summaryrefslogtreecommitdiffstats
path: root/contrib/bind9/doc/draft/draft-ietf-dnsext-dhcid-rr-08.txt
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/bind9/doc/draft/draft-ietf-dnsext-dhcid-rr-08.txt')
-rw-r--r--contrib/bind9/doc/draft/draft-ietf-dnsext-dhcid-rr-08.txt561
1 files changed, 0 insertions, 561 deletions
diff --git a/contrib/bind9/doc/draft/draft-ietf-dnsext-dhcid-rr-08.txt b/contrib/bind9/doc/draft/draft-ietf-dnsext-dhcid-rr-08.txt
deleted file mode 100644
index 0977661..0000000
--- a/contrib/bind9/doc/draft/draft-ietf-dnsext-dhcid-rr-08.txt
+++ /dev/null
@@ -1,561 +0,0 @@
-
-
-DNSEXT M. Stapp
-Internet-Draft Cisco Systems, Inc.
-Expires: January 14, 2005 T. Lemon
- A. Gustafsson
- Nominum, Inc.
- July 16, 2004
-
-
- A DNS RR for Encoding DHCP Information (DHCID RR)
- <draft-ietf-dnsext-dhcid-rr-08.txt>
-
-Status of this Memo
-
- This document is an Internet-Draft and is subject to all provisions
- of section 3 of RFC 3667. By submitting this Internet-Draft, each
- author represents that any applicable patent or other IPR claims of
- which he or she is aware have been or will be disclosed, and any of
- which he or she become aware will be disclosed, in accordance with
- RFC 3668.
-
- Internet-Drafts are working documents of the Internet Engineering
- Task Force (IETF), its areas, and its working groups. Note that
- other groups may also distribute working documents as
- Internet-Drafts.
-
- Internet-Drafts are draft documents valid for a maximum of six months
- and may be updated, replaced, or obsoleted by other documents at any
- time. It is inappropriate to use Internet-Drafts as reference
- material or to cite them other than as "work in progress."
-
- The list of current Internet-Drafts can be accessed at http://
- www.ietf.org/ietf/1id-abstracts.txt.
-
- The list of Internet-Draft Shadow Directories can be accessed at
- http://www.ietf.org/shadow.html.
-
- This Internet-Draft will expire on January 14, 2005.
-
-Copyright Notice
-
- Copyright (C) The Internet Society (2004). All Rights Reserved.
-
-Abstract
-
- It is possible for multiple DHCP clients to attempt to update the
- same DNS FQDN as they obtain DHCP leases. Whether the DHCP server or
- the clients themselves perform the DNS updates, conflicts can arise.
- To resolve such conflicts, "Resolution of DNS Name Conflicts" [1]
- proposes storing client identifiers in the DNS to unambiguously
-
-
-
-Stapp, et al. Expires January 14, 2005 [Page 1]
-
-Internet-Draft The DHCID RR July 2004
-
-
- associate domain names with the DHCP clients to which they refer.
- This memo defines a distinct RR type for this purpose for use by DHCP
- clients and servers, the "DHCID" RR.
-
-Table of Contents
-
- 1. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3
- 2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
- 3. The DHCID RR . . . . . . . . . . . . . . . . . . . . . . . . . 3
- 3.1 DHCID RDATA format . . . . . . . . . . . . . . . . . . . . 4
- 3.2 DHCID Presentation Format . . . . . . . . . . . . . . . . 4
- 3.3 The DHCID RR Type Codes . . . . . . . . . . . . . . . . . 4
- 3.4 Computation of the RDATA . . . . . . . . . . . . . . . . . 4
- 3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 5
- 3.5.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . 6
- 3.5.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . 6
- 4. Use of the DHCID RR . . . . . . . . . . . . . . . . . . . . . 6
- 5. Updater Behavior . . . . . . . . . . . . . . . . . . . . . . . 6
- 6. Security Considerations . . . . . . . . . . . . . . . . . . . 7
- 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 7
- 8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 7
- 9. References . . . . . . . . . . . . . . . . . . . . . . . . . . 8
- 9.1 Normative References . . . . . . . . . . . . . . . . . . . . 8
- 9.2 Informative References . . . . . . . . . . . . . . . . . . . 8
- Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . 9
- Intellectual Property and Copyright Statements . . . . . . . . 10
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Stapp, et al. Expires January 14, 2005 [Page 2]
-
-Internet-Draft The DHCID RR July 2004
-
-
-1. Terminology
-
- The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
- "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
- document are to be interpreted as described in RFC 2119 [2].
-
-2. Introduction
-
- A set of procedures to allow DHCP [7] clients and servers to
- automatically update the DNS (RFC 1034 [3], RFC 1035 [4]) is proposed
- in "Resolution of DNS Name Conflicts" [1].
-
- Conflicts can arise if multiple DHCP clients wish to use the same DNS
- name. To resolve such conflicts, "Resolution of DNS Name Conflicts"
- [1] proposes storing client identifiers in the DNS to unambiguously
- associate domain names with the DHCP clients using them. In the
- interest of clarity, it is preferable for this DHCP information to
- use a distinct RR type. This memo defines a distinct RR for this
- purpose for use by DHCP clients or servers, the "DHCID" RR.
-
- In order to avoid exposing potentially sensitive identifying
- information, the data stored is the result of a one-way MD5 [5] hash
- computation. The hash includes information from the DHCP client's
- REQUEST message as well as the domain name itself, so that the data
- stored in the DHCID RR will be dependent on both the client
- identification used in the DHCP protocol interaction and the domain
- name. This means that the DHCID RDATA will vary if a single client
- is associated over time with more than one name. This makes it
- difficult to 'track' a client as it is associated with various domain
- names.
-
- The MD5 hash algorithm has been shown to be weaker than the SHA-1
- algorithm; it could therefore be argued that SHA-1 is a better
- choice. However, SHA-1 is significantly slower than MD5. A
- successful attack of MD5's weakness does not reveal the original data
- that was used to generate the signature, but rather provides a new
- set of input data that will produce the same signature. Because we
- are using the MD5 hash to conceal the original data, the fact that an
- attacker could produce a different plaintext resulting in the same
- MD5 output is not significant concern.
-
-3. The DHCID RR
-
- The DHCID RR is defined with mnemonic DHCID and type code [TBD]. The
- DHCID RR is only defined in the IN class. DHCID RRs cause no
- additional section processing. The DHCID RR is not a singleton type.
-
-
-
-
-
-Stapp, et al. Expires January 14, 2005 [Page 3]
-
-Internet-Draft The DHCID RR July 2004
-
-
-3.1 DHCID RDATA format
-
- The RDATA section of a DHCID RR in transmission contains RDLENGTH
- bytes of binary data. The format of this data and its interpretation
- by DHCP servers and clients are described below.
-
- DNS software should consider the RDATA section to be opaque. DHCP
- clients or servers use the DHCID RR to associate a DHCP client's
- identity with a DNS name, so that multiple DHCP clients and servers
- may deterministically perform dynamic DNS updates to the same zone.
- From the updater's perspective, the DHCID resource record RDATA
- consists of a 16-bit identifier type, in network byte order, followed
- by one or more bytes representing the actual identifier:
-
- < 16 bits > DHCP identifier used
- < n bytes > MD5 digest
-
-
-3.2 DHCID Presentation Format
-
- In DNS master files, the RDATA is represented as a single block in
- base 64 encoding identical to that used for representing binary data
- in RFC 2535 [8]. The data may be divided up into any number of white
- space separated substrings, down to single base 64 digits, which are
- concatenated to form the complete RDATA. These substrings can span
- lines using the standard parentheses.
-
-3.3 The DHCID RR Type Codes
-
- The DHCID RR Type Code specifies what data from the DHCP client's
- request was used as input into the hash function. The type codes are
- defined in a registry maintained by IANA, as specified in Section 7.
- The initial list of assigned values for the type code is:
-
- 0x0000 = htype, chaddr from a DHCPv4 client's DHCPREQUEST [7].
- 0x0001 = The data portion from a DHCPv4 client's Client Identifier
- option [9].
- 0x0002 = The client's DUID (i.e., the data portion of a DHCPv6
- client's Client Identifier option [10] or the DUID field from a
- DHCPv4 client's Client Identifier option [12]).
-
- 0x0003 - 0xfffe = Available to be assigned by IANA.
-
- 0xffff = RESERVED
-
-3.4 Computation of the RDATA
-
- The DHCID RDATA is formed by concatenating the two type bytes with
-
-
-
-Stapp, et al. Expires January 14, 2005 [Page 4]
-
-Internet-Draft The DHCID RR July 2004
-
-
- some variable-length identifying data.
-
- < type > < data >
-
- The RDATA for all type codes other than 0xffff, which is reserved for
- future expansion, is formed by concatenating the two type bytes and a
- 16-byte MD5 hash value. The input to the hash function is defined to
- be:
-
- data = MD5(< identifier > < FQDN >)
-
- The FQDN is represented in the buffer in unambiguous canonical form
- as described in RFC 2535 [8], section 8.1. The type code and the
- identifier are related as specified in Section 3.3: the type code
- describes the source of the identifier.
-
- When the updater is using the client's link-layer address as the
- identifier, the first two bytes of the DHCID RDATA MUST be zero. To
- generate the rest of the resource record, the updater computes a
- one-way hash using the MD5 algorithm across a buffer containing the
- client's network hardware type, link-layer address, and the FQDN
- data. Specifically, the first byte of the buffer contains the
- network hardware type as it appeared in the DHCP 'htype' field of the
- client's DHCPREQUEST message. All of the significant bytes of the
- chaddr field in the client's DHCPREQUEST message follow, in the same
- order in which the bytes appear in the DHCPREQUEST message. The
- number of significant bytes in the 'chaddr' field is specified in the
- 'hlen' field of the DHCPREQUEST message. The FQDN data, as specified
- above, follows.
-
- When the updater is using the DHCPv4 Client Identifier option sent by
- the client in its DHCPREQUEST message, the first two bytes of the
- DHCID RR MUST be 0x0001, in network byte order. The rest of the
- DHCID RR MUST contain the results of computing an MD5 hash across the
- payload of the option, followed by the FQDN. The payload of the
- option consists of the bytes of the option following the option code
- and length.
-
- When the updater is using the DHCPv6 DUID sent by the client in its
- REQUEST message, the first two bytes of the DHCID RR MUST be 0x0002,
- in network byte order. The rest of the DHCID RR MUST contain the
- results of computing an MD5 hash across the payload of the option,
- followed by the FQDN. The payload of the option consists of the
- bytes of the option following the option code and length.
-
-3.5 Examples
-
-
-
-
-
-Stapp, et al. Expires January 14, 2005 [Page 5]
-
-Internet-Draft The DHCID RR July 2004
-
-
-3.5.1 Example 1
-
- A DHCP server allocating the IPv4 address 10.0.0.1 to a client with
- Ethernet MAC address 01:02:03:04:05:06 using domain name
- "client.example.com" uses the client's link-layer address to identify
- the client. The DHCID RDATA is composed by setting the two type
- bytes to zero, and performing an MD5 hash computation across a buffer
- containing the Ethernet MAC type byte, 0x01, the six bytes of MAC
- address, and the domain name (represented as specified in Section
- 3.4).
-
- client.example.com. A 10.0.0.1
- client.example.com. DHCID AAAUMru0ZM5OK/PdVAJgZ/HU
-
-
-3.5.2 Example 2
-
- A DHCP server allocates the IPv4 address 10.0.12.99 to a client which
- included the DHCP client-identifier option data 01:07:08:09:0a:0b:0c
- in its DHCP request. The server updates the name "chi.example.com"
- on the client's behalf, and uses the DHCP client identifier option
- data as input in forming a DHCID RR. The DHCID RDATA is formed by
- setting the two type bytes to the value 0x0001, and performing an MD5
- hash computation across a buffer containing the seven bytes from the
- client-id option and the FQDN (represented as specified in Section
- 3.4).
-
- chi.example.com. A 10.0.12.99
- chi.example.com. DHCID AAHdd5jiQ3kEjANDm82cbObk\012
-
-
-4. Use of the DHCID RR
-
- This RR MUST NOT be used for any purpose other than that detailed in
- "Resolution of DNS Name Conflicts" [1]. Although this RR contains
- data that is opaque to DNS servers, the data must be consistent
- across all entities that update and interpret this record.
- Therefore, new data formats may only be defined through actions of
- the DHC Working Group, as a result of revising [1].
-
-5. Updater Behavior
-
- The data in the DHCID RR allows updaters to determine whether more
- than one DHCP client desires to use a particular FQDN. This allows
- site administrators to establish policy about DNS updates. The DHCID
- RR does not establish any policy itself.
-
- Updaters use data from a DHCP client's request and the domain name
-
-
-
-Stapp, et al. Expires January 14, 2005 [Page 6]
-
-Internet-Draft The DHCID RR July 2004
-
-
- that the client desires to use to compute a client identity hash, and
- then compare that hash to the data in any DHCID RRs on the name that
- they wish to associate with the client's IP address. If an updater
- discovers DHCID RRs whose RDATA does not match the client identity
- that they have computed, the updater SHOULD conclude that a different
- client is currently associated with the name in question. The
- updater SHOULD then proceed according to the site's administrative
- policy. That policy might dictate that a different name be selected,
- or it might permit the updater to continue.
-
-6. Security Considerations
-
- The DHCID record as such does not introduce any new security problems
- into the DNS. In order to avoid exposing private information about
- DHCP clients to public scrutiny, a one-way hash is used to obscure
- all client information. In order to make it difficult to 'track' a
- client by examining the names associated with a particular hash
- value, the FQDN is included in the hash computation. Thus, the RDATA
- is dependent on both the DHCP client identification data and on each
- FQDN associated with the client.
-
- Administrators should be wary of permitting unsecured DNS updates to
- zones which are exposed to the global Internet. Both DHCP clients
- and servers SHOULD use some form of update authentication (e.g., TSIG
- [11]) when performing DNS updates.
-
-7. IANA Considerations
-
- IANA is requested to allocate an RR type number for the DHCID record
- type.
-
- This specification defines a new number-space for the 16-bit type
- codes associated with the DHCID RR. IANA is requested to establish a
- registry of the values for this number-space.
-
- Three initial values are assigned in Section 3.3, and the value
- 0xFFFF is reserved for future use. New DHCID RR type codes are
- tentatively assigned after the specification for the associated type
- code, published as an Internet Draft, has received expert review by a
- designated expert. The final assignment of DHCID RR type codes is
- through Standards Action, as defined in RFC 2434 [6].
-
-8. Acknowledgements
-
- Many thanks to Josh Littlefield, Olafur Gudmundsson, Bernie Volz, and
- Ralph Droms for their review and suggestions.
-
-
-
-
-
-Stapp, et al. Expires January 14, 2005 [Page 7]
-
-Internet-Draft The DHCID RR July 2004
-
-
-9. References
-
-9.1 Normative References
-
- [1] Stapp, M. and B. Volz, "Resolution of DNS Name Conflicts Among
- DHCP Clients (draft-ietf-dhc-dns-resolution-*)", July 2004.
-
- [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
- Levels", BCP 14, RFC 2119, March 1997.
-
- [3] Mockapetris, P., "Domain names - concepts and facilities", STD
- 13, RFC 1034, November 1987.
-
- [4] Mockapetris, P., "Domain names - implementation and
- specification", STD 13, RFC 1035, November 1987.
-
- [5] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April
- 1992.
-
- [6] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
- Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.
-
-9.2 Informative References
-
- [7] Droms, R., "Dynamic Host Configuration Protocol", RFC 2131,
- March 1997.
-
- [8] Eastlake, D., "Domain Name System Security Extensions", RFC
- 2535, March 1999.
-
- [9] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
- Extensions", RFC 2132, March 1997.
-
- [10] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C. and M.
- Carney, "Dynamic Host Configuration Protocol for IPv6
- (DHCPv6)", RFC 3315, July 2003.
-
- [11] Vixie, P., Gudmundsson, O., Eastlake, D. and B. Wellington,
- "Secret Key Transaction Authentication for DNS (TSIG)", RFC
- 2845, May 2000.
-
- [12] Lemon, T. and B. Sommerfeld, "Node-Specific Client Identifiers
- for DHCPv4 (draft-ietf-dhc-3315id-for-v4-*)", February 2004.
-
-
-
-
-
-
-
-
-Stapp, et al. Expires January 14, 2005 [Page 8]
-
-Internet-Draft The DHCID RR July 2004
-
-
-Authors' Addresses
-
- Mark Stapp
- Cisco Systems, Inc.
- 1414 Massachusetts Ave.
- Boxborough, MA 01719
- USA
-
- Phone: 978.936.1535
- EMail: mjs@cisco.com
-
-
- Ted Lemon
- Nominum, Inc.
- 950 Charter St.
- Redwood City, CA 94063
- USA
-
- EMail: mellon@nominum.com
-
-
- Andreas Gustafsson
- Nominum, Inc.
- 950 Charter St.
- Redwood City, CA 94063
- USA
-
- EMail: gson@nominum.com
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Stapp, et al. Expires January 14, 2005 [Page 9]
-
-Internet-Draft The DHCID RR July 2004
-
-
-Intellectual Property Statement
-
- The IETF takes no position regarding the validity or scope of any
- Intellectual Property Rights or other rights that might be claimed to
- pertain to the implementation or use of the technology described in
- this document or the extent to which any license under such rights
- might or might not be available; nor does it represent that it has
- made any independent effort to identify any such rights. Information
- on the procedures with respect to rights in RFC documents can be
- found in BCP 78 and BCP 79.
-
- Copies of IPR disclosures made to the IETF Secretariat and any
- assurances of licenses to be made available, or the result of an
- attempt made to obtain a general license or permission for the use of
- such proprietary rights by implementers or users of this
- specification can be obtained from the IETF on-line IPR repository at
- http://www.ietf.org/ipr.
-
- The IETF invites any interested party to bring to its attention any
- copyrights, patents or patent applications, or other proprietary
- rights that may cover technology that may be required to implement
- this standard. Please address the information to the IETF at
- ietf-ipr@ietf.org.
-
-
-Disclaimer of Validity
-
- This document and the information contained herein are provided on an
- "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
- OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
- ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
- INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
- INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
- WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
-
-
-Copyright Statement
-
- Copyright (C) The Internet Society (2004). This document is subject
- to the rights, licenses and restrictions contained in BCP 78, and
- except as set forth therein, the authors retain all their rights.
-
-
-Acknowledgment
-
- Funding for the RFC Editor function is currently provided by the
- Internet Society.
-
-
-
-
-Stapp, et al. Expires January 14, 2005 [Page 10]
-
-
OpenPOWER on IntegriCloud