summaryrefslogtreecommitdiffstats
path: root/contrib/bind9/doc/draft/draft-ietf-dnsext-tsig-sha-04.txt
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/bind9/doc/draft/draft-ietf-dnsext-tsig-sha-04.txt')
-rw-r--r--contrib/bind9/doc/draft/draft-ietf-dnsext-tsig-sha-04.txt580
1 files changed, 0 insertions, 580 deletions
diff --git a/contrib/bind9/doc/draft/draft-ietf-dnsext-tsig-sha-04.txt b/contrib/bind9/doc/draft/draft-ietf-dnsext-tsig-sha-04.txt
deleted file mode 100644
index a59595f..0000000
--- a/contrib/bind9/doc/draft/draft-ietf-dnsext-tsig-sha-04.txt
+++ /dev/null
@@ -1,580 +0,0 @@
-
-INTERNET-DRAFT Donald E. Eastlake 3rd
-UPDATES RFC 2845 Motorola Laboratories
-Expires: December 2005 June 2005
-
-
- HMAC SHA TSIG Algorithm Identifiers
- ---- --- ---- --------- -----------
- <draft-ietf-dnsext-tsig-sha-04.txt>
-
-
-Status of This Document
-
- By submitting this Internet-Draft, each author represents that any
- applicable patent or other IPR claims of which he or she is aware
- have been or will be disclosed, and any of which he or she becomes
- aware will be disclosed, in accordance with Section 6 of BCP 79.
-
- This draft is intended to be become a Proposed Standard RFC.
- Distribution of this document is unlimited. Comments should be sent
- to the DNSEXT working group mailing list <namedroppers@ops.ietf.org>.
-
- Internet-Drafts are working documents of the Internet Engineering
- Task Force (IETF), its areas, and its working groups. Note that
- other groups may also distribute working documents as Internet-
- Drafts.
-
- Internet-Drafts are draft documents valid for a maximum of six months
- and may be updated, replaced, or obsoleted by other documents at any
- time. It is inappropriate to use Internet-Drafts as reference
- material or to cite them other than a "work in progress."
-
- The list of current Internet-Drafts can be accessed at
- http://www.ietf.org/1id-abstracts.html
-
- The list of Internet-Draft Shadow Directories can be accessed at
- http://www.ietf.org/shadow.html
-
-
-Abstract
-
- Use of the TSIG DNS resource record requires specification of a
- cryptographic message authentication code. Currently identifiers
- have been specified only for the HMAC-MD5 and GSS TSIG algorithms.
- This document standardizes identifiers and implementation
- requirements for additional HMAC SHA TSIG algorithms and standardizes
- how to specify and handle the truncation of HMAC values.
-
-
-Copyright Notice
-
- Copyright (C) The Internet Society 2005. All Rights Reserved.
-
-
-
-
-D. Eastlake 3rd [Page 1]
-
-
-INTERNET-DRAFT HMAC-SHA TSIG Identifiers
-
-
-Table of Contents
-
- Status of This Document....................................1
- Abstract...................................................1
- Copyright Notice...........................................1
-
- Table of Contents..........................................2
-
- 1. Introduction............................................3
-
- 2. Algorithms and Identifiers..............................4
-
- 3. Specifying Truncation...................................5
- 3.1 Truncation Specification...............................5
-
- 4. TSIG Policy Provisions and Truncation Error.............7
-
- 5. IANA Considerations.....................................8
- 6. Security Considerations.................................8
- 6. Copyright and Disclaimer................................8
-
- 7. Normative References....................................9
- 8. Informative References..................................9
-
- Author's Address..........................................10
- Expiration and File Name..................................10
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-D. Eastlake 3rd [Page 2]
-
-
-INTERNET-DRAFT HMAC-SHA TSIG Identifiers
-
-
-1. Introduction
-
- [RFC 2845] specifies a TSIG Resource Record (RR) that can be used to
- authenticate DNS queries and responses. This RR contains a domain
- name syntax data item which names the authentication algorithm used.
- [RFC 2845] defines the HMAC-MD5.SIG-ALG.REG.INT name for
- authentication codes using the HMAC [RFC 2104] algorithm with the MD5
- [RFC 1321] hash algorithm. IANA has also registered "gss-tsig" as an
- identifier for TSIG authentication where the cryptographic operations
- are delegated to GSS [RFC 3645].
-
- In Section 2, this document specifies additional names for TSIG
- authentication algorithms based on US NIST SHA algorithms and HMAC
- and specifies the implementation requirements for those algorithms.
-
- In Section 3, this document specifies the meaning of inequality
- between the normal output size of the specified hash function and the
- length of MAC (message authentication code) data given in the TSIG
- RR. In particular, it specifies that a shorter length field value
- specifies truncation and a longer length field is an error.
-
- In Section 4, policy restrictions and implications related to
- truncation and a new error code to indicate truncation shorter than
- permitted by policy are described and specified.
-
- The use herein of MUST, SHOULD, MAY, MUST NOT, and SHOULD NOT is as
- defined in [RFC 2119].
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-D. Eastlake 3rd [Page 3]
-
-
-INTERNET-DRAFT HMAC-SHA TSIG Identifiers
-
-
-2. Algorithms and Identifiers
-
- TSIG Resource Records (RRs) [RFC 2845] are used to authenticate DNS
- queries and responses. They are intended to be efficient symmetric
- authentication codes based on a shared secret. (Asymmetric signatures
- can be provided using the SIG RR [RFC 2931]. In particular, SIG(0)
- can be used for transaction signatures.) Used with a strong hash
- function, HMAC [RFC 2104] provides a way to calculate such symmetric
- authentication codes. The only specified HMAC based TSIG algorithm
- identifier has been HMAC-MD5.SIG-ALG.REG.INT based on MD5 [RFC 1321].
-
- The use of SHA-1 [FIPS 180-2, RFC 3174], which is a 160 bit hash, as
- compared with the 128 bits for MD5, and additional hash algorithms in
- the SHA family [FIPS 180-2, RFC 3874, SHA2draft] with 224, 256, 384,
- and 512 bits, may be preferred in some cases particularly since
- increasingly successful cryptanalytic attacks are being made on the
- shorter hashes. Use of TSIG between a DNS resolver and server is by
- mutual agreement. That agreement can include the support of
- additional algorithms and may specify policies as to which algorithms
- and truncations are acceptable subject to the restrication and
- guidelines in Section 3 and 4 below.
-
- The current HMAC-MD5.SIG-ALG.REG.INT identifier is included in the
- table below for convenience. Implementations which support TSIG MUST
- also implement HMAC SHA1 and HMAC SHA256 and MAY implement gss-tsig
- and the other algorithms listed below.
-
- Mandatory HMAC-MD5.SIG-ALG.REG.INT
- Mandatory hmac-sha1
- Optional hmac-sha224
- Mandatory hmac-sha256
- Optional hamc-sha384
- Optional hmac-sha512
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-D. Eastlake 3rd [Page 4]
-
-
-INTERNET-DRAFT HMAC-SHA TSIG Identifiers
-
-
-3. Specifying Truncation
-
- When space is at a premium and the strength of the full length of an
- HMAC is not needed, it is reasonable to truncate the HMAC output and
- use the truncated value for authentication. HMAC SHA-1 truncated to
- 96 bits is an option available in several IETF protocols including
- IPSEC and TLS.
-
- The TSIG RR [RFC 2845] includes a "MAC size" field, which gives the
- size of the MAC field in octets. But [RFC 2845] does not specify what
- to do if this MAC size differs from the length of the output of HMAC
- for a particular hash function. Truncation is indicated by a MAC size
- less than the HMAC size as specified below.
-
-
-
-3.1 Truncation Specification
-
- The specification for TSIG handling is changed as follows:
-
- 1. If "MAC size" field is greater than HMAC output length:
- This case MUST NOT be generated and if received MUST cause the
- packet to be dropped and RCODE 1 (FORMERR) to be returned.
-
- 2. If "MAC size" field equals HMAC output length:
- Operation is as described in [RFC 2845] with the entire output
- HMAC output present.
-
- 3. "MAC size" field is less than HMAC output length but greater than
- that specified in case 4 below:
- This is sent when the signer has truncated the HMAC output to
- an allowable length, as described in RFC 2104, taking initial
- octets and discarding trailing octets. TSIG truncation can only be
- to an integral number of octets. On receipt of a packet with
- truncation thus indicated, the locally calculated MAC is similarly
- truncated and only the truncated values compared for
- authentication. The request MAC used when calculating the TSIG MAC
- for a reply is the trucated request MAC.
-
- 4. "MAC size" field is less than the larger of 10 (octets) and half
- the length of the hash function in use:
- With the exception of certain TSIG error messages described in
- RFC 2845 section 3.2 where it is permitted that the MAC size be
- zero, this case MUST NOT be generated and if received MUST cause
- the packet to be dropped and RCODE 1 (FORMERR) to be returned. The
- size limit for this case can also, for the hash functions
- mentioned in this document, be stated as less than half the hash
- function length for hash functions other than MD5 and less than 10
- octets for MD5.
-
-
-
-D. Eastlake 3rd [Page 5]
-
-
-INTERNET-DRAFT HMAC-SHA TSIG Identifiers
-
-
- SHA-1 truncated to 96 bits (12 octets) SHOULD be implemented.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-D. Eastlake 3rd [Page 6]
-
-
-INTERNET-DRAFT HMAC-SHA TSIG Identifiers
-
-
-4. TSIG Policy Provisions and Truncation Error
-
- Use of TSIG is by mutual agreement between a resolver and server.
- Implicit in such "agreement" are policies as to acceptable keys and
- algorithms and, with the extensions in this doucment, truncations. In
- particular note the following:
-
- Such policies MAY require the rejection of TSIGs even though they
- use an algorithm for which implementation is mandatory.
-
- When a policy calls for the acceptance of a TSIG with a particular
- algorithm and a particular non-zero amount of trunction it SHOULD
- also permit the use of that algorithm with lesser truncation (a
- longer MAC) up to the full HMAC output.
-
- Regardless of a lower acceptable truncated MAC length specified by
- policy, a reply SHOULD be sent with a MAC at least as long as that in
- the corresponding request unless the request specified a MAC length
- longer than the HMAC output.
-
- Implementations permitting policies with multiple acceptable
- algorithms and/or truncations SHOULD permit this list to be ordered
- by presumed strength and SHOULD allow different truncations for the
- same algorithm to be treatred as spearate entities in this list. When
- so implemented, policies SHOULD accept a presumed stronger algorithm
- and truncation than the minimum strength required by the policy.
-
- If a TSIG is received with truncation which is permitted under
- Section 3 above but the MAC is too short for the policy in force, an
- RCODE of TBA [22 suggested](BADTRUNC) MUST be returned.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-D. Eastlake 3rd [Page 7]
-
-
-INTERNET-DRAFT HMAC-SHA TSIG Identifiers
-
-
-5. IANA Considerations
-
- This document, on approval for publication as a standards track RFC,
- (1) registers the new TSIG algorithm identifiers listed in Section 2
- with IANA and (2) Section 4 allocates the BADTRUNC RCODE TBA [22
- suggested].
-
-
-
-
-6. Security Considerations
-
- For all of the message authentication code algorithms listed herein,
- those producing longer values are believed to be stronger; however,
- while there have been some arguments that mild truncation can
- strengthen a MAC by reducing the information available to an
- attacker, excessive truncation clearly weakens authentication by
- reducing the number of bits an attacker has to try to brute force
- [RFC 2104].
-
- Significant progress has been made recently in cryptanalysis of hash
- function of the type used herein, all of which ultimately derive from
- the design of MD4. While the results so far should not effect HMAC,
- the stronger SHA-1 and SHA-256 algorithms are being made mandatory
- due to caution.
-
- See the Security Considerations section of [RFC 2845]. See also the
- Security Considerations section of [RFC 2104] from which the limits
- on truncation in this RFC were taken.
-
-
-
-6. Copyright and Disclaimer
-
- Copyright (C) The Internet Society (2005). This document is subject to
- the rights, licenses and restrictions contained in BCP 78, and except
- as set forth therein, the authors retain all their rights.
-
-
- This document and the information contained herein are provided on an
- "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
- OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
- ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
- INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
- INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
- WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
-
-
-
-
-
-
-D. Eastlake 3rd [Page 8]
-
-
-INTERNET-DRAFT HMAC-SHA TSIG Identifiers
-
-
-7. Normative References
-
- [FIPS 180-2] - "Secure Hash Standard", (SHA-1/224/256/384/512) US
- Federal Information Processing Standard, with Change Notice 1,
- February 2004.
-
- [RFC 1321] - Rivest, R., "The MD5 Message-Digest Algorithm ", RFC
- 1321, April 1992.
-
- [RFC 2104] - Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
- Hashing for Message Authentication", RFC 2104, February 1997.
-
- [RFC 2119] - Bradner, S., "Key words for use in RFCs to Indicate
- Requirement Levels", BCP 14, RFC 2119, March 1997.
-
- [RFC 2845] - Vixie, P., Gudmundsson, O., Eastlake 3rd, D., and B.
- Wellington, "Secret Key Transaction Authentication for DNS (TSIG)",
- RFC 2845, May 2000.
-
-
-
-8. Informative References.
-
- [RFC 2931] - Eastlake 3rd, D., "DNS Request and Transaction
- Signatures ( SIG(0)s )", RFC 2931, September 2000.
-
- [RFC 3174] - Eastlake 3rd, D. and P. Jones, "US Secure Hash Algorithm
- 1 (SHA1)", RFC 3174, September 2001.
-
- [RFC 3645] - Kwan, S., Garg, P., Gilroy, J., Esibov, L., Westhead,
- J., and R. Hall, "Generic Security Service Algorithm for Secret Key
- Transaction Authentication for DNS (GSS-TSIG)", RFC 3645, October
- 2003.
-
- [RFC 3874] - R. Housely, "A 224-bit One-way Hash Function: SHA-224",
- September 2004,
-
- [SHA2draft] - Eastlake, D., T. Hansen, "US Secure Hash Algorithms
- (SHA)", work in progress.
-
-
-
-
-
-
-
-
-
-
-
-
-
-D. Eastlake 3rd [Page 9]
-
-
-INTERNET-DRAFT HMAC-SHA TSIG Identifiers
-
-
-Author's Address
-
- Donald E. Eastlake 3rd
- Motorola Laboratories
- 155 Beaver Street
- Milford, MA 01757 USA
-
- Telephone: +1-508-786-7554 (w)
-
- EMail: Donald.Eastlake@motorola.com
-
-
-
-Expiration and File Name
-
- This draft expires in December 2005.
-
- Its file name is draft-ietf-dnsext-tsig-sha-04.txt
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-D. Eastlake 3rd [Page 10]
-
OpenPOWER on IntegriCloud