summaryrefslogtreecommitdiffstats
path: root/contrib/bind9/doc/draft/draft-ietf-dnsext-tkey-renewal-mode-04.txt
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/bind9/doc/draft/draft-ietf-dnsext-tkey-renewal-mode-04.txt')
-rw-r--r--contrib/bind9/doc/draft/draft-ietf-dnsext-tkey-renewal-mode-04.txt1235
1 files changed, 0 insertions, 1235 deletions
diff --git a/contrib/bind9/doc/draft/draft-ietf-dnsext-tkey-renewal-mode-04.txt b/contrib/bind9/doc/draft/draft-ietf-dnsext-tkey-renewal-mode-04.txt
deleted file mode 100644
index c5c3b84..0000000
--- a/contrib/bind9/doc/draft/draft-ietf-dnsext-tkey-renewal-mode-04.txt
+++ /dev/null
@@ -1,1235 +0,0 @@
-
-
-
-
-
-
-DNSEXT Working Group Yuji Kamite
-INTERNET-DRAFT NTT Communications
-<draft-ietf-dnsext-tkey-renewal-mode-04.txt> Masaya Nakayama
-Expires: Aug. 2004 The University of Tokyo
- Feb. 2004
-
-
-
-
- TKEY Secret Key Renewal Mode
-
-
-Status of this Memo
-
- This document is an Internet-Draft and is in full conformance with all
- provisions of Section 10 of RFC2026.
-
- Internet-Drafts are working documents of the Internet Engineering Task
- Force (IETF), its areas, and its working groups. Note that other
- groups may also distribute working documents as Internet-Drafts.
-
- Internet-Drafts are draft documents valid for a maximum of six months
- and may be updated, replaced, or obsoleted by other documents at any
- time. It is inappropriate to use Internet-Drafts as reference
- material or to cite them other than as ``work in progress.''
-
- The list of current Internet-Drafts can be accessed at
- http://www.ietf.org/ietf/1id-abstracts.txt
-
- The list of Internet-Draft Shadow Directories can be accessed at
- http://www.ietf.org/shadow.html
-
-
-Abstract
-
- This document defines a new mode in TKEY and proposes an atomic
- method for changing secret keys used for TSIG periodically.
- Originally, TKEY provides methods of setting up shared secrets other
- than manual exchange, but it cannot control timing of key renewal
- very well though it can add or delete shared keys separately. This
- proposal is a systematical key renewal procedure intended for
- preventing signing DNS messages with old and non-safe keys
- permanently.
-
-
-
-
-
-
-
-
-Kamite, et. al. [Page 1]
-
-INTERNET-DRAFT Feb. 2004
-
-
- Table of Contents
-
-
-1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 3
- 1.1 Defined Words . . . . . . . . . . . . . . . . . . . . . . . . 3
- 1.2 New Format and Assigned Numbers . . . . . . . . . . . . . . . 4
- 1.3 Overview of Secret Key Renewal Mode . . . . . . . . . . . . . 4
-2 Shared Secret Key Renewal . . . . . . . . . . . . . . . . . . . . 5
- 2.1 Key Usage Time Check . . . . . . . . . . . . . . . . . . . . 5
- 2.2 Partial Revocation . . . . . . . . . . . . . . . . . . . . . 6
- 2.3 Key Renewal Message Exchange . . . . . . . . . . . . . . . . 7
- 2.3.1 Query for Key Renewal . . . . . . . . . . . . . . . . . . 7
- 2.3.2 Response for Key Renewal . . . . . . . . . . . . . . . . 7
- 2.3.3 Attributes of Generated Key . . . . . . . . . . . . . . . 8
- 2.3.4 TKEY RR structure . . . . . . . . . . . . . . . . . . . . 8
- 2.4 Key Adoption . . . . . . . . . . . . . . . . . . . . . . . . 10
- 2.4.1 Query for Key Adoption . . . . . . . . . . . . . . . . . 10
- 2.4.2 Response for Key Adoption . . . . . . . . . . . . . . . . 10
- 2.5 Keying Schemes . . . . . . . . . . . . . . . . . . . . . . . 11
- 2.5.1 DH Exchange for Key Renewal . . . . . . . . . . . . . . . 11
- 2.5.2 Server Assigned Keying for Key Renewal . . . . . . . . . 12
- 2.5.3 Resolver Assigned Keying for Key Renewal . . . . . . . . 13
- 2.6 Considerations about Non-compliant Hosts . . . . . . . . . . 14
-3 Secret Storage . . . . . . . . . . . . . . . . . . . . . . . . . 15
-4 Compulsory Key Revocation . . . . . . . . . . . . . . . . . . . . 15
- 4.1 Compulsory Key Revocation by Server . . . . . . . . . . . . . 15
- 4.2 Authentication Methods Considerations . . . . . . . . . . . . 15
-5 Special Considerations for Two Servers' Case . . . . . . . . . . 16
- 5.1 To Cope with Collisions of Renewal Requests . . . . . . . . . 16
-6 Key Name Considerations . . . . . . . . . . . . . . . . . . . . . 17
-7 Example Usage of Secret Key Renewal Mode . . . . . . . . . . . . 17
-8 Security Considerations . . . . . . . . . . . . . . . . . . . . . 20
-9 IANA Considerations . . . . . . . . . . . . . . . . . . . . . . . 20
-10 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . 21
-11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
-Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . . 22
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Kamite, et. al. [Page 2]
-
-INTERNET-DRAFT Feb. 2004
-
-
-1. Introduction
-
- TSIG [RFC2845] provides DNS message integrity and the
- request/transaction authentication by means of message authentication
- codes (MAC). TSIG is a practical solution in view of calculation
- speed and availability. However, TSIG does not have exchanging
- mechanism of shared secret keys between server and resolver, and
- administrators might have to exchange secret keys manually. TKEY
- [RFC2930] is introduced to solve such problem and it can exchange
- secrets for TSIG via networks.
-
- In various modes of TKEY, a server and a resolver can add or delete a
- secret key be means of TKEY message exchange. However, the existing
- TKEY does not care fully about the management of keys which became
- too old, or dangerous after long time usage.
-
- It is ideal that the number of secret which a pair of hosts share
- should be limited only one, because having too many keys for the same
- purpose might not only be a burden to resolvers for managing and
- distinguishing according to servers to query, but also does not seem
- to be safe in terms of storage and protection against attackers.
- Moreover, perhaps holding old keys long time might give attackers
- chances to compromise by scrupulous calculation.
-
- Therefore, when a new shared secret is established by TKEY, the
- previous old secret should be revoked immediately. To accomplish
- this, DNS servers must support a protocol for key renewal. This
- document specifies procedure to refresh secret keys between two hosts
- which is defined within the framework of TKEY, and it is called "TKEY
- Secret Key Renewal Mode".
-
- The key words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", "MAY" and
- "OPTIONAL" in this document are to be interpreted as described in
- [RFC2119].
-
-
-1.1. Defined Words
-
- * Inception Time: Beginning of the shared secret key lifetime. This
- value is determined when the key is generated.
-
- * Expiry Limit: Time limit of the key's validity. This value is
- determined when a new key is generated. After Expiry Limit, server
- and client (resolver) must not authenticate TSIG signed with the key.
- Therefore, Renewal to the next key should be carried out before
- Expiry Limit.
-
- * Partial Revocation Time: Time when server judges the key is too old
-
-
-
-Kamite, et. al. [Page 3]
-
-INTERNET-DRAFT Feb. 2004
-
-
- and must be updated. It must be between Inception Time and Expiry
- Limit. This value is determined by server freely following its
- security policy. e.g., If the time from Inception to Partial
- Revocation is short, renewal will be carried out more often, which
- might be safer.
-
- * Revocation Time: Time when the key becomes invalid and can be
- removed. This value is not determined in advance because it is the
- actual time when revocation is completed.
-
- * Adoption Time: Time when the new key is adopted as the next key
- formally. After Adoption, the key is valid and server and client can
- generate or verify TSIG making use of it. Adoption Time also means
- the time when it becomes possible to remove the previous key, so
- Revocation and Adoption are usually done at the same time.
-
-
- Partial
- Inception Revocation Revocation Expiry Limit
- | | | |
- |----------------|- - - - - - >>|- (revoked) -|
- | | | |
- previous key | | |
- |- - - -|-------------------->> time
- | | new key
- Inception Adoption
-
-
-1.2. New Format and Assigned Numbers
-
- TSIG
- ERROR = (PartialRevoke), TBD
-
- TKEY
- Mode = (server assignment for key renewal), TBD
- Mode = (Diffie-Hellman exchange for key renewal), TBD
- Mode = (resolver assignment for key renewal), TBD
- Mode = (key adoption), TBD
-
-
-1.3. Overview of Secret Key Renewal Mode
-
- When a server receives a query from a client signed with a TSIG key,
- It always checks if the present time is within the range of usage
- duration it considers safe. If it is judged that the key is too old,
- i.e., after Partial Revocation Time, the server comes to be in
- Partial Revocation state about the key, and this key is called
- partially revoked.
-
-
-
-Kamite, et. al. [Page 4]
-
-INTERNET-DRAFT Feb. 2004
-
-
- In this state, if a client sends a normal query (e.g., question about
- A RR) other than TKEY Renewal request with TSIG signed with the old
- key, the server returns an error message to notify that the time to
- renew has come. This is called "PartialRevoke" error message. It is
- server's choice whether it returns PartialRevoke or not. If and only
- if the server is ready for changing its own key, it decides to return
- PartialRevoke.
-
- The client which got this error is able to notice that it is
- necessary to refresh the secret. To make a new shared secret, it
- sends a TKEY Renewal request, in which several keying methods are
- available. It can make use of TSIG authentication signed with the
- partially revoked key mentioned above.
-
- After new secret establishment, the client sends a TKEY Adoption
- request for renewal confirmation. This can also be authenticated with
- the partially revoked key. If this is admitted by the server, the new
- key is formally adopted, and at the same time the corresponding old
- secret is invalidated. Then the client can send the first query again
- signed with the new key.
-
- Key renewal procedure is executed based on two-phase commit
- mechanism. The first phase is the TKEY Renewal request and its
- response, which means preparatory confirmation for key update. The
- second phase is Adoption request and its response. If the server gets
- request and client receives the response successfully, they can
- finish renewal process. If any error happens and renewal process
- fails during these phases, client should roll back to the beginning
- of the first phase, and send TKEY Renewal request again. This
- rollback can be done until the Expiry Limit of the key.
-
-
-2. Shared Secret Key Renewal
-
- Suppose a server and a client agree to change their TSIG keys
- periodically. Key renewal procedure is defined between two hosts.
-
-2.1. Key Usage Time Check
-
- Whenever a server receives a query with TSIG and can find a key that
- is used for signing it, the server checks its Inception Time, Partial
- Revocation Time and Expiry Limit (this information is usually
- memorized by the server).
-
- When the present time is before Inception Time, the server MUST NOT
- verify TSIG with the key, and server acts the same way as when the
- key used by the client is not recognized. It follows [RFC2845] 4.5.1.
-
-
-
-
-Kamite, et. al. [Page 5]
-
-INTERNET-DRAFT Feb. 2004
-
-
- When the present time is equal to Inception Time, or between
- Inception Time and Partial Revocation Time, the behavior of the
- server is the same as when a valid key is found. It follows [RFC2845]
- 4.5.2 and 4.5.3.
-
- When the present time is the same as the Partial Revocation Time, or
- between the Partial Revocation Time and Expiry Limit, the server
- comes to be in Partial Revocation state about the TSIG key and
- behaves according to the next section.
-
- When the present time is the same as the Expiry Time or after it, the
- server MUST NOT verify TSIG with the key, and returns error messages
- in the same way as when the key used by the client is not recognized.
- It follows [RFC2845] 4.5.1.
-
-
-2.2. Partial Revocation
-
- In Partial Revocation state, we say the server has partially revoked
- the key and the key has become a "partially revoked key".
-
- If server has received a query signed with the partially revoked key
- for TKEY Renewal request (See section 2.3.) or Key Adoption request
- (See section 2.4.), then server does proper process following each
- specification. If it is for TKEY key deletion request ([RFC2930]
- 4.2), server MAY process usual deletion operation defined therein.
-
- If server receives other types of query signed with the partially
- revoked key, and both the corresponding MAC and signed TIME are
- verified, then server begins returning answer whose TSIG error code
- is "PartialRevoke" (See section 9.). Server MUST randomly but with
- increasing frequency return PartialRevoke when in the Partial
- Revocation state.
-
- Server can decide when it actually sends PartialRevoke, checking if
- it is appropriate time for renewal. Server MUST NOT return
- PartialRevoke if this is apart long lived TSIG transaction (such as
- AXFR) that started before the Partial Revocation Time.
-
- If the client receives PartialRevoke and understands it, then it MUST
- retry the query with the old key unless a new key has been adopted.
- Client SHOULD start the process to renew the TSIG key. For key
- renewal procedure, see details in Section 2.3 and 2.4.
-
- PartialRevoke period (i.e., time while server returns PartialRevoke
- randomely) SHOULD be small, say 2-5% of key lifetime. This is
- server's choice.
-
-
-
-
-Kamite, et. al. [Page 6]
-
-INTERNET-DRAFT Feb. 2004
-
-
- Server MUST keep track of clients ignoring PartialRevoke, thus
- indicating ignorance of this TKEY mode.
-
- PartialRevoke error messages have the role to inform clients of the
- keys' partial revocation and urge them to send TKEY Renewal requests.
- These error responses MUST be signed with those partial revoked keys
- if the queries are signed with them. They are sent only when the
- signing keys are found to be partially revoked. If the MAC of TSIG
- cannot be verified with the partially revoked keys, servers MUST NOT
- return PartialRevoke error with MAC, but MUST return another error
- such as "BADSIG" without MAC (following [RFC2845] 4.5.3); in other
- words, a server informs its key's partial revocation only when the
- MAC in the received query is valid.
-
-
-2.3. Key Renewal Message Exchange
-
-2.3.1. Query for Key Renewal
-
- If a client has received a PartialRevoke error and authenticated the
- response based on TSIG MAC, it sends a TKEY query for Key Renewal (in
- this document, we call it Renewal request, too.) to the server. The
- request MUST be signed with TSIG or SIG(0) [RFC2931] for
- authentication. If TSIG is selected, the client can sign it with the
- partial revoked key.
-
- Key Renewal can use one of several keying methods which is indicated
- in "Mode" field of TKEY RR, and its message structure is dependent on
- that method.
-
-
-2.3.2. Response for Key Renewal
-
- The server which has received Key Renewal request first tries to
- verify TSIG or SIG(0) accompanying it. If the TSIG is signed and
- verified with the partially revoked key, the request MUST be
- authenticated.
-
- After authentication, server must check existing old key's validity.
- If the partially revoked key indicated in the request TKEY's OldName
- and OldAlgorithm field (See section 2.3.4.) does not exist at the
- server, "BADKEY" [RFC2845] is given in Error field for response. If
- any other error happens, server returns appropriate error messages
- following the specification described in section 2.5. If there are no
- errors, server returns a Key Renewal answer. This answer MUST be
- signed with TSIG or SIG(0) for authentication.
-
- When this answer is successfully returned and no error is detected by
-
-
-
-Kamite, et. al. [Page 7]
-
-INTERNET-DRAFT Feb. 2004
-
-
- client, a new shared secret can be established. The details of
- concrete keying procedure are given in the section 2.5.
-
- Note:
- Sometimes Adoption message and new Renewal request will cross on
- the wire. In this case the newly generated key Adoption message is
- resent.
-
-
-2.3.3. Attributes of Generated Key
-
- As a result of this message exchange, client comes to know the newly
- generated key's attributes such as key's name, Inception Time and
- Expiry Limit. They are decided by the server and told to the client;
- in particular, however, once the server has decided Expiry Limit and
- returned a response, it should obey the decision as far as it can. In
- other words, they SHOULD NOT change time values for checking Expiry
- Limit in the future without any special reason, such as security
- issue like "Emergency Compulsory Revocation" described in section 8.
-
- On the other hand, Partial Revocation Time of this generated key is
- not decided based on the request, and not informed to the client. The
- server can determine any value as long as it is between Inception
- Time and Expiry Limit. However, the period from Inception to Partial
- Revocation SHOULD be fixed as the server side's configuration or be
- set the same as the corresponding old key's one.
-
- Note:
- Even if client sends Key Renewal request though the key described
- in OldName has not been partially revoked yet, server does renewal
- processes. At the moment when the server accepts such requests
- with valid authentication, it MUST forcibly consider the key is
- already partially revoked, that is, the key's Partial Revocation
- Time must be changed into the present time (i.e., the time when
- the server receives the request).
-
-
-2.3.4. TKEY RR structure
-
- TKEY RR for Key Renewal message has the structure given below. In
- principle, format and definition for each field follows [RFC2930].
- Note that each keying scheme sometimes needs different interpretation
- of RDATA field; for detail, see section 2.5.
-
- Field Type Comment
- ------- ------ -------
- NAME domain used for a new key, see below
- TYPE u_int16_t (defined in [RFC2930])
-
-
-
-Kamite, et. al. [Page 8]
-
-INTERNET-DRAFT Feb. 2004
-
-
- CLASS u_int16_t (defined in [RFC2930])
- TTL u_int32_t (defined in [RFC2930])
- RDLEN u_int16_t (defined in [RFC2930])
- RDATA:
- Algorithm: domain algorithm for a new key
- Inception: u_int32_t about the keying material
- Expiration: u_int32_t about the keying material
- Mode: u_int16_t scheme for key agreement
- see section 9.
- Error: u_int16_t see description below
- Key Size: u_int16_t see description below
- Key Data: octet-stream
- Other Size: u_int16_t (defined in [RFC2930])
- size of other data
- Other Data: newly defined: see description below
-
-
- For "NAME" field, both non-root and root name are allowed. It may
- be used for a new key's name in the same manner as [RFC2930] 2.1.
-
- "Algorithm" specifies which algorithm is used for agreed keying
- material, which is used for identification of the next key.
-
- "Inception" and "Expiration" are used for the valid period of
- keying material. The meanings differ somewhat according to whether
- the message is request or answer, and its keying scheme.
-
- "Key Data" has different meanings according to keying schemes.
-
- "Mode" field stores the value in accordance with the keying method,
- and see section 2.5. Servers and clients supporting TKEY Renewal
- method MUST implement "Diffie-Hellman exchange for key renewal"
- scheme. All other modes are OPTIONAL.
-
- "Error" is an extended RCODE which includes "PartialRevoke" value
- too. See section 9.
-
- "Other Data" field has the structure given below. They describe
- attributes of the key to be renewed.
-
- in Other Data filed:
-
- Field Type Comment
- ------- ------ -------
- OldNAME domain name of the old key
- OldAlgorithm domain algorithm of the old key
-
-
-
-
-
-Kamite, et. al. [Page 9]
-
-INTERNET-DRAFT Feb. 2004
-
-
- "OldName" indicates the name of the previous key (usually,
- this is partially revoked key's name that client noticed by
- PartialRevoke answer from server), and "OldAlogirthm"
- indicates its algorithm.
-
-
-2.4. Key Adoption
-
-2.4.1. Query for Key Adoption
-
- After receiving a TKEY Renewal answer, the client gets the same
- secret as the server. Then, it sends a TKEY Adoption request. The
- request's question section's QNAME field is the same as the NAME
- filed of TKEY written below. In additional section, there is one TKEY
- RR that has the structure and values described below.
-
- "NAME" field is the new key's name to be adopted which was already
- generated by Renewal message exchange. "Algorithm" is its
- algorithm. "Inception" means the key's Inception Time, and
- "Expiration" means Expiry Limit.
-
- "Mode" field is the value of "key adoption". See section 9.
-
- "Other Data" field in Adoption has the same structure as that of
- Renewal request message. "OldName" means the previous old key, and
- "OldAlogirthm" means its algorithm.
-
- Key Adoption request MUST be signed with TSIG or SIG(0) for
- authentication. The client can sign TSIG with the previous key. Note
- that until Adoption is finished, the new key is treated as invalid,
- thus it cannot be used for authentication immediately.
-
-
-2.4.2. Response for Key Adoption
-
- The server which has received Adoption request, it verifies TSIG or
- SIG(0) accompanying it. If the TSIG is signed with the partially
- revoked key and can be verified, the message MUST be authenticated.
-
- If the next new key indicated by the request TKEY's "NAME" is not
- present at the server, BADNAME [RFC2845] is given in Error field and
- the error message is returned.
-
- If the next key exists but it has not been adopted formally yet, the
- server confirms the previous key's existence indicated by the
- "OldName" and "OldAlgorithm" field. If it succeeds, the server
- executes Adoption of the next key and Revocation of the previous key.
- Response message duplicates the request's TKEY RR with NOERROR,
-
-
-
-Kamite, et. al. [Page 10]
-
-INTERNET-DRAFT Feb. 2004
-
-
- including "OldName" and "OldAlgorithm" that indicate the revoked key.
-
- If the next key exists but it is already adopted, the server returns
- a response message regardless of the substance of the request TKEY's
- "OldName". In this response, Response TKEY RR has the same data as
- the request's one except as to its "Other Data" that is changed into
- null (i.e., "Other Size" is zero), which is intended for telling the
- client that the previous key name was ignored, and the new key is
- already available.
-
- Client sometimes has to retry Adoption request. Suppose the client
- sent request signed with the partially revoked key, but its response
- did not return successfully (e.g., due to the drop of UDP packet).
- Client will probably retry Adoption request; however, the request
- will be refused in the form of TSIG "BADKEY" error because the
- previous key was already revoked. In this case, client will
- retransmit Adoption request signed with the next key, and expect a
- response which has null "Other Data" for confirming the completion of
- renewal.
-
-
-2.5. Keying Schemes
-
- In Renewal message exchanges, there are no limitations as to which
- keying method is actually used. The specification of keying
- algorithms is independent of the general procedure of Renewal that is
- described in section 2.3.
-
- Now this document specifies three algorithms in this section, but
- other future documents can make extensions defining other methods.
-
-
-2.5.1. DH Exchange for Key Renewal
-
- This scheme is defined as an extended method of [RFC2930] 4.1. This
- specification only describes the difference from it and special
- notice; assume that all other points, such as keying material
- computation, are the exactly same as the specification of [RFC2930]
- 4.1.
-
- Query
- In Renewal request for type TKEY with this mode, there is one TKEY
- RR and one KEY RR in the additional information section. KEY RR is
- the client's Diffie-Hellman public key [RFC2539].
-
- QNAME in question section is the same as that of "NAME" field in
- TKEY RR, i.e., it means the requested new key's name.
-
-
-
-
-Kamite, et. al. [Page 11]
-
-INTERNET-DRAFT Feb. 2004
-
-
- TKEY "Mode" field stores the value of "DH exchange for key
- renewal". See section 9.
-
- TKEY "Inception" and "Expiration" are those requested for the
- keying material, that is, requested usage period of a new key.
-
- TKEY "Key Data" is used as a random, following [RFC2930] 4.1.
-
- Response
- The server which received this request first verifies the TSIG,
- SIG(0) or DNSSEC lookup of KEY RR used. After authentication, the
- old key's existence validity is checked, following section 2.3. If
- any incompatible DH key is found in the request, "BADKEY"
- [RFC2845] is given in Error field for response. "FORMERR" is given
- if the query included no DH KEY.
-
- If there are no errors, the server processes a response according
- to Diffie-Hellman algorithm and returns the answer. In this
- answer, there is one TKEY RR in answer section and KEY RR(s) in
- additional section.
-
- As long as no error has occurred, all values of TKEY are equal to
- that of the request message except TKEY NAME, TKEY RDLEN, RDATA's
- Inception, Expiration, Key Size and Key Data.
-
- TKEY "NAME" field in the answer specifies the name of newly
- produced key which the client MUST use.
-
- TKEY "Inception" and "Expiration" mean the periods of the produced
- key usage. "Inception" is set to be the time when the new key is
- actually generated or the time before it, and it will be regarded
- as Inception Time. "Expiration" is determined by the server, and
- it will be regarded as Expiry Limit.
-
- TKEY "Key Data" is used as an additional nonce, following
- [RFC2930] 4.1.
-
- The resolver supplied Diffie-Hellman KEY RR SHOULD be echoed in
- the additional section and a server Diffie-Hellman KEY RR will
- also be present in the answer section, following [RFC2930] 4.1.
-
-
-2.5.2. Server Assigned Keying for Key Renewal
-
- This scheme is defined as an extended method of [RFC2930] 4.4. This
- specification only describes the difference from it and special
- notice; assume that all other points, such as secret encrypting
- method, are the exactly same as the specification of [RFC2930] 4.4.
-
-
-
-Kamite, et. al. [Page 12]
-
-INTERNET-DRAFT Feb. 2004
-
-
- Query
- In Renewal request for type TKEY with this mode, there is one TKEY
- RR and one KEY RR in the additional information section. KEY RR is
- used in encrypting the response.
-
- QNAME in question section is the same as that of "NAME" field in
- TKEY RR, i.e., it means the requested new key's name.
-
- TKEY "Mode" field stores the value of "server assignment for key
- renewal". See section 9.
-
- TKEY "Inception" and "Expiration" are those requested for the
- keying material, that is, requested usage period of a new key.
-
- TKEY "Key Data" is provided following the specification of
- [RFC2930] 4.4.
-
- Response
- The server which received this request first verifies the TSIG,
- SIG(0) or DNSSEC lookup of KEY RR used. After authentication, the
- old key's existence validity is checked, following section 2.3.
- "FORMERR" is given if the query specified no encryption key.
-
- If there are no errors, the server response contains one TKEY RR
- in the answer section, and echoes the KEY RR provided in the query
- in the additional information section.
-
- TKEY "NAME" field in the answer specifies the name of newly
- produced key which the client MUST use.
-
- TKEY "Inception" and "Expiration" mean the periods of the produced
- key usage. "Inception" is set to be the time when the new key is
- actually generated or the time before it, and it will be regarded
- as Inception Time. "Expiration" is determined by the server, and
- it will be regarded as Expiry Limit.
-
- TKEY "Key Data" is the assigned keying data encrypted under the
- public key in the resolver provided KEY RR, which is the same as
- [RFC2930] 4.4.
-
-
-2.5.3. Resolver Assigned Keying for Key Renewal
-
- This scheme is defined as an extended method of [RFC2930] 4.5. This
- specification only describes the difference from it and special
- notice; assume that all other points, such as secret encrypting
- method, are the exactly same as the specification of [RFC2930] 4.5.
-
-
-
-
-Kamite, et. al. [Page 13]
-
-INTERNET-DRAFT Feb. 2004
-
-
- Query
- In Renewal request for type TKEY with this mode, there is one TKEY
- RR and one KEY RR in the additional information section. TKEY RR
- has the encrypted keying material and KEY RR is the server public
- key used to encrypt the data.
-
- QNAME in question section is the same as that of "NAME" field in
- TKEY RR, i.e., it means the requested new key's name.
-
- TKEY "Mode" field stores the value of "resolver assignment for key
- renewal". See section 9.
-
- TKEY "Inception" and "Expiration" are those requested for the
- keying material, that is, requested usage period of a new key.
-
- TKEY "Key Data" is the encrypted keying material.
-
- Response
- The server which received this request first verifies the TSIG,
- SIG(0) or DNSSEC lookup of KEY RR used. After authentication, the
- old key's existence validity is checked, following section 2.3.
- "FORMERR" is given if the server does not have the corresponding
- private key for the KEY RR that was shown sin the request.
-
- If there are no errors, the server returns a response. The
- response contains a TKEY RR in the answer section to tell the
- shared key's name and its usage time values.
-
- TKEY "NAME" field in the answer specifies the name of newly
- produced key which the client MUST use.
-
- TKEY "Inception" and "Expiration" mean the periods of the produced
- key usage. "Inception" is set to be the time when the new key is
- actually generated or the time before it, and it will be regarded
- as Inception Time. "Expiration" is determined by the server, and
- it will be regarded as Expiry Limit.
-
-
-2.6. Considerations about Non-compliant Hosts
-
- Key Renewal requests and responses must be exchanged between hosts
- which can understand them and do proper processes. PartialRevoke
- error messages will be only ignored if they should be returned to
- non-compliant hosts.
-
- Note that server does not inform actively the necessity of renewal to
- clients, but inform it as responses invoked by client's query.
- Server needs not care whether the PartialRevoke errors has reached
-
-
-
-Kamite, et. al. [Page 14]
-
-INTERNET-DRAFT Feb. 2004
-
-
- client or not. If client has not received yet because of any reasons
- such as packet drops, it will resend the queries, and finally will be
- able to get PartialRevoke information.
-
-
-3. Secret Storage
-
- Every server keeps all secrets and attached information, e.g.,
- Inception Time, Expiry Limit, etc. safely to be able to recover from
- unexpected stop. To accomplish this, formally adopted keys SHOULD be
- memorized not only on memory, but also be stored in the form of some
- files. It will become more secure if they are stored in ecrypted
- form.
-
-
-4. Compulsory Key Revocation
-
-4.1. Compulsory Key Revocation by Server
-
- There is a rare but possible case that although servers have already
- partially revoked keys, clients do not try to send any Renewal
- requests. If this state continues, in the future it will become the
- time of Expiry Limit. After Expiry Limit, the keys will be expired
- and completely removed, so this is called Compulsory Key Revocation
- by server.
-
- If Expiry Limit is too distant from the Partial Revocation Time, then
- even though very long time passes, clients will be able to refresh
- secrets only if they add TSIG signed with those old partially revoked
- keys into requests, which is not safe.
-
- On the other hand, if Expiry Limit is too close to Partial Revocation
- Time, perhaps clients might not be able to notice their keys' Partial
- Revocation by getting "PartialRevoke" errors.
-
- Therefore, servers should set proper Expiry Limit to their keys,
- considering both their keys' safety, and enough time for clients to
- send requests and process renewal.
-
-
-4.2. Authentication Methods Considerations
-
- It might be ideal to provide both SIG(0) and TSIG as authentication
- methods. For example:
-
- A client and a server start SIG(0) authentication at first, to
- establish TSIG shared keys by means of "Query for Diffie-Hellman
- Exchanged Keying" as described in [RFC2930] 4.1. Once they get
-
-
-
-Kamite, et. al. [Page 15]
-
-INTERNET-DRAFT Feb. 2004
-
-
- shared secret, they keep using TSIG for queries and responses.
- After a while the server returns a "ParitalRevoke" error and they
- begin a key renewal process. Both TSIG signed with partially
- revoked keys and SIG(0) are okay for authentication, but TSIG would
- be easier to use considering calculation efficiency.
-
- Suppose now client is halted for long time with some reason.
- Because server does not execute any renewal process, it will
- finally do Compulsory Revocation. Even if client restarts and sends
- a key Renewal request, it will fail because old key is already
- deleted at server.
-
- At this moment, however, if client also uses SIG(0) as another
- authentication method, it can make a new shared key again and
- recover successfully by sending "Query for Diffie-Hellman Exchanged
- Keying" with SIG(0).
-
-
-5. Special Considerations for Two servers' Case
-
- This section refers to the case where both hosts are DNS servers
- which can act as full resolvers as well and using one shared key
- only. If one server (called Server A) wants to refresh a shared key
- (called "Key A-B"), it will await a TKEY Renewal request from the
- other server (called Server B). However, perhaps Server A wants to
- refresh the key right now.
-
- In this case, Server A is allowed to send a Renewal request to Server
- B, if Server A knows the Key A-B is too old and wants to renew it
- immediately.
-
- Note that the initiative in key renewal belongs to Server A because
- it can notice the Partial Revocation Time and decide key renewal. If
- Server B has information about Partial Revocation Time as well, it
- can also decide for itself to send Renewal request to Server A.
- However, it is not essential for both two servers have information
- about key renewal timing.
-
-5.1. To Cope with Collisions of Renewal Requests
-
- At least one of two hosts which use Key Renewal must know their key
- renewal information such as Partial Revocation Time. It is okay that
- both hosts have it.
-
- Provided that both two servers know key renewal timing information,
- there is possibility for them to begin partial revocation and sending
- Renewal requests to each other at the same time. Such collisions will
- not happen so often because Renewal requests are usually invoked when
-
-
-
-Kamite, et. al. [Page 16]
-
-INTERNET-DRAFT Feb. 2004
-
-
- hosts want to send queries, but it is possible.
-
- When one of two servers tries to send Renewal requests, it MUST
- protect old secrets that it has partially revoked and prevent it from
- being refreshed by any requests from the other server (i.e., it must
- lock the old secret during the process of renewal). While the server
- is sending Renewal requests and waiting responses, it ignores the
- other server's Renewal requests.
-
- Therefore, servers might fail to change secrets by means of their own
- requests to others. After failure they will try to resend, but they
- should wait for random delays by the next retries. If they get any
- Renewal requests from others while they are waiting, their shared
- keys may be refreshed, then they do not need to send any Renewal
- requests now for themselves.
-
-
-6. Key Name Considerations
-
- Since both servers and clients have only to distinguish new secrets
- and old ones, keys' names do not need to be specified strictly.
- However, it is recommended that some serial number or key generation
- time be added to the name and that the names of keys between the same
- pair of hosts should have some common labels among their keys. For
- example, suppose A.example.com. and B.example.com. share the key
- "<serial number>.A.example.com.B.example.com." such as
- "10010.A.example.com.B.example.com.". After key renewal, they change
- their secret and name into "10011.A.example.com.B.example.com."
-
- Servers and clients must be able to use keys properly for each query.
- Because TSIG secret keys themselves do not have any particular IDs to
- be distinguished and would be identified by their names and
- algorithm, it must be understood correctly what keys are refreshed.
-
-
-7. Example Usage of Secret Key Renewal Mode
-
- This is an example of Renewal mode usage where a Server,
- server.example.com, and a Client, client.exmple.com have an initial
- shared secret key named "00.client.example.com.server.example.com".
-
- (1) The time values for key
- "00.client.example.com.server.example.com" was set as follows:
- Inception Time is at 1:00, Expiry Limit is at 21:00.
-
- (2) At Server, renewal time has been set: Partial Revocation Time
- is at 20:00.
-
-
-
-
-Kamite, et. al. [Page 17]
-
-INTERNET-DRAFT Feb. 2004
-
-
- (3) Suppose the present time is 19:55. If Client sends a query
- signed with key "00.client.example.com.server.example.com" to ask
- the IP address of "www.example.com", finally it will get a proper
- answer from Server with valid TSIG (NOERROR).
-
- (4) At 20:05. Client sends a query to ask the IP address of
- "www2.example.com". It is signed with key
- "00.client.example.com.server.example.com". Server returns an
- answer for the IP address. However, server has begun retuning
- PartialRevoke Error randomely. This answer includes valid TSIG MAC
- signed with "00.client.example.com.server.example.com", and its
- Error Code indicates PartialRevoke. Client understands that the
- current key is partially revoked.
-
- (5) At 20:06. Client sends a Renewal request to Server. This
- request is signed with key
- "00.client.example.com.server.example.com". It includes data such
- as:
-
- Question Section:
- QNAME = 01.client.example.com. (Client can set this freely)
- TYPE = TKEY
-
- Additional Section:
- 01.client.example.com. TKEY
- Algorithm = hmac-md5-sig-alg.reg.int.
- Inception = (value meaning 20:00)
- Expiration = (value meaning next day's 16:00)
- Mode = (DH exchange for key renewal)
- OldName = 00.client.example.com.server.example.com.
- OldAlgorithm = hmac-md5-sig-alg.reg.int.
-
- Additional Section also contains a KEY RR for DH and a TSIG RR.
-
- (6) As soon as Server receives this request, it verifies TSIG. It
- is signed with the partially revoked key
- "00.client.example.com.server.example.com". and Server accepts the
- request. It creates a new key by Diffie-Hellman calculation and
- returns an answer which includes data such as:
-
- Answer Section:
- 01.client.example.com.server.example.com. TKEY
- Algorithm = hmac-md5-sig-alg.reg.int.
- Inception = (value meaning 20:00)
- Expiration = (value meaning next day's 16:00)
- Mode = (DH exchange for key renewal)
- OldName = 00.client.example.com.server.example.com.
- OldAlgorithm = hmac-md5-sig-alg.reg.int.
-
-
-
-Kamite, et. al. [Page 18]
-
-INTERNET-DRAFT Feb. 2004
-
-
- Answer Section also contains KEY RRs for DH.
-
- Additional Section also contains a TSIG RR.
- This response is signed with key
- "00.client.example.com.server.example.com" without error.
-
- At the same time, Server decides to set the Partial Revocation Time
- of this new key "01.client.example.com.server.example.com." as next
- day's 15:00.
-
- (7) Client gets the response and checks TSIG MAC, and calculates
- Diffie-Hellman. It will get a new key, and it has been named
- "01.client.example.com.server.example.com" by Server.
-
- (8) At 20:07. Client sends an Adoption request to Server. This
- request is signed with the previous key
- "00.client.example.com.server.example.com". It includes:
-
- Question Section:
- QNAME = 01.client.example.com.server.example.com.
- TYPE = TKEY
-
- Additional Section:
- 01.client.example.com.server.example.com. TKEY
- Algorithm = hmac-md5-sig-alg.reg.int.
- Inception = (value meaning 20:00)
- Expiration = (value meaning next day's 16:00)
- Mode = (key adoption)
- OldName = 00.client.example.com.server.example.com.
- OldAlgorithm = hmac-md5-sig-alg.reg.int.
-
- Additional Section also contains a TSIG RR.
-
- (9) Server verifies the query's TSIG. It is signed with the
- previous key and authenticated. It returns a response whose TKEY RR
- is the same as the request's one. The response is signed with key
- "00.client.example.com.server.example.com.". As soon as the
- response is sent, Server revokes and removes the previous key. At
- the same time, key "01.client.example.com.server.example.com." is
- validated.
-
- (10) Client acknowledges the success of Adoption by receiving the
- response. Then, it retries to send an original question about
- "www2.example.com". It is signed with the adopted key
- "01.client.example.com.server.example.com", so Server authenticates
- it and returns an answer.
-
-
-
-
-
-Kamite, et. al. [Page 19]
-
-INTERNET-DRAFT Feb. 2004
-
-
- (11) This key is used until next day's 15:00. After that, it will
- be partially revoked again.
-
-
-8. Security Considerations
-
- This document considers about how to refresh shared secret. Secret
- changed by this method is used at servers in support of TSIG
- [RFC2845].
-
- [RFC2104] says that current attacks to HMAC do not indicate a
- specific recommended frequency for key changes but periodic key
- refreshment is a fundamental security practice that helps against
- potential weaknesses of the function and keys, and limits the damage
- of an exposed key. TKEY Secret Key Renewal provides the method of
- periodical key refreshment.
-
- In TKEY Secret Key Renewal, clients need to send two requests
- (Renewal and Adoption) and spend time to finish their key renewal
- processes. Thus the usage period of secrets should be considered
- carefully based on both TKEY processing performance and security.
-
- This document specifies the procedure of periodical key renewal, but
- actually there is possibility for servers to have no choice other
- than revoking their secret keys immediately especially when the keys
- are found to be compromised by attackers. This is called "Emergency
- Compulsory Revocation". For example, suppose the original Expiry
- Limit was set at 21:00, Partial Revocation Time at 20:00 and
- Inception Time at 1:00. if at 11:00 the key is found to be
- compromised, the server sets Expiry Limit forcibly to be 11:00 or
- before it.
-
- Consequently, once Compulsory Revocation (See section 4.) is carried
- out, normal renewal process described in this document cannot be done
- any more as far as the key is concerned. However, after such
- accidents happened, the two hosts are able to establish secret keys
- and begin renewal procedure only if they have other (non-compromised)
- shared TSIG keys or safe SIG(0) keys for the authentication of
- initial secret establishment such as Diffie-Hellman Exchanged Keying.
-
-
-9. IANA Considerations
-
- IANA needs to allocate a value for "DH exchange for key renewal",
- "server assignment for key renewal", "resolver assignment for key
- renewal" and "key adoption" in the mode filed of TKEY. It also needs
- to allocate a value for "PartialRevoke" from the extended RCODE
- space.
-
-
-
-Kamite, et. al. [Page 20]
-
-INTERNET-DRAFT Feb. 2004
-
-
-10. Acknowledgement
-
- The authors would like to thank Olafur Gudmundsson, whose helpful
- input and comments contributed greatly to this document.
-
-
-11. References
-
-[RFC2104]
- H. Krawczyk, M.Bellare, R. Canetti, "Keyed-Hashing for Message
- Authentication", RFC2104, February 1997.
-
-[RFC2119]
- Bradner, S., "Key words for use in RFCs to Indicate Requirement
- Levels", RFC 2119, March 1997.
-
-[RFC2539]
- D. Eastlake 3rd, "Storage of Diffie-Hellman Keys in the Domain Name
- System (DNS)", RFC 2539, March 1999.
-
-[RFC2845]
- Vixie, P., Gudmundsson, O., Eastlake, D. and B. Wellington,
- "Secret Key Transaction Authentication for DNS (TSIG)", RFC 2845,
- May 2000.
-
-[RFC2930]
- D. Eastlake 3rd, ``Secret Key Establishment for DNS (TKEY RR)'',
- RFC 2930, September 2000.
-
-[RFC2931]
- D. Eastlake 3rd, "DNS Request and Transaction Signatures (SIG(0)s
- )", RFC 2931, September 2000.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Kamite, et. al. [Page 21]
-
-INTERNET-DRAFT Feb. 2004
-
-
-Authors' Addresses
-
- Yuji Kamite
- NTT Communications Corporation
- Tokyo Opera City Tower
- 3-20-2 Nishi Shinjuku, Shinjuku-ku, Tokyo
- 163-1421, Japan
- EMail: y.kamite@ntt.com
-
-
- Masaya Nakayama
- Information Technology Center, The University of Tokyo
- 2-11-16 Yayoi, Bunkyo-ku, Tokyo
- 113-8658, Japan
- EMail: nakayama@nc.u-tokyo.ac.jp
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Kamite, et. al. [Page 22]
-
OpenPOWER on IntegriCloud