diff options
Diffstat (limited to 'cddl/contrib/opensolaris/uts/common/sys')
-rw-r--r-- | cddl/contrib/opensolaris/uts/common/sys/cmn_err.h | 128 | ||||
-rw-r--r-- | cddl/contrib/opensolaris/uts/common/sys/cpupart.h | 162 | ||||
-rw-r--r-- | cddl/contrib/opensolaris/uts/common/sys/cpuvar.h | 737 | ||||
-rw-r--r-- | cddl/contrib/opensolaris/uts/common/sys/ctf.h | 358 | ||||
-rw-r--r-- | cddl/contrib/opensolaris/uts/common/sys/ctf_api.h | 241 | ||||
-rw-r--r-- | cddl/contrib/opensolaris/uts/common/sys/dtrace.h | 2242 | ||||
-rw-r--r-- | cddl/contrib/opensolaris/uts/common/sys/dtrace_impl.h | 1298 | ||||
-rw-r--r-- | cddl/contrib/opensolaris/uts/common/sys/fasttrap.h | 93 |
8 files changed, 0 insertions, 5259 deletions
diff --git a/cddl/contrib/opensolaris/uts/common/sys/cmn_err.h b/cddl/contrib/opensolaris/uts/common/sys/cmn_err.h deleted file mode 100644 index e710d8e..0000000 --- a/cddl/contrib/opensolaris/uts/common/sys/cmn_err.h +++ /dev/null @@ -1,128 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License, Version 1.0 only - * (the "License"). You may not use this file except in compliance - * with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ -/* All Rights Reserved */ - - -/* - * Copyright 2004 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _SYS_CMN_ERR_H -#define _SYS_CMN_ERR_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#if defined(_KERNEL) && !defined(_ASM) -#include <sys/va_list.h> -#endif - -#ifdef __cplusplus -extern "C" { -#endif - -/* Common error handling severity levels */ - -#define CE_CONT 0 /* continuation */ -#define CE_NOTE 1 /* notice */ -#define CE_WARN 2 /* warning */ -#define CE_PANIC 3 /* panic */ -#define CE_IGNORE 4 /* print nothing */ - -#ifndef _ASM - -#ifdef _KERNEL - -/*PRINTFLIKE2*/ -extern void cmn_err(int, const char *, ...) - __KPRINTFLIKE(2); -#pragma rarely_called(cmn_err) - -extern void vzcmn_err(zoneid_t, int, const char *, __va_list) - __KVPRINTFLIKE(3); -#pragma rarely_called(vzcmn_err) - -extern void vcmn_err(int, const char *, __va_list) - __KVPRINTFLIKE(2); -#pragma rarely_called(vcmn_err) - -/*PRINTFLIKE3*/ -extern void zcmn_err(zoneid_t, int, const char *, ...) - __KPRINTFLIKE(3); -#pragma rarely_called(zcmn_err) - -/*PRINTFLIKE1*/ -extern void printf(const char *, ...) - __KPRINTFLIKE(1); -#pragma rarely_called(printf) - -extern void vzprintf(zoneid_t, const char *, __va_list) - __KVPRINTFLIKE(2); -#pragma rarely_called(vzprintf) - -/*PRINTFLIKE2*/ -extern void zprintf(zoneid_t, const char *, ...) - __KPRINTFLIKE(2); -#pragma rarely_called(zprintf) - -extern void vprintf(const char *, __va_list) - __KVPRINTFLIKE(1); -#pragma rarely_called(vprintf) - -/*PRINTFLIKE1*/ -extern void uprintf(const char *, ...) - __KPRINTFLIKE(1); -#pragma rarely_called(uprintf) - -extern void vuprintf(const char *, __va_list) - __KVPRINTFLIKE(1); -#pragma rarely_called(vuprintf) - -/*PRINTFLIKE3*/ -extern size_t snprintf(char *, size_t, const char *, ...) - __KPRINTFLIKE(3); -extern size_t vsnprintf(char *, size_t, const char *, __va_list) - __KVPRINTFLIKE(3); -/*PRINTFLIKE2*/ -extern char *sprintf(char *, const char *, ...) - __KPRINTFLIKE(2); -extern char *vsprintf(char *, const char *, __va_list) - __KVPRINTFLIKE(2); - -/*PRINTFLIKE1*/ -extern void panic(const char *, ...) - __KPRINTFLIKE(1) __NORETURN; -#pragma rarely_called(panic) - -extern void vpanic(const char *, __va_list) - __KVPRINTFLIKE(1) __NORETURN; -#pragma rarely_called(vpanic) - -#endif /* _KERNEL */ -#endif /* !_ASM */ - -#ifdef __cplusplus -} -#endif - -#endif /* _SYS_CMN_ERR_H */ diff --git a/cddl/contrib/opensolaris/uts/common/sys/cpupart.h b/cddl/contrib/opensolaris/uts/common/sys/cpupart.h deleted file mode 100644 index b9e0da4..0000000 --- a/cddl/contrib/opensolaris/uts/common/sys/cpupart.h +++ /dev/null @@ -1,162 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2007 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _SYS_CPUPART_H -#define _SYS_CPUPART_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include <sys/types.h> -#include <sys/processor.h> -#include <sys/cpuvar.h> -#include <sys/disp.h> -#include <sys/pset.h> -#include <sys/lgrp.h> -#include <sys/lgrp_user.h> -#include <sys/pg.h> -#include <sys/bitset.h> -#include <sys/time.h> - -#ifdef __cplusplus -extern "C" { -#endif - -#ifdef _KERNEL - -typedef int cpupartid_t; - -/* - * Special partition id. - */ -#define CP_DEFAULT 0 - -/* - * Flags for cpupart_list() - */ -#define CP_ALL 0 /* return all cpu partitions */ -#define CP_NONEMPTY 1 /* return only non-empty ones */ - -#if defined(_MACHDEP) -struct mach_cpupart { - cpuset_t mc_haltset; -}; - -extern struct mach_cpupart cp_default_mach; -#else -struct mach_cpupart; -#endif - -typedef struct cpupart { - disp_t cp_kp_queue; /* partition-wide kpreempt queue */ - cpupartid_t cp_id; /* partition ID */ - int cp_ncpus; /* number of online processors */ - struct cpupart *cp_next; /* next partition in list */ - struct cpupart *cp_prev; /* previous partition in list */ - struct cpu *cp_cpulist; /* processor list */ - struct kstat *cp_kstat; /* per-partition statistics */ - - /* - * cp_nrunnable and cp_nrunning are used to calculate load average. - */ - uint_t cp_nrunnable; /* current # of runnable threads */ - uint_t cp_nrunning; /* current # of running threads */ - - /* - * cp_updates, cp_nrunnable_cum, cp_nwaiting_cum, and cp_hp_avenrun - * are used to generate kstat information on an as-needed basis. - */ - uint64_t cp_updates; /* number of statistics updates */ - uint64_t cp_nrunnable_cum; /* cum. # of runnable threads */ - uint64_t cp_nwaiting_cum; /* cum. # of waiting threads */ - - struct loadavg_s cp_loadavg; /* cpupart loadavg */ - - klgrpset_t cp_lgrpset; /* set of lgroups on which this */ - /* partition has cpus */ - lpl_t *cp_lgrploads; /* table of load averages for this */ - /* partition, indexed by lgrp ID */ - int cp_nlgrploads; /* size of cp_lgrploads table */ - uint64_t cp_hp_avenrun[3]; /* high-precision load average */ - uint_t cp_attr; /* bitmask of attributes */ - lgrp_gen_t cp_gen; /* generation number */ - lgrp_id_t cp_lgrp_hint; /* last home lgroup chosen */ - bitset_t cp_cmt_pgs; /* CMT PGs represented */ - - struct mach_cpupart *cp_mach; /* mach-specific */ -} cpupart_t; - -typedef struct cpupart_kstat { - kstat_named_t cpk_updates; /* number of updates */ - kstat_named_t cpk_runnable; /* cum # of runnable threads */ - kstat_named_t cpk_waiting; /* cum # waiting for I/O */ - kstat_named_t cpk_ncpus; /* current # of CPUs */ - kstat_named_t cpk_avenrun_1min; /* 1-minute load average */ - kstat_named_t cpk_avenrun_5min; /* 5-minute load average */ - kstat_named_t cpk_avenrun_15min; /* 15-minute load average */ -} cpupart_kstat_t; - -/* - * Macro to obtain the maximum run priority for the global queue associated - * with given cpu partition. - */ -#define CP_MAXRUNPRI(cp) ((cp)->cp_kp_queue.disp_maxrunpri) - -/* - * This macro is used to determine if the given thread must surrender - * CPU to higher priority runnable threads on one of its dispatch queues. - * This should really be defined in <sys/disp.h> but it is not because - * including <sys/cpupart.h> there would cause recursive includes. - */ -#define DISP_MUST_SURRENDER(t) \ - ((DISP_MAXRUNPRI(t) > DISP_PRIO(t)) || \ - (CP_MAXRUNPRI(t->t_cpupart) > DISP_PRIO(t))) - -extern cpupart_t cp_default; -extern cpupart_t *cp_list_head; -extern uint_t cp_numparts; -extern uint_t cp_numparts_nonempty; - -extern void cpupart_initialize_default(); -extern cpupart_t *cpupart_find(psetid_t); -extern int cpupart_create(psetid_t *); -extern int cpupart_destroy(psetid_t); -extern psetid_t cpupart_query_cpu(cpu_t *); -extern int cpupart_attach_cpu(psetid_t, cpu_t *, int); -extern int cpupart_get_cpus(psetid_t *, processorid_t *, uint_t *); -extern int cpupart_bind_thread(kthread_id_t, psetid_t, int, void *, - void *); -extern void cpupart_kpqalloc(pri_t); -extern int cpupart_get_loadavg(psetid_t, int *, int); -extern uint_t cpupart_list(psetid_t *, uint_t, int); -extern int cpupart_setattr(psetid_t, uint_t); -extern int cpupart_getattr(psetid_t, uint_t *); - -#endif /* _KERNEL */ - -#ifdef __cplusplus -} -#endif - -#endif /* _SYS_CPUPART_H */ diff --git a/cddl/contrib/opensolaris/uts/common/sys/cpuvar.h b/cddl/contrib/opensolaris/uts/common/sys/cpuvar.h deleted file mode 100644 index c7b76b3..0000000 --- a/cddl/contrib/opensolaris/uts/common/sys/cpuvar.h +++ /dev/null @@ -1,737 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _SYS_CPUVAR_H -#define _SYS_CPUVAR_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include <sys/thread.h> -#include <sys/sysinfo.h> /* has cpu_stat_t definition */ -#include <sys/disp.h> -#include <sys/processor.h> - -#if (defined(_KERNEL) || defined(_KMEMUSER)) && defined(_MACHDEP) -#include <sys/machcpuvar.h> -#endif - -#include <sys/types.h> -#include <sys/file.h> -#include <sys/bitmap.h> -#include <sys/rwlock.h> -#include <sys/msacct.h> -#if defined(__GNUC__) && defined(_ASM_INLINES) && defined(_KERNEL) && \ - (defined(__i386) || defined(__amd64)) -#include <asm/cpuvar.h> -#endif - -#ifdef __cplusplus -extern "C" { -#endif - -struct squeue_set_s; - -#define CPU_CACHE_COHERENCE_SIZE 64 -#define S_LOADAVG_SZ 11 -#define S_MOVAVG_SZ 10 - -struct loadavg_s { - int lg_cur; /* current loadavg entry */ - unsigned int lg_len; /* number entries recorded */ - hrtime_t lg_total; /* used to temporarily hold load totals */ - hrtime_t lg_loads[S_LOADAVG_SZ]; /* table of recorded entries */ -}; - -/* - * For fast event tracing. - */ -struct ftrace_record; -typedef struct ftrace_data { - int ftd_state; /* ftrace flags */ - kmutex_t ftd_unused; /* ftrace buffer lock, unused */ - struct ftrace_record *ftd_cur; /* current record */ - struct ftrace_record *ftd_first; /* first record */ - struct ftrace_record *ftd_last; /* last record */ -} ftrace_data_t; - -struct cyc_cpu; -struct nvlist; - -/* - * Per-CPU data. - * - * Be careful adding new members: if they are not the same in all modules (e.g. - * change size depending on a #define), CTF uniquification can fail to work - * properly. Furthermore, this is transitive in that it applies recursively to - * all types pointed to by cpu_t. - */ -typedef struct cpu { - processorid_t cpu_id; /* CPU number */ - processorid_t cpu_seqid; /* sequential CPU id (0..ncpus-1) */ - volatile cpu_flag_t cpu_flags; /* flags indicating CPU state */ - struct cpu *cpu_self; /* pointer to itself */ - kthread_t *cpu_thread; /* current thread */ - kthread_t *cpu_idle_thread; /* idle thread for this CPU */ - kthread_t *cpu_pause_thread; /* pause thread for this CPU */ - klwp_id_t cpu_lwp; /* current lwp (if any) */ - klwp_id_t cpu_fpowner; /* currently loaded fpu owner */ - struct cpupart *cpu_part; /* partition with this CPU */ - struct lgrp_ld *cpu_lpl; /* pointer to this cpu's load */ - int cpu_cache_offset; /* see kmem.c for details */ - - /* - * Links to other CPUs. It is safe to walk these lists if - * one of the following is true: - * - cpu_lock held - * - preemption disabled via kpreempt_disable - * - PIL >= DISP_LEVEL - * - acting thread is an interrupt thread - * - all other CPUs are paused - */ - struct cpu *cpu_next; /* next existing CPU */ - struct cpu *cpu_prev; /* prev existing CPU */ - struct cpu *cpu_next_onln; /* next online (enabled) CPU */ - struct cpu *cpu_prev_onln; /* prev online (enabled) CPU */ - struct cpu *cpu_next_part; /* next CPU in partition */ - struct cpu *cpu_prev_part; /* prev CPU in partition */ - struct cpu *cpu_next_lgrp; /* next CPU in latency group */ - struct cpu *cpu_prev_lgrp; /* prev CPU in latency group */ - struct cpu *cpu_next_lpl; /* next CPU in lgrp partition */ - struct cpu *cpu_prev_lpl; - - struct cpu_pg *cpu_pg; /* cpu's processor groups */ - - void *cpu_reserved[4]; /* reserved for future use */ - - /* - * Scheduling variables. - */ - disp_t *cpu_disp; /* dispatch queue data */ - /* - * Note that cpu_disp is set before the CPU is added to the system - * and is never modified. Hence, no additional locking is needed - * beyond what's necessary to access the cpu_t structure. - */ - char cpu_runrun; /* scheduling flag - set to preempt */ - char cpu_kprunrun; /* force kernel preemption */ - pri_t cpu_chosen_level; /* priority at which cpu */ - /* was chosen for scheduling */ - kthread_t *cpu_dispthread; /* thread selected for dispatch */ - disp_lock_t cpu_thread_lock; /* dispatcher lock on current thread */ - uint8_t cpu_disp_flags; /* flags used by dispatcher */ - /* - * The following field is updated when ever the cpu_dispthread - * changes. Also in places, where the current thread(cpu_dispthread) - * priority changes. This is used in disp_lowpri_cpu() - */ - pri_t cpu_dispatch_pri; /* priority of cpu_dispthread */ - clock_t cpu_last_swtch; /* last time switched to new thread */ - - /* - * Interrupt data. - */ - caddr_t cpu_intr_stack; /* interrupt stack */ - kthread_t *cpu_intr_thread; /* interrupt thread list */ - uint_t cpu_intr_actv; /* interrupt levels active (bitmask) */ - int cpu_base_spl; /* priority for highest rupt active */ - - /* - * Statistics. - */ - cpu_stats_t cpu_stats; /* per-CPU statistics */ - struct kstat *cpu_info_kstat; /* kstat for cpu info */ - - uintptr_t cpu_profile_pc; /* kernel PC in profile interrupt */ - uintptr_t cpu_profile_upc; /* user PC in profile interrupt */ - uintptr_t cpu_profile_pil; /* PIL when profile interrupted */ - - ftrace_data_t cpu_ftrace; /* per cpu ftrace data */ - - clock_t cpu_deadman_lbolt; /* used by deadman() */ - uint_t cpu_deadman_countdown; /* used by deadman() */ - - kmutex_t cpu_cpc_ctxlock; /* protects context for idle thread */ - kcpc_ctx_t *cpu_cpc_ctx; /* performance counter context */ - - /* - * Configuration information for the processor_info system call. - */ - processor_info_t cpu_type_info; /* config info */ - time_t cpu_state_begin; /* when CPU entered current state */ - char cpu_cpr_flags; /* CPR related info */ - struct cyc_cpu *cpu_cyclic; /* per cpu cyclic subsystem data */ - struct squeue_set_s *cpu_squeue_set; /* per cpu squeue set */ - struct nvlist *cpu_props; /* pool-related properties */ - - krwlock_t cpu_ft_lock; /* DTrace: fasttrap lock */ - uintptr_t cpu_dtrace_caller; /* DTrace: caller, if any */ - hrtime_t cpu_dtrace_chillmark; /* DTrace: chill mark time */ - hrtime_t cpu_dtrace_chilled; /* DTrace: total chill time */ - volatile uint16_t cpu_mstate; /* cpu microstate */ - volatile uint16_t cpu_mstate_gen; /* generation counter */ - volatile hrtime_t cpu_mstate_start; /* cpu microstate start time */ - volatile hrtime_t cpu_acct[NCMSTATES]; /* cpu microstate data */ - hrtime_t cpu_intracct[NCMSTATES]; /* interrupt mstate data */ - hrtime_t cpu_waitrq; /* cpu run-queue wait time */ - struct loadavg_s cpu_loadavg; /* loadavg info for this cpu */ - - char *cpu_idstr; /* for printing and debugging */ - char *cpu_brandstr; /* for printing */ - - /* - * Sum of all device interrupt weights that are currently directed at - * this cpu. Cleared at start of interrupt redistribution. - */ - int32_t cpu_intr_weight; - void *cpu_vm_data; - - struct cpu_physid *cpu_physid; /* physical associations */ - - uint64_t cpu_curr_clock; /* current clock freq in Hz */ - char *cpu_supp_freqs; /* supported freqs in Hz */ - - /* - * Interrupt load factor used by dispatcher & softcall - */ - hrtime_t cpu_intrlast; /* total interrupt time (nsec) */ - int cpu_intrload; /* interrupt load factor (0-99%) */ - - /* - * New members must be added /before/ this member, as the CTF tools - * rely on this being the last field before cpu_m, so they can - * correctly calculate the offset when synthetically adding the cpu_m - * member in objects that do not have it. This fixup is required for - * uniquification to work correctly. - */ - uintptr_t cpu_m_pad; - -#if (defined(_KERNEL) || defined(_KMEMUSER)) && defined(_MACHDEP) - struct machcpu cpu_m; /* per architecture info */ -#endif -} cpu_t; - -/* - * The cpu_core structure consists of per-CPU state available in any context. - * On some architectures, this may mean that the page(s) containing the - * NCPU-sized array of cpu_core structures must be locked in the TLB -- it - * is up to the platform to assure that this is performed properly. Note that - * the structure is sized to avoid false sharing. - */ -#define CPUC_SIZE (sizeof (uint16_t) + sizeof (uintptr_t) + \ - sizeof (kmutex_t)) -#define CPUC_PADSIZE CPU_CACHE_COHERENCE_SIZE - CPUC_SIZE - -typedef struct cpu_core { - uint16_t cpuc_dtrace_flags; /* DTrace flags */ - uint8_t cpuc_pad[CPUC_PADSIZE]; /* padding */ - uintptr_t cpuc_dtrace_illval; /* DTrace illegal value */ - kmutex_t cpuc_pid_lock; /* DTrace pid provider lock */ -} cpu_core_t; - -#ifdef _KERNEL -extern cpu_core_t cpu_core[]; -#endif /* _KERNEL */ - -/* - * CPU_ON_INTR() macro. Returns non-zero if currently on interrupt stack. - * Note that this isn't a test for a high PIL. For example, cpu_intr_actv - * does not get updated when we go through sys_trap from TL>0 at high PIL. - * getpil() should be used instead to check for PIL levels. - */ -#define CPU_ON_INTR(cpup) ((cpup)->cpu_intr_actv >> (LOCK_LEVEL + 1)) - -#if defined(_KERNEL) || defined(_KMEMUSER) - -#define INTR_STACK_SIZE MAX(DEFAULTSTKSZ, PAGESIZE) - -/* MEMBERS PROTECTED BY "atomicity": cpu_flags */ - -/* - * Flags in the CPU structure. - * - * These are protected by cpu_lock (except during creation). - * - * Offlined-CPUs have three stages of being offline: - * - * CPU_ENABLE indicates that the CPU is participating in I/O interrupts - * that can be directed at a number of different CPUs. If CPU_ENABLE - * is off, the CPU will not be given interrupts that can be sent elsewhere, - * but will still get interrupts from devices associated with that CPU only, - * and from other CPUs. - * - * CPU_OFFLINE indicates that the dispatcher should not allow any threads - * other than interrupt threads to run on that CPU. A CPU will not have - * CPU_OFFLINE set if there are any bound threads (besides interrupts). - * - * CPU_QUIESCED is set if p_offline was able to completely turn idle the - * CPU and it will not have to run interrupt threads. In this case it'll - * stay in the idle loop until CPU_QUIESCED is turned off. - * - * CPU_FROZEN is used only by CPR to mark CPUs that have been successfully - * suspended (in the suspend path), or have yet to be resumed (in the resume - * case). - * - * On some platforms CPUs can be individually powered off. - * The following flags are set for powered off CPUs: CPU_QUIESCED, - * CPU_OFFLINE, and CPU_POWEROFF. The following flags are cleared: - * CPU_RUNNING, CPU_READY, CPU_EXISTS, and CPU_ENABLE. - */ -#define CPU_RUNNING 0x001 /* CPU running */ -#define CPU_READY 0x002 /* CPU ready for cross-calls */ -#define CPU_QUIESCED 0x004 /* CPU will stay in idle */ -#define CPU_EXISTS 0x008 /* CPU is configured */ -#define CPU_ENABLE 0x010 /* CPU enabled for interrupts */ -#define CPU_OFFLINE 0x020 /* CPU offline via p_online */ -#define CPU_POWEROFF 0x040 /* CPU is powered off */ -#define CPU_FROZEN 0x080 /* CPU is frozen via CPR suspend */ -#define CPU_SPARE 0x100 /* CPU offline available for use */ -#define CPU_FAULTED 0x200 /* CPU offline diagnosed faulty */ - -#define FMT_CPU_FLAGS \ - "\20\12fault\11spare\10frozen" \ - "\7poweroff\6offline\5enable\4exist\3quiesced\2ready\1run" - -#define CPU_ACTIVE(cpu) (((cpu)->cpu_flags & CPU_OFFLINE) == 0) - -/* - * Flags for cpu_offline(), cpu_faulted(), and cpu_spare(). - */ -#define CPU_FORCED 0x0001 /* Force CPU offline */ - -/* - * DTrace flags. - */ -#define CPU_DTRACE_NOFAULT 0x0001 /* Don't fault */ -#define CPU_DTRACE_DROP 0x0002 /* Drop this ECB */ -#define CPU_DTRACE_BADADDR 0x0004 /* DTrace fault: bad address */ -#define CPU_DTRACE_BADALIGN 0x0008 /* DTrace fault: bad alignment */ -#define CPU_DTRACE_DIVZERO 0x0010 /* DTrace fault: divide by zero */ -#define CPU_DTRACE_ILLOP 0x0020 /* DTrace fault: illegal operation */ -#define CPU_DTRACE_NOSCRATCH 0x0040 /* DTrace fault: out of scratch */ -#define CPU_DTRACE_KPRIV 0x0080 /* DTrace fault: bad kernel access */ -#define CPU_DTRACE_UPRIV 0x0100 /* DTrace fault: bad user access */ -#define CPU_DTRACE_TUPOFLOW 0x0200 /* DTrace fault: tuple stack overflow */ -#if defined(__sparc) -#define CPU_DTRACE_FAKERESTORE 0x0400 /* pid provider hint to getreg */ -#endif -#define CPU_DTRACE_ENTRY 0x0800 /* pid provider hint to ustack() */ -#define CPU_DTRACE_BADSTACK 0x1000 /* DTrace fault: bad stack */ - -#define CPU_DTRACE_FAULT (CPU_DTRACE_BADADDR | CPU_DTRACE_BADALIGN | \ - CPU_DTRACE_DIVZERO | CPU_DTRACE_ILLOP | \ - CPU_DTRACE_NOSCRATCH | CPU_DTRACE_KPRIV | \ - CPU_DTRACE_UPRIV | CPU_DTRACE_TUPOFLOW | \ - CPU_DTRACE_BADSTACK) -#define CPU_DTRACE_ERROR (CPU_DTRACE_FAULT | CPU_DTRACE_DROP) - -/* - * Dispatcher flags - * These flags must be changed only by the current CPU. - */ -#define CPU_DISP_DONTSTEAL 0x01 /* CPU undergoing context swtch */ -#define CPU_DISP_HALTED 0x02 /* CPU halted waiting for interrupt */ - - -#endif /* _KERNEL || _KMEMUSER */ - -#if (defined(_KERNEL) || defined(_KMEMUSER)) && defined(_MACHDEP) - -/* - * Macros for manipulating sets of CPUs as a bitmap. Note that this - * bitmap may vary in size depending on the maximum CPU id a specific - * platform supports. This may be different than the number of CPUs - * the platform supports, since CPU ids can be sparse. We define two - * sets of macros; one for platforms where the maximum CPU id is less - * than the number of bits in a single word (32 in a 32-bit kernel, - * 64 in a 64-bit kernel), and one for platforms that require bitmaps - * of more than one word. - */ - -#define CPUSET_WORDS BT_BITOUL(NCPU) -#define CPUSET_NOTINSET ((uint_t)-1) - -#if CPUSET_WORDS > 1 - -typedef struct cpuset { - ulong_t cpub[CPUSET_WORDS]; -} cpuset_t; - -/* - * Private functions for manipulating cpusets that do not fit in a - * single word. These should not be used directly; instead the - * CPUSET_* macros should be used so the code will be portable - * across different definitions of NCPU. - */ -extern void cpuset_all(cpuset_t *); -extern void cpuset_all_but(cpuset_t *, uint_t); -extern int cpuset_isnull(cpuset_t *); -extern int cpuset_cmp(cpuset_t *, cpuset_t *); -extern void cpuset_only(cpuset_t *, uint_t); -extern uint_t cpuset_find(cpuset_t *); -extern void cpuset_bounds(cpuset_t *, uint_t *, uint_t *); - -#define CPUSET_ALL(set) cpuset_all(&(set)) -#define CPUSET_ALL_BUT(set, cpu) cpuset_all_but(&(set), cpu) -#define CPUSET_ONLY(set, cpu) cpuset_only(&(set), cpu) -#define CPU_IN_SET(set, cpu) BT_TEST((set).cpub, cpu) -#define CPUSET_ADD(set, cpu) BT_SET((set).cpub, cpu) -#define CPUSET_DEL(set, cpu) BT_CLEAR((set).cpub, cpu) -#define CPUSET_ISNULL(set) cpuset_isnull(&(set)) -#define CPUSET_ISEQUAL(set1, set2) cpuset_cmp(&(set1), &(set2)) - -/* - * Find one CPU in the cpuset. - * Sets "cpu" to the id of the found CPU, or CPUSET_NOTINSET if no cpu - * could be found. (i.e. empty set) - */ -#define CPUSET_FIND(set, cpu) { \ - cpu = cpuset_find(&(set)); \ -} - -/* - * Determine the smallest and largest CPU id in the set. Returns - * CPUSET_NOTINSET in smallest and largest when set is empty. - */ -#define CPUSET_BOUNDS(set, smallest, largest) { \ - cpuset_bounds(&(set), &(smallest), &(largest)); \ -} - -/* - * Atomic cpuset operations - * These are safe to use for concurrent cpuset manipulations. - * "xdel" and "xadd" are exclusive operations, that set "result" to "0" - * if the add or del was successful, or "-1" if not successful. - * (e.g. attempting to add a cpu to a cpuset that's already there, or - * deleting a cpu that's not in the cpuset) - */ - -#define CPUSET_ATOMIC_DEL(set, cpu) BT_ATOMIC_CLEAR((set).cpub, (cpu)) -#define CPUSET_ATOMIC_ADD(set, cpu) BT_ATOMIC_SET((set).cpub, (cpu)) - -#define CPUSET_ATOMIC_XADD(set, cpu, result) \ - BT_ATOMIC_SET_EXCL((set).cpub, cpu, result) - -#define CPUSET_ATOMIC_XDEL(set, cpu, result) \ - BT_ATOMIC_CLEAR_EXCL((set).cpub, cpu, result) - - -#define CPUSET_OR(set1, set2) { \ - int _i; \ - for (_i = 0; _i < CPUSET_WORDS; _i++) \ - (set1).cpub[_i] |= (set2).cpub[_i]; \ -} - -#define CPUSET_XOR(set1, set2) { \ - int _i; \ - for (_i = 0; _i < CPUSET_WORDS; _i++) \ - (set1).cpub[_i] ^= (set2).cpub[_i]; \ -} - -#define CPUSET_AND(set1, set2) { \ - int _i; \ - for (_i = 0; _i < CPUSET_WORDS; _i++) \ - (set1).cpub[_i] &= (set2).cpub[_i]; \ -} - -#define CPUSET_ZERO(set) { \ - int _i; \ - for (_i = 0; _i < CPUSET_WORDS; _i++) \ - (set).cpub[_i] = 0; \ -} - -#elif CPUSET_WORDS == 1 - -typedef ulong_t cpuset_t; /* a set of CPUs */ - -#define CPUSET(cpu) (1UL << (cpu)) - -#define CPUSET_ALL(set) ((void)((set) = ~0UL)) -#define CPUSET_ALL_BUT(set, cpu) ((void)((set) = ~CPUSET(cpu))) -#define CPUSET_ONLY(set, cpu) ((void)((set) = CPUSET(cpu))) -#define CPU_IN_SET(set, cpu) ((set) & CPUSET(cpu)) -#define CPUSET_ADD(set, cpu) ((void)((set) |= CPUSET(cpu))) -#define CPUSET_DEL(set, cpu) ((void)((set) &= ~CPUSET(cpu))) -#define CPUSET_ISNULL(set) ((set) == 0) -#define CPUSET_ISEQUAL(set1, set2) ((set1) == (set2)) -#define CPUSET_OR(set1, set2) ((void)((set1) |= (set2))) -#define CPUSET_XOR(set1, set2) ((void)((set1) ^= (set2))) -#define CPUSET_AND(set1, set2) ((void)((set1) &= (set2))) -#define CPUSET_ZERO(set) ((void)((set) = 0)) - -#define CPUSET_FIND(set, cpu) { \ - cpu = (uint_t)(lowbit(set) - 1); \ -} - -#define CPUSET_BOUNDS(set, smallest, largest) { \ - smallest = (uint_t)(lowbit(set) - 1); \ - largest = (uint_t)(highbit(set) - 1); \ -} - -#define CPUSET_ATOMIC_DEL(set, cpu) atomic_and_long(&(set), ~CPUSET(cpu)) -#define CPUSET_ATOMIC_ADD(set, cpu) atomic_or_long(&(set), CPUSET(cpu)) - -#define CPUSET_ATOMIC_XADD(set, cpu, result) \ - { result = atomic_set_long_excl(&(set), (cpu)); } - -#define CPUSET_ATOMIC_XDEL(set, cpu, result) \ - { result = atomic_clear_long_excl(&(set), (cpu)); } - -#else /* CPUSET_WORDS <= 0 */ - -#error NCPU is undefined or invalid - -#endif /* CPUSET_WORDS */ - -extern cpuset_t cpu_seqid_inuse; - -#endif /* (_KERNEL || _KMEMUSER) && _MACHDEP */ - -#define CPU_CPR_OFFLINE 0x0 -#define CPU_CPR_ONLINE 0x1 -#define CPU_CPR_IS_OFFLINE(cpu) (((cpu)->cpu_cpr_flags & CPU_CPR_ONLINE) == 0) -#define CPU_CPR_IS_ONLINE(cpu) ((cpu)->cpu_cpr_flags & CPU_CPR_ONLINE) -#define CPU_SET_CPR_FLAGS(cpu, flag) ((cpu)->cpu_cpr_flags |= flag) - -#if defined(_KERNEL) || defined(_KMEMUSER) - -extern struct cpu *cpu[]; /* indexed by CPU number */ -extern cpu_t *cpu_list; /* list of CPUs */ -extern cpu_t *cpu_active; /* list of active CPUs */ -extern int ncpus; /* number of CPUs present */ -extern int ncpus_online; /* number of CPUs not quiesced */ -extern int max_ncpus; /* max present before ncpus is known */ -extern int boot_max_ncpus; /* like max_ncpus but for real */ -extern processorid_t max_cpuid; /* maximum CPU number */ -extern struct cpu *cpu_inmotion; /* offline or partition move target */ -extern cpu_t *clock_cpu_list; - -#if defined(__i386) || defined(__amd64) -extern struct cpu *curcpup(void); -#define CPU (curcpup()) /* Pointer to current CPU */ -#else -#define CPU (curthread->t_cpu) /* Pointer to current CPU */ -#endif - -/* - * CPU_CURRENT indicates to thread_affinity_set to use CPU->cpu_id - * as the target and to grab cpu_lock instead of requiring the caller - * to grab it. - */ -#define CPU_CURRENT -3 - -/* - * Per-CPU statistics - * - * cpu_stats_t contains numerous system and VM-related statistics, in the form - * of gauges or monotonically-increasing event occurrence counts. - */ - -#define CPU_STATS_ENTER_K() kpreempt_disable() -#define CPU_STATS_EXIT_K() kpreempt_enable() - -#define CPU_STATS_ADD_K(class, stat, amount) \ - { kpreempt_disable(); /* keep from switching CPUs */\ - CPU_STATS_ADDQ(CPU, class, stat, amount); \ - kpreempt_enable(); \ - } - -#define CPU_STATS_ADDQ(cp, class, stat, amount) { \ - extern void __dtrace_probe___cpu_##class##info_##stat(uint_t, \ - uint64_t *, cpu_t *); \ - uint64_t *stataddr = &((cp)->cpu_stats.class.stat); \ - __dtrace_probe___cpu_##class##info_##stat((amount), \ - stataddr, cp); \ - *(stataddr) += (amount); \ -} - -#define CPU_STATS(cp, stat) \ - ((cp)->cpu_stats.stat) - -#endif /* _KERNEL || _KMEMUSER */ - -/* - * CPU support routines. - */ -#if defined(_KERNEL) && defined(__STDC__) /* not for genassym.c */ - -struct zone; - -void cpu_list_init(cpu_t *); -void cpu_add_unit(cpu_t *); -void cpu_del_unit(int cpuid); -void cpu_add_active(cpu_t *); -void cpu_kstat_init(cpu_t *); -void cpu_visibility_add(cpu_t *, struct zone *); -void cpu_visibility_remove(cpu_t *, struct zone *); -void cpu_visibility_configure(cpu_t *, struct zone *); -void cpu_visibility_unconfigure(cpu_t *, struct zone *); -void cpu_visibility_online(cpu_t *, struct zone *); -void cpu_visibility_offline(cpu_t *, struct zone *); -void cpu_create_intrstat(cpu_t *); -void cpu_delete_intrstat(cpu_t *); -int cpu_kstat_intrstat_update(kstat_t *, int); -void cpu_intr_swtch_enter(kthread_t *); -void cpu_intr_swtch_exit(kthread_t *); - -void mbox_lock_init(void); /* initialize cross-call locks */ -void mbox_init(int cpun); /* initialize cross-calls */ -void poke_cpu(int cpun); /* interrupt another CPU (to preempt) */ - -/* - * values for safe_list. Pause state that CPUs are in. - */ -#define PAUSE_IDLE 0 /* normal state */ -#define PAUSE_READY 1 /* paused thread ready to spl */ -#define PAUSE_WAIT 2 /* paused thread is spl-ed high */ -#define PAUSE_DIE 3 /* tell pause thread to leave */ -#define PAUSE_DEAD 4 /* pause thread has left */ - -void mach_cpu_pause(volatile char *); - -void pause_cpus(cpu_t *off_cp); -void start_cpus(void); -int cpus_paused(void); - -void cpu_pause_init(void); -cpu_t *cpu_get(processorid_t cpun); /* get the CPU struct associated */ - -int cpu_online(cpu_t *cp); /* take cpu online */ -int cpu_offline(cpu_t *cp, int flags); /* take cpu offline */ -int cpu_spare(cpu_t *cp, int flags); /* take cpu to spare */ -int cpu_faulted(cpu_t *cp, int flags); /* take cpu to faulted */ -int cpu_poweron(cpu_t *cp); /* take powered-off cpu to offline */ -int cpu_poweroff(cpu_t *cp); /* take offline cpu to powered-off */ - -cpu_t *cpu_intr_next(cpu_t *cp); /* get next online CPU taking intrs */ -int cpu_intr_count(cpu_t *cp); /* count # of CPUs handling intrs */ -int cpu_intr_on(cpu_t *cp); /* CPU taking I/O interrupts? */ -void cpu_intr_enable(cpu_t *cp); /* enable I/O interrupts */ -int cpu_intr_disable(cpu_t *cp); /* disable I/O interrupts */ -void cpu_intr_alloc(cpu_t *cp, int n); /* allocate interrupt threads */ - -/* - * Routines for checking CPU states. - */ -int cpu_is_online(cpu_t *); /* check if CPU is online */ -int cpu_is_nointr(cpu_t *); /* check if CPU can service intrs */ -int cpu_is_active(cpu_t *); /* check if CPU can run threads */ -int cpu_is_offline(cpu_t *); /* check if CPU is offline */ -int cpu_is_poweredoff(cpu_t *); /* check if CPU is powered off */ - -int cpu_flagged_online(cpu_flag_t); /* flags show CPU is online */ -int cpu_flagged_nointr(cpu_flag_t); /* flags show CPU not handling intrs */ -int cpu_flagged_active(cpu_flag_t); /* flags show CPU scheduling threads */ -int cpu_flagged_offline(cpu_flag_t); /* flags show CPU is offline */ -int cpu_flagged_poweredoff(cpu_flag_t); /* flags show CPU is powered off */ - -/* - * The processor_info(2) state of a CPU is a simplified representation suitable - * for use by an application program. Kernel subsystems should utilize the - * internal per-CPU state as given by the cpu_flags member of the cpu structure, - * as this information may include platform- or architecture-specific state - * critical to a subsystem's disposition of a particular CPU. - */ -void cpu_set_state(cpu_t *); /* record/timestamp current state */ -int cpu_get_state(cpu_t *); /* get current cpu state */ -const char *cpu_get_state_str(cpu_t *); /* get current cpu state as string */ - - -void cpu_set_supp_freqs(cpu_t *, const char *); /* set the CPU supported */ - /* frequencies */ - -int cpu_configure(int); -int cpu_unconfigure(int); -void cpu_destroy_bound_threads(cpu_t *cp); - -extern int cpu_bind_thread(kthread_t *tp, processorid_t bind, - processorid_t *obind, int *error); -extern int cpu_unbind(processorid_t cpu_id); -extern void thread_affinity_set(kthread_t *t, int cpu_id); -extern void thread_affinity_clear(kthread_t *t); -extern void affinity_set(int cpu_id); -extern void affinity_clear(void); -extern void init_cpu_mstate(struct cpu *, int); -extern void term_cpu_mstate(struct cpu *); -extern void new_cpu_mstate(int, hrtime_t); -extern void get_cpu_mstate(struct cpu *, hrtime_t *); -extern void thread_nomigrate(void); -extern void thread_allowmigrate(void); -extern void weakbinding_stop(void); -extern void weakbinding_start(void); - -/* - * The following routines affect the CPUs participation in interrupt processing, - * if that is applicable on the architecture. This only affects interrupts - * which aren't directed at the processor (not cross calls). - * - * cpu_disable_intr returns non-zero if interrupts were previously enabled. - */ -int cpu_disable_intr(struct cpu *cp); /* stop issuing interrupts to cpu */ -void cpu_enable_intr(struct cpu *cp); /* start issuing interrupts to cpu */ - -/* - * The mutex cpu_lock protects cpu_flags for all CPUs, as well as the ncpus - * and ncpus_online counts. - */ -extern kmutex_t cpu_lock; /* lock protecting CPU data */ - -typedef enum { - CPU_INIT, - CPU_CONFIG, - CPU_UNCONFIG, - CPU_ON, - CPU_OFF, - CPU_CPUPART_IN, - CPU_CPUPART_OUT -} cpu_setup_t; - -typedef int cpu_setup_func_t(cpu_setup_t, int, void *); - -/* - * Routines used to register interest in cpu's being added to or removed - * from the system. - */ -extern void register_cpu_setup_func(cpu_setup_func_t *, void *); -extern void unregister_cpu_setup_func(cpu_setup_func_t *, void *); -extern void cpu_state_change_notify(int, cpu_setup_t); - -/* - * Create various strings that describe the given CPU for the - * processor_info system call and configuration-related kstats. - */ -#define CPU_IDSTRLEN 100 - -extern void init_cpu_info(struct cpu *); -extern void cpu_vm_data_init(struct cpu *); -extern void cpu_vm_data_destroy(struct cpu *); - -#endif /* _KERNEL */ - -#ifdef __cplusplus -} -#endif - -#endif /* _SYS_CPUVAR_H */ diff --git a/cddl/contrib/opensolaris/uts/common/sys/ctf.h b/cddl/contrib/opensolaris/uts/common/sys/ctf.h deleted file mode 100644 index 065e985..0000000 --- a/cddl/contrib/opensolaris/uts/common/sys/ctf.h +++ /dev/null @@ -1,358 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License, Version 1.0 only - * (the "License"). You may not use this file except in compliance - * with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2004 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _CTF_H -#define _CTF_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include <sys/types.h> - -#ifdef __cplusplus -extern "C" { -#endif - -/* - * CTF - Compact ANSI-C Type Format - * - * This file format can be used to compactly represent the information needed - * by a debugger to interpret the ANSI-C types used by a given program. - * Traditionally, this kind of information is generated by the compiler when - * invoked with the -g flag and is stored in "stabs" strings or in the more - * modern DWARF format. CTF provides a representation of only the information - * that is relevant to debugging a complex, optimized C program such as the - * operating system kernel in a form that is significantly more compact than - * the equivalent stabs or DWARF representation. The format is data-model - * independent, so consumers do not need different code depending on whether - * they are 32-bit or 64-bit programs. CTF assumes that a standard ELF symbol - * table is available for use in the debugger, and uses the structure and data - * of the symbol table to avoid storing redundant information. The CTF data - * may be compressed on disk or in memory, indicated by a bit in the header. - * CTF may be interpreted in a raw disk file, or it may be stored in an ELF - * section, typically named .SUNW_ctf. Data structures are aligned so that - * a raw CTF file or CTF ELF section may be manipulated using mmap(2). - * - * The CTF file or section itself has the following structure: - * - * +--------+--------+---------+----------+-------+--------+ - * | file | type | data | function | data | string | - * | header | labels | objects | info | types | table | - * +--------+--------+---------+----------+-------+--------+ - * - * The file header stores a magic number and version information, encoding - * flags, and the byte offset of each of the sections relative to the end of the - * header itself. If the CTF data has been uniquified against another set of - * CTF data, a reference to that data also appears in the the header. This - * reference is the name of the label corresponding to the types uniquified - * against. - * - * Following the header is a list of labels, used to group the types included in - * the data types section. Each label is accompanied by a type ID i. A given - * label refers to the group of types whose IDs are in the range [0, i]. - * - * Data object and function records are stored in the same order as they appear - * in the corresponding symbol table, except that symbols marked SHN_UNDEF are - * not stored and symbols that have no type data are padded out with zeroes. - * For each data object, the type ID (a small integer) is recorded. For each - * function, the type ID of the return type and argument types is recorded. - * - * The data types section is a list of variable size records that represent each - * type, in order by their ID. The types themselves form a directed graph, - * where each node may contain one or more outgoing edges to other type nodes, - * denoted by their ID. - * - * Strings are recorded as a string table ID (0 or 1) and a byte offset into the - * string table. String table 0 is the internal CTF string table. String table - * 1 is the external string table, which is the string table associated with the - * ELF symbol table for this object. CTF does not record any strings that are - * already in the symbol table, and the CTF string table does not contain any - * duplicated strings. - * - * If the CTF data has been merged with another parent CTF object, some outgoing - * edges may refer to type nodes that exist in another CTF object. The debugger - * and libctf library are responsible for connecting the appropriate objects - * together so that the full set of types can be explored and manipulated. - */ - -#define CTF_MAX_TYPE 0xffff /* max type identifier value */ -#define CTF_MAX_NAME 0x7fffffff /* max offset into a string table */ -#define CTF_MAX_VLEN 0x3ff /* max struct, union, enum members or args */ -#define CTF_MAX_INTOFF 0xff /* max offset of intrinsic value in bits */ -#define CTF_MAX_INTBITS 0xffff /* max size of an intrinsic in bits */ - -/* See ctf_type_t */ -#define CTF_MAX_SIZE 0xfffe /* max size of a type in bytes */ -#define CTF_LSIZE_SENT 0xffff /* sentinel for ctt_size */ -#define CTF_MAX_LSIZE UINT64_MAX - -typedef struct ctf_preamble { - ushort_t ctp_magic; /* magic number (CTF_MAGIC) */ - uchar_t ctp_version; /* data format version number (CTF_VERSION) */ - uchar_t ctp_flags; /* flags (see below) */ -} ctf_preamble_t; - -typedef struct ctf_header { - ctf_preamble_t cth_preamble; - uint_t cth_parlabel; /* ref to name of parent lbl uniq'd against */ - uint_t cth_parname; /* ref to basename of parent */ - uint_t cth_lbloff; /* offset of label section */ - uint_t cth_objtoff; /* offset of object section */ - uint_t cth_funcoff; /* offset of function section */ - uint_t cth_typeoff; /* offset of type section */ - uint_t cth_stroff; /* offset of string section */ - uint_t cth_strlen; /* length of string section in bytes */ -} ctf_header_t; - -#define cth_magic cth_preamble.ctp_magic -#define cth_version cth_preamble.ctp_version -#define cth_flags cth_preamble.ctp_flags - -#ifdef CTF_OLD_VERSIONS - -typedef struct ctf_header_v1 { - ctf_preamble_t cth_preamble; - uint_t cth_objtoff; - uint_t cth_funcoff; - uint_t cth_typeoff; - uint_t cth_stroff; - uint_t cth_strlen; -} ctf_header_v1_t; - -#endif /* CTF_OLD_VERSIONS */ - -#define CTF_MAGIC 0xcff1 /* magic number identifying header */ - -/* data format version number */ -#define CTF_VERSION_1 1 -#define CTF_VERSION_2 2 -#define CTF_VERSION CTF_VERSION_2 /* current version */ - -#define CTF_F_COMPRESS 0x1 /* data buffer is compressed */ - -typedef struct ctf_lblent { - uint_t ctl_label; /* ref to name of label */ - uint_t ctl_typeidx; /* last type associated with this label */ -} ctf_lblent_t; - -typedef struct ctf_stype { - uint_t ctt_name; /* reference to name in string table */ - ushort_t ctt_info; /* encoded kind, variant length (see below) */ - union { - ushort_t _size; /* size of entire type in bytes */ - ushort_t _type; /* reference to another type */ - } _u; -} ctf_stype_t; - -/* - * type sizes, measured in bytes, come in two flavors. 99% of them fit within - * (USHRT_MAX - 1), and thus can be stored in the ctt_size member of a - * ctf_stype_t. The maximum value for these sizes is CTF_MAX_SIZE. The sizes - * larger than CTF_MAX_SIZE must be stored in the ctt_lsize member of a - * ctf_type_t. Use of this member is indicated by the presence of - * CTF_LSIZE_SENT in ctt_size. - */ -typedef struct ctf_type { - uint_t ctt_name; /* reference to name in string table */ - ushort_t ctt_info; /* encoded kind, variant length (see below) */ - union { - ushort_t _size; /* always CTF_LSIZE_SENT */ - ushort_t _type; /* do not use */ - } _u; - uint_t ctt_lsizehi; /* high 32 bits of type size in bytes */ - uint_t ctt_lsizelo; /* low 32 bits of type size in bytes */ -} ctf_type_t; - -#define ctt_size _u._size /* for fundamental types that have a size */ -#define ctt_type _u._type /* for types that reference another type */ - -/* - * The following macros compose and decompose values for ctt_info and - * ctt_name, as well as other structures that contain name references. - * - * ------------------------ - * ctt_info: | kind | isroot | vlen | - * ------------------------ - * 15 11 10 9 0 - * - * kind = CTF_INFO_KIND(c.ctt_info); <-- CTF_K_* value (see below) - * vlen = CTF_INFO_VLEN(c.ctt_info); <-- length of variable data list - * - * stid = CTF_NAME_STID(c.ctt_name); <-- string table id number (0 or 1) - * offset = CTF_NAME_OFFSET(c.ctt_name); <-- string table byte offset - * - * c.ctt_info = CTF_TYPE_INFO(kind, vlen); - * c.ctt_name = CTF_TYPE_NAME(stid, offset); - */ - -#define CTF_INFO_KIND(info) (((info) & 0xf800) >> 11) -#define CTF_INFO_ISROOT(info) (((info) & 0x0400) >> 10) -#define CTF_INFO_VLEN(info) (((info) & CTF_MAX_VLEN)) - -#define CTF_NAME_STID(name) ((name) >> 31) -#define CTF_NAME_OFFSET(name) ((name) & 0x7fffffff) - -#define CTF_TYPE_INFO(kind, isroot, vlen) \ - (((kind) << 11) | (((isroot) ? 1 : 0) << 10) | ((vlen) & CTF_MAX_VLEN)) - -#define CTF_TYPE_NAME(stid, offset) \ - (((stid) << 31) | ((offset) & 0x7fffffff)) - -#define CTF_TYPE_ISPARENT(id) ((id) < 0x8000) -#define CTF_TYPE_ISCHILD(id) ((id) > 0x7fff) - -#define CTF_TYPE_TO_INDEX(id) ((id) & 0x7fff) -#define CTF_INDEX_TO_TYPE(id, child) ((child) ? ((id) | 0x8000) : (id)) -#define CTF_PARENT_SHIFT 15 - -#define CTF_STRTAB_0 0 /* symbolic define for string table id 0 */ -#define CTF_STRTAB_1 1 /* symbolic define for string table id 1 */ - -#define CTF_TYPE_LSIZE(cttp) \ - (((uint64_t)(cttp)->ctt_lsizehi) << 32 | (cttp)->ctt_lsizelo) -#define CTF_SIZE_TO_LSIZE_HI(size) ((uint32_t)((uint64_t)(size) >> 32)) -#define CTF_SIZE_TO_LSIZE_LO(size) ((uint32_t)(size)) - -#ifdef CTF_OLD_VERSIONS - -#define CTF_INFO_KIND_V1(info) (((info) & 0xf000) >> 12) -#define CTF_INFO_ISROOT_V1(info) (((info) & 0x0800) >> 11) -#define CTF_INFO_VLEN_V1(info) (((info) & 0x07ff)) - -#define CTF_TYPE_INFO_V1(kind, isroot, vlen) \ - (((kind) << 12) | (((isroot) ? 1 : 0) << 11) | ((vlen) & 0x07ff)) - -#endif /* CTF_OLD_VERSIONS */ - -/* - * Values for CTF_TYPE_KIND(). If the kind has an associated data list, - * CTF_INFO_VLEN() will extract the number of elements in the list, and - * the type of each element is shown in the comments below. - */ -#define CTF_K_UNKNOWN 0 /* unknown type (used for padding) */ -#define CTF_K_INTEGER 1 /* variant data is CTF_INT_DATA() (see below) */ -#define CTF_K_FLOAT 2 /* variant data is CTF_FP_DATA() (see below) */ -#define CTF_K_POINTER 3 /* ctt_type is referenced type */ -#define CTF_K_ARRAY 4 /* variant data is single ctf_array_t */ -#define CTF_K_FUNCTION 5 /* ctt_type is return type, variant data is */ - /* list of argument types (ushort_t's) */ -#define CTF_K_STRUCT 6 /* variant data is list of ctf_member_t's */ -#define CTF_K_UNION 7 /* variant data is list of ctf_member_t's */ -#define CTF_K_ENUM 8 /* variant data is list of ctf_enum_t's */ -#define CTF_K_FORWARD 9 /* no additional data; ctt_name is tag */ -#define CTF_K_TYPEDEF 10 /* ctt_type is referenced type */ -#define CTF_K_VOLATILE 11 /* ctt_type is base type */ -#define CTF_K_CONST 12 /* ctt_type is base type */ -#define CTF_K_RESTRICT 13 /* ctt_type is base type */ - -#define CTF_K_MAX 31 /* Maximum possible CTF_K_* value */ - -/* - * Values for ctt_type when kind is CTF_K_INTEGER. The flags, offset in bits, - * and size in bits are encoded as a single word using the following macros. - */ -#define CTF_INT_ENCODING(data) (((data) & 0xff000000) >> 24) -#define CTF_INT_OFFSET(data) (((data) & 0x00ff0000) >> 16) -#define CTF_INT_BITS(data) (((data) & 0x0000ffff)) - -#define CTF_INT_DATA(encoding, offset, bits) \ - (((encoding) << 24) | ((offset) << 16) | (bits)) - -#define CTF_INT_SIGNED 0x01 /* integer is signed (otherwise unsigned) */ -#define CTF_INT_CHAR 0x02 /* character display format */ -#define CTF_INT_BOOL 0x04 /* boolean display format */ -#define CTF_INT_VARARGS 0x08 /* varargs display format */ - -/* - * Values for ctt_type when kind is CTF_K_FLOAT. The encoding, offset in bits, - * and size in bits are encoded as a single word using the following macros. - */ -#define CTF_FP_ENCODING(data) (((data) & 0xff000000) >> 24) -#define CTF_FP_OFFSET(data) (((data) & 0x00ff0000) >> 16) -#define CTF_FP_BITS(data) (((data) & 0x0000ffff)) - -#define CTF_FP_DATA(encoding, offset, bits) \ - (((encoding) << 24) | ((offset) << 16) | (bits)) - -#define CTF_FP_SINGLE 1 /* IEEE 32-bit float encoding */ -#define CTF_FP_DOUBLE 2 /* IEEE 64-bit float encoding */ -#define CTF_FP_CPLX 3 /* Complex encoding */ -#define CTF_FP_DCPLX 4 /* Double complex encoding */ -#define CTF_FP_LDCPLX 5 /* Long double complex encoding */ -#define CTF_FP_LDOUBLE 6 /* Long double encoding */ -#define CTF_FP_INTRVL 7 /* Interval (2x32-bit) encoding */ -#define CTF_FP_DINTRVL 8 /* Double interval (2x64-bit) encoding */ -#define CTF_FP_LDINTRVL 9 /* Long double interval (2x128-bit) encoding */ -#define CTF_FP_IMAGRY 10 /* Imaginary (32-bit) encoding */ -#define CTF_FP_DIMAGRY 11 /* Long imaginary (64-bit) encoding */ -#define CTF_FP_LDIMAGRY 12 /* Long double imaginary (128-bit) encoding */ - -#define CTF_FP_MAX 12 /* Maximum possible CTF_FP_* value */ - -typedef struct ctf_array { - ushort_t cta_contents; /* reference to type of array contents */ - ushort_t cta_index; /* reference to type of array index */ - uint_t cta_nelems; /* number of elements */ -} ctf_array_t; - -/* - * Most structure members have bit offsets that can be expressed using a - * short. Some don't. ctf_member_t is used for structs which cannot - * contain any of these large offsets, whereas ctf_lmember_t is used in the - * latter case. If ctt_size for a given struct is >= 8192 bytes, all members - * will be stored as type ctf_lmember_t. - */ - -#define CTF_LSTRUCT_THRESH 8192 - -typedef struct ctf_member { - uint_t ctm_name; /* reference to name in string table */ - ushort_t ctm_type; /* reference to type of member */ - ushort_t ctm_offset; /* offset of this member in bits */ -} ctf_member_t; - -typedef struct ctf_lmember { - uint_t ctlm_name; /* reference to name in string table */ - ushort_t ctlm_type; /* reference to type of member */ - ushort_t ctlm_pad; /* padding */ - uint_t ctlm_offsethi; /* high 32 bits of member offset in bits */ - uint_t ctlm_offsetlo; /* low 32 bits of member offset in bits */ -} ctf_lmember_t; - -#define CTF_LMEM_OFFSET(ctlmp) \ - (((uint64_t)(ctlmp)->ctlm_offsethi) << 32 | (ctlmp)->ctlm_offsetlo) -#define CTF_OFFSET_TO_LMEMHI(offset) ((uint32_t)((uint64_t)(offset) >> 32)) -#define CTF_OFFSET_TO_LMEMLO(offset) ((uint32_t)(offset)) - -typedef struct ctf_enum { - uint_t cte_name; /* reference to name in string table */ - int cte_value; /* value associated with this name */ -} ctf_enum_t; - -#ifdef __cplusplus -} -#endif - -#endif /* _CTF_H */ diff --git a/cddl/contrib/opensolaris/uts/common/sys/ctf_api.h b/cddl/contrib/opensolaris/uts/common/sys/ctf_api.h deleted file mode 100644 index 17b0b72..0000000 --- a/cddl/contrib/opensolaris/uts/common/sys/ctf_api.h +++ /dev/null @@ -1,241 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License, Version 1.0 only - * (the "License"). You may not use this file except in compliance - * with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2005 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -/* - * This header file defines the interfaces available from the CTF debugger - * library, libctf, and an equivalent kernel module. This API can be used by - * a debugger to operate on data in the Compact ANSI-C Type Format (CTF). - * This is NOT a public interface, although it may eventually become one in - * the fullness of time after we gain more experience with the interfaces. - * - * In the meantime, be aware that any program linked with this API in this - * release of Solaris is almost guaranteed to break in the next release. - * - * In short, do not user this header file or the CTF routines for any purpose. - */ - -#ifndef _CTF_API_H -#define _CTF_API_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include <sys/types.h> -#include <sys/param.h> -#include <sys/elf.h> -#include <sys/ctf.h> - -#ifdef __cplusplus -extern "C" { -#endif - -/* - * Clients can open one or more CTF containers and obtain a pointer to an - * opaque ctf_file_t. Types are identified by an opaque ctf_id_t token. - * These opaque definitions allow libctf to evolve without breaking clients. - */ -typedef struct ctf_file ctf_file_t; -typedef long ctf_id_t; - -/* - * If the debugger needs to provide the CTF library with a set of raw buffers - * for use as the CTF data, symbol table, and string table, it can do so by - * filling in ctf_sect_t structures and passing them to ctf_bufopen(): - */ -typedef struct ctf_sect { - const char *cts_name; /* section name (if any) */ - ulong_t cts_type; /* section type (ELF SHT_... value) */ - ulong_t cts_flags; /* section flags (ELF SHF_... value) */ - const void *cts_data; /* pointer to section data */ - size_t cts_size; /* size of data in bytes */ - size_t cts_entsize; /* size of each section entry (symtab only) */ - off64_t cts_offset; /* file offset of this section (if any) */ -} ctf_sect_t; - -/* - * Encoding information for integers, floating-point values, and certain other - * intrinsics can be obtained by calling ctf_type_encoding(), below. The flags - * field will contain values appropriate for the type defined in <sys/ctf.h>. - */ -typedef struct ctf_encoding { - uint_t cte_format; /* data format (CTF_INT_* or CTF_FP_* flags) */ - uint_t cte_offset; /* offset of value in bits */ - uint_t cte_bits; /* size of storage in bits */ -} ctf_encoding_t; - -typedef struct ctf_membinfo { - ctf_id_t ctm_type; /* type of struct or union member */ - ulong_t ctm_offset; /* offset of member in bits */ -} ctf_membinfo_t; - -typedef struct ctf_arinfo { - ctf_id_t ctr_contents; /* type of array contents */ - ctf_id_t ctr_index; /* type of array index */ - uint_t ctr_nelems; /* number of elements */ -} ctf_arinfo_t; - -typedef struct ctf_funcinfo { - ctf_id_t ctc_return; /* function return type */ - uint_t ctc_argc; /* number of typed arguments to function */ - uint_t ctc_flags; /* function attributes (see below) */ -} ctf_funcinfo_t; - -typedef struct ctf_lblinfo { - ctf_id_t ctb_typeidx; /* last type associated with the label */ -} ctf_lblinfo_t; - -#define CTF_FUNC_VARARG 0x1 /* function arguments end with varargs */ - -/* - * Functions that return integer status or a ctf_id_t use the following value - * to indicate failure. ctf_errno() can be used to obtain an error code. - */ -#define CTF_ERR (-1L) - -/* - * The CTF data model is inferred to be the caller's data model or the data - * model of the given object, unless ctf_setmodel() is explicitly called. - */ -#define CTF_MODEL_ILP32 1 /* object data model is ILP32 */ -#define CTF_MODEL_LP64 2 /* object data model is LP64 */ -#ifdef _LP64 -#define CTF_MODEL_NATIVE CTF_MODEL_LP64 -#else -#define CTF_MODEL_NATIVE CTF_MODEL_ILP32 -#endif - -/* - * Dynamic CTF containers can be created using ctf_create(). The ctf_add_* - * routines can be used to add new definitions to the dynamic container. - * New types are labeled as root or non-root to determine whether they are - * visible at the top-level program scope when subsequently doing a lookup. - */ -#define CTF_ADD_NONROOT 0 /* type only visible in nested scope */ -#define CTF_ADD_ROOT 1 /* type visible at top-level scope */ - -/* - * These typedefs are used to define the signature for callback functions - * that can be used with the iteration and visit functions below: - */ -typedef int ctf_visit_f(const char *, ctf_id_t, ulong_t, int, void *); -typedef int ctf_member_f(const char *, ctf_id_t, ulong_t, void *); -typedef int ctf_enum_f(const char *, int, void *); -typedef int ctf_type_f(ctf_id_t, void *); -typedef int ctf_label_f(const char *, const ctf_lblinfo_t *, void *); - -extern ctf_file_t *ctf_bufopen(const ctf_sect_t *, const ctf_sect_t *, - const ctf_sect_t *, int *); -extern ctf_file_t *ctf_fdopen(int, int *); -extern ctf_file_t *ctf_open(const char *, int *); -extern ctf_file_t *ctf_create(int *); -extern void ctf_close(ctf_file_t *); - -extern ctf_file_t *ctf_parent_file(ctf_file_t *); -extern const char *ctf_parent_name(ctf_file_t *); - -extern int ctf_import(ctf_file_t *, ctf_file_t *); -extern int ctf_setmodel(ctf_file_t *, int); -extern int ctf_getmodel(ctf_file_t *); - -extern void ctf_setspecific(ctf_file_t *, void *); -extern void *ctf_getspecific(ctf_file_t *); - -extern int ctf_errno(ctf_file_t *); -extern const char *ctf_errmsg(int); -extern int ctf_version(int); - -extern int ctf_func_info(ctf_file_t *, ulong_t, ctf_funcinfo_t *); -extern int ctf_func_args(ctf_file_t *, ulong_t, uint_t, ctf_id_t *); - -extern ctf_id_t ctf_lookup_by_name(ctf_file_t *, const char *); -extern ctf_id_t ctf_lookup_by_symbol(ctf_file_t *, ulong_t); - -extern ctf_id_t ctf_type_resolve(ctf_file_t *, ctf_id_t); -extern ssize_t ctf_type_lname(ctf_file_t *, ctf_id_t, char *, size_t); -extern char *ctf_type_name(ctf_file_t *, ctf_id_t, char *, size_t); -extern ssize_t ctf_type_size(ctf_file_t *, ctf_id_t); -extern ssize_t ctf_type_align(ctf_file_t *, ctf_id_t); -extern int ctf_type_kind(ctf_file_t *, ctf_id_t); -extern ctf_id_t ctf_type_reference(ctf_file_t *, ctf_id_t); -extern ctf_id_t ctf_type_pointer(ctf_file_t *, ctf_id_t); -extern int ctf_type_encoding(ctf_file_t *, ctf_id_t, ctf_encoding_t *); -extern int ctf_type_visit(ctf_file_t *, ctf_id_t, ctf_visit_f *, void *); -extern int ctf_type_cmp(ctf_file_t *, ctf_id_t, ctf_file_t *, ctf_id_t); -extern int ctf_type_compat(ctf_file_t *, ctf_id_t, ctf_file_t *, ctf_id_t); - -extern int ctf_member_info(ctf_file_t *, ctf_id_t, const char *, - ctf_membinfo_t *); -extern int ctf_array_info(ctf_file_t *, ctf_id_t, ctf_arinfo_t *); - -extern const char *ctf_enum_name(ctf_file_t *, ctf_id_t, int); -extern int ctf_enum_value(ctf_file_t *, ctf_id_t, const char *, int *); - -extern const char *ctf_label_topmost(ctf_file_t *); -extern int ctf_label_info(ctf_file_t *, const char *, ctf_lblinfo_t *); - -extern int ctf_member_iter(ctf_file_t *, ctf_id_t, ctf_member_f *, void *); -extern int ctf_enum_iter(ctf_file_t *, ctf_id_t, ctf_enum_f *, void *); -extern int ctf_type_iter(ctf_file_t *, ctf_type_f *, void *); -extern int ctf_label_iter(ctf_file_t *, ctf_label_f *, void *); - -extern ctf_id_t ctf_add_array(ctf_file_t *, uint_t, const ctf_arinfo_t *); -extern ctf_id_t ctf_add_const(ctf_file_t *, uint_t, ctf_id_t); -extern ctf_id_t ctf_add_enum(ctf_file_t *, uint_t, const char *); -extern ctf_id_t ctf_add_float(ctf_file_t *, uint_t, - const char *, const ctf_encoding_t *); -extern ctf_id_t ctf_add_forward(ctf_file_t *, uint_t, const char *, uint_t); -extern ctf_id_t ctf_add_function(ctf_file_t *, uint_t, - const ctf_funcinfo_t *, const ctf_id_t *); -extern ctf_id_t ctf_add_integer(ctf_file_t *, uint_t, - const char *, const ctf_encoding_t *); -extern ctf_id_t ctf_add_pointer(ctf_file_t *, uint_t, ctf_id_t); -extern ctf_id_t ctf_add_type(ctf_file_t *, ctf_file_t *, ctf_id_t); -extern ctf_id_t ctf_add_typedef(ctf_file_t *, uint_t, const char *, ctf_id_t); -extern ctf_id_t ctf_add_restrict(ctf_file_t *, uint_t, ctf_id_t); -extern ctf_id_t ctf_add_struct(ctf_file_t *, uint_t, const char *); -extern ctf_id_t ctf_add_union(ctf_file_t *, uint_t, const char *); -extern ctf_id_t ctf_add_volatile(ctf_file_t *, uint_t, ctf_id_t); - -extern int ctf_add_enumerator(ctf_file_t *, ctf_id_t, const char *, int); -extern int ctf_add_member(ctf_file_t *, ctf_id_t, const char *, ctf_id_t); - -extern int ctf_set_array(ctf_file_t *, ctf_id_t, const ctf_arinfo_t *); - -extern int ctf_update(ctf_file_t *); -extern int ctf_discard(ctf_file_t *); -extern int ctf_write(ctf_file_t *, int); - -#ifdef _KERNEL - -struct module; -extern ctf_file_t *ctf_modopen(struct module *, int *); - -#endif - -#ifdef __cplusplus -} -#endif - -#endif /* _CTF_API_H */ diff --git a/cddl/contrib/opensolaris/uts/common/sys/dtrace.h b/cddl/contrib/opensolaris/uts/common/sys/dtrace.h deleted file mode 100644 index b6e52ec..0000000 --- a/cddl/contrib/opensolaris/uts/common/sys/dtrace.h +++ /dev/null @@ -1,2242 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2007 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _SYS_DTRACE_H -#define _SYS_DTRACE_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#ifdef __cplusplus -extern "C" { -#endif - -/* - * DTrace Dynamic Tracing Software: Kernel Interfaces - * - * Note: The contents of this file are private to the implementation of the - * Solaris system and DTrace subsystem and are subject to change at any time - * without notice. Applications and drivers using these interfaces will fail - * to run on future releases. These interfaces should not be used for any - * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB). - * Please refer to the "Solaris Dynamic Tracing Guide" for more information. - */ - -#ifndef _ASM - -#include <sys/types.h> -#include <sys/modctl.h> -#include <sys/processor.h> -#include <sys/systm.h> -#include <sys/ctf_api.h> -#include <sys/cyclic.h> -#include <sys/int_limits.h> - -/* - * DTrace Universal Constants and Typedefs - */ -#define DTRACE_CPUALL -1 /* all CPUs */ -#define DTRACE_IDNONE 0 /* invalid probe identifier */ -#define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */ -#define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */ -#define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */ -#define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */ -#define DTRACE_PROVNONE 0 /* invalid provider identifier */ -#define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */ -#define DTRACE_ARGNONE -1 /* invalid argument index */ - -#define DTRACE_PROVNAMELEN 64 -#define DTRACE_MODNAMELEN 64 -#define DTRACE_FUNCNAMELEN 128 -#define DTRACE_NAMELEN 64 -#define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \ - DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4) -#define DTRACE_ARGTYPELEN 128 - -typedef uint32_t dtrace_id_t; /* probe identifier */ -typedef uint32_t dtrace_epid_t; /* enabled probe identifier */ -typedef uint32_t dtrace_aggid_t; /* aggregation identifier */ -typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */ -typedef uint16_t dtrace_actkind_t; /* action kind */ -typedef int64_t dtrace_optval_t; /* option value */ -typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */ - -typedef enum dtrace_probespec { - DTRACE_PROBESPEC_NONE = -1, - DTRACE_PROBESPEC_PROVIDER = 0, - DTRACE_PROBESPEC_MOD, - DTRACE_PROBESPEC_FUNC, - DTRACE_PROBESPEC_NAME -} dtrace_probespec_t; - -/* - * DTrace Intermediate Format (DIF) - * - * The following definitions describe the DTrace Intermediate Format (DIF), a - * a RISC-like instruction set and program encoding used to represent - * predicates and actions that can be bound to DTrace probes. The constants - * below defining the number of available registers are suggested minimums; the - * compiler should use DTRACEIOC_CONF to dynamically obtain the number of - * registers provided by the current DTrace implementation. - */ -#define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */ -#define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */ -#define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */ -#define DIF_DIR_NREGS 8 /* number of DIF integer registers */ -#define DIF_DTR_NREGS 8 /* number of DIF tuple registers */ - -#define DIF_OP_OR 1 /* or r1, r2, rd */ -#define DIF_OP_XOR 2 /* xor r1, r2, rd */ -#define DIF_OP_AND 3 /* and r1, r2, rd */ -#define DIF_OP_SLL 4 /* sll r1, r2, rd */ -#define DIF_OP_SRL 5 /* srl r1, r2, rd */ -#define DIF_OP_SUB 6 /* sub r1, r2, rd */ -#define DIF_OP_ADD 7 /* add r1, r2, rd */ -#define DIF_OP_MUL 8 /* mul r1, r2, rd */ -#define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */ -#define DIF_OP_UDIV 10 /* udiv r1, r2, rd */ -#define DIF_OP_SREM 11 /* srem r1, r2, rd */ -#define DIF_OP_UREM 12 /* urem r1, r2, rd */ -#define DIF_OP_NOT 13 /* not r1, rd */ -#define DIF_OP_MOV 14 /* mov r1, rd */ -#define DIF_OP_CMP 15 /* cmp r1, r2 */ -#define DIF_OP_TST 16 /* tst r1 */ -#define DIF_OP_BA 17 /* ba label */ -#define DIF_OP_BE 18 /* be label */ -#define DIF_OP_BNE 19 /* bne label */ -#define DIF_OP_BG 20 /* bg label */ -#define DIF_OP_BGU 21 /* bgu label */ -#define DIF_OP_BGE 22 /* bge label */ -#define DIF_OP_BGEU 23 /* bgeu label */ -#define DIF_OP_BL 24 /* bl label */ -#define DIF_OP_BLU 25 /* blu label */ -#define DIF_OP_BLE 26 /* ble label */ -#define DIF_OP_BLEU 27 /* bleu label */ -#define DIF_OP_LDSB 28 /* ldsb [r1], rd */ -#define DIF_OP_LDSH 29 /* ldsh [r1], rd */ -#define DIF_OP_LDSW 30 /* ldsw [r1], rd */ -#define DIF_OP_LDUB 31 /* ldub [r1], rd */ -#define DIF_OP_LDUH 32 /* lduh [r1], rd */ -#define DIF_OP_LDUW 33 /* lduw [r1], rd */ -#define DIF_OP_LDX 34 /* ldx [r1], rd */ -#define DIF_OP_RET 35 /* ret rd */ -#define DIF_OP_NOP 36 /* nop */ -#define DIF_OP_SETX 37 /* setx intindex, rd */ -#define DIF_OP_SETS 38 /* sets strindex, rd */ -#define DIF_OP_SCMP 39 /* scmp r1, r2 */ -#define DIF_OP_LDGA 40 /* ldga var, ri, rd */ -#define DIF_OP_LDGS 41 /* ldgs var, rd */ -#define DIF_OP_STGS 42 /* stgs var, rs */ -#define DIF_OP_LDTA 43 /* ldta var, ri, rd */ -#define DIF_OP_LDTS 44 /* ldts var, rd */ -#define DIF_OP_STTS 45 /* stts var, rs */ -#define DIF_OP_SRA 46 /* sra r1, r2, rd */ -#define DIF_OP_CALL 47 /* call subr, rd */ -#define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */ -#define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */ -#define DIF_OP_POPTS 50 /* popts */ -#define DIF_OP_FLUSHTS 51 /* flushts */ -#define DIF_OP_LDGAA 52 /* ldgaa var, rd */ -#define DIF_OP_LDTAA 53 /* ldtaa var, rd */ -#define DIF_OP_STGAA 54 /* stgaa var, rs */ -#define DIF_OP_STTAA 55 /* sttaa var, rs */ -#define DIF_OP_LDLS 56 /* ldls var, rd */ -#define DIF_OP_STLS 57 /* stls var, rs */ -#define DIF_OP_ALLOCS 58 /* allocs r1, rd */ -#define DIF_OP_COPYS 59 /* copys r1, r2, rd */ -#define DIF_OP_STB 60 /* stb r1, [rd] */ -#define DIF_OP_STH 61 /* sth r1, [rd] */ -#define DIF_OP_STW 62 /* stw r1, [rd] */ -#define DIF_OP_STX 63 /* stx r1, [rd] */ -#define DIF_OP_ULDSB 64 /* uldsb [r1], rd */ -#define DIF_OP_ULDSH 65 /* uldsh [r1], rd */ -#define DIF_OP_ULDSW 66 /* uldsw [r1], rd */ -#define DIF_OP_ULDUB 67 /* uldub [r1], rd */ -#define DIF_OP_ULDUH 68 /* ulduh [r1], rd */ -#define DIF_OP_ULDUW 69 /* ulduw [r1], rd */ -#define DIF_OP_ULDX 70 /* uldx [r1], rd */ -#define DIF_OP_RLDSB 71 /* rldsb [r1], rd */ -#define DIF_OP_RLDSH 72 /* rldsh [r1], rd */ -#define DIF_OP_RLDSW 73 /* rldsw [r1], rd */ -#define DIF_OP_RLDUB 74 /* rldub [r1], rd */ -#define DIF_OP_RLDUH 75 /* rlduh [r1], rd */ -#define DIF_OP_RLDUW 76 /* rlduw [r1], rd */ -#define DIF_OP_RLDX 77 /* rldx [r1], rd */ -#define DIF_OP_XLATE 78 /* xlate xlrindex, rd */ -#define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */ - -#define DIF_INTOFF_MAX 0xffff /* highest integer table offset */ -#define DIF_STROFF_MAX 0xffff /* highest string table offset */ -#define DIF_REGISTER_MAX 0xff /* highest register number */ -#define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */ -#define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */ - -#define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */ -#define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */ -#define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */ - -#define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */ -#define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */ -#define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */ - -#define DIF_VAR_ARGS 0x0000 /* arguments array */ -#define DIF_VAR_REGS 0x0001 /* registers array */ -#define DIF_VAR_UREGS 0x0002 /* user registers array */ -#define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */ -#define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */ -#define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */ -#define DIF_VAR_IPL 0x0103 /* interrupt priority level */ -#define DIF_VAR_EPID 0x0104 /* enabled probe ID */ -#define DIF_VAR_ID 0x0105 /* probe ID */ -#define DIF_VAR_ARG0 0x0106 /* first argument */ -#define DIF_VAR_ARG1 0x0107 /* second argument */ -#define DIF_VAR_ARG2 0x0108 /* third argument */ -#define DIF_VAR_ARG3 0x0109 /* fourth argument */ -#define DIF_VAR_ARG4 0x010a /* fifth argument */ -#define DIF_VAR_ARG5 0x010b /* sixth argument */ -#define DIF_VAR_ARG6 0x010c /* seventh argument */ -#define DIF_VAR_ARG7 0x010d /* eighth argument */ -#define DIF_VAR_ARG8 0x010e /* ninth argument */ -#define DIF_VAR_ARG9 0x010f /* tenth argument */ -#define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */ -#define DIF_VAR_CALLER 0x0111 /* caller */ -#define DIF_VAR_PROBEPROV 0x0112 /* probe provider */ -#define DIF_VAR_PROBEMOD 0x0113 /* probe module */ -#define DIF_VAR_PROBEFUNC 0x0114 /* probe function */ -#define DIF_VAR_PROBENAME 0x0115 /* probe name */ -#define DIF_VAR_PID 0x0116 /* process ID */ -#define DIF_VAR_TID 0x0117 /* (per-process) thread ID */ -#define DIF_VAR_EXECNAME 0x0118 /* name of executable */ -#define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */ -#define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */ -#define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */ -#define DIF_VAR_UCALLER 0x011c /* user-level caller */ -#define DIF_VAR_PPID 0x011d /* parent process ID */ -#define DIF_VAR_UID 0x011e /* process user ID */ -#define DIF_VAR_GID 0x011f /* process group ID */ -#define DIF_VAR_ERRNO 0x0120 /* thread errno */ - -#define DIF_SUBR_RAND 0 -#define DIF_SUBR_MUTEX_OWNED 1 -#define DIF_SUBR_MUTEX_OWNER 2 -#define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3 -#define DIF_SUBR_MUTEX_TYPE_SPIN 4 -#define DIF_SUBR_RW_READ_HELD 5 -#define DIF_SUBR_RW_WRITE_HELD 6 -#define DIF_SUBR_RW_ISWRITER 7 -#define DIF_SUBR_COPYIN 8 -#define DIF_SUBR_COPYINSTR 9 -#define DIF_SUBR_SPECULATION 10 -#define DIF_SUBR_PROGENYOF 11 -#define DIF_SUBR_STRLEN 12 -#define DIF_SUBR_COPYOUT 13 -#define DIF_SUBR_COPYOUTSTR 14 -#define DIF_SUBR_ALLOCA 15 -#define DIF_SUBR_BCOPY 16 -#define DIF_SUBR_COPYINTO 17 -#define DIF_SUBR_MSGDSIZE 18 -#define DIF_SUBR_MSGSIZE 19 -#define DIF_SUBR_GETMAJOR 20 -#define DIF_SUBR_GETMINOR 21 -#define DIF_SUBR_DDI_PATHNAME 22 -#define DIF_SUBR_STRJOIN 23 -#define DIF_SUBR_LLTOSTR 24 -#define DIF_SUBR_BASENAME 25 -#define DIF_SUBR_DIRNAME 26 -#define DIF_SUBR_CLEANPATH 27 -#define DIF_SUBR_STRCHR 28 -#define DIF_SUBR_STRRCHR 29 -#define DIF_SUBR_STRSTR 30 -#define DIF_SUBR_STRTOK 31 -#define DIF_SUBR_SUBSTR 32 -#define DIF_SUBR_INDEX 33 -#define DIF_SUBR_RINDEX 34 -#define DIF_SUBR_HTONS 35 -#define DIF_SUBR_HTONL 36 -#define DIF_SUBR_HTONLL 37 -#define DIF_SUBR_NTOHS 38 -#define DIF_SUBR_NTOHL 39 -#define DIF_SUBR_NTOHLL 40 -#define DIF_SUBR_INET_NTOP 41 -#define DIF_SUBR_INET_NTOA 42 -#define DIF_SUBR_INET_NTOA6 43 - -#define DIF_SUBR_MAX 43 /* max subroutine value */ - -typedef uint32_t dif_instr_t; - -#define DIF_INSTR_OP(i) (((i) >> 24) & 0xff) -#define DIF_INSTR_R1(i) (((i) >> 16) & 0xff) -#define DIF_INSTR_R2(i) (((i) >> 8) & 0xff) -#define DIF_INSTR_RD(i) ((i) & 0xff) -#define DIF_INSTR_RS(i) ((i) & 0xff) -#define DIF_INSTR_LABEL(i) ((i) & 0xffffff) -#define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff) -#define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff) -#define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff) -#define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff) -#define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff) -#define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff) - -#define DIF_INSTR_FMT(op, r1, r2, d) \ - (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d)) - -#define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d)) -#define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d)) -#define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0)) -#define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0)) -#define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label)) -#define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) -#define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) -#define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d)) -#define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d)) -#define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d)) -#define DIF_INSTR_NOP (DIF_OP_NOP << 24) -#define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d)) -#define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d)) -#define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs)) -#define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d)) -#define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs)) -#define DIF_INSTR_POPTS (DIF_OP_POPTS << 24) -#define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24) -#define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d)) -#define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d)) -#define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d)) - -#define DIF_REG_R0 0 /* %r0 is always set to zero */ - -/* - * A DTrace Intermediate Format Type (DIF Type) is used to represent the types - * of variables, function and associative array arguments, and the return type - * for each DIF object (shown below). It contains a description of the type, - * its size in bytes, and a module identifier. - */ -typedef struct dtrace_diftype { - uint8_t dtdt_kind; /* type kind (see below) */ - uint8_t dtdt_ckind; /* type kind in CTF */ - uint8_t dtdt_flags; /* type flags (see below) */ - uint8_t dtdt_pad; /* reserved for future use */ - uint32_t dtdt_size; /* type size in bytes (unless string) */ -} dtrace_diftype_t; - -#define DIF_TYPE_CTF 0 /* type is a CTF type */ -#define DIF_TYPE_STRING 1 /* type is a D string */ - -#define DIF_TF_BYREF 0x1 /* type is passed by reference */ - -/* - * A DTrace Intermediate Format variable record is used to describe each of the - * variables referenced by a given DIF object. It contains an integer variable - * identifier along with variable scope and properties, as shown below. The - * size of this structure must be sizeof (int) aligned. - */ -typedef struct dtrace_difv { - uint32_t dtdv_name; /* variable name index in dtdo_strtab */ - uint32_t dtdv_id; /* variable reference identifier */ - uint8_t dtdv_kind; /* variable kind (see below) */ - uint8_t dtdv_scope; /* variable scope (see below) */ - uint16_t dtdv_flags; /* variable flags (see below) */ - dtrace_diftype_t dtdv_type; /* variable type (see above) */ -} dtrace_difv_t; - -#define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */ -#define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */ - -#define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */ -#define DIFV_SCOPE_THREAD 1 /* variable has thread scope */ -#define DIFV_SCOPE_LOCAL 2 /* variable has local scope */ - -#define DIFV_F_REF 0x1 /* variable is referenced by DIFO */ -#define DIFV_F_MOD 0x2 /* variable is written by DIFO */ - -/* - * DTrace Actions - * - * The upper byte determines the class of the action; the low bytes determines - * the specific action within that class. The classes of actions are as - * follows: - * - * [ no class ] <= May record process- or kernel-related data - * DTRACEACT_PROC <= Only records process-related data - * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes - * DTRACEACT_KERNEL <= Only records kernel-related data - * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel - * DTRACEACT_SPECULATIVE <= Speculation-related action - * DTRACEACT_AGGREGATION <= Aggregating action - */ -#define DTRACEACT_NONE 0 /* no action */ -#define DTRACEACT_DIFEXPR 1 /* action is DIF expression */ -#define DTRACEACT_EXIT 2 /* exit() action */ -#define DTRACEACT_PRINTF 3 /* printf() action */ -#define DTRACEACT_PRINTA 4 /* printa() action */ -#define DTRACEACT_LIBACT 5 /* library-controlled action */ - -#define DTRACEACT_PROC 0x0100 -#define DTRACEACT_USTACK (DTRACEACT_PROC + 1) -#define DTRACEACT_JSTACK (DTRACEACT_PROC + 2) -#define DTRACEACT_USYM (DTRACEACT_PROC + 3) -#define DTRACEACT_UMOD (DTRACEACT_PROC + 4) -#define DTRACEACT_UADDR (DTRACEACT_PROC + 5) - -#define DTRACEACT_PROC_DESTRUCTIVE 0x0200 -#define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1) -#define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2) -#define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3) -#define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4) - -#define DTRACEACT_PROC_CONTROL 0x0300 - -#define DTRACEACT_KERNEL 0x0400 -#define DTRACEACT_STACK (DTRACEACT_KERNEL + 1) -#define DTRACEACT_SYM (DTRACEACT_KERNEL + 2) -#define DTRACEACT_MOD (DTRACEACT_KERNEL + 3) - -#define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500 -#define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1) -#define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2) -#define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3) - -#define DTRACEACT_SPECULATIVE 0x0600 -#define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1) -#define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2) -#define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3) - -#define DTRACEACT_CLASS(x) ((x) & 0xff00) - -#define DTRACEACT_ISDESTRUCTIVE(x) \ - (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \ - DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE) - -#define DTRACEACT_ISSPECULATIVE(x) \ - (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE) - -#define DTRACEACT_ISPRINTFLIKE(x) \ - ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \ - (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN) - -/* - * DTrace Aggregating Actions - * - * These are functions f(x) for which the following is true: - * - * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n) - * - * where x_n is a set of arbitrary data. Aggregating actions are in their own - * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow - * for easier processing of the aggregation argument and data payload for a few - * aggregating actions (notably: quantize(), lquantize(), and ustack()). - */ -#define DTRACEACT_AGGREGATION 0x0700 -#define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1) -#define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2) -#define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3) -#define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4) -#define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5) -#define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6) -#define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7) -#define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8) - -#define DTRACEACT_ISAGG(x) \ - (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION) - -#define DTRACE_QUANTIZE_NBUCKETS \ - (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) - -#define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1) - -#define DTRACE_QUANTIZE_BUCKETVAL(buck) \ - (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \ - -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \ - (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \ - 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1)) - -#define DTRACE_LQUANTIZE_STEPSHIFT 48 -#define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48) -#define DTRACE_LQUANTIZE_LEVELSHIFT 32 -#define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32) -#define DTRACE_LQUANTIZE_BASESHIFT 0 -#define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX - -#define DTRACE_LQUANTIZE_STEP(x) \ - (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \ - DTRACE_LQUANTIZE_STEPSHIFT) - -#define DTRACE_LQUANTIZE_LEVELS(x) \ - (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \ - DTRACE_LQUANTIZE_LEVELSHIFT) - -#define DTRACE_LQUANTIZE_BASE(x) \ - (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \ - DTRACE_LQUANTIZE_BASESHIFT) - -#define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX) -#define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32) -#define DTRACE_USTACK_ARG(x, y) \ - ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX)) - -#ifndef _LP64 -#ifndef _LITTLE_ENDIAN -#define DTRACE_PTR(type, name) uint32_t name##pad; type *name -#else -#define DTRACE_PTR(type, name) type *name; uint32_t name##pad -#endif -#else -#define DTRACE_PTR(type, name) type *name -#endif - -/* - * DTrace Object Format (DOF) - * - * DTrace programs can be persistently encoded in the DOF format so that they - * may be embedded in other programs (for example, in an ELF file) or in the - * dtrace driver configuration file for use in anonymous tracing. The DOF - * format is versioned and extensible so that it can be revised and so that - * internal data structures can be modified or extended compatibly. All DOF - * structures use fixed-size types, so the 32-bit and 64-bit representations - * are identical and consumers can use either data model transparently. - * - * The file layout is structured as follows: - * - * +---------------+-------------------+----- ... ----+---- ... ------+ - * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable | - * | (file header) | (section headers) | section data | section data | - * +---------------+-------------------+----- ... ----+---- ... ------+ - * |<------------ dof_hdr.dofh_loadsz --------------->| | - * |<------------ dof_hdr.dofh_filesz ------------------------------->| - * - * The file header stores meta-data including a magic number, data model for - * the instrumentation, data encoding, and properties of the DIF code within. - * The header describes its own size and the size of the section headers. By - * convention, an array of section headers follows the file header, and then - * the data for all loadable sections and unloadable sections. This permits - * consumer code to easily download the headers and all loadable data into the - * DTrace driver in one contiguous chunk, omitting other extraneous sections. - * - * The section headers describe the size, offset, alignment, and section type - * for each section. Sections are described using a set of #defines that tell - * the consumer what kind of data is expected. Sections can contain links to - * other sections by storing a dof_secidx_t, an index into the section header - * array, inside of the section data structures. The section header includes - * an entry size so that sections with data arrays can grow their structures. - * - * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which - * are represented themselves as a collection of related DOF sections. This - * permits us to change the set of sections associated with a DIFO over time, - * and also permits us to encode DIFOs that contain different sets of sections. - * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a - * section of type DOF_SECT_DIFOHDR. This section's data is then an array of - * dof_secidx_t's which in turn denote the sections associated with this DIFO. - * - * This loose coupling of the file structure (header and sections) to the - * structure of the DTrace program itself (ECB descriptions, action - * descriptions, and DIFOs) permits activities such as relocation processing - * to occur in a single pass without having to understand D program structure. - * - * Finally, strings are always stored in ELF-style string tables along with a - * string table section index and string table offset. Therefore strings in - * DOF are always arbitrary-length and not bound to the current implementation. - */ - -#define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */ - -typedef struct dof_hdr { - uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */ - uint32_t dofh_flags; /* file attribute flags (if any) */ - uint32_t dofh_hdrsize; /* size of file header in bytes */ - uint32_t dofh_secsize; /* size of section header in bytes */ - uint32_t dofh_secnum; /* number of section headers */ - uint64_t dofh_secoff; /* file offset of section headers */ - uint64_t dofh_loadsz; /* file size of loadable portion */ - uint64_t dofh_filesz; /* file size of entire DOF file */ - uint64_t dofh_pad; /* reserved for future use */ -} dof_hdr_t; - -#define DOF_ID_MAG0 0 /* first byte of magic number */ -#define DOF_ID_MAG1 1 /* second byte of magic number */ -#define DOF_ID_MAG2 2 /* third byte of magic number */ -#define DOF_ID_MAG3 3 /* fourth byte of magic number */ -#define DOF_ID_MODEL 4 /* DOF data model (see below) */ -#define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */ -#define DOF_ID_VERSION 6 /* DOF file format major version (see below) */ -#define DOF_ID_DIFVERS 7 /* DIF instruction set version */ -#define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */ -#define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */ -#define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */ - -#define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */ -#define DOF_MAG_MAG1 'D' -#define DOF_MAG_MAG2 'O' -#define DOF_MAG_MAG3 'F' - -#define DOF_MAG_STRING "\177DOF" -#define DOF_MAG_STRLEN 4 - -#define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */ -#define DOF_MODEL_ILP32 1 -#define DOF_MODEL_LP64 2 - -#ifdef _LP64 -#define DOF_MODEL_NATIVE DOF_MODEL_LP64 -#else -#define DOF_MODEL_NATIVE DOF_MODEL_ILP32 -#endif - -#define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */ -#define DOF_ENCODE_LSB 1 -#define DOF_ENCODE_MSB 2 - -#ifdef _BIG_ENDIAN -#define DOF_ENCODE_NATIVE DOF_ENCODE_MSB -#else -#define DOF_ENCODE_NATIVE DOF_ENCODE_LSB -#endif - -#define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */ -#define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */ -#define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */ - -#define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */ - -typedef uint32_t dof_secidx_t; /* section header table index type */ -typedef uint32_t dof_stridx_t; /* string table index type */ - -#define DOF_SECIDX_NONE (-1U) /* null value for section indices */ -#define DOF_STRIDX_NONE (-1U) /* null value for string indices */ - -typedef struct dof_sec { - uint32_t dofs_type; /* section type (see below) */ - uint32_t dofs_align; /* section data memory alignment */ - uint32_t dofs_flags; /* section flags (if any) */ - uint32_t dofs_entsize; /* size of section entry (if table) */ - uint64_t dofs_offset; /* offset of section data within file */ - uint64_t dofs_size; /* size of section data in bytes */ -} dof_sec_t; - -#define DOF_SECT_NONE 0 /* null section */ -#define DOF_SECT_COMMENTS 1 /* compiler comments */ -#define DOF_SECT_SOURCE 2 /* D program source code */ -#define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */ -#define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */ -#define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */ -#define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */ -#define DOF_SECT_DIF 7 /* uint32_t array of byte code */ -#define DOF_SECT_STRTAB 8 /* string table */ -#define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */ -#define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */ -#define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */ -#define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */ -#define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */ -#define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */ -#define DOF_SECT_PROVIDER 15 /* dof_provider_t */ -#define DOF_SECT_PROBES 16 /* dof_probe_t array */ -#define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */ -#define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */ -#define DOF_SECT_INTTAB 19 /* uint64_t array */ -#define DOF_SECT_UTSNAME 20 /* struct utsname */ -#define DOF_SECT_XLTAB 21 /* dof_xlref_t array */ -#define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */ -#define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */ -#define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */ -#define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */ -#define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */ - -#define DOF_SECF_LOAD 1 /* section should be loaded */ - -typedef struct dof_ecbdesc { - dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */ - dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */ - dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */ - uint32_t dofe_pad; /* reserved for future use */ - uint64_t dofe_uarg; /* user-supplied library argument */ -} dof_ecbdesc_t; - -typedef struct dof_probedesc { - dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */ - dof_stridx_t dofp_provider; /* provider string */ - dof_stridx_t dofp_mod; /* module string */ - dof_stridx_t dofp_func; /* function string */ - dof_stridx_t dofp_name; /* name string */ - uint32_t dofp_id; /* probe identifier (or zero) */ -} dof_probedesc_t; - -typedef struct dof_actdesc { - dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */ - dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */ - uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */ - uint32_t dofa_ntuple; /* number of subsequent tuple actions */ - uint64_t dofa_arg; /* kind-specific argument */ - uint64_t dofa_uarg; /* user-supplied argument */ -} dof_actdesc_t; - -typedef struct dof_difohdr { - dtrace_diftype_t dofd_rtype; /* return type for this fragment */ - dof_secidx_t dofd_links[1]; /* variable length array of indices */ -} dof_difohdr_t; - -typedef struct dof_relohdr { - dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */ - dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */ - dof_secidx_t dofr_tgtsec; /* link to section we are relocating */ -} dof_relohdr_t; - -typedef struct dof_relodesc { - dof_stridx_t dofr_name; /* string name of relocation symbol */ - uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */ - uint64_t dofr_offset; /* byte offset for relocation */ - uint64_t dofr_data; /* additional type-specific data */ -} dof_relodesc_t; - -#define DOF_RELO_NONE 0 /* empty relocation entry */ -#define DOF_RELO_SETX 1 /* relocate setx value */ - -typedef struct dof_optdesc { - uint32_t dofo_option; /* option identifier */ - dof_secidx_t dofo_strtab; /* string table, if string option */ - uint64_t dofo_value; /* option value or string index */ -} dof_optdesc_t; - -typedef uint32_t dof_attr_t; /* encoded stability attributes */ - -#define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8)) -#define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff) -#define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff) -#define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff) - -typedef struct dof_provider { - dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */ - dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */ - dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */ - dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */ - dof_stridx_t dofpv_name; /* provider name string */ - dof_attr_t dofpv_provattr; /* provider attributes */ - dof_attr_t dofpv_modattr; /* module attributes */ - dof_attr_t dofpv_funcattr; /* function attributes */ - dof_attr_t dofpv_nameattr; /* name attributes */ - dof_attr_t dofpv_argsattr; /* args attributes */ - dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */ -} dof_provider_t; - -typedef struct dof_probe { - uint64_t dofpr_addr; /* probe base address or offset */ - dof_stridx_t dofpr_func; /* probe function string */ - dof_stridx_t dofpr_name; /* probe name string */ - dof_stridx_t dofpr_nargv; /* native argument type strings */ - dof_stridx_t dofpr_xargv; /* translated argument type strings */ - uint32_t dofpr_argidx; /* index of first argument mapping */ - uint32_t dofpr_offidx; /* index of first offset entry */ - uint8_t dofpr_nargc; /* native argument count */ - uint8_t dofpr_xargc; /* translated argument count */ - uint16_t dofpr_noffs; /* number of offset entries for probe */ - uint32_t dofpr_enoffidx; /* index of first is-enabled offset */ - uint16_t dofpr_nenoffs; /* number of is-enabled offsets */ - uint16_t dofpr_pad1; /* reserved for future use */ - uint32_t dofpr_pad2; /* reserved for future use */ -} dof_probe_t; - -typedef struct dof_xlator { - dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */ - dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */ - dof_stridx_t dofxl_argv; /* input parameter type strings */ - uint32_t dofxl_argc; /* input parameter list length */ - dof_stridx_t dofxl_type; /* output type string name */ - dof_attr_t dofxl_attr; /* output stability attributes */ -} dof_xlator_t; - -typedef struct dof_xlmember { - dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */ - dof_stridx_t dofxm_name; /* member name */ - dtrace_diftype_t dofxm_type; /* member type */ -} dof_xlmember_t; - -typedef struct dof_xlref { - dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */ - uint32_t dofxr_member; /* index of referenced dof_xlmember */ - uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */ -} dof_xlref_t; - -/* - * DTrace Intermediate Format Object (DIFO) - * - * A DIFO is used to store the compiled DIF for a D expression, its return - * type, and its string and variable tables. The string table is a single - * buffer of character data into which sets instructions and variable - * references can reference strings using a byte offset. The variable table - * is an array of dtrace_difv_t structures that describe the name and type of - * each variable and the id used in the DIF code. This structure is described - * above in the DIF section of this header file. The DIFO is used at both - * user-level (in the library) and in the kernel, but the structure is never - * passed between the two: the DOF structures form the only interface. As a - * result, the definition can change depending on the presence of _KERNEL. - */ -typedef struct dtrace_difo { - dif_instr_t *dtdo_buf; /* instruction buffer */ - uint64_t *dtdo_inttab; /* integer table (optional) */ - char *dtdo_strtab; /* string table (optional) */ - dtrace_difv_t *dtdo_vartab; /* variable table (optional) */ - uint_t dtdo_len; /* length of instruction buffer */ - uint_t dtdo_intlen; /* length of integer table */ - uint_t dtdo_strlen; /* length of string table */ - uint_t dtdo_varlen; /* length of variable table */ - dtrace_diftype_t dtdo_rtype; /* return type */ - uint_t dtdo_refcnt; /* owner reference count */ - uint_t dtdo_destructive; /* invokes destructive subroutines */ -#ifndef _KERNEL - dof_relodesc_t *dtdo_kreltab; /* kernel relocations */ - dof_relodesc_t *dtdo_ureltab; /* user relocations */ - struct dt_node **dtdo_xlmtab; /* translator references */ - uint_t dtdo_krelen; /* length of krelo table */ - uint_t dtdo_urelen; /* length of urelo table */ - uint_t dtdo_xlmlen; /* length of translator table */ -#endif -} dtrace_difo_t; - -/* - * DTrace Enabling Description Structures - * - * When DTrace is tracking the description of a DTrace enabling entity (probe, - * predicate, action, ECB, record, etc.), it does so in a description - * structure. These structures all end in "desc", and are used at both - * user-level and in the kernel -- but (with the exception of - * dtrace_probedesc_t) they are never passed between them. Typically, - * user-level will use the description structures when assembling an enabling. - * It will then distill those description structures into a DOF object (see - * above), and send it into the kernel. The kernel will again use the - * description structures to create a description of the enabling as it reads - * the DOF. When the description is complete, the enabling will be actually - * created -- turning it into the structures that represent the enabling - * instead of merely describing it. Not surprisingly, the description - * structures bear a strong resemblance to the DOF structures that act as their - * conduit. - */ -struct dtrace_predicate; - -typedef struct dtrace_probedesc { - dtrace_id_t dtpd_id; /* probe identifier */ - char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */ - char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */ - char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */ - char dtpd_name[DTRACE_NAMELEN]; /* probe name */ -} dtrace_probedesc_t; - -typedef struct dtrace_repldesc { - dtrace_probedesc_t dtrpd_match; /* probe descr. to match */ - dtrace_probedesc_t dtrpd_create; /* probe descr. to create */ -} dtrace_repldesc_t; - -typedef struct dtrace_preddesc { - dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */ - struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */ -} dtrace_preddesc_t; - -typedef struct dtrace_actdesc { - dtrace_difo_t *dtad_difo; /* pointer to DIF object */ - struct dtrace_actdesc *dtad_next; /* next action */ - dtrace_actkind_t dtad_kind; /* kind of action */ - uint32_t dtad_ntuple; /* number in tuple */ - uint64_t dtad_arg; /* action argument */ - uint64_t dtad_uarg; /* user argument */ - int dtad_refcnt; /* reference count */ -} dtrace_actdesc_t; - -typedef struct dtrace_ecbdesc { - dtrace_actdesc_t *dted_action; /* action description(s) */ - dtrace_preddesc_t dted_pred; /* predicate description */ - dtrace_probedesc_t dted_probe; /* probe description */ - uint64_t dted_uarg; /* library argument */ - int dted_refcnt; /* reference count */ -} dtrace_ecbdesc_t; - -/* - * DTrace Metadata Description Structures - * - * DTrace separates the trace data stream from the metadata stream. The only - * metadata tokens placed in the data stream are enabled probe identifiers - * (EPIDs) or (in the case of aggregations) aggregation identifiers. In order - * to determine the structure of the data, DTrace consumers pass the token to - * the kernel, and receive in return a corresponding description of the enabled - * probe (via the dtrace_eprobedesc structure) or the aggregation (via the - * dtrace_aggdesc structure). Both of these structures are expressed in terms - * of record descriptions (via the dtrace_recdesc structure) that describe the - * exact structure of the data. Some record descriptions may also contain a - * format identifier; this additional bit of metadata can be retrieved from the - * kernel, for which a format description is returned via the dtrace_fmtdesc - * structure. Note that all four of these structures must be bitness-neutral - * to allow for a 32-bit DTrace consumer on a 64-bit kernel. - */ -typedef struct dtrace_recdesc { - dtrace_actkind_t dtrd_action; /* kind of action */ - uint32_t dtrd_size; /* size of record */ - uint32_t dtrd_offset; /* offset in ECB's data */ - uint16_t dtrd_alignment; /* required alignment */ - uint16_t dtrd_format; /* format, if any */ - uint64_t dtrd_arg; /* action argument */ - uint64_t dtrd_uarg; /* user argument */ -} dtrace_recdesc_t; - -typedef struct dtrace_eprobedesc { - dtrace_epid_t dtepd_epid; /* enabled probe ID */ - dtrace_id_t dtepd_probeid; /* probe ID */ - uint64_t dtepd_uarg; /* library argument */ - uint32_t dtepd_size; /* total size */ - int dtepd_nrecs; /* number of records */ - dtrace_recdesc_t dtepd_rec[1]; /* records themselves */ -} dtrace_eprobedesc_t; - -typedef struct dtrace_aggdesc { - DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */ - dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */ - int dtagd_flags; /* not filled in by kernel */ - dtrace_aggid_t dtagd_id; /* aggregation ID */ - dtrace_epid_t dtagd_epid; /* enabled probe ID */ - uint32_t dtagd_size; /* size in bytes */ - int dtagd_nrecs; /* number of records */ - uint32_t dtagd_pad; /* explicit padding */ - dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */ -} dtrace_aggdesc_t; - -typedef struct dtrace_fmtdesc { - DTRACE_PTR(char, dtfd_string); /* format string */ - int dtfd_length; /* length of format string */ - uint16_t dtfd_format; /* format identifier */ -} dtrace_fmtdesc_t; - -#define DTRACE_SIZEOF_EPROBEDESC(desc) \ - (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \ - (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) - -#define DTRACE_SIZEOF_AGGDESC(desc) \ - (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \ - (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) - -/* - * DTrace Option Interface - * - * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections - * in a DOF image. The dof_optdesc structure contains an option identifier and - * an option value. The valid option identifiers are found below; the mapping - * between option identifiers and option identifying strings is maintained at - * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the - * following are potentially valid option values: all positive integers, zero - * and negative one. Some options (notably "bufpolicy" and "bufresize") take - * predefined tokens as their values; these are defined with - * DTRACEOPT_{option}_{token}. - */ -#define DTRACEOPT_BUFSIZE 0 /* buffer size */ -#define DTRACEOPT_BUFPOLICY 1 /* buffer policy */ -#define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */ -#define DTRACEOPT_AGGSIZE 3 /* aggregation size */ -#define DTRACEOPT_SPECSIZE 4 /* speculation size */ -#define DTRACEOPT_NSPEC 5 /* number of speculations */ -#define DTRACEOPT_STRSIZE 6 /* string size */ -#define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */ -#define DTRACEOPT_CPU 8 /* CPU to trace */ -#define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */ -#define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */ -#define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */ -#define DTRACEOPT_QUIET 12 /* only output explicitly traced data */ -#define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */ -#define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */ -#define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */ -#define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */ -#define DTRACEOPT_STATUSRATE 17 /* status rate */ -#define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */ -#define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */ -#define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */ -#define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */ -#define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */ -#define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */ -#define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */ -#define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */ -#define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */ -#define DTRACEOPT_MAX 27 /* number of options */ - -#define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */ - -#define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */ -#define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */ -#define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */ - -#define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */ -#define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */ - -/* - * DTrace Buffer Interface - * - * In order to get a snapshot of the principal or aggregation buffer, - * user-level passes a buffer description to the kernel with the dtrace_bufdesc - * structure. This describes which CPU user-level is interested in, and - * where user-level wishes the kernel to snapshot the buffer to (the - * dtbd_data field). The kernel uses the same structure to pass back some - * information regarding the buffer: the size of data actually copied out, the - * number of drops, the number of errors, and the offset of the oldest record. - * If the buffer policy is a "switch" policy, taking a snapshot of the - * principal buffer has the additional effect of switching the active and - * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has - * the additional effect of switching the active and inactive buffers. - */ -typedef struct dtrace_bufdesc { - uint64_t dtbd_size; /* size of buffer */ - uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */ - uint32_t dtbd_errors; /* number of errors */ - uint64_t dtbd_drops; /* number of drops */ - DTRACE_PTR(char, dtbd_data); /* data */ - uint64_t dtbd_oldest; /* offset of oldest record */ -} dtrace_bufdesc_t; - -/* - * DTrace Status - * - * The status of DTrace is relayed via the dtrace_status structure. This - * structure contains members to count drops other than the capacity drops - * available via the buffer interface (see above). This consists of dynamic - * drops (including capacity dynamic drops, rinsing drops and dirty drops), and - * speculative drops (including capacity speculative drops, drops due to busy - * speculative buffers and drops due to unavailable speculative buffers). - * Additionally, the status structure contains a field to indicate the number - * of "fill"-policy buffers have been filled and a boolean field to indicate - * that exit() has been called. If the dtst_exiting field is non-zero, no - * further data will be generated until tracing is stopped (at which time any - * enablings of the END action will be processed); if user-level sees that - * this field is non-zero, tracing should be stopped as soon as possible. - */ -typedef struct dtrace_status { - uint64_t dtst_dyndrops; /* dynamic drops */ - uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */ - uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */ - uint64_t dtst_specdrops; /* speculative drops */ - uint64_t dtst_specdrops_busy; /* spec drops due to busy */ - uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */ - uint64_t dtst_errors; /* total errors */ - uint64_t dtst_filled; /* number of filled bufs */ - uint64_t dtst_stkstroverflows; /* stack string tab overflows */ - uint64_t dtst_dblerrors; /* errors in ERROR probes */ - char dtst_killed; /* non-zero if killed */ - char dtst_exiting; /* non-zero if exit() called */ - char dtst_pad[6]; /* pad out to 64-bit align */ -} dtrace_status_t; - -/* - * DTrace Configuration - * - * User-level may need to understand some elements of the kernel DTrace - * configuration in order to generate correct DIF. This information is - * conveyed via the dtrace_conf structure. - */ -typedef struct dtrace_conf { - uint_t dtc_difversion; /* supported DIF version */ - uint_t dtc_difintregs; /* # of DIF integer registers */ - uint_t dtc_diftupregs; /* # of DIF tuple registers */ - uint_t dtc_ctfmodel; /* CTF data model */ - uint_t dtc_pad[8]; /* reserved for future use */ -} dtrace_conf_t; - -/* - * DTrace Faults - * - * The constants below DTRACEFLT_LIBRARY indicate probe processing faults; - * constants at or above DTRACEFLT_LIBRARY indicate faults in probe - * postprocessing at user-level. Probe processing faults induce an ERROR - * probe and are replicated in unistd.d to allow users' ERROR probes to decode - * the error condition using thse symbolic labels. - */ -#define DTRACEFLT_UNKNOWN 0 /* Unknown fault */ -#define DTRACEFLT_BADADDR 1 /* Bad address */ -#define DTRACEFLT_BADALIGN 2 /* Bad alignment */ -#define DTRACEFLT_ILLOP 3 /* Illegal operation */ -#define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */ -#define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */ -#define DTRACEFLT_KPRIV 6 /* Illegal kernel access */ -#define DTRACEFLT_UPRIV 7 /* Illegal user access */ -#define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */ -#define DTRACEFLT_BADSTACK 9 /* Bad stack */ - -#define DTRACEFLT_LIBRARY 1000 /* Library-level fault */ - -/* - * DTrace Argument Types - * - * Because it would waste both space and time, argument types do not reside - * with the probe. In order to determine argument types for args[X] - * variables, the D compiler queries for argument types on a probe-by-probe - * basis. (This optimizes for the common case that arguments are either not - * used or used in an untyped fashion.) Typed arguments are specified with a - * string of the type name in the dtragd_native member of the argument - * description structure. Typed arguments may be further translated to types - * of greater stability; the provider indicates such a translated argument by - * filling in the dtargd_xlate member with the string of the translated type. - * Finally, the provider may indicate which argument value a given argument - * maps to by setting the dtargd_mapping member -- allowing a single argument - * to map to multiple args[X] variables. - */ -typedef struct dtrace_argdesc { - dtrace_id_t dtargd_id; /* probe identifier */ - int dtargd_ndx; /* arg number (-1 iff none) */ - int dtargd_mapping; /* value mapping */ - char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */ - char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */ -} dtrace_argdesc_t; - -/* - * DTrace Stability Attributes - * - * Each DTrace provider advertises the name and data stability of each of its - * probe description components, as well as its architectural dependencies. - * The D compiler can query the provider attributes (dtrace_pattr_t below) in - * order to compute the properties of an input program and report them. - */ -typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */ -typedef uint8_t dtrace_class_t; /* architectural dependency class */ - -#define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */ -#define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */ -#define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */ -#define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */ -#define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */ -#define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */ -#define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */ -#define DTRACE_STABILITY_STANDARD 7 /* industry standard */ -#define DTRACE_STABILITY_MAX 7 /* maximum valid stability */ - -#define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */ -#define DTRACE_CLASS_CPU 1 /* CPU-module-specific */ -#define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */ -#define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */ -#define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */ -#define DTRACE_CLASS_COMMON 5 /* common to all systems */ -#define DTRACE_CLASS_MAX 5 /* maximum valid class */ - -#define DTRACE_PRIV_NONE 0x0000 -#define DTRACE_PRIV_KERNEL 0x0001 -#define DTRACE_PRIV_USER 0x0002 -#define DTRACE_PRIV_PROC 0x0004 -#define DTRACE_PRIV_OWNER 0x0008 -#define DTRACE_PRIV_ZONEOWNER 0x0010 - -#define DTRACE_PRIV_ALL \ - (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \ - DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER) - -typedef struct dtrace_ppriv { - uint32_t dtpp_flags; /* privilege flags */ - uid_t dtpp_uid; /* user ID */ - zoneid_t dtpp_zoneid; /* zone ID */ -} dtrace_ppriv_t; - -typedef struct dtrace_attribute { - dtrace_stability_t dtat_name; /* entity name stability */ - dtrace_stability_t dtat_data; /* entity data stability */ - dtrace_class_t dtat_class; /* entity data dependency */ -} dtrace_attribute_t; - -typedef struct dtrace_pattr { - dtrace_attribute_t dtpa_provider; /* provider attributes */ - dtrace_attribute_t dtpa_mod; /* module attributes */ - dtrace_attribute_t dtpa_func; /* function attributes */ - dtrace_attribute_t dtpa_name; /* name attributes */ - dtrace_attribute_t dtpa_args; /* args[] attributes */ -} dtrace_pattr_t; - -typedef struct dtrace_providerdesc { - char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */ - dtrace_pattr_t dtvd_attr; /* stability attributes */ - dtrace_ppriv_t dtvd_priv; /* privileges required */ -} dtrace_providerdesc_t; - -/* - * DTrace Pseudodevice Interface - * - * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace - * pseudodevice driver. These ioctls comprise the user-kernel interface to - * DTrace. - */ -#define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8)) -#define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */ -#define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */ -#define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */ -#define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */ -#define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */ -#define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */ -#define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */ -#define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */ -#define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */ -#define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */ -#define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */ -#define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */ -#define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */ -#define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */ -#define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */ -#define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */ - -/* - * DTrace Helpers - * - * In general, DTrace establishes probes in processes and takes actions on - * processes without knowing their specific user-level structures. Instead of - * existing in the framework, process-specific knowledge is contained by the - * enabling D program -- which can apply process-specific knowledge by making - * appropriate use of DTrace primitives like copyin() and copyinstr() to - * operate on user-level data. However, there may exist some specific probes - * of particular semantic relevance that the application developer may wish to - * explicitly export. For example, an application may wish to export a probe - * at the point that it begins and ends certain well-defined transactions. In - * addition to providing probes, programs may wish to offer assistance for - * certain actions. For example, in highly dynamic environments (e.g., Java), - * it may be difficult to obtain a stack trace in terms of meaningful symbol - * names (the translation from instruction addresses to corresponding symbol - * names may only be possible in situ); these environments may wish to define - * a series of actions to be applied in situ to obtain a meaningful stack - * trace. - * - * These two mechanisms -- user-level statically defined tracing and assisting - * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified - * via DOF, but unlike enabling DOF, helper DOF may contain definitions of - * providers, probes and their arguments. If a helper wishes to provide - * action assistance, probe descriptions and corresponding DIF actions may be - * specified in the helper DOF. For such helper actions, however, the probe - * description describes the specific helper: all DTrace helpers have the - * provider name "dtrace" and the module name "helper", and the name of the - * helper is contained in the function name (for example, the ustack() helper - * is named "ustack"). Any helper-specific name may be contained in the name - * (for example, if a helper were to have a constructor, it might be named - * "dtrace:helper:<helper>:init"). Helper actions are only called when the - * action that they are helping is taken. Helper actions may only return DIF - * expressions, and may only call the following subroutines: - * - * alloca() <= Allocates memory out of the consumer's scratch space - * bcopy() <= Copies memory to scratch space - * copyin() <= Copies memory from user-level into consumer's scratch - * copyinto() <= Copies memory into a specific location in scratch - * copyinstr() <= Copies a string into a specific location in scratch - * - * Helper actions may only access the following built-in variables: - * - * curthread <= Current kthread_t pointer - * tid <= Current thread identifier - * pid <= Current process identifier - * ppid <= Parent process identifier - * uid <= Current user ID - * gid <= Current group ID - * execname <= Current executable name - * zonename <= Current zone name - * - * Helper actions may not manipulate or allocate dynamic variables, but they - * may have clause-local and statically-allocated global variables. The - * helper action variable state is specific to the helper action -- variables - * used by the helper action may not be accessed outside of the helper - * action, and the helper action may not access variables that like outside - * of it. Helper actions may not load from kernel memory at-large; they are - * restricting to loading current user state (via copyin() and variants) and - * scratch space. As with probe enablings, helper actions are executed in - * program order. The result of the helper action is the result of the last - * executing helper expression. - * - * Helpers -- composed of either providers/probes or probes/actions (or both) - * -- are added by opening the "helper" minor node, and issuing an ioctl(2) - * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This - * encapsulates the name and base address of the user-level library or - * executable publishing the helpers and probes as well as the DOF that - * contains the definitions of those helpers and probes. - * - * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy - * helpers and should no longer be used. No other ioctls are valid on the - * helper minor node. - */ -#define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8)) -#define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */ -#define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */ -#define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */ - -typedef struct dof_helper { - char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */ - uint64_t dofhp_addr; /* base address of object */ - uint64_t dofhp_dof; /* address of helper DOF */ -} dof_helper_t; - -#define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */ -#define DTRACEMNR_HELPER "helper" /* node for helpers */ -#define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */ -#define DTRACEMNRN_HELPER 1 /* minor for helpers */ -#define DTRACEMNRN_CLONE 2 /* first clone minor */ - -#ifdef _KERNEL - -/* - * DTrace Provider API - * - * The following functions are implemented by the DTrace framework and are - * used to implement separate in-kernel DTrace providers. Common functions - * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are - * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c. - * - * The provider API has two halves: the API that the providers consume from - * DTrace, and the API that providers make available to DTrace. - * - * 1 Framework-to-Provider API - * - * 1.1 Overview - * - * The Framework-to-Provider API is represented by the dtrace_pops structure - * that the provider passes to the framework when registering itself. This - * structure consists of the following members: - * - * dtps_provide() <-- Provide all probes, all modules - * dtps_provide_module() <-- Provide all probes in specified module - * dtps_enable() <-- Enable specified probe - * dtps_disable() <-- Disable specified probe - * dtps_suspend() <-- Suspend specified probe - * dtps_resume() <-- Resume specified probe - * dtps_getargdesc() <-- Get the argument description for args[X] - * dtps_getargval() <-- Get the value for an argX or args[X] variable - * dtps_usermode() <-- Find out if the probe was fired in user mode - * dtps_destroy() <-- Destroy all state associated with this probe - * - * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec) - * - * 1.2.1 Overview - * - * Called to indicate that the provider should provide all probes. If the - * specified description is non-NULL, dtps_provide() is being called because - * no probe matched a specified probe -- if the provider has the ability to - * create custom probes, it may wish to create a probe that matches the - * specified description. - * - * 1.2.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_register(). The - * second argument is a pointer to a probe description that the provider may - * wish to consider when creating custom probes. The provider is expected to - * call back into the DTrace framework via dtrace_probe_create() to create - * any necessary probes. dtps_provide() may be called even if the provider - * has made available all probes; the provider should check the return value - * of dtrace_probe_create() to handle this case. Note that the provider need - * not implement both dtps_provide() and dtps_provide_module(); see - * "Arguments and Notes" for dtrace_register(), below. - * - * 1.2.3 Return value - * - * None. - * - * 1.2.4 Caller's context - * - * dtps_provide() is typically called from open() or ioctl() context, but may - * be called from other contexts as well. The DTrace framework is locked in - * such a way that providers may not register or unregister. This means that - * the provider may not call any DTrace API that affects its registration with - * the framework, including dtrace_register(), dtrace_unregister(), - * dtrace_invalidate(), and dtrace_condense(). However, the context is such - * that the provider may (and indeed, is expected to) call probe-related - * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(), - * and dtrace_probe_arg(). - * - * 1.3 void dtps_provide_module(void *arg, struct modctl *mp) - * - * 1.3.1 Overview - * - * Called to indicate that the provider should provide all probes in the - * specified module. - * - * 1.3.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_register(). The - * second argument is a pointer to a modctl structure that indicates the - * module for which probes should be created. - * - * 1.3.3 Return value - * - * None. - * - * 1.3.4 Caller's context - * - * dtps_provide_module() may be called from open() or ioctl() context, but - * may also be called from a module loading context. mod_lock is held, and - * the DTrace framework is locked in such a way that providers may not - * register or unregister. This means that the provider may not call any - * DTrace API that affects its registration with the framework, including - * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and - * dtrace_condense(). However, the context is such that the provider may (and - * indeed, is expected to) call probe-related DTrace routines, including - * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note - * that the provider need not implement both dtps_provide() and - * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(), - * below. - * - * 1.4 void dtps_enable(void *arg, dtrace_id_t id, void *parg) - * - * 1.4.1 Overview - * - * Called to enable the specified probe. - * - * 1.4.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_register(). The - * second argument is the identifier of the probe to be enabled. The third - * argument is the probe argument as passed to dtrace_probe_create(). - * dtps_enable() will be called when a probe transitions from not being - * enabled at all to having one or more ECB. The number of ECBs associated - * with the probe may change without subsequent calls into the provider. - * When the number of ECBs drops to zero, the provider will be explicitly - * told to disable the probe via dtps_disable(). dtrace_probe() should never - * be called for a probe identifier that hasn't been explicitly enabled via - * dtps_enable(). - * - * 1.4.3 Return value - * - * None. - * - * 1.4.4 Caller's context - * - * The DTrace framework is locked in such a way that it may not be called - * back into at all. cpu_lock is held. mod_lock is not held and may not - * be acquired. - * - * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg) - * - * 1.5.1 Overview - * - * Called to disable the specified probe. - * - * 1.5.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_register(). The - * second argument is the identifier of the probe to be disabled. The third - * argument is the probe argument as passed to dtrace_probe_create(). - * dtps_disable() will be called when a probe transitions from being enabled - * to having zero ECBs. dtrace_probe() should never be called for a probe - * identifier that has been explicitly enabled via dtps_disable(). - * - * 1.5.3 Return value - * - * None. - * - * 1.5.4 Caller's context - * - * The DTrace framework is locked in such a way that it may not be called - * back into at all. cpu_lock is held. mod_lock is not held and may not - * be acquired. - * - * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg) - * - * 1.6.1 Overview - * - * Called to suspend the specified enabled probe. This entry point is for - * providers that may need to suspend some or all of their probes when CPUs - * are being powered on or when the boot monitor is being entered for a - * prolonged period of time. - * - * 1.6.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_register(). The - * second argument is the identifier of the probe to be suspended. The - * third argument is the probe argument as passed to dtrace_probe_create(). - * dtps_suspend will only be called on an enabled probe. Providers that - * provide a dtps_suspend entry point will want to take roughly the action - * that it takes for dtps_disable. - * - * 1.6.3 Return value - * - * None. - * - * 1.6.4 Caller's context - * - * Interrupts are disabled. The DTrace framework is in a state such that the - * specified probe cannot be disabled or destroyed for the duration of - * dtps_suspend(). As interrupts are disabled, the provider is afforded - * little latitude; the provider is expected to do no more than a store to - * memory. - * - * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg) - * - * 1.7.1 Overview - * - * Called to resume the specified enabled probe. This entry point is for - * providers that may need to resume some or all of their probes after the - * completion of an event that induced a call to dtps_suspend(). - * - * 1.7.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_register(). The - * second argument is the identifier of the probe to be resumed. The - * third argument is the probe argument as passed to dtrace_probe_create(). - * dtps_resume will only be called on an enabled probe. Providers that - * provide a dtps_resume entry point will want to take roughly the action - * that it takes for dtps_enable. - * - * 1.7.3 Return value - * - * None. - * - * 1.7.4 Caller's context - * - * Interrupts are disabled. The DTrace framework is in a state such that the - * specified probe cannot be disabled or destroyed for the duration of - * dtps_resume(). As interrupts are disabled, the provider is afforded - * little latitude; the provider is expected to do no more than a store to - * memory. - * - * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg, - * dtrace_argdesc_t *desc) - * - * 1.8.1 Overview - * - * Called to retrieve the argument description for an args[X] variable. - * - * 1.8.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_register(). The - * second argument is the identifier of the current probe. The third - * argument is the probe argument as passed to dtrace_probe_create(). The - * fourth argument is a pointer to the argument description. This - * description is both an input and output parameter: it contains the - * index of the desired argument in the dtargd_ndx field, and expects - * the other fields to be filled in upon return. If there is no argument - * corresponding to the specified index, the dtargd_ndx field should be set - * to DTRACE_ARGNONE. - * - * 1.8.3 Return value - * - * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping - * members of the dtrace_argdesc_t structure are all output values. - * - * 1.8.4 Caller's context - * - * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and - * the DTrace framework is locked in such a way that providers may not - * register or unregister. This means that the provider may not call any - * DTrace API that affects its registration with the framework, including - * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and - * dtrace_condense(). - * - * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg, - * int argno, int aframes) - * - * 1.9.1 Overview - * - * Called to retrieve a value for an argX or args[X] variable. - * - * 1.9.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_register(). The - * second argument is the identifier of the current probe. The third - * argument is the probe argument as passed to dtrace_probe_create(). The - * fourth argument is the number of the argument (the X in the example in - * 1.9.1). The fifth argument is the number of stack frames that were used - * to get from the actual place in the code that fired the probe to - * dtrace_probe() itself, the so-called artificial frames. This argument may - * be used to descend an appropriate number of frames to find the correct - * values. If this entry point is left NULL, the dtrace_getarg() built-in - * function is used. - * - * 1.9.3 Return value - * - * The value of the argument. - * - * 1.9.4 Caller's context - * - * This is called from within dtrace_probe() meaning that interrupts - * are disabled. No locks should be taken within this entry point. - * - * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg) - * - * 1.10.1 Overview - * - * Called to determine if the probe was fired in a user context. - * - * 1.10.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_register(). The - * second argument is the identifier of the current probe. The third - * argument is the probe argument as passed to dtrace_probe_create(). This - * entry point must not be left NULL for providers whose probes allow for - * mixed mode tracing, that is to say those probes that can fire during - * kernel- _or_ user-mode execution - * - * 1.10.3 Return value - * - * A boolean value. - * - * 1.10.4 Caller's context - * - * This is called from within dtrace_probe() meaning that interrupts - * are disabled. No locks should be taken within this entry point. - * - * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg) - * - * 1.11.1 Overview - * - * Called to destroy the specified probe. - * - * 1.11.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_register(). The - * second argument is the identifier of the probe to be destroyed. The third - * argument is the probe argument as passed to dtrace_probe_create(). The - * provider should free all state associated with the probe. The framework - * guarantees that dtps_destroy() is only called for probes that have either - * been disabled via dtps_disable() or were never enabled via dtps_enable(). - * Once dtps_disable() has been called for a probe, no further call will be - * made specifying the probe. - * - * 1.11.3 Return value - * - * None. - * - * 1.11.4 Caller's context - * - * The DTrace framework is locked in such a way that it may not be called - * back into at all. mod_lock is held. cpu_lock is not held, and may not be - * acquired. - * - * - * 2 Provider-to-Framework API - * - * 2.1 Overview - * - * The Provider-to-Framework API provides the mechanism for the provider to - * register itself with the DTrace framework, to create probes, to lookup - * probes and (most importantly) to fire probes. The Provider-to-Framework - * consists of: - * - * dtrace_register() <-- Register a provider with the DTrace framework - * dtrace_unregister() <-- Remove a provider's DTrace registration - * dtrace_invalidate() <-- Invalidate the specified provider - * dtrace_condense() <-- Remove a provider's unenabled probes - * dtrace_attached() <-- Indicates whether or not DTrace has attached - * dtrace_probe_create() <-- Create a DTrace probe - * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name - * dtrace_probe_arg() <-- Return the probe argument for a specific probe - * dtrace_probe() <-- Fire the specified probe - * - * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap, - * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg, - * dtrace_provider_id_t *idp) - * - * 2.2.1 Overview - * - * dtrace_register() registers the calling provider with the DTrace - * framework. It should generally be called by DTrace providers in their - * attach(9E) entry point. - * - * 2.2.2 Arguments and Notes - * - * The first argument is the name of the provider. The second argument is a - * pointer to the stability attributes for the provider. The third argument - * is the privilege flags for the provider, and must be some combination of: - * - * DTRACE_PRIV_NONE <= All users may enable probes from this provider - * - * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may - * enable probes from this provider - * - * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may - * enable probes from this provider - * - * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL - * may enable probes from this provider - * - * DTRACE_PRIV_OWNER <= This flag places an additional constraint on - * the privilege requirements above. These probes - * require either (a) a user ID matching the user - * ID of the cred passed in the fourth argument - * or (b) the PRIV_PROC_OWNER privilege. - * - * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on - * the privilege requirements above. These probes - * require either (a) a zone ID matching the zone - * ID of the cred passed in the fourth argument - * or (b) the PRIV_PROC_ZONE privilege. - * - * Note that these flags designate the _visibility_ of the probes, not - * the conditions under which they may or may not fire. - * - * The fourth argument is the credential that is associated with the - * provider. This argument should be NULL if the privilege flags don't - * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the - * framework stashes the uid and zoneid represented by this credential - * for use at probe-time, in implicit predicates. These limit visibility - * of the probes to users and/or zones which have sufficient privilege to - * access them. - * - * The fifth argument is a DTrace provider operations vector, which provides - * the implementation for the Framework-to-Provider API. (See Section 1, - * above.) This must be non-NULL, and each member must be non-NULL. The - * exceptions to this are (1) the dtps_provide() and dtps_provide_module() - * members (if the provider so desires, _one_ of these members may be left - * NULL -- denoting that the provider only implements the other) and (2) - * the dtps_suspend() and dtps_resume() members, which must either both be - * NULL or both be non-NULL. - * - * The sixth argument is a cookie to be specified as the first argument for - * each function in the Framework-to-Provider API. This argument may have - * any value. - * - * The final argument is a pointer to dtrace_provider_id_t. If - * dtrace_register() successfully completes, the provider identifier will be - * stored in the memory pointed to be this argument. This argument must be - * non-NULL. - * - * 2.2.3 Return value - * - * On success, dtrace_register() returns 0 and stores the new provider's - * identifier into the memory pointed to by the idp argument. On failure, - * dtrace_register() returns an errno: - * - * EINVAL The arguments passed to dtrace_register() were somehow invalid. - * This may because a parameter that must be non-NULL was NULL, - * because the name was invalid (either empty or an illegal - * provider name) or because the attributes were invalid. - * - * No other failure code is returned. - * - * 2.2.4 Caller's context - * - * dtrace_register() may induce calls to dtrace_provide(); the provider must - * hold no locks across dtrace_register() that may also be acquired by - * dtrace_provide(). cpu_lock and mod_lock must not be held. - * - * 2.3 int dtrace_unregister(dtrace_provider_t id) - * - * 2.3.1 Overview - * - * Unregisters the specified provider from the DTrace framework. It should - * generally be called by DTrace providers in their detach(9E) entry point. - * - * 2.3.2 Arguments and Notes - * - * The only argument is the provider identifier, as returned from a - * successful call to dtrace_register(). As a result of calling - * dtrace_unregister(), the DTrace framework will call back into the provider - * via the dtps_destroy() entry point. Once dtrace_unregister() successfully - * completes, however, the DTrace framework will no longer make calls through - * the Framework-to-Provider API. - * - * 2.3.3 Return value - * - * On success, dtrace_unregister returns 0. On failure, dtrace_unregister() - * returns an errno: - * - * EBUSY There are currently processes that have the DTrace pseudodevice - * open, or there exists an anonymous enabling that hasn't yet - * been claimed. - * - * No other failure code is returned. - * - * 2.3.4 Caller's context - * - * Because a call to dtrace_unregister() may induce calls through the - * Framework-to-Provider API, the caller may not hold any lock across - * dtrace_register() that is also acquired in any of the Framework-to- - * Provider API functions. Additionally, mod_lock may not be held. - * - * 2.4 void dtrace_invalidate(dtrace_provider_id_t id) - * - * 2.4.1 Overview - * - * Invalidates the specified provider. All subsequent probe lookups for the - * specified provider will fail, but its probes will not be removed. - * - * 2.4.2 Arguments and note - * - * The only argument is the provider identifier, as returned from a - * successful call to dtrace_register(). In general, a provider's probes - * always remain valid; dtrace_invalidate() is a mechanism for invalidating - * an entire provider, regardless of whether or not probes are enabled or - * not. Note that dtrace_invalidate() will _not_ prevent already enabled - * probes from firing -- it will merely prevent any new enablings of the - * provider's probes. - * - * 2.5 int dtrace_condense(dtrace_provider_id_t id) - * - * 2.5.1 Overview - * - * Removes all the unenabled probes for the given provider. This function is - * not unlike dtrace_unregister(), except that it doesn't remove the - * provider just as many of its associated probes as it can. - * - * 2.5.2 Arguments and Notes - * - * As with dtrace_unregister(), the sole argument is the provider identifier - * as returned from a successful call to dtrace_register(). As a result of - * calling dtrace_condense(), the DTrace framework will call back into the - * given provider's dtps_destroy() entry point for each of the provider's - * unenabled probes. - * - * 2.5.3 Return value - * - * Currently, dtrace_condense() always returns 0. However, consumers of this - * function should check the return value as appropriate; its behavior may - * change in the future. - * - * 2.5.4 Caller's context - * - * As with dtrace_unregister(), the caller may not hold any lock across - * dtrace_condense() that is also acquired in the provider's entry points. - * Also, mod_lock may not be held. - * - * 2.6 int dtrace_attached() - * - * 2.6.1 Overview - * - * Indicates whether or not DTrace has attached. - * - * 2.6.2 Arguments and Notes - * - * For most providers, DTrace makes initial contact beyond registration. - * That is, once a provider has registered with DTrace, it waits to hear - * from DTrace to create probes. However, some providers may wish to - * proactively create probes without first being told by DTrace to do so. - * If providers wish to do this, they must first call dtrace_attached() to - * determine if DTrace itself has attached. If dtrace_attached() returns 0, - * the provider must not make any other Provider-to-Framework API call. - * - * 2.6.3 Return value - * - * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise. - * - * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod, - * const char *func, const char *name, int aframes, void *arg) - * - * 2.7.1 Overview - * - * Creates a probe with specified module name, function name, and name. - * - * 2.7.2 Arguments and Notes - * - * The first argument is the provider identifier, as returned from a - * successful call to dtrace_register(). The second, third, and fourth - * arguments are the module name, function name, and probe name, - * respectively. Of these, module name and function name may both be NULL - * (in which case the probe is considered to be unanchored), or they may both - * be non-NULL. The name must be non-NULL, and must point to a non-empty - * string. - * - * The fifth argument is the number of artificial stack frames that will be - * found on the stack when dtrace_probe() is called for the new probe. These - * artificial frames will be automatically be pruned should the stack() or - * stackdepth() functions be called as part of one of the probe's ECBs. If - * the parameter doesn't add an artificial frame, this parameter should be - * zero. - * - * The final argument is a probe argument that will be passed back to the - * provider when a probe-specific operation is called. (e.g., via - * dtps_enable(), dtps_disable(), etc.) - * - * Note that it is up to the provider to be sure that the probe that it - * creates does not already exist -- if the provider is unsure of the probe's - * existence, it should assure its absence with dtrace_probe_lookup() before - * calling dtrace_probe_create(). - * - * 2.7.3 Return value - * - * dtrace_probe_create() always succeeds, and always returns the identifier - * of the newly-created probe. - * - * 2.7.4 Caller's context - * - * While dtrace_probe_create() is generally expected to be called from - * dtps_provide() and/or dtps_provide_module(), it may be called from other - * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. - * - * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod, - * const char *func, const char *name) - * - * 2.8.1 Overview - * - * Looks up a probe based on provdider and one or more of module name, - * function name and probe name. - * - * 2.8.2 Arguments and Notes - * - * The first argument is the provider identifier, as returned from a - * successful call to dtrace_register(). The second, third, and fourth - * arguments are the module name, function name, and probe name, - * respectively. Any of these may be NULL; dtrace_probe_lookup() will return - * the identifier of the first probe that is provided by the specified - * provider and matches all of the non-NULL matching criteria. - * dtrace_probe_lookup() is generally used by a provider to be check the - * existence of a probe before creating it with dtrace_probe_create(). - * - * 2.8.3 Return value - * - * If the probe exists, returns its identifier. If the probe does not exist, - * return DTRACE_IDNONE. - * - * 2.8.4 Caller's context - * - * While dtrace_probe_lookup() is generally expected to be called from - * dtps_provide() and/or dtps_provide_module(), it may also be called from - * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. - * - * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe) - * - * 2.9.1 Overview - * - * Returns the probe argument associated with the specified probe. - * - * 2.9.2 Arguments and Notes - * - * The first argument is the provider identifier, as returned from a - * successful call to dtrace_register(). The second argument is a probe - * identifier, as returned from dtrace_probe_lookup() or - * dtrace_probe_create(). This is useful if a probe has multiple - * provider-specific components to it: the provider can create the probe - * once with provider-specific state, and then add to the state by looking - * up the probe based on probe identifier. - * - * 2.9.3 Return value - * - * Returns the argument associated with the specified probe. If the - * specified probe does not exist, or if the specified probe is not provided - * by the specified provider, NULL is returned. - * - * 2.9.4 Caller's context - * - * While dtrace_probe_arg() is generally expected to be called from - * dtps_provide() and/or dtps_provide_module(), it may also be called from - * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. - * - * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1, - * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) - * - * 2.10.1 Overview - * - * The epicenter of DTrace: fires the specified probes with the specified - * arguments. - * - * 2.10.2 Arguments and Notes - * - * The first argument is a probe identifier as returned by - * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth - * arguments are the values to which the D variables "arg0" through "arg4" - * will be mapped. - * - * dtrace_probe() should be called whenever the specified probe has fired -- - * however the provider defines it. - * - * 2.10.3 Return value - * - * None. - * - * 2.10.4 Caller's context - * - * dtrace_probe() may be called in virtually any context: kernel, user, - * interrupt, high-level interrupt, with arbitrary adaptive locks held, with - * dispatcher locks held, with interrupts disabled, etc. The only latitude - * that must be afforded to DTrace is the ability to make calls within - * itself (and to its in-kernel subroutines) and the ability to access - * arbitrary (but mapped) memory. On some platforms, this constrains - * context. For example, on UltraSPARC, dtrace_probe() cannot be called - * from any context in which TL is greater than zero. dtrace_probe() may - * also not be called from any routine which may be called by dtrace_probe() - * -- which includes functions in the DTrace framework and some in-kernel - * DTrace subroutines. All such functions "dtrace_"; providers that - * instrument the kernel arbitrarily should be sure to not instrument these - * routines. - */ -typedef struct dtrace_pops { - void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec); - void (*dtps_provide_module)(void *arg, struct modctl *mp); - void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg); - void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg); - void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg); - void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg); - void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg, - dtrace_argdesc_t *desc); - uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg, - int argno, int aframes); - int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg); - void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg); -} dtrace_pops_t; - -typedef uintptr_t dtrace_provider_id_t; - -extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t, - cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *); -extern int dtrace_unregister(dtrace_provider_id_t); -extern int dtrace_condense(dtrace_provider_id_t); -extern void dtrace_invalidate(dtrace_provider_id_t); -extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *, - const char *, const char *); -extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *, - const char *, const char *, int, void *); -extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t); -extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1, - uintptr_t arg2, uintptr_t arg3, uintptr_t arg4); - -/* - * DTrace Meta Provider API - * - * The following functions are implemented by the DTrace framework and are - * used to implement meta providers. Meta providers plug into the DTrace - * framework and are used to instantiate new providers on the fly. At - * present, there is only one type of meta provider and only one meta - * provider may be registered with the DTrace framework at a time. The - * sole meta provider type provides user-land static tracing facilities - * by taking meta probe descriptions and adding a corresponding provider - * into the DTrace framework. - * - * 1 Framework-to-Provider - * - * 1.1 Overview - * - * The Framework-to-Provider API is represented by the dtrace_mops structure - * that the meta provider passes to the framework when registering itself as - * a meta provider. This structure consists of the following members: - * - * dtms_create_probe() <-- Add a new probe to a created provider - * dtms_provide_pid() <-- Create a new provider for a given process - * dtms_remove_pid() <-- Remove a previously created provider - * - * 1.2 void dtms_create_probe(void *arg, void *parg, - * dtrace_helper_probedesc_t *probedesc); - * - * 1.2.1 Overview - * - * Called by the DTrace framework to create a new probe in a provider - * created by this meta provider. - * - * 1.2.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_meta_register(). - * The second argument is the provider cookie for the associated provider; - * this is obtained from the return value of dtms_provide_pid(). The third - * argument is the helper probe description. - * - * 1.2.3 Return value - * - * None - * - * 1.2.4 Caller's context - * - * dtms_create_probe() is called from either ioctl() or module load context. - * The DTrace framework is locked in such a way that meta providers may not - * register or unregister. This means that the meta provider cannot call - * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is - * such that the provider may (and is expected to) call provider-related - * DTrace provider APIs including dtrace_probe_create(). - * - * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov, - * pid_t pid) - * - * 1.3.1 Overview - * - * Called by the DTrace framework to instantiate a new provider given the - * description of the provider and probes in the mprov argument. The - * meta provider should call dtrace_register() to insert the new provider - * into the DTrace framework. - * - * 1.3.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_meta_register(). - * The second argument is a pointer to a structure describing the new - * helper provider. The third argument is the process identifier for - * process associated with this new provider. Note that the name of the - * provider as passed to dtrace_register() should be the contatenation of - * the dtmpb_provname member of the mprov argument and the processs - * identifier as a string. - * - * 1.3.3 Return value - * - * The cookie for the provider that the meta provider creates. This is - * the same value that it passed to dtrace_register(). - * - * 1.3.4 Caller's context - * - * dtms_provide_pid() is called from either ioctl() or module load context. - * The DTrace framework is locked in such a way that meta providers may not - * register or unregister. This means that the meta provider cannot call - * dtrace_meta_register() or dtrace_meta_unregister(). However, the context - * is such that the provider may -- and is expected to -- call - * provider-related DTrace provider APIs including dtrace_register(). - * - * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov, - * pid_t pid) - * - * 1.4.1 Overview - * - * Called by the DTrace framework to remove a provider that had previously - * been instantiated via the dtms_provide_pid() entry point. The meta - * provider need not remove the provider immediately, but this entry - * point indicates that the provider should be removed as soon as possible - * using the dtrace_unregister() API. - * - * 1.4.2 Arguments and notes - * - * The first argument is the cookie as passed to dtrace_meta_register(). - * The second argument is a pointer to a structure describing the helper - * provider. The third argument is the process identifier for process - * associated with this new provider. - * - * 1.4.3 Return value - * - * None - * - * 1.4.4 Caller's context - * - * dtms_remove_pid() is called from either ioctl() or exit() context. - * The DTrace framework is locked in such a way that meta providers may not - * register or unregister. This means that the meta provider cannot call - * dtrace_meta_register() or dtrace_meta_unregister(). However, the context - * is such that the provider may -- and is expected to -- call - * provider-related DTrace provider APIs including dtrace_unregister(). - */ -typedef struct dtrace_helper_probedesc { - char *dthpb_mod; /* probe module */ - char *dthpb_func; /* probe function */ - char *dthpb_name; /* probe name */ - uint64_t dthpb_base; /* base address */ - uint32_t *dthpb_offs; /* offsets array */ - uint32_t *dthpb_enoffs; /* is-enabled offsets array */ - uint32_t dthpb_noffs; /* offsets count */ - uint32_t dthpb_nenoffs; /* is-enabled offsets count */ - uint8_t *dthpb_args; /* argument mapping array */ - uint8_t dthpb_xargc; /* translated argument count */ - uint8_t dthpb_nargc; /* native argument count */ - char *dthpb_xtypes; /* translated types strings */ - char *dthpb_ntypes; /* native types strings */ -} dtrace_helper_probedesc_t; - -typedef struct dtrace_helper_provdesc { - char *dthpv_provname; /* provider name */ - dtrace_pattr_t dthpv_pattr; /* stability attributes */ -} dtrace_helper_provdesc_t; - -typedef struct dtrace_mops { - void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *); - void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t); - void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t); -} dtrace_mops_t; - -typedef uintptr_t dtrace_meta_provider_id_t; - -extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *, - dtrace_meta_provider_id_t *); -extern int dtrace_meta_unregister(dtrace_meta_provider_id_t); - -/* - * DTrace Kernel Hooks - * - * The following functions are implemented by the base kernel and form a set of - * hooks used by the DTrace framework. DTrace hooks are implemented in either - * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a - * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform. - */ - -typedef enum dtrace_vtime_state { - DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */ - DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */ - DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */ - DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */ -} dtrace_vtime_state_t; - -extern dtrace_vtime_state_t dtrace_vtime_active; -extern void dtrace_vtime_switch(kthread_t *next); -extern void dtrace_vtime_enable_tnf(void); -extern void dtrace_vtime_disable_tnf(void); -extern void dtrace_vtime_enable(void); -extern void dtrace_vtime_disable(void); - -struct regs; - -extern int (*dtrace_pid_probe_ptr)(struct regs *); -extern int (*dtrace_return_probe_ptr)(struct regs *); -extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *); -extern void (*dtrace_fasttrap_exec_ptr)(proc_t *); -extern void (*dtrace_fasttrap_exit_ptr)(proc_t *); -extern void dtrace_fasttrap_fork(proc_t *, proc_t *); - -typedef uintptr_t dtrace_icookie_t; -typedef void (*dtrace_xcall_t)(void *); - -extern dtrace_icookie_t dtrace_interrupt_disable(void); -extern void dtrace_interrupt_enable(dtrace_icookie_t); - -extern void dtrace_membar_producer(void); -extern void dtrace_membar_consumer(void); - -extern void (*dtrace_cpu_init)(processorid_t); -extern void (*dtrace_modload)(struct modctl *); -extern void (*dtrace_modunload)(struct modctl *); -extern void (*dtrace_helpers_cleanup)(); -extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child); -extern void (*dtrace_cpustart_init)(); -extern void (*dtrace_cpustart_fini)(); - -extern void (*dtrace_debugger_init)(); -extern void (*dtrace_debugger_fini)(); -extern dtrace_cacheid_t dtrace_predcache_id; - -extern hrtime_t dtrace_gethrtime(void); -extern void dtrace_sync(void); -extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t)); -extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *); -extern void dtrace_vpanic(const char *, __va_list); -extern void dtrace_panic(const char *, ...); - -extern int dtrace_safe_defer_signal(void); -extern void dtrace_safe_synchronous_signal(void); - -extern int dtrace_mach_aframes(void); - -#if defined(__i386) || defined(__amd64) -extern int dtrace_instr_size(uchar_t *instr); -extern int dtrace_instr_size_isa(uchar_t *, model_t, int *); -extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t)); -extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t)); -extern void dtrace_invop_callsite(void); -#endif - -#ifdef __sparc -extern int dtrace_blksuword32(uintptr_t, uint32_t *, int); -extern void dtrace_getfsr(uint64_t *); -#endif - -#define DTRACE_CPUFLAG_ISSET(flag) \ - (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag)) - -#define DTRACE_CPUFLAG_SET(flag) \ - (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag)) - -#define DTRACE_CPUFLAG_CLEAR(flag) \ - (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag)) - -#endif /* _KERNEL */ - -#endif /* _ASM */ - -#if defined(__i386) || defined(__amd64) - -#define DTRACE_INVOP_PUSHL_EBP 1 -#define DTRACE_INVOP_POPL_EBP 2 -#define DTRACE_INVOP_LEAVE 3 -#define DTRACE_INVOP_NOP 4 -#define DTRACE_INVOP_RET 5 - -#endif - -#ifdef __cplusplus -} -#endif - -#endif /* _SYS_DTRACE_H */ diff --git a/cddl/contrib/opensolaris/uts/common/sys/dtrace_impl.h b/cddl/contrib/opensolaris/uts/common/sys/dtrace_impl.h deleted file mode 100644 index fed537e..0000000 --- a/cddl/contrib/opensolaris/uts/common/sys/dtrace_impl.h +++ /dev/null @@ -1,1298 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2007 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _SYS_DTRACE_IMPL_H -#define _SYS_DTRACE_IMPL_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#ifdef __cplusplus -extern "C" { -#endif - -/* - * DTrace Dynamic Tracing Software: Kernel Implementation Interfaces - * - * Note: The contents of this file are private to the implementation of the - * Solaris system and DTrace subsystem and are subject to change at any time - * without notice. Applications and drivers using these interfaces will fail - * to run on future releases. These interfaces should not be used for any - * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB). - * Please refer to the "Solaris Dynamic Tracing Guide" for more information. - */ - -#include <sys/dtrace.h> - -/* - * DTrace Implementation Constants and Typedefs - */ -#define DTRACE_MAXPROPLEN 128 -#define DTRACE_DYNVAR_CHUNKSIZE 256 - -struct dtrace_probe; -struct dtrace_ecb; -struct dtrace_predicate; -struct dtrace_action; -struct dtrace_provider; -struct dtrace_state; - -typedef struct dtrace_probe dtrace_probe_t; -typedef struct dtrace_ecb dtrace_ecb_t; -typedef struct dtrace_predicate dtrace_predicate_t; -typedef struct dtrace_action dtrace_action_t; -typedef struct dtrace_provider dtrace_provider_t; -typedef struct dtrace_meta dtrace_meta_t; -typedef struct dtrace_state dtrace_state_t; -typedef uint32_t dtrace_optid_t; -typedef uint32_t dtrace_specid_t; -typedef uint64_t dtrace_genid_t; - -/* - * DTrace Probes - * - * The probe is the fundamental unit of the DTrace architecture. Probes are - * created by DTrace providers, and managed by the DTrace framework. A probe - * is identified by a unique <provider, module, function, name> tuple, and has - * a unique probe identifier assigned to it. (Some probes are not associated - * with a specific point in text; these are called _unanchored probes_ and have - * no module or function associated with them.) Probes are represented as a - * dtrace_probe structure. To allow quick lookups based on each element of the - * probe tuple, probes are hashed by each of provider, module, function and - * name. (If a lookup is performed based on a regular expression, a - * dtrace_probekey is prepared, and a linear search is performed.) Each probe - * is additionally pointed to by a linear array indexed by its identifier. The - * identifier is the provider's mechanism for indicating to the DTrace - * framework that a probe has fired: the identifier is passed as the first - * argument to dtrace_probe(), where it is then mapped into the corresponding - * dtrace_probe structure. From the dtrace_probe structure, dtrace_probe() can - * iterate over the probe's list of enabling control blocks; see "DTrace - * Enabling Control Blocks", below.) - */ -struct dtrace_probe { - dtrace_id_t dtpr_id; /* probe identifier */ - dtrace_ecb_t *dtpr_ecb; /* ECB list; see below */ - dtrace_ecb_t *dtpr_ecb_last; /* last ECB in list */ - void *dtpr_arg; /* provider argument */ - dtrace_cacheid_t dtpr_predcache; /* predicate cache ID */ - int dtpr_aframes; /* artificial frames */ - dtrace_provider_t *dtpr_provider; /* pointer to provider */ - char *dtpr_mod; /* probe's module name */ - char *dtpr_func; /* probe's function name */ - char *dtpr_name; /* probe's name */ - dtrace_probe_t *dtpr_nextmod; /* next in module hash */ - dtrace_probe_t *dtpr_prevmod; /* previous in module hash */ - dtrace_probe_t *dtpr_nextfunc; /* next in function hash */ - dtrace_probe_t *dtpr_prevfunc; /* previous in function hash */ - dtrace_probe_t *dtpr_nextname; /* next in name hash */ - dtrace_probe_t *dtpr_prevname; /* previous in name hash */ - dtrace_genid_t dtpr_gen; /* probe generation ID */ -}; - -typedef int dtrace_probekey_f(const char *, const char *, int); - -typedef struct dtrace_probekey { - const char *dtpk_prov; /* provider name to match */ - dtrace_probekey_f *dtpk_pmatch; /* provider matching function */ - const char *dtpk_mod; /* module name to match */ - dtrace_probekey_f *dtpk_mmatch; /* module matching function */ - const char *dtpk_func; /* func name to match */ - dtrace_probekey_f *dtpk_fmatch; /* func matching function */ - const char *dtpk_name; /* name to match */ - dtrace_probekey_f *dtpk_nmatch; /* name matching function */ - dtrace_id_t dtpk_id; /* identifier to match */ -} dtrace_probekey_t; - -typedef struct dtrace_hashbucket { - struct dtrace_hashbucket *dthb_next; /* next on hash chain */ - dtrace_probe_t *dthb_chain; /* chain of probes */ - int dthb_len; /* number of probes here */ -} dtrace_hashbucket_t; - -typedef struct dtrace_hash { - dtrace_hashbucket_t **dth_tab; /* hash table */ - int dth_size; /* size of hash table */ - int dth_mask; /* mask to index into table */ - int dth_nbuckets; /* total number of buckets */ - uintptr_t dth_nextoffs; /* offset of next in probe */ - uintptr_t dth_prevoffs; /* offset of prev in probe */ - uintptr_t dth_stroffs; /* offset of str in probe */ -} dtrace_hash_t; - -/* - * DTrace Enabling Control Blocks - * - * When a provider wishes to fire a probe, it calls into dtrace_probe(), - * passing the probe identifier as the first argument. As described above, - * dtrace_probe() maps the identifier into a pointer to a dtrace_probe_t - * structure. This structure contains information about the probe, and a - * pointer to the list of Enabling Control Blocks (ECBs). Each ECB points to - * DTrace consumer state, and contains an optional predicate, and a list of - * actions. (Shown schematically below.) The ECB abstraction allows a single - * probe to be multiplexed across disjoint consumers, or across disjoint - * enablings of a single probe within one consumer. - * - * Enabling Control Block - * dtrace_ecb_t - * +------------------------+ - * | dtrace_epid_t ---------+--------------> Enabled Probe ID (EPID) - * | dtrace_state_t * ------+--------------> State associated with this ECB - * | dtrace_predicate_t * --+---------+ - * | dtrace_action_t * -----+----+ | - * | dtrace_ecb_t * ---+ | | | Predicate (if any) - * +-------------------+----+ | | dtrace_predicate_t - * | | +---> +--------------------+ - * | | | dtrace_difo_t * ---+----> DIFO - * | | +--------------------+ - * | | - * Next ECB | | Action - * (if any) | | dtrace_action_t - * : +--> +-------------------+ - * : | dtrace_actkind_t -+------> kind - * v | dtrace_difo_t * --+------> DIFO (if any) - * | dtrace_recdesc_t -+------> record descr. - * | dtrace_action_t * +------+ - * +-------------------+ | - * | Next action - * +-------------------------------+ (if any) - * | - * | Action - * | dtrace_action_t - * +--> +-------------------+ - * | dtrace_actkind_t -+------> kind - * | dtrace_difo_t * --+------> DIFO (if any) - * | dtrace_action_t * +------+ - * +-------------------+ | - * | Next action - * +-------------------------------+ (if any) - * | - * : - * v - * - * - * dtrace_probe() iterates over the ECB list. If the ECB needs less space - * than is available in the principal buffer, the ECB is processed: if the - * predicate is non-NULL, the DIF object is executed. If the result is - * non-zero, the action list is processed, with each action being executed - * accordingly. When the action list has been completely executed, processing - * advances to the next ECB. processing advances to the next ECB. If the - * result is non-zero; For each ECB, it first determines the The ECB - * abstraction allows disjoint consumers to multiplex on single probes. - */ -struct dtrace_ecb { - dtrace_epid_t dte_epid; /* enabled probe ID */ - uint32_t dte_alignment; /* required alignment */ - size_t dte_needed; /* bytes needed */ - size_t dte_size; /* total size of payload */ - dtrace_predicate_t *dte_predicate; /* predicate, if any */ - dtrace_action_t *dte_action; /* actions, if any */ - dtrace_ecb_t *dte_next; /* next ECB on probe */ - dtrace_state_t *dte_state; /* pointer to state */ - uint32_t dte_cond; /* security condition */ - dtrace_probe_t *dte_probe; /* pointer to probe */ - dtrace_action_t *dte_action_last; /* last action on ECB */ - uint64_t dte_uarg; /* library argument */ -}; - -struct dtrace_predicate { - dtrace_difo_t *dtp_difo; /* DIF object */ - dtrace_cacheid_t dtp_cacheid; /* cache identifier */ - int dtp_refcnt; /* reference count */ -}; - -struct dtrace_action { - dtrace_actkind_t dta_kind; /* kind of action */ - uint16_t dta_intuple; /* boolean: in aggregation */ - uint32_t dta_refcnt; /* reference count */ - dtrace_difo_t *dta_difo; /* pointer to DIFO */ - dtrace_recdesc_t dta_rec; /* record description */ - dtrace_action_t *dta_prev; /* previous action */ - dtrace_action_t *dta_next; /* next action */ -}; - -typedef struct dtrace_aggregation { - dtrace_action_t dtag_action; /* action; must be first */ - dtrace_aggid_t dtag_id; /* identifier */ - dtrace_ecb_t *dtag_ecb; /* corresponding ECB */ - dtrace_action_t *dtag_first; /* first action in tuple */ - uint32_t dtag_base; /* base of aggregation */ - uint8_t dtag_hasarg; /* boolean: has argument */ - uint64_t dtag_initial; /* initial value */ - void (*dtag_aggregate)(uint64_t *, uint64_t, uint64_t); -} dtrace_aggregation_t; - -/* - * DTrace Buffers - * - * Principal buffers, aggregation buffers, and speculative buffers are all - * managed with the dtrace_buffer structure. By default, this structure - * includes twin data buffers -- dtb_tomax and dtb_xamot -- that serve as the - * active and passive buffers, respectively. For speculative buffers, - * dtb_xamot will be NULL; for "ring" and "fill" buffers, dtb_xamot will point - * to a scratch buffer. For all buffer types, the dtrace_buffer structure is - * always allocated on a per-CPU basis; a single dtrace_buffer structure is - * never shared among CPUs. (That is, there is never true sharing of the - * dtrace_buffer structure; to prevent false sharing of the structure, it must - * always be aligned to the coherence granularity -- generally 64 bytes.) - * - * One of the critical design decisions of DTrace is that a given ECB always - * stores the same quantity and type of data. This is done to assure that the - * only metadata required for an ECB's traced data is the EPID. That is, from - * the EPID, the consumer can determine the data layout. (The data buffer - * layout is shown schematically below.) By assuring that one can determine - * data layout from the EPID, the metadata stream can be separated from the - * data stream -- simplifying the data stream enormously. - * - * base of data buffer ---> +------+--------------------+------+ - * | EPID | data | EPID | - * +------+--------+------+----+------+ - * | data | EPID | data | - * +---------------+------+-----------+ - * | data, cont. | - * +------+--------------------+------+ - * | EPID | data | | - * +------+--------------------+ | - * | || | - * | || | - * | \/ | - * : : - * . . - * . . - * . . - * : : - * | | - * limit of data buffer ---> +----------------------------------+ - * - * When evaluating an ECB, dtrace_probe() determines if the ECB's needs of the - * principal buffer (both scratch and payload) exceed the available space. If - * the ECB's needs exceed available space (and if the principal buffer policy - * is the default "switch" policy), the ECB is dropped, the buffer's drop count - * is incremented, and processing advances to the next ECB. If the ECB's needs - * can be met with the available space, the ECB is processed, but the offset in - * the principal buffer is only advanced if the ECB completes processing - * without error. - * - * When a buffer is to be switched (either because the buffer is the principal - * buffer with a "switch" policy or because it is an aggregation buffer), a - * cross call is issued to the CPU associated with the buffer. In the cross - * call context, interrupts are disabled, and the active and the inactive - * buffers are atomically switched. This involves switching the data pointers, - * copying the various state fields (offset, drops, errors, etc.) into their - * inactive equivalents, and clearing the state fields. Because interrupts are - * disabled during this procedure, the switch is guaranteed to appear atomic to - * dtrace_probe(). - * - * DTrace Ring Buffering - * - * To process a ring buffer correctly, one must know the oldest valid record. - * Processing starts at the oldest record in the buffer and continues until - * the end of the buffer is reached. Processing then resumes starting with - * the record stored at offset 0 in the buffer, and continues until the - * youngest record is processed. If trace records are of a fixed-length, - * determining the oldest record is trivial: - * - * - If the ring buffer has not wrapped, the oldest record is the record - * stored at offset 0. - * - * - If the ring buffer has wrapped, the oldest record is the record stored - * at the current offset. - * - * With variable length records, however, just knowing the current offset - * doesn't suffice for determining the oldest valid record: assuming that one - * allows for arbitrary data, one has no way of searching forward from the - * current offset to find the oldest valid record. (That is, one has no way - * of separating data from metadata.) It would be possible to simply refuse to - * process any data in the ring buffer between the current offset and the - * limit, but this leaves (potentially) an enormous amount of otherwise valid - * data unprocessed. - * - * To effect ring buffering, we track two offsets in the buffer: the current - * offset and the _wrapped_ offset. If a request is made to reserve some - * amount of data, and the buffer has wrapped, the wrapped offset is - * incremented until the wrapped offset minus the current offset is greater - * than or equal to the reserve request. This is done by repeatedly looking - * up the ECB corresponding to the EPID at the current wrapped offset, and - * incrementing the wrapped offset by the size of the data payload - * corresponding to that ECB. If this offset is greater than or equal to the - * limit of the data buffer, the wrapped offset is set to 0. Thus, the - * current offset effectively "chases" the wrapped offset around the buffer. - * Schematically: - * - * base of data buffer ---> +------+--------------------+------+ - * | EPID | data | EPID | - * +------+--------+------+----+------+ - * | data | EPID | data | - * +---------------+------+-----------+ - * | data, cont. | - * +------+---------------------------+ - * | EPID | data | - * current offset ---> +------+---------------------------+ - * | invalid data | - * wrapped offset ---> +------+--------------------+------+ - * | EPID | data | EPID | - * +------+--------+------+----+------+ - * | data | EPID | data | - * +---------------+------+-----------+ - * : : - * . . - * . ... valid data ... . - * . . - * : : - * +------+-------------+------+------+ - * | EPID | data | EPID | data | - * +------+------------++------+------+ - * | data, cont. | leftover | - * limit of data buffer ---> +-------------------+--------------+ - * - * If the amount of requested buffer space exceeds the amount of space - * available between the current offset and the end of the buffer: - * - * (1) all words in the data buffer between the current offset and the limit - * of the data buffer (marked "leftover", above) are set to - * DTRACE_EPIDNONE - * - * (2) the wrapped offset is set to zero - * - * (3) the iteration process described above occurs until the wrapped offset - * is greater than the amount of desired space. - * - * The wrapped offset is implemented by (re-)using the inactive offset. - * In a "switch" buffer policy, the inactive offset stores the offset in - * the inactive buffer; in a "ring" buffer policy, it stores the wrapped - * offset. - * - * DTrace Scratch Buffering - * - * Some ECBs may wish to allocate dynamically-sized temporary scratch memory. - * To accommodate such requests easily, scratch memory may be allocated in - * the buffer beyond the current offset plus the needed memory of the current - * ECB. If there isn't sufficient room in the buffer for the requested amount - * of scratch space, the allocation fails and an error is generated. Scratch - * memory is tracked in the dtrace_mstate_t and is automatically freed when - * the ECB ceases processing. Note that ring buffers cannot allocate their - * scratch from the principal buffer -- lest they needlessly overwrite older, - * valid data. Ring buffers therefore have their own dedicated scratch buffer - * from which scratch is allocated. - */ -#define DTRACEBUF_RING 0x0001 /* bufpolicy set to "ring" */ -#define DTRACEBUF_FILL 0x0002 /* bufpolicy set to "fill" */ -#define DTRACEBUF_NOSWITCH 0x0004 /* do not switch buffer */ -#define DTRACEBUF_WRAPPED 0x0008 /* ring buffer has wrapped */ -#define DTRACEBUF_DROPPED 0x0010 /* drops occurred */ -#define DTRACEBUF_ERROR 0x0020 /* errors occurred */ -#define DTRACEBUF_FULL 0x0040 /* "fill" buffer is full */ -#define DTRACEBUF_CONSUMED 0x0080 /* buffer has been consumed */ -#define DTRACEBUF_INACTIVE 0x0100 /* buffer is not yet active */ - -typedef struct dtrace_buffer { - uint64_t dtb_offset; /* current offset in buffer */ - uint64_t dtb_size; /* size of buffer */ - uint32_t dtb_flags; /* flags */ - uint32_t dtb_drops; /* number of drops */ - caddr_t dtb_tomax; /* active buffer */ - caddr_t dtb_xamot; /* inactive buffer */ - uint32_t dtb_xamot_flags; /* inactive flags */ - uint32_t dtb_xamot_drops; /* drops in inactive buffer */ - uint64_t dtb_xamot_offset; /* offset in inactive buffer */ - uint32_t dtb_errors; /* number of errors */ - uint32_t dtb_xamot_errors; /* errors in inactive buffer */ -#ifndef _LP64 - uint64_t dtb_pad1; -#endif -} dtrace_buffer_t; - -/* - * DTrace Aggregation Buffers - * - * Aggregation buffers use much of the same mechanism as described above - * ("DTrace Buffers"). However, because an aggregation is fundamentally a - * hash, there exists dynamic metadata associated with an aggregation buffer - * that is not associated with other kinds of buffers. This aggregation - * metadata is _only_ relevant for the in-kernel implementation of - * aggregations; it is not actually relevant to user-level consumers. To do - * this, we allocate dynamic aggregation data (hash keys and hash buckets) - * starting below the _limit_ of the buffer, and we allocate data from the - * _base_ of the buffer. When the aggregation buffer is copied out, _only_ the - * data is copied out; the metadata is simply discarded. Schematically, - * aggregation buffers look like: - * - * base of data buffer ---> +-------+------+-----------+-------+ - * | aggid | key | value | aggid | - * +-------+------+-----------+-------+ - * | key | - * +-------+-------+-----+------------+ - * | value | aggid | key | value | - * +-------+------++-----+------+-----+ - * | aggid | key | value | | - * +-------+------+-------------+ | - * | || | - * | || | - * | \/ | - * : : - * . . - * . . - * . . - * : : - * | /\ | - * | || +------------+ - * | || | | - * +---------------------+ | - * | hash keys | - * | (dtrace_aggkey structures) | - * | | - * +----------------------------------+ - * | hash buckets | - * | (dtrace_aggbuffer structure) | - * | | - * limit of data buffer ---> +----------------------------------+ - * - * - * As implied above, just as we assure that ECBs always store a constant - * amount of data, we assure that a given aggregation -- identified by its - * aggregation ID -- always stores data of a constant quantity and type. - * As with EPIDs, this allows the aggregation ID to serve as the metadata for a - * given record. - * - * Note that the size of the dtrace_aggkey structure must be sizeof (uintptr_t) - * aligned. (If this the structure changes such that this becomes false, an - * assertion will fail in dtrace_aggregate().) - */ -typedef struct dtrace_aggkey { - uint32_t dtak_hashval; /* hash value */ - uint32_t dtak_action:4; /* action -- 4 bits */ - uint32_t dtak_size:28; /* size -- 28 bits */ - caddr_t dtak_data; /* data pointer */ - struct dtrace_aggkey *dtak_next; /* next in hash chain */ -} dtrace_aggkey_t; - -typedef struct dtrace_aggbuffer { - uintptr_t dtagb_hashsize; /* number of buckets */ - uintptr_t dtagb_free; /* free list of keys */ - dtrace_aggkey_t **dtagb_hash; /* hash table */ -} dtrace_aggbuffer_t; - -/* - * DTrace Speculations - * - * Speculations have a per-CPU buffer and a global state. Once a speculation - * buffer has been comitted or discarded, it cannot be reused until all CPUs - * have taken the same action (commit or discard) on their respective - * speculative buffer. However, because DTrace probes may execute in arbitrary - * context, other CPUs cannot simply be cross-called at probe firing time to - * perform the necessary commit or discard. The speculation states thus - * optimize for the case that a speculative buffer is only active on one CPU at - * the time of a commit() or discard() -- for if this is the case, other CPUs - * need not take action, and the speculation is immediately available for - * reuse. If the speculation is active on multiple CPUs, it must be - * asynchronously cleaned -- potentially leading to a higher rate of dirty - * speculative drops. The speculation states are as follows: - * - * DTRACESPEC_INACTIVE <= Initial state; inactive speculation - * DTRACESPEC_ACTIVE <= Allocated, but not yet speculatively traced to - * DTRACESPEC_ACTIVEONE <= Speculatively traced to on one CPU - * DTRACESPEC_ACTIVEMANY <= Speculatively traced to on more than one CPU - * DTRACESPEC_COMMITTING <= Currently being commited on one CPU - * DTRACESPEC_COMMITTINGMANY <= Currently being commited on many CPUs - * DTRACESPEC_DISCARDING <= Currently being discarded on many CPUs - * - * The state transition diagram is as follows: - * - * +----------------------------------------------------------+ - * | | - * | +------------+ | - * | +-------------------| COMMITTING |<-----------------+ | - * | | +------------+ | | - * | | copied spec. ^ commit() on | | discard() on - * | | into principal | active CPU | | active CPU - * | | | commit() | | - * V V | | | - * +----------+ +--------+ +-----------+ - * | INACTIVE |---------------->| ACTIVE |--------------->| ACTIVEONE | - * +----------+ speculation() +--------+ speculate() +-----------+ - * ^ ^ | | | - * | | | discard() | | - * | | asynchronously | discard() on | | speculate() - * | | cleaned V inactive CPU | | on inactive - * | | +------------+ | | CPU - * | +-------------------| DISCARDING |<-----------------+ | - * | +------------+ | - * | asynchronously ^ | - * | copied spec. | discard() | - * | into principal +------------------------+ | - * | | V - * +----------------+ commit() +------------+ - * | COMMITTINGMANY |<----------------------------------| ACTIVEMANY | - * +----------------+ +------------+ - */ -typedef enum dtrace_speculation_state { - DTRACESPEC_INACTIVE = 0, - DTRACESPEC_ACTIVE, - DTRACESPEC_ACTIVEONE, - DTRACESPEC_ACTIVEMANY, - DTRACESPEC_COMMITTING, - DTRACESPEC_COMMITTINGMANY, - DTRACESPEC_DISCARDING -} dtrace_speculation_state_t; - -typedef struct dtrace_speculation { - dtrace_speculation_state_t dtsp_state; /* current speculation state */ - int dtsp_cleaning; /* non-zero if being cleaned */ - dtrace_buffer_t *dtsp_buffer; /* speculative buffer */ -} dtrace_speculation_t; - -/* - * DTrace Dynamic Variables - * - * The dynamic variable problem is obviously decomposed into two subproblems: - * allocating new dynamic storage, and freeing old dynamic storage. The - * presence of the second problem makes the first much more complicated -- or - * rather, the absence of the second renders the first trivial. This is the - * case with aggregations, for which there is effectively no deallocation of - * dynamic storage. (Or more accurately, all dynamic storage is deallocated - * when a snapshot is taken of the aggregation.) As DTrace dynamic variables - * allow for both dynamic allocation and dynamic deallocation, the - * implementation of dynamic variables is quite a bit more complicated than - * that of their aggregation kin. - * - * We observe that allocating new dynamic storage is tricky only because the - * size can vary -- the allocation problem is much easier if allocation sizes - * are uniform. We further observe that in D, the size of dynamic variables is - * actually _not_ dynamic -- dynamic variable sizes may be determined by static - * analysis of DIF text. (This is true even of putatively dynamically-sized - * objects like strings and stacks, the sizes of which are dictated by the - * "stringsize" and "stackframes" variables, respectively.) We exploit this by - * performing this analysis on all DIF before enabling any probes. For each - * dynamic load or store, we calculate the dynamically-allocated size plus the - * size of the dtrace_dynvar structure plus the storage required to key the - * data. For all DIF, we take the largest value and dub it the _chunksize_. - * We then divide dynamic memory into two parts: a hash table that is wide - * enough to have every chunk in its own bucket, and a larger region of equal - * chunksize units. Whenever we wish to dynamically allocate a variable, we - * always allocate a single chunk of memory. Depending on the uniformity of - * allocation, this will waste some amount of memory -- but it eliminates the - * non-determinism inherent in traditional heap fragmentation. - * - * Dynamic objects are allocated by storing a non-zero value to them; they are - * deallocated by storing a zero value to them. Dynamic variables are - * complicated enormously by being shared between CPUs. In particular, - * consider the following scenario: - * - * CPU A CPU B - * +---------------------------------+ +---------------------------------+ - * | | | | - * | allocates dynamic object a[123] | | | - * | by storing the value 345 to it | | | - * | ---------> | - * | | | wishing to load from object | - * | | | a[123], performs lookup in | - * | | | dynamic variable space | - * | <--------- | - * | deallocates object a[123] by | | | - * | storing 0 to it | | | - * | | | | - * | allocates dynamic object b[567] | | performs load from a[123] | - * | by storing the value 789 to it | | | - * : : : : - * . . . . - * - * This is obviously a race in the D program, but there are nonetheless only - * two valid values for CPU B's load from a[123]: 345 or 0. Most importantly, - * CPU B may _not_ see the value 789 for a[123]. - * - * There are essentially two ways to deal with this: - * - * (1) Explicitly spin-lock variables. That is, if CPU B wishes to load - * from a[123], it needs to lock a[123] and hold the lock for the - * duration that it wishes to manipulate it. - * - * (2) Avoid reusing freed chunks until it is known that no CPU is referring - * to them. - * - * The implementation of (1) is rife with complexity, because it requires the - * user of a dynamic variable to explicitly decree when they are done using it. - * Were all variables by value, this perhaps wouldn't be debilitating -- but - * dynamic variables of non-scalar types are tracked by reference. That is, if - * a dynamic variable is, say, a string, and that variable is to be traced to, - * say, the principal buffer, the DIF emulation code returns to the main - * dtrace_probe() loop a pointer to the underlying storage, not the contents of - * the storage. Further, code calling on DIF emulation would have to be aware - * that the DIF emulation has returned a reference to a dynamic variable that - * has been potentially locked. The variable would have to be unlocked after - * the main dtrace_probe() loop is finished with the variable, and the main - * dtrace_probe() loop would have to be careful to not call any further DIF - * emulation while the variable is locked to avoid deadlock. More generally, - * if one were to implement (1), DIF emulation code dealing with dynamic - * variables could only deal with one dynamic variable at a time (lest deadlock - * result). To sum, (1) exports too much subtlety to the users of dynamic - * variables -- increasing maintenance burden and imposing serious constraints - * on future DTrace development. - * - * The implementation of (2) is also complex, but the complexity is more - * manageable. We need to be sure that when a variable is deallocated, it is - * not placed on a traditional free list, but rather on a _dirty_ list. Once a - * variable is on a dirty list, it cannot be found by CPUs performing a - * subsequent lookup of the variable -- but it may still be in use by other - * CPUs. To assure that all CPUs that may be seeing the old variable have - * cleared out of probe context, a dtrace_sync() can be issued. Once the - * dtrace_sync() has completed, it can be known that all CPUs are done - * manipulating the dynamic variable -- the dirty list can be atomically - * appended to the free list. Unfortunately, there's a slight hiccup in this - * mechanism: dtrace_sync() may not be issued from probe context. The - * dtrace_sync() must be therefore issued asynchronously from non-probe - * context. For this we rely on the DTrace cleaner, a cyclic that runs at the - * "cleanrate" frequency. To ease this implementation, we define several chunk - * lists: - * - * - Dirty. Deallocated chunks, not yet cleaned. Not available. - * - * - Rinsing. Formerly dirty chunks that are currently being asynchronously - * cleaned. Not available, but will be shortly. Dynamic variable - * allocation may not spin or block for availability, however. - * - * - Clean. Clean chunks, ready for allocation -- but not on the free list. - * - * - Free. Available for allocation. - * - * Moreover, to avoid absurd contention, _each_ of these lists is implemented - * on a per-CPU basis. This is only for performance, not correctness; chunks - * may be allocated from another CPU's free list. The algorithm for allocation - * then is this: - * - * (1) Attempt to atomically allocate from current CPU's free list. If list - * is non-empty and allocation is successful, allocation is complete. - * - * (2) If the clean list is non-empty, atomically move it to the free list, - * and reattempt (1). - * - * (3) If the dynamic variable space is in the CLEAN state, look for free - * and clean lists on other CPUs by setting the current CPU to the next - * CPU, and reattempting (1). If the next CPU is the current CPU (that - * is, if all CPUs have been checked), atomically switch the state of - * the dynamic variable space based on the following: - * - * - If no free chunks were found and no dirty chunks were found, - * atomically set the state to EMPTY. - * - * - If dirty chunks were found, atomically set the state to DIRTY. - * - * - If rinsing chunks were found, atomically set the state to RINSING. - * - * (4) Based on state of dynamic variable space state, increment appropriate - * counter to indicate dynamic drops (if in EMPTY state) vs. dynamic - * dirty drops (if in DIRTY state) vs. dynamic rinsing drops (if in - * RINSING state). Fail the allocation. - * - * The cleaning cyclic operates with the following algorithm: for all CPUs - * with a non-empty dirty list, atomically move the dirty list to the rinsing - * list. Perform a dtrace_sync(). For all CPUs with a non-empty rinsing list, - * atomically move the rinsing list to the clean list. Perform another - * dtrace_sync(). By this point, all CPUs have seen the new clean list; the - * state of the dynamic variable space can be restored to CLEAN. - * - * There exist two final races that merit explanation. The first is a simple - * allocation race: - * - * CPU A CPU B - * +---------------------------------+ +---------------------------------+ - * | | | | - * | allocates dynamic object a[123] | | allocates dynamic object a[123] | - * | by storing the value 345 to it | | by storing the value 567 to it | - * | | | | - * : : : : - * . . . . - * - * Again, this is a race in the D program. It can be resolved by having a[123] - * hold the value 345 or a[123] hold the value 567 -- but it must be true that - * a[123] have only _one_ of these values. (That is, the racing CPUs may not - * put the same element twice on the same hash chain.) This is resolved - * simply: before the allocation is undertaken, the start of the new chunk's - * hash chain is noted. Later, after the allocation is complete, the hash - * chain is atomically switched to point to the new element. If this fails - * (because of either concurrent allocations or an allocation concurrent with a - * deletion), the newly allocated chunk is deallocated to the dirty list, and - * the whole process of looking up (and potentially allocating) the dynamic - * variable is reattempted. - * - * The final race is a simple deallocation race: - * - * CPU A CPU B - * +---------------------------------+ +---------------------------------+ - * | | | | - * | deallocates dynamic object | | deallocates dynamic object | - * | a[123] by storing the value 0 | | a[123] by storing the value 0 | - * | to it | | to it | - * | | | | - * : : : : - * . . . . - * - * Once again, this is a race in the D program, but it is one that we must - * handle without corrupting the underlying data structures. Because - * deallocations require the deletion of a chunk from the middle of a hash - * chain, we cannot use a single-word atomic operation to remove it. For this, - * we add a spin lock to the hash buckets that is _only_ used for deallocations - * (allocation races are handled as above). Further, this spin lock is _only_ - * held for the duration of the delete; before control is returned to the DIF - * emulation code, the hash bucket is unlocked. - */ -typedef struct dtrace_key { - uint64_t dttk_value; /* data value or data pointer */ - uint64_t dttk_size; /* 0 if by-val, >0 if by-ref */ -} dtrace_key_t; - -typedef struct dtrace_tuple { - uint32_t dtt_nkeys; /* number of keys in tuple */ - uint32_t dtt_pad; /* padding */ - dtrace_key_t dtt_key[1]; /* array of tuple keys */ -} dtrace_tuple_t; - -typedef struct dtrace_dynvar { - uint64_t dtdv_hashval; /* hash value -- 0 if free */ - struct dtrace_dynvar *dtdv_next; /* next on list or hash chain */ - void *dtdv_data; /* pointer to data */ - dtrace_tuple_t dtdv_tuple; /* tuple key */ -} dtrace_dynvar_t; - -typedef enum dtrace_dynvar_op { - DTRACE_DYNVAR_ALLOC, - DTRACE_DYNVAR_NOALLOC, - DTRACE_DYNVAR_DEALLOC -} dtrace_dynvar_op_t; - -typedef struct dtrace_dynhash { - dtrace_dynvar_t *dtdh_chain; /* hash chain for this bucket */ - uintptr_t dtdh_lock; /* deallocation lock */ -#ifdef _LP64 - uintptr_t dtdh_pad[6]; /* pad to avoid false sharing */ -#else - uintptr_t dtdh_pad[14]; /* pad to avoid false sharing */ -#endif -} dtrace_dynhash_t; - -typedef struct dtrace_dstate_percpu { - dtrace_dynvar_t *dtdsc_free; /* free list for this CPU */ - dtrace_dynvar_t *dtdsc_dirty; /* dirty list for this CPU */ - dtrace_dynvar_t *dtdsc_rinsing; /* rinsing list for this CPU */ - dtrace_dynvar_t *dtdsc_clean; /* clean list for this CPU */ - uint64_t dtdsc_drops; /* number of capacity drops */ - uint64_t dtdsc_dirty_drops; /* number of dirty drops */ - uint64_t dtdsc_rinsing_drops; /* number of rinsing drops */ -#ifdef _LP64 - uint64_t dtdsc_pad; /* pad to avoid false sharing */ -#else - uint64_t dtdsc_pad[2]; /* pad to avoid false sharing */ -#endif -} dtrace_dstate_percpu_t; - -typedef enum dtrace_dstate_state { - DTRACE_DSTATE_CLEAN = 0, - DTRACE_DSTATE_EMPTY, - DTRACE_DSTATE_DIRTY, - DTRACE_DSTATE_RINSING -} dtrace_dstate_state_t; - -typedef struct dtrace_dstate { - void *dtds_base; /* base of dynamic var. space */ - size_t dtds_size; /* size of dynamic var. space */ - size_t dtds_hashsize; /* number of buckets in hash */ - size_t dtds_chunksize; /* size of each chunk */ - dtrace_dynhash_t *dtds_hash; /* pointer to hash table */ - dtrace_dstate_state_t dtds_state; /* current dynamic var. state */ - dtrace_dstate_percpu_t *dtds_percpu; /* per-CPU dyn. var. state */ -} dtrace_dstate_t; - -/* - * DTrace Variable State - * - * The DTrace variable state tracks user-defined variables in its dtrace_vstate - * structure. Each DTrace consumer has exactly one dtrace_vstate structure, - * but some dtrace_vstate structures may exist without a corresponding DTrace - * consumer (see "DTrace Helpers", below). As described in <sys/dtrace.h>, - * user-defined variables can have one of three scopes: - * - * DIFV_SCOPE_GLOBAL => global scope - * DIFV_SCOPE_THREAD => thread-local scope (i.e. "self->" variables) - * DIFV_SCOPE_LOCAL => clause-local scope (i.e. "this->" variables) - * - * The variable state tracks variables by both their scope and their allocation - * type: - * - * - The dtvs_globals and dtvs_locals members each point to an array of - * dtrace_statvar structures. These structures contain both the variable - * metadata (dtrace_difv structures) and the underlying storage for all - * statically allocated variables, including statically allocated - * DIFV_SCOPE_GLOBAL variables and all DIFV_SCOPE_LOCAL variables. - * - * - The dtvs_tlocals member points to an array of dtrace_difv structures for - * DIFV_SCOPE_THREAD variables. As such, this array tracks _only_ the - * variable metadata for DIFV_SCOPE_THREAD variables; the underlying storage - * is allocated out of the dynamic variable space. - * - * - The dtvs_dynvars member is the dynamic variable state associated with the - * variable state. The dynamic variable state (described in "DTrace Dynamic - * Variables", above) tracks all DIFV_SCOPE_THREAD variables and all - * dynamically-allocated DIFV_SCOPE_GLOBAL variables. - */ -typedef struct dtrace_statvar { - uint64_t dtsv_data; /* data or pointer to it */ - size_t dtsv_size; /* size of pointed-to data */ - int dtsv_refcnt; /* reference count */ - dtrace_difv_t dtsv_var; /* variable metadata */ -} dtrace_statvar_t; - -typedef struct dtrace_vstate { - dtrace_state_t *dtvs_state; /* back pointer to state */ - dtrace_statvar_t **dtvs_globals; /* statically-allocated glbls */ - int dtvs_nglobals; /* number of globals */ - dtrace_difv_t *dtvs_tlocals; /* thread-local metadata */ - int dtvs_ntlocals; /* number of thread-locals */ - dtrace_statvar_t **dtvs_locals; /* clause-local data */ - int dtvs_nlocals; /* number of clause-locals */ - dtrace_dstate_t dtvs_dynvars; /* dynamic variable state */ -} dtrace_vstate_t; - -/* - * DTrace Machine State - * - * In the process of processing a fired probe, DTrace needs to track and/or - * cache some per-CPU state associated with that particular firing. This is - * state that is always discarded after the probe firing has completed, and - * much of it is not specific to any DTrace consumer, remaining valid across - * all ECBs. This state is tracked in the dtrace_mstate structure. - */ -#define DTRACE_MSTATE_ARGS 0x00000001 -#define DTRACE_MSTATE_PROBE 0x00000002 -#define DTRACE_MSTATE_EPID 0x00000004 -#define DTRACE_MSTATE_TIMESTAMP 0x00000008 -#define DTRACE_MSTATE_STACKDEPTH 0x00000010 -#define DTRACE_MSTATE_CALLER 0x00000020 -#define DTRACE_MSTATE_IPL 0x00000040 -#define DTRACE_MSTATE_FLTOFFS 0x00000080 -#define DTRACE_MSTATE_WALLTIMESTAMP 0x00000100 -#define DTRACE_MSTATE_USTACKDEPTH 0x00000200 -#define DTRACE_MSTATE_UCALLER 0x00000400 - -typedef struct dtrace_mstate { - uintptr_t dtms_scratch_base; /* base of scratch space */ - uintptr_t dtms_scratch_ptr; /* current scratch pointer */ - size_t dtms_scratch_size; /* scratch size */ - uint32_t dtms_present; /* variables that are present */ - uint64_t dtms_arg[5]; /* cached arguments */ - dtrace_epid_t dtms_epid; /* current EPID */ - uint64_t dtms_timestamp; /* cached timestamp */ - hrtime_t dtms_walltimestamp; /* cached wall timestamp */ - int dtms_stackdepth; /* cached stackdepth */ - int dtms_ustackdepth; /* cached ustackdepth */ - struct dtrace_probe *dtms_probe; /* current probe */ - uintptr_t dtms_caller; /* cached caller */ - uint64_t dtms_ucaller; /* cached user-level caller */ - int dtms_ipl; /* cached interrupt pri lev */ - int dtms_fltoffs; /* faulting DIFO offset */ - uintptr_t dtms_strtok; /* saved strtok() pointer */ - uint32_t dtms_access; /* memory access rights */ - dtrace_difo_t *dtms_difo; /* current dif object */ -} dtrace_mstate_t; - -#define DTRACE_COND_OWNER 0x1 -#define DTRACE_COND_USERMODE 0x2 -#define DTRACE_COND_ZONEOWNER 0x4 - -#define DTRACE_PROBEKEY_MAXDEPTH 8 /* max glob recursion depth */ - -/* - * Access flag used by dtrace_mstate.dtms_access. - */ -#define DTRACE_ACCESS_KERNEL 0x1 /* the priv to read kmem */ - - -/* - * DTrace Activity - * - * Each DTrace consumer is in one of several states, which (for purposes of - * avoiding yet-another overloading of the noun "state") we call the current - * _activity_. The activity transitions on dtrace_go() (from DTRACIOCGO), on - * dtrace_stop() (from DTRACIOCSTOP) and on the exit() action. Activities may - * only transition in one direction; the activity transition diagram is a - * directed acyclic graph. The activity transition diagram is as follows: - * - * - * +----------+ +--------+ +--------+ - * | INACTIVE |------------------>| WARMUP |------------------>| ACTIVE | - * +----------+ dtrace_go(), +--------+ dtrace_go(), +--------+ - * before BEGIN | after BEGIN | | | - * | | | | - * exit() action | | | | - * from BEGIN ECB | | | | - * | | | | - * v | | | - * +----------+ exit() action | | | - * +-----------------------------| DRAINING |<-------------------+ | | - * | +----------+ | | - * | | | | - * | dtrace_stop(), | | | - * | before END | | | - * | | | | - * | v | | - * | +---------+ +----------+ | | - * | | STOPPED |<----------------| COOLDOWN |<----------------------+ | - * | +---------+ dtrace_stop(), +----------+ dtrace_stop(), | - * | after END before END | - * | | - * | +--------+ | - * +----------------------------->| KILLED |<--------------------------+ - * deadman timeout or +--------+ deadman timeout or - * killed consumer killed consumer - * - * Note that once a DTrace consumer has stopped tracing, there is no way to - * restart it; if a DTrace consumer wishes to restart tracing, it must reopen - * the DTrace pseudodevice. - */ -typedef enum dtrace_activity { - DTRACE_ACTIVITY_INACTIVE = 0, /* not yet running */ - DTRACE_ACTIVITY_WARMUP, /* while starting */ - DTRACE_ACTIVITY_ACTIVE, /* running */ - DTRACE_ACTIVITY_DRAINING, /* before stopping */ - DTRACE_ACTIVITY_COOLDOWN, /* while stopping */ - DTRACE_ACTIVITY_STOPPED, /* after stopping */ - DTRACE_ACTIVITY_KILLED /* killed */ -} dtrace_activity_t; - -/* - * DTrace Helper Implementation - * - * A description of the helper architecture may be found in <sys/dtrace.h>. - * Each process contains a pointer to its helpers in its p_dtrace_helpers - * member. This is a pointer to a dtrace_helpers structure, which contains an - * array of pointers to dtrace_helper structures, helper variable state (shared - * among a process's helpers) and a generation count. (The generation count is - * used to provide an identifier when a helper is added so that it may be - * subsequently removed.) The dtrace_helper structure is self-explanatory, - * containing pointers to the objects needed to execute the helper. Note that - * helpers are _duplicated_ across fork(2), and destroyed on exec(2). No more - * than dtrace_helpers_max are allowed per-process. - */ -#define DTRACE_HELPER_ACTION_USTACK 0 -#define DTRACE_NHELPER_ACTIONS 1 - -typedef struct dtrace_helper_action { - int dtha_generation; /* helper action generation */ - int dtha_nactions; /* number of actions */ - dtrace_difo_t *dtha_predicate; /* helper action predicate */ - dtrace_difo_t **dtha_actions; /* array of actions */ - struct dtrace_helper_action *dtha_next; /* next helper action */ -} dtrace_helper_action_t; - -typedef struct dtrace_helper_provider { - int dthp_generation; /* helper provider generation */ - uint32_t dthp_ref; /* reference count */ - dof_helper_t dthp_prov; /* DOF w/ provider and probes */ -} dtrace_helper_provider_t; - -typedef struct dtrace_helpers { - dtrace_helper_action_t **dthps_actions; /* array of helper actions */ - dtrace_vstate_t dthps_vstate; /* helper action var. state */ - dtrace_helper_provider_t **dthps_provs; /* array of providers */ - uint_t dthps_nprovs; /* count of providers */ - uint_t dthps_maxprovs; /* provider array size */ - int dthps_generation; /* current generation */ - pid_t dthps_pid; /* pid of associated proc */ - int dthps_deferred; /* helper in deferred list */ - struct dtrace_helpers *dthps_next; /* next pointer */ - struct dtrace_helpers *dthps_prev; /* prev pointer */ -} dtrace_helpers_t; - -/* - * DTrace Helper Action Tracing - * - * Debugging helper actions can be arduous. To ease the development and - * debugging of helpers, DTrace contains a tracing-framework-within-a-tracing- - * framework: helper tracing. If dtrace_helptrace_enabled is non-zero (which - * it is by default on DEBUG kernels), all helper activity will be traced to a - * global, in-kernel ring buffer. Each entry includes a pointer to the specific - * helper, the location within the helper, and a trace of all local variables. - * The ring buffer may be displayed in a human-readable format with the - * ::dtrace_helptrace mdb(1) dcmd. - */ -#define DTRACE_HELPTRACE_NEXT (-1) -#define DTRACE_HELPTRACE_DONE (-2) -#define DTRACE_HELPTRACE_ERR (-3) - -typedef struct dtrace_helptrace { - dtrace_helper_action_t *dtht_helper; /* helper action */ - int dtht_where; /* where in helper action */ - int dtht_nlocals; /* number of locals */ - int dtht_fault; /* type of fault (if any) */ - int dtht_fltoffs; /* DIF offset */ - uint64_t dtht_illval; /* faulting value */ - uint64_t dtht_locals[1]; /* local variables */ -} dtrace_helptrace_t; - -/* - * DTrace Credentials - * - * In probe context, we have limited flexibility to examine the credentials - * of the DTrace consumer that created a particular enabling. We use - * the Least Privilege interfaces to cache the consumer's cred pointer and - * some facts about that credential in a dtrace_cred_t structure. These - * can limit the consumer's breadth of visibility and what actions the - * consumer may take. - */ -#define DTRACE_CRV_ALLPROC 0x01 -#define DTRACE_CRV_KERNEL 0x02 -#define DTRACE_CRV_ALLZONE 0x04 - -#define DTRACE_CRV_ALL (DTRACE_CRV_ALLPROC | DTRACE_CRV_KERNEL | \ - DTRACE_CRV_ALLZONE) - -#define DTRACE_CRA_PROC 0x0001 -#define DTRACE_CRA_PROC_CONTROL 0x0002 -#define DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER 0x0004 -#define DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE 0x0008 -#define DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG 0x0010 -#define DTRACE_CRA_KERNEL 0x0020 -#define DTRACE_CRA_KERNEL_DESTRUCTIVE 0x0040 - -#define DTRACE_CRA_ALL (DTRACE_CRA_PROC | \ - DTRACE_CRA_PROC_CONTROL | \ - DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER | \ - DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE | \ - DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG | \ - DTRACE_CRA_KERNEL | \ - DTRACE_CRA_KERNEL_DESTRUCTIVE) - -typedef struct dtrace_cred { - cred_t *dcr_cred; - uint8_t dcr_destructive; - uint8_t dcr_visible; - uint16_t dcr_action; -} dtrace_cred_t; - -/* - * DTrace Consumer State - * - * Each DTrace consumer has an associated dtrace_state structure that contains - * its in-kernel DTrace state -- including options, credentials, statistics and - * pointers to ECBs, buffers, speculations and formats. A dtrace_state - * structure is also allocated for anonymous enablings. When anonymous state - * is grabbed, the grabbing consumers dts_anon pointer is set to the grabbed - * dtrace_state structure. - */ -struct dtrace_state { - dev_t dts_dev; /* device */ - int dts_necbs; /* total number of ECBs */ - dtrace_ecb_t **dts_ecbs; /* array of ECBs */ - dtrace_epid_t dts_epid; /* next EPID to allocate */ - size_t dts_needed; /* greatest needed space */ - struct dtrace_state *dts_anon; /* anon. state, if grabbed */ - dtrace_activity_t dts_activity; /* current activity */ - dtrace_vstate_t dts_vstate; /* variable state */ - dtrace_buffer_t *dts_buffer; /* principal buffer */ - dtrace_buffer_t *dts_aggbuffer; /* aggregation buffer */ - dtrace_speculation_t *dts_speculations; /* speculation array */ - int dts_nspeculations; /* number of speculations */ - int dts_naggregations; /* number of aggregations */ - dtrace_aggregation_t **dts_aggregations; /* aggregation array */ - vmem_t *dts_aggid_arena; /* arena for aggregation IDs */ - uint64_t dts_errors; /* total number of errors */ - uint32_t dts_speculations_busy; /* number of spec. busy */ - uint32_t dts_speculations_unavail; /* number of spec unavail */ - uint32_t dts_stkstroverflows; /* stack string tab overflows */ - uint32_t dts_dblerrors; /* errors in ERROR probes */ - uint32_t dts_reserve; /* space reserved for END */ - hrtime_t dts_laststatus; /* time of last status */ - cyclic_id_t dts_cleaner; /* cleaning cyclic */ - cyclic_id_t dts_deadman; /* deadman cyclic */ - hrtime_t dts_alive; /* time last alive */ - char dts_speculates; /* boolean: has speculations */ - char dts_destructive; /* boolean: has dest. actions */ - int dts_nformats; /* number of formats */ - char **dts_formats; /* format string array */ - dtrace_optval_t dts_options[DTRACEOPT_MAX]; /* options */ - dtrace_cred_t dts_cred; /* credentials */ - size_t dts_nretained; /* number of retained enabs */ -}; - -struct dtrace_provider { - dtrace_pattr_t dtpv_attr; /* provider attributes */ - dtrace_ppriv_t dtpv_priv; /* provider privileges */ - dtrace_pops_t dtpv_pops; /* provider operations */ - char *dtpv_name; /* provider name */ - void *dtpv_arg; /* provider argument */ - uint_t dtpv_defunct; /* boolean: defunct provider */ - struct dtrace_provider *dtpv_next; /* next provider */ -}; - -struct dtrace_meta { - dtrace_mops_t dtm_mops; /* meta provider operations */ - char *dtm_name; /* meta provider name */ - void *dtm_arg; /* meta provider user arg */ - uint64_t dtm_count; /* no. of associated provs. */ -}; - -/* - * DTrace Enablings - * - * A dtrace_enabling structure is used to track a collection of ECB - * descriptions -- before they have been turned into actual ECBs. This is - * created as a result of DOF processing, and is generally used to generate - * ECBs immediately thereafter. However, enablings are also generally - * retained should the probes they describe be created at a later time; as - * each new module or provider registers with the framework, the retained - * enablings are reevaluated, with any new match resulting in new ECBs. To - * prevent probes from being matched more than once, the enabling tracks the - * last probe generation matched, and only matches probes from subsequent - * generations. - */ -typedef struct dtrace_enabling { - dtrace_ecbdesc_t **dten_desc; /* all ECB descriptions */ - int dten_ndesc; /* number of ECB descriptions */ - int dten_maxdesc; /* size of ECB array */ - dtrace_vstate_t *dten_vstate; /* associated variable state */ - dtrace_genid_t dten_probegen; /* matched probe generation */ - dtrace_ecbdesc_t *dten_current; /* current ECB description */ - int dten_error; /* current error value */ - int dten_primed; /* boolean: set if primed */ - struct dtrace_enabling *dten_prev; /* previous enabling */ - struct dtrace_enabling *dten_next; /* next enabling */ -} dtrace_enabling_t; - -/* - * DTrace Anonymous Enablings - * - * Anonymous enablings are DTrace enablings that are not associated with a - * controlling process, but rather derive their enabling from DOF stored as - * properties in the dtrace.conf file. If there is an anonymous enabling, a - * DTrace consumer state and enabling are created on attach. The state may be - * subsequently grabbed by the first consumer specifying the "grabanon" - * option. As long as an anonymous DTrace enabling exists, dtrace(7D) will - * refuse to unload. - */ -typedef struct dtrace_anon { - dtrace_state_t *dta_state; /* DTrace consumer state */ - dtrace_enabling_t *dta_enabling; /* pointer to enabling */ - processorid_t dta_beganon; /* which CPU BEGIN ran on */ -} dtrace_anon_t; - -/* - * DTrace Error Debugging - */ -#ifdef DEBUG -#define DTRACE_ERRDEBUG -#endif - -#ifdef DTRACE_ERRDEBUG - -typedef struct dtrace_errhash { - const char *dter_msg; /* error message */ - int dter_count; /* number of times seen */ -} dtrace_errhash_t; - -#define DTRACE_ERRHASHSZ 256 /* must be > number of err msgs */ - -#endif /* DTRACE_ERRDEBUG */ - -/* - * DTrace Toxic Ranges - * - * DTrace supports safe loads from probe context; if the address turns out to - * be invalid, a bit will be set by the kernel indicating that DTrace - * encountered a memory error, and DTrace will propagate the error to the user - * accordingly. However, there may exist some regions of memory in which an - * arbitrary load can change system state, and from which it is impossible to - * recover from such a load after it has been attempted. Examples of this may - * include memory in which programmable I/O registers are mapped (for which a - * read may have some implications for the device) or (in the specific case of - * UltraSPARC-I and -II) the virtual address hole. The platform is required - * to make DTrace aware of these toxic ranges; DTrace will then check that - * target addresses are not in a toxic range before attempting to issue a - * safe load. - */ -typedef struct dtrace_toxrange { - uintptr_t dtt_base; /* base of toxic range */ - uintptr_t dtt_limit; /* limit of toxic range */ -} dtrace_toxrange_t; - -extern uint64_t dtrace_getarg(int, int); -extern greg_t dtrace_getfp(void); -extern int dtrace_getipl(void); -extern uintptr_t dtrace_caller(int); -extern uint32_t dtrace_cas32(uint32_t *, uint32_t, uint32_t); -extern void *dtrace_casptr(void *, void *, void *); -extern void dtrace_copyin(uintptr_t, uintptr_t, size_t, volatile uint16_t *); -extern void dtrace_copyinstr(uintptr_t, uintptr_t, size_t, volatile uint16_t *); -extern void dtrace_copyout(uintptr_t, uintptr_t, size_t, volatile uint16_t *); -extern void dtrace_copyoutstr(uintptr_t, uintptr_t, size_t, - volatile uint16_t *); -extern void dtrace_getpcstack(pc_t *, int, int, uint32_t *); -extern ulong_t dtrace_getreg(struct regs *, uint_t); -extern int dtrace_getstackdepth(int); -extern void dtrace_getupcstack(uint64_t *, int); -extern void dtrace_getufpstack(uint64_t *, uint64_t *, int); -extern int dtrace_getustackdepth(void); -extern uintptr_t dtrace_fulword(void *); -extern uint8_t dtrace_fuword8(void *); -extern uint16_t dtrace_fuword16(void *); -extern uint32_t dtrace_fuword32(void *); -extern uint64_t dtrace_fuword64(void *); -extern void dtrace_probe_error(dtrace_state_t *, dtrace_epid_t, int, int, - int, uintptr_t); -extern int dtrace_assfail(const char *, const char *, int); -extern int dtrace_attached(void); -extern hrtime_t dtrace_gethrestime(); - -#ifdef __sparc -extern void dtrace_flush_windows(void); -extern void dtrace_flush_user_windows(void); -extern uint_t dtrace_getotherwin(void); -extern uint_t dtrace_getfprs(void); -#else -extern void dtrace_copy(uintptr_t, uintptr_t, size_t); -extern void dtrace_copystr(uintptr_t, uintptr_t, size_t, volatile uint16_t *); -#endif - -/* - * DTrace Assertions - * - * DTrace calls ASSERT from probe context. To assure that a failed ASSERT - * does not induce a markedly more catastrophic failure (e.g., one from which - * a dump cannot be gleaned), DTrace must define its own ASSERT to be one that - * may safely be called from probe context. This header file must thus be - * included by any DTrace component that calls ASSERT from probe context, and - * _only_ by those components. (The only exception to this is kernel - * debugging infrastructure at user-level that doesn't depend on calling - * ASSERT.) - */ -#undef ASSERT -#ifdef DEBUG -#define ASSERT(EX) ((void)((EX) || \ - dtrace_assfail(#EX, __FILE__, __LINE__))) -#else -#define ASSERT(X) ((void)0) -#endif - -#ifdef __cplusplus -} -#endif - -#endif /* _SYS_DTRACE_IMPL_H */ diff --git a/cddl/contrib/opensolaris/uts/common/sys/fasttrap.h b/cddl/contrib/opensolaris/uts/common/sys/fasttrap.h deleted file mode 100644 index 7f80314..0000000 --- a/cddl/contrib/opensolaris/uts/common/sys/fasttrap.h +++ /dev/null @@ -1,93 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2006 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _SYS_FASTTRAP_H -#define _SYS_FASTTRAP_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include <sys/fasttrap_isa.h> -#include <sys/dtrace.h> -#include <sys/types.h> - -#ifdef __cplusplus -extern "C" { -#endif - -#define FASTTRAPIOC (('m' << 24) | ('r' << 16) | ('f' << 8)) -#define FASTTRAPIOC_MAKEPROBE (FASTTRAPIOC | 1) -#define FASTTRAPIOC_GETINSTR (FASTTRAPIOC | 2) - -typedef enum fasttrap_probe_type { - DTFTP_NONE = 0, - DTFTP_ENTRY, - DTFTP_RETURN, - DTFTP_OFFSETS, - DTFTP_POST_OFFSETS, - DTFTP_IS_ENABLED -} fasttrap_probe_type_t; - -typedef struct fasttrap_probe_spec { - pid_t ftps_pid; - fasttrap_probe_type_t ftps_type; - - char ftps_func[DTRACE_FUNCNAMELEN]; - char ftps_mod[DTRACE_MODNAMELEN]; - - uint64_t ftps_pc; - uint64_t ftps_size; - uint64_t ftps_noffs; - uint64_t ftps_offs[1]; -} fasttrap_probe_spec_t; - -typedef struct fasttrap_instr_query { - uint64_t ftiq_pc; - pid_t ftiq_pid; - fasttrap_instr_t ftiq_instr; -} fasttrap_instr_query_t; - -/* - * To support the fasttrap provider from very early in a process's life, - * the run-time linker, ld.so.1, has a program header of type PT_SUNWDTRACE - * which points to a data object which must be PT_SUNWDTRACE_SIZE bytes. - * This structure mimics the fasttrap provider section of the ulwp_t structure. - * When the fasttrap provider is changed to require new or different - * instructions, the data object in ld.so.1 and the thread initializers in libc - * (libc_init() and _thrp_create()) need to be updated to include the new - * instructions, and PT_SUNWDTRACE needs to be changed to a new unique number - * (while the old value gets assigned something like PT_SUNWDTRACE_1). Since the - * linker must be backward compatible with old Solaris releases, it must have - * program headers for each of the PT_SUNWDTRACE versions. The kernel's - * elfexec() function only has to look for the latest version of the - * PT_SUNWDTRACE program header. - */ -#define PT_SUNWDTRACE_SIZE FASTTRAP_SUNWDTRACE_SIZE - -#ifdef __cplusplus -} -#endif - -#endif /* _SYS_FASTTRAP_H */ |