diff options
Diffstat (limited to 'contrib/bind9/doc/draft/draft-baba-dnsext-acl-reqts-01.txt')
-rw-r--r-- | contrib/bind9/doc/draft/draft-baba-dnsext-acl-reqts-01.txt | 336 |
1 files changed, 0 insertions, 336 deletions
diff --git a/contrib/bind9/doc/draft/draft-baba-dnsext-acl-reqts-01.txt b/contrib/bind9/doc/draft/draft-baba-dnsext-acl-reqts-01.txt deleted file mode 100644 index 1030e57..0000000 --- a/contrib/bind9/doc/draft/draft-baba-dnsext-acl-reqts-01.txt +++ /dev/null @@ -1,336 +0,0 @@ - - - - -Internet-Draft T. Baba -Expires: March 11, 2004 NTT Data - September 11, 2003 - - - Requirements for Access Control in Domain Name Systems - draft-baba-dnsext-acl-reqts-01.txt - -Status of this Memo - - This document is an Internet-Draft and is subject to all provisions - of Section 10 of RFC2026. - - Internet-Drafts are working documents of the Internet Engineering - Task Force (IETF), its areas, and its working groups. Note that - other groups may also distribute working documents as Internet- - Drafts. - - Internet-Drafts are draft documents valid for a maximum of six months - and may be updated, replaced, or obsoleted by other documents at any - time. It is inappropriate to use Internet-Drafts as reference - material or to cite them other than as "work in progress." - - The list of current Internet-Drafts can be accessed at - http://www.ietf.org/1id-abstracts.html - - The list of Internet-Draft Shadow Directories can be accessed at - http://www.ietf.org/shadow.html - - Distribution of this memo is unlimited. - - This Internet-Draft will expire on March 11, 2004. - -Abstract - - This document describes the requirements for access control - mechanisms in the Domain Name System (DNS), which authenticate - clients and then allow or deny access to resource records in the - zone according to the access control list (ACL). - -1. Introduction - - The Domain Name System (DNS) is a hierarchical, distributed, highly - available database used for bi-directional mapping between domain - names and IP addresses, for email routing, and for other information - [RFC1034, 1035]. DNS security extensions (DNSSEC) have been defined - to authenticate the data in DNS and provide key distribution services - using SIG, KEY, and NXT resource records (RRs) [RFC2535]. - - - -Baba Expires March 11, 2004 [Page 1] - -Internet-Draft DNS Access Control Requirements September 2003 - - - At the 28th IETF Meeting in Houston in 1993, DNS security design team - started a discussion about DNSSEC and agreed to accept the assumption - that "DNS data is public". Accordingly, confidentiality for queries - or responses is not provided by DNSSEC, nor are any sort of access - control lists or other means to differentiate inquirers. However, - about ten years has passed, access control in DNS has been more - important than before. Currently, new RRs are proposed to add new - functionality to DNS such as ENUM [RFC2916]. Such new RRs may - contain private information. Thus, DNS access control will be - needed. - - Furthermore, with DNS access control mechanism, access from - unauthorized clients can be blocked when they perform DNS name - resolution. Thus, for example, Denial of Service (DoS) attacks - against a server used by a closed user group can be prevented using - this mechanism if IP address of the server is not revealed by other - sources. - - This document describes the requirements for access control - mechanisms in DNS. - -2. Terminology - - AC-aware client - This is the client that understands the DNS access control - extensions. This client may be an end host which has a stub - resolver, or a cashing/recursive name server which has a - full-service resolver. - - AC-aware server - This is the authoritative name server that understands the DNS - access control extensions. - - ACE - An Access Control Entry. This is the smallest unit of access - control policy. It grants or denies a given set of access - rights to a set of principals. An ACE is a component of an ACL, - which is associated with a resource. - - ACL - An Access Control List. This contains all of the access control - policies which are directly associated with a particular - resource. These policies are expressed as ACEs. - - Client - A program or host which issues DNS requests and accepts its - responses. A client may be an end host or a cashing/recursive name - server. - - - -Baba Expires March 11, 2004 [Page 2] - -Internet-Draft DNS Access Control Requirements September 2003 - - - RRset - All resource records (RRs) having the same NAME, CLASS and TYPE - are called a Resource Record Set (RRset). - -3. Requirements - - This section describes the requirements for access control in DNS. - -3.1 Authentication - -3.1.1 Client Authentication Mechanism - - The AC-aware server must identify AC-aware clients based on IP - address and/or domain name (user ID or host name), and must - authenticate them using strong authentication mechanism such as - digital signature or message authentication code (MAC). - - SIG(0) RR [RFC2931] contains a domain name associated with sender's - public key in its signer's name field, and TSIG RR [RFC2845] also - contains a domain name associated with shared secret key in its key - name field. Each of these domain names can be a host name or a user - name, and can be used as a sender's identifier for access control. - Furthermore, SIG(0) uses digital signatures, and TSIG uses MACs for - message authentication. These mechanisms can be used to authenticate - AC-aware clients. - - Server authentication may be also provided. - -3.1.2 End-to-End Authentication - - In current DNS model, caching/recursive name servers are deployed - between end hosts and authoritative name servers. Although - authoritative servers can authenticate caching/recursive name servers - using SIG(0) or TSIG, they cannot authenticate end hosts behind them. - For end-to-end authentication, the mechanism for an end host to - discover the target authoritative name server and directly access to - it bypassing caching/recursive name servers is needed. For example, - an end host can get the IP addresses of the authoritative name - servers by retrieving NS RRs for the zone via local caching/recursive - name server. - - In many enterprise networks, however, there are firewalls that block - all DNS packets other than those going to/from the particular - caching/recursive servers. To deal with this problem, one can - implement packet forwarding function on the caching/recursive servers - and enable end-to-end authentication via the caching/recursive - servers. - - - - -Baba Expires March 11, 2004 [Page 3] - -Internet-Draft DNS Access Control Requirements September 2003 - - -3.1.3 Authentication Key Retrieval - - Keys which are used to authenticate clients should be able to be - automatically retrieved. The KEY RR is used to store a public key - for a zone or a host that is associated with a domain name. SIG(0) - RR uses a public key in KEY RR for verifying the signature. If - DNSSEC is available, the KEY RR would be protected by the SIG RR. - KEY RR or newly defined RR can be used to automatic key retrieval. - -3.2 Confidentiality - -3.2.1 Data Encryption - - To avoid disclosure to eavesdroppers, the response containing the - RRsets which are restricted to access from particular users should be - encrypted. Currently, no encryption mechanism is specified in DNS. - Therefore, new RRs should be defined for DNS message encryption. - Instead, IPsec [RFC2401] can be used to provide confidentiality if - name server and resolver can set up security associations dynamically - using IPsec API [IPSECAPI] when encryption is required. - - In case encryption is applied, entire DNS message including DNS - header should be encrypted to hide information including error code. - - Query encryption may be also provided for hiding query information. - -3.2.2 Key Exchange - - If DNS message encryption is provided, automatic key exchange - mechanism should be also provided. [RFC2930] specifies a TKEY RR - that can be used to establish and delete shared secret keys used by - TSIG between a client and a server. With minor extensions, TKEY can - be used to establish shared secret keys used for message encryption. - -3.2.3 Caching - - The RRset that is restricted to access from particular users must not - be cached. To avoid caching, the TTL of the RR that is restricted to - access should be set to zero during transit. - -3.3 Access Control - -3.3.1 Granularity of Access Control - - Control of access on a per-user/per-host granularity must be - supported. Control of access to individual RRset (not just the - entire zone) must be also supported. However, SOA, NS, SIG, NXT, - KEY, and DS RRs must be publicly accessible to avoid unexpected - results. - - -Baba Expires March 11, 2004 [Page 4] - -Internet-Draft DNS Access Control Requirements September 2003 - - -3.3.2 ACL Representation - - Access Control List (ACL) format must be standardized so that both - the primary and secondary AC-aware servers can recognize the same - ACL. Although ACL may appear in or out of zone data, it must be - transferred to the secondary AC-aware server with associated zone - data. It is a good idea to contain ACL in zone data, because ACL can - be transferred with zone data using existing zone transfer mechanisms - automatically. However, ACL must not be published except for - authorized secondary master servers. - - In zone data master files, ACL should be specified using TXT RRs or - newly defined RRs. In each access control entry (ACE), authorized - entities (host or user) must be described using domain name (host - name, user name, or IP address in in-addr.arpa/ip6.arpa format). - There may be other access control attributes such as access time. - - It must be possible to create publicly readable entries, which may be - read even by unauthenticated clients. - -3.3.3 Zone/ACL Transfer - - As mentioned above, ACL should be transferred from a primary AC-aware - server to a secondary AC-aware server with associated zone data. - When an AC-aware server receives a zone/ACL transfer request, the - server must authenticate the client, and should encrypt the zone - data and associated ACL during transfer. - -3.4 Backward/co-existence Compatibility - - Any new protocols to be defined for access control in DNS must be - backward compatible with existing DNS protocol. AC-aware servers - must be able to process normal DNS query without authentication, and - must respond if retrieving RRset is publicly accessible. - - Modifications to root/gTLD/ccTLD name servers are not allowed. - -4. Security Considerations - - This document discusses the requirements for access control - mechanisms in DNS. - -5. Acknowledgements - - This work is funded by the Telecommunications Advancement - Organization of Japan (TAO). - - The author would like to thank the members of the NTT DATA network - security team for their important contribution to this work. - - -Baba Expires March 11, 2004 [Page 5] - -Internet-Draft DNS Access Control Requirements September 2003 - - -6. References - - [RFC1034] Mockapetris, P., "Domain names - concepts and facilities", - STD 13, RFC 1034, November 1987. - - [RFC1035] Mockapetris, P., "Domain names - implementation and - specification", STD 13, RFC 1035, November 1987. - - [RFC2401] Kent, S. and R. Atkinson, "Security Architecture for the - Internet Protocol", RFC 2401, November 1998. - - [RFC2535] Eastlake, D., "Domain Name System Security Extensions", - RFC 2535, March 1999. - - [RFC2845] Vixie, P., Gudmundsson, O., Eastlake, D. and B. Wellington, - "Secret Key Transaction Authentication for DNS (TSIG)", - RFC 2845, May 2000. - - [RFC2916] Faltstrom, P., "E.164 number and DNS", RFC 2916, - September 2000. - - [RFC2930] Eastlake, D., "Secret Key Establishment for DNS (TKEY RR)", - RFC 2930, September 2000. - - [RFC2931] Eastlake, D., "DNS Request and Transaction Signatures - (SIG(0)s)", RFC 2931, September 2000. - - [IPSECAPI] Sommerfeld, W., "Requirements for an IPsec API", - draft-ietf-ipsp-ipsec-apireq-00.txt, June 2003, Work in - Progress. - - -Author's Address - - Tatsuya Baba - NTT Data Corporation - Research and Development Headquarters - Kayabacho Tower, 1-21-2, Shinkawa, Chuo-ku, - Tokyo 104-0033, Japan - - Tel: +81 3 3523 8081 - Fax: +81 3 3523 8090 - Email: babatt@nttdata.co.jp - - - - - - - - -Baba Expires March 11, 2004 [Page 6] |