summaryrefslogtreecommitdiffstats
path: root/contrib/bind9/doc/draft/draft-ietf-dnsext-trustupdate-timers-01.txt
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/bind9/doc/draft/draft-ietf-dnsext-trustupdate-timers-01.txt')
-rw-r--r--contrib/bind9/doc/draft/draft-ietf-dnsext-trustupdate-timers-01.txt730
1 files changed, 0 insertions, 730 deletions
diff --git a/contrib/bind9/doc/draft/draft-ietf-dnsext-trustupdate-timers-01.txt b/contrib/bind9/doc/draft/draft-ietf-dnsext-trustupdate-timers-01.txt
deleted file mode 100644
index df702b4..0000000
--- a/contrib/bind9/doc/draft/draft-ietf-dnsext-trustupdate-timers-01.txt
+++ /dev/null
@@ -1,730 +0,0 @@
-
-
-
-
-Network Working Group M. StJohns
-Internet-Draft Nominum, Inc.
-Expires: February 16, 2006 August 15, 2005
-
-
- Automated Updates of DNSSEC Trust Anchors
- draft-ietf-dnsext-trustupdate-timers-01
-
-Status of this Memo
-
- By submitting this Internet-Draft, each author represents that any
- applicable patent or other IPR claims of which he or she is aware
- have been or will be disclosed, and any of which he or she becomes
- aware will be disclosed, in accordance with Section 6 of BCP 79.
-
- Internet-Drafts are working documents of the Internet Engineering
- Task Force (IETF), its areas, and its working groups. Note that
- other groups may also distribute working documents as Internet-
- Drafts.
-
- Internet-Drafts are draft documents valid for a maximum of six months
- and may be updated, replaced, or obsoleted by other documents at any
- time. It is inappropriate to use Internet-Drafts as reference
- material or to cite them other than as "work in progress."
-
- The list of current Internet-Drafts can be accessed at
- http://www.ietf.org/ietf/1id-abstracts.txt.
-
- The list of Internet-Draft Shadow Directories can be accessed at
- http://www.ietf.org/shadow.html.
-
- This Internet-Draft will expire on February 16, 2006.
-
-Copyright Notice
-
- Copyright (C) The Internet Society (2005).
-
-Abstract
-
- This document describes a means for automated, authenticated and
- authorized updating of DNSSEC "trust anchors". The method provides
- protection against single key compromise of a key in the trust point
- key set. Based on the trust established by the presence of a current
- anchor, other anchors may be added at the same place in the
- hierarchy, and, ultimately, supplant the existing anchor.
-
- This mechanism, if adopted, will require changes to resolver
- management behavior (but not resolver resolution behavior), and the
-
-
-
-StJohns Expires February 16, 2006 [Page 1]
-
-Internet-Draft trustanchor-update August 2005
-
-
- addition of a single flag bit to the DNSKEY record.
-
-Table of Contents
-
- 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
- 1.1 Compliance Nomenclature . . . . . . . . . . . . . . . . . 3
- 1.2 Changes since -00 . . . . . . . . . . . . . . . . . . . . 3
- 2. Theory of Operation . . . . . . . . . . . . . . . . . . . . . 4
- 2.1 Revocation . . . . . . . . . . . . . . . . . . . . . . . . 4
- 2.2 Add Hold-Down . . . . . . . . . . . . . . . . . . . . . . 4
- 2.3 Remove Hold-down . . . . . . . . . . . . . . . . . . . . . 5
- 2.4 Active Refresh . . . . . . . . . . . . . . . . . . . . . . 6
- 2.5 Resolver Parameters . . . . . . . . . . . . . . . . . . . 6
- 2.5.1 Add Hold-Down Time . . . . . . . . . . . . . . . . . . 6
- 2.5.2 Remove Hold-Down Time . . . . . . . . . . . . . . . . 6
- 2.5.3 Minimum Trust Anchors per Trust Point . . . . . . . . 6
- 3. Changes to DNSKEY RDATA Wire Format . . . . . . . . . . . . . 6
- 4. State Table . . . . . . . . . . . . . . . . . . . . . . . . . 6
- 4.1 Events . . . . . . . . . . . . . . . . . . . . . . . . . . 7
- 4.2 States . . . . . . . . . . . . . . . . . . . . . . . . . . 7
- 5. Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 8
- 5.1 Adding A Trust Anchor . . . . . . . . . . . . . . . . . . 8
- 5.2 Deleting a Trust Anchor . . . . . . . . . . . . . . . . . 9
- 5.3 Key Roll-Over . . . . . . . . . . . . . . . . . . . . . . 9
- 5.4 Active Key Compromised . . . . . . . . . . . . . . . . . . 9
- 5.5 Stand-by Key Compromised . . . . . . . . . . . . . . . . . 9
- 6. Security Considerations . . . . . . . . . . . . . . . . . . . 10
- 6.1 Key Ownership vs Acceptance Policy . . . . . . . . . . . . 10
- 6.2 Multiple Key Compromise . . . . . . . . . . . . . . . . . 10
- 6.3 Dynamic Updates . . . . . . . . . . . . . . . . . . . . . 10
- 7. Normative References . . . . . . . . . . . . . . . . . . . . . 10
- Editorial Comments . . . . . . . . . . . . . . . . . . . . . . 11
- Author's Address . . . . . . . . . . . . . . . . . . . . . . . 11
- Intellectual Property and Copyright Statements . . . . . . . . 12
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-StJohns Expires February 16, 2006 [Page 2]
-
-Internet-Draft trustanchor-update August 2005
-
-
-1. Introduction
-
- As part of the reality of fielding DNSSEC (Domain Name System
- Security Extensions) [RFC2535] [RFC4033][RFC4034][RFC4035], the
- community has come to the realization that there will not be one
- signed name space, but rather islands of signed name space each
- originating from specific points (i.e. 'trust points') in the DNS
- tree. Each of those islands will be identified by the trust point
- name, and validated by at least one associated public key. For the
- purpose of this document we'll call the association of that name and
- a particular key a 'trust anchor'. A particular trust point can have
- more than one key designated as a trust anchor.
-
- For a DNSSEC-aware resolver to validate information in a DNSSEC
- protected branch of the hierarchy, it must have knowledge of a trust
- anchor applicable to that branch. It may also have more than one
- trust anchor for any given trust point. Under current rules, a chain
- of trust for DNSSEC-protected data that chains its way back to ANY
- known trust anchor is considered 'secure'.
-
- Because of the probable balkanization of the DNSSEC tree due to
- signing voids at key locations, a resolver may need to know literally
- thousands of trust anchors to perform its duties. (e.g. Consider an
- unsigned ".COM".) Requiring the owner of the resolver to manually
- manage this many relationships is problematic. It's even more
- problematic when considering the eventual requirement for key
- replacement/update for a given trust anchor. The mechanism described
- herein won't help with the initial configuration of the trust anchors
- in the resolvers, but should make trust point key replacement/
- rollover more viable.
-
- As mentioned above, this document describes a mechanism whereby a
- resolver can update the trust anchors for a given trust point, mainly
- without human intervention at the resolver. There are some corner
- cases discussed (e.g. multiple key compromise) that may require
- manual intervention, but they should be few and far between. This
- document DOES NOT discuss the general problem of the initial
- configuration of trust anchors for the resolver.
-
-1.1 Compliance Nomenclature
-
- The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
- "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
- document are to be interpreted as described in BCP 14, [RFC2119].
-
-1.2 Changes since -00
-
- Added the concept of timer triggered resolver queries to refresh the
-
-
-
-StJohns Expires February 16, 2006 [Page 3]
-
-Internet-Draft trustanchor-update August 2005
-
-
- resolvers view of the trust anchor key RRSet.
-
- Re-submitted expired draft as -01. Updated DNSSEC RFC References.
-
-2. Theory of Operation
-
- The general concept of this mechanism is that existing trust anchors
- can be used to authenticate new trust anchors at the same point in
- the DNS hierarchy. When a new SEP key is added to a trust point
- DNSKEY RRSet, and when that RRSet is validated by an existing trust
- anchor, then the new key can be added to the set of trust anchors.
-
- There are some issues with this approach which need to be mitigated.
- For example, a compromise of one of the existing keys could allow an
- attacker to add their own 'valid' data. This implies a need for a
- method to revoke an existing key regardless of whether or not that
- key is compromised. As another example assuming a single key
- compromise, an attacker could add a new key and revoke all the other
- old keys.
-
-2.1 Revocation
-
- Assume two trust anchor keys A and B. Assume that B has been
- compromised. Without a specific revocation bit, B could invalidate A
- simply by sending out a signed trust point key set which didn't
- contain A. To fix this, we add a mechanism which requires knowledge
- of the private key of a DNSKEY to revoke that DNSKEY.
-
- A key is considered revoked when the resolver sees the key in a self-
- signed RRSet and the key has the REVOKE bit set to '1'. Once the
- resolver sees the REVOKE bit, it MUST NOT use this key as a trust
- anchor or for any other purposes except validating the RRSIG over the
- DNSKEY RRSet specifically for the purpose of validating the
- revocation. Unlike the 'Add' operation below, revocation is
- immediate and permanent upon receipt of a valid revocation at the
- resolver.
-
- N.B. A DNSKEY with the REVOKE bit set has a different fingerprint
- than one without the bit set. This affects the matching of a DNSKEY
- to DS records in the parent, or the fingerprint stored at a resolver
- used to configure a trust point. [msj3]
-
- In the given example, the attacker could revoke B because it has
- knowledge of B's private key, but could not revoke A.
-
-2.2 Add Hold-Down
-
- Assume two trust point keys A and B. Assume that B has been
-
-
-
-StJohns Expires February 16, 2006 [Page 4]
-
-Internet-Draft trustanchor-update August 2005
-
-
- compromised. An attacker could generate and add a new trust anchor
- key - C (by adding C to the DNSKEY RRSet and signing it with B), and
- then invalidate the compromised key. This would result in the both
- the attacker and owner being able to sign data in the zone and have
- it accepted as valid by resolvers.
-
- To mitigate, but not completely solve, this problem, we add a hold-
- down time to the addition of the trust anchor. When the resolver
- sees a new SEP key in a validated trust point DNSKEY RRSet, the
- resolver starts an acceptance timer, and remembers all the keys that
- validated the RRSet. If the resolver ever sees the DNSKEY RRSet
- without the new key but validly signed, it stops the acceptance
- process and resets the acceptance timer. If all of the keys which
- were originally used to validate this key are revoked prior to the
- timer expiring, the resolver stops the acceptance process and resets
- the timer.
-
- Once the timer expires, the new key will be added as a trust anchor
- the next time the validated RRSet with the new key is seen at the
- resolver. The resolver MUST NOT treat the new key as a trust anchor
- until the hold down time expires AND it has retrieved and validated a
- DNSKEY RRSet after the hold down time which contains the new key.
-
- N.B.: Once the resolver has accepted a key as a trust anchor, the key
- MUST be considered a valid trust anchor by that resolver until
- explictly revoked as described above.
-
- In the given example, the zone owner can recover from a compromise by
- revoking B and adding a new key D and signing the DNSKEY RRSet with
- both A and B.
-
- The reason this does not completely solve the problem has to do with
- the distributed nature of DNS. The resolver only knows what it sees.
- A determined attacker who holds one compromised key could keep a
- single resolver from realizing that key had been compromised by
- intercepting 'real' data from the originating zone and substituting
- their own (e.g. using the example, signed only by B). This is no
- worse than the current situation assuming a compromised key.
-
-2.3 Remove Hold-down
-
- A new key which has been seen by the resolver, but hasn't reached
- it's add hold-down time, MAY be removed from the DNSKEY RRSet by the
- zone owner. If the resolver sees a validated DNSKEY RRSet without
- this key, it waits for the remove hold-down time and then, if the key
- hasn't reappeared, SHOULD discard any information about the key.
-
-
-
-
-
-StJohns Expires February 16, 2006 [Page 5]
-
-Internet-Draft trustanchor-update August 2005
-
-
-2.4 Active Refresh
-
- A resolver which has been configured for automatic update of keys
- from a particular trust point MUST query that trust point (e.g. do a
- lookup for the DNSKEY RRSet and related RRSIG records) no less often
- than the lesser of 15 days or half the original TTL for the DNSKEY
- RRSet or half the RRSIG expiration interval. The expiration interval
- is the amount of time from when the RRSIG was last retrieved until
- the expiration time in the RRSIG.
-
- If the query fails, the resolver MUST repeat the query until
- satisfied no more often than once an hour and no less often than the
- lesser of 1 day or 10% of the original TTL or 10% of the original
- expiration interval.
-
-2.5 Resolver Parameters
-
-2.5.1 Add Hold-Down Time
-
- The add hold-down time is 30 days or the expiration time of the TTL
- of the first trust point DNSKEY RRSet which contained the key,
- whichever is greater. This ensures that at least two validated
- DNSKEY RRSets which contain the new key MUST be seen by the resolver
- prior to the key's acceptance.
-
-2.5.2 Remove Hold-Down Time
-
- The remove hold-down time is 30 days.
-
-2.5.3 Minimum Trust Anchors per Trust Point
-
- A compliant resolver MUST be able to manage at least five SEP keys
- per trust point.
-
-3. Changes to DNSKEY RDATA Wire Format
-
- Bit n [msj2] of the DNSKEY Flags field is designated as the 'REVOKE'
- flag. If this bit is set to '1', AND the resolver sees an
- RRSIG(DNSKEY) signed by the associated key, then the resolver MUST
- consider this key permanently invalid for all purposes except for
- validing the revocation.
-
-4. State Table
-
- The most important thing to understand is the resolver's view of any
- key at a trust point. The following state table describes that view
- at various points in the key's lifetime. The table is a normative
- part of this specification. The initial state of the key is 'Start'.
-
-
-
-StJohns Expires February 16, 2006 [Page 6]
-
-Internet-Draft trustanchor-update August 2005
-
-
- The resolver's view of the state of the key changes as various events
- occur.
-
- [msj1] This is the state of a trust point key as seen from the
- resolver. The column on the left indicates the current state. The
- header at the top shows the next state. The intersection of the two
- shows the event that will cause the state to transition from the
- current state to the next.
-
- NEXT STATE
- --------------------------------------------------
- FROM |Start |AddPend |Valid |Missing|Revoked|Removed|
- ----------------------------------------------------------
- Start | |NewKey | | | | |
- ----------------------------------------------------------
- AddPend |KeyRem | |AddTime| | |
- ----------------------------------------------------------
- Valid | | | |KeyRem |Revbit | |
- ----------------------------------------------------------
- Missing | | |KeyPres| |Revbit | |
- ----------------------------------------------------------
- Revoked | | | | | |RemTime|
- ----------------------------------------------------------
- Removed | | | | | | |
- ----------------------------------------------------------
-
-
-4.1 Events
- NewKey The resolver sees a valid DNSKEY RRSet with a new SEP key.
- That key will become a new trust anchor for the named trust point
- after its been present in the RRSet for at least 'add time'.
- KeyPres The key has returned to the valid DNSKEY RRSet.
- KeyRem The resolver sees a valid DNSKEY RRSet that does not contain
- this key.
- AddTime The key has been in every valid DNSKEY RRSet seen for at
- least the 'add time'.
- RemTime A revoked key has been missing from the trust point DNSKEY
- RRSet for sufficient time to be removed from the trust set.
- RevBit The key has appeared in the trust anchor DNSKEY RRSet with its
- "REVOKED" bit set, and there is an RRSig over the DNSKEY RRSet
- signed by this key.
-
-4.2 States
- Start The key doesn't yet exist as a trust anchor at the resolver.
- It may or may not exist at the zone server, but hasn't yet been
- seen at the resolver.
-
-
-
-
-
-StJohns Expires February 16, 2006 [Page 7]
-
-Internet-Draft trustanchor-update August 2005
-
-
- AddPend The key has been seen at the resolver, has its 'SEP' bit set,
- and has been included in a validated DNSKEY RRSet. There is a
- hold-down time for the key before it can be used as a trust
- anchor.
- Valid The key has been seen at the resolver and has been included in
- all validated DNSKEY RRSets from the time it was first seen up
- through the hold-down time. It is now valid for verifying RRSets
- that arrive after the hold down time. Clarification: The DNSKEY
- RRSet does not need to be continuously present at the resolver
- (e.g. its TTL might expire). If the RRSet is seen, and is
- validated (i.e. verifies against an existing trust anchor), this
- key MUST be in the RRSet otherwise a 'KeyRem' event is triggered.
- Missing This is an abnormal state. The key remains as a valid trust
- point key, but was not seen at the resolver in the last validated
- DNSKEY RRSet. This is an abnormal state because the zone operator
- should be using the REVOKE bit prior to removal. [Discussion
- item: Should a missing key be considered revoked after some
- period of time?]
- Revoked This is the state a key moves to once the resolver sees an
- RRSIG(DNSKEY) signed by this key where that DNSKEY RRSet contains
- this key with its REVOKE bit set to '1'. Once in this state, this
- key MUST permanently be considered invalid as a trust anchor.
- Removed After a fairly long hold-down time, information about this
- key may be purged from the resolver. A key in the removed state
- MUST NOT be considered a valid trust anchor.
-
-5. Scenarios
-
- The suggested model for operation is to have one active key and one
- stand-by key at each trust point. The active key will be used to
- sign the DNSKEY RRSet. The stand-by key will not normally sign this
- RRSet, but the resolver will accept it as a trust anchor if/when it
- sees the signature on the trust point DNSKEY RRSet.
-
- Since the stand-by key is not in active signing use, the associated
- private key may (and SHOULD) be provided with additional protections
- not normally available to a key that must be used frequently. E.g.
- locked in a safe, split among many parties, etc. Notionally, the
- stand-by key should be less subject to compromise than an active key,
- but that will be dependent on operational concerns not addressed
- here.
-
-5.1 Adding A Trust Anchor
-
- Assume an existing trust anchor key 'A'.
- 1. Generate a new key pair.
-
-
-
-
-
-StJohns Expires February 16, 2006 [Page 8]
-
-Internet-Draft trustanchor-update August 2005
-
-
- 2. Create a DNSKEY record from the key pair and set the SEP and Zone
- Key bits.
- 3. Add the DNSKEY to the RRSet.
- 4. Sign the DNSKEY RRSet ONLY with the existing trust anchor key -
- 'A'.
- 5. Wait a while.
-
-5.2 Deleting a Trust Anchor
-
- Assume existing trust anchors 'A' and 'B' and that you want to revoke
- and delete 'A'.
- 1. Set the revolcation bit on key 'A'.
- 2. Sign the DNSKEY RRSet with both 'A' and 'B'.
- 'A' is now revoked. The operator SHOULD include the revoked 'A' in
- the RRSet for at least the remove hold-down time, but then may remove
- it from the DNSKEY RRSet.
-
-5.3 Key Roll-Over
-
- Assume existing keys A and B. 'A' is actively in use (i.e. has been
- signing the DNSKEY RRSet.) 'B' was the stand-by key. (i.e. has been
- in the DNSKEY RRSet and is a valid trust anchor, but wasn't being
- used to sign the RRSet.)
- 1. Generate a new key pair 'C'.
- 2. Add 'C' to the DNSKEY RRSet.
- 3. Set the revocation bit on key 'A'.
- 4. Sign the RRSet with 'A' and 'B'.
- 'A' is now revoked, 'B' is now the active key, and 'C' will be the
- stand-by key once the hold-down expires. The operator SHOULD include
- the revoked 'A' in the RRSet for at least the remove hold-down time,
- but may then remove it from the DNSKEY RRSet.
-
-5.4 Active Key Compromised
-
- This is the same as the mechanism for Key Roll-Over (Section 5.3)
- above assuming 'A' is the active key.
-
-5.5 Stand-by Key Compromised
-
- Using the same assumptions and naming conventions as Key Roll-Over
- (Section 5.3) above:
- 1. Generate a new key pair 'C'.
- 2. Add 'C' to the DNSKEY RRSet.
- 3. Set the revocation bit on key 'B'.
- 4. Sign the RRSet with 'A' and 'B'.
- 'B' is now revoked, 'A' remains the active key, and 'C' will be the
- stand-by key once the hold-down expires. 'B' SHOULD continue to be
- included in the RRSet for the remove hold-down time.
-
-
-
-StJohns Expires February 16, 2006 [Page 9]
-
-Internet-Draft trustanchor-update August 2005
-
-
-6. Security Considerations
-
-6.1 Key Ownership vs Acceptance Policy
-
- The reader should note that, while the zone owner is responsible
- creating and distributing keys, it's wholly the decision of the
- resolver owner as to whether to accept such keys for the
- authentication of the zone information. This implies the decision
- update trust anchor keys based on trust for a current trust anchor
- key is also the resolver owner's decision.
-
- The resolver owner (and resolver implementers) MAY choose to permit
- or prevent key status updates based on this mechanism for specific
- trust points. If they choose to prevent the automated updates, they
- will need to establish a mechanism for manual or other out-of-band
- updates outside the scope of this document.
-
-6.2 Multiple Key Compromise
-
- This scheme permits recovery as long as at least one valid trust
- anchor key remains uncompromised. E.g. if there are three keys, you
- can recover if two of them are compromised. The zone owner should
- determine their own level of comfort with respect to the number of
- active valid trust anchors in a zone and should be prepared to
- implement recovery procedures once they detect a compromise. A
- manual or other out-of-band update of all resolvers will be required
- if all trust anchor keys at a trust point are compromised.
-
-6.3 Dynamic Updates
-
- Allowing a resolver to update its trust anchor set based in-band key
- information is potentially less secure than a manual process.
- However, given the nature of the DNS, the number of resolvers that
- would require update if a trust anchor key were compromised, and the
- lack of a standard management framework for DNS, this approach is no
- worse than the existing situation.
-
-7. Normative References
-
- [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
- Requirement Levels", BCP 14, RFC 2119, March 1997.
-
- [RFC2535] Eastlake, D., "Domain Name System Security Extensions",
- RFC 2535, March 1999.
-
- [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
- Rose, "DNS Security Introduction and Requirements",
- RFC 4033, March 2005.
-
-
-
-StJohns Expires February 16, 2006 [Page 10]
-
-Internet-Draft trustanchor-update August 2005
-
-
- [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
- Rose, "Resource Records for the DNS Security Extensions",
- RFC 4034, March 2005.
-
- [RFC4035] Arends, R., Austein, R., Larson, M., Massey, D., and S.
- Rose, "Protocol Modifications for the DNS Security
- Extensions", RFC 4035, March 2005.
-
-Editorial Comments
-
- [msj1] msj: N.B. This table is preliminary and will be revised to
- match implementation experience. For example, should there
- be a state for "Add hold-down expired, but haven't seen the
- new RRSet"?
-
- [msj2] msj: To be assigned.
-
- [msj3] msj: For discussion: What's the implementation guidance for
- resolvers currently with respect to the non-assigned flag
- bits? If they consider the flag bit when doing key matching
- at the trust anchor, they won't be able to match.
-
-
-Author's Address
-
- Michael StJohns
- Nominum, Inc.
- 2385 Bay Road
- Redwood City, CA 94063
- USA
-
- Phone: +1-301-528-4729
- Email: Mike.StJohns@nominum.com
- URI: www.nominum.com
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-StJohns Expires February 16, 2006 [Page 11]
-
-Internet-Draft trustanchor-update August 2005
-
-
-Intellectual Property Statement
-
- The IETF takes no position regarding the validity or scope of any
- Intellectual Property Rights or other rights that might be claimed to
- pertain to the implementation or use of the technology described in
- this document or the extent to which any license under such rights
- might or might not be available; nor does it represent that it has
- made any independent effort to identify any such rights. Information
- on the procedures with respect to rights in RFC documents can be
- found in BCP 78 and BCP 79.
-
- Copies of IPR disclosures made to the IETF Secretariat and any
- assurances of licenses to be made available, or the result of an
- attempt made to obtain a general license or permission for the use of
- such proprietary rights by implementers or users of this
- specification can be obtained from the IETF on-line IPR repository at
- http://www.ietf.org/ipr.
-
- The IETF invites any interested party to bring to its attention any
- copyrights, patents or patent applications, or other proprietary
- rights that may cover technology that may be required to implement
- this standard. Please address the information to the IETF at
- ietf-ipr@ietf.org.
-
- The IETF has been notified of intellectual property rights claimed in
- regard to some or all of the specification contained in this
- document. For more information consult the online list of claimed
- rights.
-
-
-Disclaimer of Validity
-
- This document and the information contained herein are provided on an
- "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
- OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
- ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
- INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
- INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
- WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
-
-
-Copyright Statement
-
- Copyright (C) The Internet Society (2005). This document is subject
- to the rights, licenses and restrictions contained in BCP 78, and
- except as set forth therein, the authors retain all their rights.
-
-
-
-
-
-StJohns Expires February 16, 2006 [Page 12]
-
-Internet-Draft trustanchor-update August 2005
-
-
-Acknowledgment
-
- Funding for the RFC Editor function is currently provided by the
- Internet Society.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-StJohns Expires February 16, 2006 [Page 13]
-
-
OpenPOWER on IntegriCloud