summaryrefslogtreecommitdiffstats
path: root/contrib/bind9/doc/draft/draft-park-ipv6-extensions-dns-pnp-00.txt
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/bind9/doc/draft/draft-park-ipv6-extensions-dns-pnp-00.txt')
-rw-r--r--contrib/bind9/doc/draft/draft-park-ipv6-extensions-dns-pnp-00.txt1830
1 files changed, 0 insertions, 1830 deletions
diff --git a/contrib/bind9/doc/draft/draft-park-ipv6-extensions-dns-pnp-00.txt b/contrib/bind9/doc/draft/draft-park-ipv6-extensions-dns-pnp-00.txt
deleted file mode 100644
index f9eaf26..0000000
--- a/contrib/bind9/doc/draft/draft-park-ipv6-extensions-dns-pnp-00.txt
+++ /dev/null
@@ -1,1830 +0,0 @@
-
-
-
- INTERNET-DRAFT S. Daniel Park
- Expires: October 2003 Syam Madanapalli
- File: SAMSUNG Electronics
- draft-park-ipv6-extensions-dns-pnp-00.txt April 2003
-
-
-
-
- IPv6 Extensions for DNS Plug and Play
-
-
-
- Status of This Memo
-
- This document is an Internet-Draft and is in full conformance with
- all provisions of Section 10 of RFC2026.
-
- Internet-Drafts are working documents of the Internet Engineering
- Task Force (IETF), its areas, and its working groups. Note that
- other groups may also distribute working documents as
- Internet-Drafts.
-
- Internet-Drafts are draft documents valid for a maximum of six
- months and may be updated, replaced, or obsoleted by other
- documents at any time. It is inappropriate to use Internet-Drafts
- as reference material or to cite them other than as "work in
- progress."
-
- The list of current Internet-Drafts can be accessed at
- http://www.ietf.org/ietf/1id-abstracts.txt
-
- The list of Internet-Draft Shadow Directories can be accessed at
- http://www.ietf.org/shadow.html.
-
-
-
- Abstract
-
- This document proposes automatic configuration of domain name (FQDN)
- for IPv6 nodes using Domain Name Auto-Configuration (called 6DNAC) as
- a part of IPv6 plug and play feature. 6DNAC allows the automatic
- registration of domain name and corresponding IPv6 Addresses with
- the DNS server. In order to provide 6DNAC function, Neighbor Discovery
- Protocol [2461] will be used. Moreover, 6DNAC does not require any
- changes to the existing DNS system.
-
-
- Table of Contents
-
- 1. Introduction ............................................. 3
- 2. Terminology .............................................. 3
- 3. 6DNAC Design Principles .................................. 4
- 4. 6DNAC Overview ........................................... 4
- 5. 6DNAC Requirements ....................................... 5
- 5.1. 6DANR Client Requirements ................................ 5
- 5.2. 6DNAC Server Requirements ................................ 6
-
-Park & Madanapalli Expires October 2003 [Page 1]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
- 6. 6DNAC Messages and Option Formats ........................ 6
- 6.1. Router Advertisement (RA) Message Format ................. 6
- 6.2. Neighbor Solicitation (NS) Message Format ................ 7
- 6.3. Neighbor Advertisement (NA) Message Format ............... 8
- 6.4. Option Formats ........................................... 8
- 6.4.1. DNS Zone Suffix Information Option Format ................ 8
- 6.4.2. Domain Name (FQDN) Option Format ......................... 9
- 6.4.3. Router Alert Option for 6DNAC ............................ 10
- 7. 6DNAC Operation .......................................... 10
- 7.1. 6DNAC Network Topology ................................... 11
- 7.2. 6DNAC Operational Scenarios .............................. 12
- 7.2.1. Domain Name Registration-Success Case .................... 12
- 7.2.2. Domain Name Registration-with DupAddrDetectTransmits=2.... 14
- 7.2.3. Domain Name Registration-Defend Case ..................... 16
- 7.2.4. Domain Name Registration in Retry Mode ................... 19
- 7.2.5. Domain Name Registration when DAD Fails .................. 20
- 7.3. DNS Zone Suffix Discovery and FQDN Construction .......... 22
- 7.3.1. Sending Router Advertisement Messages .................... 22
- 7.3.2. Processing Router Advertisement Messages ................. 22
- 7.3.3. FQDN Lifetime expiry ..................................... 23
- 7.3.4. Host Naming Algorithm .................................... 23
- 7.4. Duplicate Domain Name Detection .......................... 23
- 7.4.1. DAD with All Nodes Multicast Address ..................... 24
- 7.4.1.1. Sending Neighbor Solicitation Messages ................... 24
- 7.4.1.2. Processing Neighbor Solicitation Messages ................ 24
- 7.4.1.3. Sending Neighbor Advertisement Messages .................. 25
- 7.4.1.4. Processing Neighbor Advertisement Messages ............... 25
- 7.4.1.5. Pros and Cons ............................................ 25
- 7.4.2. DAD with Router Alert Option for 6DNAC ................... 25
- 7.4.2.1. Sending Neighbor Solicitation Messages ................... 25
- 7.4.2.2. Processing Neighbor Solicitation Messages ................ 26
- 7.4.2.3. Sending Neighbor Advertisement Messages .................. 26
- 7.4.2.4. Processing Neighbor Advertisement Messages ............... 26
- 7.4.2.5. Pros and Cons ............................................ 26
- 7.4.3. Explicit Detection of Duplicate Domain Name .............. 26
- 7.4.3.1. Sending Neighbor Solicitation Messages ................... 26
- 7.4.3.2. Processing Neighbor Solicitation Messages ................ 26
- 7.4.3.3. Sending Neighbor Advertisement Messages .................. 27
- 7.4.3.4. Processing Neighbor Advertisement Messages ............... 27
- 7.4.3.5. Pros and Cons ............................................ 27
- 7.4.4. Retry Mode for Re-registering Domain Name ................ 27
- 7.5. Domain Name Registration ................................. 27
- 8. Security Consideration ................................... 27
- 9. IANA Consideration ....................................... 28
- 10. Acknowledgement .......................................... 28
- 11. Intellectual Property .................................... 28
- 12. Copyright ................................................ 28
- 13. References ............................................... 29
- 14. Author's Addresses ....................................... 30
-
-
-
-
-
-
-
-
-Park & Madanapalli Expires October 2003 [Page 2]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
- 1. Introduction
-
- Today, most networks use DNS[1034][1035] for convenience. In case of
- IPv6, DNS is more important element because of IPv6 long addresses
- which are difficult to remember. In addition, small networks like home
- networks using IPv6, should be able to make network easily without
- manual configuration. Also, these small networks may not have DHCP
- Server, DNS Server etc. that are used to configure the network. This
- document discusses IPv6 Domain Name Auto-Configuration(6DNAC) procedure
- for generating and registering the Domain Name and IPv6 addresses with
- the DNS Server automatically. In order to use 6DNAC, IPv6 nodes are
- required to implement lightweight functions specified in this document.
- 6DNAC can be applied to all defined IPv6 unicast addresses except Link
- local IPv6 addresses, viz: Site-local and Global addresses.
-
- 6DNAC uses Neighbor Discovery Protocol [2461] with new additions
- (defined in section 6) and DAD procedures for generating and
- registering the Domain Name with the DNS server automatically.
-
-
- 2. Terminology
-
- 6DNAC - IPv6 Domain Name Auto Configuration. It can provide
- IPv6 hosts with Domain Name Generation and
- Registration automatically.
-
- 6DNAC Client - An IPv6 node that can generate its own unique Domain
- Name. Section 3 identifies the new requirements that
- 6DNAC places on an IPv6 node to be a 6DNAC node.
-
- 6DNAC Server - An IPv6 node that can collect and registrate Domain
- Name and IPv6 addresses automatically. 6DNAC server
- uses the information from the DAD operation messages
- with newly defined options for the registration of the
- Domain Name and IPv6 Addresses. Section 3 identifies
- the new requirements that 6DNAC places on an IPv6
- node to be a 6DNAC server. Also 6DNAC server can have
- various other functions depending on network
- environment and the network operator. For instance
- 6DNAC Server can acts as a Gateway as well Home Server
- in Home Networks.
-
- DAD - Duplicate Address Detection (is defined [2461])
-
- DFQDND - Duplicate Domain Name Detection
-
- FQDN - Fully Qualified Domain Name - FQDN and Domain Name are
- used interchangeably in this document.
-
- NA - Neighbor Advertisement message (is defined [2461])
-
- NS - Neighbor Solicitation message (is defined [2461])
-
- RA - Router Advertisement message (is defined [2461])
-
- SLAAC - Stateless Address Autoconfiguration [2462].
-
-Park & Madanapalli Expires October 2003 [Page 3]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
- 3. 6DNAC Design Principles
-
- This section discusses the design principles of 6DNAC mechanism.
-
- 1. The new procedures for plug and play DNS should not cause changes
- to existing DNS system. 6DNAC requires lightweight functions to be
- implemented only at the client side of the DNS system, and uses the
- existing DDNS UPDATE [2136] to communicate with DNS Servers.
-
- 2. Introducing a new protocol will always introduce new problems.
- 6DNAC uses the existing protocols NDP [2461] with minor extensions
- for generating and registering the domain name automatically
- without defining a new protocol
-
- 3. Reusing proven and well understood design principles/patterns
- will always yield a robust system. 6DNAC is based on IPv6 Address
- Auotoconfiguration principle, where routers advertise the prefix
- and host adds the interface ID to the prefix and forms the IPv6
- address. Domain Name (FQDN) also contains two parts: host name
- and DNS zone suffix. Routers can advertise the DNS zone suffix
- on a particular link in Router Advertisements (RA Messages) and
- hosts can prefix their preferred host name to the DNS zone suffix
- and form the fully qualified domain name. Also the detection of
- duplicate domain name is similar to Duplicate Address Detection
- (DAD) and can be part of DAD operation itself.
-
-
- 4. 6DNAC Overview
-
- 6DNAC proposes minor extensions to NDP [2461] for automatic generation
- and registration of domain name with the DNS server. It introduces two
- new options: DNS Zone Suffix and Fully Qualified Domain Name. DNS Zone
- Suffix option is carried in Router Advertisement (RA) messages for
- notifying IPv6 nodes about the valid DNS Zone Suffix on the link and
- FQDN option in Neighbor Solicitation (NS) and Neighbor Advertisement
- (NA) messages to detect duplicate domain name. 6DNAC consists of two
- components: 6DNAC Client and 6DNAC Server. 6DNAC Clients generate the
- domain name based on DNS Zone Suffix using Host Naming Algorithm (see
- section 7.3.1) and 6DNAC Server collects and registers the DNS
- information with the DNS Server on behalf of 6DNAC Clients.
-
- The automatic configuration of domain name using 6DNAC consists of
- three parts.
-
- - DNS Zone Suffix Discovery and FQDN Construction:
-
- IPv6 Nodes collect DNS Zone Suffix information from Router
- Advertisements and constructs FQDN by prefixing host name to the
- DNS Zone Suffix. The IPv6 Nodes are required to implement Host
- Naming Algorithm for generating host part of the FQDN in the
- absence of administrator.
-
- Generation of node's FQDN within the node itself has advantages. Nodes
- can provide forward and reverse name lookups independent of the DNS
- System by sending queries directly to IPv6 nodes [NIQ]. Moreover Domain
- Name is some thing that is owned by the node.
-
-Park & Madanapalli Expires October 2003 [Page 4]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
- - Duplicate Domain Name Detection
-
- All nodes are expected to go for DAD for all new IPv6 unicast
- addresses, regardless of whether they are obtained through
- stateful, stateless or manual configuration. 6DNAC uses the DAD
- messages with new option for carrying the Domain Name along with
- the new IPv6 Address. 6DNAC Server captures this information and
- updates DNS Server provided that the IPv6 Address and its domain
- name are not duplicate. If the domain name is already in use,
- the 6DNAC server replies to the sender with FQDN Option in NA
- message indicating that the domain name is duplicate. Then the
- node is expected to generate another domain name using host
- naming algorithm and go for DAD. This time the DAD is only for
- duplicate domain name detection (DFQDND). In order to avoid
- confusion with the normal NDP processing, the target address
- field of the NS message must carry the unspecified address
- in retry mode. This can be repeated depending on number of
- retries defined by the administrator in the host naming algorithm.
-
-
- - Domain Name Registration
-
- 6DNAC Server detects the DNS information (IPv6 Address and
- corresponding FQDN) from DAD/DFQDND messages and updates DNS
- Server using existing protocol DDNS UPDATE [2136] provided that
- the IPv6 Address and its domain name are not duplicate.
-
- If an IPv6 Address is duplicate, the IPv6 node cannot perform
- stateless address autoconfiguration repeatedly. Unlike IPv6 stateless
- address autoconfiguration, 6DNAC allows the automatic configuration of
- domain name repeatedly if the domain name is duplicate depending on
- number of retries defined by the administrator in the host naming
- algorithm.
-
-
- 5. 6DNAC Requirements
-
- Depending on the 6DNAC functionality, the IPv6 nodes implement, they
- are called either 6DNAC Clients or 6DNAC Servers. The following
- sections lists the requirements that the 6DNAC Client and 6DNAC server
- must support.
-
-
- 5.1. 6DANC Client Requirements
-
- - 6DNAC Client must recognize and process the following NDP
- extensions
-
- - DNS Zone Suffix option in RA messages for generating its
- domain name (FQDN).
-
- - Domain Name option in NS and NA messages for detecting
- the duplicate domain name
-
-
-
-
-Park & Madanapalli Expires October 2003 [Page 5]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
- - It must generate its domain name (FQDN) based on the DNS
- suffix that it got from the router advertisement. And it must
- have a host naming algorithm for generating the host part of
- the FQDN.
-
- - If NA message is received with unspecified target address and
- FQDN option, then the node must treat that the domain is
- duplicate.
-
-
- 5.2. 6DNAC Server Requirements
-
- - 6DNAC Server must recognize and process the following NDP
- extensions
-
- - If the 6DNAC Server is a router on the link, then it
- must advertise DNS Zone Suffix option in RA messages
- for hosts to generate their domain name (FQDN).
-
- - FQDN option in NS messages for detecting new DNS
- information for of nodes on the link for which it
- must update the AAAA RR and PTR RR in DNS Server.
-
- - FQDN option in NA messages for notifying duplicate
- domain name with unspecified target address.
-
- - 6DNAC server must update the DNS Server (both AAAA RR and
- PTR RR) dynamically using DDNS UPDATE [2136].
-
- - 6DNAC server must cache this (newly detected) FQDN, Link
- Layer Address, and IPv6 Address information, so that it can
- decide whether it really needs to update DNS Server or not,
- to avoid redundant updates. This information will also be
- used for notifying the duplicate domain name.
-
-
- 6. 6DNAC Messages and Option Formats
-
- In order to achieve the plug and play DNS, 6DNAC proposes new
- extensions to the NDP [2461]. This section specifies the new
- additions to NDP messages and formats of new options.
-
-
- 6.1. Router Advertisement (RA) Message Format
-
- Routers send out Router Advertisement (RA) message periodically, or
- in response to a Router Solicitation. 6DNAC does not modify the format
- of the RA message, but proposes new option (DNS Zone Suffix Information)
- to be carried in RA messages.
-
-
-
-
-
-
-
-
-Park & Madanapalli Expires October 2003 [Page 6]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
- 0 1 2 3
- 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Type | Code | Checksum |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Cur Hop Limit |M|O| Reserved | Router Lifetime |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Reachable Time |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Retrans Timer |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Options ... |
- / /
- | DNS Zone Suffix Information |
- | |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
-
- <Figure: 1 RA message>
-
-
-
- 6.2. Neighbor Solicitation (NS) Message Format
-
- 6DNAC does not modify the format of the Neighbor Solicitation (NS)
- message, but proposes new option (FQDN Option) to be carried in NS
- messages. When a node is going for DAD, the node must include FQDN
- option in NS message to participate in plug and play DNS. If the
- node is going for Explicit Detection of Duplicate Domain Name, the
- node must use FQDN option in NS message and unspecified address in
- the target address field.
-
-
- 0 1 2 3
- 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Type | Code | Checksum |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Reserved |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | |
- + +
- | |
- + Target Address +
- | |
- + +
- | |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Options ... |
- / /
- | Domain Name |
- | |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
-
- <Figure: 2 NS message>
-
-Park & Madanapalli Expires October 2003 [Page 7]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
- 6.3. Neighbor Advertisement (NA) Message Format
-
- 6DNAC does not modify the format of the Neighbor Advertisement (NA)
- message, but proposes new option (FQDN Option) to be carried in NA
- messages. 6DNAC Server sends NA message with FQDN option to 6DNAC
- Client that is performing duplicate domain name detection in case
- the domain name found to be duplicate.
-
- 0 1 2 3
- 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Type | Code | Checksum |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- |R|S|O| Reserved |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | |
- + +
- | |
- + Target Address +
- | |
- + +
- | |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Options ... |
- / /
- | FQDN Option |
- | |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
-
- <Figure: 3 NA message>
-
-
- 6.4 Option Formats
-
- 6.4.1. DNS Zone Suffix Information Option Format
-
- IPv6 nodes require DNS Zone Suffix for constructing their FQDN.
- 6DNAC introduces new option for routers to advertise the DNS Zone
- Suffix Information for IPv6 nodes on the link. The suffix information
- should be configured into routers manually.
-
- 0 1 2 3
- 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Type | Length | Reserved |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Valid Lifetime |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | |
- / DNS Zone Suffix /
- | |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
-
- <Figure: 4 DNS Zone Suffix Information>
-
-Park & Madanapalli Expires October 2003 [Page 8]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
- Type [TBD]
-
- Length 8-bit unsigned integer. The length of the option
- (including the type and length fields) in units of
- 8 octets.
-
- Reserved This field is unused. It must be initialized to zero
- by the sender and must be ignored by the receiver.
-
- Valid Life Time 32-bit signed integer. The maximum time, in
- seconds, over which this suffix is valid. Nodes
- should treat this as the life time for their domain
- name. Nodes should contact the source of this
- information before expiry of this time interval.
- A value of all one bits (0xFFFFFFFF) represents
- infinity.
-
- DNS Zone Suffix The suffix part of the FQDN. The data in the DNS
- Zone Suffix field should be encoded according to
- DNS encoding rules specified in [1035].
-
-
-
- 6.4.2. Domain Name (FQDN) Option Format
-
-
- 0 1 2 3
- 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Type | Length | Reserved |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Valid Lifetime |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | |
- + +
- | |
- + FQDN Target Address +
- | |
- + +
- | |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | |
- / Domain Name /
- | |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
-
- <Figure: 5 FQDN Information>
-
- Type [TBD]
-
- Length 8-bit unsigned integer. The length of the option
- (including the type and length fields) in units
- of 8 octets. It must be greater than 3.
-
-
-
-Park & Madanapalli Expires October 2003 [Page 9]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
- Reserved This field is unused. It must be initialized to
- zero by the sender and must be ignored by the
- receiver.
-
- Valid Life Time 32-bit signed integer. The maximum time, in
- seconds, over which this domain name is valid
- 6DNAC should deregister this domain name at
- the expiry of this interval. 6DNAC clients
- should send updates by the expiry of this
- interval. A value of all one bits (0xFFFFFFFF)
- represents infinity.
-
- FQDN Target Address The Address for which the FQDN maps to. It
- should be same as Target Address field of the
- NS message in case of DAD & duplicate FQDN are
- running in parallel.
-
- Domain Name The domain name (FQDN) of the node. The data in
- the domain name should be encoded according to
- DNS encoding rules specified in [1035].
-
-
- 6.4.3. Router Alert Option for 6DNAC
-
- Router Alert Option for 6DNAC is new option within the IPv6 Hop-by-Hop
- Header for using in NDP messages. The presence of this option in NS
- message informs the router that this NS message is carrying Domain
- Name information and must be processed by the 6DNAC Server on the router.
- 6DNAC Clients can use this option for sending DAD packets instead
- of addressing the DAD packets to the all-nodes multicast address
- when 6DNAC Server is implemented on router.
-
- The Router Alert option has the following format:
-
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- |0 0 0|0 0 1 0 1|0 0 0 0 0 0 1 0| Value (2 octets) |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- Length = 2
-
- Values are registered and maintained by the IANA. For 6DNAC, the
- value has to be assigned by IANA.
-
- Further information about this option can be obtained from
- IPv6 Router Alert Option [2711].
-
-
- 7. 6DNAC Operation
-
- 6DNAC provides mechanisms for automatic generation of domain name
- and registering it with the DNS Server for IPv6 nodes. 6DNAC consists
- of two components: 6DNAC Client and 6DNAC Server. All nodes that want
- to participate in plug and play DNS are required to implement 6DNAC
- Client functionality, and one of the IPv6 nodes is required to
- implement 6DNAC Server functionality. The IPv6 node that implements
- the 6DNAC Server functionality must know the location of the DNS
- Server and must be a trusted node to send DDNS UPDATE [2136] messages.
-
-Park & Madanapalli Expires October 2003 [Page 10]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
- 7.1. 6DNAC Network Topology
-
- This section identifies the possible locations for the 6DNAC Server.
- Note that, all nodes are required to implement 6DNAC Client
- functionality for constructing the domain name from the DNS Zone
- Suffix Information advertised by the router. Figure 6 illustrates
- IPv6 host (H4) implementing 6DNAC Server functionality. In this case
- H4 can serve only one link (that it belongs to) for automatic
- registration of domain name. H4 must observe the DAD packets on the
- link to detect the DNS information, this requires all nodes on the
- link must belong to same solicited node multicast address. In general,
- this may not be the case. So the node that is going for DAD must use
- all nodes multicast address for DAD packets, so that the 6DNAC Server
- (H4) can observe the DAD packets, detects IPv6 address and
- corresponding domain name, checks if this domain name is duplicate
- and finally registers the domain name with the DNS Server.
-
-
- 6DNAC Server
- +---+ +---+ +----------+
- | H1| | H4|<--- DDNS UPDATE --->|DNS Server|
- +-+-+ +-+-+ +----+-----+
- | | +----+ +---/
- | | | | /
- ---+-----+-----------+-----+-----------+ R1 +-----+
- | | | |
- | | +----+
- +-+-+ +-+-+
- | H2| | H3|
- +---+ +---+
-
-
- H1, H2, H3 - 6DNAC Clients
- H4 - 6DNAC Server
- R1 - Router
-
-
- <Figure: 6 Example of 6DNAC Topology>
-
-
- Figure 7 shows the 6DNAC Server implemented on a router R1. In this
- case a single 6DNAC server can serve multiple links for automatic
- configuration of the domain name. This topology also has flexibility
- of using DAD packets with Router Alert option instead of sending DAD
- packets to all nodes multicast address. The routers are required to
- process all the packets with Router Alert option as per [2711].
-
- In case of Home Networks, R1 is will acts as a Home Gateway (CPE)
- connected to ISP. R1 delegates the prefix from the ISP edge router.
- After delegating the prefix the CPE can advertise the DNS Zone suffix
- along with the prefix information to the nodes on the links to which
- the router is connected to. Note that the R1 must be configured with
- the DNS Zone suffix Information manually.
-
-
-
-
-Park & Madanapalli Expires October 2003 [Page 11]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
- +---+ +---+
- | H3+ | H4|
- +-+-+ +-+-+
- | |
- | LINK2 |
- +---+ ---+--------+--+-- +----------+
- | H1| | |DNS Server|
- +-+-+ | +----+-----+
- | +--+-+ -------/
- | LINK 1 | | /
- ---+-----+------------------+ R1 +---------+
- | | | DDNS UPDATE
- | +----+
- +-+-+ 6DNAC Server
- | H2|
- +---+
-
-
- H1, H2 - 6DNAC Clients on Link1
- H3, H4 - 6DNAC Clients on Link2
- R1 - Router with 6DNAC Server, serving both Link1 and Link2
-
-
- <Figure: 7 Example of 6DNAC Server serving multiple links>
-
-
- 7.2. 6DNAC Operational Scenarios
-
- This section provides message sequence charts for various 6DNAC
- operational scenarios assuming that the 6DNAC Server is implemented
- on a router. All the scenarios assume that the normal boot up time
- stateless address autoconfiguration of Link Local address derived
- from the Interface Identifier has been completed successfully. And
- it is also assumed that the router is already configured with the
- DNS Zone Suffix Information.
-
-
- Legend:
-
- 6DNAC-A, B, C : 6DNAC Clients
- 6DNAC-S : 6DNAC Server/Router
- DAD : Duplicate Address Detection
- DFQDND : Duplicate Domain Name Detection
- DNS-S : DNS Server
-
-
- 7.2.1. Domain Name Registration-Successful Case
-
- This scenario starts when a 6DNAC Client receives RA message with
- DNS Zone Suffix and other parameters including address prefix as
- specified in NDP [2461] and wants configure its IPv6 address (Global
- or Site Local) and domain name. It is Assumed that the
- DupAddrDetectTransmits is set to 1.
-
-
-
-
-Park & Madanapalli Expires October 2003 [Page 12]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
- +---------+ +---------+ +---------+
- | 6DNAC-C | | 6DNAC-S | | DNS-S |
- +----+----+ +----+----+ +----+----+
- | | |
- | RA with | |
- | DNS Suffix Opt | |
- |<---------------| |
- | #1 | |
- |---+ | |
- Construct |#2 | |
- FQDN | | |
- |<--+ | |
-DAD/DFQDND Starts | |
- | | |
- | | |
- | NS With | |
- | FQDN Opt | |
- |--------------->| |
- | #3 | |
- | | |
- | |------+ |
- | Create FQDN | #4 |
- | <FQDN,C> | |
- | |<-----+ |
- | | |
- | | Register FQDN |
- | |--------------->|
- | | #5 |
- | #6 | |
- |--------+ | |
- No Response | | |
- DFQDND-Success | | |
- |<-------+ | |
- | | |
- | | |
- v V v
-
-
- <Figure: 8 Domain Name Generation and Registration>
-
-
- #1. 6DNAC Server (Router) sends out router advertisement with DNS
- Suffix information along with other parameters as specified in
- NDP [2461].
-
- #2. 6DNAC Client processes the router advertisement and constructs
- the FQDN by prefixing hostname to the DNS Zone Suffix. It also
- constructs IPv6 address from the autoconfiguration prefix
- information option.
-
- #3. 6DNAC Client starts duplicate address & FQDN detection for the
- IPv6 address & FQDN constructed and sends out a Neighbor
- Solicitation message with FQDN option.
-
- Note that the DAD packets must be addressed to all nodes multicast
- address if Router Alert option is not used.
-
-Park & Madanapalli Expires October 2003 [Page 13]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
- #4. 6DNAC Server processes the Neighbor Solicitation message sent by
- 6DNAC Client as part of duplicate FQDN detection procedure and
- creates a FQDN entry in its FQDN Cache (assuming that there is no
- entry <FQDN,C>), where C is Link Layer Address of the 6DNAC Client.
-
- #5. 6DNAC Server then registers FQDN and corresponding IPv6 address
- through the existing protocol DDNS UPDATE.
-
- #6. 6DNAC Client times out and observes that there is no response to
- defend its duplicate FQDN detection procedure and the node is
- successful in configuring its domain name.
-
- Note that, Stateless Address Autoconfiguration DAD procedure is not
- depicted in the following message sequence chart, which simultaneously
- happens along with duplicate FQDN detection.
-
-
- 7.2.2. Domain Name Registration-with DupAddrDetectTransmits=2
-
- This scenario starts when a 6DNAC Client receives RA message with
- DNS Zone Suffix and other parameters including address prefix as
- specified in NDP [2461] and wants configure its IPv6 address (Global
- or Site Local) and domain name. The node is configured with
- DupAddrDetectTransmits = 2 for reliability in delivering DAD messages.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Park & Madanapalli Expires October 2003 [Page 14]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
- +---------+ +---------+ +---------+
- | 6DNAC-C | | 6DNAC-S | | DNS-S |
- +----+----+ +----+----+ +----+----+
- | | |
- | RA with | |
- | DNS Suffix Opt | |
- |<---------------| |
- | #1 | |
- |---+ | |
- Construct |#2 | |
- FQDN | | |
- |<--+ | |
-DAD/DFQDND Starts | |
- | | |
- | | |
- | NS With | |
- | FQDN Opt | |
- |--------------->| |
- | #3 | |
- | | |
- | |------+ |
- | Create FQDN | #4 |
- | <FQDN,C> | |
- | |<-----+ |
- | | |
- | | Register FQDN |
- | |--------------->|
- | | #5 |
- | NS With | |
- | FQDN Opt | |
- |--------------->| |
- | #6 | |
- | | |
- | Lookup FQDN |
- | Entry exists |
- | |------+ |
- | Ignore | #7 |
- | |<-----+ |
- | #8 | |
- |--------+ | |
- No Response | | |
- DFQDND-Success | | |
- |<-------+ | |
- | | |
- | | |
- v V v
-
-
-
- <Figure: 9 Verification of duplicated Domain Name>
-
-
- Steps from #1 to #5 are same as that of scenario.7.2.1.
-
- #6. 6DNAC Client sends out second Neighbor Solicitation message with
- FQDN option as part of duplicate FQDN detection.
-
-Park & Madanapalli Expires October 2003 [Page 15]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
- #7. 6DNAC Server receives and observes that the FQDN Cache exactly
- matches with that of the NS information and ignores the NS message.
-
- #8. 6DNAC Client times out and observes that there is no response to
- defend its duplicate FQDN detection procedure and the node is
- successful in configuring its domain name..
-
-
- 7.2.3. Domain Name Registration-Defend Case
-
- This scenario starts when two 6DNAC Client receive RA message with
- DNS Zone Suffix and other parameters including address prefix as
- specified in NDP [2461] and both the nodes want configure their IPv6
- address (Global or Site Local) and domain name. In this scenario both
- the nodes want to have same domain name.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Park & Madanapalli Expires October 2003 [Page 16]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
-
-
- +---------+ +---------+ +---------+ +---------+
- | 6DNAC-A | | 6DNAC-S | | 6DNAC-B | | DNS-S |
- +----+----+ +----+----+ +----+----+ +----+----+
- | | | |
- | RA with | RA with | |
- | DNS Suffix Opt | DNS Suffix Opt | |
- |<---------------|--------------->| |
- | #1 | #1 | |
- |---+ | |---+ |
- Construct | #2 | Construct | #2 |
- FQDN | | FQDN | |
- |<--+ | |<--+ |
- DAD/DFQDND Starts | DAD/DFQDND Starts |
- | | <DELAYED> |
- | | | |
- | NS with | | |
- | FQDN Opt | | |
- |--------------->| | |
- | #3 | | |
- | No Entry | |
- | |------+ | |
- | Create FQDN | #4 | |
- | <FQDN,A> | | |
- | |<-----+ | |
- | | | |
- | | Register FQDN #5 |
- | |-------------------------------->|
- | | | |
- | | NS with | |
- | | FQDN Opt | |
- | |<---------------| |
- | | #6 | |
- | |------+ | |
- | FQDN is in use| | |
- | Defend DFQDND| #7 | |
- | |<-----+ | |
- | | | |
- | | NA with | |
- | | D-flag Set | |
- | |--------------->| |
- | | #8 | |
- |------+ | |---+ |
- No Response | #9 | Enter | #10 |
- DFQDND Success| | Retry Mode| |
- |<-----+ | |<--+ |
- | | | |
- v v v v
-
-
- <Figure: 10 Multiple Hosts Requesting Same Domain Name>
-
-
-
-
-
-Park & Madanapalli Expires October 2003 [Page 17]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
- #1. 6DNAC Server (Router) sends out router advertisement with DNS
- Suffix information.
-
- #2. 6DNAC Clients A&B process the router advertisement and construct
- their FQDN by prefixing hostname to the DNS Zone Suffix. They
- also construct IPv6 address from the autoconfiguration prefix
- information option.
-
- When each host is trying to go for DAD, all hosts must have
- random delay to avoid the traffic congestion according to [2461].
- So here it is assumed that 6DNAC Client-A starts DAD first and
- 6DNAC Client-B starts DAD later.
-
- #3. 6DNAC Client-A starts duplicate address & FQDN detection for the
- IPv6 address & FQDN constructed and sends out a Neighbor
- Solicitation message with FQDN option.
-
- #4. 6DNAC Server processes the Neighbor Solicitation message sent by
- 6DNAC Client-A as part of duplicate FQDN detection procedure and
- creates a FQDN entry in its FQDN Cache (assuming that there is no
- entry <FQDN,A>), where A is Link Layer Address of the 6DNAC Client-A.
-
- #5. 6DNAC Server then registers FQDN and corresponding IPv6 address
- through the existing protocol DDNS UPDATE.
-
- #6. 6DNAC Client-B starts duplicate address & FQDN detection for the
- IPv6 address & FQDN constructed and sends out a Neighbor Solicitation
- message with FQDN option.
-
- #7. 6DNAC Server processes the Neighbor Solicitation message sent by
- 6DNAC Client-B as part of duplicate FQDN detection procedure and
- finds that the domain name is already in use by the 6DNAC Client-A.
- Hence, concludes to defend the duplicate FQDN detection of 6DNAC
- Client-B.
-
- #8. 6DNAC Server sends out Neighbor Advertisement message with FQDN
- option to 6DNAC Client-B to defend its duplicate FQDN detection.
-
- #9. 6DNAC Client-A times out and observes that there is no response to
- defend its duplicate FQDN detection procedure and the node is
- successful in configuring its domain name.
-
- #10. 6DNAC Client-B observes that there is a NA with FQDN option
- indicating that the domain name is duplicate and enters Retry
- Mode. In retry mode, 6DNAC Client constructs another FQDN based
- on Host Naming Algorithm. The number of retries is defined by the
- administrator and must be a configurable value.
-
-
-
-
-
-
-
-
-
-
-Park & Madanapalli Expires October 2003 [Page 18]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
- 7.2.4. Domain Name Registration in Retry Mode
-
- Pre-Conditions:
-
- 1. Duplicate Address Detection has succeeded
- 2. Duplicate FQDN Detection FAILED
- 3. FQDN is the first FQDN one constructed and FAILED
- 4. FQDN2 is the second FQDN to be constructed
- 5. The Neighbor Solicitation in the 'Retry Mode'
- carries unspecified address in its target field (NS*).
-
- +---------+ +---------+ +---------+
- | 6DNAC-C | | 6DNAC-S | | DNS-S |
- +----+----+ +----+----+ +----+----+
- | | |
- |--------+ | |
- Construct | #1 | |
- new FQDN2 | | |
- |<-------+ | |
- | | |
- DFQDND Restarts | |
- | | |
- | | |
- | NS* With | |
- | FQDN Opt | |
- |--------------->| |
- | #2 | |
- | | |
- | No Entry |
- | |------+ |
- | Create FQDN | #3 |
- | <FQDN2,C> | |
- | |<-----+ |
- | | |
- | | Register FQDN2 |
- | |--------------->|
- | | #4 |
- | | |
- |--------+ | |
- No Response | #5 | |
- DFQDND-Success | | |
- |<-------+ | |
- | | |
- v V v
-
-
- <Figure: 11 Regeneration of Domain Name>
-
-
-
-
-
-
-
-
-
-
-Park & Madanapalli Expires October 2003 [Page 19]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
- #1. 6DNAC Client constructs the FQDN again as per Host Naming Algorithm,
- the DNS Zone Suffix, and it is FQDN2.
- #2. It then starts Duplicate Detection only for Domain Name. 6DNAC
- Client sends out NS with FQDN option and unspecified target
- address.
-
- #3. 6DNAC Server processes the Retry Mode NS message and finds that
- the FQDN2 is not in use and creates Cache entry as <FQDN2, C>.
-
- #4. It then starts registration procedures with the DNS Server.
-
- #5. Meanwhile, 6DNAC Client timesout and observes that there is no
- defending NA for its DFQDND NS sent out and successfully
- configures its domain name.
-
-
- 7.2.5. Domain Name Registration when DAD Fails
-
- Duplicate domain name detection and subsequent registration starts
- if and only if the DAD for IPv6 address succeeds. If the DAD for
- IPv6 address fails then no actions are taken for domain name. When
- DAD fails for stateless address autoconfiguration, then the domain
- configuration starts only when the address has been configured using
- Stateful Address Configuration methods and the node is going on DAD
- for this address.
-
- This scenario starts when a 6DNAC Client receives RA message with
- DNS Zone Suffix and other parameters including address prefix as
- specified in NDP [2461] and wants configure its IPv6 address (Global
- or Site Local) and domain name.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Park & Madanapalli Expires October 2003 [Page 20]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
- +---------+ +---------+ +---------+ +---------+
- | 6DNAC-A | | 6DNAC-S | | 6DNAC-B | | DNS-S |
- +----+----+ +----+----+ +----+----+ +----+----+
- | | | |
- | | | |
- | RA with | | |
- | DNS Suffix Opt | | |
- |<---------------| | |
- | #1 | | |
- |-----+ | | |
- Construct | | | |
- FQDN& | #2 | | |
- IPv6 Addr | | | |
- |<----+ | | |
- DAD/DFQDND Starts | | |
- | | | |
- | | | |
- | NS with | | |
- | FQDN Opt | | |
- |--------------->+--------------->| |
- | #3 | #3 | |
- | No Entry | |
- | |------+ | |
- | Create FQDN | | |
- | <FQDN,A> | #4 | |
- | |<-----+ | |
- | | | |
- | | |------+ |
- | | My IPv6 Addr| #5 |
- | | |<-----+ |
- | | Defend DAD | |
- | | with NA | |
- |<---------------+<---------------| |
- | #6 | #6 | |
- | Entry | |
- | |------+ | |
- | Delete FQDN | #7 | |
- | |<-----+ | |
- | | | |
- |----+ | | |
- DAD Failed | #8 | | |
- Stop DFQDND | | | |
- |<---+ | | |
- | | | |
- v v v v
-
- <Figure: 12 DAD failure>
-
- #1. 6DNAC Server sends out Router Advertisement to 6DNAC Client-A.
-
- #2. 6DNAC Client-A constructs IPv6 Address based on the prefix and
- FQDN as per Host Naming Algorithm.
-
- #3. It then starts Duplicate address & FQDN Detection, for the newly
- constructed IPv6 address and FQDN, and sends out DAD/DFQDND NS
- with FQDN option.
-
-Park & Madanapalli Expires October 2003 [Page 21]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
- #4. 6DNAC Server processes the DAD/DFQDND NS message and finds
- that there is no entry for the FQDN in its cache. And,
- creates Cache entry as <FQDN, A> and starts a Registration
- timer with RegistrationWaitTime seconds.
-
- #5. 6DNAC Client-B finds that the DAD/DFQDND-NS target address is
- in its unicast address list.
-
- #6. It then starts defending DAD by sending NA to all-nodes multicast.
-
- #7. 6DNAC Server finds that the DAD has failed for 6DNAC Client-A.
- And, deletes its FQDN Cache entry <FQDN,A>.
-
- #8. 6DNAC Client gets defending DAD-NA and desists from DAD.
- And also, stops Duplicate FQDN Detection as well.
- At this point the address must be configured using stateful
- methods and the domain name registration starts with the DAD
- for the newly constructed IPv6 address.
-
- 7.3. DNS Zone Suffix Discovery and FQDN Construction
-
- 7.3.1. Sending Router Advertisement Messages
-
- Routers send out Router Advertisement message periodically,
- or in response to a Router Solicitation. Router should include
- the DNS Zone Suffix Option in their advertisements. If the DNS
- Zone Suffix changes (similar to Site Renumbering), then it should
- advertise the Old Zone Suffix with zero Valid Lifetime and New
- Zone Suffix with proper non-zero Valid Lifetime. In any other
- case, a router should not send this option twice in a single
- router advertisement.
-
- 7.3.2. Processing Router Advertisement Messages
-
- For each DNS Zone Suffix Option in Router Advertisement,
-
- a. 6DNAC node stores the Zone Suffix information in its local
- database. Also, constructs FQDN as per Host Naming Algorithm.
-
- b. If the node has not configured FQDN yet,
-
- 1. If the node is going to perform DAD for either Site local or
- Global Address, then it should include FQDN option to perform
- Duplicate FQDN Detection in parallel with DAD.
-
- 2. If the node has already got either Site local or Global
- address, then it should send out NS with FQDN option and
- unspecified target address to perform Duplicate FQDN
- Detection.
-
- c. If the node has already configured FQDN, and if the
- advertisement carries two DNS Zone Suffix Options,
- First DNS Zone Suffix should match with the configured FQDN
- Suffix and its Valid Lifetime must be zero. Second DNS Zone
-
-
-
-Park & Madanapalli Expires October 2003 [Page 22]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
-
- Suffix should have non-zero Valid Lifetime. In this case, the
- node constructs new FQDN based on the new DNS Zone Suffix (from
- second DNS Zone Suffix option), and perform Duplicate FQDN
- Detection with unspecified target address. Also, it should
- overwrite the old FQDN with the newly constructed FQDN.
-
-
- 7.3.3. FQDN Lifetime expiry
-
- 6DNAC Server:
- It should delete the FQDN cache entry and should de-register from
- the DNS Server.
-
- 6DNAC Client:
- It should send update to 6DNAC Server by restarting the Duplicate
- FQDN Detection.
-
- 7.3.4. Host Naming Algorithm
-
- A node constructs FQDN by combining DNS Zone Suffix and the hostname
- as depicted in the following diagram.
-
- +------------------+----------------------------------+
- | Host Name | Advertised Suffix |
- +------------------+----------------------------------+
-
- <Figure 13: Fully Qualified Domain Name format>
-
- A node can choose Host Name using any of the following methods:
-
- a. String form of random number generated from the Interface
- Identifier.
-
- b. List of configured Host Names provided by the administrator.
-
-
- The number of retries must be specified in this algorithm in
- case of domain name duplication.
-
-
- 7.4. Duplicate Domain Name Detection
-
- The procedure for detecting duplicated FQDNs uses Neighbor
- Solicitation and Advertisement messages as described below.
-
- If a duplicate FQDN is detected during the procedure, the
- FQDN cannot be assigned to the node.
-
- An FQDN on which the DFQDND Procedure is applied is said
- to be tentative until the procedure has completed successfully.
- A tentative FQDN is not considered "assigned to the node" in the
- traditional sense. That is, the node must accept Neighbor
- Advertisement message containing the tentative FQDN in the FQDN
- Option.
-
-
-Park & Madanapalli Expires October 2003 [Page 23]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
-
- It should also be noted that DFQDN must be performed prior to
- registering with DNS Server to prevent multiple nodes from using
- the same FQDN simultaneously. All the Duplicate Address Detection
- Neighbor Solicitation messages must carry Source Link Layer Address
- Option as specified in NDP [2461].
-
- The detection of duplicate FQDN can be achieved through one of the
- following three types of procedures.
-
- 1. DAD with All Nodes Multicast Address
- 2. DAD with Router Alert Option for 6DNAC.
- 3. Explicit Detection of Duplicate Domain Name
-
- Even though three solutions are listed, authors prefer only one
- procedure to be followed in future based on further analysis and
- comments received from others.
-
- 7.4.1. DAD with All Nodes Multicast Address
-
- 7.4.1.1. Sending Neighbor Solicitation Messages
-
- 6DNAC Client sends Neighbor Solicitation Messages as part
- of Duplicate Address Detection SLAAC [2462] with the following
- extra information and modifications:
-
- a. Include FQDN Option in the DAD Neighbor Solicitation Message
- b. Destination Address is set to All Nodes Multicast Address
-
- There may be a case where DAD has succeeded but DFQDND is in Retry
- Mode. In such case, the Neighbor Solicitation must carry unspecified
- address in the ICMP target address field and new domain name in FQDN
- option to re-try the registration of the domain name.
-
- 7.4.1.2. Processing Neighbor Solicitation Messages
-
- 6DNAC Clients must ignore the FQDN option found in any of the
- neighbor solicitation messages.
-
- 6DNAC Server processes FQDN Option found in the Duplicate Address
- Detection Neighbor Solicitation Messages as described below:
-
- Lookup FQDN Cache for the domain name in FQDN Option.
-
- If the entry exists and
- i. Link Layer Address matches with SLLA option, this is the case,
- where node has changed its IPv6 address or updating the valid
- life time. 6DNAC Server updates its cache and also updates DNS
- Server using DDNS-UPDATE. If there is no change in IPv6 address
- or life time then no updates are sent to the DNS server.
-
- ii. Link Layer Address differs with SLLA option, defend the duplicate
- FQDN Detection by sending Neighbor Advertisement Message as
- described in $7.4.1.3$.
-
-
-
-Park & Madanapalli Expires October 2003 [Page 24]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
-
- else,
- Lookup FQDN Cache for the Link Layer Address in SLLA Option.
-
- If the entry exists, update the FQDN Cache and update DNS Server
- using DDNS-UPDATE. This is the case, where node has changed its
- domain name (similar to Site Re-numbering).
-
- If then entry does not exists, then it means that this is the new
- registration. It must create a cache entry and start Registration
-
- timer with RegistrationWaitTime. At the expiry of the Registration
- timer, it should update DNS Server with DDNS-UPDATE.
-
- 7.4.1.3. Sending Neighbor Advertisement Messages
-
- 6DNAC Server sends Neighbor Advertisement Messages as part
- of Duplicate Address Detection SLAAC [2462] with the FQDN Option
- in Neighbor Advertisement message to defend duplicate FQDN
- detection.
-
- There may be the case where defending of duplicate address detection
- is not required but defending of FQDN is required. In such instance,
- the defending Neighbor Advertisement must carry FQDN and unspecified
- address in the ICMP target address field.
-
- 7.4.1.4. Processing Neighbor Advertisement Messages
-
- 6DNAC Server must ignore the any FQDN option found any of
- the neighbor advertisement messages. If the Neighbor Advertisement
- is a DAD defending, then it must delete its FQDN Cache entry created
- on the reception of DAD Neighbor Solicitation message.
-
- When 6DNAC Clients gets the duplicate address detection neighbor
- advertisement messages with FQDN option set it means that its
- duplicate FQDN detection failed and enters Retry Mode.
-
- 7.4.1.5. Pros and Cons
-
- The advantage of this procedure is that it does not need any
- extension header options to be included. The disadvantage of this
- procedure is that, it needs change in the existing DAD procedure.
- The change is only that the DAD neighbor solicitations are to be
- addressed to all nodes multicast address instead of solicited
- node multicast address. The another disadvantage is that, it needs
- the existence of Duplicate Address Detection Procedure to
- perform duplicate FQDN detection.
-
- 7.4.2. DAD with Router Alert Option for 6DNAC
-
- 7.4.2.1. Sending Neighbor Solicitation Messages
-
- 6DNAC Client sends Neighbor Solicitation Messages as part
- of Duplicate Address Detection SLAAC [2462] with the following
- extra information:
-
-
-Park & Madanapalli Expires October 2003 [Page 25]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
-
- a. Include Hop-by-Hop extension Header with Router Alert Option
- for 6DNAC as described in IPv6 Router Alert Option[2711].
-
- b. Include FQDN Option in the DAD Neighbor Solicitation Message
-
- 7.4.2.2. Processing Neighbor Solicitation Messages
-
- This is same as described in $7.4.1.2$.
-
- 7.4.2.3. Sending Neighbor Advertisement Messages
-
- This is same as described in $7.4.1.3$.
-
- 7.4.2.4. Processing Neighbor Advertisement Messages
-
- This is same as described in $7.4.1.4$.
-
- 7.4.2.5. Pros and Cons
-
- The advantage of this procedure is that it does not disturb
- the existing implementation and their way of processing the
- packets. The disadvantage is that, it needs the existence
- of Duplicate Address Detection Procedure to perform duplicate
- FQDN detection. Another disadvantage is that this procedure
- requires 6DNAC Server functionality to be implemented on Router.
- However, in this case 6DNAC Server can serve multiple links.
-
- 7.4.3. Explicit Detection of Duplicate Domain Name
-
- In this procedure Duplicate FQDN Detection starts after completion
- of successful Site local or Global Address configuration.
-
- 7.4.3.1. Sending Neighbor Solicitation Messages
-
- 6DNAC Client sends Neighbor Solicitation Messages as part
- of Duplicate FQDN Detection with the following information:
-
- a. Include FQDN Option in the Neighbor Solicitation Message
-
- b. Destination Address is set to All Nodes Multicast Address
- or uses Router Alert Option for 6DNAC, when 6DNAC Server is
- implemented on router.
-
- c. Target Address is set to Unspecified Address
-
- d. Other fields are set as per DAD SLAAC [2462].
-
- 7.4.3.2. Processing Neighbor Solicitation Messages
-
- This is same as described in $7.4.1.2$.
-
-
-
-
-
-
-Park & Madanapalli Expires October 2003 [Page 26]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
-
- 7.4.3.3. Sending Neighbor Advertisement Messages
-
- This is same as described in $7.4.1.3$.
-
- 7.4.3.4. Processing Neighbor Advertisement Messages
-
- This is same as described in $7.4.1.4$.
-
- 7.4.3.5. Pros and Cons
-
- The advantage of this procedure is that it does not need the
- existing duplicate address detection procedure. This is introduced
- as the DAD procedure is found to be redundant in when IPv6 addresses
- are constructed from the interface ID [DIID].
-
- Note that, if 6DNAC Clients know the address of 6DNAC Server then
- they can directly send DFQDND-NS to 6DNAC Server.
-
- 7.4.4. Retry Mode for Re-registering Domain Name
-
- In retry mode, nodes construct new FQDN as per Host Naming Algorithm.
- Then they restart Duplicate FQDN Detection as described in $7.4.3$.
-
-
- 7.5. Domain Name Registration
-
- 6DNAC Server must be an authenticated to update the DNS Server.
- 6DNAC Server must also be configured with the DNS Server
- information.
-
- 6DNAC Server detects the DNS information (IPv6 Address and
- corresponding FQDN) from DAD/DFQDND messages and caches the
- information. It also have an associated Registration Timer with
- RegistrationWaitTime to wait for the successful completion of
- DFQDND and update DNS Server using existing protocol DDNS UPDATE
- [2136].
-
-
- 8. Security Consideration
-
- If someone wants to hijack correct Domain Name registration, they
- could send a NS message with incorrect or same Domain Name to the
- 6DNAC server repeatedly and server would start the Domain Name
- registration through above mechanism, which is a security hole.
- As described in [2461], a host can check validity of NDP messages.
- If the NDP message include an IP Authentication Header, the message
- authenticates correctly. For DNS UPDATE processing, secure DNS
- Dynamic Update is described in [3007].
-
-
-
-
-
-
-
-
-Park & Madanapalli Expires October 2003 [Page 27]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
-
- 9. IANA Consideration
-
- Values in the Router Alert Option are registered and maintained by
- IANA. For 6DNAC, the value has to be assigned by IANA. Also IANA is
- required to assign the Type values for DNS Zone Suffix Information
- option and FADN option.
-
-
- 10. Acknowledgement
-
- Special thanks are due to Badrinarayana N.S. and Christian Huitema for
- many helpful suggestions and revisions.
-
-
- 11. Intellectual Property
-
- The following notice is copied from RFC 2026 [Bradner, 1996],
- Section 10.4, and describes the position of the IETF concerning
- intellectual property claims made against this document.
-
- The IETF takes no position regarding the validity or scope of any
- intellectual property or other rights that might be claimed to
- pertain to the implementation or use other technology described in
-
- this document or the extent to which any license under such rights
- might or might not be available; neither does it represent that it
-
- has made any effort to identify any such rights. Information on the
- IETF's procedures with respect to rights in standards-track and
- standards-related documentation can be found in BCP-11. Copies of
- claims of rights made available for publication and any assurances
- of licenses to be made available, or the result of an attempt made
- to obtain a general license or permission for the use of such
- proprietary rights by implementers or users of this specification
- can be obtained from the IETF Secretariat.
-
- The IETF invites any interested party to bring to its attention any
- copyrights, patents or patent applications, or other proprietary
- rights which may cover technology that may be required to practice
- this standard. Please address the information to the IETF Executive
- Director.
-
-
- 12. Copyright
-
- The following copyright notice is copied from RFC 2026 [Bradner,
- 1996], Section 10.4, and describes the applicable copyright for this
- document.
-
- Copyright (C) The Internet Society July 12, 2001. All Rights
- Reserved.
-
- This document and translations of it may be copied and furnished to
- others, and derivative works that comment on or otherwise explain it
- or assist in its implementation may be prepared, copied, published
-
-Park & Madanapalli Expires October 2003 [Page 28]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
-
- and distributed, in whole or in part, without restriction of any
- kind, provided that the above copyright notice and this paragraph
- are included on all such copies and derivative works. However, this
-
- document itself may not be modified in any way, such as by removing
- the copyright notice or references to the Internet Society or other
- Internet organizations, except as needed for the purpose of
- developing Internet standards in which case the procedures for
- copyrights defined in the Internet Standards process must be
- followed, or as required to translate it into languages other than
- English.
-
- The limited permissions granted above are perpetual and will not be
- revoked by the Internet Society or its successors or assignees.
-
- This document and the information contained herein is provided on an
- "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
- TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
- BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
- HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
- MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
-
-
- 13. References
-
- [2373] Hinden, R. and S. Deering, "IP Version 6 Addressing
- Architecture", RFC 2373, July 1998.
-
- [2460] Deering, S. abd R. Hinden, "Internet Protocol,
- Version 6 (IPv6) Specification", RFC 2460,
- December 1998.
-
- [2461] Narten, T., Nordmark, E. and W. Simpson, "Neighbor
- Discovery for IP version 6(IPv6)", RFC 2461, December
- 1998.
-
- [2462] S. Thomson and Narten T, "IPv6 Stateless Address Auto-
- Configuration", RFC 2462, December 1998.
-
- [2711] C. Patridge and A.Jackson, "IPv6 Router Alert Option",
- RFC 2711, October 1999.
-
- [1034] P. Mockapetris, "DOMAIN NAMES - CONCEPTS AND
- FACILITIES", RFC 1034, November 1987.
-
- [1035] P. Mockapetris, "Domain Names - Implementation and
- Specification" RFC 1035, November 1987.
-
- [2136] P. Vixie et al., "Dynamic Updates in the Domain Name
- System (DNS UPDATE)", RFC2136, April 1997.
-
- [3007] B. Wellington, "Secure Domain Name System (DNS) Dynamic
- Update", RFC 3007, November 2000.
-
-
-
-Park & Madanapalli Expires October 2003 [Page 29]
-
-INTERNET-DRAFT IPv6 Extensions for DNS Plug and Play April 2003
-
-
- [DIID] yokohama-dad-vs-diid.pdf
- at http://playground.sun.com/ipng/presentations/July2002/
-
- [DNSISSUES] Durand, A., "IPv6 DNS transition issues", draft-ietf-
- dnsop-ipv6-dns-issues-00.txt, work in progress.
-
- [PREFIX] S. Miyakawa, R. Droms, "Requirements for IPv6 prefix
- delegation", draft-ietf-ipv6-prefix-delegation-
- requirement-01.txt, work in progress.
-
- [Autoreg] H. Kitamura, "Domain Name Auto-Registration for
- Plugged-in IPv6 Nodes", draft-ietf-dnsext-ipv6-name-
- auto-reg-00.txt, work in progress.
-
- [NIQ] Matt Crawford, "IPv6 Node Information Queries", <draft-
- ietf-ipngwg-icmp-name-lookups-09.txt>, work in progress.
-
-
- 14. Author's Addresses
-
- Soohong Daniel Park
- Mobile Platform Laboratory, SAMSUNG Electronics, KOREA
- Phone: +82-31-200-3728
- Email:soohong.park@samsung.com
-
- Syam Madanapalli
- Network Systems Division, SAMSUNG India Software Operations, INDIA
- Phone: +91-80-5550555
- Email:syam@samsung.com
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Park & Madanapalli Expires October 2003 [Page 30]
OpenPOWER on IntegriCloud