -0,0 +1,8532 @@
+/* ELF linker support.
+ Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
+ Free Software Foundation, Inc.
+
+This file is part of BFD, the Binary File Descriptor library.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+/* ELF linker code. */
+
+/* This struct is used to pass information to routines called via
+ elf_link_hash_traverse which must return failure. */
+
+struct elf_info_failed
+{
+ boolean failed;
+ struct bfd_link_info *info;
+ struct bfd_elf_version_tree *verdefs;
+};
+
+static boolean is_global_data_symbol_definition
+ PARAMS ((bfd *, Elf_Internal_Sym *));
+static boolean elf_link_is_defined_archive_symbol
+ PARAMS ((bfd *, carsym *));
+static boolean elf_link_add_object_symbols
+ PARAMS ((bfd *, struct bfd_link_info *));
+static boolean elf_link_add_archive_symbols
+ PARAMS ((bfd *, struct bfd_link_info *));
+static boolean elf_merge_symbol
+ PARAMS ((bfd *, struct bfd_link_info *, const char *,
+ Elf_Internal_Sym *, asection **, bfd_vma *,
+ struct elf_link_hash_entry **, boolean *, boolean *,
+ boolean *, boolean));
+static boolean elf_add_default_symbol
+ PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
+ const char *, Elf_Internal_Sym *, asection **, bfd_vma *,
+ boolean *, boolean, boolean));
+static boolean elf_export_symbol
+ PARAMS ((struct elf_link_hash_entry *, PTR));
+static boolean elf_finalize_dynstr
+ PARAMS ((bfd *, struct bfd_link_info *));
+static boolean elf_fix_symbol_flags
+ PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
+static boolean elf_adjust_dynamic_symbol
+ PARAMS ((struct elf_link_hash_entry *, PTR));
+static boolean elf_link_find_version_dependencies
+ PARAMS ((struct elf_link_hash_entry *, PTR));
+static boolean elf_link_assign_sym_version
+ PARAMS ((struct elf_link_hash_entry *, PTR));
+static boolean elf_collect_hash_codes
+ PARAMS ((struct elf_link_hash_entry *, PTR));
+static boolean elf_link_read_relocs_from_section
+ PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
+static size_t compute_bucket_count
+ PARAMS ((struct bfd_link_info *));
+static boolean elf_link_output_relocs
+ PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
+static boolean elf_link_size_reloc_section
+ PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
+static void elf_link_adjust_relocs
+ PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
+ struct elf_link_hash_entry **));
+static int elf_link_sort_cmp1
+ PARAMS ((const void *, const void *));
+static int elf_link_sort_cmp2
+ PARAMS ((const void *, const void *));
+static size_t elf_link_sort_relocs
+ PARAMS ((bfd *, struct bfd_link_info *, asection **));
+static boolean elf_section_ignore_discarded_relocs
+ PARAMS ((asection *));
+
+/* Given an ELF BFD, add symbols to the global hash table as
+ appropriate. */
+
+boolean
+elf_bfd_link_add_symbols (abfd, info)
+ bfd *abfd;
+ struct bfd_link_info *info;
+{
+ switch (bfd_get_format (abfd))
+ {
+ case bfd_object:
+ return elf_link_add_object_symbols (abfd, info);
+ case bfd_archive:
+ return elf_link_add_archive_symbols (abfd, info);
+ default:
+ bfd_set_error (bfd_error_wrong_format);
+ return false;
+ }
+}
+
+/* Return true iff this is a non-common, definition of a non-function symbol. */
+static boolean
+is_global_data_symbol_definition (abfd, sym)
+ bfd * abfd ATTRIBUTE_UNUSED;
+ Elf_Internal_Sym * sym;
+{
+ /* Local symbols do not count, but target specific ones might. */
+ if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
+ && ELF_ST_BIND (sym->st_info) < STB_LOOS)
+ return false;
+
+ /* Function symbols do not count. */
+ if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
+ return false;
+
+ /* If the section is undefined, then so is the symbol. */
+ if (sym->st_shndx == SHN_UNDEF)
+ return false;
+
+ /* If the symbol is defined in the common section, then
+ it is a common definition and so does not count. */
+ if (sym->st_shndx == SHN_COMMON)
+ return false;
+
+ /* If the symbol is in a target specific section then we
+ must rely upon the backend to tell us what it is. */
+ if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
+ /* FIXME - this function is not coded yet:
+
+ return _bfd_is_global_symbol_definition (abfd, sym);
+
+ Instead for now assume that the definition is not global,
+ Even if this is wrong, at least the linker will behave
+ in the same way that it used to do. */
+ return false;
+
+ return true;
+}
+
+/* Search the symbol table of the archive element of the archive ABFD
+ whose archive map contains a mention of SYMDEF, and determine if
+ the symbol is defined in this element. */
+static boolean
+elf_link_is_defined_archive_symbol (abfd, symdef)
+ bfd * abfd;
+ carsym * symdef;
+{
+ Elf_Internal_Shdr * hdr;
+ bfd_size_type symcount;
+ bfd_size_type extsymcount;
+ bfd_size_type extsymoff;
+ Elf_Internal_Sym *isymbuf;
+ Elf_Internal_Sym *isym;
+ Elf_Internal_Sym *isymend;
+ boolean result;
+
+ abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
+ if (abfd == (bfd *) NULL)
+ return false;
+
+ if (! bfd_check_format (abfd, bfd_object))
+ return false;
+
+ /* If we have already included the element containing this symbol in the
+ link then we do not need to include it again. Just claim that any symbol
+ it contains is not a definition, so that our caller will not decide to
+ (re)include this element. */
+ if (abfd->archive_pass)
+ return false;
+
+ /* Select the appropriate symbol table. */
+ if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
+ hdr = &elf_tdata (abfd)->symtab_hdr;
+ else
+ hdr = &elf_tdata (abfd)->dynsymtab_hdr;
+
+ symcount = hdr->sh_size / sizeof (Elf_External_Sym);
+
+ /* The sh_info field of the symtab header tells us where the
+ external symbols start. We don't care about the local symbols. */
+ if (elf_bad_symtab (abfd))
+ {
+ extsymcount = symcount;
+ extsymoff = 0;
+ }
+ else
+ {
+ extsymcount = symcount - hdr->sh_info;
+ extsymoff = hdr->sh_info;
+ }
+
+ if (extsymcount == 0)
+ return false;
+
+ /* Read in the symbol table. */
+ isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
+ NULL, NULL, NULL);
+ if (isymbuf == NULL)
+ return false;
+
+ /* Scan the symbol table looking for SYMDEF. */
+ result = false;
+ for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
+ {
+ const char *name;
+
+ name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
+ isym->st_name);
+ if (name == (const char *) NULL)
+ break;
+
+ if (strcmp (name, symdef->name) == 0)
+ {
+ result = is_global_data_symbol_definition (abfd, isym);
+ break;
+ }
+ }
+
+ free (isymbuf);
+
+ return result;
+}
+
+/* Add symbols from an ELF archive file to the linker hash table. We
+ don't use _bfd_generic_link_add_archive_symbols because of a
+ problem which arises on UnixWare. The UnixWare libc.so is an
+ archive which includes an entry libc.so.1 which defines a bunch of
+ symbols. The libc.so archive also includes a number of other
+ object files, which also define symbols, some of which are the same
+ as those defined in libc.so.1. Correct linking requires that we
+ consider each object file in turn, and include it if it defines any
+ symbols we need. _bfd_generic_link_add_archive_symbols does not do
+ this; it looks through the list of undefined symbols, and includes
+ any object file which defines them. When this algorithm is used on
+ UnixWare, it winds up pulling in libc.so.1 early and defining a
+ bunch of symbols. This means that some of the other objects in the
+ archive are not included in the link, which is incorrect since they
+ precede libc.so.1 in the archive.
+
+ Fortunately, ELF archive handling is simpler than that done by
+ _bfd_generic_link_add_archive_symbols, which has to allow for a.out
+ oddities. In ELF, if we find a symbol in the archive map, and the
+ symbol is currently undefined, we know that we must pull in that
+ object file.
+
+ Unfortunately, we do have to make multiple passes over the symbol
+ table until nothing further is resolved. */
+
+static boolean
+elf_link_add_archive_symbols (abfd, info)
+ bfd *abfd;
+ struct bfd_link_info *info;
+{
+ symindex c;
+ boolean *defined = NULL;
+ boolean *included = NULL;
+ carsym *symdefs;
+ boolean loop;
+ bfd_size_type amt;
+
+ if (! bfd_has_map (abfd))
+ {
+ /* An empty archive is a special case. */
+ if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
+ return true;
+ bfd_set_error (bfd_error_no_armap);
+ return false;
+ }
+
+ /* Keep track of all symbols we know to be already defined, and all
+ files we know to be already included. This is to speed up the
+ second and subsequent passes. */
+ c = bfd_ardata (abfd)->symdef_count;
+ if (c == 0)
+ return true;
+ amt = c;
+ amt *= sizeof (boolean);
+ defined = (boolean *) bfd_zmalloc (amt);
+ included = (boolean *) bfd_zmalloc (amt);
+ if (defined == (boolean *) NULL || included == (boolean *) NULL)
+ goto error_return;
+
+ symdefs = bfd_ardata (abfd)->symdefs;
+
+ do
+ {
+ file_ptr last;
+ symindex i;
+ carsym *symdef;
+ carsym *symdefend;
+
+ loop = false;
+ last = -1;
+
+ symdef = symdefs;
+ symdefend = symdef + c;
+ for (i = 0; symdef < symdefend; symdef++, i++)
+ {
+ struct elf_link_hash_entry *h;
+ bfd *element;
+ struct bfd_link_hash_entry *undefs_tail;
+ symindex mark;
+
+ if (defined[i] || included[i])
+ continue;
+ if (symdef->file_offset == last)
+ {
+ included[i] = true;
+ continue;
+ }
+
+ h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
+ false, false, false);
+
+ if (h == NULL)
+ {
+ char *p, *copy;
+ size_t len, first;
+
+ /* If this is a default version (the name contains @@),
+ look up the symbol again with only one `@' as well
+ as without the version. The effect is that references
+ to the symbol with and without the version will be
+ matched by the default symbol in the archive. */
+
+ p = strchr (symdef->name, ELF_VER_CHR);
+ if (p == NULL || p[1] != ELF_VER_CHR)
+ continue;
+
+ /* First check with only one `@'. */
+ len = strlen (symdef->name);
+ copy = bfd_alloc (abfd, (bfd_size_type) len);
+ if (copy == NULL)
+ goto error_return;
+ first = p - symdef->name + 1;
+ memcpy (copy, symdef->name, first);
+ memcpy (copy + first, symdef->name + first + 1, len - first);
+
+ h = elf_link_hash_lookup (elf_hash_table (info), copy,
+ false, false, false);
+
+ if (h == NULL)
+ {
+ /* We also need to check references to the symbol
+ without the version. */
+
+ copy[first - 1] = '\0';
+ h = elf_link_hash_lookup (elf_hash_table (info),
+ copy, false, false, false);
+ }
+
+ bfd_release (abfd, copy);
+ }
+
+ if (h == NULL)
+ continue;
+
+ if (h->root.type == bfd_link_hash_common)
+ {
+ /* We currently have a common symbol. The archive map contains
+ a reference to this symbol, so we may want to include it. We
+ only want to include it however, if this archive element
+ contains a definition of the symbol, not just another common
+ declaration of it.
+
+ Unfortunately some archivers (including GNU ar) will put
+ declarations of common symbols into their archive maps, as
+ well as real definitions, so we cannot just go by the archive
+ map alone. Instead we must read in the element's symbol
+ table and check that to see what kind of symbol definition
+ this is. */
+ if (! elf_link_is_defined_archive_symbol (abfd, symdef))
+ continue;
+ }
+ else if (h->root.type != bfd_link_hash_undefined)
+ {
+ if (h->root.type != bfd_link_hash_undefweak)
+ defined[i] = true;
+ continue;
+ }
+
+ /* We need to include this archive member. */
+ element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
+ if (element == (bfd *) NULL)
+ goto error_return;
+
+ if (! bfd_check_format (element, bfd_object))
+ goto error_return;
+
+ /* Doublecheck that we have not included this object
+ already--it should be impossible, but there may be
+ something wrong with the archive. */
+ if (element->archive_pass != 0)
+ {
+ bfd_set_error (bfd_error_bad_value);
+ goto error_return;
+ }
+ element->archive_pass = 1;
+
+ undefs_tail = info->hash->undefs_tail;
+
+ if (! (*info->callbacks->add_archive_element) (info, element,
+ symdef->name))
+ goto error_return;
+ if (! elf_link_add_object_symbols (element, info))
+ goto error_return;
+
+ /* If there are any new undefined symbols, we need to make
+ another pass through the archive in order to see whether
+ they can be defined. FIXME: This isn't perfect, because
+ common symbols wind up on undefs_tail and because an
+ undefined symbol which is defined later on in this pass
+ does not require another pass. This isn't a bug, but it
+ does make the code less efficient than it could be. */
+ if (undefs_tail != info->hash->undefs_tail)
+ loop = true;
+
+ /* Look backward to mark all symbols from this object file
+ which we have already seen in this pass. */
+ mark = i;
+ do
+ {
+ included[mark] = true;
+ if (mark == 0)
+ break;
+ --mark;
+ }
+ while (symdefs[mark].file_offset == symdef->file_offset);
+
+ /* We mark subsequent symbols from this object file as we go
+ on through the loop. */
+ last = symdef->file_offset;
+ }
+ }
+ while (loop);
+
+ free (defined);
+ free (included);
+
+ return true;
+
+ error_return:
+ if (defined != (boolean *) NULL)
+ free (defined);
+ if (included != (boolean *) NULL)
+ free (included);
+ return false;
+}
+
+/* This function is called when we want to define a new symbol. It
+ handles the various cases which arise when we find a definition in
+ a dynamic object, or when there is already a definition in a
+ dynamic object. The new symbol is described by NAME, SYM, PSEC,
+ and PVALUE. We set SYM_HASH to the hash table entry. We set
+ OVERRIDE if the old symbol is overriding a new definition. We set
+ TYPE_CHANGE_OK if it is OK for the type to change. We set
+ SIZE_CHANGE_OK if it is OK for the size to change. By OK to
+ change, we mean that we shouldn't warn if the type or size does
+ change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
+ a shared object. */
+
+static boolean
+elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
+ override, type_change_ok, size_change_ok, dt_needed)
+ bfd *abfd;
+ struct bfd_link_info *info;
+ const char *name;
+ Elf_Internal_Sym *sym;
+ asection **psec;
+ bfd_vma *pvalue;
+ struct elf_link_hash_entry **sym_hash;
+ boolean *override;
+ boolean *type_change_ok;
+ boolean *size_change_ok;
+ boolean dt_needed;
+{
+ asection *sec;
+ struct elf_link_hash_entry *h;
+ int bind;
+ bfd *oldbfd;
+ boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
+
+ *override = false;
+
+ sec = *psec;
+ bind = ELF_ST_BIND (sym->st_info);
+
+ if (! bfd_is_und_section (sec))
+ h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
+ else
+ h = ((struct elf_link_hash_entry *)
+ bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
+ if (h == NULL)
+ return false;
+ *sym_hash = h;
+
+ /* This code is for coping with dynamic objects, and is only useful
+ if we are doing an ELF link. */
+ if (info->hash->creator != abfd->xvec)
+ return true;
+
+ /* For merging, we only care about real symbols. */
+
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ /* If we just created the symbol, mark it as being an ELF symbol.
+ Other than that, there is nothing to do--there is no merge issue
+ with a newly defined symbol--so we just return. */
+
+ if (h->root.type == bfd_link_hash_new)
+ {
+ h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
+ return true;
+ }
+
+ /* OLDBFD is a BFD associated with the existing symbol. */
+
+ switch (h->root.type)
+ {
+ default:
+ oldbfd = NULL;
+ break;
+
+ case bfd_link_hash_undefined:
+ case bfd_link_hash_undefweak:
+ oldbfd = h->root.u.undef.abfd;
+ break;
+
+ case bfd_link_hash_defined:
+ case bfd_link_hash_defweak:
+ oldbfd = h->root.u.def.section->owner;
+ break;
+
+ case bfd_link_hash_common:
+ oldbfd = h->root.u.c.p->section->owner;
+ break;
+ }
+
+ /* In cases involving weak versioned symbols, we may wind up trying
+ to merge a symbol with itself. Catch that here, to avoid the
+ confusion that results if we try to override a symbol with
+ itself. The additional tests catch cases like
+ _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
+ dynamic object, which we do want to handle here. */
+ if (abfd == oldbfd
+ && ((abfd->flags & DYNAMIC) == 0
+ || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
+ return true;
+
+ /* NEWDYN and OLDDYN indicate whether the new or old symbol,
+ respectively, is from a dynamic object. */
+
+ if ((abfd->flags & DYNAMIC) != 0)
+ newdyn = true;
+ else
+ newdyn = false;
+
+ if (oldbfd != NULL)
+ olddyn = (oldbfd->flags & DYNAMIC) != 0;
+ else
+ {
+ asection *hsec;
+
+ /* This code handles the special SHN_MIPS_{TEXT,DATA} section
+ indices used by MIPS ELF. */
+ switch (h->root.type)
+ {
+ default:
+ hsec = NULL;
+ break;
+
+ case bfd_link_hash_defined:
+ case bfd_link_hash_defweak:
+ hsec = h->root.u.def.section;
+ break;
+
+ case bfd_link_hash_common:
+ hsec = h->root.u.c.p->section;
+ break;
+ }
+
+ if (hsec == NULL)
+ olddyn = false;
+ else
+ olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
+ }
+
+ /* NEWDEF and OLDDEF indicate whether the new or old symbol,
+ respectively, appear to be a definition rather than reference. */
+
+ if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
+ newdef = false;
+ else
+ newdef = true;
+
+ if (h->root.type == bfd_link_hash_undefined
+ || h->root.type == bfd_link_hash_undefweak
+ || h->root.type == bfd_link_hash_common)
+ olddef = false;
+ else
+ olddef = true;
+
+ /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
+ symbol, respectively, appears to be a common symbol in a dynamic
+ object. If a symbol appears in an uninitialized section, and is
+ not weak, and is not a function, then it may be a common symbol
+ which was resolved when the dynamic object was created. We want
+ to treat such symbols specially, because they raise special
+ considerations when setting the symbol size: if the symbol
+ appears as a common symbol in a regular object, and the size in
+ the regular object is larger, we must make sure that we use the
+ larger size. This problematic case can always be avoided in C,
+ but it must be handled correctly when using Fortran shared
+ libraries.
+
+ Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
+ likewise for OLDDYNCOMMON and OLDDEF.
+
+ Note that this test is just a heuristic, and that it is quite
+ possible to have an uninitialized symbol in a shared object which
+ is really a definition, rather than a common symbol. This could
+ lead to some minor confusion when the symbol really is a common
+ symbol in some regular object. However, I think it will be
+ harmless. */
+
+ if (newdyn
+ && newdef
+ && (sec->flags & SEC_ALLOC) != 0
+ && (sec->flags & SEC_LOAD) == 0
+ && sym->st_size > 0
+ && bind != STB_WEAK
+ && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
+ newdyncommon = true;
+ else
+ newdyncommon = false;
+
+ if (olddyn
+ && olddef
+ && h->root.type == bfd_link_hash_defined
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
+ && (h->root.u.def.section->flags & SEC_ALLOC) != 0
+ && (h->root.u.def.section->flags & SEC_LOAD) == 0
+ && h->size > 0
+ && h->type != STT_FUNC)
+ olddyncommon = true;
+ else
+ olddyncommon = false;
+
+ /* It's OK to change the type if either the existing symbol or the
+ new symbol is weak unless it comes from a DT_NEEDED entry of
+ a shared object, in which case, the DT_NEEDED entry may not be
+ required at the run time. */
+
+ if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
+ || h->root.type == bfd_link_hash_undefweak
+ || bind == STB_WEAK)
+ *type_change_ok = true;
+
+ /* It's OK to change the size if either the existing symbol or the
+ new symbol is weak, or if the old symbol is undefined. */
+
+ if (*type_change_ok
+ || h->root.type == bfd_link_hash_undefined)
+ *size_change_ok = true;
+
+ /* If both the old and the new symbols look like common symbols in a
+ dynamic object, set the size of the symbol to the larger of the
+ two. */
+
+ if (olddyncommon
+ && newdyncommon
+ && sym->st_size != h->size)
+ {
+ /* Since we think we have two common symbols, issue a multiple
+ common warning if desired. Note that we only warn if the
+ size is different. If the size is the same, we simply let
+ the old symbol override the new one as normally happens with
+ symbols defined in dynamic objects. */
+
+ if (! ((*info->callbacks->multiple_common)
+ (info, h->root.root.string, oldbfd, bfd_link_hash_common,
+ h->size, abfd, bfd_link_hash_common, sym->st_size)))
+ return false;
+
+ if (sym->st_size > h->size)
+ h->size = sym->st_size;
+
+ *size_change_ok = true;
+ }
+
+ /* If we are looking at a dynamic object, and we have found a
+ definition, we need to see if the symbol was already defined by
+ some other object. If so, we want to use the existing
+ definition, and we do not want to report a multiple symbol
+ definition error; we do this by clobbering *PSEC to be
+ bfd_und_section_ptr.
+
+ We treat a common symbol as a definition if the symbol in the
+ shared library is a function, since common symbols always
+ represent variables; this can cause confusion in principle, but
+ any such confusion would seem to indicate an erroneous program or
+ shared library. We also permit a common symbol in a regular
+ object to override a weak symbol in a shared object.
+
+ We prefer a non-weak definition in a shared library to a weak
+ definition in the executable unless it comes from a DT_NEEDED
+ entry of a shared object, in which case, the DT_NEEDED entry
+ may not be required at the run time. */
+
+ if (newdyn
+ && newdef
+ && (olddef
+ || (h->root.type == bfd_link_hash_common
+ && (bind == STB_WEAK
+ || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
+ && (h->root.type != bfd_link_hash_defweak
+ || dt_needed
+ || bind == STB_WEAK))
+ {
+ *override = true;
+ newdef = false;
+ newdyncommon = false;
+
+ *psec = sec = bfd_und_section_ptr;
+ *size_change_ok = true;
+
+ /* If we get here when the old symbol is a common symbol, then
+ we are explicitly letting it override a weak symbol or
+ function in a dynamic object, and we don't want to warn about
+ a type change. If the old symbol is a defined symbol, a type
+ change warning may still be appropriate. */
+
+ if (h->root.type == bfd_link_hash_common)
+ *type_change_ok = true;
+ }
+
+ /* Handle the special case of an old common symbol merging with a
+ new symbol which looks like a common symbol in a shared object.
+ We change *PSEC and *PVALUE to make the new symbol look like a
+ common symbol, and let _bfd_generic_link_add_one_symbol will do
+ the right thing. */
+
+ if (newdyncommon
+ && h->root.type == bfd_link_hash_common)
+ {
+ *override = true;
+ newdef = false;
+ newdyncommon = false;
+ *pvalue = sym->st_size;
+ *psec = sec = bfd_com_section_ptr;
+ *size_change_ok = true;
+ }
+
+ /* If the old symbol is from a dynamic object, and the new symbol is
+ a definition which is not from a dynamic object, then the new
+ symbol overrides the old symbol. Symbols from regular files
+ always take precedence over symbols from dynamic objects, even if
+ they are defined after the dynamic object in the link.
+
+ As above, we again permit a common symbol in a regular object to
+ override a definition in a shared object if the shared object
+ symbol is a function or is weak.
+
+ As above, we permit a non-weak definition in a shared object to
+ override a weak definition in a regular object. */
+
+ if (! newdyn
+ && (newdef
+ || (bfd_is_com_section (sec)
+ && (h->root.type == bfd_link_hash_defweak
+ || h->type == STT_FUNC)))
+ && olddyn
+ && olddef
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
+ && (bind != STB_WEAK
+ || h->root.type == bfd_link_hash_defweak))
+ {
+ /* Change the hash table entry to undefined, and let
+ _bfd_generic_link_add_one_symbol do the right thing with the
+ new definition. */
+
+ h->root.type = bfd_link_hash_undefined;
+ h->root.u.undef.abfd = h->root.u.def.section->owner;
+ *size_change_ok = true;
+
+ olddef = false;
+ olddyncommon = false;
+
+ /* We again permit a type change when a common symbol may be
+ overriding a function. */
+
+ if (bfd_is_com_section (sec))
+ *type_change_ok = true;
+
+ /* This union may have been set to be non-NULL when this symbol
+ was seen in a dynamic object. We must force the union to be
+ NULL, so that it is correct for a regular symbol. */
+
+ h->verinfo.vertree = NULL;
+
+ /* In this special case, if H is the target of an indirection,
+ we want the caller to frob with H rather than with the
+ indirect symbol. That will permit the caller to redefine the
+ target of the indirection, rather than the indirect symbol
+ itself. FIXME: This will break the -y option if we store a
+ symbol with a different name. */
+ *sym_hash = h;
+ }
+
+ /* Handle the special case of a new common symbol merging with an
+ old symbol that looks like it might be a common symbol defined in
+ a shared object. Note that we have already handled the case in
+ which a new common symbol should simply override the definition
+ in the shared library. */
+
+ if (! newdyn
+ && bfd_is_com_section (sec)
+ && olddyncommon)
+ {
+ /* It would be best if we could set the hash table entry to a
+ common symbol, but we don't know what to use for the section
+ or the alignment. */
+ if (! ((*info->callbacks->multiple_common)
+ (info, h->root.root.string, oldbfd, bfd_link_hash_common,
+ h->size, abfd, bfd_link_hash_common, sym->st_size)))
+ return false;
+
+ /* If the predumed common symbol in the dynamic object is
+ larger, pretend that the new symbol has its size. */
+
+ if (h->size > *pvalue)
+ *pvalue = h->size;
+
+ /* FIXME: We no longer know the alignment required by the symbol
+ in the dynamic object, so we just wind up using the one from
+ the regular object. */
+
+ olddef = false;
+ olddyncommon = false;
+
+ h->root.type = bfd_link_hash_undefined;
+ h->root.u.undef.abfd = h->root.u.def.section->owner;
+
+ *size_change_ok = true;
+ *type_change_ok = true;
+
+ h->verinfo.vertree = NULL;
+ }
+
+ /* Handle the special case of a weak definition in a regular object
+ followed by a non-weak definition in a shared object. In this
+ case, we prefer the definition in the shared object unless it
+ comes from a DT_NEEDED entry of a shared object, in which case,
+ the DT_NEEDED entry may not be required at the run time. */
+ if (olddef
+ && ! dt_needed
+ && h->root.type == bfd_link_hash_defweak
+ && newdef
+ && newdyn
+ && bind != STB_WEAK)
+ {
+ /* To make this work we have to frob the flags so that the rest
+ of the code does not think we are using the regular
+ definition. */
+ if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
+ h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
+ else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
+ h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
+ h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
+ | ELF_LINK_HASH_DEF_DYNAMIC);
+
+ /* If H is the target of an indirection, we want the caller to
+ use H rather than the indirect symbol. Otherwise if we are
+ defining a new indirect symbol we will wind up attaching it
+ to the entry we are overriding. */
+ *sym_hash = h;
+ }
+
+ /* Handle the special case of a non-weak definition in a shared
+ object followed by a weak definition in a regular object. In
+ this case we prefer to definition in the shared object. To make
+ this work we have to tell the caller to not treat the new symbol
+ as a definition. */
+ if (olddef
+ && olddyn
+ && h->root.type != bfd_link_hash_defweak
+ && newdef
+ && ! newdyn
+ && bind == STB_WEAK)
+ *override = true;
+
+ return true;
+}
+
+/* This function is called to create an indirect symbol from the
+ default for the symbol with the default version if needed. The
+ symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
+ set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
+ indicates if it comes from a DT_NEEDED entry of a shared object. */
+
+static boolean
+elf_add_default_symbol (abfd, info, h, name, sym, psec, value,
+ dynsym, override, dt_needed)
+ bfd *abfd;
+ struct bfd_link_info *info;
+ struct elf_link_hash_entry *h;
+ const char *name;
+ Elf_Internal_Sym *sym;
+ asection **psec;
+ bfd_vma *value;
+ boolean *dynsym;
+ boolean override;
+ boolean dt_needed;
+{
+ boolean type_change_ok;
+ boolean size_change_ok;
+ char *shortname;
+ struct elf_link_hash_entry *hi;
+ struct bfd_link_hash_entry *bh;
+ struct elf_backend_data *bed;
+ boolean collect;
+ boolean dynamic;
+ char *p;
+ size_t len, shortlen;
+ asection *sec;
+
+ /* If this symbol has a version, and it is the default version, we
+ create an indirect symbol from the default name to the fully
+ decorated name. This will cause external references which do not
+ specify a version to be bound to this version of the symbol. */
+ p = strchr (name, ELF_VER_CHR);
+ if (p == NULL || p[1] != ELF_VER_CHR)
+ return true;
+
+ if (override)
+ {
+ /* We are overridden by an old defition. We need to check if we
+ need to create the indirect symbol from the default name. */
+ hi = elf_link_hash_lookup (elf_hash_table (info), name, true,
+ false, false);
+ BFD_ASSERT (hi != NULL);
+ if (hi == h)
+ return true;
+ while (hi->root.type == bfd_link_hash_indirect
+ || hi->root.type == bfd_link_hash_warning)
+ {
+ hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
+ if (hi == h)
+ return true;
+ }
+ }
+
+ bed = get_elf_backend_data (abfd);
+ collect = bed->collect;
+ dynamic = (abfd->flags & DYNAMIC) != 0;
+
+ shortlen = p - name;
+ shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
+ if (shortname == NULL)
+ return false;
+ memcpy (shortname, name, shortlen);
+ shortname[shortlen] = '\0';
+
+ /* We are going to create a new symbol. Merge it with any existing
+ symbol with this name. For the purposes of the merge, act as
+ though we were defining the symbol we just defined, although we
+ actually going to define an indirect symbol. */
+ type_change_ok = false;
+ size_change_ok = false;
+ sec = *psec;
+ if (! elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
+ &hi, &override, &type_change_ok,
+ &size_change_ok, dt_needed))
+ return false;
+
+ if (! override)
+ {
+ bh = &hi->root;
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
+ (bfd_vma) 0, name, false, collect, &bh)))
+ return false;
+ hi = (struct elf_link_hash_entry *) bh;
+ }
+ else
+ {
+ /* In this case the symbol named SHORTNAME is overriding the
+ indirect symbol we want to add. We were planning on making
+ SHORTNAME an indirect symbol referring to NAME. SHORTNAME
+ is the name without a version. NAME is the fully versioned
+ name, and it is the default version.
+
+ Overriding means that we already saw a definition for the
+ symbol SHORTNAME in a regular object, and it is overriding
+ the symbol defined in the dynamic object.
+
+ When this happens, we actually want to change NAME, the
+ symbol we just added, to refer to SHORTNAME. This will cause
+ references to NAME in the shared object to become references
+ to SHORTNAME in the regular object. This is what we expect
+ when we override a function in a shared object: that the
+ references in the shared object will be mapped to the
+ definition in the regular object. */
+
+ while (hi->root.type == bfd_link_hash_indirect
+ || hi->root.type == bfd_link_hash_warning)
+ hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
+
+ h->root.type = bfd_link_hash_indirect;
+ h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
+ if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
+ {
+ h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
+ hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
+ if (hi->elf_link_hash_flags
+ & (ELF_LINK_HASH_REF_REGULAR
+ | ELF_LINK_HASH_DEF_REGULAR))
+ {
+ if (! _bfd_elf_link_record_dynamic_symbol (info, hi))
+ return false;
+ }
+ }
+
+ /* Now set HI to H, so that the following code will set the
+ other fields correctly. */
+ hi = h;
+ }
+
+ /* If there is a duplicate definition somewhere, then HI may not
+ point to an indirect symbol. We will have reported an error to
+ the user in that case. */
+
+ if (hi->root.type == bfd_link_hash_indirect)
+ {
+ struct elf_link_hash_entry *ht;
+
+ /* If the symbol became indirect, then we assume that we have
+ not seen a definition before. */
+ BFD_ASSERT ((hi->elf_link_hash_flags
+ & (ELF_LINK_HASH_DEF_DYNAMIC
+ | ELF_LINK_HASH_DEF_REGULAR)) == 0);
+
+ ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
+ (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
+
+ /* See if the new flags lead us to realize that the symbol must
+ be dynamic. */
+ if (! *dynsym)
+ {
+ if (! dynamic)
+ {
+ if (info->shared
+ || ((hi->elf_link_hash_flags
+ & ELF_LINK_HASH_REF_DYNAMIC) != 0))
+ *dynsym = true;
+ }
+ else
+ {
+ if ((hi->elf_link_hash_flags
+ & ELF_LINK_HASH_REF_REGULAR) != 0)
+ *dynsym = true;
+ }
+ }
+ }
+
+ /* We also need to define an indirection from the nondefault version
+ of the symbol. */
+
+ len = strlen (name);
+ shortname = bfd_hash_allocate (&info->hash->table, len);
+ if (shortname == NULL)
+ return false;
+ memcpy (shortname, name, shortlen);
+ memcpy (shortname + shortlen, p + 1, len - shortlen);
+
+ /* Once again, merge with any existing symbol. */
+ type_change_ok = false;
+ size_change_ok = false;
+ sec = *psec;
+ if (! elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
+ &hi, &override, &type_change_ok,
+ &size_change_ok, dt_needed))
+ return false;
+
+ if (override)
+ {
+ /* Here SHORTNAME is a versioned name, so we don't expect to see
+ the type of override we do in the case above unless it is
+ overridden by a versioned definiton. */
+ if (hi->root.type != bfd_link_hash_defined
+ && hi->root.type != bfd_link_hash_defweak)
+ (*_bfd_error_handler)
+ (_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"),
+ bfd_archive_filename (abfd), shortname);
+ }
+ else
+ {
+ bh = &hi->root;
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, abfd, shortname, BSF_INDIRECT,
+ bfd_ind_section_ptr, (bfd_vma) 0, name, false, collect, &bh)))
+ return false;
+ hi = (struct elf_link_hash_entry *) bh;
+
+ /* If there is a duplicate definition somewhere, then HI may not
+ point to an indirect symbol. We will have reported an error
+ to the user in that case. */
+
+ if (hi->root.type == bfd_link_hash_indirect)
+ {
+ /* If the symbol became indirect, then we assume that we have
+ not seen a definition before. */
+ BFD_ASSERT ((hi->elf_link_hash_flags
+ & (ELF_LINK_HASH_DEF_DYNAMIC
+ | ELF_LINK_HASH_DEF_REGULAR)) == 0);
+
+ (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
+
+ /* See if the new flags lead us to realize that the symbol
+ must be dynamic. */
+ if (! *dynsym)
+ {
+ if (! dynamic)
+ {
+ if (info->shared
+ || ((hi->elf_link_hash_flags
+ & ELF_LINK_HASH_REF_DYNAMIC) != 0))
+ *dynsym = true;
+ }
+ else
+ {
+ if ((hi->elf_link_hash_flags
+ & ELF_LINK_HASH_REF_REGULAR) != 0)
+ *dynsym = true;
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+/* Add symbols from an ELF object file to the linker hash table. */
+
+static boolean
+elf_link_add_object_symbols (abfd, info)
+ bfd *abfd;
+ struct bfd_link_info *info;
+{
+ boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
+ const Elf_Internal_Sym *,
+ const char **, flagword *,
+ asection **, bfd_vma *));
+ boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
+ asection *, const Elf_Internal_Rela *));
+ boolean collect;
+ Elf_Internal_Shdr *hdr;
+ bfd_size_type symcount;
+ bfd_size_type extsymcount;
+ bfd_size_type extsymoff;
+ struct elf_link_hash_entry **sym_hash;
+ boolean dynamic;
+ Elf_External_Versym *extversym = NULL;
+ Elf_External_Versym *ever;
+ struct elf_link_hash_entry *weaks;
+ Elf_Internal_Sym *isymbuf = NULL;
+ Elf_Internal_Sym *isym;
+ Elf_Internal_Sym *isymend;
+ struct elf_backend_data *bed;
+ boolean dt_needed;
+ struct elf_link_hash_table * hash_table;
+ bfd_size_type amt;
+
+ hash_table = elf_hash_table (info);
+
+ bed = get_elf_backend_data (abfd);
+ add_symbol_hook = bed->elf_add_symbol_hook;
+ collect = bed->collect;
+
+ if ((abfd->flags & DYNAMIC) == 0)
+ dynamic = false;
+ else
+ {
+ dynamic = true;
+
+ /* You can't use -r against a dynamic object. Also, there's no
+ hope of using a dynamic object which does not exactly match
+ the format of the output file. */
+ if (info->relocateable || info->hash->creator != abfd->xvec)
+ {
+ bfd_set_error (bfd_error_invalid_operation);
+ goto error_return;
+ }
+ }
+
+ /* As a GNU extension, any input sections which are named
+ .gnu.warning.SYMBOL are treated as warning symbols for the given
+ symbol. This differs from .gnu.warning sections, which generate
+ warnings when they are included in an output file. */
+ if (! info->shared)
+ {
+ asection *s;
+
+ for (s = abfd->sections; s != NULL; s = s->next)
+ {
+ const char *name;
+
+ name = bfd_get_section_name (abfd, s);
+ if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
+ {
+ char *msg;
+ bfd_size_type sz;
+
+ name += sizeof ".gnu.warning." - 1;
+
+ /* If this is a shared object, then look up the symbol
+ in the hash table. If it is there, and it is already
+ been defined, then we will not be using the entry
+ from this shared object, so we don't need to warn.
+ FIXME: If we see the definition in a regular object
+ later on, we will warn, but we shouldn't. The only
+ fix is to keep track of what warnings we are supposed
+ to emit, and then handle them all at the end of the
+ link. */
+ if (dynamic && abfd->xvec == info->hash->creator)
+ {
+ struct elf_link_hash_entry *h;
+
+ h = elf_link_hash_lookup (hash_table, name,
+ false, false, true);
+
+ /* FIXME: What about bfd_link_hash_common? */
+ if (h != NULL
+ && (h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak))
+ {
+ /* We don't want to issue this warning. Clobber
+ the section size so that the warning does not
+ get copied into the output file. */
+ s->_raw_size = 0;
+ continue;
+ }
+ }
+
+ sz = bfd_section_size (abfd, s);
+ msg = (char *) bfd_alloc (abfd, sz + 1);
+ if (msg == NULL)
+ goto error_return;
+
+ if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
+ goto error_return;
+
+ msg[sz] = '\0';
+
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
+ false, collect, (struct bfd_link_hash_entry **) NULL)))
+ goto error_return;
+
+ if (! info->relocateable)
+ {
+ /* Clobber the section size so that the warning does
+ not get copied into the output file. */
+ s->_raw_size = 0;
+ }
+ }
+ }
+ }
+
+ dt_needed = false;
+ if (! dynamic)
+ {
+ /* If we are creating a shared library, create all the dynamic
+ sections immediately. We need to attach them to something,
+ so we attach them to this BFD, provided it is the right
+ format. FIXME: If there are no input BFD's of the same
+ format as the output, we can't make a shared library. */
+ if (info->shared
+ && is_elf_hash_table (info)
+ && ! hash_table->dynamic_sections_created
+ && abfd->xvec == info->hash->creator)
+ {
+ if (! elf_link_create_dynamic_sections (abfd, info))
+ goto error_return;
+ }
+ }
+ else if (! is_elf_hash_table (info))
+ goto error_return;
+ else
+ {
+ asection *s;
+ boolean add_needed;
+ const char *name;
+ bfd_size_type oldsize;
+ bfd_size_type strindex;
+ struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
+
+ /* ld --just-symbols and dynamic objects don't mix very well.
+ Test for --just-symbols by looking at info set up by
+ _bfd_elf_link_just_syms. */
+ if ((s = abfd->sections) != NULL
+ && elf_section_data (s)->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
+ goto error_return;
+
+ /* Find the name to use in a DT_NEEDED entry that refers to this
+ object. If the object has a DT_SONAME entry, we use it.
+ Otherwise, if the generic linker stuck something in
+ elf_dt_name, we use that. Otherwise, we just use the file
+ name. If the generic linker put a null string into
+ elf_dt_name, we don't make a DT_NEEDED entry at all, even if
+ there is a DT_SONAME entry. */
+ add_needed = true;
+ name = bfd_get_filename (abfd);
+ if (elf_dt_name (abfd) != NULL)
+ {
+ name = elf_dt_name (abfd);
+ if (*name == '\0')
+ {
+ if (elf_dt_soname (abfd) != NULL)
+ dt_needed = true;
+
+ add_needed = false;
+ }
+ }
+ s = bfd_get_section_by_name (abfd, ".dynamic");
+ if (s != NULL)
+ {
+ Elf_External_Dyn *dynbuf = NULL;
+ Elf_External_Dyn *extdyn;
+ Elf_External_Dyn *extdynend;
+ int elfsec;
+ unsigned long shlink;
+
+ dynbuf = (Elf_External_Dyn *) bfd_malloc (s->_raw_size);
+ if (dynbuf == NULL)
+ goto error_return;
+
+ if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
+ (file_ptr) 0, s->_raw_size))
+ goto error_free_dyn;
+
+ elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
+ if (elfsec == -1)
+ goto error_free_dyn;
+ shlink = elf_elfsections (abfd)[elfsec]->sh_link;
+
+ extdyn = dynbuf;
+ extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
+ for (; extdyn < extdynend; extdyn++)
+ {
+ Elf_Internal_Dyn dyn;
+
+ elf_swap_dyn_in (abfd, extdyn, &dyn);
+ if (dyn.d_tag == DT_SONAME)
+ {
+ unsigned int tagv = dyn.d_un.d_val;
+ name = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
+ if (name == NULL)
+ goto error_free_dyn;
+ }
+ if (dyn.d_tag == DT_NEEDED)
+ {
+ struct bfd_link_needed_list *n, **pn;
+ char *fnm, *anm;
+ unsigned int tagv = dyn.d_un.d_val;
+
+ amt = sizeof (struct bfd_link_needed_list);
+ n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
+ fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
+ if (n == NULL || fnm == NULL)
+ goto error_free_dyn;
+ amt = strlen (fnm) + 1;
+ anm = bfd_alloc (abfd, amt);
+ if (anm == NULL)
+ goto error_free_dyn;
+ memcpy (anm, fnm, (size_t) amt);
+ n->name = anm;
+ n->by = abfd;
+ n->next = NULL;
+ for (pn = & hash_table->needed;
+ *pn != NULL;
+ pn = &(*pn)->next)
+ ;
+ *pn = n;
+ }
+ if (dyn.d_tag == DT_RUNPATH)
+ {
+ struct bfd_link_needed_list *n, **pn;
+ char *fnm, *anm;
+ unsigned int tagv = dyn.d_un.d_val;
+
+ amt = sizeof (struct bfd_link_needed_list);
+ n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
+ fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
+ if (n == NULL || fnm == NULL)
+ goto error_free_dyn;
+ amt = strlen (fnm) + 1;
+ anm = bfd_alloc (abfd, amt);
+ if (anm == NULL)
+ goto error_free_dyn;
+ memcpy (anm, fnm, (size_t) amt);
+ n->name = anm;
+ n->by = abfd;
+ n->next = NULL;
+ for (pn = & runpath;
+ *pn != NULL;
+ pn = &(*pn)->next)
+ ;
+ *pn = n;
+ }
+ /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
+ if (!runpath && dyn.d_tag == DT_RPATH)
+ {
+ struct bfd_link_needed_list *n, **pn;
+ char *fnm, *anm;
+ unsigned int tagv = dyn.d_un.d_val;
+
+ amt = sizeof (struct bfd_link_needed_list);
+ n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
+ fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
+ if (n == NULL || fnm == NULL)
+ goto error_free_dyn;
+ amt = strlen (fnm) + 1;
+ anm = bfd_alloc (abfd, amt);
+ if (anm == NULL)
+ {
+ error_free_dyn:
+ free (dynbuf);
+ goto error_return;
+ }
+ memcpy (anm, fnm, (size_t) amt);
+ n->name = anm;
+ n->by = abfd;
+ n->next = NULL;
+ for (pn = & rpath;
+ *pn != NULL;
+ pn = &(*pn)->next)
+ ;
+ *pn = n;
+ }
+ }
+
+ free (dynbuf);
+ }
+
+ /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
+ frees all more recently bfd_alloc'd blocks as well. */
+ if (runpath)
+ rpath = runpath;
+
+ if (rpath)
+ {
+ struct bfd_link_needed_list **pn;
+ for (pn = & hash_table->runpath;
+ *pn != NULL;
+ pn = &(*pn)->next)
+ ;
+ *pn = rpath;
+ }
+
+ /* We do not want to include any of the sections in a dynamic
+ object in the output file. We hack by simply clobbering the
+ list of sections in the BFD. This could be handled more
+ cleanly by, say, a new section flag; the existing
+ SEC_NEVER_LOAD flag is not the one we want, because that one
+ still implies that the section takes up space in the output
+ file. */
+ bfd_section_list_clear (abfd);
+
+ /* If this is the first dynamic object found in the link, create
+ the special sections required for dynamic linking. */
+ if (! hash_table->dynamic_sections_created)
+ if (! elf_link_create_dynamic_sections (abfd, info))
+ goto error_return;
+
+ if (add_needed)
+ {
+ /* Add a DT_NEEDED entry for this dynamic object. */
+ oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
+ strindex = _bfd_elf_strtab_add (hash_table->dynstr, name, false);
+ if (strindex == (bfd_size_type) -1)
+ goto error_return;
+
+ if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
+ {
+ asection *sdyn;
+ Elf_External_Dyn *dyncon, *dynconend;
+
+ /* The hash table size did not change, which means that
+ the dynamic object name was already entered. If we
+ have already included this dynamic object in the
+ link, just ignore it. There is no reason to include
+ a particular dynamic object more than once. */
+ sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
+ BFD_ASSERT (sdyn != NULL);
+
+ dyncon = (Elf_External_Dyn *) sdyn->contents;
+ dynconend = (Elf_External_Dyn *) (sdyn->contents +
+ sdyn->_raw_size);
+ for (; dyncon < dynconend; dyncon++)
+ {
+ Elf_Internal_Dyn dyn;
+
+ elf_swap_dyn_in (hash_table->dynobj, dyncon, & dyn);
+ if (dyn.d_tag == DT_NEEDED
+ && dyn.d_un.d_val == strindex)
+ {
+ _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
+ return true;
+ }
+ }
+ }
+
+ if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
+ goto error_return;
+ }
+
+ /* Save the SONAME, if there is one, because sometimes the
+ linker emulation code will need to know it. */
+ if (*name == '\0')
+ name = basename (bfd_get_filename (abfd));
+ elf_dt_name (abfd) = name;
+ }
+
+ /* If this is a dynamic object, we always link against the .dynsym
+ symbol table, not the .symtab symbol table. The dynamic linker
+ will only see the .dynsym symbol table, so there is no reason to
+ look at .symtab for a dynamic object. */
+
+ if (! dynamic || elf_dynsymtab (abfd) == 0)
+ hdr = &elf_tdata (abfd)->symtab_hdr;
+ else
+ hdr = &elf_tdata (abfd)->dynsymtab_hdr;
+
+ symcount = hdr->sh_size / sizeof (Elf_External_Sym);
+
+ /* The sh_info field of the symtab header tells us where the
+ external symbols start. We don't care about the local symbols at
+ this point. */
+ if (elf_bad_symtab (abfd))
+ {
+ extsymcount = symcount;
+ extsymoff = 0;
+ }
+ else
+ {
+ extsymcount = symcount - hdr->sh_info;
+ extsymoff = hdr->sh_info;
+ }
+
+ sym_hash = NULL;
+ if (extsymcount != 0)
+ {
+ isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
+ NULL, NULL, NULL);
+ if (isymbuf == NULL)
+ goto error_return;
+
+ /* We store a pointer to the hash table entry for each external
+ symbol. */
+ amt = extsymcount * sizeof (struct elf_link_hash_entry *);
+ sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
+ if (sym_hash == NULL)
+ goto error_free_sym;
+ elf_sym_hashes (abfd) = sym_hash;
+ }
+
+ if (dynamic)
+ {
+ /* Read in any version definitions. */
+ if (! _bfd_elf_slurp_version_tables (abfd))
+ goto error_free_sym;
+
+ /* Read in the symbol versions, but don't bother to convert them
+ to internal format. */
+ if (elf_dynversym (abfd) != 0)
+ {
+ Elf_Internal_Shdr *versymhdr;
+
+ versymhdr = &elf_tdata (abfd)->dynversym_hdr;
+ extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
+ if (extversym == NULL)
+ goto error_free_sym;
+ amt = versymhdr->sh_size;
+ if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
+ || bfd_bread ((PTR) extversym, amt, abfd) != amt)
+ goto error_free_vers;
+ }
+ }
+
+ weaks = NULL;
+
+ ever = extversym != NULL ? extversym + extsymoff : NULL;
+ for (isym = isymbuf, isymend = isymbuf + extsymcount;
+ isym < isymend;
+ isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
+ {
+ int bind;
+ bfd_vma value;
+ asection *sec;
+ flagword flags;
+ const char *name;
+ struct elf_link_hash_entry *h;
+ boolean definition;
+ boolean size_change_ok, type_change_ok;
+ boolean new_weakdef;
+ unsigned int old_alignment;
+ boolean override;
+
+ override = false;
+
+ flags = BSF_NO_FLAGS;
+ sec = NULL;
+ value = isym->st_value;
+ *sym_hash = NULL;
+
+ bind = ELF_ST_BIND (isym->st_info);
+ if (bind == STB_LOCAL)
+ {
+ /* This should be impossible, since ELF requires that all
+ global symbols follow all local symbols, and that sh_info
+ point to the first global symbol. Unfortunatealy, Irix 5
+ screws this up. */
+ continue;
+ }
+ else if (bind == STB_GLOBAL)
+ {
+ if (isym->st_shndx != SHN_UNDEF
+ && isym->st_shndx != SHN_COMMON)
+ flags = BSF_GLOBAL;
+ }
+ else if (bind == STB_WEAK)
+ flags = BSF_WEAK;
+ else
+ {
+ /* Leave it up to the processor backend. */
+ }
+
+ if (isym->st_shndx == SHN_UNDEF)
+ sec = bfd_und_section_ptr;
+ else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
+ {
+ sec = section_from_elf_index (abfd, isym->st_shndx);
+ if (sec == NULL)
+ sec = bfd_abs_section_ptr;
+ else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
+ value -= sec->vma;
+ }
+ else if (isym->st_shndx == SHN_ABS)
+ sec = bfd_abs_section_ptr;
+ else if (isym->st_shndx == SHN_COMMON)
+ {
+ sec = bfd_com_section_ptr;
+ /* What ELF calls the size we call the value. What ELF
+ calls the value we call the alignment. */
+ value = isym->st_size;
+ }
+ else
+ {
+ /* Leave it up to the processor backend. */
+ }
+
+ name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
+ isym->st_name);
+ if (name == (const char *) NULL)
+ goto error_free_vers;
+
+ if (isym->st_shndx == SHN_COMMON
+ && ELF_ST_TYPE (isym->st_info) == STT_TLS)
+ {
+ asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
+
+ if (tcomm == NULL)
+ {
+ tcomm = bfd_make_section (abfd, ".tcommon");
+ if (tcomm == NULL
+ || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
+ | SEC_IS_COMMON
+ | SEC_LINKER_CREATED
+ | SEC_THREAD_LOCAL)))
+ goto error_free_vers;
+ }
+ sec = tcomm;
+ }
+ else if (add_symbol_hook)
+ {
+ if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
+ &value))
+ goto error_free_vers;
+
+ /* The hook function sets the name to NULL if this symbol
+ should be skipped for some reason. */
+ if (name == (const char *) NULL)
+ continue;
+ }
+
+ /* Sanity check that all possibilities were handled. */
+ if (sec == (asection *) NULL)
+ {
+ bfd_set_error (bfd_error_bad_value);
+ goto error_free_vers;
+ }
+
+ if (bfd_is_und_section (sec)
+ || bfd_is_com_section (sec))
+ definition = false;
+ else
+ definition = true;
+
+ size_change_ok = false;
+ type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
+ old_alignment = 0;
+ if (info->hash->creator->flavour == bfd_target_elf_flavour)
+ {
+ Elf_Internal_Versym iver;
+ unsigned int vernum = 0;
+
+ if (ever != NULL)
+ {
+ _bfd_elf_swap_versym_in (abfd, ever, &iver);
+ vernum = iver.vs_vers & VERSYM_VERSION;
+
+ /* If this is a hidden symbol, or if it is not version
+ 1, we append the version name to the symbol name.
+ However, we do not modify a non-hidden absolute
+ symbol, because it might be the version symbol
+ itself. FIXME: What if it isn't? */
+ if ((iver.vs_vers & VERSYM_HIDDEN) != 0
+ || (vernum > 1 && ! bfd_is_abs_section (sec)))
+ {
+ const char *verstr;
+ size_t namelen, verlen, newlen;
+ char *newname, *p;
+
+ if (isym->st_shndx != SHN_UNDEF)
+ {
+ if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
+ {
+ (*_bfd_error_handler)
+ (_("%s: %s: invalid version %u (max %d)"),
+ bfd_archive_filename (abfd), name, vernum,
+ elf_tdata (abfd)->dynverdef_hdr.sh_info);
+ bfd_set_error (bfd_error_bad_value);
+ goto error_free_vers;
+ }
+ else if (vernum > 1)
+ verstr =
+ elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
+ else
+ verstr = "";
+ }
+ else
+ {
+ /* We cannot simply test for the number of
+ entries in the VERNEED section since the
+ numbers for the needed versions do not start
+ at 0. */
+ Elf_Internal_Verneed *t;
+
+ verstr = NULL;
+ for (t = elf_tdata (abfd)->verref;
+ t != NULL;
+ t = t->vn_nextref)
+ {
+ Elf_Internal_Vernaux *a;
+
+ for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
+ {
+ if (a->vna_other == vernum)
+ {
+ verstr = a->vna_nodename;
+ break;
+ }
+ }
+ if (a != NULL)
+ break;
+ }
+ if (verstr == NULL)
+ {
+ (*_bfd_error_handler)
+ (_("%s: %s: invalid needed version %d"),
+ bfd_archive_filename (abfd), name, vernum);
+ bfd_set_error (bfd_error_bad_value);
+ goto error_free_vers;
+ }
+ }
+
+ namelen = strlen (name);
+ verlen = strlen (verstr);
+ newlen = namelen + verlen + 2;
+ if ((iver.vs_vers & VERSYM_HIDDEN) == 0
+ && isym->st_shndx != SHN_UNDEF)
+ ++newlen;
+
+ newname = (char *) bfd_alloc (abfd, (bfd_size_type) newlen);
+ if (newname == NULL)
+ goto error_free_vers;
+ memcpy (newname, name, namelen);
+ p = newname + namelen;
+ *p++ = ELF_VER_CHR;
+ /* If this is a defined non-hidden version symbol,
+ we add another @ to the name. This indicates the
+ default version of the symbol. */
+ if ((iver.vs_vers & VERSYM_HIDDEN) == 0
+ && isym->st_shndx != SHN_UNDEF)
+ *p++ = ELF_VER_CHR;
+ memcpy (p, verstr, verlen + 1);
+
+ name = newname;
+ }
+ }
+
+ if (! elf_merge_symbol (abfd, info, name, isym, &sec, &value,
+ sym_hash, &override, &type_change_ok,
+ &size_change_ok, dt_needed))
+ goto error_free_vers;
+
+ if (override)
+ definition = false;
+
+ h = *sym_hash;
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ /* Remember the old alignment if this is a common symbol, so
+ that we don't reduce the alignment later on. We can't
+ check later, because _bfd_generic_link_add_one_symbol
+ will set a default for the alignment which we want to
+ override. */
+ if (h->root.type == bfd_link_hash_common)
+ old_alignment = h->root.u.c.p->alignment_power;
+
+ if (elf_tdata (abfd)->verdef != NULL
+ && ! override
+ && vernum > 1
+ && definition)
+ h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
+ }
+
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, abfd, name, flags, sec, value, (const char *) NULL,
+ false, collect, (struct bfd_link_hash_entry **) sym_hash)))
+ goto error_free_vers;
+
+ h = *sym_hash;
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+ *sym_hash = h;
+
+ new_weakdef = false;
+ if (dynamic
+ && definition
+ && (flags & BSF_WEAK) != 0
+ && ELF_ST_TYPE (isym->st_info) != STT_FUNC
+ && info->hash->creator->flavour == bfd_target_elf_flavour
+ && h->weakdef == NULL)
+ {
+ /* Keep a list of all weak defined non function symbols from
+ a dynamic object, using the weakdef field. Later in this
+ function we will set the weakdef field to the correct
+ value. We only put non-function symbols from dynamic
+ objects on this list, because that happens to be the only
+ time we need to know the normal symbol corresponding to a
+ weak symbol, and the information is time consuming to
+ figure out. If the weakdef field is not already NULL,
+ then this symbol was already defined by some previous
+ dynamic object, and we will be using that previous
+ definition anyhow. */
+
+ h->weakdef = weaks;
+ weaks = h;
+ new_weakdef = true;
+ }
+
+ /* Set the alignment of a common symbol. */
+ if (isym->st_shndx == SHN_COMMON
+ && h->root.type == bfd_link_hash_common)
+ {
+ unsigned int align;
+
+ align = bfd_log2 (isym->st_value);
+ if (align > old_alignment
+ /* Permit an alignment power of zero if an alignment of one
+ is specified and no other alignments have been specified. */
+ || (isym->st_value == 1 && old_alignment == 0))
+ h->root.u.c.p->alignment_power = align;
+ }
+
+ if (info->hash->creator->flavour == bfd_target_elf_flavour)
+ {
+ int old_flags;
+ boolean dynsym;
+ int new_flag;
+
+ /* Remember the symbol size and type. */
+ if (isym->st_size != 0
+ && (definition || h->size == 0))
+ {
+ if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
+ (*_bfd_error_handler)
+ (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
+ name, (unsigned long) h->size,
+ (unsigned long) isym->st_size, bfd_archive_filename (abfd));
+
+ h->size = isym->st_size;
+ }
+
+ /* If this is a common symbol, then we always want H->SIZE
+ to be the size of the common symbol. The code just above
+ won't fix the size if a common symbol becomes larger. We
+ don't warn about a size change here, because that is
+ covered by --warn-common. */
+ if (h->root.type == bfd_link_hash_common)
+ h->size = h->root.u.c.size;
+
+ if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
+ && (definition || h->type == STT_NOTYPE))
+ {
+ if (h->type != STT_NOTYPE
+ && h->type != ELF_ST_TYPE (isym->st_info)
+ && ! type_change_ok)
+ (*_bfd_error_handler)
+ (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
+ name, h->type, ELF_ST_TYPE (isym->st_info),
+ bfd_archive_filename (abfd));
+
+ h->type = ELF_ST_TYPE (isym->st_info);
+ }
+
+ /* If st_other has a processor-specific meaning, specific code
+ might be needed here. */
+ if (isym->st_other != 0)
+ {
+ unsigned char hvis, symvis, other;
+
+ /* Take the balance of OTHER from the definition. */
+ other = (definition ? isym->st_other : h->other);
+ other &= ~ ELF_ST_VISIBILITY (-1);
+
+ /* Combine visibilities, using the most constraining one. */
+ hvis = ELF_ST_VISIBILITY (h->other);
+ symvis = ELF_ST_VISIBILITY (isym->st_other);
+
+ h->other = other | (hvis > symvis ? hvis : symvis);
+ }
+
+ /* Set a flag in the hash table entry indicating the type of
+ reference or definition we just found. Keep a count of
+ the number of dynamic symbols we find. A dynamic symbol
+ is one which is referenced or defined by both a regular
+ object and a shared object. */
+ old_flags = h->elf_link_hash_flags;
+ dynsym = false;
+ if (! dynamic)
+ {
+ if (! definition)
+ {
+ new_flag = ELF_LINK_HASH_REF_REGULAR;
+ if (bind != STB_WEAK)
+ new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
+ }
+ else
+ new_flag = ELF_LINK_HASH_DEF_REGULAR;
+ if (info->shared
+ || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
+ | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
+ dynsym = true;
+ }
+ else
+ {
+ if (! definition)
+ new_flag = ELF_LINK_HASH_REF_DYNAMIC;
+ else
+ new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
+ if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
+ | ELF_LINK_HASH_REF_REGULAR)) != 0
+ || (h->weakdef != NULL
+ && ! new_weakdef
+ && h->weakdef->dynindx != -1))
+ dynsym = true;
+ }
+
+ h->elf_link_hash_flags |= new_flag;
+
+ /* Check to see if we need to add an indirect symbol for
+ the default name. */
+ if (definition || h->root.type == bfd_link_hash_common)
+ if (! elf_add_default_symbol (abfd, info, h, name, isym,
+ &sec, &value, &dynsym,
+ override, dt_needed))
+ goto error_free_vers;
+
+ if (dynsym && h->dynindx == -1)
+ {
+ if (! _bfd_elf_link_record_dynamic_symbol (info, h))
+ goto error_free_vers;
+ if (h->weakdef != NULL
+ && ! new_weakdef
+ && h->weakdef->dynindx == -1)
+ {
+ if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
+ goto error_free_vers;
+ }
+ }
+ else if (dynsym && h->dynindx != -1)
+ /* If the symbol already has a dynamic index, but
+ visibility says it should not be visible, turn it into
+ a local symbol. */
+ switch (ELF_ST_VISIBILITY (h->other))
+ {
+ case STV_INTERNAL:
+ case STV_HIDDEN:
+ (*bed->elf_backend_hide_symbol) (info, h, true);
+ break;
+ }
+
+ if (dt_needed && definition
+ && (h->elf_link_hash_flags
+ & ELF_LINK_HASH_REF_REGULAR) != 0)
+ {
+ bfd_size_type oldsize;
+ bfd_size_type strindex;
+
+ if (! is_elf_hash_table (info))
+ goto error_free_vers;
+
+ /* The symbol from a DT_NEEDED object is referenced from
+ the regular object to create a dynamic executable. We
+ have to make sure there is a DT_NEEDED entry for it. */
+
+ dt_needed = false;
+ oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
+ strindex = _bfd_elf_strtab_add (hash_table->dynstr,
+ elf_dt_soname (abfd), false);
+ if (strindex == (bfd_size_type) -1)
+ goto error_free_vers;
+
+ if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
+ {
+ asection *sdyn;
+ Elf_External_Dyn *dyncon, *dynconend;
+
+ sdyn = bfd_get_section_by_name (hash_table->dynobj,
+ ".dynamic");
+ BFD_ASSERT (sdyn != NULL);
+
+ dyncon = (Elf_External_Dyn *) sdyn->contents;
+ dynconend = (Elf_External_Dyn *) (sdyn->contents +
+ sdyn->_raw_size);
+ for (; dyncon < dynconend; dyncon++)
+ {
+ Elf_Internal_Dyn dyn;
+
+ elf_swap_dyn_in (hash_table->dynobj,
+ dyncon, &dyn);
+ BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
+ dyn.d_un.d_val != strindex);
+ }
+ }
+
+ if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
+ goto error_free_vers;
+ }
+ }
+ }
+
+ if (extversym != NULL)
+ {
+ free (extversym);
+ extversym = NULL;
+ }
+
+ if (isymbuf != NULL)
+ free (isymbuf);
+ isymbuf = NULL;
+
+ /* Now set the weakdefs field correctly for all the weak defined
+ symbols we found. The only way to do this is to search all the
+ symbols. Since we only need the information for non functions in
+ dynamic objects, that's the only time we actually put anything on
+ the list WEAKS. We need this information so that if a regular
+ object refers to a symbol defined weakly in a dynamic object, the
+ real symbol in the dynamic object is also put in the dynamic
+ symbols; we also must arrange for both symbols to point to the
+ same memory location. We could handle the general case of symbol
+ aliasing, but a general symbol alias can only be generated in
+ assembler code, handling it correctly would be very time
+ consuming, and other ELF linkers don't handle general aliasing
+ either. */
+ while (weaks != NULL)
+ {
+ struct elf_link_hash_entry *hlook;
+ asection *slook;
+ bfd_vma vlook;
+ struct elf_link_hash_entry **hpp;
+ struct elf_link_hash_entry **hppend;
+
+ hlook = weaks;
+ weaks = hlook->weakdef;
+ hlook->weakdef = NULL;
+
+ BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
+ || hlook->root.type == bfd_link_hash_defweak
+ || hlook->root.type == bfd_link_hash_common
+ || hlook->root.type == bfd_link_hash_indirect);
+ slook = hlook->root.u.def.section;
+ vlook = hlook->root.u.def.value;
+
+ hpp = elf_sym_hashes (abfd);
+ hppend = hpp + extsymcount;
+ for (; hpp < hppend; hpp++)
+ {
+ struct elf_link_hash_entry *h;
+
+ h = *hpp;
+ if (h != NULL && h != hlook
+ && h->root.type == bfd_link_hash_defined
+ && h->root.u.def.section == slook
+ && h->root.u.def.value == vlook)
+ {
+ hlook->weakdef = h;
+
+ /* If the weak definition is in the list of dynamic
+ symbols, make sure the real definition is put there
+ as well. */
+ if (hlook->dynindx != -1
+ && h->dynindx == -1)
+ {
+ if (! _bfd_elf_link_record_dynamic_symbol (info, h))
+ goto error_return;
+ }
+
+ /* If the real definition is in the list of dynamic
+ symbols, make sure the weak definition is put there
+ as well. If we don't do this, then the dynamic
+ loader might not merge the entries for the real
+ definition and the weak definition. */
+ if (h->dynindx != -1
+ && hlook->dynindx == -1)
+ {
+ if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
+ goto error_return;
+ }
+ break;
+ }
+ }
+ }
+
+ /* If this object is the same format as the output object, and it is
+ not a shared library, then let the backend look through the
+ relocs.
+
+ This is required to build global offset table entries and to
+ arrange for dynamic relocs. It is not required for the
+ particular common case of linking non PIC code, even when linking
+ against shared libraries, but unfortunately there is no way of
+ knowing whether an object file has been compiled PIC or not.
+ Looking through the relocs is not particularly time consuming.
+ The problem is that we must either (1) keep the relocs in memory,
+ which causes the linker to require additional runtime memory or
+ (2) read the relocs twice from the input file, which wastes time.
+ This would be a good case for using mmap.
+
+ I have no idea how to handle linking PIC code into a file of a
+ different format. It probably can't be done. */
+ check_relocs = get_elf_backend_data (abfd)->check_relocs;
+ if (! dynamic
+ && abfd->xvec == info->hash->creator
+ && check_relocs != NULL)
+ {
+ asection *o;
+
+ for (o = abfd->sections; o != NULL; o = o->next)
+ {
+ Elf_Internal_Rela *internal_relocs;
+ boolean ok;
+
+ if ((o->flags & SEC_RELOC) == 0
+ || o->reloc_count == 0
+ || ((info->strip == strip_all || info->strip == strip_debugger)
+ && (o->flags & SEC_DEBUGGING) != 0)
+ || bfd_is_abs_section (o->output_section))
+ continue;
+
+ internal_relocs = (NAME(_bfd_elf,link_read_relocs)
+ (abfd, o, (PTR) NULL,
+ (Elf_Internal_Rela *) NULL,
+ info->keep_memory));
+ if (internal_relocs == NULL)
+ goto error_return;
+
+ ok = (*check_relocs) (abfd, info, o, internal_relocs);
+
+ if (elf_section_data (o)->relocs != internal_relocs)
+ free (internal_relocs);
+
+ if (! ok)
+ goto error_return;
+ }
+ }
+
+ /* If this is a non-traditional, non-relocateable link, try to
+ optimize the handling of the .stab/.stabstr sections. */
+ if (! dynamic
+ && ! info->relocateable
+ && ! info->traditional_format
+ && info->hash->creator->flavour == bfd_target_elf_flavour
+ && is_elf_hash_table (info)
+ && (info->strip != strip_all && info->strip != strip_debugger))
+ {
+ asection *stab, *stabstr;
+
+ stab = bfd_get_section_by_name (abfd, ".stab");
+ if (stab != NULL
+ && (stab->flags & SEC_MERGE) == 0
+ && !bfd_is_abs_section (stab->output_section))
+ {
+ stabstr = bfd_get_section_by_name (abfd, ".stabstr");
+
+ if (stabstr != NULL)
+ {
+ struct bfd_elf_section_data *secdata;
+
+ secdata = elf_section_data (stab);
+ if (! _bfd_link_section_stabs (abfd,
+ & hash_table->stab_info,
+ stab, stabstr,
+ &secdata->sec_info))
+ goto error_return;
+ if (secdata->sec_info)
+ secdata->sec_info_type = ELF_INFO_TYPE_STABS;
+ }
+ }
+ }
+
+ if (! info->relocateable && ! dynamic
+ && is_elf_hash_table (info))
+ {
+ asection *s;
+
+ for (s = abfd->sections; s != NULL; s = s->next)
+ if ((s->flags & SEC_MERGE) != 0
+ && !bfd_is_abs_section (s->output_section))
+ {
+ struct bfd_elf_section_data *secdata;
+
+ secdata = elf_section_data (s);
+ if (! _bfd_merge_section (abfd,
+ & hash_table->merge_info,
+ s, &secdata->sec_info))
+ goto error_return;
+ else if (secdata->sec_info)
+ secdata->sec_info_type = ELF_INFO_TYPE_MERGE;
+ }
+ }
+
+ if (is_elf_hash_table (info))
+ {
+ /* Add this bfd to the loaded list. */
+ struct elf_link_loaded_list *n;
+
+ n = ((struct elf_link_loaded_list *)
+ bfd_alloc (abfd, sizeof (struct elf_link_loaded_list)));
+ if (n == NULL)
+ goto error_return;
+ n->abfd = abfd;
+ n->next = hash_table->loaded;
+ hash_table->loaded = n;
+ }
+
+ return true;
+
+ error_free_vers:
+ if (extversym != NULL)
+ free (extversym);
+ error_free_sym:
+ if (isymbuf != NULL)
+ free (isymbuf);
+ error_return:
+ return false;
+}
+
+/* Create some sections which will be filled in with dynamic linking
+ information. ABFD is an input file which requires dynamic sections
+ to be created. The dynamic sections take up virtual memory space
+ when the final executable is run, so we need to create them before
+ addresses are assigned to the output sections. We work out the
+ actual contents and size of these sections later. */
+
+boolean
+elf_link_create_dynamic_sections (abfd, info)
+ bfd *abfd;
+ struct bfd_link_info *info;
+{
+ flagword flags;
+ register asection *s;
+ struct elf_link_hash_entry *h;
+ struct bfd_link_hash_entry *bh;
+ struct elf_backend_data *bed;
+
+ if (! is_elf_hash_table (info))
+ return false;
+
+ if (elf_hash_table (info)->dynamic_sections_created)
+ return true;
+
+ /* Make sure that all dynamic sections use the same input BFD. */
+ if (elf_hash_table (info)->dynobj == NULL)
+ elf_hash_table (info)->dynobj = abfd;
+ else
+ abfd = elf_hash_table (info)->dynobj;
+
+ /* Note that we set the SEC_IN_MEMORY flag for all of these
+ sections. */
+ flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
+ | SEC_IN_MEMORY | SEC_LINKER_CREATED);
+
+ /* A dynamically linked executable has a .interp section, but a
+ shared library does not. */
+ if (! info->shared)
+ {
+ s = bfd_make_section (abfd, ".interp");
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
+ return false;
+ }
+
+ if (! info->traditional_format
+ && info->hash->creator->flavour == bfd_target_elf_flavour)
+ {
+ s = bfd_make_section (abfd, ".eh_frame_hdr");
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
+ || ! bfd_set_section_alignment (abfd, s, 2))
+ return false;
+ }
+
+ /* Create sections to hold version informations. These are removed
+ if they are not needed. */
+ s = bfd_make_section (abfd, ".gnu.version_d");
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
+ || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
+ return false;
+
+ s = bfd_make_section (abfd, ".gnu.version");
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
+ || ! bfd_set_section_alignment (abfd, s, 1))
+ return false;
+
+ s = bfd_make_section (abfd, ".gnu.version_r");
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
+ || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
+ return false;
+
+ s = bfd_make_section (abfd, ".dynsym");
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
+ || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
+ return false;
+
+ s = bfd_make_section (abfd, ".dynstr");
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
+ return false;
+
+ /* Create a strtab to hold the dynamic symbol names. */
+ if (elf_hash_table (info)->dynstr == NULL)
+ {
+ elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
+ if (elf_hash_table (info)->dynstr == NULL)
+ return false;
+ }
+
+ s = bfd_make_section (abfd, ".dynamic");
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags)
+ || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
+ return false;
+
+ /* The special symbol _DYNAMIC is always set to the start of the
+ .dynamic section. This call occurs before we have processed the
+ symbols for any dynamic object, so we don't have to worry about
+ overriding a dynamic definition. We could set _DYNAMIC in a
+ linker script, but we only want to define it if we are, in fact,
+ creating a .dynamic section. We don't want to define it if there
+ is no .dynamic section, since on some ELF platforms the start up
+ code examines it to decide how to initialize the process. */
+ bh = NULL;
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
+ (const char *) 0, false, get_elf_backend_data (abfd)->collect, &bh)))
+ return false;
+ h = (struct elf_link_hash_entry *) bh;
+ h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
+ h->type = STT_OBJECT;
+
+ if (info->shared
+ && ! _bfd_elf_link_record_dynamic_symbol (info, h))
+ return false;
+
+ bed = get_elf_backend_data (abfd);
+
+ s = bfd_make_section (abfd, ".hash");
+ if (s == NULL
+ || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
+ || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
+ return false;
+ elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
+
+ /* Let the backend create the rest of the sections. This lets the
+ backend set the right flags. The backend will normally create
+ the .got and .plt sections. */
+ if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
+ return false;
+
+ elf_hash_table (info)->dynamic_sections_created = true;
+
+ return true;
+}
+
+/* Add an entry to the .dynamic table. */
+
+boolean
+elf_add_dynamic_entry (info, tag, val)
+ struct bfd_link_info *info;
+ bfd_vma tag;
+ bfd_vma val;
+{
+ Elf_Internal_Dyn dyn;
+ bfd *dynobj;
+ asection *s;
+ bfd_size_type newsize;
+ bfd_byte *newcontents;
+
+ if (! is_elf_hash_table (info))
+ return false;
+
+ dynobj = elf_hash_table (info)->dynobj;
+
+ s = bfd_get_section_by_name (dynobj, ".dynamic");
+ BFD_ASSERT (s != NULL);
+
+ newsize = s->_raw_size + sizeof (Elf_External_Dyn);
+ newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
+ if (newcontents == NULL)
+ return false;
+
+ dyn.d_tag = tag;
+ dyn.d_un.d_val = val;
+ elf_swap_dyn_out (dynobj, &dyn,
+ (Elf_External_Dyn *) (newcontents + s->_raw_size));
+
+ s->_raw_size = newsize;
+ s->contents = newcontents;
+
+ return true;
+}
+
+/* Read and swap the relocs from the section indicated by SHDR. This
+ may be either a REL or a RELA section. The relocations are
+ translated into RELA relocations and stored in INTERNAL_RELOCS,
+ which should have already been allocated to contain enough space.
+ The EXTERNAL_RELOCS are a buffer where the external form of the
+ relocations should be stored.
+
+ Returns false if something goes wrong. */
+
+static boolean
+elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
+ internal_relocs)
+ bfd *abfd;
+ Elf_Internal_Shdr *shdr;
+ PTR external_relocs;
+ Elf_Internal_Rela *internal_relocs;
+{
+ struct elf_backend_data *bed;
+ bfd_size_type amt;
+
+ /* If there aren't any relocations, that's OK. */
+ if (!shdr)
+ return true;
+
+ /* Position ourselves at the start of the section. */
+ if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
+ return false;
+
+ /* Read the relocations. */
+ if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
+ return false;
+
+ bed = get_elf_backend_data (abfd);
+
+ /* Convert the external relocations to the internal format. */
+ if (shdr->sh_entsize == sizeof (Elf_External_Rel))
+ {
+ Elf_External_Rel *erel;
+ Elf_External_Rel *erelend;
+ Elf_Internal_Rela *irela;
+ Elf_Internal_Rel *irel;
+
+ erel = (Elf_External_Rel *) external_relocs;
+ erelend = erel + NUM_SHDR_ENTRIES (shdr);
+ irela = internal_relocs;
+ amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
+ irel = bfd_alloc (abfd, amt);
+ for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
+ {
+ unsigned int i;
+
+ if (bed->s->swap_reloc_in)
+ (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
+ else
+ elf_swap_reloc_in (abfd, erel, irel);
+
+ for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
+ {
+ irela[i].r_offset = irel[i].r_offset;
+ irela[i].r_info = irel[i].r_info;
+ irela[i].r_addend = 0;
+ }
+ }
+ }
+ else
+ {
+ Elf_External_Rela *erela;
+ Elf_External_Rela *erelaend;
+ Elf_Internal_Rela *irela;
+
+ BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
+
+ erela = (Elf_External_Rela *) external_relocs;
+ erelaend = erela + NUM_SHDR_ENTRIES (shdr);
+ irela = internal_relocs;
+ for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
+ {
+ if (bed->s->swap_reloca_in)
+ (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
+ else
+ elf_swap_reloca_in (abfd, erela, irela);
+ }
+ }
+
+ return true;
+}
+
+/* Read and swap the relocs for a section O. They may have been
+ cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
+ not NULL, they are used as buffers to read into. They are known to
+ be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
+ the return value is allocated using either malloc or bfd_alloc,
+ according to the KEEP_MEMORY argument. If O has two relocation
+ sections (both REL and RELA relocations), then the REL_HDR
+ relocations will appear first in INTERNAL_RELOCS, followed by the
+ REL_HDR2 relocations. */
+
+Elf_Internal_Rela *
+NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
+ keep_memory)
+ bfd *abfd;
+ asection *o;
+ PTR external_relocs;
+ Elf_Internal_Rela *internal_relocs;
+ boolean keep_memory;
+{
+ Elf_Internal_Shdr *rel_hdr;
+ PTR alloc1 = NULL;
+ Elf_Internal_Rela *alloc2 = NULL;
+ struct elf_backend_data *bed = get_elf_backend_data (abfd);
+
+ if (elf_section_data (o)->relocs != NULL)
+ return elf_section_data (o)->relocs;
+
+ if (o->reloc_count == 0)
+ return NULL;
+
+ rel_hdr = &elf_section_data (o)->rel_hdr;
+
+ if (internal_relocs == NULL)
+ {
+ bfd_size_type size;
+
+ size = o->reloc_count;
+ size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
+ if (keep_memory)
+ internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
+ else
+ internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
+ if (internal_relocs == NULL)
+ goto error_return;
+ }
+
+ if (external_relocs == NULL)
+ {
+ bfd_size_type size = rel_hdr->sh_size;
+
+ if (elf_section_data (o)->rel_hdr2)
+ size += elf_section_data (o)->rel_hdr2->sh_size;
+ alloc1 = (PTR) bfd_malloc (size);
+ if (alloc1 == NULL)
+ goto error_return;
+ external_relocs = alloc1;
+ }
+
+ if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
+ external_relocs,
+ internal_relocs))
+ goto error_return;
+ if (!elf_link_read_relocs_from_section
+ (abfd,
+ elf_section_data (o)->rel_hdr2,
+ ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
+ internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
+ * bed->s->int_rels_per_ext_rel)))
+ goto error_return;
+
+ /* Cache the results for next time, if we can. */
+ if (keep_memory)
+ elf_section_data (o)->relocs = internal_relocs;
+
+ if (alloc1 != NULL)
+ free (alloc1);
+
+ /* Don't free alloc2, since if it was allocated we are passing it
+ back (under the name of internal_relocs). */
+
+ return internal_relocs;
+
+ error_return:
+ if (alloc1 != NULL)
+ free (alloc1);
+ if (alloc2 != NULL)
+ free (alloc2);
+ return NULL;
+}
+
+/* Record an assignment to a symbol made by a linker script. We need
+ this in case some dynamic object refers to this symbol. */
+
+boolean
+NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
+ bfd *output_bfd ATTRIBUTE_UNUSED;
+ struct bfd_link_info *info;
+ const char *name;
+ boolean provide;
+{
+ struct elf_link_hash_entry *h;
+
+ if (info->hash->creator->flavour != bfd_target_elf_flavour)
+ return true;
+
+ h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
+ if (h == NULL)
+ return false;
+
+ if (h->root.type == bfd_link_hash_new)
+ h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
+
+ /* If this symbol is being provided by the linker script, and it is
+ currently defined by a dynamic object, but not by a regular
+ object, then mark it as undefined so that the generic linker will
+ force the correct value. */
+ if (provide
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
+ h->root.type = bfd_link_hash_undefined;
+
+ /* If this symbol is not being provided by the linker script, and it is
+ currently defined by a dynamic object, but not by a regular object,
+ then clear out any version information because the symbol will not be
+ associated with the dynamic object any more. */
+ if (!provide
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
+ h->verinfo.verdef = NULL;
+
+ h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
+
+ if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
+ | ELF_LINK_HASH_REF_DYNAMIC)) != 0
+ || info->shared)
+ && h->dynindx == -1)
+ {
+ if (! _bfd_elf_link_record_dynamic_symbol (info, h))
+ return false;
+
+ /* If this is a weak defined symbol, and we know a corresponding
+ real symbol from the same dynamic object, make sure the real
+ symbol is also made into a dynamic symbol. */
+ if (h->weakdef != NULL
+ && h->weakdef->dynindx == -1)
+ {
+ if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/* This structure is used to pass information to
+ elf_link_assign_sym_version. */
+
+struct elf_assign_sym_version_info
+{
+ /* Output BFD. */
+ bfd *output_bfd;
+ /* General link information. */
+ struct bfd_link_info *info;
+ /* Version tree. */
+ struct bfd_elf_version_tree *verdefs;
+ /* Whether we had a failure. */
+ boolean failed;
+};
+
+/* This structure is used to pass information to
+ elf_link_find_version_dependencies. */
+
+struct elf_find_verdep_info
+{
+ /* Output BFD. */
+ bfd *output_bfd;
+ /* General link information. */
+ struct bfd_link_info *info;
+ /* The number of dependencies. */
+ unsigned int vers;
+ /* Whether we had a failure. */
+ boolean failed;
+};
+
+/* Array used to determine the number of hash table buckets to use
+ based on the number of symbols there are. If there are fewer than
+ 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
+ fewer than 37 we use 17 buckets, and so forth. We never use more
+ than 32771 buckets. */
+
+static const size_t elf_buckets[] =
+{
+ 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
+ 16411, 32771, 0
+};
+
+/* Compute bucket count for hashing table. We do not use a static set
+ of possible tables sizes anymore. Instead we determine for all
+ possible reasonable sizes of the table the outcome (i.e., the
+ number of collisions etc) and choose the best solution. The
+ weighting functions are not too simple to allow the table to grow
+ without bounds. Instead one of the weighting factors is the size.
+ Therefore the result is always a good payoff between few collisions
+ (= short chain lengths) and table size. */
+static size_t
+compute_bucket_count (info)
+ struct bfd_link_info *info;
+{
+ size_t dynsymcount = elf_hash_table (info)->dynsymcount;
+ size_t best_size = 0;
+ unsigned long int *hashcodes;
+ unsigned long int *hashcodesp;
+ unsigned long int i;
+ bfd_size_type amt;
+
+ /* Compute the hash values for all exported symbols. At the same
+ time store the values in an array so that we could use them for
+ optimizations. */
+ amt = dynsymcount;
+ amt *= sizeof (unsigned long int);
+ hashcodes = (unsigned long int *) bfd_malloc (amt);
+ if (hashcodes == NULL)
+ return 0;
+ hashcodesp = hashcodes;
+
+ /* Put all hash values in HASHCODES. */
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_collect_hash_codes, &hashcodesp);
+
+ /* We have a problem here. The following code to optimize the table
+ size requires an integer type with more the 32 bits. If
+ BFD_HOST_U_64_BIT is set we know about such a type. */
+#ifdef BFD_HOST_U_64_BIT
+ if (info->optimize)
+ {
+ unsigned long int nsyms = hashcodesp - hashcodes;
+ size_t minsize;
+ size_t maxsize;
+ BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
+ unsigned long int *counts ;
+
+ /* Possible optimization parameters: if we have NSYMS symbols we say
+ that the hashing table must at least have NSYMS/4 and at most
+ 2*NSYMS buckets. */
+ minsize = nsyms / 4;
+ if (minsize == 0)
+ minsize = 1;
+ best_size = maxsize = nsyms * 2;
+
+ /* Create array where we count the collisions in. We must use bfd_malloc
+ since the size could be large. */
+ amt = maxsize;
+ amt *= sizeof (unsigned long int);
+ counts = (unsigned long int *) bfd_malloc (amt);
+ if (counts == NULL)
+ {
+ free (hashcodes);
+ return 0;
+ }
+
+ /* Compute the "optimal" size for the hash table. The criteria is a
+ minimal chain length. The minor criteria is (of course) the size
+ of the table. */
+ for (i = minsize; i < maxsize; ++i)
+ {
+ /* Walk through the array of hashcodes and count the collisions. */
+ BFD_HOST_U_64_BIT max;
+ unsigned long int j;
+ unsigned long int fact;
+
+ memset (counts, '\0', i * sizeof (unsigned long int));
+
+ /* Determine how often each hash bucket is used. */
+ for (j = 0; j < nsyms; ++j)
+ ++counts[hashcodes[j] % i];
+
+ /* For the weight function we need some information about the
+ pagesize on the target. This is information need not be 100%
+ accurate. Since this information is not available (so far) we
+ define it here to a reasonable default value. If it is crucial
+ to have a better value some day simply define this value. */
+# ifndef BFD_TARGET_PAGESIZE
+# define BFD_TARGET_PAGESIZE (4096)
+# endif
+
+ /* We in any case need 2 + NSYMS entries for the size values and
+ the chains. */
+ max = (2 + nsyms) * (ARCH_SIZE / 8);
+
+# if 1
+ /* Variant 1: optimize for short chains. We add the squares
+ of all the chain lengths (which favous many small chain
+ over a few long chains). */
+ for (j = 0; j < i; ++j)
+ max += counts[j] * counts[j];
+
+ /* This adds penalties for the overall size of the table. */
+ fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
+ max *= fact * fact;
+# else
+ /* Variant 2: Optimize a lot more for small table. Here we
+ also add squares of the size but we also add penalties for
+ empty slots (the +1 term). */
+ for (j = 0; j < i; ++j)
+ max += (1 + counts[j]) * (1 + counts[j]);
+
+ /* The overall size of the table is considered, but not as
+ strong as in variant 1, where it is squared. */
+ fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
+ max *= fact;
+# endif
+
+ /* Compare with current best results. */
+ if (max < best_chlen)
+ {
+ best_chlen = max;
+ best_size = i;
+ }
+ }
+
+ free (counts);
+ }
+ else
+#endif /* defined (BFD_HOST_U_64_BIT) */
+ {
+ /* This is the fallback solution if no 64bit type is available or if we
+ are not supposed to spend much time on optimizations. We select the
+ bucket count using a fixed set of numbers. */
+ for (i = 0; elf_buckets[i] != 0; i++)
+ {
+ best_size = elf_buckets[i];
+ if (dynsymcount < elf_buckets[i + 1])
+ break;
+ }
+ }
+
+ /* Free the arrays we needed. */
+ free (hashcodes);
+
+ return best_size;
+}
+
+/* Set up the sizes and contents of the ELF dynamic sections. This is
+ called by the ELF linker emulation before_allocation routine. We
+ must set the sizes of the sections before the linker sets the
+ addresses of the various sections. */
+
+boolean
+NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
+ filter_shlib,
+ auxiliary_filters, info, sinterpptr,
+ verdefs)
+ bfd *output_bfd;
+ const char *soname;
+ const char *rpath;
+ const char *filter_shlib;
+ const char * const *auxiliary_filters;
+ struct bfd_link_info *info;
+ asection **sinterpptr;
+ struct bfd_elf_version_tree *verdefs;
+{
+ bfd_size_type soname_indx;
+ bfd *dynobj;
+ struct elf_backend_data *bed;
+ struct elf_assign_sym_version_info asvinfo;
+
+ *sinterpptr = NULL;
+
+ soname_indx = (bfd_size_type) -1;
+
+ if (info->hash->creator->flavour != bfd_target_elf_flavour)
+ return true;
+
+ if (! is_elf_hash_table (info))
+ return true;
+
+ /* Any syms created from now on start with -1 in
+ got.refcount/offset and plt.refcount/offset. */
+ elf_hash_table (info)->init_refcount = -1;
+
+ /* The backend may have to create some sections regardless of whether
+ we're dynamic or not. */
+ bed = get_elf_backend_data (output_bfd);
+ if (bed->elf_backend_always_size_sections
+ && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
+ return false;
+
+ dynobj = elf_hash_table (info)->dynobj;
+
+ /* If there were no dynamic objects in the link, there is nothing to
+ do here. */
+ if (dynobj == NULL)
+ return true;
+
+ if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
+ return false;
+
+ if (elf_hash_table (info)->dynamic_sections_created)
+ {
+ struct elf_info_failed eif;
+ struct elf_link_hash_entry *h;
+ asection *dynstr;
+ struct bfd_elf_version_tree *t;
+ struct bfd_elf_version_expr *d;
+ boolean all_defined;
+
+ *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
+ BFD_ASSERT (*sinterpptr != NULL || info->shared);
+
+ if (soname != NULL)
+ {
+ soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
+ soname, true);
+ if (soname_indx == (bfd_size_type) -1
+ || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SONAME,
+ soname_indx))
+ return false;
+ }
+
+ if (info->symbolic)
+ {
+ if (! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMBOLIC,
+ (bfd_vma) 0))
+ return false;
+ info->flags |= DF_SYMBOLIC;
+ }
+
+ if (rpath != NULL)
+ {
+ bfd_size_type indx;
+
+ indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
+ true);
+ if (info->new_dtags)
+ _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
+ if (indx == (bfd_size_type) -1
+ || ! elf_add_dynamic_entry (info, (bfd_vma) DT_RPATH, indx)
+ || (info->new_dtags
+ && ! elf_add_dynamic_entry (info, (bfd_vma) DT_RUNPATH,
+ indx)))
+ return false;
+ }
+
+ if (filter_shlib != NULL)
+ {
+ bfd_size_type indx;
+
+ indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
+ filter_shlib, true);
+ if (indx == (bfd_size_type) -1
+ || ! elf_add_dynamic_entry (info, (bfd_vma) DT_FILTER, indx))
+ return false;
+ }
+
+ if (auxiliary_filters != NULL)
+ {
+ const char * const *p;
+
+ for (p = auxiliary_filters; *p != NULL; p++)
+ {
+ bfd_size_type indx;
+
+ indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
+ *p, true);
+ if (indx == (bfd_size_type) -1
+ || ! elf_add_dynamic_entry (info, (bfd_vma) DT_AUXILIARY,
+ indx))
+ return false;
+ }
+ }
+
+ eif.info = info;
+ eif.verdefs = verdefs;
+ eif.failed = false;
+
+ /* If we are supposed to export all symbols into the dynamic symbol
+ table (this is not the normal case), then do so. */
+ if (info->export_dynamic)
+ {
+ elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
+ (PTR) &eif);
+ if (eif.failed)
+ return false;
+ }
+
+ /* Make all global versions with definiton. */
+ for (t = verdefs; t != NULL; t = t->next)
+ for (d = t->globals; d != NULL; d = d->next)
+ if (!d->symver && strchr (d->pattern, '*') == NULL)
+ {
+ const char *verstr, *name;
+ size_t namelen, verlen, newlen;
+ char *newname, *p;
+ struct elf_link_hash_entry *newh;
+
+ name = d->pattern;
+ namelen = strlen (name);
+ verstr = t->name;
+ verlen = strlen (verstr);
+ newlen = namelen + verlen + 3;
+
+ newname = (char *) bfd_malloc ((bfd_size_type) newlen);
+ if (newname == NULL)
+ return false;
+ memcpy (newname, name, namelen);
+
+ /* Check the hidden versioned definition. */
+ p = newname + namelen;
+ *p++ = ELF_VER_CHR;
+ memcpy (p, verstr, verlen + 1);
+ newh = elf_link_hash_lookup (elf_hash_table (info),
+ newname, false, false,
+ false);
+ if (newh == NULL
+ || (newh->root.type != bfd_link_hash_defined
+ && newh->root.type != bfd_link_hash_defweak))
+ {
+ /* Check the default versioned definition. */
+ *p++ = ELF_VER_CHR;
+ memcpy (p, verstr, verlen + 1);
+ newh = elf_link_hash_lookup (elf_hash_table (info),
+ newname, false, false,
+ false);
+ }
+ free (newname);
+
+ /* Mark this version if there is a definition and it is
+ not defined in a shared object. */
+ if (newh != NULL
+ && ((newh->elf_link_hash_flags
+ & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
+ && (newh->root.type == bfd_link_hash_defined
+ || newh->root.type == bfd_link_hash_defweak))
+ d->symver = 1;
+ }
+
+ /* Attach all the symbols to their version information. */
+ asvinfo.output_bfd = output_bfd;
+ asvinfo.info = info;
+ asvinfo.verdefs = verdefs;
+ asvinfo.failed = false;
+
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_link_assign_sym_version,
+ (PTR) &asvinfo);
+ if (asvinfo.failed)
+ return false;
+
+ if (!info->allow_undefined_version)
+ {
+ /* Check if all global versions have a definiton. */
+ all_defined = true;
+ for (t = verdefs; t != NULL; t = t->next)
+ for (d = t->globals; d != NULL; d = d->next)
+ if (!d->symver && !d->script
+ && strchr (d->pattern, '*') == NULL)
+ {
+ (*_bfd_error_handler)
+ (_("%s: undefined version: %s"),
+ d->pattern, t->name);
+ all_defined = false;
+ }
+
+ if (!all_defined)
+ {
+ bfd_set_error (bfd_error_bad_value);
+ return false;
+ }
+ }
+
+ /* Find all symbols which were defined in a dynamic object and make
+ the backend pick a reasonable value for them. */
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_adjust_dynamic_symbol,
+ (PTR) &eif);
+ if (eif.failed)
+ return false;
+
+ /* Add some entries to the .dynamic section. We fill in some of the
+ values later, in elf_bfd_final_link, but we must add the entries
+ now so that we know the final size of the .dynamic section. */
+
+ /* If there are initialization and/or finalization functions to
+ call then add the corresponding DT_INIT/DT_FINI entries. */
+ h = (info->init_function
+ ? elf_link_hash_lookup (elf_hash_table (info),
+ info->init_function, false,
+ false, false)
+ : NULL);
+ if (h != NULL
+ && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
+ | ELF_LINK_HASH_DEF_REGULAR)) != 0)
+ {
+ if (! elf_add_dynamic_entry (info, (bfd_vma) DT_INIT, (bfd_vma) 0))
+ return false;
+ }
+ h = (info->fini_function
+ ? elf_link_hash_lookup (elf_hash_table (info),
+ info->fini_function, false,
+ false, false)
+ : NULL);
+ if (h != NULL
+ && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
+ | ELF_LINK_HASH_DEF_REGULAR)) != 0)
+ {
+ if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FINI, (bfd_vma) 0))
+ return false;
+ }
+
+ if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
+ {
+ /* DT_PREINIT_ARRAY is not allowed in shared library. */
+ if (info->shared)
+ {
+ bfd *sub;
+ asection *o;
+
+ for (sub = info->input_bfds; sub != NULL;
+ sub = sub->link_next)
+ for (o = sub->sections; o != NULL; o = o->next)
+ if (elf_section_data (o)->this_hdr.sh_type
+ == SHT_PREINIT_ARRAY)
+ {
+ (*_bfd_error_handler)
+ (_("%s: .preinit_array section is not allowed in DSO"),
+ bfd_archive_filename (sub));
+ break;
+ }
+
+ bfd_set_error (bfd_error_nonrepresentable_section);
+ return false;
+ }
+
+ if (!elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAY,
+ (bfd_vma) 0)
+ || !elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAYSZ,
+ (bfd_vma) 0))
+ return false;
+ }
+ if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
+ {
+ if (!elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAY,
+ (bfd_vma) 0)
+ || !elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAYSZ,
+ (bfd_vma) 0))
+ return false;
+ }
+ if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
+ {
+ if (!elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAY,
+ (bfd_vma) 0)
+ || !elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAYSZ,
+ (bfd_vma) 0))
+ return false;
+ }
+
+ dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
+ /* If .dynstr is excluded from the link, we don't want any of
+ these tags. Strictly, we should be checking each section
+ individually; This quick check covers for the case where
+ someone does a /DISCARD/ : { *(*) }. */
+ if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
+ {
+ bfd_size_type strsize;
+
+ strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
+ if (! elf_add_dynamic_entry (info, (bfd_vma) DT_HASH, (bfd_vma) 0)
+ || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRTAB, (bfd_vma) 0)
+ || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMTAB, (bfd_vma) 0)
+ || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRSZ, strsize)
+ || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMENT,
+ (bfd_vma) sizeof (Elf_External_Sym)))
+ return false;
+ }
+ }
+
+ /* The backend must work out the sizes of all the other dynamic
+ sections. */
+ if (bed->elf_backend_size_dynamic_sections
+ && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
+ return false;
+
+ if (elf_hash_table (info)->dynamic_sections_created)
+ {
+ bfd_size_type dynsymcount;
+ asection *s;
+ size_t bucketcount = 0;
+ size_t hash_entry_size;
+ unsigned int dtagcount;
+
+ /* Set up the version definition section. */
+ s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
+ BFD_ASSERT (s != NULL);
+
+ /* We may have created additional version definitions if we are
+ just linking a regular application. */
+ verdefs = asvinfo.verdefs;
+
+ /* Skip anonymous version tag. */
+ if (verdefs != NULL && verdefs->vernum == 0)
+ verdefs = verdefs->next;
+
+ if (verdefs == NULL)
+ _bfd_strip_section_from_output (info, s);
+ else
+ {
+ unsigned int cdefs;
+ bfd_size_type size;
+ struct bfd_elf_version_tree *t;
+ bfd_byte *p;
+ Elf_Internal_Verdef def;
+ Elf_Internal_Verdaux defaux;
+
+ cdefs = 0;
+ size = 0;
+
+ /* Make space for the base version. */
+ size += sizeof (Elf_External_Verdef);
+ size += sizeof (Elf_External_Verdaux);
+ ++cdefs;
+
+ for (t = verdefs; t != NULL; t = t->next)
+ {
+ struct bfd_elf_version_deps *n;
+
+ size += sizeof (Elf_External_Verdef);
+ size += sizeof (Elf_External_Verdaux);
+ ++cdefs;
+
+ for (n = t->deps; n != NULL; n = n->next)
+ size += sizeof (Elf_External_Verdaux);
+ }
+
+ s->_raw_size = size;
+ s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
+ if (s->contents == NULL && s->_raw_size != 0)
+ return false;
+
+ /* Fill in the version definition section. */
+
+ p = s->contents;
+
+ def.vd_version = VER_DEF_CURRENT;
+ def.vd_flags = VER_FLG_BASE;
+ def.vd_ndx = 1;
+ def.vd_cnt = 1;
+ def.vd_aux = sizeof (Elf_External_Verdef);
+ def.vd_next = (sizeof (Elf_External_Verdef)
+ + sizeof (Elf_External_Verdaux));
+
+ if (soname_indx != (bfd_size_type) -1)
+ {
+ _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
+ soname_indx);
+ def.vd_hash = bfd_elf_hash (soname);
+ defaux.vda_name = soname_indx;
+ }
+ else
+ {
+ const char *name;
+ bfd_size_type indx;
+
+ name = basename (output_bfd->filename);
+ def.vd_hash = bfd_elf_hash (name);
+ indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
+ name, false);
+ if (indx == (bfd_size_type) -1)
+ return false;
+ defaux.vda_name = indx;
+ }
+ defaux.vda_next = 0;
+
+ _bfd_elf_swap_verdef_out (output_bfd, &def,
+ (Elf_External_Verdef *) p);
+ p += sizeof (Elf_External_Verdef);
+ _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
+ (Elf_External_Verdaux *) p);
+ p += sizeof (Elf_External_Verdaux);
+
+ for (t = verdefs; t != NULL; t = t->next)
+ {
+ unsigned int cdeps;
+ struct bfd_elf_version_deps *n;
+ struct elf_link_hash_entry *h;
+ struct bfd_link_hash_entry *bh;
+
+ cdeps = 0;
+ for (n = t->deps; n != NULL; n = n->next)
+ ++cdeps;
+
+ /* Add a symbol representing this version. */
+ bh = NULL;
+ if (! (_bfd_generic_link_add_one_symbol
+ (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
+ (bfd_vma) 0, (const char *) NULL, false,
+ get_elf_backend_data (dynobj)->collect, &bh)))
+ return false;
+ h = (struct elf_link_hash_entry *) bh;
+ h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
+ h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
+ h->type = STT_OBJECT;
+ h->verinfo.vertree = t;
+
+ if (! _bfd_elf_link_record_dynamic_symbol (info, h))
+ return false;
+
+ def.vd_version = VER_DEF_CURRENT;
+ def.vd_flags = 0;
+ if (t->globals == NULL && t->locals == NULL && ! t->used)
+ def.vd_flags |= VER_FLG_WEAK;
+ def.vd_ndx = t->vernum + 1;
+ def.vd_cnt = cdeps + 1;
+ def.vd_hash = bfd_elf_hash (t->name);
+ def.vd_aux = sizeof (Elf_External_Verdef);
+ if (t->next != NULL)
+ def.vd_next = (sizeof (Elf_External_Verdef)
+ + (cdeps + 1) * sizeof (Elf_External_Verdaux));
+ else
+ def.vd_next = 0;
+
+ _bfd_elf_swap_verdef_out (output_bfd, &def,
+ (Elf_External_Verdef *) p);
+ p += sizeof (Elf_External_Verdef);
+
+ defaux.vda_name = h->dynstr_index;
+ _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
+ h->dynstr_index);
+ if (t->deps == NULL)
+ defaux.vda_next = 0;
+ else
+ defaux.vda_next = sizeof (Elf_External_Verdaux);
+ t->name_indx = defaux.vda_name;
+
+ _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
+ (Elf_External_Verdaux *) p);
+ p += sizeof (Elf_External_Verdaux);
+
+ for (n = t->deps; n != NULL; n = n->next)
+ {
+ if (n->version_needed == NULL)
+ {
+ /* This can happen if there was an error in the
+ version script. */
+ defaux.vda_name = 0;
+ }
+ else
+ {
+ defaux.vda_name = n->version_needed->name_indx;
+ _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
+ defaux.vda_name);
+ }
+ if (n->next == NULL)
+ defaux.vda_next = 0;
+ else
+ defaux.vda_next = sizeof (Elf_External_Verdaux);
+
+ _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
+ (Elf_External_Verdaux *) p);
+ p += sizeof (Elf_External_Verdaux);
+ }
+ }
+
+ if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEF, (bfd_vma) 0)
+ || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEFNUM,
+ (bfd_vma) cdefs))
+ return false;
+
+ elf_tdata (output_bfd)->cverdefs = cdefs;
+ }
+
+ if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
+ {
+ if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS, info->flags))
+ return false;
+ }
+
+ if (info->flags_1)
+ {
+ if (! info->shared)
+ info->flags_1 &= ~ (DF_1_INITFIRST
+ | DF_1_NODELETE
+ | DF_1_NOOPEN);
+ if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS_1,
+ info->flags_1))
+ return false;
+ }
+
+ /* Work out the size of the version reference section. */
+
+ s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
+ BFD_ASSERT (s != NULL);
+ {
+ struct elf_find_verdep_info sinfo;
+
+ sinfo.output_bfd = output_bfd;
+ sinfo.info = info;
+ sinfo.vers = elf_tdata (output_bfd)->cverdefs;
+ if (sinfo.vers == 0)
+ sinfo.vers = 1;
+ sinfo.failed = false;
+
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_link_find_version_dependencies,
+ (PTR) &sinfo);
+
+ if (elf_tdata (output_bfd)->verref == NULL)
+ _bfd_strip_section_from_output (info, s);
+ else
+ {
+ Elf_Internal_Verneed *t;
+ unsigned int size;
+ unsigned int crefs;
+ bfd_byte *p;
+
+ /* Build the version definition section. */
+ size = 0;
+ crefs = 0;
+ for (t = elf_tdata (output_bfd)->verref;
+ t != NULL;
+ t = t->vn_nextref)
+ {
+ Elf_Internal_Vernaux *a;
+
+ size += sizeof (Elf_External_Verneed);
+ ++crefs;
+ for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
+ size += sizeof (Elf_External_Vernaux);
+ }
+
+ s->_raw_size = size;
+ s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
+ if (s->contents == NULL)
+ return false;
+
+ p = s->contents;
+ for (t = elf_tdata (output_bfd)->verref;
+ t != NULL;
+ t = t->vn_nextref)
+ {
+ unsigned int caux;
+ Elf_Internal_Vernaux *a;
+ bfd_size_type indx;
+
+ caux = 0;
+ for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
+ ++caux;
+
+ t->vn_version = VER_NEED_CURRENT;
+ t->vn_cnt = caux;
+ indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
+ elf_dt_name (t->vn_bfd) != NULL
+ ? elf_dt_name (t->vn_bfd)
+ : basename (t->vn_bfd->filename),
+ false);
+ if (indx == (bfd_size_type) -1)
+ return false;
+ t->vn_file = indx;
+ t->vn_aux = sizeof (Elf_External_Verneed);
+ if (t->vn_nextref == NULL)
+ t->vn_next = 0;
+ else
+ t->vn_next = (sizeof (Elf_External_Verneed)
+ + caux * sizeof (Elf_External_Vernaux));
+
+ _bfd_elf_swap_verneed_out (output_bfd, t,
+ (Elf_External_Verneed *) p);
+ p += sizeof (Elf_External_Verneed);
+
+ for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
+ {
+ a->vna_hash = bfd_elf_hash (a->vna_nodename);
+ indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
+ a->vna_nodename, false);
+ if (indx == (bfd_size_type) -1)
+ return false;
+ a->vna_name = indx;
+ if (a->vna_nextptr == NULL)
+ a->vna_next = 0;
+ else
+ a->vna_next = sizeof (Elf_External_Vernaux);
+
+ _bfd_elf_swap_vernaux_out (output_bfd, a,
+ (Elf_External_Vernaux *) p);
+ p += sizeof (Elf_External_Vernaux);
+ }
+ }
+
+ if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEED,
+ (bfd_vma) 0)
+ || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEEDNUM,
+ (bfd_vma) crefs))
+ return false;
+
+ elf_tdata (output_bfd)->cverrefs = crefs;
+ }
+ }
+
+ /* Assign dynsym indicies. In a shared library we generate a
+ section symbol for each output section, which come first.
+ Next come all of the back-end allocated local dynamic syms,
+ followed by the rest of the global symbols. */
+
+ dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
+
+ /* Work out the size of the symbol version section. */
+ s = bfd_get_section_by_name (dynobj, ".gnu.version");
+ BFD_ASSERT (s != NULL);
+ if (dynsymcount == 0
+ || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
+ {
+ _bfd_strip_section_from_output (info, s);
+ /* The DYNSYMCOUNT might have changed if we were going to
+ output a dynamic symbol table entry for S. */
+ dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
+ }
+ else
+ {
+ s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
+ s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
+ if (s->contents == NULL)
+ return false;
+
+ if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERSYM, (bfd_vma) 0))
+ return false;
+ }
+
+ /* Set the size of the .dynsym and .hash sections. We counted
+ the number of dynamic symbols in elf_link_add_object_symbols.
+ We will build the contents of .dynsym and .hash when we build
+ the final symbol table, because until then we do not know the
+ correct value to give the symbols. We built the .dynstr
+ section as we went along in elf_link_add_object_symbols. */
+ s = bfd_get_section_by_name (dynobj, ".dynsym");
+ BFD_ASSERT (s != NULL);
+ s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
+ s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
+ if (s->contents == NULL && s->_raw_size != 0)
+ return false;
+
+ if (dynsymcount != 0)
+ {
+ Elf_Internal_Sym isym;
+
+ /* The first entry in .dynsym is a dummy symbol. */
+ isym.st_value = 0;
+ isym.st_size = 0;
+ isym.st_name = 0;
+ isym.st_info = 0;
+ isym.st_other = 0;
+ isym.st_shndx = 0;
+ elf_swap_symbol_out (output_bfd, &isym, (PTR) s->contents, (PTR) 0);
+ }
+
+ /* Compute the size of the hashing table. As a side effect this
+ computes the hash values for all the names we export. */
+ bucketcount = compute_bucket_count (info);
+
+ s = bfd_get_section_by_name (dynobj, ".hash");
+ BFD_ASSERT (s != NULL);
+ hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
+ s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
+ s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
+ if (s->contents == NULL)
+ return false;
+
+ bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) bucketcount,
+ s->contents);
+ bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) dynsymcount,
+ s->contents + hash_entry_size);
+
+ elf_hash_table (info)->bucketcount = bucketcount;
+
+ s = bfd_get_section_by_name (dynobj, ".dynstr");
+ BFD_ASSERT (s != NULL);
+
+ elf_finalize_dynstr (output_bfd, info);
+
+ s->_raw_size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
+
+ for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
+ if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NULL, (bfd_vma) 0))
+ return false;
+ }
+
+ return true;
+}
+
+/* This function is used to adjust offsets into .dynstr for
+ dynamic symbols. This is called via elf_link_hash_traverse. */
+
+static boolean elf_adjust_dynstr_offsets
+PARAMS ((struct elf_link_hash_entry *, PTR));
+
+static boolean
+elf_adjust_dynstr_offsets (h, data)
+ struct elf_link_hash_entry *h;
+ PTR data;
+{
+ struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
+
+ if (h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ if (h->dynindx != -1)
+ h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
+ return true;
+}
+
+/* Assign string offsets in .dynstr, update all structures referencing
+ them. */
+
+static boolean
+elf_finalize_dynstr (output_bfd, info)
+ bfd *output_bfd;
+ struct bfd_link_info *info;
+{
+ struct elf_link_local_dynamic_entry *entry;
+ struct elf_strtab_hash *dynstr = elf_hash_table (info)->dynstr;
+ bfd *dynobj = elf_hash_table (info)->dynobj;
+ asection *sdyn;
+ bfd_size_type size;
+ Elf_External_Dyn *dyncon, *dynconend;
+
+ _bfd_elf_strtab_finalize (dynstr);
+ size = _bfd_elf_strtab_size (dynstr);
+
+ /* Update all .dynamic entries referencing .dynstr strings. */
+ sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
+ BFD_ASSERT (sdyn != NULL);
+
+ dyncon = (Elf_External_Dyn *) sdyn->contents;
+ dynconend = (Elf_External_Dyn *) (sdyn->contents +
+ sdyn->_raw_size);
+ for (; dyncon < dynconend; dyncon++)
+ {
+ Elf_Internal_Dyn dyn;
+
+ elf_swap_dyn_in (dynobj, dyncon, & dyn);
+ switch (dyn.d_tag)
+ {
+ case DT_STRSZ:
+ dyn.d_un.d_val = size;
+ elf_swap_dyn_out (dynobj, & dyn, dyncon);
+ break;
+ case DT_NEEDED:
+ case DT_SONAME:
+ case DT_RPATH:
+ case DT_RUNPATH:
+ case DT_FILTER:
+ case DT_AUXILIARY:
+ dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
+ elf_swap_dyn_out (dynobj, & dyn, dyncon);
+ break;
+ default:
+ break;
+ }
+ }
+
+ /* Now update local dynamic symbols. */
+ for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
+ entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
+ entry->isym.st_name);
+
+ /* And the rest of dynamic symbols. */
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_adjust_dynstr_offsets, dynstr);
+
+ /* Adjust version definitions. */
+ if (elf_tdata (output_bfd)->cverdefs)
+ {
+ asection *s;
+ bfd_byte *p;
+ bfd_size_type i;
+ Elf_Internal_Verdef def;
+ Elf_Internal_Verdaux defaux;
+
+ s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
+ p = (bfd_byte *) s->contents;
+ do
+ {
+ _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
+ &def);
+ p += sizeof (Elf_External_Verdef);
+ for (i = 0; i < def.vd_cnt; ++i)
+ {
+ _bfd_elf_swap_verdaux_in (output_bfd,
+ (Elf_External_Verdaux *) p, &defaux);
+ defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
+ defaux.vda_name);
+ _bfd_elf_swap_verdaux_out (output_bfd,
+ &defaux, (Elf_External_Verdaux *) p);
+ p += sizeof (Elf_External_Verdaux);
+ }
+ }
+ while (def.vd_next);
+ }
+
+ /* Adjust version references. */
+ if (elf_tdata (output_bfd)->verref)
+ {
+ asection *s;
+ bfd_byte *p;
+ bfd_size_type i;
+ Elf_Internal_Verneed need;
+ Elf_Internal_Vernaux needaux;
+
+ s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
+ p = (bfd_byte *) s->contents;
+ do
+ {
+ _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
+ &need);
+ need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
+ _bfd_elf_swap_verneed_out (output_bfd, &need,
+ (Elf_External_Verneed *) p);
+ p += sizeof (Elf_External_Verneed);
+ for (i = 0; i < need.vn_cnt; ++i)
+ {
+ _bfd_elf_swap_vernaux_in (output_bfd,
+ (Elf_External_Vernaux *) p, &needaux);
+ needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
+ needaux.vna_name);
+ _bfd_elf_swap_vernaux_out (output_bfd,
+ &needaux,
+ (Elf_External_Vernaux *) p);
+ p += sizeof (Elf_External_Vernaux);
+ }
+ }
+ while (need.vn_next);
+ }
+
+ return true;
+}
+
+/* Fix up the flags for a symbol. This handles various cases which
+ can only be fixed after all the input files are seen. This is
+ currently called by both adjust_dynamic_symbol and
+ assign_sym_version, which is unnecessary but perhaps more robust in
+ the face of future changes. */
+
+static boolean
+elf_fix_symbol_flags (h, eif)
+ struct elf_link_hash_entry *h;
+ struct elf_info_failed *eif;
+{
+ /* If this symbol was mentioned in a non-ELF file, try to set
+ DEF_REGULAR and REF_REGULAR correctly. This is the only way to
+ permit a non-ELF file to correctly refer to a symbol defined in
+ an ELF dynamic object. */
+ if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
+ {
+ while (h->root.type == bfd_link_hash_indirect)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ if (h->root.type != bfd_link_hash_defined
+ && h->root.type != bfd_link_hash_defweak)
+ h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
+ | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
+ else
+ {
+ if (h->root.u.def.section->owner != NULL
+ && (bfd_get_flavour (h->root.u.def.section->owner)
+ == bfd_target_elf_flavour))
+ h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
+ | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
+ else
+ h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
+ }
+
+ if (h->dynindx == -1
+ && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
+ || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
+ {
+ if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
+ {
+ eif->failed = true;
+ return false;
+ }
+ }
+ }
+ else
+ {
+ /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
+ was first seen in a non-ELF file. Fortunately, if the symbol
+ was first seen in an ELF file, we're probably OK unless the
+ symbol was defined in a non-ELF file. Catch that case here.
+ FIXME: We're still in trouble if the symbol was first seen in
+ a dynamic object, and then later in a non-ELF regular object. */
+ if ((h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak)
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
+ && (h->root.u.def.section->owner != NULL
+ ? (bfd_get_flavour (h->root.u.def.section->owner)
+ != bfd_target_elf_flavour)
+ : (bfd_is_abs_section (h->root.u.def.section)
+ && (h->elf_link_hash_flags
+ & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
+ h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
+ }
+
+ /* If this is a final link, and the symbol was defined as a common
+ symbol in a regular object file, and there was no definition in
+ any dynamic object, then the linker will have allocated space for
+ the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
+ flag will not have been set. */
+ if (h->root.type == bfd_link_hash_defined
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
+ && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
+ h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
+
+ /* If -Bsymbolic was used (which means to bind references to global
+ symbols to the definition within the shared object), and this
+ symbol was defined in a regular object, then it actually doesn't
+ need a PLT entry, and we can accomplish that by forcing it local.
+ Likewise, if the symbol has hidden or internal visibility.
+ FIXME: It might be that we also do not need a PLT for other
+ non-hidden visibilities, but we would have to tell that to the
+ backend specifically; we can't just clear PLT-related data here. */
+ if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
+ && eif->info->shared
+ && is_elf_hash_table (eif->info)
+ && (eif->info->symbolic
+ || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
+ || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
+ {
+ struct elf_backend_data *bed;
+ boolean force_local;
+
+ bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
+
+ force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
+ || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
+ (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
+ }
+
+ /* If this is a weak defined symbol in a dynamic object, and we know
+ the real definition in the dynamic object, copy interesting flags
+ over to the real definition. */
+ if (h->weakdef != NULL)
+ {
+ struct elf_link_hash_entry *weakdef;
+
+ weakdef = h->weakdef;
+ if (h->root.type == bfd_link_hash_indirect)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ BFD_ASSERT (h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak);
+ BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
+ || weakdef->root.type == bfd_link_hash_defweak);
+ BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
+
+ /* If the real definition is defined by a regular object file,
+ don't do anything special. See the longer description in
+ elf_adjust_dynamic_symbol, below. */
+ if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
+ h->weakdef = NULL;
+ else
+ {
+ struct elf_backend_data *bed;
+
+ bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
+ (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
+ }
+ }
+
+ return true;
+}
+
+/* Make the backend pick a good value for a dynamic symbol. This is
+ called via elf_link_hash_traverse, and also calls itself
+ recursively. */
+
+static boolean
+elf_adjust_dynamic_symbol (h, data)
+ struct elf_link_hash_entry *h;
+ PTR data;
+{
+ struct elf_info_failed *eif = (struct elf_info_failed *) data;
+ bfd *dynobj;
+ struct elf_backend_data *bed;
+
+ if (h->root.type == bfd_link_hash_warning)
+ {
+ h->plt.offset = (bfd_vma) -1;
+ h->got.offset = (bfd_vma) -1;
+
+ /* When warning symbols are created, they **replace** the "real"
+ entry in the hash table, thus we never get to see the real
+ symbol in a hash traversal. So look at it now. */
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+ }
+
+ /* Ignore indirect symbols. These are added by the versioning code. */
+ if (h->root.type == bfd_link_hash_indirect)
+ return true;
+
+ if (! is_elf_hash_table (eif->info))
+ return false;
+
+ /* Fix the symbol flags. */
+ if (! elf_fix_symbol_flags (h, eif))
+ return false;
+
+ /* If this symbol does not require a PLT entry, and it is not
+ defined by a dynamic object, or is not referenced by a regular
+ object, ignore it. We do have to handle a weak defined symbol,
+ even if no regular object refers to it, if we decided to add it
+ to the dynamic symbol table. FIXME: Do we normally need to worry
+ about symbols which are defined by one dynamic object and
+ referenced by another one? */
+ if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
+ && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
+ || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
+ || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
+ && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
+ {
+ h->plt.offset = (bfd_vma) -1;
+ return true;
+ }
+
+ /* If we've already adjusted this symbol, don't do it again. This
+ can happen via a recursive call. */
+ if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
+ return true;
+
+ /* Don't look at this symbol again. Note that we must set this
+ after checking the above conditions, because we may look at a
+ symbol once, decide not to do anything, and then get called
+ recursively later after REF_REGULAR is set below. */
+ h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
+
+ /* If this is a weak definition, and we know a real definition, and
+ the real symbol is not itself defined by a regular object file,
+ then get a good value for the real definition. We handle the
+ real symbol first, for the convenience of the backend routine.
+
+ Note that there is a confusing case here. If the real definition
+ is defined by a regular object file, we don't get the real symbol
+ from the dynamic object, but we do get the weak symbol. If the
+ processor backend uses a COPY reloc, then if some routine in the
+ dynamic object changes the real symbol, we will not see that
+ change in the corresponding weak symbol. This is the way other
+ ELF linkers work as well, and seems to be a result of the shared
+ library model.
+
+ I will clarify this issue. Most SVR4 shared libraries define the
+ variable _timezone and define timezone as a weak synonym. The
+ tzset call changes _timezone. If you write
+ extern int timezone;
+ int _timezone = 5;
+ int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
+ you might expect that, since timezone is a synonym for _timezone,
+ the same number will print both times. However, if the processor
+ backend uses a COPY reloc, then actually timezone will be copied
+ into your process image, and, since you define _timezone
+ yourself, _timezone will not. Thus timezone and _timezone will
+ wind up at different memory locations. The tzset call will set
+ _timezone, leaving timezone unchanged. */
+
+ if (h->weakdef != NULL)
+ {
+ /* If we get to this point, we know there is an implicit
+ reference by a regular object file via the weak symbol H.
+ FIXME: Is this really true? What if the traversal finds
+ H->WEAKDEF before it finds H? */
+ h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
+
+ if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
+ return false;
+ }
+
+ /* If a symbol has no type and no size and does not require a PLT
+ entry, then we are probably about to do the wrong thing here: we
+ are probably going to create a COPY reloc for an empty object.
+ This case can arise when a shared object is built with assembly
+ code, and the assembly code fails to set the symbol type. */
+ if (h->size == 0
+ && h->type == STT_NOTYPE
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
+ (*_bfd_error_handler)
+ (_("warning: type and size of dynamic symbol `%s' are not defined"),
+ h->root.root.string);
+
+ dynobj = elf_hash_table (eif->info)->dynobj;
+ bed = get_elf_backend_data (dynobj);
+ if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
+ {
+ eif->failed = true;
+ return false;
+ }
+
+ return true;
+}
+
+/* This routine is used to export all defined symbols into the dynamic
+ symbol table. It is called via elf_link_hash_traverse. */
+
+static boolean
+elf_export_symbol (h, data)
+ struct elf_link_hash_entry *h;
+ PTR data;
+{
+ struct elf_info_failed *eif = (struct elf_info_failed *) data;
+
+ /* Ignore indirect symbols. These are added by the versioning code. */
+ if (h->root.type == bfd_link_hash_indirect)
+ return true;
+
+ if (h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ if (h->dynindx == -1
+ && (h->elf_link_hash_flags
+ & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
+ {
+ struct bfd_elf_version_tree *t;
+ struct bfd_elf_version_expr *d;
+
+ for (t = eif->verdefs; t != NULL; t = t->next)
+ {
+ if (t->globals != NULL)
+ {
+ for (d = t->globals; d != NULL; d = d->next)
+ {
+ if ((*d->match) (d, h->root.root.string))
+ goto doit;
+ }
+ }
+
+ if (t->locals != NULL)
+ {
+ for (d = t->locals ; d != NULL; d = d->next)
+ {
+ if ((*d->match) (d, h->root.root.string))
+ return true;
+ }
+ }
+ }
+
+ if (!eif->verdefs)
+ {
+ doit:
+ if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
+ {
+ eif->failed = true;
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+/* Look through the symbols which are defined in other shared
+ libraries and referenced here. Update the list of version
+ dependencies. This will be put into the .gnu.version_r section.
+ This function is called via elf_link_hash_traverse. */
+
+static boolean
+elf_link_find_version_dependencies (h, data)
+ struct elf_link_hash_entry *h;
+ PTR data;
+{
+ struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
+ Elf_Internal_Verneed *t;
+ Elf_Internal_Vernaux *a;
+ bfd_size_type amt;
+
+ if (h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ /* We only care about symbols defined in shared objects with version
+ information. */
+ if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
+ || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
+ || h->dynindx == -1
+ || h->verinfo.verdef == NULL)
+ return true;
+
+ /* See if we already know about this version. */
+ for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
+ {
+ if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
+ continue;
+
+ for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
+ if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
+ return true;
+
+ break;
+ }
+
+ /* This is a new version. Add it to tree we are building. */
+
+ if (t == NULL)
+ {
+ amt = sizeof *t;
+ t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, amt);
+ if (t == NULL)
+ {
+ rinfo->failed = true;
+ return false;
+ }
+
+ t->vn_bfd = h->verinfo.verdef->vd_bfd;
+ t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
+ elf_tdata (rinfo->output_bfd)->verref = t;
+ }
+
+ amt = sizeof *a;
+ a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, amt);
+
+ /* Note that we are copying a string pointer here, and testing it
+ above. If bfd_elf_string_from_elf_section is ever changed to
+ discard the string data when low in memory, this will have to be
+ fixed. */
+ a->vna_nodename = h->verinfo.verdef->vd_nodename;
+
+ a->vna_flags = h->verinfo.verdef->vd_flags;
+ a->vna_nextptr = t->vn_auxptr;
+
+ h->verinfo.verdef->vd_exp_refno = rinfo->vers;
+ ++rinfo->vers;
+
+ a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
+
+ t->vn_auxptr = a;
+
+ return true;
+}
+
+/* Figure out appropriate versions for all the symbols. We may not
+ have the version number script until we have read all of the input
+ files, so until that point we don't know which symbols should be
+ local. This function is called via elf_link_hash_traverse. */
+
+static boolean
+elf_link_assign_sym_version (h, data)
+ struct elf_link_hash_entry *h;
+ PTR data;
+{
+ struct elf_assign_sym_version_info *sinfo;
+ struct bfd_link_info *info;
+ struct elf_backend_data *bed;
+ struct elf_info_failed eif;
+ char *p;
+ bfd_size_type amt;
+
+ sinfo = (struct elf_assign_sym_version_info *) data;
+ info = sinfo->info;
+
+ if (h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ /* Fix the symbol flags. */
+ eif.failed = false;
+ eif.info = info;
+ if (! elf_fix_symbol_flags (h, &eif))
+ {
+ if (eif.failed)
+ sinfo->failed = true;
+ return false;
+ }
+
+ /* We only need version numbers for symbols defined in regular
+ objects. */
+ if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
+ return true;
+
+ bed = get_elf_backend_data (sinfo->output_bfd);
+ p = strchr (h->root.root.string, ELF_VER_CHR);
+ if (p != NULL && h->verinfo.vertree == NULL)
+ {
+ struct bfd_elf_version_tree *t;
+ boolean hidden;
+
+ hidden = true;
+
+ /* There are two consecutive ELF_VER_CHR characters if this is
+ not a hidden symbol. */
+ ++p;
+ if (*p == ELF_VER_CHR)
+ {
+ hidden = false;
+ ++p;
+ }
+
+ /* If there is no version string, we can just return out. */
+ if (*p == '\0')
+ {
+ if (hidden)
+ h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
+ return true;
+ }
+
+ /* Look for the version. If we find it, it is no longer weak. */
+ for (t = sinfo->verdefs; t != NULL; t = t->next)
+ {
+ if (strcmp (t->name, p) == 0)
+ {
+ size_t len;
+ char *alc;
+ struct bfd_elf_version_expr *d;
+
+ len = p - h->root.root.string;
+ alc = bfd_malloc ((bfd_size_type) len);
+ if (alc == NULL)
+ return false;
+ memcpy (alc, h->root.root.string, len - 1);
+ alc[len - 1] = '\0';
+ if (alc[len - 2] == ELF_VER_CHR)
+ alc[len - 2] = '\0';
+
+ h->verinfo.vertree = t;
+ t->used = true;
+ d = NULL;
+
+ if (t->globals != NULL)
+ {
+ for (d = t->globals; d != NULL; d = d->next)
+ if ((*d->match) (d, alc))
+ break;
+ }
+
+ /* See if there is anything to force this symbol to
+ local scope. */
+ if (d == NULL && t->locals != NULL)
+ {
+ for (d = t->locals; d != NULL; d = d->next)
+ {
+ if ((*d->match) (d, alc))
+ {
+ if (h->dynindx != -1
+ && info->shared
+ && ! info->export_dynamic)
+ {
+ (*bed->elf_backend_hide_symbol) (info, h, true);
+ }
+
+ break;
+ }
+ }
+ }
+
+ free (alc);
+ break;
+ }
+ }
+
+ /* If we are building an application, we need to create a
+ version node for this version. */
+ if (t == NULL && ! info->shared)
+ {
+ struct bfd_elf_version_tree **pp;
+ int version_index;
+
+ /* If we aren't going to export this symbol, we don't need
+ to worry about it. */
+ if (h->dynindx == -1)
+ return true;
+
+ amt = sizeof *t;
+ t = ((struct bfd_elf_version_tree *)
+ bfd_alloc (sinfo->output_bfd, amt));
+ if (t == NULL)
+ {
+ sinfo->failed = true;
+ return false;
+ }
+
+ t->next = NULL;
+ t->name = p;
+ t->globals = NULL;
+ t->locals = NULL;
+ t->deps = NULL;
+ t->name_indx = (unsigned int) -1;
+ t->used = true;
+
+ version_index = 1;
+ /* Don't count anonymous version tag. */
+ if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
+ version_index = 0;
+ for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
+ ++version_index;
+ t->vernum = version_index;
+
+ *pp = t;
+
+ h->verinfo.vertree = t;
+ }
+ else if (t == NULL)
+ {
+ /* We could not find the version for a symbol when
+ generating a shared archive. Return an error. */
+ (*_bfd_error_handler)
+ (_("%s: undefined versioned symbol name %s"),
+ bfd_get_filename (sinfo->output_bfd), h->root.root.string);
+ bfd_set_error (bfd_error_bad_value);
+ sinfo->failed = true;
+ return false;
+ }
+
+ if (hidden)
+ h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
+ }
+
+ /* If we don't have a version for this symbol, see if we can find
+ something. */
+ if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
+ {
+ struct bfd_elf_version_tree *t;
+ struct bfd_elf_version_tree *local_ver;
+ struct bfd_elf_version_expr *d;
+
+ /* See if can find what version this symbol is in. If the
+ symbol is supposed to be local, then don't actually register
+ it. */
+ local_ver = NULL;
+ for (t = sinfo->verdefs; t != NULL; t = t->next)
+ {
+ if (t->globals != NULL)
+ {
+ boolean matched;
+
+ matched = false;
+ for (d = t->globals; d != NULL; d = d->next)
+ {
+ if ((*d->match) (d, h->root.root.string))
+ {
+ if (d->symver)
+ matched = true;
+ else
+ {
+ /* There is a version without definition. Make
+ the symbol the default definition for this
+ version. */
+ h->verinfo.vertree = t;
+ local_ver = NULL;
+ d->script = 1;
+ break;
+ }
+ }
+ }
+
+ if (d != NULL)
+ break;
+ else if (matched)
+ /* There is no undefined version for this symbol. Hide the
+ default one. */
+ (*bed->elf_backend_hide_symbol) (info, h, true);
+ }
+
+ if (t->locals != NULL)
+ {
+ for (d = t->locals; d != NULL; d = d->next)
+ {
+ /* If the match is "*", keep looking for a more
+ explicit, perhaps even global, match. */
+ if (d->pattern[0] == '*' && d->pattern[1] == '\0')
+ local_ver = t;
+ else if ((*d->match) (d, h->root.root.string))
+ {
+ local_ver = t;
+ break;
+ }
+ }
+
+ if (d != NULL)
+ break;
+ }
+ }
+
+ if (local_ver != NULL)
+ {
+ h->verinfo.vertree = local_ver;
+ if (h->dynindx != -1
+ && info->shared
+ && ! info->export_dynamic)
+ {
+ (*bed->elf_backend_hide_symbol) (info, h, true);
+ }
+ }
+ }
+
+ return true;
+}
+
+/* Final phase of ELF linker. */
+
+/* A structure we use to avoid passing large numbers of arguments. */
+
+struct elf_final_link_info
+{
+ /* General link information. */
+ struct bfd_link_info *info;
+ /* Output BFD. */
+ bfd *output_bfd;
+ /* Symbol string table. */
+ struct bfd_strtab_hash *symstrtab;
+ /* .dynsym section. */
+ asection *dynsym_sec;
+ /* .hash section. */
+ asection *hash_sec;
+ /* symbol version section (.gnu.version). */
+ asection *symver_sec;
+ /* first SHF_TLS section (if any). */
+ asection *first_tls_sec;
+ /* Buffer large enough to hold contents of any section. */
+ bfd_byte *contents;
+ /* Buffer large enough to hold external relocs of any section. */
+ PTR external_relocs;
+ /* Buffer large enough to hold internal relocs of any section. */
+ Elf_Internal_Rela *internal_relocs;
+ /* Buffer large enough to hold external local symbols of any input
+ BFD. */
+ Elf_External_Sym *external_syms;
+ /* And a buffer for symbol section indices. */
+ Elf_External_Sym_Shndx *locsym_shndx;
+ /* Buffer large enough to hold internal local symbols of any input
+ BFD. */
+ Elf_Internal_Sym *internal_syms;
+ /* Array large enough to hold a symbol index for each local symbol
+ of any input BFD. */
+ long *indices;
+ /* Array large enough to hold a section pointer for each local
+ symbol of any input BFD. */
+ asection **sections;
+ /* Buffer to hold swapped out symbols. */
+ Elf_External_Sym *symbuf;
+ /* And one for symbol section indices. */
+ Elf_External_Sym_Shndx *symshndxbuf;
+ /* Number of swapped out symbols in buffer. */
+ size_t symbuf_count;
+ /* Number of symbols which fit in symbuf. */
+ size_t symbuf_size;
+};
+
+static boolean elf_link_output_sym
+ PARAMS ((struct elf_final_link_info *, const char *,
+ Elf_Internal_Sym *, asection *));
+static boolean elf_link_flush_output_syms
+ PARAMS ((struct elf_final_link_info *));
+static boolean elf_link_output_extsym
+ PARAMS ((struct elf_link_hash_entry *, PTR));
+static boolean elf_link_sec_merge_syms
+ PARAMS ((struct elf_link_hash_entry *, PTR));
+static boolean elf_link_check_versioned_symbol
+ PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
+static boolean elf_link_input_bfd
+ PARAMS ((struct elf_final_link_info *, bfd *));
+static boolean elf_reloc_link_order
+ PARAMS ((bfd *, struct bfd_link_info *, asection *,
+ struct bfd_link_order *));
+
+/* This struct is used to pass information to elf_link_output_extsym. */
+
+struct elf_outext_info
+{
+ boolean failed;
+ boolean localsyms;
+ struct elf_final_link_info *finfo;
+};
+
+/* Compute the size of, and allocate space for, REL_HDR which is the
+ section header for a section containing relocations for O. */
+
+static boolean
+elf_link_size_reloc_section (abfd, rel_hdr, o)
+ bfd *abfd;
+ Elf_Internal_Shdr *rel_hdr;
+ asection *o;
+{
+ bfd_size_type reloc_count;
+ bfd_size_type num_rel_hashes;
+
+ /* Figure out how many relocations there will be. */
+ if (rel_hdr == &elf_section_data (o)->rel_hdr)
+ reloc_count = elf_section_data (o)->rel_count;
+ else
+ reloc_count = elf_section_data (o)->rel_count2;
+
+ num_rel_hashes = o->reloc_count;
+ if (num_rel_hashes < reloc_count)
+ num_rel_hashes = reloc_count;
+
+ /* That allows us to calculate the size of the section. */
+ rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
+
+ /* The contents field must last into write_object_contents, so we
+ allocate it with bfd_alloc rather than malloc. Also since we
+ cannot be sure that the contents will actually be filled in,
+ we zero the allocated space. */
+ rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
+ if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
+ return false;
+
+ /* We only allocate one set of hash entries, so we only do it the
+ first time we are called. */
+ if (elf_section_data (o)->rel_hashes == NULL
+ && num_rel_hashes)
+ {
+ struct elf_link_hash_entry **p;
+
+ p = ((struct elf_link_hash_entry **)
+ bfd_zmalloc (num_rel_hashes
+ * sizeof (struct elf_link_hash_entry *)));
+ if (p == NULL)
+ return false;
+
+ elf_section_data (o)->rel_hashes = p;
+ }
+
+ return true;
+}
+
+/* When performing a relocateable link, the input relocations are
+ preserved. But, if they reference global symbols, the indices
+ referenced must be updated. Update all the relocations in
+ REL_HDR (there are COUNT of them), using the data in REL_HASH. */
+
+static void
+elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
+ bfd *abfd;
+ Elf_Internal_Shdr *rel_hdr;
+ unsigned int count;
+ struct elf_link_hash_entry **rel_hash;
+{
+ unsigned int i;
+ struct elf_backend_data *bed = get_elf_backend_data (abfd);
+ Elf_Internal_Rel *irel;
+ Elf_Internal_Rela *irela;
+ bfd_size_type amt = sizeof (Elf_Internal_Rel) * bed->s->int_rels_per_ext_rel;
+
+ irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
+ if (irel == NULL)
+ {
+ (*_bfd_error_handler) (_("Error: out of memory"));
+ abort ();
+ }
+
+ amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
+ irela = (Elf_Internal_Rela *) bfd_zmalloc (amt);
+ if (irela == NULL)
+ {
+ (*_bfd_error_handler) (_("Error: out of memory"));
+ abort ();
+ }
+
+ for (i = 0; i < count; i++, rel_hash++)
+ {
+ if (*rel_hash == NULL)
+ continue;
+
+ BFD_ASSERT ((*rel_hash)->indx >= 0);
+
+ if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
+ {
+ Elf_External_Rel *erel;
+ unsigned int j;
+
+ erel = (Elf_External_Rel *) rel_hdr->contents + i;
+ if (bed->s->swap_reloc_in)
+ (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
+ else
+ elf_swap_reloc_in (abfd, erel, irel);
+
+ for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
+ irel[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
+ ELF_R_TYPE (irel[j].r_info));
+
+ if (bed->s->swap_reloc_out)
+ (*bed->s->swap_reloc_out) (abfd, irel, (bfd_byte *) erel);
+ else
+ elf_swap_reloc_out (abfd, irel, erel);
+ }
+ else
+ {
+ Elf_External_Rela *erela;
+ unsigned int j;
+
+ BFD_ASSERT (rel_hdr->sh_entsize
+ == sizeof (Elf_External_Rela));
+
+ erela = (Elf_External_Rela *) rel_hdr->contents + i;
+ if (bed->s->swap_reloca_in)
+ (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
+ else
+ elf_swap_reloca_in (abfd, erela, irela);
+
+ for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
+ irela[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
+ ELF_R_TYPE (irela[j].r_info));
+
+ if (bed->s->swap_reloca_out)
+ (*bed->s->swap_reloca_out) (abfd, irela, (bfd_byte *) erela);
+ else
+ elf_swap_reloca_out (abfd, irela, erela);
+ }
+ }
+
+ free (irel);
+ free (irela);
+}
+
+struct elf_link_sort_rela
+{
+ bfd_vma offset;
+ enum elf_reloc_type_class type;
+ union
+ {
+ Elf_Internal_Rel rel;
+ Elf_Internal_Rela rela;
+ } u;
+};
+
+static int
+elf_link_sort_cmp1 (A, B)
+ const PTR A;
+ const PTR B;
+{
+ struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
+ struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
+ int relativea, relativeb;
+
+ relativea = a->type == reloc_class_relative;
+ relativeb = b->type == reloc_class_relative;
+
+ if (relativea < relativeb)
+ return 1;
+ if (relativea > relativeb)
+ return -1;
+ if (ELF_R_SYM (a->u.rel.r_info) < ELF_R_SYM (b->u.rel.r_info))
+ return -1;
+ if (ELF_R_SYM (a->u.rel.r_info) > ELF_R_SYM (b->u.rel.r_info))
+ return 1;
+ if (a->u.rel.r_offset < b->u.rel.r_offset)
+ return -1;
+ if (a->u.rel.r_offset > b->u.rel.r_offset)
+ return 1;
+ return 0;
+}
+
+static int
+elf_link_sort_cmp2 (A, B)
+ const PTR A;
+ const PTR B;
+{
+ struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
+ struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
+ int copya, copyb;
+
+ if (a->offset < b->offset)
+ return -1;
+ if (a->offset > b->offset)
+ return 1;
+ copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
+ copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
+ if (copya < copyb)
+ return -1;
+ if (copya > copyb)
+ return 1;
+ if (a->u.rel.r_offset < b->u.rel.r_offset)
+ return -1;
+ if (a->u.rel.r_offset > b->u.rel.r_offset)
+ return 1;
+ return 0;
+}
+
+static size_t
+elf_link_sort_relocs (abfd, info, psec)
+ bfd *abfd;
+ struct bfd_link_info *info;
+ asection **psec;
+{
+ bfd *dynobj = elf_hash_table (info)->dynobj;
+ asection *reldyn, *o;
+ boolean rel = false;
+ bfd_size_type count, size;
+ size_t i, j, ret;
+ struct elf_link_sort_rela *rela;
+ struct elf_backend_data *bed = get_elf_backend_data (abfd);
+
+ reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
+ if (reldyn == NULL || reldyn->_raw_size == 0)
+ {
+ reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
+ if (reldyn == NULL || reldyn->_raw_size == 0)
+ return 0;
+ rel = true;
+ count = reldyn->_raw_size / sizeof (Elf_External_Rel);
+ }
+ else
+ count = reldyn->_raw_size / sizeof (Elf_External_Rela);
+
+ size = 0;
+ for (o = dynobj->sections; o != NULL; o = o->next)
+ if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
+ == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
+ && o->output_section == reldyn)
+ size += o->_raw_size;
+
+ if (size != reldyn->_raw_size)
+ return 0;
+
+ rela = (struct elf_link_sort_rela *) bfd_zmalloc (sizeof (*rela) * count);
+ if (rela == NULL)
+ {
+ (*info->callbacks->warning)
+ (info, _("Not enough memory to sort relocations"), 0, abfd, 0,
+ (bfd_vma) 0);
+ return 0;
+ }
+
+ for (o = dynobj->sections; o != NULL; o = o->next)
+ if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
+ == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
+ && o->output_section == reldyn)
+ {
+ if (rel)
+ {
+ Elf_External_Rel *erel, *erelend;
+ struct elf_link_sort_rela *s;
+
+ erel = (Elf_External_Rel *) o->contents;
+ erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
+ s = rela + o->output_offset / sizeof (Elf_External_Rel);
+ for (; erel < erelend; erel++, s++)
+ {
+ if (bed->s->swap_reloc_in)
+ (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &s->u.rel);
+ else
+ elf_swap_reloc_in (abfd, erel, &s->u.rel);
+
+ s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
+ }
+ }
+ else
+ {
+ Elf_External_Rela *erela, *erelaend;
+ struct elf_link_sort_rela *s;
+
+ erela = (Elf_External_Rela *) o->contents;
+ erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
+ s = rela + o->output_offset / sizeof (Elf_External_Rela);
+ for (; erela < erelaend; erela++, s++)
+ {
+ if (bed->s->swap_reloca_in)
+ (*bed->s->swap_reloca_in) (dynobj, (bfd_byte *) erela,
+ &s->u.rela);
+ else
+ elf_swap_reloca_in (dynobj, erela, &s->u.rela);
+
+ s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
+ }
+ }
+ }
+
+ qsort (rela, (size_t) count, sizeof (*rela), elf_link_sort_cmp1);
+ for (ret = 0; ret < count && rela[ret].type == reloc_class_relative; ret++)
+ ;
+ for (i = ret, j = ret; i < count; i++)
+ {
+ if (ELF_R_SYM (rela[i].u.rel.r_info) != ELF_R_SYM (rela[j].u.rel.r_info))
+ j = i;
+ rela[i].offset = rela[j].u.rel.r_offset;
+ }
+ qsort (rela + ret, (size_t) count - ret, sizeof (*rela), elf_link_sort_cmp2);
+
+ for (o = dynobj->sections; o != NULL; o = o->next)
+ if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
+ == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
+ && o->output_section == reldyn)
+ {
+ if (rel)
+ {
+ Elf_External_Rel *erel, *erelend;
+ struct elf_link_sort_rela *s;
+
+ erel = (Elf_External_Rel *) o->contents;
+ erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
+ s = rela + o->output_offset / sizeof (Elf_External_Rel);
+ for (; erel < erelend; erel++, s++)
+ {
+ if (bed->s->swap_reloc_out)
+ (*bed->s->swap_reloc_out) (abfd, &s->u.rel,
+ (bfd_byte *) erel);
+ else
+ elf_swap_reloc_out (abfd, &s->u.rel, erel);
+ }
+ }
+ else
+ {
+ Elf_External_Rela *erela, *erelaend;
+ struct elf_link_sort_rela *s;
+
+ erela = (Elf_External_Rela *) o->contents;
+ erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
+ s = rela + o->output_offset / sizeof (Elf_External_Rela);
+ for (; erela < erelaend; erela++, s++)
+ {
+ if (bed->s->swap_reloca_out)
+ (*bed->s->swap_reloca_out) (dynobj, &s->u.rela,
+ (bfd_byte *) erela);
+ else
+ elf_swap_reloca_out (dynobj, &s->u.rela, erela);
+ }
+ }
+ }
+
+ free (rela);
+ *psec = reldyn;
+ return ret;
+}
+
+/* Do the final step of an ELF link. */
+
+boolean
+elf_bfd_final_link (abfd, info)
+ bfd *abfd;
+ struct bfd_link_info *info;
+{
+ boolean dynamic;
+ boolean emit_relocs;
+ bfd *dynobj;
+ struct elf_final_link_info finfo;
+ register asection *o;
+ register struct bfd_link_order *p;
+ register bfd *sub;
+ bfd_size_type max_contents_size;
+ bfd_size_type max_external_reloc_size;
+ bfd_size_type max_internal_reloc_count;
+ bfd_size_type max_sym_count;
+ bfd_size_type max_sym_shndx_count;
+ file_ptr off;
+ Elf_Internal_Sym elfsym;
+ unsigned int i;
+ Elf_Internal_Shdr *symtab_hdr;
+ Elf_Internal_Shdr *symstrtab_hdr;
+ struct elf_backend_data *bed = get_elf_backend_data (abfd);
+ struct elf_outext_info eoinfo;
+ boolean merged;
+ size_t relativecount = 0;
+ asection *reldyn = 0;
+ bfd_size_type amt;
+
+ if (! is_elf_hash_table (info))
+ return false;
+
+ if (info->shared)
+ abfd->flags |= DYNAMIC;
+
+ dynamic = elf_hash_table (info)->dynamic_sections_created;
+ dynobj = elf_hash_table (info)->dynobj;
+
+ emit_relocs = (info->relocateable
+ || info->emitrelocations
+ || bed->elf_backend_emit_relocs);
+
+ finfo.info = info;
+ finfo.output_bfd = abfd;
+ finfo.symstrtab = elf_stringtab_init ();
+ if (finfo.symstrtab == NULL)
+ return false;
+
+ if (! dynamic)
+ {
+ finfo.dynsym_sec = NULL;
+ finfo.hash_sec = NULL;
+ finfo.symver_sec = NULL;
+ }
+ else
+ {
+ finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
+ finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
+ BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
+ finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
+ /* Note that it is OK if symver_sec is NULL. */
+ }
+
+ finfo.contents = NULL;
+ finfo.external_relocs = NULL;
+ finfo.internal_relocs = NULL;
+ finfo.external_syms = NULL;
+ finfo.locsym_shndx = NULL;
+ finfo.internal_syms = NULL;
+ finfo.indices = NULL;
+ finfo.sections = NULL;
+ finfo.symbuf = NULL;
+ finfo.symshndxbuf = NULL;
+ finfo.symbuf_count = 0;
+ finfo.first_tls_sec = NULL;
+ for (o = abfd->sections; o != (asection *) NULL; o = o->next)
+ if ((o->flags & SEC_THREAD_LOCAL) != 0
+ && (o->flags & SEC_LOAD) != 0)
+ {
+ finfo.first_tls_sec = o;
+ break;
+ }
+
+ /* Count up the number of relocations we will output for each output
+ section, so that we know the sizes of the reloc sections. We
+ also figure out some maximum sizes. */
+ max_contents_size = 0;
+ max_external_reloc_size = 0;
+ max_internal_reloc_count = 0;
+ max_sym_count = 0;
+ max_sym_shndx_count = 0;
+ merged = false;
+ for (o = abfd->sections; o != (asection *) NULL; o = o->next)
+ {
+ o->reloc_count = 0;
+
+ for (p = o->link_order_head; p != NULL; p = p->next)
+ {
+ if (p->type == bfd_section_reloc_link_order
+ || p->type == bfd_symbol_reloc_link_order)
+ ++o->reloc_count;
+ else if (p->type == bfd_indirect_link_order)
+ {
+ asection *sec;
+
+ sec = p->u.indirect.section;
+
+ /* Mark all sections which are to be included in the
+ link. This will normally be every section. We need
+ to do this so that we can identify any sections which
+ the linker has decided to not include. */
+ sec->linker_mark = true;
+
+ if (sec->flags & SEC_MERGE)
+ merged = true;
+
+ if (info->relocateable || info->emitrelocations)
+ o->reloc_count += sec->reloc_count;
+ else if (bed->elf_backend_count_relocs)
+ {
+ Elf_Internal_Rela * relocs;
+
+ relocs = (NAME(_bfd_elf,link_read_relocs)
+ (abfd, sec, (PTR) NULL,
+ (Elf_Internal_Rela *) NULL, info->keep_memory));
+
+ o->reloc_count
+ += (*bed->elf_backend_count_relocs) (sec, relocs);
+
+ if (elf_section_data (o)->relocs != relocs)
+ free (relocs);
+ }
+
+ if (sec->_raw_size > max_contents_size)
+ max_contents_size = sec->_raw_size;
+ if (sec->_cooked_size > max_contents_size)
+ max_contents_size = sec->_cooked_size;
+
+ /* We are interested in just local symbols, not all
+ symbols. */
+ if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
+ && (sec->owner->flags & DYNAMIC) == 0)
+ {
+ size_t sym_count;
+
+ if (elf_bad_symtab (sec->owner))
+ sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
+ / sizeof (Elf_External_Sym));
+ else
+ sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
+
+ if (sym_count > max_sym_count)
+ max_sym_count = sym_count;
+
+ if (sym_count > max_sym_shndx_count
+ && elf_symtab_shndx (sec->owner) != 0)
+ max_sym_shndx_count = sym_count;
+
+ if ((sec->flags & SEC_RELOC) != 0)
+ {
+ size_t ext_size;
+
+ ext_size = elf_section_data (sec)->rel_hdr.sh_size;
+ if (ext_size > max_external_reloc_size)
+ max_external_reloc_size = ext_size;
+ if (sec->reloc_count > max_internal_reloc_count)
+ max_internal_reloc_count = sec->reloc_count;
+ }
+ }
+ }
+ }
+
+ if (o->reloc_count > 0)
+ o->flags |= SEC_RELOC;
+ else
+ {
+ /* Explicitly clear the SEC_RELOC flag. The linker tends to
+ set it (this is probably a bug) and if it is set
+ assign_section_numbers will create a reloc section. */
+ o->flags &=~ SEC_RELOC;
+ }
+
+ /* If the SEC_ALLOC flag is not set, force the section VMA to
+ zero. This is done in elf_fake_sections as well, but forcing
+ the VMA to 0 here will ensure that relocs against these
+ sections are handled correctly. */
+ if ((o->flags & SEC_ALLOC) == 0
+ && ! o->user_set_vma)
+ o->vma = 0;
+ }
+
+ if (! info->relocateable && merged)
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_link_sec_merge_syms, (PTR) abfd);
+
+ /* Figure out the file positions for everything but the symbol table
+ and the relocs. We set symcount to force assign_section_numbers
+ to create a symbol table. */
+ bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
+ BFD_ASSERT (! abfd->output_has_begun);
+ if (! _bfd_elf_compute_section_file_positions (abfd, info))
+ goto error_return;
+
+ /* Figure out how many relocations we will have in each section.
+ Just using RELOC_COUNT isn't good enough since that doesn't
+ maintain a separate value for REL vs. RELA relocations. */
+ if (emit_relocs)
+ for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
+ for (o = sub->sections; o != NULL; o = o->next)
+ {
+ asection *output_section;
+
+ if (! o->linker_mark)
+ {
+ /* This section was omitted from the link. */
+ continue;
+ }
+
+ output_section = o->output_section;
+
+ if (output_section != NULL
+ && (o->flags & SEC_RELOC) != 0)
+ {
+ struct bfd_elf_section_data *esdi
+ = elf_section_data (o);
+ struct bfd_elf_section_data *esdo
+ = elf_section_data (output_section);
+ unsigned int *rel_count;
+ unsigned int *rel_count2;
+ bfd_size_type entsize;
+ bfd_size_type entsize2;
+
+ /* We must be careful to add the relocations from the
+ input section to the right output count. */
+ entsize = esdi->rel_hdr.sh_entsize;
+ entsize2 = esdi->rel_hdr2 ? esdi->rel_hdr2->sh_entsize : 0;
+ BFD_ASSERT ((entsize == sizeof (Elf_External_Rel)
+ || entsize == sizeof (Elf_External_Rela))
+ && entsize2 != entsize
+ && (entsize2 == 0
+ || entsize2 == sizeof (Elf_External_Rel)
+ || entsize2 == sizeof (Elf_External_Rela)));
+ if (entsize == esdo->rel_hdr.sh_entsize)
+ {
+ rel_count = &esdo->rel_count;
+ rel_count2 = &esdo->rel_count2;
+ }
+ else
+ {
+ rel_count = &esdo->rel_count2;
+ rel_count2 = &esdo->rel_count;
+ }
+
+ *rel_count += NUM_SHDR_ENTRIES (& esdi->rel_hdr);
+ if (esdi->rel_hdr2)
+ *rel_count2 += NUM_SHDR_ENTRIES (esdi->rel_hdr2);
+ output_section->flags |= SEC_RELOC;
+ }
+ }
+
+ /* That created the reloc sections. Set their sizes, and assign
+ them file positions, and allocate some buffers. */
+ for (o = abfd->sections; o != NULL; o = o->next)
+ {
+ if ((o->flags & SEC_RELOC) != 0)
+ {
+ if (!elf_link_size_reloc_section (abfd,
+ &elf_section_data (o)->rel_hdr,
+ o))
+ goto error_return;
+
+ if (elf_section_data (o)->rel_hdr2
+ && !elf_link_size_reloc_section (abfd,
+ elf_section_data (o)->rel_hdr2,
+ o))
+ goto error_return;
+ }
+
+ /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
+ to count upwards while actually outputting the relocations. */
+ elf_section_data (o)->rel_count = 0;
+ elf_section_data (o)->rel_count2 = 0;
+ }
+
+ _bfd_elf_assign_file_positions_for_relocs (abfd);
+
+ /* We have now assigned file positions for all the sections except
+ .symtab and .strtab. We start the .symtab section at the current
+ file position, and write directly to it. We build the .strtab
+ section in memory. */
+ bfd_get_symcount (abfd) = 0;
+ symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
+ /* sh_name is set in prep_headers. */
+ symtab_hdr->sh_type = SHT_SYMTAB;
+ symtab_hdr->sh_flags = 0;
+ symtab_hdr->sh_addr = 0;
+ symtab_hdr->sh_size = 0;
+ symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
+ /* sh_link is set in assign_section_numbers. */
+ /* sh_info is set below. */
+ /* sh_offset is set just below. */
+ symtab_hdr->sh_addralign = bed->s->file_align;
+
+ off = elf_tdata (abfd)->next_file_pos;
+ off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
+
+ /* Note that at this point elf_tdata (abfd)->next_file_pos is
+ incorrect. We do not yet know the size of the .symtab section.
+ We correct next_file_pos below, after we do know the size. */
+
+ /* Allocate a buffer to hold swapped out symbols. This is to avoid
+ continuously seeking to the right position in the file. */
+ if (! info->keep_memory || max_sym_count < 20)
+ finfo.symbuf_size = 20;
+ else
+ finfo.symbuf_size = max_sym_count;
+ amt = finfo.symbuf_size;
+ amt *= sizeof (Elf_External_Sym);
+ finfo.symbuf = (Elf_External_Sym *) bfd_malloc (amt);
+ if (finfo.symbuf == NULL)
+ goto error_return;
+ if (elf_numsections (abfd) > SHN_LORESERVE)
+ {
+ amt = finfo.symbuf_size;
+ amt *= sizeof (Elf_External_Sym_Shndx);
+ finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
+ if (finfo.symshndxbuf == NULL)
+ goto error_return;
+ }
+
+ /* Start writing out the symbol table. The first symbol is always a
+ dummy symbol. */
+ if (info->strip != strip_all
+ || emit_relocs)
+ {
+ elfsym.st_value = 0;
+ elfsym.st_size = 0;
+ elfsym.st_info = 0;
+ elfsym.st_other = 0;
+ elfsym.st_shndx = SHN_UNDEF;
+ if (! elf_link_output_sym (&finfo, (const char *) NULL,
+ &elfsym, bfd_und_section_ptr))
+ goto error_return;
+ }
+
+#if 0
+ /* Some standard ELF linkers do this, but we don't because it causes
+ bootstrap comparison failures. */
+ /* Output a file symbol for the output file as the second symbol.
+ We output this even if we are discarding local symbols, although
+ I'm not sure if this is correct. */
+ elfsym.st_value = 0;
+ elfsym.st_size = 0;
+ elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
+ elfsym.st_other = 0;
+ elfsym.st_shndx = SHN_ABS;
+ if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
+ &elfsym, bfd_abs_section_ptr))
+ goto error_return;
+#endif
+
+ /* Output a symbol for each section. We output these even if we are
+ discarding local symbols, since they are used for relocs. These
+ symbols have no names. We store the index of each one in the
+ index field of the section, so that we can find it again when
+ outputting relocs. */
+ if (info->strip != strip_all
+ || emit_relocs)
+ {
+ elfsym.st_size = 0;
+ elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
+ elfsym.st_other = 0;
+ for (i = 1; i < elf_numsections (abfd); i++)
+ {
+ o = section_from_elf_index (abfd, i);
+ if (o != NULL)
+ o->target_index = bfd_get_symcount (abfd);
+ elfsym.st_shndx = i;
+ if (info->relocateable || o == NULL)
+ elfsym.st_value = 0;
+ else
+ elfsym.st_value = o->vma;
+ if (! elf_link_output_sym (&finfo, (const char *) NULL,
+ &elfsym, o))
+ goto error_return;
+ if (i == SHN_LORESERVE)
+ i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
+ }
+ }
+
+ /* Allocate some memory to hold information read in from the input
+ files. */
+ if (max_contents_size != 0)
+ {
+ finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
+ if (finfo.contents == NULL)
+ goto error_return;
+ }
+
+ if (max_external_reloc_size != 0)
+ {
+ finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
+ if (finfo.external_relocs == NULL)
+ goto error_return;
+ }
+
+ if (max_internal_reloc_count != 0)
+ {
+ amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
+ amt *= sizeof (Elf_Internal_Rela);
+ finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
+ if (finfo.internal_relocs == NULL)
+ goto error_return;
+ }
+
+ if (max_sym_count != 0)
+ {
+ amt = max_sym_count * sizeof (Elf_External_Sym);
+ finfo.external_syms = (Elf_External_Sym *) bfd_malloc (amt);
+ if (finfo.external_syms == NULL)
+ goto error_return;
+
+ amt = max_sym_count * sizeof (Elf_Internal_Sym);
+ finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
+ if (finfo.internal_syms == NULL)
+ goto error_return;
+
+ amt = max_sym_count * sizeof (long);
+ finfo.indices = (long *) bfd_malloc (amt);
+ if (finfo.indices == NULL)
+ goto error_return;
+
+ amt = max_sym_count * sizeof (asection *);
+ finfo.sections = (asection **) bfd_malloc (amt);
+ if (finfo.sections == NULL)
+ goto error_return;
+ }
+
+ if (max_sym_shndx_count != 0)
+ {
+ amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
+ finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
+ if (finfo.locsym_shndx == NULL)
+ goto error_return;
+ }
+
+ if (finfo.first_tls_sec)
+ {
+ unsigned int align = 0;
+ bfd_vma base = finfo.first_tls_sec->vma, end = 0;
+ asection *sec;
+
+ for (sec = finfo.first_tls_sec;
+ sec && (sec->flags & SEC_THREAD_LOCAL);
+ sec = sec->next)
+ {
+ bfd_vma size = sec->_raw_size;
+
+ if (bfd_get_section_alignment (abfd, sec) > align)
+ align = bfd_get_section_alignment (abfd, sec);
+ if (sec->_raw_size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
+ {
+ struct bfd_link_order *o;
+
+ size = 0;
+ for (o = sec->link_order_head; o != NULL; o = o->next)
+ if (size < o->offset + o->size)
+ size = o->offset + o->size;
+ }
+ end = sec->vma + size;
+ }
+ elf_hash_table (info)->tls_segment
+ = bfd_zalloc (abfd, sizeof (struct elf_link_tls_segment));
+ if (elf_hash_table (info)->tls_segment == NULL)
+ goto error_return;
+ elf_hash_table (info)->tls_segment->start = base;
+ elf_hash_table (info)->tls_segment->size = end - base;
+ elf_hash_table (info)->tls_segment->align = align;
+ }
+
+ /* Since ELF permits relocations to be against local symbols, we
+ must have the local symbols available when we do the relocations.
+ Since we would rather only read the local symbols once, and we
+ would rather not keep them in memory, we handle all the
+ relocations for a single input file at the same time.
+
+ Unfortunately, there is no way to know the total number of local
+ symbols until we have seen all of them, and the local symbol
+ indices precede the global symbol indices. This means that when
+ we are generating relocateable output, and we see a reloc against
+ a global symbol, we can not know the symbol index until we have
+ finished examining all the local symbols to see which ones we are
+ going to output. To deal with this, we keep the relocations in
+ memory, and don't output them until the end of the link. This is
+ an unfortunate waste of memory, but I don't see a good way around
+ it. Fortunately, it only happens when performing a relocateable
+ link, which is not the common case. FIXME: If keep_memory is set
+ we could write the relocs out and then read them again; I don't
+ know how bad the memory loss will be. */
+
+ for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
+ sub->output_has_begun = false;
+ for (o = abfd->sections; o != NULL; o = o->next)
+ {
+ for (p = o->link_order_head; p != NULL; p = p->next)
+ {
+ if (p->type == bfd_indirect_link_order
+ && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
+ == bfd_target_elf_flavour)
+ && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
+ {
+ if (! sub->output_has_begun)
+ {
+ if (! elf_link_input_bfd (&finfo, sub))
+ goto error_return;
+ sub->output_has_begun = true;
+ }
+ }
+ else if (p->type == bfd_section_reloc_link_order
+ || p->type == bfd_symbol_reloc_link_order)
+ {
+ if (! elf_reloc_link_order (abfd, info, o, p))
+ goto error_return;
+ }
+ else
+ {
+ if (! _bfd_default_link_order (abfd, info, o, p))
+ goto error_return;
+ }
+ }
+ }
+
+ /* Output any global symbols that got converted to local in a
+ version script or due to symbol visibility. We do this in a
+ separate step since ELF requires all local symbols to appear
+ prior to any global symbols. FIXME: We should only do this if
+ some global symbols were, in fact, converted to become local.
+ FIXME: Will this work correctly with the Irix 5 linker? */
+ eoinfo.failed = false;
+ eoinfo.finfo = &finfo;
+ eoinfo.localsyms = true;
+ elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
+ (PTR) &eoinfo);
+ if (eoinfo.failed)
+ return false;
+
+ /* That wrote out all the local symbols. Finish up the symbol table
+ with the global symbols. Even if we want to strip everything we
+ can, we still need to deal with those global symbols that got
+ converted to local in a version script. */
+
+ /* The sh_info field records the index of the first non local symbol. */
+ symtab_hdr->sh_info = bfd_get_symcount (abfd);
+
+ if (dynamic
+ && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
+ {
+ Elf_Internal_Sym sym;
+ Elf_External_Sym *dynsym =
+ (Elf_External_Sym *) finfo.dynsym_sec->contents;
+ long last_local = 0;
+
+ /* Write out the section symbols for the output sections. */
+ if (info->shared)
+ {
+ asection *s;
+
+ sym.st_size = 0;
+ sym.st_name = 0;
+ sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
+ sym.st_other = 0;
+
+ for (s = abfd->sections; s != NULL; s = s->next)
+ {
+ int indx;
+ Elf_External_Sym *dest;
+
+ indx = elf_section_data (s)->this_idx;
+ BFD_ASSERT (indx > 0);
+ sym.st_shndx = indx;
+ sym.st_value = s->vma;
+ dest = dynsym + elf_section_data (s)->dynindx;
+ elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
+ }
+
+ last_local = bfd_count_sections (abfd);
+ }
+
+ /* Write out the local dynsyms. */
+ if (elf_hash_table (info)->dynlocal)
+ {
+ struct elf_link_local_dynamic_entry *e;
+ for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
+ {
+ asection *s;
+ Elf_External_Sym *dest;
+
+ sym.st_size = e->isym.st_size;
+ sym.st_other = e->isym.st_other;
+
+ /* Copy the internal symbol as is.
+ Note that we saved a word of storage and overwrote
+ the original st_name with the dynstr_index. */
+ sym = e->isym;
+
+ if (e->isym.st_shndx != SHN_UNDEF
+ && (e->isym.st_shndx < SHN_LORESERVE
+ || e->isym.st_shndx > SHN_HIRESERVE))
+ {
+ s = bfd_section_from_elf_index (e->input_bfd,
+ e->isym.st_shndx);
+
+ sym.st_shndx =
+ elf_section_data (s->output_section)->this_idx;
+ sym.st_value = (s->output_section->vma
+ + s->output_offset
+ + e->isym.st_value);
+ }
+
+ if (last_local < e->dynindx)
+ last_local = e->dynindx;
+
+ dest = dynsym + e->dynindx;
+ elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
+ }
+ }
+
+ elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
+ last_local + 1;
+ }
+
+ /* We get the global symbols from the hash table. */
+ eoinfo.failed = false;
+ eoinfo.localsyms = false;
+ eoinfo.finfo = &finfo;
+ elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
+ (PTR) &eoinfo);
+ if (eoinfo.failed)
+ return false;
+
+ /* If backend needs to output some symbols not present in the hash
+ table, do it now. */
+ if (bed->elf_backend_output_arch_syms)
+ {
+ typedef boolean (*out_sym_func) PARAMS ((PTR, const char *,
+ Elf_Internal_Sym *,
+ asection *));
+
+ if (! ((*bed->elf_backend_output_arch_syms)
+ (abfd, info, (PTR) &finfo, (out_sym_func) elf_link_output_sym)))
+ return false;
+ }
+
+ /* Flush all symbols to the file. */
+ if (! elf_link_flush_output_syms (&finfo))
+ return false;
+
+ /* Now we know the size of the symtab section. */
+ off += symtab_hdr->sh_size;
+
+ /* Finish up and write out the symbol string table (.strtab)
+ section. */
+ symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
+ /* sh_name was set in prep_headers. */
+ symstrtab_hdr->sh_type = SHT_STRTAB;
+ symstrtab_hdr->sh_flags = 0;
+ symstrtab_hdr->sh_addr = 0;
+ symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
+ symstrtab_hdr->sh_entsize = 0;
+ symstrtab_hdr->sh_link = 0;
+ symstrtab_hdr->sh_info = 0;
+ /* sh_offset is set just below. */
+ symstrtab_hdr->sh_addralign = 1;
+
+ off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
+ elf_tdata (abfd)->next_file_pos = off;
+
+ if (bfd_get_symcount (abfd) > 0)
+ {
+ if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
+ || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
+ return false;
+ }
+
+ /* Adjust the relocs to have the correct symbol indices. */
+ for (o = abfd->sections; o != NULL; o = o->next)
+ {
+ if ((o->flags & SEC_RELOC) == 0)
+ continue;
+
+ elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
+ elf_section_data (o)->rel_count,
+ elf_section_data (o)->rel_hashes);
+ if (elf_section_data (o)->rel_hdr2 != NULL)
+ elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
+ elf_section_data (o)->rel_count2,
+ (elf_section_data (o)->rel_hashes
+ + elf_section_data (o)->rel_count));
+
+ /* Set the reloc_count field to 0 to prevent write_relocs from
+ trying to swap the relocs out itself. */
+ o->reloc_count = 0;
+ }
+
+ if (dynamic && info->combreloc && dynobj != NULL)
+ relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
+
+ /* If we are linking against a dynamic object, or generating a
+ shared library, finish up the dynamic linking information. */
+ if (dynamic)
+ {
+ Elf_External_Dyn *dyncon, *dynconend;
+
+ /* Fix up .dynamic entries. */
+ o = bfd_get_section_by_name (dynobj, ".dynamic");
+ BFD_ASSERT (o != NULL);
+
+ dyncon = (Elf_External_Dyn *) o->contents;
+ dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
+ for (; dyncon < dynconend; dyncon++)
+ {
+ Elf_Internal_Dyn dyn;
+ const char *name;
+ unsigned int type;
+
+ elf_swap_dyn_in (dynobj, dyncon, &dyn);
+
+ switch (dyn.d_tag)
+ {
+ default:
+ break;
+ case DT_NULL:
+ if (relativecount > 0 && dyncon + 1 < dynconend)
+ {
+ switch (elf_section_data (reldyn)->this_hdr.sh_type)
+ {
+ case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
+ case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
+ default: break;
+ }
+ if (dyn.d_tag != DT_NULL)
+ {
+ dyn.d_un.d_val = relativecount;
+ elf_swap_dyn_out (dynobj, &dyn, dyncon);
+ relativecount = 0;
+ }
+ }
+ break;
+ case DT_INIT:
+ name = info->init_function;
+ goto get_sym;
+ case DT_FINI:
+ name = info->fini_function;
+ get_sym:
+ {
+ struct elf_link_hash_entry *h;
+
+ h = elf_link_hash_lookup (elf_hash_table (info), name,
+ false, false, true);
+ if (h != NULL
+ && (h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak))
+ {
+ dyn.d_un.d_val = h->root.u.def.value;
+ o = h->root.u.def.section;
+ if (o->output_section != NULL)
+ dyn.d_un.d_val += (o->output_section->vma
+ + o->output_offset);
+ else
+ {
+ /* The symbol is imported from another shared
+ library and does not apply to this one. */
+ dyn.d_un.d_val = 0;
+ }
+
+ elf_swap_dyn_out (dynobj, &dyn, dyncon);
+ }
+ }
+ break;
+
+ case DT_PREINIT_ARRAYSZ:
+ name = ".preinit_array";
+ goto get_size;
+ case DT_INIT_ARRAYSZ:
+ name = ".init_array";
+ goto get_size;
+ case DT_FINI_ARRAYSZ:
+ name = ".fini_array";
+ get_size:
+ o = bfd_get_section_by_name (abfd, name);
+ if (o == NULL)
+ {
+ (*_bfd_error_handler)
+ (_("%s: could not find output section %s"),
+ bfd_get_filename (abfd), name);
+ goto error_return;
+ }
+ if (o->_raw_size == 0)
+ (*_bfd_error_handler)
+ (_("warning: %s section has zero size"), name);
+ dyn.d_un.d_val = o->_raw_size;
+ elf_swap_dyn_out (dynobj, &dyn, dyncon);
+ break;
+
+ case DT_PREINIT_ARRAY:
+ name = ".preinit_array";
+ goto get_vma;
+ case DT_INIT_ARRAY:
+ name = ".init_array";
+ goto get_vma;
+ case DT_FINI_ARRAY:
+ name = ".fini_array";
+ goto get_vma;
+
+ case DT_HASH:
+ name = ".hash";
+ goto get_vma;
+ case DT_STRTAB:
+ name = ".dynstr";
+ goto get_vma;
+ case DT_SYMTAB:
+ name = ".dynsym";
+ goto get_vma;
+ case DT_VERDEF:
+ name = ".gnu.version_d";
+ goto get_vma;
+ case DT_VERNEED:
+ name = ".gnu.version_r";
+ goto get_vma;
+ case DT_VERSYM:
+ name = ".gnu.version";
+ get_vma:
+ o = bfd_get_section_by_name (abfd, name);
+ if (o == NULL)
+ {
+ (*_bfd_error_handler)
+ (_("%s: could not find output section %s"),
+ bfd_get_filename (abfd), name);
+ goto error_return;
+ }
+ dyn.d_un.d_ptr = o->vma;
+ elf_swap_dyn_out (dynobj, &dyn, dyncon);
+ break;
+
+ case DT_REL:
+ case DT_RELA:
+ case DT_RELSZ:
+ case DT_RELASZ:
+ if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
+ type = SHT_REL;
+ else
+ type = SHT_RELA;
+ dyn.d_un.d_val = 0;
+ for (i = 1; i < elf_numsections (abfd); i++)
+ {
+ Elf_Internal_Shdr *hdr;
+
+ hdr = elf_elfsections (abfd)[i];
+ if (hdr->sh_type == type
+ && (hdr->sh_flags & SHF_ALLOC) != 0)
+ {
+ if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
+ dyn.d_un.d_val += hdr->sh_size;
+ else
+ {
+ if (dyn.d_un.d_val == 0
+ || hdr->sh_addr < dyn.d_un.d_val)
+ dyn.d_un.d_val = hdr->sh_addr;
+ }
+ }
+ }
+ elf_swap_dyn_out (dynobj, &dyn, dyncon);
+ break;
+ }
+ }
+ }
+
+ /* If we have created any dynamic sections, then output them. */
+ if (dynobj != NULL)
+ {
+ if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
+ goto error_return;
+
+ for (o = dynobj->sections; o != NULL; o = o->next)
+ {
+ if ((o->flags & SEC_HAS_CONTENTS) == 0
+ || o->_raw_size == 0
+ || o->output_section == bfd_abs_section_ptr)
+ continue;
+ if ((o->flags & SEC_LINKER_CREATED) == 0)
+ {
+ /* At this point, we are only interested in sections
+ created by elf_link_create_dynamic_sections. */
+ continue;
+ }
+ if ((elf_section_data (o->output_section)->this_hdr.sh_type
+ != SHT_STRTAB)
+ || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
+ {
+ if (! bfd_set_section_contents (abfd, o->output_section,
+ o->contents,
+ (file_ptr) o->output_offset,
+ o->_raw_size))
+ goto error_return;
+ }
+ else
+ {
+ /* The contents of the .dynstr section are actually in a
+ stringtab. */
+ off = elf_section_data (o->output_section)->this_hdr.sh_offset;
+ if (bfd_seek (abfd, off, SEEK_SET) != 0
+ || ! _bfd_elf_strtab_emit (abfd,
+ elf_hash_table (info)->dynstr))
+ goto error_return;
+ }
+ }
+ }
+
+ if (info->relocateable)
+ {
+ boolean failed = false;
+
+ bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
+ if (failed)
+ goto error_return;
+ }
+
+ /* If we have optimized stabs strings, output them. */
+ if (elf_hash_table (info)->stab_info != NULL)
+ {
+ if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
+ goto error_return;
+ }
+
+ if (info->eh_frame_hdr && elf_hash_table (info)->dynobj)
+ {
+ o = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
+ ".eh_frame_hdr");
+ if (o
+ && (elf_section_data (o)->sec_info_type
+ == ELF_INFO_TYPE_EH_FRAME_HDR))
+ {
+ if (! _bfd_elf_write_section_eh_frame_hdr (abfd, o))
+ goto error_return;
+ }
+ }
+
+ if (finfo.symstrtab != NULL)
+ _bfd_stringtab_free (finfo.symstrtab);
+ if (finfo.contents != NULL)
+ free (finfo.contents);
+ if (finfo.external_relocs != NULL)
+ free (finfo.external_relocs);
+ if (finfo.internal_relocs != NULL)
+ free (finfo.internal_relocs);
+ if (finfo.external_syms != NULL)
+ free (finfo.external_syms);
+ if (finfo.locsym_shndx != NULL)
+ free (finfo.locsym_shndx);
+ if (finfo.internal_syms != NULL)
+ free (finfo.internal_syms);
+ if (finfo.indices != NULL)
+ free (finfo.indices);
+ if (finfo.sections != NULL)
+ free (finfo.sections);
+ if (finfo.symbuf != NULL)
+ free (finfo.symbuf);
+ if (finfo.symshndxbuf != NULL)
+ free (finfo.symbuf);
+ for (o = abfd->sections; o != NULL; o = o->next)
+ {
+ if ((o->flags & SEC_RELOC) != 0
+ && elf_section_data (o)->rel_hashes != NULL)
+ free (elf_section_data (o)->rel_hashes);
+ }
+
+ elf_tdata (abfd)->linker = true;
+
+ return true;
+
+ error_return:
+ if (finfo.symstrtab != NULL)
+ _bfd_stringtab_free (finfo.symstrtab);
+ if (finfo.contents != NULL)
+ free (finfo.contents);
+ if (finfo.external_relocs != NULL)
+ free (finfo.external_relocs);
+ if (finfo.internal_relocs != NULL)
+ free (finfo.internal_relocs);
+ if (finfo.external_syms != NULL)
+ free (finfo.external_syms);
+ if (finfo.locsym_shndx != NULL)
+ free (finfo.locsym_shndx);
+ if (finfo.internal_syms != NULL)
+ free (finfo.internal_syms);
+ if (finfo.indices != NULL)
+ free (finfo.indices);
+ if (finfo.sections != NULL)
+ free (finfo.sections);
+ if (finfo.symbuf != NULL)
+ free (finfo.symbuf);
+ if (finfo.symshndxbuf != NULL)
+ free (finfo.symbuf);
+ for (o = abfd->sections; o != NULL; o = o->next)
+ {
+ if ((o->flags & SEC_RELOC) != 0
+ && elf_section_data (o)->rel_hashes != NULL)
+ free (elf_section_data (o)->rel_hashes);
+ }
+
+ return false;
+}
+
+/* Add a symbol to the output symbol table. */
+
+static boolean
+elf_link_output_sym (finfo, name, elfsym, input_sec)
+ struct elf_final_link_info *finfo;
+ const char *name;
+ Elf_Internal_Sym *elfsym;
+ asection *input_sec;
+{
+ Elf_External_Sym *dest;
+ Elf_External_Sym_Shndx *destshndx;
+
+ boolean (*output_symbol_hook) PARAMS ((bfd *,
+ struct bfd_link_info *info,
+ const char *,
+ Elf_Internal_Sym *,
+ asection *));
+
+ output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
+ elf_backend_link_output_symbol_hook;
+ if (output_symbol_hook != NULL)
+ {
+ if (! ((*output_symbol_hook)
+ (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
+ return false;
+ }
+
+ if (name == (const char *) NULL || *name == '\0')
+ elfsym->st_name = 0;
+ else if (input_sec->flags & SEC_EXCLUDE)
+ elfsym->st_name = 0;
+ else
+ {
+ elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
+ name, true, false);
+ if (elfsym->st_name == (unsigned long) -1)
+ return false;
+ }
+
+ if (finfo->symbuf_count >= finfo->symbuf_size)
+ {
+ if (! elf_link_flush_output_syms (finfo))
+ return false;
+ }
+
+ dest = finfo->symbuf + finfo->symbuf_count;
+ destshndx = finfo->symshndxbuf;
+ if (destshndx != NULL)
+ destshndx += finfo->symbuf_count;
+ elf_swap_symbol_out (finfo->output_bfd, elfsym, (PTR) dest, (PTR) destshndx);
+ ++finfo->symbuf_count;
+
+ ++ bfd_get_symcount (finfo->output_bfd);
+
+ return true;
+}
+
+/* Flush the output symbols to the file. */
+
+static boolean
+elf_link_flush_output_syms (finfo)
+ struct elf_final_link_info *finfo;
+{
+ if (finfo->symbuf_count > 0)
+ {
+ Elf_Internal_Shdr *hdr;
+ file_ptr pos;
+ bfd_size_type amt;
+
+ hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
+ pos = hdr->sh_offset + hdr->sh_size;
+ amt = finfo->symbuf_count * sizeof (Elf_External_Sym);
+ if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
+ || bfd_bwrite ((PTR) finfo->symbuf, amt, finfo->output_bfd) != amt)
+ return false;
+
+ hdr->sh_size += amt;
+
+ if (finfo->symshndxbuf != NULL)
+ {
+ hdr = &elf_tdata (finfo->output_bfd)->symtab_shndx_hdr;
+ pos = hdr->sh_offset + hdr->sh_size;
+ amt = finfo->symbuf_count * sizeof (Elf_External_Sym_Shndx);
+ if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
+ || (bfd_bwrite ((PTR) finfo->symshndxbuf, amt, finfo->output_bfd)
+ != amt))
+ return false;
+
+ hdr->sh_size += amt;
+ }
+
+ finfo->symbuf_count = 0;
+ }
+
+ return true;
+}
+
+/* Adjust all external symbols pointing into SEC_MERGE sections
+ to reflect the object merging within the sections. */
+
+static boolean
+elf_link_sec_merge_syms (h, data)
+ struct elf_link_hash_entry *h;
+ PTR data;
+{
+ asection *sec;
+
+ if (h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ if ((h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak)
+ && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
+ && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE)
+ {
+ bfd *output_bfd = (bfd *) data;
+
+ h->root.u.def.value =
+ _bfd_merged_section_offset (output_bfd,
+ &h->root.u.def.section,
+ elf_section_data (sec)->sec_info,
+ h->root.u.def.value, (bfd_vma) 0);
+ }
+
+ return true;
+}
+
+/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
+ allowing an unsatisfied unversioned symbol in the DSO to match a
+ versioned symbol that would normally require an explicit version. */
+
+static boolean
+elf_link_check_versioned_symbol (info, h)
+ struct bfd_link_info *info;
+ struct elf_link_hash_entry *h;
+{
+ bfd *undef_bfd = h->root.u.undef.abfd;
+ struct elf_link_loaded_list *loaded;
+
+ if ((undef_bfd->flags & DYNAMIC) == 0
+ || info->hash->creator->flavour != bfd_target_elf_flavour
+ || elf_dt_soname (h->root.u.undef.abfd) == NULL)
+ return false;
+
+ for (loaded = elf_hash_table (info)->loaded;
+ loaded != NULL;
+ loaded = loaded->next)
+ {
+ bfd *input;
+ Elf_Internal_Shdr *hdr;
+ bfd_size_type symcount;
+ bfd_size_type extsymcount;
+ bfd_size_type extsymoff;
+ Elf_Internal_Shdr *versymhdr;
+ Elf_Internal_Sym *isym;
+ Elf_Internal_Sym *isymend;
+ Elf_Internal_Sym *isymbuf;
+ Elf_External_Versym *ever;
+ Elf_External_Versym *extversym;
+
+ input = loaded->abfd;
+
+ /* We check each DSO for a possible hidden versioned definition. */
+ if (input == undef_bfd
+ || (input->flags & DYNAMIC) == 0
+ || elf_dynversym (input) == 0)
+ continue;
+
+ hdr = &elf_tdata (input)->dynsymtab_hdr;
+
+ symcount = hdr->sh_size / sizeof (Elf_External_Sym);
+ if (elf_bad_symtab (input))
+ {
+ extsymcount = symcount;
+ extsymoff = 0;
+ }
+ else
+ {
+ extsymcount = symcount - hdr->sh_info;
+ extsymoff = hdr->sh_info;
+ }
+
+ if (extsymcount == 0)
+ continue;
+
+ isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
+ NULL, NULL, NULL);
+ if (isymbuf == NULL)
+ return false;
+
+ /* Read in any version definitions. */
+ versymhdr = &elf_tdata (input)->dynversym_hdr;
+ extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
+ if (extversym == NULL)
+ goto error_ret;
+
+ if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
+ || (bfd_bread ((PTR) extversym, versymhdr->sh_size, input)
+ != versymhdr->sh_size))
+ {
+ free (extversym);
+ error_ret:
+ free (isymbuf);
+ return false;
+ }
+
+ ever = extversym + extsymoff;
+ isymend = isymbuf + extsymcount;
+ for (isym = isymbuf; isym < isymend; isym++, ever++)
+ {
+ const char *name;
+ Elf_Internal_Versym iver;
+
+ if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
+ || isym->st_shndx == SHN_UNDEF)
+ continue;
+
+ name = bfd_elf_string_from_elf_section (input,
+ hdr->sh_link,
+ isym->st_name);
+ if (strcmp (name, h->root.root.string) != 0)
+ continue;
+
+ _bfd_elf_swap_versym_in (input, ever, &iver);
+
+ if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
+ {
+ /* If we have a non-hidden versioned sym, then it should
+ have provided a definition for the undefined sym. */
+ abort ();
+ }
+
+ if ((iver.vs_vers & VERSYM_VERSION) == 2)
+ {
+ /* This is the oldest (default) sym. We can use it. */
+ free (extversym);
+ free (isymbuf);
+ return true;
+ }
+ }
+
+ free (extversym);
+ free (isymbuf);
+ }
+
+ return false;
+}
+
+/* Add an external symbol to the symbol table. This is called from
+ the hash table traversal routine. When generating a shared object,
+ we go through the symbol table twice. The first time we output
+ anything that might have been forced to local scope in a version
+ script. The second time we output the symbols that are still
+ global symbols. */
+
+static boolean
+elf_link_output_extsym (h, data)
+ struct elf_link_hash_entry *h;
+ PTR data;
+{
+ struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
+ struct elf_final_link_info *finfo = eoinfo->finfo;
+ boolean strip;
+ Elf_Internal_Sym sym;
+ asection *input_sec;
+
+ if (h->root.type == bfd_link_hash_warning)
+ {
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+ if (h->root.type == bfd_link_hash_new)
+ return true;
+ }
+
+ /* Decide whether to output this symbol in this pass. */
+ if (eoinfo->localsyms)
+ {
+ if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
+ return true;
+ }
+ else
+ {
+ if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
+ return true;
+ }
+
+ /* If we are not creating a shared library, and this symbol is
+ referenced by a shared library but is not defined anywhere, then
+ warn that it is undefined. If we do not do this, the runtime
+ linker will complain that the symbol is undefined when the
+ program is run. We don't have to worry about symbols that are
+ referenced by regular files, because we will already have issued
+ warnings for them. */
+ if (! finfo->info->relocateable
+ && ! finfo->info->allow_shlib_undefined
+ && ! finfo->info->shared
+ && h->root.type == bfd_link_hash_undefined
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
+ && ! elf_link_check_versioned_symbol (finfo->info, h))
+ {
+ if (! ((*finfo->info->callbacks->undefined_symbol)
+ (finfo->info, h->root.root.string, h->root.u.undef.abfd,
+ (asection *) NULL, (bfd_vma) 0, true)))
+ {
+ eoinfo->failed = true;
+ return false;
+ }
+ }
+
+ /* We don't want to output symbols that have never been mentioned by
+ a regular file, or that we have been told to strip. However, if
+ h->indx is set to -2, the symbol is used by a reloc and we must
+ output it. */
+ if (h->indx == -2)
+ strip = false;
+ else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
+ || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
+ strip = true;
+ else if (finfo->info->strip == strip_all
+ || (finfo->info->strip == strip_some
+ && bfd_hash_lookup (finfo->info->keep_hash,
+ h->root.root.string,
+ false, false) == NULL))
+ strip = true;
+ else
+ strip = false;
+
+ /* If we're stripping it, and it's not a dynamic symbol, there's
+ nothing else to do unless it is a forced local symbol. */
+ if (strip
+ && h->dynindx == -1
+ && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
+ return true;
+
+ sym.st_value = 0;
+ sym.st_size = h->size;
+ sym.st_other = h->other;
+ if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
+ sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
+ else if (h->root.type == bfd_link_hash_undefweak
+ || h->root.type == bfd_link_hash_defweak)
+ sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
+ else
+ sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
+
+ switch (h->root.type)
+ {
+ default:
+ case bfd_link_hash_new:
+ case bfd_link_hash_warning:
+ abort ();
+ return false;
+
+ case bfd_link_hash_undefined:
+ case bfd_link_hash_undefweak:
+ input_sec = bfd_und_section_ptr;
+ sym.st_shndx = SHN_UNDEF;
+ break;
+
+ case bfd_link_hash_defined:
+ case bfd_link_hash_defweak:
+ {
+ input_sec = h->root.u.def.section;
+ if (input_sec->output_section != NULL)
+ {
+ sym.st_shndx =
+ _bfd_elf_section_from_bfd_section (finfo->output_bfd,
+ input_sec->output_section);
+ if (sym.st_shndx == SHN_BAD)
+ {
+ (*_bfd_error_handler)
+ (_("%s: could not find output section %s for input section %s"),
+ bfd_get_filename (finfo->output_bfd),
+ input_sec->output_section->name,
+ input_sec->name);
+ eoinfo->failed = true;
+ return false;
+ }
+
+ /* ELF symbols in relocateable files are section relative,
+ but in nonrelocateable files they are virtual
+ addresses. */
+ sym.st_value = h->root.u.def.value + input_sec->output_offset;
+ if (! finfo->info->relocateable)
+ {
+ sym.st_value += input_sec->output_section->vma;
+ if (h->type == STT_TLS)
+ {
+ /* STT_TLS symbols are relative to PT_TLS segment
+ base. */
+ BFD_ASSERT (finfo->first_tls_sec != NULL);
+ sym.st_value -= finfo->first_tls_sec->vma;
+ }
+ }
+ }
+ else
+ {
+ BFD_ASSERT (input_sec->owner == NULL
+ || (input_sec->owner->flags & DYNAMIC) != 0);
+ sym.st_shndx = SHN_UNDEF;
+ input_sec = bfd_und_section_ptr;
+ }
+ }
+ break;
+
+ case bfd_link_hash_common:
+ input_sec = h->root.u.c.p->section;
+ sym.st_shndx = SHN_COMMON;
+ sym.st_value = 1 << h->root.u.c.p->alignment_power;
+ break;
+
+ case bfd_link_hash_indirect:
+ /* These symbols are created by symbol versioning. They point
+ to the decorated version of the name. For example, if the
+ symbol foo@@GNU_1.2 is the default, which should be used when
+ foo is used with no version, then we add an indirect symbol
+ foo which points to foo@@GNU_1.2. We ignore these symbols,
+ since the indirected symbol is already in the hash table. */
+ return true;
+ }
+
+ /* Give the processor backend a chance to tweak the symbol value,
+ and also to finish up anything that needs to be done for this
+ symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
+ forced local syms when non-shared is due to a historical quirk. */
+ if ((h->dynindx != -1
+ || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
+ && (finfo->info->shared
+ || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
+ && elf_hash_table (finfo->info)->dynamic_sections_created)
+ {
+ struct elf_backend_data *bed;
+
+ bed = get_elf_backend_data (finfo->output_bfd);
+ if (! ((*bed->elf_backend_finish_dynamic_symbol)
+ (finfo->output_bfd, finfo->info, h, &sym)))
+ {
+ eoinfo->failed = true;
+ return false;
+ }
+ }
+
+ /* If we are marking the symbol as undefined, and there are no
+ non-weak references to this symbol from a regular object, then
+ mark the symbol as weak undefined; if there are non-weak
+ references, mark the symbol as strong. We can't do this earlier,
+ because it might not be marked as undefined until the
+ finish_dynamic_symbol routine gets through with it. */
+ if (sym.st_shndx == SHN_UNDEF
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
+ && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
+ || ELF_ST_BIND (sym.st_info) == STB_WEAK))
+ {
+ int bindtype;
+
+ if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
+ bindtype = STB_GLOBAL;
+ else
+ bindtype = STB_WEAK;
+ sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
+ }
+
+ /* If a symbol is not defined locally, we clear the visibility field. */
+ if (! finfo->info->relocateable
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
+ sym.st_other &= ~ ELF_ST_VISIBILITY (-1);
+
+ /* If this symbol should be put in the .dynsym section, then put it
+ there now. We already know the symbol index. We also fill in
+ the entry in the .hash section. */
+ if (h->dynindx != -1
+ && elf_hash_table (finfo->info)->dynamic_sections_created)
+ {
+ size_t bucketcount;
+ size_t bucket;
+ size_t hash_entry_size;
+ bfd_byte *bucketpos;
+ bfd_vma chain;
+ Elf_External_Sym *esym;
+
+ sym.st_name = h->dynstr_index;
+ esym = (Elf_External_Sym *) finfo->dynsym_sec->contents + h->dynindx;
+ elf_swap_symbol_out (finfo->output_bfd, &sym, (PTR) esym, (PTR) 0);
+
+ bucketcount = elf_hash_table (finfo->info)->bucketcount;
+ bucket = h->elf_hash_value % bucketcount;
+ hash_entry_size
+ = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
+ bucketpos = ((bfd_byte *) finfo->hash_sec->contents
+ + (bucket + 2) * hash_entry_size);
+ chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
+ bfd_put (8 * hash_entry_size, finfo->output_bfd, (bfd_vma) h->dynindx,
+ bucketpos);
+ bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
+ ((bfd_byte *) finfo->hash_sec->contents
+ + (bucketcount + 2 + h->dynindx) * hash_entry_size));
+
+ if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
+ {
+ Elf_Internal_Versym iversym;
+ Elf_External_Versym *eversym;
+
+ if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
+ {
+ if (h->verinfo.verdef == NULL)
+ iversym.vs_vers = 0;
+ else
+ iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
+ }
+ else
+ {
+ if (h->verinfo.vertree == NULL)
+ iversym.vs_vers = 1;
+ else
+ iversym.vs_vers = h->verinfo.vertree->vernum + 1;
+ }
+
+ if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
+ iversym.vs_vers |= VERSYM_HIDDEN;
+
+ eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
+ eversym += h->dynindx;
+ _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
+ }
+ }
+
+ /* If we're stripping it, then it was just a dynamic symbol, and
+ there's nothing else to do. */
+ if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
+ return true;
+
+ h->indx = bfd_get_symcount (finfo->output_bfd);
+
+ if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
+ {
+ eoinfo->failed = true;
+ return false;
+ }
+
+ return true;
+}
+
+/* Copy the relocations indicated by the INTERNAL_RELOCS (which
+ originated from the section given by INPUT_REL_HDR) to the
+ OUTPUT_BFD. */
+
+static boolean
+elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
+ internal_relocs)
+ bfd *output_bfd;
+ asection *input_section;
+ Elf_Internal_Shdr *input_rel_hdr;
+ Elf_Internal_Rela *internal_relocs;
+{
+ Elf_Internal_Rela *irela;
+ Elf_Internal_Rela *irelaend;
+ Elf_Internal_Shdr *output_rel_hdr;
+ asection *output_section;
+ unsigned int *rel_countp = NULL;
+ struct elf_backend_data *bed;
+ bfd_size_type amt;
+
+ output_section = input_section->output_section;
+ output_rel_hdr = NULL;
+
+ if (elf_section_data (output_section)->rel_hdr.sh_entsize
+ == input_rel_hdr->sh_entsize)
+ {
+ output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
+ rel_countp = &elf_section_data (output_section)->rel_count;
+ }
+ else if (elf_section_data (output_section)->rel_hdr2
+ && (elf_section_data (output_section)->rel_hdr2->sh_entsize
+ == input_rel_hdr->sh_entsize))
+ {
+ output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
+ rel_countp = &elf_section_data (output_section)->rel_count2;
+ }
+ else
+ {
+ (*_bfd_error_handler)
+ (_("%s: relocation size mismatch in %s section %s"),
+ bfd_get_filename (output_bfd),
+ bfd_archive_filename (input_section->owner),
+ input_section->name);
+ bfd_set_error (bfd_error_wrong_object_format);
+ return false;
+ }
+
+ bed = get_elf_backend_data (output_bfd);
+ irela = internal_relocs;
+ irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
+ * bed->s->int_rels_per_ext_rel);
+
+ if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
+ {
+ Elf_External_Rel *erel;
+ Elf_Internal_Rel *irel;
+
+ amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
+ irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
+ if (irel == NULL)
+ {
+ (*_bfd_error_handler) (_("Error: out of memory"));
+ abort ();
+ }
+
+ erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
+ for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erel++)
+ {
+ unsigned int i;
+
+ for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
+ {
+ irel[i].r_offset = irela[i].r_offset;
+ irel[i].r_info = irela[i].r_info;
+ BFD_ASSERT (irela[i].r_addend == 0);
+ }
+
+ if (bed->s->swap_reloc_out)
+ (*bed->s->swap_reloc_out) (output_bfd, irel, (PTR) erel);
+ else
+ elf_swap_reloc_out (output_bfd, irel, erel);
+ }
+
+ free (irel);
+ }
+ else
+ {
+ Elf_External_Rela *erela;
+
+ BFD_ASSERT (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
+
+ erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
+ for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erela++)
+ if (bed->s->swap_reloca_out)
+ (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
+ else
+ elf_swap_reloca_out (output_bfd, irela, erela);
+ }
+
+ /* Bump the counter, so that we know where to add the next set of
+ relocations. */
+ *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
+
+ return true;
+}
+
+/* Link an input file into the linker output file. This function
+ handles all the sections and relocations of the input file at once.
+ This is so that we only have to read the local symbols once, and
+ don't have to keep them in memory. */
+
+static boolean
+elf_link_input_bfd (finfo, input_bfd)
+ struct elf_final_link_info *finfo;
+ bfd *input_bfd;
+{
+ boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
+ bfd *, asection *, bfd_byte *,
+ Elf_Internal_Rela *,
+ Elf_Internal_Sym *, asection **));
+ bfd *output_bfd;
+ Elf_Internal_Shdr *symtab_hdr;
+ size_t locsymcount;
+ size_t extsymoff;
+ Elf_Internal_Sym *isymbuf;
+ Elf_Internal_Sym *isym;
+ Elf_Internal_Sym *isymend;
+ long *pindex;
+ asection **ppsection;
+ asection *o;
+ struct elf_backend_data *bed;
+ boolean emit_relocs;
+ struct elf_link_hash_entry **sym_hashes;
+
+ output_bfd = finfo->output_bfd;
+ bed = get_elf_backend_data (output_bfd);
+ relocate_section = bed->elf_backend_relocate_section;
+
+ /* If this is a dynamic object, we don't want to do anything here:
+ we don't want the local symbols, and we don't want the section
+ contents. */
+ if ((input_bfd->flags & DYNAMIC) != 0)
+ return true;
+
+ emit_relocs = (finfo->info->relocateable
+ || finfo->info->emitrelocations
+ || bed->elf_backend_emit_relocs);
+
+ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
+ if (elf_bad_symtab (input_bfd))
+ {
+ locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
+ extsymoff = 0;
+ }
+ else
+ {
+ locsymcount = symtab_hdr->sh_info;
+ extsymoff = symtab_hdr->sh_info;
+ }
+
+ /* Read the local symbols. */
+ isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
+ if (isymbuf == NULL && locsymcount != 0)
+ {
+ isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
+ finfo->internal_syms,
+ finfo->external_syms,
+ finfo->locsym_shndx);
+ if (isymbuf == NULL)
+ return false;
+ }
+
+ /* Find local symbol sections and adjust values of symbols in
+ SEC_MERGE sections. Write out those local symbols we know are
+ going into the output file. */
+ isymend = isymbuf + locsymcount;
+ for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
+ isym < isymend;
+ isym++, pindex++, ppsection++)
+ {
+ asection *isec;
+ const char *name;
+ Elf_Internal_Sym osym;
+
+ *pindex = -1;
+
+ if (elf_bad_symtab (input_bfd))
+ {
+ if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
+ {
+ *ppsection = NULL;
+ continue;
+ }
+ }
+
+ if (isym->st_shndx == SHN_UNDEF)
+ isec = bfd_und_section_ptr;
+ else if (isym->st_shndx < SHN_LORESERVE
+ || isym->st_shndx > SHN_HIRESERVE)
+ {
+ isec = section_from_elf_index (input_bfd, isym->st_shndx);
+ if (isec
+ && elf_section_data (isec)->sec_info_type == ELF_INFO_TYPE_MERGE
+ && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
+ isym->st_value =
+ _bfd_merged_section_offset (output_bfd, &isec,
+ elf_section_data (isec)->sec_info,
+ isym->st_value, (bfd_vma) 0);
+ }
+ else if (isym->st_shndx == SHN_ABS)
+ isec = bfd_abs_section_ptr;
+ else if (isym->st_shndx == SHN_COMMON)
+ isec = bfd_com_section_ptr;
+ else
+ {
+ /* Who knows? */
+ isec = NULL;
+ }
+
+ *ppsection = isec;
+
+ /* Don't output the first, undefined, symbol. */
+ if (ppsection == finfo->sections)
+ continue;
+
+ if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
+ {
+ /* We never output section symbols. Instead, we use the
+ section symbol of the corresponding section in the output
+ file. */
+ continue;
+ }
+
+ /* If we are stripping all symbols, we don't want to output this
+ one. */
+ if (finfo->info->strip == strip_all)
+ continue;
+
+ /* If we are discarding all local symbols, we don't want to
+ output this one. If we are generating a relocateable output
+ file, then some of the local symbols may be required by
+ relocs; we output them below as we discover that they are
+ needed. */
+ if (finfo->info->discard == discard_all)
+ continue;
+
+ /* If this symbol is defined in a section which we are
+ discarding, we don't need to keep it, but note that
+ linker_mark is only reliable for sections that have contents.
+ For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
+ as well as linker_mark. */
+ if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
+ && isec != NULL
+ && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
+ || (! finfo->info->relocateable
+ && (isec->flags & SEC_EXCLUDE) != 0)))
+ continue;
+
+ /* Get the name of the symbol. */
+ name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
+ isym->st_name);
+ if (name == NULL)
+ return false;
+
+ /* See if we are discarding symbols with this name. */
+ if ((finfo->info->strip == strip_some
+ && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
+ == NULL))
+ || (((finfo->info->discard == discard_sec_merge
+ && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable)
+ || finfo->info->discard == discard_l)
+ && bfd_is_local_label_name (input_bfd, name)))
+ continue;
+
+ /* If we get here, we are going to output this symbol. */
+
+ osym = *isym;
+
+ /* Adjust the section index for the output file. */
+ osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
+ isec->output_section);
+ if (osym.st_shndx == SHN_BAD)
+ return false;
+
+ *pindex = bfd_get_symcount (output_bfd);
+
+ /* ELF symbols in relocateable files are section relative, but
+ in executable files they are virtual addresses. Note that
+ this code assumes that all ELF sections have an associated
+ BFD section with a reasonable value for output_offset; below
+ we assume that they also have a reasonable value for
+ output_section. Any special sections must be set up to meet
+ these requirements. */
+ osym.st_value += isec->output_offset;
+ if (! finfo->info->relocateable)
+ {
+ osym.st_value += isec->output_section->vma;
+ if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
+ {
+ /* STT_TLS symbols are relative to PT_TLS segment base. */
+ BFD_ASSERT (finfo->first_tls_sec != NULL);
+ osym.st_value -= finfo->first_tls_sec->vma;
+ }
+ }
+
+ if (! elf_link_output_sym (finfo, name, &osym, isec))
+ return false;
+ }
+
+ /* Relocate the contents of each section. */
+ sym_hashes = elf_sym_hashes (input_bfd);
+ for (o = input_bfd->sections; o != NULL; o = o->next)
+ {
+ bfd_byte *contents;
+
+ if (! o->linker_mark)
+ {
+ /* This section was omitted from the link. */
+ continue;
+ }
+
+ if ((o->flags & SEC_HAS_CONTENTS) == 0
+ || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
+ continue;
+
+ if ((o->flags & SEC_LINKER_CREATED) != 0)
+ {
+ /* Section was created by elf_link_create_dynamic_sections
+ or somesuch. */
+ continue;
+ }
+
+ /* Get the contents of the section. They have been cached by a
+ relaxation routine. Note that o is a section in an input
+ file, so the contents field will not have been set by any of
+ the routines which work on output files. */
+ if (elf_section_data (o)->this_hdr.contents != NULL)
+ contents = elf_section_data (o)->this_hdr.contents;
+ else
+ {
+ contents = finfo->contents;
+ if (! bfd_get_section_contents (input_bfd, o, contents,
+ (file_ptr) 0, o->_raw_size))
+ return false;
+ }
+
+ if ((o->flags & SEC_RELOC) != 0)
+ {
+ Elf_Internal_Rela *internal_relocs;
+
+ /* Get the swapped relocs. */
+ internal_relocs = (NAME(_bfd_elf,link_read_relocs)
+ (input_bfd, o, finfo->external_relocs,
+ finfo->internal_relocs, false));
+ if (internal_relocs == NULL
+ && o->reloc_count > 0)
+ return false;
+
+ /* Run through the relocs looking for any against symbols
+ from discarded sections and section symbols from
+ removed link-once sections. Complain about relocs
+ against discarded sections. Zero relocs against removed
+ link-once sections. We should really complain if
+ anything in the final link tries to use it, but
+ DWARF-based exception handling might have an entry in
+ .eh_frame to describe a routine in the linkonce section,
+ and it turns out to be hard to remove the .eh_frame
+ entry too. FIXME. */
+ if (!finfo->info->relocateable
+ && !elf_section_ignore_discarded_relocs (o))
+ {
+ Elf_Internal_Rela *rel, *relend;
+
+ rel = internal_relocs;
+ relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
+ for ( ; rel < relend; rel++)
+ {
+ unsigned long r_symndx = ELF_R_SYM (rel->r_info);
+
+ if (r_symndx >= locsymcount
+ || (elf_bad_symtab (input_bfd)
+ && finfo->sections[r_symndx] == NULL))
+ {
+ struct elf_link_hash_entry *h;
+
+ h = sym_hashes[r_symndx - extsymoff];
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ /* Complain if the definition comes from a
+ discarded section. */
+ if ((h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak)
+ && elf_discarded_section (h->root.u.def.section))
+ {
+ if ((o->flags & SEC_DEBUGGING) != 0)
+ {
+ BFD_ASSERT (r_symndx != 0);
+ memset (rel, 0, sizeof (*rel));
+ }
+ else
+ {
+ if (! ((*finfo->info->callbacks->undefined_symbol)
+ (finfo->info, h->root.root.string,
+ input_bfd, o, rel->r_offset,
+ true)))
+ return false;
+ }
+ }
+ }
+ else
+ {
+ asection *sec = finfo->sections[r_symndx];
+
+ if (sec != NULL && elf_discarded_section (sec))
+ {
+ if ((o->flags & SEC_DEBUGGING) != 0
+ || (sec->flags & SEC_LINK_ONCE) != 0)
+ {
+ BFD_ASSERT (r_symndx != 0);
+ rel->r_info
+ = ELF_R_INFO (0, ELF_R_TYPE (rel->r_info));
+ rel->r_addend = 0;
+ }
+ else
+ {
+ boolean ok;
+ const char *msg
+ = _("local symbols in discarded section %s");
+ bfd_size_type amt
+ = strlen (sec->name) + strlen (msg) - 1;
+ char *buf = (char *) bfd_malloc (amt);
+
+ if (buf != NULL)
+ sprintf (buf, msg, sec->name);
+ else
+ buf = (char *) sec->name;
+ ok = (*finfo->info->callbacks
+ ->undefined_symbol) (finfo->info, buf,
+ input_bfd, o,
+ rel->r_offset,
+ true);
+ if (buf != sec->name)
+ free (buf);
+ if (!ok)
+ return false;
+ }
+ }
+ }
+ }
+ }
+
+ /* Relocate the section by invoking a back end routine.
+
+ The back end routine is responsible for adjusting the
+ section contents as necessary, and (if using Rela relocs
+ and generating a relocateable output file) adjusting the
+ reloc addend as necessary.
+
+ The back end routine does not have to worry about setting
+ the reloc address or the reloc symbol index.
+
+ The back end routine is given a pointer to the swapped in
+ internal symbols, and can access the hash table entries
+ for the external symbols via elf_sym_hashes (input_bfd).
+
+ When generating relocateable output, the back end routine
+ must handle STB_LOCAL/STT_SECTION symbols specially. The
+ output symbol is going to be a section symbol
+ corresponding to the output section, which will require
+ the addend to be adjusted. */
+
+ if (! (*relocate_section) (output_bfd, finfo->info,
+ input_bfd, o, contents,
+ internal_relocs,
+ isymbuf,
+ finfo->sections))
+ return false;
+
+ if (emit_relocs)
+ {
+ Elf_Internal_Rela *irela;
+ Elf_Internal_Rela *irelaend;
+ struct elf_link_hash_entry **rel_hash;
+ Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
+ unsigned int next_erel;
+ boolean (*reloc_emitter) PARAMS ((bfd *, asection *,
+ Elf_Internal_Shdr *,
+ Elf_Internal_Rela *));
+ boolean rela_normal;
+
+ input_rel_hdr = &elf_section_data (o)->rel_hdr;
+ rela_normal = (bed->rela_normal
+ && (input_rel_hdr->sh_entsize
+ == sizeof (Elf_External_Rela)));
+
+ /* Adjust the reloc addresses and symbol indices. */
+
+ irela = internal_relocs;
+ irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
+ rel_hash = (elf_section_data (o->output_section)->rel_hashes
+ + elf_section_data (o->output_section)->rel_count
+ + elf_section_data (o->output_section)->rel_count2);
+ for (next_erel = 0; irela < irelaend; irela++, next_erel++)
+ {
+ unsigned long r_symndx;
+ asection *sec;
+ Elf_Internal_Sym sym;
+
+ if (next_erel == bed->s->int_rels_per_ext_rel)
+ {
+ rel_hash++;
+ next_erel = 0;
+ }
+
+ irela->r_offset += o->output_offset;
+
+ /* Relocs in an executable have to be virtual addresses. */
+ if (!finfo->info->relocateable)
+ irela->r_offset += o->output_section->vma;
+
+ r_symndx = ELF_R_SYM (irela->r_info);
+
+ if (r_symndx == 0)
+ continue;
+
+ if (r_symndx >= locsymcount
+ || (elf_bad_symtab (input_bfd)
+ && finfo->sections[r_symndx] == NULL))
+ {
+ struct elf_link_hash_entry *rh;
+ unsigned long indx;
+
+ /* This is a reloc against a global symbol. We
+ have not yet output all the local symbols, so
+ we do not know the symbol index of any global
+ symbol. We set the rel_hash entry for this
+ reloc to point to the global hash table entry
+ for this symbol. The symbol index is then
+ set at the end of elf_bfd_final_link. */
+ indx = r_symndx - extsymoff;
+ rh = elf_sym_hashes (input_bfd)[indx];
+ while (rh->root.type == bfd_link_hash_indirect
+ || rh->root.type == bfd_link_hash_warning)
+ rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
+
+ /* Setting the index to -2 tells
+ elf_link_output_extsym that this symbol is
+ used by a reloc. */
+ BFD_ASSERT (rh->indx < 0);
+ rh->indx = -2;
+
+ *rel_hash = rh;
+
+ continue;
+ }
+
+ /* This is a reloc against a local symbol. */
+
+ *rel_hash = NULL;
+ sym = isymbuf[r_symndx];
+ sec = finfo->sections[r_symndx];
+ if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
+ {
+ /* I suppose the backend ought to fill in the
+ section of any STT_SECTION symbol against a
+ processor specific section. If we have
+ discarded a section, the output_section will
+ be the absolute section. */
+ if (bfd_is_abs_section (sec)
+ || (sec != NULL
+ && bfd_is_abs_section (sec->output_section)))
+ r_symndx = 0;
+ else if (sec == NULL || sec->owner == NULL)
+ {
+ bfd_set_error (bfd_error_bad_value);
+ return false;
+ }
+ else
+ {
+ r_symndx = sec->output_section->target_index;
+ BFD_ASSERT (r_symndx != 0);
+ }
+
+ /* Adjust the addend according to where the
+ section winds up in the output section. */
+ if (rela_normal)
+ irela->r_addend += sec->output_offset;
+ }
+ else
+ {
+ if (finfo->indices[r_symndx] == -1)
+ {
+ unsigned long shlink;
+ const char *name;
+ asection *osec;
+
+ if (finfo->info->strip == strip_all)
+ {
+ /* You can't do ld -r -s. */
+ bfd_set_error (bfd_error_invalid_operation);
+ return false;
+ }
+
+ /* This symbol was skipped earlier, but
+ since it is needed by a reloc, we
+ must output it now. */
+ shlink = symtab_hdr->sh_link;
+ name = (bfd_elf_string_from_elf_section
+ (input_bfd, shlink, sym.st_name));
+ if (name == NULL)
+ return false;
+
+ osec = sec->output_section;
+ sym.st_shndx =
+ _bfd_elf_section_from_bfd_section (output_bfd,
+ osec);
+ if (sym.st_shndx == SHN_BAD)
+ return false;
+
+ sym.st_value += sec->output_offset;
+ if (! finfo->info->relocateable)
+ {
+ sym.st_value += osec->vma;
+ if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
+ {
+ /* STT_TLS symbols are relative to PT_TLS
+ segment base. */
+ BFD_ASSERT (finfo->first_tls_sec != NULL);
+ sym.st_value -= finfo->first_tls_sec->vma;
+ }
+ }
+
+ finfo->indices[r_symndx]
+ = bfd_get_symcount (output_bfd);
+
+ if (! elf_link_output_sym (finfo, name, &sym, sec))
+ return false;
+ }
+
+ r_symndx = finfo->indices[r_symndx];
+ }
+
+ irela->r_info = ELF_R_INFO (r_symndx,
+ ELF_R_TYPE (irela->r_info));
+ }
+
+ /* Swap out the relocs. */
+ if (bed->elf_backend_emit_relocs
+ && !(finfo->info->relocateable
+ || finfo->info->emitrelocations))
+ reloc_emitter = bed->elf_backend_emit_relocs;
+ else
+ reloc_emitter = elf_link_output_relocs;
+
+ if (input_rel_hdr->sh_size != 0
+ && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
+ internal_relocs))
+ return false;
+
+ input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
+ if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
+ {
+ internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
+ * bed->s->int_rels_per_ext_rel);
+ if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
+ internal_relocs))
+ return false;
+ }
+ }
+ }
+
+ /* Write out the modified section contents. */
+ if (bed->elf_backend_write_section
+ && (*bed->elf_backend_write_section) (output_bfd, o, contents))
+ {
+ /* Section written out. */
+ }
+ else switch (elf_section_data (o)->sec_info_type)
+ {
+ case ELF_INFO_TYPE_STABS:
+ if (! (_bfd_write_section_stabs
+ (output_bfd,
+ &elf_hash_table (finfo->info)->stab_info,
+ o, &elf_section_data (o)->sec_info, contents)))
+ return false;
+ break;
+ case ELF_INFO_TYPE_MERGE:
+ if (! (_bfd_write_merged_section
+ (output_bfd, o, elf_section_data (o)->sec_info)))
+ return false;
+ break;
+ case ELF_INFO_TYPE_EH_FRAME:
+ {
+ asection *ehdrsec;
+
+ ehdrsec
+ = bfd_get_section_by_name (elf_hash_table (finfo->info)->dynobj,
+ ".eh_frame_hdr");
+ if (! (_bfd_elf_write_section_eh_frame (output_bfd, o, ehdrsec,
+ contents)))
+ return false;
+ }
+ break;
+ default:
+ {
+ bfd_size_type sec_size;
+
+ sec_size = (o->_cooked_size != 0 ? o->_cooked_size : o->_raw_size);
+ if (! (o->flags & SEC_EXCLUDE)
+ && ! bfd_set_section_contents (output_bfd, o->output_section,
+ contents,
+ (file_ptr) o->output_offset,
+ sec_size))
+ return false;
+ }
+ break;
+ }
+ }
+
+ return true;
+}
+
+/* Generate a reloc when linking an ELF file. This is a reloc
+ requested by the linker, and does come from any input file. This
+ is used to build constructor and destructor tables when linking
+ with -Ur. */
+
+static boolean
+elf_reloc_link_order (output_bfd, info, output_section, link_order)
+ bfd *output_bfd;
+ struct bfd_link_info *info;
+ asection *output_section;
+ struct bfd_link_order *link_order;
+{
+ reloc_howto_type *howto;
+ long indx;
+ bfd_vma offset;
+ bfd_vma addend;
+ struct elf_link_hash_entry **rel_hash_ptr;
+ Elf_Internal_Shdr *rel_hdr;
+ struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
+
+ howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
+ if (howto == NULL)
+ {
+ bfd_set_error (bfd_error_bad_value);
+ return false;
+ }
+
+ addend = link_order->u.reloc.p->addend;
+
+ /* Figure out the symbol index. */
+ rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
+ + elf_section_data (output_section)->rel_count
+ + elf_section_data (output_section)->rel_count2);
+ if (link_order->type == bfd_section_reloc_link_order)
+ {
+ indx = link_order->u.reloc.p->u.section->target_index;
+ BFD_ASSERT (indx != 0);
+ *rel_hash_ptr = NULL;
+ }
+ else
+ {
+ struct elf_link_hash_entry *h;
+
+ /* Treat a reloc against a defined symbol as though it were
+ actually against the section. */
+ h = ((struct elf_link_hash_entry *)
+ bfd_wrapped_link_hash_lookup (output_bfd, info,
+ link_order->u.reloc.p->u.name,
+ false, false, true));
+ if (h != NULL
+ && (h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak))
+ {
+ asection *section;
+
+ section = h->root.u.def.section;
+ indx = section->output_section->target_index;
+ *rel_hash_ptr = NULL;
+ /* It seems that we ought to add the symbol value to the
+ addend here, but in practice it has already been added
+ because it was passed to constructor_callback. */
+ addend += section->output_section->vma + section->output_offset;
+ }
+ else if (h != NULL)
+ {
+ /* Setting the index to -2 tells elf_link_output_extsym that
+ this symbol is used by a reloc. */
+ h->indx = -2;
+ *rel_hash_ptr = h;
+ indx = 0;
+ }
+ else
+ {
+ if (! ((*info->callbacks->unattached_reloc)
+ (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
+ (asection *) NULL, (bfd_vma) 0)))
+ return false;
+ indx = 0;
+ }
+ }
+
+ /* If this is an inplace reloc, we must write the addend into the
+ object file. */
+ if (howto->partial_inplace && addend != 0)
+ {
+ bfd_size_type size;
+ bfd_reloc_status_type rstat;
+ bfd_byte *buf;
+ boolean ok;
+ const char *sym_name;
+
+ size = bfd_get_reloc_size (howto);
+ buf = (bfd_byte *) bfd_zmalloc (size);
+ if (buf == (bfd_byte *) NULL)
+ return false;
+ rstat = _bfd_relocate_contents (howto, output_bfd, (bfd_vma) addend, buf);
+ switch (rstat)
+ {
+ case bfd_reloc_ok:
+ break;
+
+ default:
+ case bfd_reloc_outofrange:
+ abort ();
+
+ case bfd_reloc_overflow:
+ if (link_order->type == bfd_section_reloc_link_order)
+ sym_name = bfd_section_name (output_bfd,
+ link_order->u.reloc.p->u.section);
+ else
+ sym_name = link_order->u.reloc.p->u.name;
+ if (! ((*info->callbacks->reloc_overflow)
+ (info, sym_name, howto->name, addend,
+ (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
+ {
+ free (buf);
+ return false;
+ }
+ break;
+ }
+ ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
+ (file_ptr) link_order->offset, size);
+ free (buf);
+ if (! ok)
+ return false;
+ }
+
+ /* The address of a reloc is relative to the section in a
+ relocateable file, and is a virtual address in an executable
+ file. */
+ offset = link_order->offset;
+ if (! info->relocateable)
+ offset += output_section->vma;
+
+ rel_hdr = &elf_section_data (output_section)->rel_hdr;
+
+ if (rel_hdr->sh_type == SHT_REL)
+ {
+ bfd_size_type size;
+ Elf_Internal_Rel *irel;
+ Elf_External_Rel *erel;
+ unsigned int i;
+
+ size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
+ irel = (Elf_Internal_Rel *) bfd_zmalloc (size);
+ if (irel == NULL)
+ return false;
+
+ for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
+ irel[i].r_offset = offset;
+ irel[0].r_info = ELF_R_INFO (indx, howto->type);
+
+ erel = ((Elf_External_Rel *) rel_hdr->contents
+ + elf_section_data (output_section)->rel_count);
+
+ if (bed->s->swap_reloc_out)
+ (*bed->s->swap_reloc_out) (output_bfd, irel, (bfd_byte *) erel);
+ else
+ elf_swap_reloc_out (output_bfd, irel, erel);
+
+ free (irel);
+ }
+ else
+ {
+ bfd_size_type size;
+ Elf_Internal_Rela *irela;
+ Elf_External_Rela *erela;
+ unsigned int i;
+
+ size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
+ irela = (Elf_Internal_Rela *) bfd_zmalloc (size);
+ if (irela == NULL)
+ return false;
+
+ for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
+ irela[i].r_offset = offset;
+ irela[0].r_info = ELF_R_INFO (indx, howto->type);
+ irela[0].r_addend = addend;
+
+ erela = ((Elf_External_Rela *) rel_hdr->contents
+ + elf_section_data (output_section)->rel_count);
+
+ if (bed->s->swap_reloca_out)
+ (*bed->s->swap_reloca_out) (output_bfd, irela, (bfd_byte *) erela);
+ else
+ elf_swap_reloca_out (output_bfd, irela, erela);
+ }
+
+ ++elf_section_data (output_section)->rel_count;
+
+ return true;
+}
+
+/* Allocate a pointer to live in a linker created section. */
+
+boolean
+elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
+ bfd *abfd;
+ struct bfd_link_info *info;
+ elf_linker_section_t *lsect;
+ struct elf_link_hash_entry *h;
+ const Elf_Internal_Rela *rel;
+{
+ elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
+ elf_linker_section_pointers_t *linker_section_ptr;
+ unsigned long r_symndx = ELF_R_SYM (rel->r_info);
+ bfd_size_type amt;
+
+ BFD_ASSERT (lsect != NULL);
+
+ /* Is this a global symbol? */
+ if (h != NULL)
+ {
+ /* Has this symbol already been allocated? If so, our work is done. */
+ if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
+ rel->r_addend,
+ lsect->which))
+ return true;
+
+ ptr_linker_section_ptr = &h->linker_section_pointer;
+ /* Make sure this symbol is output as a dynamic symbol. */
+ if (h->dynindx == -1)
+ {
+ if (! elf_link_record_dynamic_symbol (info, h))
+ return false;
+ }
+
+ if (lsect->rel_section)
+ lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
+ }
+ else
+ {
+ /* Allocation of a pointer to a local symbol. */
+ elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
+
+ /* Allocate a table to hold the local symbols if first time. */
+ if (!ptr)
+ {
+ unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
+ register unsigned int i;
+
+ amt = num_symbols;
+ amt *= sizeof (elf_linker_section_pointers_t *);
+ ptr = (elf_linker_section_pointers_t **) bfd_alloc (abfd, amt);
+
+ if (!ptr)
+ return false;
+
+ elf_local_ptr_offsets (abfd) = ptr;
+ for (i = 0; i < num_symbols; i++)
+ ptr[i] = (elf_linker_section_pointers_t *) 0;
+ }
+
+ /* Has this symbol already been allocated? If so, our work is done. */
+ if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
+ rel->r_addend,
+ lsect->which))
+ return true;
+
+ ptr_linker_section_ptr = &ptr[r_symndx];
+
+ if (info->shared)
+ {
+ /* If we are generating a shared object, we need to
+ output a R_<xxx>_RELATIVE reloc so that the
+ dynamic linker can adjust this GOT entry. */
+ BFD_ASSERT (lsect->rel_section != NULL);
+ lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
+ }
+ }
+
+ /* Allocate space for a pointer in the linker section, and allocate
+ a new pointer record from internal memory. */
+ BFD_ASSERT (ptr_linker_section_ptr != NULL);
+ amt = sizeof (elf_linker_section_pointers_t);
+ linker_section_ptr = (elf_linker_section_pointers_t *) bfd_alloc (abfd, amt);
+
+ if (!linker_section_ptr)
+ return false;
+
+ linker_section_ptr->next = *ptr_linker_section_ptr;
+ linker_section_ptr->addend = rel->r_addend;
+ linker_section_ptr->which = lsect->which;
+ linker_section_ptr->written_address_p = false;
+ *ptr_linker_section_ptr = linker_section_ptr;
+
+#if 0
+ if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
+ {
+ linker_section_ptr->offset = (lsect->section->_raw_size
+ - lsect->hole_size + (ARCH_SIZE / 8));
+ lsect->hole_offset += ARCH_SIZE / 8;
+ lsect->sym_offset += ARCH_SIZE / 8;
+ if (lsect->sym_hash)
+ {
+ /* Bump up symbol value if needed. */
+ lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
+#ifdef DEBUG
+ fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
+ lsect->sym_hash->root.root.string,
+ (long) ARCH_SIZE / 8,
+ (long) lsect->sym_hash->root.u.def.value);
+#endif
+ }
+ }
+ else
+#endif
+ linker_section_ptr->offset = lsect->section->_raw_size;
+
+ lsect->section->_raw_size += ARCH_SIZE / 8;
+
+#ifdef DEBUG
+ fprintf (stderr,
+ "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
+ lsect->name, (long) linker_section_ptr->offset,
+ (long) lsect->section->_raw_size);
+#endif
+
+ return true;
+}
+
+#if ARCH_SIZE==64
+#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
+#endif
+#if ARCH_SIZE==32
+#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
+#endif
+
+/* Fill in the address for a pointer generated in a linker section. */
+
+bfd_vma
+elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h,
+ relocation, rel, relative_reloc)
+ bfd *output_bfd;
+ bfd *input_bfd;
+ struct bfd_link_info *info;
+ elf_linker_section_t *lsect;
+ struct elf_link_hash_entry *h;
+ bfd_vma relocation;
+ const Elf_Internal_Rela *rel;
+ int relative_reloc;
+{
+ elf_linker_section_pointers_t *linker_section_ptr;
+
+ BFD_ASSERT (lsect != NULL);
+
+ if (h != NULL)
+ {
+ /* Handle global symbol. */
+ linker_section_ptr = (_bfd_elf_find_pointer_linker_section
+ (h->linker_section_pointer,
+ rel->r_addend,
+ lsect->which));
+
+ BFD_ASSERT (linker_section_ptr != NULL);
+
+ if (! elf_hash_table (info)->dynamic_sections_created
+ || (info->shared
+ && info->symbolic
+ && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
+ {
+ /* This is actually a static link, or it is a
+ -Bsymbolic link and the symbol is defined
+ locally. We must initialize this entry in the
+ global section.
+
+ When doing a dynamic link, we create a .rela.<xxx>
+ relocation entry to initialize the value. This
+ is done in the finish_dynamic_symbol routine. */
+ if (!linker_section_ptr->written_address_p)
+ {
+ linker_section_ptr->written_address_p = true;
+ bfd_put_ptr (output_bfd,
+ relocation + linker_section_ptr->addend,
+ (lsect->section->contents
+ + linker_section_ptr->offset));
+ }
+ }
+ }
+ else
+ {
+ /* Handle local symbol. */
+ unsigned long r_symndx = ELF_R_SYM (rel->r_info);
+ BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
+ BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
+ linker_section_ptr = (_bfd_elf_find_pointer_linker_section
+ (elf_local_ptr_offsets (input_bfd)[r_symndx],
+ rel->r_addend,
+ lsect->which));
+
+ BFD_ASSERT (linker_section_ptr != NULL);
+
+ /* Write out pointer if it hasn't been rewritten out before. */
+ if (!linker_section_ptr->written_address_p)
+ {
+ linker_section_ptr->written_address_p = true;
+ bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
+ lsect->section->contents + linker_section_ptr->offset);
+
+ if (info->shared)
+ {
+ asection *srel = lsect->rel_section;
+ Elf_Internal_Rela *outrel;
+ Elf_External_Rela *erel;
+ struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
+ unsigned int i;
+ bfd_size_type amt;
+
+ amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
+ outrel = (Elf_Internal_Rela *) bfd_zmalloc (amt);
+ if (outrel == NULL)
+ {
+ (*_bfd_error_handler) (_("Error: out of memory"));
+ return 0;
+ }
+
+ /* We need to generate a relative reloc for the dynamic
+ linker. */
+ if (!srel)
+ {
+ srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
+ lsect->rel_name);
+ lsect->rel_section = srel;
+ }
+
+ BFD_ASSERT (srel != NULL);
+
+ for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
+ outrel[i].r_offset = (lsect->section->output_section->vma
+ + lsect->section->output_offset
+ + linker_section_ptr->offset);
+ outrel[0].r_info = ELF_R_INFO (0, relative_reloc);
+ outrel[0].r_addend = 0;
+ erel = (Elf_External_Rela *) lsect->section->contents;
+ erel += elf_section_data (lsect->section)->rel_count;
+ elf_swap_reloca_out (output_bfd, outrel, erel);
+ ++elf_section_data (lsect->section)->rel_count;
+
+ free (outrel);
+ }
+ }
+ }
+
+ relocation = (lsect->section->output_offset
+ + linker_section_ptr->offset
+ - lsect->hole_offset
+ - lsect->sym_offset);
+
+#ifdef DEBUG
+ fprintf (stderr,
+ "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
+ lsect->name, (long) relocation, (long) relocation);
+#endif
+
+ /* Subtract out the addend, because it will get added back in by the normal
+ processing. */
+ return relocation - linker_section_ptr->addend;
+}
+
+/* Garbage collect unused sections. */
+
+static boolean elf_gc_mark
+ PARAMS ((struct bfd_link_info *, asection *,
+ asection * (*) (asection *, struct bfd_link_info *,
+ Elf_Internal_Rela *, struct elf_link_hash_entry *,
+ Elf_Internal_Sym *)));
+
+static boolean elf_gc_sweep
+ PARAMS ((struct bfd_link_info *,
+ boolean (*) (bfd *, struct bfd_link_info *, asection *,
+ const Elf_Internal_Rela *)));
+
+static boolean elf_gc_sweep_symbol
+ PARAMS ((struct elf_link_hash_entry *, PTR));
+
+static boolean elf_gc_allocate_got_offsets
+ PARAMS ((struct elf_link_hash_entry *, PTR));
+
+static boolean elf_gc_propagate_vtable_entries_used
+ PARAMS ((struct elf_link_hash_entry *, PTR));
+
+static boolean elf_gc_smash_unused_vtentry_relocs
+ PARAMS ((struct elf_link_hash_entry *, PTR));
+
+/* The mark phase of garbage collection. For a given section, mark
+ it and any sections in this section's group, and all the sections
+ which define symbols to which it refers. */
+
+static boolean
+elf_gc_mark (info, sec, gc_mark_hook)
+ struct bfd_link_info *info;
+ asection *sec;
+ asection * (*gc_mark_hook) PARAMS ((asection *, struct bfd_link_info *,
+ Elf_Internal_Rela *,
+ struct elf_link_hash_entry *,
+ Elf_Internal_Sym *));
+{
+ boolean ret;
+ asection *group_sec;
+
+ sec->gc_mark = 1;
+
+ /* Mark all the sections in the group. */
+ group_sec = elf_section_data (sec)->next_in_group;
+ if (group_sec && !group_sec->gc_mark)
+ if (!elf_gc_mark (info, group_sec, gc_mark_hook))
+ return false;
+
+ /* Look through the section relocs. */
+ ret = true;
+ if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
+ {
+ Elf_Internal_Rela *relstart, *rel, *relend;
+ Elf_Internal_Shdr *symtab_hdr;
+ struct elf_link_hash_entry **sym_hashes;
+ size_t nlocsyms;
+ size_t extsymoff;
+ bfd *input_bfd = sec->owner;
+ struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
+ Elf_Internal_Sym *isym = NULL;
+
+ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
+ sym_hashes = elf_sym_hashes (input_bfd);
+
+ /* Read the local symbols. */
+ if (elf_bad_symtab (input_bfd))
+ {
+ nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
+ extsymoff = 0;
+ }
+ else
+ extsymoff = nlocsyms = symtab_hdr->sh_info;
+
+ isym = (Elf_Internal_Sym *) symtab_hdr->contents;
+ if (isym == NULL && nlocsyms != 0)
+ {
+ isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
+ NULL, NULL, NULL);
+ if (isym == NULL)
+ return false;
+ }
+
+ /* Read the relocations. */
+ relstart = (NAME(_bfd_elf,link_read_relocs)
+ (input_bfd, sec, NULL, (Elf_Internal_Rela *) NULL,
+ info->keep_memory));
+ if (relstart == NULL)
+ {
+ ret = false;
+ goto out1;
+ }
+ relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
+
+ for (rel = relstart; rel < relend; rel++)
+ {
+ unsigned long r_symndx;
+ asection *rsec;
+ struct elf_link_hash_entry *h;
+
+ r_symndx = ELF_R_SYM (rel->r_info);
+ if (r_symndx == 0)
+ continue;
+
+ if (r_symndx >= nlocsyms
+ || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
+ {
+ h = sym_hashes[r_symndx - extsymoff];
+ rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
+ }
+ else
+ {
+ rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
+ }
+
+ if (rsec && !rsec->gc_mark)
+ {
+ if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
+ rsec->gc_mark = 1;
+ else if (!elf_gc_mark (info, rsec, gc_mark_hook))
+ {
+ ret = false;
+ goto out2;
+ }
+ }
+ }
+
+ out2:
+ if (elf_section_data (sec)->relocs != relstart)
+ free (relstart);
+ out1:
+ if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
+ {
+ if (! info->keep_memory)
+ free (isym);
+ else
+ symtab_hdr->contents = (unsigned char *) isym;
+ }
+ }
+
+ return ret;
+}
+
+/* The sweep phase of garbage collection. Remove all garbage sections. */
+
+static boolean
+elf_gc_sweep (info, gc_sweep_hook)
+ struct bfd_link_info *info;
+ boolean (*gc_sweep_hook) PARAMS ((bfd *, struct bfd_link_info *,
+ asection *, const Elf_Internal_Rela *));
+{
+ bfd *sub;
+
+ for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
+ {
+ asection *o;
+
+ if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
+ continue;
+
+ for (o = sub->sections; o != NULL; o = o->next)
+ {
+ /* Keep special sections. Keep .debug sections. */
+ if ((o->flags & SEC_LINKER_CREATED)
+ || (o->flags & SEC_DEBUGGING))
+ o->gc_mark = 1;
+
+ if (o->gc_mark)
+ continue;
+
+ /* Skip sweeping sections already excluded. */
+ if (o->flags & SEC_EXCLUDE)
+ continue;
+
+ /* Since this is early in the link process, it is simple
+ to remove a section from the output. */
+ o->flags |= SEC_EXCLUDE;
+
+ /* But we also have to update some of the relocation
+ info we collected before. */
+ if (gc_sweep_hook
+ && (o->flags & SEC_RELOC) && o->reloc_count > 0)
+ {
+ Elf_Internal_Rela *internal_relocs;
+ boolean r;
+
+ internal_relocs = (NAME(_bfd_elf,link_read_relocs)
+ (o->owner, o, NULL, NULL, info->keep_memory));
+ if (internal_relocs == NULL)
+ return false;
+
+ r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
+
+ if (elf_section_data (o)->relocs != internal_relocs)
+ free (internal_relocs);
+
+ if (!r)
+ return false;
+ }
+ }
+ }
+
+ /* Remove the symbols that were in the swept sections from the dynamic
+ symbol table. GCFIXME: Anyone know how to get them out of the
+ static symbol table as well? */
+ {
+ int i = 0;
+
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_gc_sweep_symbol,
+ (PTR) &i);
+
+ elf_hash_table (info)->dynsymcount = i;
+ }
+
+ return true;
+}
+
+/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
+
+static boolean
+elf_gc_sweep_symbol (h, idxptr)
+ struct elf_link_hash_entry *h;
+ PTR idxptr;
+{
+ int *idx = (int *) idxptr;
+
+ if (h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ if (h->dynindx != -1
+ && ((h->root.type != bfd_link_hash_defined
+ && h->root.type != bfd_link_hash_defweak)
+ || h->root.u.def.section->gc_mark))
+ h->dynindx = (*idx)++;
+
+ return true;
+}
+
+/* Propogate collected vtable information. This is called through
+ elf_link_hash_traverse. */
+
+static boolean
+elf_gc_propagate_vtable_entries_used (h, okp)
+ struct elf_link_hash_entry *h;
+ PTR okp;
+{
+ if (h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ /* Those that are not vtables. */
+ if (h->vtable_parent == NULL)
+ return true;
+
+ /* Those vtables that do not have parents, we cannot merge. */
+ if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
+ return true;
+
+ /* If we've already been done, exit. */
+ if (h->vtable_entries_used && h->vtable_entries_used[-1])
+ return true;
+
+ /* Make sure the parent's table is up to date. */
+ elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
+
+ if (h->vtable_entries_used == NULL)
+ {
+ /* None of this table's entries were referenced. Re-use the
+ parent's table. */
+ h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
+ h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
+ }
+ else
+ {
+ size_t n;
+ boolean *cu, *pu;
+
+ /* Or the parent's entries into ours. */
+ cu = h->vtable_entries_used;
+ cu[-1] = true;
+ pu = h->vtable_parent->vtable_entries_used;
+ if (pu != NULL)
+ {
+ asection *sec = h->root.u.def.section;
+ struct elf_backend_data *bed = get_elf_backend_data (sec->owner);
+ int file_align = bed->s->file_align;
+
+ n = h->vtable_parent->vtable_entries_size / file_align;
+ while (n--)
+ {
+ if (*pu)
+ *cu = true;
+ pu++;
+ cu++;
+ }
+ }
+ }
+
+ return true;
+}
+
+static boolean
+elf_gc_smash_unused_vtentry_relocs (h, okp)
+ struct elf_link_hash_entry *h;
+ PTR okp;
+{
+ asection *sec;
+ bfd_vma hstart, hend;
+ Elf_Internal_Rela *relstart, *relend, *rel;
+ struct elf_backend_data *bed;
+ int file_align;
+
+ if (h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ /* Take care of both those symbols that do not describe vtables as
+ well as those that are not loaded. */
+ if (h->vtable_parent == NULL)
+ return true;
+
+ BFD_ASSERT (h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak);
+
+ sec = h->root.u.def.section;
+ hstart = h->root.u.def.value;
+ hend = hstart + h->size;
+
+ relstart = (NAME(_bfd_elf,link_read_relocs)
+ (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
+ if (!relstart)
+ return *(boolean *) okp = false;
+ bed = get_elf_backend_data (sec->owner);
+ file_align = bed->s->file_align;
+
+ relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
+
+ for (rel = relstart; rel < relend; ++rel)
+ if (rel->r_offset >= hstart && rel->r_offset < hend)
+ {
+ /* If the entry is in use, do nothing. */
+ if (h->vtable_entries_used
+ && (rel->r_offset - hstart) < h->vtable_entries_size)
+ {
+ bfd_vma entry = (rel->r_offset - hstart) / file_align;
+ if (h->vtable_entries_used[entry])
+ continue;
+ }
+ /* Otherwise, kill it. */
+ rel->r_offset = rel->r_info = rel->r_addend = 0;
+ }
+
+ return true;
+}
+
+/* Do mark and sweep of unused sections. */
+
+boolean
+elf_gc_sections (abfd, info)
+ bfd *abfd;
+ struct bfd_link_info *info;
+{
+ boolean ok = true;
+ bfd *sub;
+ asection * (*gc_mark_hook)
+ PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
+ struct elf_link_hash_entry *h, Elf_Internal_Sym *));
+
+ if (!get_elf_backend_data (abfd)->can_gc_sections
+ || info->relocateable || info->emitrelocations
+ || elf_hash_table (info)->dynamic_sections_created)
+ return true;
+
+ /* Apply transitive closure to the vtable entry usage info. */
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_gc_propagate_vtable_entries_used,
+ (PTR) &ok);
+ if (!ok)
+ return false;
+
+ /* Kill the vtable relocations that were not used. */
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_gc_smash_unused_vtentry_relocs,
+ (PTR) &ok);
+ if (!ok)
+ return false;
+
+ /* Grovel through relocs to find out who stays ... */
+
+ gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
+ for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
+ {
+ asection *o;
+
+ if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
+ continue;
+
+ for (o = sub->sections; o != NULL; o = o->next)
+ {
+ if (o->flags & SEC_KEEP)
+ if (!elf_gc_mark (info, o, gc_mark_hook))
+ return false;
+ }
+ }
+
+ /* ... and mark SEC_EXCLUDE for those that go. */
+ if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
+ return false;
+
+ return true;
+}
+
+/* Called from check_relocs to record the existance of a VTINHERIT reloc. */
+
+boolean
+elf_gc_record_vtinherit (abfd, sec, h, offset)
+ bfd *abfd;
+ asection *sec;
+ struct elf_link_hash_entry *h;
+ bfd_vma offset;
+{
+ struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
+ struct elf_link_hash_entry **search, *child;
+ bfd_size_type extsymcount;
+
+ /* The sh_info field of the symtab header tells us where the
+ external symbols start. We don't care about the local symbols at
+ this point. */
+ extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
+ if (!elf_bad_symtab (abfd))
+ extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
+
+ sym_hashes = elf_sym_hashes (abfd);
+ sym_hashes_end = sym_hashes + extsymcount;
+
+ /* Hunt down the child symbol, which is in this section at the same
+ offset as the relocation. */
+ for (search = sym_hashes; search != sym_hashes_end; ++search)
+ {
+ if ((child = *search) != NULL
+ && (child->root.type == bfd_link_hash_defined
+ || child->root.type == bfd_link_hash_defweak)
+ && child->root.u.def.section == sec
+ && child->root.u.def.value == offset)
+ goto win;
+ }
+
+ (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
+ bfd_archive_filename (abfd), sec->name,
+ (unsigned long) offset);
+ bfd_set_error (bfd_error_invalid_operation);
+ return false;
+
+ win:
+ if (!h)
+ {
+ /* This *should* only be the absolute section. It could potentially
+ be that someone has defined a non-global vtable though, which
+ would be bad. It isn't worth paging in the local symbols to be
+ sure though; that case should simply be handled by the assembler. */
+
+ child->vtable_parent = (struct elf_link_hash_entry *) -1;
+ }
+ else
+ child->vtable_parent = h;
+
+ return true;
+}
+
+/* Called from check_relocs to record the existance of a VTENTRY reloc. */
+
+boolean
+elf_gc_record_vtentry (abfd, sec, h, addend)
+ bfd *abfd ATTRIBUTE_UNUSED;
+ asection *sec ATTRIBUTE_UNUSED;
+ struct elf_link_hash_entry *h;
+ bfd_vma addend;
+{
+ struct elf_backend_data *bed = get_elf_backend_data (abfd);
+ int file_align = bed->s->file_align;
+
+ if (addend >= h->vtable_entries_size)
+ {
+ size_t size, bytes;
+ boolean *ptr = h->vtable_entries_used;
+
+ /* While the symbol is undefined, we have to be prepared to handle
+ a zero size. */
+ if (h->root.type == bfd_link_hash_undefined)
+ size = addend;
+ else
+ {
+ size = h->size;
+ if (size < addend)
+ {
+ /* Oops! We've got a reference past the defined end of
+ the table. This is probably a bug -- shall we warn? */
+ size = addend;
+ }
+ }
+
+ /* Allocate one extra entry for use as a "done" flag for the
+ consolidation pass. */
+ bytes = (size / file_align + 1) * sizeof (boolean);
+
+ if (ptr)
+ {
+ ptr = bfd_realloc (ptr - 1, (bfd_size_type) bytes);
+
+ if (ptr != NULL)
+ {
+ size_t oldbytes;
+
+ oldbytes = ((h->vtable_entries_size / file_align + 1)
+ * sizeof (boolean));
+ memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
+ }
+ }
+ else
+ ptr = bfd_zmalloc ((bfd_size_type) bytes);
+
+ if (ptr == NULL)
+ return false;
+
+ /* And arrange for that done flag to be at index -1. */
+ h->vtable_entries_used = ptr + 1;
+ h->vtable_entries_size = size;
+ }
+
+ h->vtable_entries_used[addend / file_align] = true;
+
+ return true;
+}
+
+/* And an accompanying bit to work out final got entry offsets once
+ we're done. Should be called from final_link. */
+
+boolean
+elf_gc_common_finalize_got_offsets (abfd, info)
+ bfd *abfd;
+ struct bfd_link_info *info;
+{
+ bfd *i;
+ struct elf_backend_data *bed = get_elf_backend_data (abfd);
+ bfd_vma gotoff;
+
+ /* The GOT offset is relative to the .got section, but the GOT header is
+ put into the .got.plt section, if the backend uses it. */
+ if (bed->want_got_plt)
+ gotoff = 0;
+ else
+ gotoff = bed->got_header_size;
+
+ /* Do the local .got entries first. */
+ for (i = info->input_bfds; i; i = i->link_next)
+ {
+ bfd_signed_vma *local_got;
+ bfd_size_type j, locsymcount;
+ Elf_Internal_Shdr *symtab_hdr;
+
+ if (bfd_get_flavour (i) != bfd_target_elf_flavour)
+ continue;
+
+ local_got = elf_local_got_refcounts (i);
+ if (!local_got)
+ continue;
+
+ symtab_hdr = &elf_tdata (i)->symtab_hdr;
+ if (elf_bad_symtab (i))
+ locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
+ else
+ locsymcount = symtab_hdr->sh_info;
+
+ for (j = 0; j < locsymcount; ++j)
+ {
+ if (local_got[j] > 0)
+ {
+ local_got[j] = gotoff;
+ gotoff += ARCH_SIZE / 8;
+ }
+ else
+ local_got[j] = (bfd_vma) -1;
+ }
+ }
+
+ /* Then the global .got entries. .plt refcounts are handled by
+ adjust_dynamic_symbol */
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_gc_allocate_got_offsets,
+ (PTR) &gotoff);
+ return true;
+}
+
+/* We need a special top-level link routine to convert got reference counts
+ to real got offsets. */
+
+static boolean
+elf_gc_allocate_got_offsets (h, offarg)
+ struct elf_link_hash_entry *h;
+ PTR offarg;
+{
+ bfd_vma *off = (bfd_vma *) offarg;
+
+ if (h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ if (h->got.refcount > 0)
+ {
+ h->got.offset = off[0];
+ off[0] += ARCH_SIZE / 8;
+ }
+ else
+ h->got.offset = (bfd_vma) -1;
+
+ return true;
+}
+
+/* Many folk need no more in the way of final link than this, once
+ got entry reference counting is enabled. */
+
+boolean
+elf_gc_common_final_link (abfd, info)
+ bfd *abfd;
+ struct bfd_link_info *info;
+{
+ if (!elf_gc_common_finalize_got_offsets (abfd, info))
+ return false;
+
+ /* Invoke the regular ELF backend linker to do all the work. */
+ return elf_bfd_final_link (abfd, info);
+}
+
+/* This function will be called though elf_link_hash_traverse to store
+ all hash value of the exported symbols in an array. */
+
+static boolean
+elf_collect_hash_codes (h, data)
+ struct elf_link_hash_entry *h;
+ PTR data;
+{
+ unsigned long **valuep = (unsigned long **) data;
+ const char *name;
+ char *p;
+ unsigned long ha;
+ char *alc = NULL;
+
+ if (h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ /* Ignore indirect symbols. These are added by the versioning code. */
+ if (h->dynindx == -1)
+ return true;
+
+ name = h->root.root.string;
+ p = strchr (name, ELF_VER_CHR);
+ if (p != NULL)
+ {
+ alc = bfd_malloc ((bfd_size_type) (p - name + 1));
+ memcpy (alc, name, (size_t) (p - name));
+ alc[p - name] = '\0';
+ name = alc;
+ }
+
+ /* Compute the hash value. */
+ ha = bfd_elf_hash (name);
+
+ /* Store the found hash value in the array given as the argument. */
+ *(*valuep)++ = ha;
+
+ /* And store it in the struct so that we can put it in the hash table
+ later. */
+ h->elf_hash_value = ha;
+
+ if (alc != NULL)
+ free (alc);
+
+ return true;
+}
+
+boolean
+elf_reloc_symbol_deleted_p (offset, cookie)
+ bfd_vma offset;
+ PTR cookie;
+{
+ struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
+
+ if (rcookie->bad_symtab)
+ rcookie->rel = rcookie->rels;
+
+ for (; rcookie->rel < rcookie->relend; rcookie->rel++)
+ {
+ unsigned long r_symndx = ELF_R_SYM (rcookie->rel->r_info);
+
+ if (! rcookie->bad_symtab)
+ if (rcookie->rel->r_offset > offset)
+ return false;
+ if (rcookie->rel->r_offset != offset)
+ continue;
+
+ if (r_symndx >= rcookie->locsymcount
+ || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
+ {
+ struct elf_link_hash_entry *h;
+
+ h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
+
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ if ((h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak)
+ && elf_discarded_section (h->root.u.def.section))
+ return true;
+ else
+ return false;
+ }
+ else
+ {
+ /* It's not a relocation against a global symbol,
+ but it could be a relocation against a local
+ symbol for a discarded section. */
+ asection *isec;
+ Elf_Internal_Sym *isym;
+
+ /* Need to: get the symbol; get the section. */
+ isym = &rcookie->locsyms[r_symndx];
+ if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
+ {
+ isec = section_from_elf_index (rcookie->abfd, isym->st_shndx);
+ if (isec != NULL && elf_discarded_section (isec))
+ return true;
+ }
+ }
+ return false;
+ }
+ return false;
+}
+
+/* Discard unneeded references to discarded sections.
+ Returns true if any section's size was changed. */
+/* This function assumes that the relocations are in sorted order,
+ which is true for all known assemblers. */
+
+boolean
+elf_bfd_discard_info (output_bfd, info)
+ bfd *output_bfd;
+ struct bfd_link_info *info;
+{
+ struct elf_reloc_cookie cookie;
+ asection *stab, *eh, *ehdr;
+ Elf_Internal_Shdr *symtab_hdr;
+ struct elf_backend_data *bed;
+ bfd *abfd;
+ boolean ret = false;
+ boolean strip = info->strip == strip_all || info->strip == strip_debugger;
+
+ if (info->relocateable
+ || info->traditional_format
+ || info->hash->creator->flavour != bfd_target_elf_flavour
+ || ! is_elf_hash_table (info))
+ return false;
+
+ ehdr = NULL;
+ if (elf_hash_table (info)->dynobj != NULL)
+ ehdr = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
+ ".eh_frame_hdr");
+
+ for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
+ {
+ if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
+ continue;
+
+ bed = get_elf_backend_data (abfd);
+
+ if ((abfd->flags & DYNAMIC) != 0)
+ continue;
+
+ eh = NULL;
+ if (ehdr)
+ {
+ eh = bfd_get_section_by_name (abfd, ".eh_frame");
+ if (eh && (eh->_raw_size == 0
+ || bfd_is_abs_section (eh->output_section)))
+ eh = NULL;
+ }
+
+ stab = NULL;
+ if (!strip)
+ {
+ stab = bfd_get_section_by_name (abfd, ".stab");
+ if (stab && (stab->_raw_size == 0
+ || bfd_is_abs_section (stab->output_section)))
+ stab = NULL;
+ }
+ if ((! stab
+ || elf_section_data(stab)->sec_info_type != ELF_INFO_TYPE_STABS)
+ && ! eh
+ && (strip || ! bed->elf_backend_discard_info))
+ continue;
+
+ symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
+ cookie.abfd = abfd;
+ cookie.sym_hashes = elf_sym_hashes (abfd);
+ cookie.bad_symtab = elf_bad_symtab (abfd);
+ if (cookie.bad_symtab)
+ {
+ cookie.locsymcount =
+ symtab_hdr->sh_size / sizeof (Elf_External_Sym);
+ cookie.extsymoff = 0;
+ }
+ else
+ {
+ cookie.locsymcount = symtab_hdr->sh_info;
+ cookie.extsymoff = symtab_hdr->sh_info;
+ }
+
+ cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
+ if (cookie.locsyms == NULL && cookie.locsymcount != 0)
+ {
+ cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
+ cookie.locsymcount, 0,
+ NULL, NULL, NULL);
+ if (cookie.locsyms == NULL)
+ return false;
+ }
+
+ if (stab)
+ {
+ cookie.rels = (NAME(_bfd_elf,link_read_relocs)
+ (abfd, stab, (PTR) NULL, (Elf_Internal_Rela *) NULL,
+ info->keep_memory));
+ if (cookie.rels)
+ {
+ cookie.rel = cookie.rels;
+ cookie.relend =
+ cookie.rels + stab->reloc_count * bed->s->int_rels_per_ext_rel;
+ if (_bfd_discard_section_stabs (abfd, stab,
+ elf_section_data (stab)->sec_info,
+ elf_reloc_symbol_deleted_p,
+ &cookie))
+ ret = true;
+ if (elf_section_data (stab)->relocs != cookie.rels)
+ free (cookie.rels);
+ }
+ }
+
+ if (eh)
+ {
+ cookie.rels = NULL;
+ cookie.rel = NULL;
+ cookie.relend = NULL;
+ if (eh->reloc_count)
+ cookie.rels = (NAME(_bfd_elf,link_read_relocs)
+ (abfd, eh, (PTR) NULL, (Elf_Internal_Rela *) NULL,
+ info->keep_memory));
+ if (cookie.rels)
+ {
+ cookie.rel = cookie.rels;
+ cookie.relend =
+ cookie.rels + eh->reloc_count * bed->s->int_rels_per_ext_rel;
+ }
+ if (_bfd_elf_discard_section_eh_frame (abfd, info, eh, ehdr,
+ elf_reloc_symbol_deleted_p,
+ &cookie))
+ {
+ /* Relocs have been edited. Ensure edited version is
+ used later in relocate_section. */
+ elf_section_data (eh)->relocs = cookie.rels;
+ ret = true;
+ }
+ if (cookie.rels && elf_section_data (eh)->relocs != cookie.rels)
+ free (cookie.rels);
+ }
+
+ if (bed->elf_backend_discard_info)
+ {
+ if (bed->elf_backend_discard_info (abfd, &cookie, info))
+ ret = true;
+ }
+
+ if (cookie.locsyms != NULL
+ && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
+ {
+ if (! info->keep_memory)
+ free (cookie.locsyms);
+ else
+ symtab_hdr->contents = (unsigned char *) cookie.locsyms;
+ }
+ }
+
+ if (ehdr && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info, ehdr))
+ ret = true;
+ return ret;
+}
+
+static boolean
+elf_section_ignore_discarded_relocs (sec)
+ asection *sec;
+{
+ struct elf_backend_data *bed;
+
+ switch (elf_section_data (sec)->sec_info_type)
+ {
+ case ELF_INFO_TYPE_STABS:
+ case ELF_INFO_TYPE_EH_FRAME:
+ return true;
+ default:
+ break;
+ }
+
+ bed = get_elf_backend_data (sec->owner);
+ if (bed->elf_backend_ignore_discarded_relocs != NULL
+ && (*bed->elf_backend_ignore_discarded_relocs) (sec))
+ return true;
+
+ return false;
+}
OpenPOWER on IntegriCloud