summaryrefslogtreecommitdiffstats
path: root/cddl/contrib/opensolaris/uts/common/sys
diff options
context:
space:
mode:
Diffstat (limited to 'cddl/contrib/opensolaris/uts/common/sys')
-rw-r--r--cddl/contrib/opensolaris/uts/common/sys/cmn_err.h128
-rw-r--r--cddl/contrib/opensolaris/uts/common/sys/cpupart.h162
-rw-r--r--cddl/contrib/opensolaris/uts/common/sys/cpuvar.h737
-rw-r--r--cddl/contrib/opensolaris/uts/common/sys/ctf.h358
-rw-r--r--cddl/contrib/opensolaris/uts/common/sys/ctf_api.h241
-rw-r--r--cddl/contrib/opensolaris/uts/common/sys/dtrace.h2242
-rw-r--r--cddl/contrib/opensolaris/uts/common/sys/dtrace_impl.h1298
-rw-r--r--cddl/contrib/opensolaris/uts/common/sys/fasttrap.h93
8 files changed, 0 insertions, 5259 deletions
diff --git a/cddl/contrib/opensolaris/uts/common/sys/cmn_err.h b/cddl/contrib/opensolaris/uts/common/sys/cmn_err.h
deleted file mode 100644
index e710d8e..0000000
--- a/cddl/contrib/opensolaris/uts/common/sys/cmn_err.h
+++ /dev/null
@@ -1,128 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License, Version 1.0 only
- * (the "License"). You may not use this file except in compliance
- * with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
-/* All Rights Reserved */
-
-
-/*
- * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _SYS_CMN_ERR_H
-#define _SYS_CMN_ERR_H
-
-#pragma ident "%Z%%M% %I% %E% SMI"
-
-#if defined(_KERNEL) && !defined(_ASM)
-#include <sys/va_list.h>
-#endif
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/* Common error handling severity levels */
-
-#define CE_CONT 0 /* continuation */
-#define CE_NOTE 1 /* notice */
-#define CE_WARN 2 /* warning */
-#define CE_PANIC 3 /* panic */
-#define CE_IGNORE 4 /* print nothing */
-
-#ifndef _ASM
-
-#ifdef _KERNEL
-
-/*PRINTFLIKE2*/
-extern void cmn_err(int, const char *, ...)
- __KPRINTFLIKE(2);
-#pragma rarely_called(cmn_err)
-
-extern void vzcmn_err(zoneid_t, int, const char *, __va_list)
- __KVPRINTFLIKE(3);
-#pragma rarely_called(vzcmn_err)
-
-extern void vcmn_err(int, const char *, __va_list)
- __KVPRINTFLIKE(2);
-#pragma rarely_called(vcmn_err)
-
-/*PRINTFLIKE3*/
-extern void zcmn_err(zoneid_t, int, const char *, ...)
- __KPRINTFLIKE(3);
-#pragma rarely_called(zcmn_err)
-
-/*PRINTFLIKE1*/
-extern void printf(const char *, ...)
- __KPRINTFLIKE(1);
-#pragma rarely_called(printf)
-
-extern void vzprintf(zoneid_t, const char *, __va_list)
- __KVPRINTFLIKE(2);
-#pragma rarely_called(vzprintf)
-
-/*PRINTFLIKE2*/
-extern void zprintf(zoneid_t, const char *, ...)
- __KPRINTFLIKE(2);
-#pragma rarely_called(zprintf)
-
-extern void vprintf(const char *, __va_list)
- __KVPRINTFLIKE(1);
-#pragma rarely_called(vprintf)
-
-/*PRINTFLIKE1*/
-extern void uprintf(const char *, ...)
- __KPRINTFLIKE(1);
-#pragma rarely_called(uprintf)
-
-extern void vuprintf(const char *, __va_list)
- __KVPRINTFLIKE(1);
-#pragma rarely_called(vuprintf)
-
-/*PRINTFLIKE3*/
-extern size_t snprintf(char *, size_t, const char *, ...)
- __KPRINTFLIKE(3);
-extern size_t vsnprintf(char *, size_t, const char *, __va_list)
- __KVPRINTFLIKE(3);
-/*PRINTFLIKE2*/
-extern char *sprintf(char *, const char *, ...)
- __KPRINTFLIKE(2);
-extern char *vsprintf(char *, const char *, __va_list)
- __KVPRINTFLIKE(2);
-
-/*PRINTFLIKE1*/
-extern void panic(const char *, ...)
- __KPRINTFLIKE(1) __NORETURN;
-#pragma rarely_called(panic)
-
-extern void vpanic(const char *, __va_list)
- __KVPRINTFLIKE(1) __NORETURN;
-#pragma rarely_called(vpanic)
-
-#endif /* _KERNEL */
-#endif /* !_ASM */
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* _SYS_CMN_ERR_H */
diff --git a/cddl/contrib/opensolaris/uts/common/sys/cpupart.h b/cddl/contrib/opensolaris/uts/common/sys/cpupart.h
deleted file mode 100644
index b9e0da4..0000000
--- a/cddl/contrib/opensolaris/uts/common/sys/cpupart.h
+++ /dev/null
@@ -1,162 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-/*
- * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _SYS_CPUPART_H
-#define _SYS_CPUPART_H
-
-#pragma ident "%Z%%M% %I% %E% SMI"
-
-#include <sys/types.h>
-#include <sys/processor.h>
-#include <sys/cpuvar.h>
-#include <sys/disp.h>
-#include <sys/pset.h>
-#include <sys/lgrp.h>
-#include <sys/lgrp_user.h>
-#include <sys/pg.h>
-#include <sys/bitset.h>
-#include <sys/time.h>
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#ifdef _KERNEL
-
-typedef int cpupartid_t;
-
-/*
- * Special partition id.
- */
-#define CP_DEFAULT 0
-
-/*
- * Flags for cpupart_list()
- */
-#define CP_ALL 0 /* return all cpu partitions */
-#define CP_NONEMPTY 1 /* return only non-empty ones */
-
-#if defined(_MACHDEP)
-struct mach_cpupart {
- cpuset_t mc_haltset;
-};
-
-extern struct mach_cpupart cp_default_mach;
-#else
-struct mach_cpupart;
-#endif
-
-typedef struct cpupart {
- disp_t cp_kp_queue; /* partition-wide kpreempt queue */
- cpupartid_t cp_id; /* partition ID */
- int cp_ncpus; /* number of online processors */
- struct cpupart *cp_next; /* next partition in list */
- struct cpupart *cp_prev; /* previous partition in list */
- struct cpu *cp_cpulist; /* processor list */
- struct kstat *cp_kstat; /* per-partition statistics */
-
- /*
- * cp_nrunnable and cp_nrunning are used to calculate load average.
- */
- uint_t cp_nrunnable; /* current # of runnable threads */
- uint_t cp_nrunning; /* current # of running threads */
-
- /*
- * cp_updates, cp_nrunnable_cum, cp_nwaiting_cum, and cp_hp_avenrun
- * are used to generate kstat information on an as-needed basis.
- */
- uint64_t cp_updates; /* number of statistics updates */
- uint64_t cp_nrunnable_cum; /* cum. # of runnable threads */
- uint64_t cp_nwaiting_cum; /* cum. # of waiting threads */
-
- struct loadavg_s cp_loadavg; /* cpupart loadavg */
-
- klgrpset_t cp_lgrpset; /* set of lgroups on which this */
- /* partition has cpus */
- lpl_t *cp_lgrploads; /* table of load averages for this */
- /* partition, indexed by lgrp ID */
- int cp_nlgrploads; /* size of cp_lgrploads table */
- uint64_t cp_hp_avenrun[3]; /* high-precision load average */
- uint_t cp_attr; /* bitmask of attributes */
- lgrp_gen_t cp_gen; /* generation number */
- lgrp_id_t cp_lgrp_hint; /* last home lgroup chosen */
- bitset_t cp_cmt_pgs; /* CMT PGs represented */
-
- struct mach_cpupart *cp_mach; /* mach-specific */
-} cpupart_t;
-
-typedef struct cpupart_kstat {
- kstat_named_t cpk_updates; /* number of updates */
- kstat_named_t cpk_runnable; /* cum # of runnable threads */
- kstat_named_t cpk_waiting; /* cum # waiting for I/O */
- kstat_named_t cpk_ncpus; /* current # of CPUs */
- kstat_named_t cpk_avenrun_1min; /* 1-minute load average */
- kstat_named_t cpk_avenrun_5min; /* 5-minute load average */
- kstat_named_t cpk_avenrun_15min; /* 15-minute load average */
-} cpupart_kstat_t;
-
-/*
- * Macro to obtain the maximum run priority for the global queue associated
- * with given cpu partition.
- */
-#define CP_MAXRUNPRI(cp) ((cp)->cp_kp_queue.disp_maxrunpri)
-
-/*
- * This macro is used to determine if the given thread must surrender
- * CPU to higher priority runnable threads on one of its dispatch queues.
- * This should really be defined in <sys/disp.h> but it is not because
- * including <sys/cpupart.h> there would cause recursive includes.
- */
-#define DISP_MUST_SURRENDER(t) \
- ((DISP_MAXRUNPRI(t) > DISP_PRIO(t)) || \
- (CP_MAXRUNPRI(t->t_cpupart) > DISP_PRIO(t)))
-
-extern cpupart_t cp_default;
-extern cpupart_t *cp_list_head;
-extern uint_t cp_numparts;
-extern uint_t cp_numparts_nonempty;
-
-extern void cpupart_initialize_default();
-extern cpupart_t *cpupart_find(psetid_t);
-extern int cpupart_create(psetid_t *);
-extern int cpupart_destroy(psetid_t);
-extern psetid_t cpupart_query_cpu(cpu_t *);
-extern int cpupart_attach_cpu(psetid_t, cpu_t *, int);
-extern int cpupart_get_cpus(psetid_t *, processorid_t *, uint_t *);
-extern int cpupart_bind_thread(kthread_id_t, psetid_t, int, void *,
- void *);
-extern void cpupart_kpqalloc(pri_t);
-extern int cpupart_get_loadavg(psetid_t, int *, int);
-extern uint_t cpupart_list(psetid_t *, uint_t, int);
-extern int cpupart_setattr(psetid_t, uint_t);
-extern int cpupart_getattr(psetid_t, uint_t *);
-
-#endif /* _KERNEL */
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* _SYS_CPUPART_H */
diff --git a/cddl/contrib/opensolaris/uts/common/sys/cpuvar.h b/cddl/contrib/opensolaris/uts/common/sys/cpuvar.h
deleted file mode 100644
index c7b76b3..0000000
--- a/cddl/contrib/opensolaris/uts/common/sys/cpuvar.h
+++ /dev/null
@@ -1,737 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-
-/*
- * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _SYS_CPUVAR_H
-#define _SYS_CPUVAR_H
-
-#pragma ident "%Z%%M% %I% %E% SMI"
-
-#include <sys/thread.h>
-#include <sys/sysinfo.h> /* has cpu_stat_t definition */
-#include <sys/disp.h>
-#include <sys/processor.h>
-
-#if (defined(_KERNEL) || defined(_KMEMUSER)) && defined(_MACHDEP)
-#include <sys/machcpuvar.h>
-#endif
-
-#include <sys/types.h>
-#include <sys/file.h>
-#include <sys/bitmap.h>
-#include <sys/rwlock.h>
-#include <sys/msacct.h>
-#if defined(__GNUC__) && defined(_ASM_INLINES) && defined(_KERNEL) && \
- (defined(__i386) || defined(__amd64))
-#include <asm/cpuvar.h>
-#endif
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-struct squeue_set_s;
-
-#define CPU_CACHE_COHERENCE_SIZE 64
-#define S_LOADAVG_SZ 11
-#define S_MOVAVG_SZ 10
-
-struct loadavg_s {
- int lg_cur; /* current loadavg entry */
- unsigned int lg_len; /* number entries recorded */
- hrtime_t lg_total; /* used to temporarily hold load totals */
- hrtime_t lg_loads[S_LOADAVG_SZ]; /* table of recorded entries */
-};
-
-/*
- * For fast event tracing.
- */
-struct ftrace_record;
-typedef struct ftrace_data {
- int ftd_state; /* ftrace flags */
- kmutex_t ftd_unused; /* ftrace buffer lock, unused */
- struct ftrace_record *ftd_cur; /* current record */
- struct ftrace_record *ftd_first; /* first record */
- struct ftrace_record *ftd_last; /* last record */
-} ftrace_data_t;
-
-struct cyc_cpu;
-struct nvlist;
-
-/*
- * Per-CPU data.
- *
- * Be careful adding new members: if they are not the same in all modules (e.g.
- * change size depending on a #define), CTF uniquification can fail to work
- * properly. Furthermore, this is transitive in that it applies recursively to
- * all types pointed to by cpu_t.
- */
-typedef struct cpu {
- processorid_t cpu_id; /* CPU number */
- processorid_t cpu_seqid; /* sequential CPU id (0..ncpus-1) */
- volatile cpu_flag_t cpu_flags; /* flags indicating CPU state */
- struct cpu *cpu_self; /* pointer to itself */
- kthread_t *cpu_thread; /* current thread */
- kthread_t *cpu_idle_thread; /* idle thread for this CPU */
- kthread_t *cpu_pause_thread; /* pause thread for this CPU */
- klwp_id_t cpu_lwp; /* current lwp (if any) */
- klwp_id_t cpu_fpowner; /* currently loaded fpu owner */
- struct cpupart *cpu_part; /* partition with this CPU */
- struct lgrp_ld *cpu_lpl; /* pointer to this cpu's load */
- int cpu_cache_offset; /* see kmem.c for details */
-
- /*
- * Links to other CPUs. It is safe to walk these lists if
- * one of the following is true:
- * - cpu_lock held
- * - preemption disabled via kpreempt_disable
- * - PIL >= DISP_LEVEL
- * - acting thread is an interrupt thread
- * - all other CPUs are paused
- */
- struct cpu *cpu_next; /* next existing CPU */
- struct cpu *cpu_prev; /* prev existing CPU */
- struct cpu *cpu_next_onln; /* next online (enabled) CPU */
- struct cpu *cpu_prev_onln; /* prev online (enabled) CPU */
- struct cpu *cpu_next_part; /* next CPU in partition */
- struct cpu *cpu_prev_part; /* prev CPU in partition */
- struct cpu *cpu_next_lgrp; /* next CPU in latency group */
- struct cpu *cpu_prev_lgrp; /* prev CPU in latency group */
- struct cpu *cpu_next_lpl; /* next CPU in lgrp partition */
- struct cpu *cpu_prev_lpl;
-
- struct cpu_pg *cpu_pg; /* cpu's processor groups */
-
- void *cpu_reserved[4]; /* reserved for future use */
-
- /*
- * Scheduling variables.
- */
- disp_t *cpu_disp; /* dispatch queue data */
- /*
- * Note that cpu_disp is set before the CPU is added to the system
- * and is never modified. Hence, no additional locking is needed
- * beyond what's necessary to access the cpu_t structure.
- */
- char cpu_runrun; /* scheduling flag - set to preempt */
- char cpu_kprunrun; /* force kernel preemption */
- pri_t cpu_chosen_level; /* priority at which cpu */
- /* was chosen for scheduling */
- kthread_t *cpu_dispthread; /* thread selected for dispatch */
- disp_lock_t cpu_thread_lock; /* dispatcher lock on current thread */
- uint8_t cpu_disp_flags; /* flags used by dispatcher */
- /*
- * The following field is updated when ever the cpu_dispthread
- * changes. Also in places, where the current thread(cpu_dispthread)
- * priority changes. This is used in disp_lowpri_cpu()
- */
- pri_t cpu_dispatch_pri; /* priority of cpu_dispthread */
- clock_t cpu_last_swtch; /* last time switched to new thread */
-
- /*
- * Interrupt data.
- */
- caddr_t cpu_intr_stack; /* interrupt stack */
- kthread_t *cpu_intr_thread; /* interrupt thread list */
- uint_t cpu_intr_actv; /* interrupt levels active (bitmask) */
- int cpu_base_spl; /* priority for highest rupt active */
-
- /*
- * Statistics.
- */
- cpu_stats_t cpu_stats; /* per-CPU statistics */
- struct kstat *cpu_info_kstat; /* kstat for cpu info */
-
- uintptr_t cpu_profile_pc; /* kernel PC in profile interrupt */
- uintptr_t cpu_profile_upc; /* user PC in profile interrupt */
- uintptr_t cpu_profile_pil; /* PIL when profile interrupted */
-
- ftrace_data_t cpu_ftrace; /* per cpu ftrace data */
-
- clock_t cpu_deadman_lbolt; /* used by deadman() */
- uint_t cpu_deadman_countdown; /* used by deadman() */
-
- kmutex_t cpu_cpc_ctxlock; /* protects context for idle thread */
- kcpc_ctx_t *cpu_cpc_ctx; /* performance counter context */
-
- /*
- * Configuration information for the processor_info system call.
- */
- processor_info_t cpu_type_info; /* config info */
- time_t cpu_state_begin; /* when CPU entered current state */
- char cpu_cpr_flags; /* CPR related info */
- struct cyc_cpu *cpu_cyclic; /* per cpu cyclic subsystem data */
- struct squeue_set_s *cpu_squeue_set; /* per cpu squeue set */
- struct nvlist *cpu_props; /* pool-related properties */
-
- krwlock_t cpu_ft_lock; /* DTrace: fasttrap lock */
- uintptr_t cpu_dtrace_caller; /* DTrace: caller, if any */
- hrtime_t cpu_dtrace_chillmark; /* DTrace: chill mark time */
- hrtime_t cpu_dtrace_chilled; /* DTrace: total chill time */
- volatile uint16_t cpu_mstate; /* cpu microstate */
- volatile uint16_t cpu_mstate_gen; /* generation counter */
- volatile hrtime_t cpu_mstate_start; /* cpu microstate start time */
- volatile hrtime_t cpu_acct[NCMSTATES]; /* cpu microstate data */
- hrtime_t cpu_intracct[NCMSTATES]; /* interrupt mstate data */
- hrtime_t cpu_waitrq; /* cpu run-queue wait time */
- struct loadavg_s cpu_loadavg; /* loadavg info for this cpu */
-
- char *cpu_idstr; /* for printing and debugging */
- char *cpu_brandstr; /* for printing */
-
- /*
- * Sum of all device interrupt weights that are currently directed at
- * this cpu. Cleared at start of interrupt redistribution.
- */
- int32_t cpu_intr_weight;
- void *cpu_vm_data;
-
- struct cpu_physid *cpu_physid; /* physical associations */
-
- uint64_t cpu_curr_clock; /* current clock freq in Hz */
- char *cpu_supp_freqs; /* supported freqs in Hz */
-
- /*
- * Interrupt load factor used by dispatcher & softcall
- */
- hrtime_t cpu_intrlast; /* total interrupt time (nsec) */
- int cpu_intrload; /* interrupt load factor (0-99%) */
-
- /*
- * New members must be added /before/ this member, as the CTF tools
- * rely on this being the last field before cpu_m, so they can
- * correctly calculate the offset when synthetically adding the cpu_m
- * member in objects that do not have it. This fixup is required for
- * uniquification to work correctly.
- */
- uintptr_t cpu_m_pad;
-
-#if (defined(_KERNEL) || defined(_KMEMUSER)) && defined(_MACHDEP)
- struct machcpu cpu_m; /* per architecture info */
-#endif
-} cpu_t;
-
-/*
- * The cpu_core structure consists of per-CPU state available in any context.
- * On some architectures, this may mean that the page(s) containing the
- * NCPU-sized array of cpu_core structures must be locked in the TLB -- it
- * is up to the platform to assure that this is performed properly. Note that
- * the structure is sized to avoid false sharing.
- */
-#define CPUC_SIZE (sizeof (uint16_t) + sizeof (uintptr_t) + \
- sizeof (kmutex_t))
-#define CPUC_PADSIZE CPU_CACHE_COHERENCE_SIZE - CPUC_SIZE
-
-typedef struct cpu_core {
- uint16_t cpuc_dtrace_flags; /* DTrace flags */
- uint8_t cpuc_pad[CPUC_PADSIZE]; /* padding */
- uintptr_t cpuc_dtrace_illval; /* DTrace illegal value */
- kmutex_t cpuc_pid_lock; /* DTrace pid provider lock */
-} cpu_core_t;
-
-#ifdef _KERNEL
-extern cpu_core_t cpu_core[];
-#endif /* _KERNEL */
-
-/*
- * CPU_ON_INTR() macro. Returns non-zero if currently on interrupt stack.
- * Note that this isn't a test for a high PIL. For example, cpu_intr_actv
- * does not get updated when we go through sys_trap from TL>0 at high PIL.
- * getpil() should be used instead to check for PIL levels.
- */
-#define CPU_ON_INTR(cpup) ((cpup)->cpu_intr_actv >> (LOCK_LEVEL + 1))
-
-#if defined(_KERNEL) || defined(_KMEMUSER)
-
-#define INTR_STACK_SIZE MAX(DEFAULTSTKSZ, PAGESIZE)
-
-/* MEMBERS PROTECTED BY "atomicity": cpu_flags */
-
-/*
- * Flags in the CPU structure.
- *
- * These are protected by cpu_lock (except during creation).
- *
- * Offlined-CPUs have three stages of being offline:
- *
- * CPU_ENABLE indicates that the CPU is participating in I/O interrupts
- * that can be directed at a number of different CPUs. If CPU_ENABLE
- * is off, the CPU will not be given interrupts that can be sent elsewhere,
- * but will still get interrupts from devices associated with that CPU only,
- * and from other CPUs.
- *
- * CPU_OFFLINE indicates that the dispatcher should not allow any threads
- * other than interrupt threads to run on that CPU. A CPU will not have
- * CPU_OFFLINE set if there are any bound threads (besides interrupts).
- *
- * CPU_QUIESCED is set if p_offline was able to completely turn idle the
- * CPU and it will not have to run interrupt threads. In this case it'll
- * stay in the idle loop until CPU_QUIESCED is turned off.
- *
- * CPU_FROZEN is used only by CPR to mark CPUs that have been successfully
- * suspended (in the suspend path), or have yet to be resumed (in the resume
- * case).
- *
- * On some platforms CPUs can be individually powered off.
- * The following flags are set for powered off CPUs: CPU_QUIESCED,
- * CPU_OFFLINE, and CPU_POWEROFF. The following flags are cleared:
- * CPU_RUNNING, CPU_READY, CPU_EXISTS, and CPU_ENABLE.
- */
-#define CPU_RUNNING 0x001 /* CPU running */
-#define CPU_READY 0x002 /* CPU ready for cross-calls */
-#define CPU_QUIESCED 0x004 /* CPU will stay in idle */
-#define CPU_EXISTS 0x008 /* CPU is configured */
-#define CPU_ENABLE 0x010 /* CPU enabled for interrupts */
-#define CPU_OFFLINE 0x020 /* CPU offline via p_online */
-#define CPU_POWEROFF 0x040 /* CPU is powered off */
-#define CPU_FROZEN 0x080 /* CPU is frozen via CPR suspend */
-#define CPU_SPARE 0x100 /* CPU offline available for use */
-#define CPU_FAULTED 0x200 /* CPU offline diagnosed faulty */
-
-#define FMT_CPU_FLAGS \
- "\20\12fault\11spare\10frozen" \
- "\7poweroff\6offline\5enable\4exist\3quiesced\2ready\1run"
-
-#define CPU_ACTIVE(cpu) (((cpu)->cpu_flags & CPU_OFFLINE) == 0)
-
-/*
- * Flags for cpu_offline(), cpu_faulted(), and cpu_spare().
- */
-#define CPU_FORCED 0x0001 /* Force CPU offline */
-
-/*
- * DTrace flags.
- */
-#define CPU_DTRACE_NOFAULT 0x0001 /* Don't fault */
-#define CPU_DTRACE_DROP 0x0002 /* Drop this ECB */
-#define CPU_DTRACE_BADADDR 0x0004 /* DTrace fault: bad address */
-#define CPU_DTRACE_BADALIGN 0x0008 /* DTrace fault: bad alignment */
-#define CPU_DTRACE_DIVZERO 0x0010 /* DTrace fault: divide by zero */
-#define CPU_DTRACE_ILLOP 0x0020 /* DTrace fault: illegal operation */
-#define CPU_DTRACE_NOSCRATCH 0x0040 /* DTrace fault: out of scratch */
-#define CPU_DTRACE_KPRIV 0x0080 /* DTrace fault: bad kernel access */
-#define CPU_DTRACE_UPRIV 0x0100 /* DTrace fault: bad user access */
-#define CPU_DTRACE_TUPOFLOW 0x0200 /* DTrace fault: tuple stack overflow */
-#if defined(__sparc)
-#define CPU_DTRACE_FAKERESTORE 0x0400 /* pid provider hint to getreg */
-#endif
-#define CPU_DTRACE_ENTRY 0x0800 /* pid provider hint to ustack() */
-#define CPU_DTRACE_BADSTACK 0x1000 /* DTrace fault: bad stack */
-
-#define CPU_DTRACE_FAULT (CPU_DTRACE_BADADDR | CPU_DTRACE_BADALIGN | \
- CPU_DTRACE_DIVZERO | CPU_DTRACE_ILLOP | \
- CPU_DTRACE_NOSCRATCH | CPU_DTRACE_KPRIV | \
- CPU_DTRACE_UPRIV | CPU_DTRACE_TUPOFLOW | \
- CPU_DTRACE_BADSTACK)
-#define CPU_DTRACE_ERROR (CPU_DTRACE_FAULT | CPU_DTRACE_DROP)
-
-/*
- * Dispatcher flags
- * These flags must be changed only by the current CPU.
- */
-#define CPU_DISP_DONTSTEAL 0x01 /* CPU undergoing context swtch */
-#define CPU_DISP_HALTED 0x02 /* CPU halted waiting for interrupt */
-
-
-#endif /* _KERNEL || _KMEMUSER */
-
-#if (defined(_KERNEL) || defined(_KMEMUSER)) && defined(_MACHDEP)
-
-/*
- * Macros for manipulating sets of CPUs as a bitmap. Note that this
- * bitmap may vary in size depending on the maximum CPU id a specific
- * platform supports. This may be different than the number of CPUs
- * the platform supports, since CPU ids can be sparse. We define two
- * sets of macros; one for platforms where the maximum CPU id is less
- * than the number of bits in a single word (32 in a 32-bit kernel,
- * 64 in a 64-bit kernel), and one for platforms that require bitmaps
- * of more than one word.
- */
-
-#define CPUSET_WORDS BT_BITOUL(NCPU)
-#define CPUSET_NOTINSET ((uint_t)-1)
-
-#if CPUSET_WORDS > 1
-
-typedef struct cpuset {
- ulong_t cpub[CPUSET_WORDS];
-} cpuset_t;
-
-/*
- * Private functions for manipulating cpusets that do not fit in a
- * single word. These should not be used directly; instead the
- * CPUSET_* macros should be used so the code will be portable
- * across different definitions of NCPU.
- */
-extern void cpuset_all(cpuset_t *);
-extern void cpuset_all_but(cpuset_t *, uint_t);
-extern int cpuset_isnull(cpuset_t *);
-extern int cpuset_cmp(cpuset_t *, cpuset_t *);
-extern void cpuset_only(cpuset_t *, uint_t);
-extern uint_t cpuset_find(cpuset_t *);
-extern void cpuset_bounds(cpuset_t *, uint_t *, uint_t *);
-
-#define CPUSET_ALL(set) cpuset_all(&(set))
-#define CPUSET_ALL_BUT(set, cpu) cpuset_all_but(&(set), cpu)
-#define CPUSET_ONLY(set, cpu) cpuset_only(&(set), cpu)
-#define CPU_IN_SET(set, cpu) BT_TEST((set).cpub, cpu)
-#define CPUSET_ADD(set, cpu) BT_SET((set).cpub, cpu)
-#define CPUSET_DEL(set, cpu) BT_CLEAR((set).cpub, cpu)
-#define CPUSET_ISNULL(set) cpuset_isnull(&(set))
-#define CPUSET_ISEQUAL(set1, set2) cpuset_cmp(&(set1), &(set2))
-
-/*
- * Find one CPU in the cpuset.
- * Sets "cpu" to the id of the found CPU, or CPUSET_NOTINSET if no cpu
- * could be found. (i.e. empty set)
- */
-#define CPUSET_FIND(set, cpu) { \
- cpu = cpuset_find(&(set)); \
-}
-
-/*
- * Determine the smallest and largest CPU id in the set. Returns
- * CPUSET_NOTINSET in smallest and largest when set is empty.
- */
-#define CPUSET_BOUNDS(set, smallest, largest) { \
- cpuset_bounds(&(set), &(smallest), &(largest)); \
-}
-
-/*
- * Atomic cpuset operations
- * These are safe to use for concurrent cpuset manipulations.
- * "xdel" and "xadd" are exclusive operations, that set "result" to "0"
- * if the add or del was successful, or "-1" if not successful.
- * (e.g. attempting to add a cpu to a cpuset that's already there, or
- * deleting a cpu that's not in the cpuset)
- */
-
-#define CPUSET_ATOMIC_DEL(set, cpu) BT_ATOMIC_CLEAR((set).cpub, (cpu))
-#define CPUSET_ATOMIC_ADD(set, cpu) BT_ATOMIC_SET((set).cpub, (cpu))
-
-#define CPUSET_ATOMIC_XADD(set, cpu, result) \
- BT_ATOMIC_SET_EXCL((set).cpub, cpu, result)
-
-#define CPUSET_ATOMIC_XDEL(set, cpu, result) \
- BT_ATOMIC_CLEAR_EXCL((set).cpub, cpu, result)
-
-
-#define CPUSET_OR(set1, set2) { \
- int _i; \
- for (_i = 0; _i < CPUSET_WORDS; _i++) \
- (set1).cpub[_i] |= (set2).cpub[_i]; \
-}
-
-#define CPUSET_XOR(set1, set2) { \
- int _i; \
- for (_i = 0; _i < CPUSET_WORDS; _i++) \
- (set1).cpub[_i] ^= (set2).cpub[_i]; \
-}
-
-#define CPUSET_AND(set1, set2) { \
- int _i; \
- for (_i = 0; _i < CPUSET_WORDS; _i++) \
- (set1).cpub[_i] &= (set2).cpub[_i]; \
-}
-
-#define CPUSET_ZERO(set) { \
- int _i; \
- for (_i = 0; _i < CPUSET_WORDS; _i++) \
- (set).cpub[_i] = 0; \
-}
-
-#elif CPUSET_WORDS == 1
-
-typedef ulong_t cpuset_t; /* a set of CPUs */
-
-#define CPUSET(cpu) (1UL << (cpu))
-
-#define CPUSET_ALL(set) ((void)((set) = ~0UL))
-#define CPUSET_ALL_BUT(set, cpu) ((void)((set) = ~CPUSET(cpu)))
-#define CPUSET_ONLY(set, cpu) ((void)((set) = CPUSET(cpu)))
-#define CPU_IN_SET(set, cpu) ((set) & CPUSET(cpu))
-#define CPUSET_ADD(set, cpu) ((void)((set) |= CPUSET(cpu)))
-#define CPUSET_DEL(set, cpu) ((void)((set) &= ~CPUSET(cpu)))
-#define CPUSET_ISNULL(set) ((set) == 0)
-#define CPUSET_ISEQUAL(set1, set2) ((set1) == (set2))
-#define CPUSET_OR(set1, set2) ((void)((set1) |= (set2)))
-#define CPUSET_XOR(set1, set2) ((void)((set1) ^= (set2)))
-#define CPUSET_AND(set1, set2) ((void)((set1) &= (set2)))
-#define CPUSET_ZERO(set) ((void)((set) = 0))
-
-#define CPUSET_FIND(set, cpu) { \
- cpu = (uint_t)(lowbit(set) - 1); \
-}
-
-#define CPUSET_BOUNDS(set, smallest, largest) { \
- smallest = (uint_t)(lowbit(set) - 1); \
- largest = (uint_t)(highbit(set) - 1); \
-}
-
-#define CPUSET_ATOMIC_DEL(set, cpu) atomic_and_long(&(set), ~CPUSET(cpu))
-#define CPUSET_ATOMIC_ADD(set, cpu) atomic_or_long(&(set), CPUSET(cpu))
-
-#define CPUSET_ATOMIC_XADD(set, cpu, result) \
- { result = atomic_set_long_excl(&(set), (cpu)); }
-
-#define CPUSET_ATOMIC_XDEL(set, cpu, result) \
- { result = atomic_clear_long_excl(&(set), (cpu)); }
-
-#else /* CPUSET_WORDS <= 0 */
-
-#error NCPU is undefined or invalid
-
-#endif /* CPUSET_WORDS */
-
-extern cpuset_t cpu_seqid_inuse;
-
-#endif /* (_KERNEL || _KMEMUSER) && _MACHDEP */
-
-#define CPU_CPR_OFFLINE 0x0
-#define CPU_CPR_ONLINE 0x1
-#define CPU_CPR_IS_OFFLINE(cpu) (((cpu)->cpu_cpr_flags & CPU_CPR_ONLINE) == 0)
-#define CPU_CPR_IS_ONLINE(cpu) ((cpu)->cpu_cpr_flags & CPU_CPR_ONLINE)
-#define CPU_SET_CPR_FLAGS(cpu, flag) ((cpu)->cpu_cpr_flags |= flag)
-
-#if defined(_KERNEL) || defined(_KMEMUSER)
-
-extern struct cpu *cpu[]; /* indexed by CPU number */
-extern cpu_t *cpu_list; /* list of CPUs */
-extern cpu_t *cpu_active; /* list of active CPUs */
-extern int ncpus; /* number of CPUs present */
-extern int ncpus_online; /* number of CPUs not quiesced */
-extern int max_ncpus; /* max present before ncpus is known */
-extern int boot_max_ncpus; /* like max_ncpus but for real */
-extern processorid_t max_cpuid; /* maximum CPU number */
-extern struct cpu *cpu_inmotion; /* offline or partition move target */
-extern cpu_t *clock_cpu_list;
-
-#if defined(__i386) || defined(__amd64)
-extern struct cpu *curcpup(void);
-#define CPU (curcpup()) /* Pointer to current CPU */
-#else
-#define CPU (curthread->t_cpu) /* Pointer to current CPU */
-#endif
-
-/*
- * CPU_CURRENT indicates to thread_affinity_set to use CPU->cpu_id
- * as the target and to grab cpu_lock instead of requiring the caller
- * to grab it.
- */
-#define CPU_CURRENT -3
-
-/*
- * Per-CPU statistics
- *
- * cpu_stats_t contains numerous system and VM-related statistics, in the form
- * of gauges or monotonically-increasing event occurrence counts.
- */
-
-#define CPU_STATS_ENTER_K() kpreempt_disable()
-#define CPU_STATS_EXIT_K() kpreempt_enable()
-
-#define CPU_STATS_ADD_K(class, stat, amount) \
- { kpreempt_disable(); /* keep from switching CPUs */\
- CPU_STATS_ADDQ(CPU, class, stat, amount); \
- kpreempt_enable(); \
- }
-
-#define CPU_STATS_ADDQ(cp, class, stat, amount) { \
- extern void __dtrace_probe___cpu_##class##info_##stat(uint_t, \
- uint64_t *, cpu_t *); \
- uint64_t *stataddr = &((cp)->cpu_stats.class.stat); \
- __dtrace_probe___cpu_##class##info_##stat((amount), \
- stataddr, cp); \
- *(stataddr) += (amount); \
-}
-
-#define CPU_STATS(cp, stat) \
- ((cp)->cpu_stats.stat)
-
-#endif /* _KERNEL || _KMEMUSER */
-
-/*
- * CPU support routines.
- */
-#if defined(_KERNEL) && defined(__STDC__) /* not for genassym.c */
-
-struct zone;
-
-void cpu_list_init(cpu_t *);
-void cpu_add_unit(cpu_t *);
-void cpu_del_unit(int cpuid);
-void cpu_add_active(cpu_t *);
-void cpu_kstat_init(cpu_t *);
-void cpu_visibility_add(cpu_t *, struct zone *);
-void cpu_visibility_remove(cpu_t *, struct zone *);
-void cpu_visibility_configure(cpu_t *, struct zone *);
-void cpu_visibility_unconfigure(cpu_t *, struct zone *);
-void cpu_visibility_online(cpu_t *, struct zone *);
-void cpu_visibility_offline(cpu_t *, struct zone *);
-void cpu_create_intrstat(cpu_t *);
-void cpu_delete_intrstat(cpu_t *);
-int cpu_kstat_intrstat_update(kstat_t *, int);
-void cpu_intr_swtch_enter(kthread_t *);
-void cpu_intr_swtch_exit(kthread_t *);
-
-void mbox_lock_init(void); /* initialize cross-call locks */
-void mbox_init(int cpun); /* initialize cross-calls */
-void poke_cpu(int cpun); /* interrupt another CPU (to preempt) */
-
-/*
- * values for safe_list. Pause state that CPUs are in.
- */
-#define PAUSE_IDLE 0 /* normal state */
-#define PAUSE_READY 1 /* paused thread ready to spl */
-#define PAUSE_WAIT 2 /* paused thread is spl-ed high */
-#define PAUSE_DIE 3 /* tell pause thread to leave */
-#define PAUSE_DEAD 4 /* pause thread has left */
-
-void mach_cpu_pause(volatile char *);
-
-void pause_cpus(cpu_t *off_cp);
-void start_cpus(void);
-int cpus_paused(void);
-
-void cpu_pause_init(void);
-cpu_t *cpu_get(processorid_t cpun); /* get the CPU struct associated */
-
-int cpu_online(cpu_t *cp); /* take cpu online */
-int cpu_offline(cpu_t *cp, int flags); /* take cpu offline */
-int cpu_spare(cpu_t *cp, int flags); /* take cpu to spare */
-int cpu_faulted(cpu_t *cp, int flags); /* take cpu to faulted */
-int cpu_poweron(cpu_t *cp); /* take powered-off cpu to offline */
-int cpu_poweroff(cpu_t *cp); /* take offline cpu to powered-off */
-
-cpu_t *cpu_intr_next(cpu_t *cp); /* get next online CPU taking intrs */
-int cpu_intr_count(cpu_t *cp); /* count # of CPUs handling intrs */
-int cpu_intr_on(cpu_t *cp); /* CPU taking I/O interrupts? */
-void cpu_intr_enable(cpu_t *cp); /* enable I/O interrupts */
-int cpu_intr_disable(cpu_t *cp); /* disable I/O interrupts */
-void cpu_intr_alloc(cpu_t *cp, int n); /* allocate interrupt threads */
-
-/*
- * Routines for checking CPU states.
- */
-int cpu_is_online(cpu_t *); /* check if CPU is online */
-int cpu_is_nointr(cpu_t *); /* check if CPU can service intrs */
-int cpu_is_active(cpu_t *); /* check if CPU can run threads */
-int cpu_is_offline(cpu_t *); /* check if CPU is offline */
-int cpu_is_poweredoff(cpu_t *); /* check if CPU is powered off */
-
-int cpu_flagged_online(cpu_flag_t); /* flags show CPU is online */
-int cpu_flagged_nointr(cpu_flag_t); /* flags show CPU not handling intrs */
-int cpu_flagged_active(cpu_flag_t); /* flags show CPU scheduling threads */
-int cpu_flagged_offline(cpu_flag_t); /* flags show CPU is offline */
-int cpu_flagged_poweredoff(cpu_flag_t); /* flags show CPU is powered off */
-
-/*
- * The processor_info(2) state of a CPU is a simplified representation suitable
- * for use by an application program. Kernel subsystems should utilize the
- * internal per-CPU state as given by the cpu_flags member of the cpu structure,
- * as this information may include platform- or architecture-specific state
- * critical to a subsystem's disposition of a particular CPU.
- */
-void cpu_set_state(cpu_t *); /* record/timestamp current state */
-int cpu_get_state(cpu_t *); /* get current cpu state */
-const char *cpu_get_state_str(cpu_t *); /* get current cpu state as string */
-
-
-void cpu_set_supp_freqs(cpu_t *, const char *); /* set the CPU supported */
- /* frequencies */
-
-int cpu_configure(int);
-int cpu_unconfigure(int);
-void cpu_destroy_bound_threads(cpu_t *cp);
-
-extern int cpu_bind_thread(kthread_t *tp, processorid_t bind,
- processorid_t *obind, int *error);
-extern int cpu_unbind(processorid_t cpu_id);
-extern void thread_affinity_set(kthread_t *t, int cpu_id);
-extern void thread_affinity_clear(kthread_t *t);
-extern void affinity_set(int cpu_id);
-extern void affinity_clear(void);
-extern void init_cpu_mstate(struct cpu *, int);
-extern void term_cpu_mstate(struct cpu *);
-extern void new_cpu_mstate(int, hrtime_t);
-extern void get_cpu_mstate(struct cpu *, hrtime_t *);
-extern void thread_nomigrate(void);
-extern void thread_allowmigrate(void);
-extern void weakbinding_stop(void);
-extern void weakbinding_start(void);
-
-/*
- * The following routines affect the CPUs participation in interrupt processing,
- * if that is applicable on the architecture. This only affects interrupts
- * which aren't directed at the processor (not cross calls).
- *
- * cpu_disable_intr returns non-zero if interrupts were previously enabled.
- */
-int cpu_disable_intr(struct cpu *cp); /* stop issuing interrupts to cpu */
-void cpu_enable_intr(struct cpu *cp); /* start issuing interrupts to cpu */
-
-/*
- * The mutex cpu_lock protects cpu_flags for all CPUs, as well as the ncpus
- * and ncpus_online counts.
- */
-extern kmutex_t cpu_lock; /* lock protecting CPU data */
-
-typedef enum {
- CPU_INIT,
- CPU_CONFIG,
- CPU_UNCONFIG,
- CPU_ON,
- CPU_OFF,
- CPU_CPUPART_IN,
- CPU_CPUPART_OUT
-} cpu_setup_t;
-
-typedef int cpu_setup_func_t(cpu_setup_t, int, void *);
-
-/*
- * Routines used to register interest in cpu's being added to or removed
- * from the system.
- */
-extern void register_cpu_setup_func(cpu_setup_func_t *, void *);
-extern void unregister_cpu_setup_func(cpu_setup_func_t *, void *);
-extern void cpu_state_change_notify(int, cpu_setup_t);
-
-/*
- * Create various strings that describe the given CPU for the
- * processor_info system call and configuration-related kstats.
- */
-#define CPU_IDSTRLEN 100
-
-extern void init_cpu_info(struct cpu *);
-extern void cpu_vm_data_init(struct cpu *);
-extern void cpu_vm_data_destroy(struct cpu *);
-
-#endif /* _KERNEL */
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* _SYS_CPUVAR_H */
diff --git a/cddl/contrib/opensolaris/uts/common/sys/ctf.h b/cddl/contrib/opensolaris/uts/common/sys/ctf.h
deleted file mode 100644
index 065e985..0000000
--- a/cddl/contrib/opensolaris/uts/common/sys/ctf.h
+++ /dev/null
@@ -1,358 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License, Version 1.0 only
- * (the "License"). You may not use this file except in compliance
- * with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-/*
- * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _CTF_H
-#define _CTF_H
-
-#pragma ident "%Z%%M% %I% %E% SMI"
-
-#include <sys/types.h>
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*
- * CTF - Compact ANSI-C Type Format
- *
- * This file format can be used to compactly represent the information needed
- * by a debugger to interpret the ANSI-C types used by a given program.
- * Traditionally, this kind of information is generated by the compiler when
- * invoked with the -g flag and is stored in "stabs" strings or in the more
- * modern DWARF format. CTF provides a representation of only the information
- * that is relevant to debugging a complex, optimized C program such as the
- * operating system kernel in a form that is significantly more compact than
- * the equivalent stabs or DWARF representation. The format is data-model
- * independent, so consumers do not need different code depending on whether
- * they are 32-bit or 64-bit programs. CTF assumes that a standard ELF symbol
- * table is available for use in the debugger, and uses the structure and data
- * of the symbol table to avoid storing redundant information. The CTF data
- * may be compressed on disk or in memory, indicated by a bit in the header.
- * CTF may be interpreted in a raw disk file, or it may be stored in an ELF
- * section, typically named .SUNW_ctf. Data structures are aligned so that
- * a raw CTF file or CTF ELF section may be manipulated using mmap(2).
- *
- * The CTF file or section itself has the following structure:
- *
- * +--------+--------+---------+----------+-------+--------+
- * | file | type | data | function | data | string |
- * | header | labels | objects | info | types | table |
- * +--------+--------+---------+----------+-------+--------+
- *
- * The file header stores a magic number and version information, encoding
- * flags, and the byte offset of each of the sections relative to the end of the
- * header itself. If the CTF data has been uniquified against another set of
- * CTF data, a reference to that data also appears in the the header. This
- * reference is the name of the label corresponding to the types uniquified
- * against.
- *
- * Following the header is a list of labels, used to group the types included in
- * the data types section. Each label is accompanied by a type ID i. A given
- * label refers to the group of types whose IDs are in the range [0, i].
- *
- * Data object and function records are stored in the same order as they appear
- * in the corresponding symbol table, except that symbols marked SHN_UNDEF are
- * not stored and symbols that have no type data are padded out with zeroes.
- * For each data object, the type ID (a small integer) is recorded. For each
- * function, the type ID of the return type and argument types is recorded.
- *
- * The data types section is a list of variable size records that represent each
- * type, in order by their ID. The types themselves form a directed graph,
- * where each node may contain one or more outgoing edges to other type nodes,
- * denoted by their ID.
- *
- * Strings are recorded as a string table ID (0 or 1) and a byte offset into the
- * string table. String table 0 is the internal CTF string table. String table
- * 1 is the external string table, which is the string table associated with the
- * ELF symbol table for this object. CTF does not record any strings that are
- * already in the symbol table, and the CTF string table does not contain any
- * duplicated strings.
- *
- * If the CTF data has been merged with another parent CTF object, some outgoing
- * edges may refer to type nodes that exist in another CTF object. The debugger
- * and libctf library are responsible for connecting the appropriate objects
- * together so that the full set of types can be explored and manipulated.
- */
-
-#define CTF_MAX_TYPE 0xffff /* max type identifier value */
-#define CTF_MAX_NAME 0x7fffffff /* max offset into a string table */
-#define CTF_MAX_VLEN 0x3ff /* max struct, union, enum members or args */
-#define CTF_MAX_INTOFF 0xff /* max offset of intrinsic value in bits */
-#define CTF_MAX_INTBITS 0xffff /* max size of an intrinsic in bits */
-
-/* See ctf_type_t */
-#define CTF_MAX_SIZE 0xfffe /* max size of a type in bytes */
-#define CTF_LSIZE_SENT 0xffff /* sentinel for ctt_size */
-#define CTF_MAX_LSIZE UINT64_MAX
-
-typedef struct ctf_preamble {
- ushort_t ctp_magic; /* magic number (CTF_MAGIC) */
- uchar_t ctp_version; /* data format version number (CTF_VERSION) */
- uchar_t ctp_flags; /* flags (see below) */
-} ctf_preamble_t;
-
-typedef struct ctf_header {
- ctf_preamble_t cth_preamble;
- uint_t cth_parlabel; /* ref to name of parent lbl uniq'd against */
- uint_t cth_parname; /* ref to basename of parent */
- uint_t cth_lbloff; /* offset of label section */
- uint_t cth_objtoff; /* offset of object section */
- uint_t cth_funcoff; /* offset of function section */
- uint_t cth_typeoff; /* offset of type section */
- uint_t cth_stroff; /* offset of string section */
- uint_t cth_strlen; /* length of string section in bytes */
-} ctf_header_t;
-
-#define cth_magic cth_preamble.ctp_magic
-#define cth_version cth_preamble.ctp_version
-#define cth_flags cth_preamble.ctp_flags
-
-#ifdef CTF_OLD_VERSIONS
-
-typedef struct ctf_header_v1 {
- ctf_preamble_t cth_preamble;
- uint_t cth_objtoff;
- uint_t cth_funcoff;
- uint_t cth_typeoff;
- uint_t cth_stroff;
- uint_t cth_strlen;
-} ctf_header_v1_t;
-
-#endif /* CTF_OLD_VERSIONS */
-
-#define CTF_MAGIC 0xcff1 /* magic number identifying header */
-
-/* data format version number */
-#define CTF_VERSION_1 1
-#define CTF_VERSION_2 2
-#define CTF_VERSION CTF_VERSION_2 /* current version */
-
-#define CTF_F_COMPRESS 0x1 /* data buffer is compressed */
-
-typedef struct ctf_lblent {
- uint_t ctl_label; /* ref to name of label */
- uint_t ctl_typeidx; /* last type associated with this label */
-} ctf_lblent_t;
-
-typedef struct ctf_stype {
- uint_t ctt_name; /* reference to name in string table */
- ushort_t ctt_info; /* encoded kind, variant length (see below) */
- union {
- ushort_t _size; /* size of entire type in bytes */
- ushort_t _type; /* reference to another type */
- } _u;
-} ctf_stype_t;
-
-/*
- * type sizes, measured in bytes, come in two flavors. 99% of them fit within
- * (USHRT_MAX - 1), and thus can be stored in the ctt_size member of a
- * ctf_stype_t. The maximum value for these sizes is CTF_MAX_SIZE. The sizes
- * larger than CTF_MAX_SIZE must be stored in the ctt_lsize member of a
- * ctf_type_t. Use of this member is indicated by the presence of
- * CTF_LSIZE_SENT in ctt_size.
- */
-typedef struct ctf_type {
- uint_t ctt_name; /* reference to name in string table */
- ushort_t ctt_info; /* encoded kind, variant length (see below) */
- union {
- ushort_t _size; /* always CTF_LSIZE_SENT */
- ushort_t _type; /* do not use */
- } _u;
- uint_t ctt_lsizehi; /* high 32 bits of type size in bytes */
- uint_t ctt_lsizelo; /* low 32 bits of type size in bytes */
-} ctf_type_t;
-
-#define ctt_size _u._size /* for fundamental types that have a size */
-#define ctt_type _u._type /* for types that reference another type */
-
-/*
- * The following macros compose and decompose values for ctt_info and
- * ctt_name, as well as other structures that contain name references.
- *
- * ------------------------
- * ctt_info: | kind | isroot | vlen |
- * ------------------------
- * 15 11 10 9 0
- *
- * kind = CTF_INFO_KIND(c.ctt_info); <-- CTF_K_* value (see below)
- * vlen = CTF_INFO_VLEN(c.ctt_info); <-- length of variable data list
- *
- * stid = CTF_NAME_STID(c.ctt_name); <-- string table id number (0 or 1)
- * offset = CTF_NAME_OFFSET(c.ctt_name); <-- string table byte offset
- *
- * c.ctt_info = CTF_TYPE_INFO(kind, vlen);
- * c.ctt_name = CTF_TYPE_NAME(stid, offset);
- */
-
-#define CTF_INFO_KIND(info) (((info) & 0xf800) >> 11)
-#define CTF_INFO_ISROOT(info) (((info) & 0x0400) >> 10)
-#define CTF_INFO_VLEN(info) (((info) & CTF_MAX_VLEN))
-
-#define CTF_NAME_STID(name) ((name) >> 31)
-#define CTF_NAME_OFFSET(name) ((name) & 0x7fffffff)
-
-#define CTF_TYPE_INFO(kind, isroot, vlen) \
- (((kind) << 11) | (((isroot) ? 1 : 0) << 10) | ((vlen) & CTF_MAX_VLEN))
-
-#define CTF_TYPE_NAME(stid, offset) \
- (((stid) << 31) | ((offset) & 0x7fffffff))
-
-#define CTF_TYPE_ISPARENT(id) ((id) < 0x8000)
-#define CTF_TYPE_ISCHILD(id) ((id) > 0x7fff)
-
-#define CTF_TYPE_TO_INDEX(id) ((id) & 0x7fff)
-#define CTF_INDEX_TO_TYPE(id, child) ((child) ? ((id) | 0x8000) : (id))
-#define CTF_PARENT_SHIFT 15
-
-#define CTF_STRTAB_0 0 /* symbolic define for string table id 0 */
-#define CTF_STRTAB_1 1 /* symbolic define for string table id 1 */
-
-#define CTF_TYPE_LSIZE(cttp) \
- (((uint64_t)(cttp)->ctt_lsizehi) << 32 | (cttp)->ctt_lsizelo)
-#define CTF_SIZE_TO_LSIZE_HI(size) ((uint32_t)((uint64_t)(size) >> 32))
-#define CTF_SIZE_TO_LSIZE_LO(size) ((uint32_t)(size))
-
-#ifdef CTF_OLD_VERSIONS
-
-#define CTF_INFO_KIND_V1(info) (((info) & 0xf000) >> 12)
-#define CTF_INFO_ISROOT_V1(info) (((info) & 0x0800) >> 11)
-#define CTF_INFO_VLEN_V1(info) (((info) & 0x07ff))
-
-#define CTF_TYPE_INFO_V1(kind, isroot, vlen) \
- (((kind) << 12) | (((isroot) ? 1 : 0) << 11) | ((vlen) & 0x07ff))
-
-#endif /* CTF_OLD_VERSIONS */
-
-/*
- * Values for CTF_TYPE_KIND(). If the kind has an associated data list,
- * CTF_INFO_VLEN() will extract the number of elements in the list, and
- * the type of each element is shown in the comments below.
- */
-#define CTF_K_UNKNOWN 0 /* unknown type (used for padding) */
-#define CTF_K_INTEGER 1 /* variant data is CTF_INT_DATA() (see below) */
-#define CTF_K_FLOAT 2 /* variant data is CTF_FP_DATA() (see below) */
-#define CTF_K_POINTER 3 /* ctt_type is referenced type */
-#define CTF_K_ARRAY 4 /* variant data is single ctf_array_t */
-#define CTF_K_FUNCTION 5 /* ctt_type is return type, variant data is */
- /* list of argument types (ushort_t's) */
-#define CTF_K_STRUCT 6 /* variant data is list of ctf_member_t's */
-#define CTF_K_UNION 7 /* variant data is list of ctf_member_t's */
-#define CTF_K_ENUM 8 /* variant data is list of ctf_enum_t's */
-#define CTF_K_FORWARD 9 /* no additional data; ctt_name is tag */
-#define CTF_K_TYPEDEF 10 /* ctt_type is referenced type */
-#define CTF_K_VOLATILE 11 /* ctt_type is base type */
-#define CTF_K_CONST 12 /* ctt_type is base type */
-#define CTF_K_RESTRICT 13 /* ctt_type is base type */
-
-#define CTF_K_MAX 31 /* Maximum possible CTF_K_* value */
-
-/*
- * Values for ctt_type when kind is CTF_K_INTEGER. The flags, offset in bits,
- * and size in bits are encoded as a single word using the following macros.
- */
-#define CTF_INT_ENCODING(data) (((data) & 0xff000000) >> 24)
-#define CTF_INT_OFFSET(data) (((data) & 0x00ff0000) >> 16)
-#define CTF_INT_BITS(data) (((data) & 0x0000ffff))
-
-#define CTF_INT_DATA(encoding, offset, bits) \
- (((encoding) << 24) | ((offset) << 16) | (bits))
-
-#define CTF_INT_SIGNED 0x01 /* integer is signed (otherwise unsigned) */
-#define CTF_INT_CHAR 0x02 /* character display format */
-#define CTF_INT_BOOL 0x04 /* boolean display format */
-#define CTF_INT_VARARGS 0x08 /* varargs display format */
-
-/*
- * Values for ctt_type when kind is CTF_K_FLOAT. The encoding, offset in bits,
- * and size in bits are encoded as a single word using the following macros.
- */
-#define CTF_FP_ENCODING(data) (((data) & 0xff000000) >> 24)
-#define CTF_FP_OFFSET(data) (((data) & 0x00ff0000) >> 16)
-#define CTF_FP_BITS(data) (((data) & 0x0000ffff))
-
-#define CTF_FP_DATA(encoding, offset, bits) \
- (((encoding) << 24) | ((offset) << 16) | (bits))
-
-#define CTF_FP_SINGLE 1 /* IEEE 32-bit float encoding */
-#define CTF_FP_DOUBLE 2 /* IEEE 64-bit float encoding */
-#define CTF_FP_CPLX 3 /* Complex encoding */
-#define CTF_FP_DCPLX 4 /* Double complex encoding */
-#define CTF_FP_LDCPLX 5 /* Long double complex encoding */
-#define CTF_FP_LDOUBLE 6 /* Long double encoding */
-#define CTF_FP_INTRVL 7 /* Interval (2x32-bit) encoding */
-#define CTF_FP_DINTRVL 8 /* Double interval (2x64-bit) encoding */
-#define CTF_FP_LDINTRVL 9 /* Long double interval (2x128-bit) encoding */
-#define CTF_FP_IMAGRY 10 /* Imaginary (32-bit) encoding */
-#define CTF_FP_DIMAGRY 11 /* Long imaginary (64-bit) encoding */
-#define CTF_FP_LDIMAGRY 12 /* Long double imaginary (128-bit) encoding */
-
-#define CTF_FP_MAX 12 /* Maximum possible CTF_FP_* value */
-
-typedef struct ctf_array {
- ushort_t cta_contents; /* reference to type of array contents */
- ushort_t cta_index; /* reference to type of array index */
- uint_t cta_nelems; /* number of elements */
-} ctf_array_t;
-
-/*
- * Most structure members have bit offsets that can be expressed using a
- * short. Some don't. ctf_member_t is used for structs which cannot
- * contain any of these large offsets, whereas ctf_lmember_t is used in the
- * latter case. If ctt_size for a given struct is >= 8192 bytes, all members
- * will be stored as type ctf_lmember_t.
- */
-
-#define CTF_LSTRUCT_THRESH 8192
-
-typedef struct ctf_member {
- uint_t ctm_name; /* reference to name in string table */
- ushort_t ctm_type; /* reference to type of member */
- ushort_t ctm_offset; /* offset of this member in bits */
-} ctf_member_t;
-
-typedef struct ctf_lmember {
- uint_t ctlm_name; /* reference to name in string table */
- ushort_t ctlm_type; /* reference to type of member */
- ushort_t ctlm_pad; /* padding */
- uint_t ctlm_offsethi; /* high 32 bits of member offset in bits */
- uint_t ctlm_offsetlo; /* low 32 bits of member offset in bits */
-} ctf_lmember_t;
-
-#define CTF_LMEM_OFFSET(ctlmp) \
- (((uint64_t)(ctlmp)->ctlm_offsethi) << 32 | (ctlmp)->ctlm_offsetlo)
-#define CTF_OFFSET_TO_LMEMHI(offset) ((uint32_t)((uint64_t)(offset) >> 32))
-#define CTF_OFFSET_TO_LMEMLO(offset) ((uint32_t)(offset))
-
-typedef struct ctf_enum {
- uint_t cte_name; /* reference to name in string table */
- int cte_value; /* value associated with this name */
-} ctf_enum_t;
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* _CTF_H */
diff --git a/cddl/contrib/opensolaris/uts/common/sys/ctf_api.h b/cddl/contrib/opensolaris/uts/common/sys/ctf_api.h
deleted file mode 100644
index 17b0b72..0000000
--- a/cddl/contrib/opensolaris/uts/common/sys/ctf_api.h
+++ /dev/null
@@ -1,241 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License, Version 1.0 only
- * (the "License"). You may not use this file except in compliance
- * with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-/*
- * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
- * Use is subject to license terms.
- */
-
-/*
- * This header file defines the interfaces available from the CTF debugger
- * library, libctf, and an equivalent kernel module. This API can be used by
- * a debugger to operate on data in the Compact ANSI-C Type Format (CTF).
- * This is NOT a public interface, although it may eventually become one in
- * the fullness of time after we gain more experience with the interfaces.
- *
- * In the meantime, be aware that any program linked with this API in this
- * release of Solaris is almost guaranteed to break in the next release.
- *
- * In short, do not user this header file or the CTF routines for any purpose.
- */
-
-#ifndef _CTF_API_H
-#define _CTF_API_H
-
-#pragma ident "%Z%%M% %I% %E% SMI"
-
-#include <sys/types.h>
-#include <sys/param.h>
-#include <sys/elf.h>
-#include <sys/ctf.h>
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*
- * Clients can open one or more CTF containers and obtain a pointer to an
- * opaque ctf_file_t. Types are identified by an opaque ctf_id_t token.
- * These opaque definitions allow libctf to evolve without breaking clients.
- */
-typedef struct ctf_file ctf_file_t;
-typedef long ctf_id_t;
-
-/*
- * If the debugger needs to provide the CTF library with a set of raw buffers
- * for use as the CTF data, symbol table, and string table, it can do so by
- * filling in ctf_sect_t structures and passing them to ctf_bufopen():
- */
-typedef struct ctf_sect {
- const char *cts_name; /* section name (if any) */
- ulong_t cts_type; /* section type (ELF SHT_... value) */
- ulong_t cts_flags; /* section flags (ELF SHF_... value) */
- const void *cts_data; /* pointer to section data */
- size_t cts_size; /* size of data in bytes */
- size_t cts_entsize; /* size of each section entry (symtab only) */
- off64_t cts_offset; /* file offset of this section (if any) */
-} ctf_sect_t;
-
-/*
- * Encoding information for integers, floating-point values, and certain other
- * intrinsics can be obtained by calling ctf_type_encoding(), below. The flags
- * field will contain values appropriate for the type defined in <sys/ctf.h>.
- */
-typedef struct ctf_encoding {
- uint_t cte_format; /* data format (CTF_INT_* or CTF_FP_* flags) */
- uint_t cte_offset; /* offset of value in bits */
- uint_t cte_bits; /* size of storage in bits */
-} ctf_encoding_t;
-
-typedef struct ctf_membinfo {
- ctf_id_t ctm_type; /* type of struct or union member */
- ulong_t ctm_offset; /* offset of member in bits */
-} ctf_membinfo_t;
-
-typedef struct ctf_arinfo {
- ctf_id_t ctr_contents; /* type of array contents */
- ctf_id_t ctr_index; /* type of array index */
- uint_t ctr_nelems; /* number of elements */
-} ctf_arinfo_t;
-
-typedef struct ctf_funcinfo {
- ctf_id_t ctc_return; /* function return type */
- uint_t ctc_argc; /* number of typed arguments to function */
- uint_t ctc_flags; /* function attributes (see below) */
-} ctf_funcinfo_t;
-
-typedef struct ctf_lblinfo {
- ctf_id_t ctb_typeidx; /* last type associated with the label */
-} ctf_lblinfo_t;
-
-#define CTF_FUNC_VARARG 0x1 /* function arguments end with varargs */
-
-/*
- * Functions that return integer status or a ctf_id_t use the following value
- * to indicate failure. ctf_errno() can be used to obtain an error code.
- */
-#define CTF_ERR (-1L)
-
-/*
- * The CTF data model is inferred to be the caller's data model or the data
- * model of the given object, unless ctf_setmodel() is explicitly called.
- */
-#define CTF_MODEL_ILP32 1 /* object data model is ILP32 */
-#define CTF_MODEL_LP64 2 /* object data model is LP64 */
-#ifdef _LP64
-#define CTF_MODEL_NATIVE CTF_MODEL_LP64
-#else
-#define CTF_MODEL_NATIVE CTF_MODEL_ILP32
-#endif
-
-/*
- * Dynamic CTF containers can be created using ctf_create(). The ctf_add_*
- * routines can be used to add new definitions to the dynamic container.
- * New types are labeled as root or non-root to determine whether they are
- * visible at the top-level program scope when subsequently doing a lookup.
- */
-#define CTF_ADD_NONROOT 0 /* type only visible in nested scope */
-#define CTF_ADD_ROOT 1 /* type visible at top-level scope */
-
-/*
- * These typedefs are used to define the signature for callback functions
- * that can be used with the iteration and visit functions below:
- */
-typedef int ctf_visit_f(const char *, ctf_id_t, ulong_t, int, void *);
-typedef int ctf_member_f(const char *, ctf_id_t, ulong_t, void *);
-typedef int ctf_enum_f(const char *, int, void *);
-typedef int ctf_type_f(ctf_id_t, void *);
-typedef int ctf_label_f(const char *, const ctf_lblinfo_t *, void *);
-
-extern ctf_file_t *ctf_bufopen(const ctf_sect_t *, const ctf_sect_t *,
- const ctf_sect_t *, int *);
-extern ctf_file_t *ctf_fdopen(int, int *);
-extern ctf_file_t *ctf_open(const char *, int *);
-extern ctf_file_t *ctf_create(int *);
-extern void ctf_close(ctf_file_t *);
-
-extern ctf_file_t *ctf_parent_file(ctf_file_t *);
-extern const char *ctf_parent_name(ctf_file_t *);
-
-extern int ctf_import(ctf_file_t *, ctf_file_t *);
-extern int ctf_setmodel(ctf_file_t *, int);
-extern int ctf_getmodel(ctf_file_t *);
-
-extern void ctf_setspecific(ctf_file_t *, void *);
-extern void *ctf_getspecific(ctf_file_t *);
-
-extern int ctf_errno(ctf_file_t *);
-extern const char *ctf_errmsg(int);
-extern int ctf_version(int);
-
-extern int ctf_func_info(ctf_file_t *, ulong_t, ctf_funcinfo_t *);
-extern int ctf_func_args(ctf_file_t *, ulong_t, uint_t, ctf_id_t *);
-
-extern ctf_id_t ctf_lookup_by_name(ctf_file_t *, const char *);
-extern ctf_id_t ctf_lookup_by_symbol(ctf_file_t *, ulong_t);
-
-extern ctf_id_t ctf_type_resolve(ctf_file_t *, ctf_id_t);
-extern ssize_t ctf_type_lname(ctf_file_t *, ctf_id_t, char *, size_t);
-extern char *ctf_type_name(ctf_file_t *, ctf_id_t, char *, size_t);
-extern ssize_t ctf_type_size(ctf_file_t *, ctf_id_t);
-extern ssize_t ctf_type_align(ctf_file_t *, ctf_id_t);
-extern int ctf_type_kind(ctf_file_t *, ctf_id_t);
-extern ctf_id_t ctf_type_reference(ctf_file_t *, ctf_id_t);
-extern ctf_id_t ctf_type_pointer(ctf_file_t *, ctf_id_t);
-extern int ctf_type_encoding(ctf_file_t *, ctf_id_t, ctf_encoding_t *);
-extern int ctf_type_visit(ctf_file_t *, ctf_id_t, ctf_visit_f *, void *);
-extern int ctf_type_cmp(ctf_file_t *, ctf_id_t, ctf_file_t *, ctf_id_t);
-extern int ctf_type_compat(ctf_file_t *, ctf_id_t, ctf_file_t *, ctf_id_t);
-
-extern int ctf_member_info(ctf_file_t *, ctf_id_t, const char *,
- ctf_membinfo_t *);
-extern int ctf_array_info(ctf_file_t *, ctf_id_t, ctf_arinfo_t *);
-
-extern const char *ctf_enum_name(ctf_file_t *, ctf_id_t, int);
-extern int ctf_enum_value(ctf_file_t *, ctf_id_t, const char *, int *);
-
-extern const char *ctf_label_topmost(ctf_file_t *);
-extern int ctf_label_info(ctf_file_t *, const char *, ctf_lblinfo_t *);
-
-extern int ctf_member_iter(ctf_file_t *, ctf_id_t, ctf_member_f *, void *);
-extern int ctf_enum_iter(ctf_file_t *, ctf_id_t, ctf_enum_f *, void *);
-extern int ctf_type_iter(ctf_file_t *, ctf_type_f *, void *);
-extern int ctf_label_iter(ctf_file_t *, ctf_label_f *, void *);
-
-extern ctf_id_t ctf_add_array(ctf_file_t *, uint_t, const ctf_arinfo_t *);
-extern ctf_id_t ctf_add_const(ctf_file_t *, uint_t, ctf_id_t);
-extern ctf_id_t ctf_add_enum(ctf_file_t *, uint_t, const char *);
-extern ctf_id_t ctf_add_float(ctf_file_t *, uint_t,
- const char *, const ctf_encoding_t *);
-extern ctf_id_t ctf_add_forward(ctf_file_t *, uint_t, const char *, uint_t);
-extern ctf_id_t ctf_add_function(ctf_file_t *, uint_t,
- const ctf_funcinfo_t *, const ctf_id_t *);
-extern ctf_id_t ctf_add_integer(ctf_file_t *, uint_t,
- const char *, const ctf_encoding_t *);
-extern ctf_id_t ctf_add_pointer(ctf_file_t *, uint_t, ctf_id_t);
-extern ctf_id_t ctf_add_type(ctf_file_t *, ctf_file_t *, ctf_id_t);
-extern ctf_id_t ctf_add_typedef(ctf_file_t *, uint_t, const char *, ctf_id_t);
-extern ctf_id_t ctf_add_restrict(ctf_file_t *, uint_t, ctf_id_t);
-extern ctf_id_t ctf_add_struct(ctf_file_t *, uint_t, const char *);
-extern ctf_id_t ctf_add_union(ctf_file_t *, uint_t, const char *);
-extern ctf_id_t ctf_add_volatile(ctf_file_t *, uint_t, ctf_id_t);
-
-extern int ctf_add_enumerator(ctf_file_t *, ctf_id_t, const char *, int);
-extern int ctf_add_member(ctf_file_t *, ctf_id_t, const char *, ctf_id_t);
-
-extern int ctf_set_array(ctf_file_t *, ctf_id_t, const ctf_arinfo_t *);
-
-extern int ctf_update(ctf_file_t *);
-extern int ctf_discard(ctf_file_t *);
-extern int ctf_write(ctf_file_t *, int);
-
-#ifdef _KERNEL
-
-struct module;
-extern ctf_file_t *ctf_modopen(struct module *, int *);
-
-#endif
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* _CTF_API_H */
diff --git a/cddl/contrib/opensolaris/uts/common/sys/dtrace.h b/cddl/contrib/opensolaris/uts/common/sys/dtrace.h
deleted file mode 100644
index b6e52ec..0000000
--- a/cddl/contrib/opensolaris/uts/common/sys/dtrace.h
+++ /dev/null
@@ -1,2242 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-
-/*
- * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _SYS_DTRACE_H
-#define _SYS_DTRACE_H
-
-#pragma ident "%Z%%M% %I% %E% SMI"
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*
- * DTrace Dynamic Tracing Software: Kernel Interfaces
- *
- * Note: The contents of this file are private to the implementation of the
- * Solaris system and DTrace subsystem and are subject to change at any time
- * without notice. Applications and drivers using these interfaces will fail
- * to run on future releases. These interfaces should not be used for any
- * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
- * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
- */
-
-#ifndef _ASM
-
-#include <sys/types.h>
-#include <sys/modctl.h>
-#include <sys/processor.h>
-#include <sys/systm.h>
-#include <sys/ctf_api.h>
-#include <sys/cyclic.h>
-#include <sys/int_limits.h>
-
-/*
- * DTrace Universal Constants and Typedefs
- */
-#define DTRACE_CPUALL -1 /* all CPUs */
-#define DTRACE_IDNONE 0 /* invalid probe identifier */
-#define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
-#define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
-#define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
-#define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
-#define DTRACE_PROVNONE 0 /* invalid provider identifier */
-#define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
-#define DTRACE_ARGNONE -1 /* invalid argument index */
-
-#define DTRACE_PROVNAMELEN 64
-#define DTRACE_MODNAMELEN 64
-#define DTRACE_FUNCNAMELEN 128
-#define DTRACE_NAMELEN 64
-#define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
- DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
-#define DTRACE_ARGTYPELEN 128
-
-typedef uint32_t dtrace_id_t; /* probe identifier */
-typedef uint32_t dtrace_epid_t; /* enabled probe identifier */
-typedef uint32_t dtrace_aggid_t; /* aggregation identifier */
-typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */
-typedef uint16_t dtrace_actkind_t; /* action kind */
-typedef int64_t dtrace_optval_t; /* option value */
-typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */
-
-typedef enum dtrace_probespec {
- DTRACE_PROBESPEC_NONE = -1,
- DTRACE_PROBESPEC_PROVIDER = 0,
- DTRACE_PROBESPEC_MOD,
- DTRACE_PROBESPEC_FUNC,
- DTRACE_PROBESPEC_NAME
-} dtrace_probespec_t;
-
-/*
- * DTrace Intermediate Format (DIF)
- *
- * The following definitions describe the DTrace Intermediate Format (DIF), a
- * a RISC-like instruction set and program encoding used to represent
- * predicates and actions that can be bound to DTrace probes. The constants
- * below defining the number of available registers are suggested minimums; the
- * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
- * registers provided by the current DTrace implementation.
- */
-#define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
-#define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
-#define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
-#define DIF_DIR_NREGS 8 /* number of DIF integer registers */
-#define DIF_DTR_NREGS 8 /* number of DIF tuple registers */
-
-#define DIF_OP_OR 1 /* or r1, r2, rd */
-#define DIF_OP_XOR 2 /* xor r1, r2, rd */
-#define DIF_OP_AND 3 /* and r1, r2, rd */
-#define DIF_OP_SLL 4 /* sll r1, r2, rd */
-#define DIF_OP_SRL 5 /* srl r1, r2, rd */
-#define DIF_OP_SUB 6 /* sub r1, r2, rd */
-#define DIF_OP_ADD 7 /* add r1, r2, rd */
-#define DIF_OP_MUL 8 /* mul r1, r2, rd */
-#define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
-#define DIF_OP_UDIV 10 /* udiv r1, r2, rd */
-#define DIF_OP_SREM 11 /* srem r1, r2, rd */
-#define DIF_OP_UREM 12 /* urem r1, r2, rd */
-#define DIF_OP_NOT 13 /* not r1, rd */
-#define DIF_OP_MOV 14 /* mov r1, rd */
-#define DIF_OP_CMP 15 /* cmp r1, r2 */
-#define DIF_OP_TST 16 /* tst r1 */
-#define DIF_OP_BA 17 /* ba label */
-#define DIF_OP_BE 18 /* be label */
-#define DIF_OP_BNE 19 /* bne label */
-#define DIF_OP_BG 20 /* bg label */
-#define DIF_OP_BGU 21 /* bgu label */
-#define DIF_OP_BGE 22 /* bge label */
-#define DIF_OP_BGEU 23 /* bgeu label */
-#define DIF_OP_BL 24 /* bl label */
-#define DIF_OP_BLU 25 /* blu label */
-#define DIF_OP_BLE 26 /* ble label */
-#define DIF_OP_BLEU 27 /* bleu label */
-#define DIF_OP_LDSB 28 /* ldsb [r1], rd */
-#define DIF_OP_LDSH 29 /* ldsh [r1], rd */
-#define DIF_OP_LDSW 30 /* ldsw [r1], rd */
-#define DIF_OP_LDUB 31 /* ldub [r1], rd */
-#define DIF_OP_LDUH 32 /* lduh [r1], rd */
-#define DIF_OP_LDUW 33 /* lduw [r1], rd */
-#define DIF_OP_LDX 34 /* ldx [r1], rd */
-#define DIF_OP_RET 35 /* ret rd */
-#define DIF_OP_NOP 36 /* nop */
-#define DIF_OP_SETX 37 /* setx intindex, rd */
-#define DIF_OP_SETS 38 /* sets strindex, rd */
-#define DIF_OP_SCMP 39 /* scmp r1, r2 */
-#define DIF_OP_LDGA 40 /* ldga var, ri, rd */
-#define DIF_OP_LDGS 41 /* ldgs var, rd */
-#define DIF_OP_STGS 42 /* stgs var, rs */
-#define DIF_OP_LDTA 43 /* ldta var, ri, rd */
-#define DIF_OP_LDTS 44 /* ldts var, rd */
-#define DIF_OP_STTS 45 /* stts var, rs */
-#define DIF_OP_SRA 46 /* sra r1, r2, rd */
-#define DIF_OP_CALL 47 /* call subr, rd */
-#define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
-#define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
-#define DIF_OP_POPTS 50 /* popts */
-#define DIF_OP_FLUSHTS 51 /* flushts */
-#define DIF_OP_LDGAA 52 /* ldgaa var, rd */
-#define DIF_OP_LDTAA 53 /* ldtaa var, rd */
-#define DIF_OP_STGAA 54 /* stgaa var, rs */
-#define DIF_OP_STTAA 55 /* sttaa var, rs */
-#define DIF_OP_LDLS 56 /* ldls var, rd */
-#define DIF_OP_STLS 57 /* stls var, rs */
-#define DIF_OP_ALLOCS 58 /* allocs r1, rd */
-#define DIF_OP_COPYS 59 /* copys r1, r2, rd */
-#define DIF_OP_STB 60 /* stb r1, [rd] */
-#define DIF_OP_STH 61 /* sth r1, [rd] */
-#define DIF_OP_STW 62 /* stw r1, [rd] */
-#define DIF_OP_STX 63 /* stx r1, [rd] */
-#define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
-#define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
-#define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
-#define DIF_OP_ULDUB 67 /* uldub [r1], rd */
-#define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
-#define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
-#define DIF_OP_ULDX 70 /* uldx [r1], rd */
-#define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
-#define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
-#define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
-#define DIF_OP_RLDUB 74 /* rldub [r1], rd */
-#define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
-#define DIF_OP_RLDUW 76 /* rlduw [r1], rd */
-#define DIF_OP_RLDX 77 /* rldx [r1], rd */
-#define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
-#define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */
-
-#define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
-#define DIF_STROFF_MAX 0xffff /* highest string table offset */
-#define DIF_REGISTER_MAX 0xff /* highest register number */
-#define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
-#define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */
-
-#define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
-#define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
-#define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */
-
-#define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
-#define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
-#define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */
-
-#define DIF_VAR_ARGS 0x0000 /* arguments array */
-#define DIF_VAR_REGS 0x0001 /* registers array */
-#define DIF_VAR_UREGS 0x0002 /* user registers array */
-#define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
-#define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
-#define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
-#define DIF_VAR_IPL 0x0103 /* interrupt priority level */
-#define DIF_VAR_EPID 0x0104 /* enabled probe ID */
-#define DIF_VAR_ID 0x0105 /* probe ID */
-#define DIF_VAR_ARG0 0x0106 /* first argument */
-#define DIF_VAR_ARG1 0x0107 /* second argument */
-#define DIF_VAR_ARG2 0x0108 /* third argument */
-#define DIF_VAR_ARG3 0x0109 /* fourth argument */
-#define DIF_VAR_ARG4 0x010a /* fifth argument */
-#define DIF_VAR_ARG5 0x010b /* sixth argument */
-#define DIF_VAR_ARG6 0x010c /* seventh argument */
-#define DIF_VAR_ARG7 0x010d /* eighth argument */
-#define DIF_VAR_ARG8 0x010e /* ninth argument */
-#define DIF_VAR_ARG9 0x010f /* tenth argument */
-#define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
-#define DIF_VAR_CALLER 0x0111 /* caller */
-#define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
-#define DIF_VAR_PROBEMOD 0x0113 /* probe module */
-#define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
-#define DIF_VAR_PROBENAME 0x0115 /* probe name */
-#define DIF_VAR_PID 0x0116 /* process ID */
-#define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
-#define DIF_VAR_EXECNAME 0x0118 /* name of executable */
-#define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
-#define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
-#define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
-#define DIF_VAR_UCALLER 0x011c /* user-level caller */
-#define DIF_VAR_PPID 0x011d /* parent process ID */
-#define DIF_VAR_UID 0x011e /* process user ID */
-#define DIF_VAR_GID 0x011f /* process group ID */
-#define DIF_VAR_ERRNO 0x0120 /* thread errno */
-
-#define DIF_SUBR_RAND 0
-#define DIF_SUBR_MUTEX_OWNED 1
-#define DIF_SUBR_MUTEX_OWNER 2
-#define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
-#define DIF_SUBR_MUTEX_TYPE_SPIN 4
-#define DIF_SUBR_RW_READ_HELD 5
-#define DIF_SUBR_RW_WRITE_HELD 6
-#define DIF_SUBR_RW_ISWRITER 7
-#define DIF_SUBR_COPYIN 8
-#define DIF_SUBR_COPYINSTR 9
-#define DIF_SUBR_SPECULATION 10
-#define DIF_SUBR_PROGENYOF 11
-#define DIF_SUBR_STRLEN 12
-#define DIF_SUBR_COPYOUT 13
-#define DIF_SUBR_COPYOUTSTR 14
-#define DIF_SUBR_ALLOCA 15
-#define DIF_SUBR_BCOPY 16
-#define DIF_SUBR_COPYINTO 17
-#define DIF_SUBR_MSGDSIZE 18
-#define DIF_SUBR_MSGSIZE 19
-#define DIF_SUBR_GETMAJOR 20
-#define DIF_SUBR_GETMINOR 21
-#define DIF_SUBR_DDI_PATHNAME 22
-#define DIF_SUBR_STRJOIN 23
-#define DIF_SUBR_LLTOSTR 24
-#define DIF_SUBR_BASENAME 25
-#define DIF_SUBR_DIRNAME 26
-#define DIF_SUBR_CLEANPATH 27
-#define DIF_SUBR_STRCHR 28
-#define DIF_SUBR_STRRCHR 29
-#define DIF_SUBR_STRSTR 30
-#define DIF_SUBR_STRTOK 31
-#define DIF_SUBR_SUBSTR 32
-#define DIF_SUBR_INDEX 33
-#define DIF_SUBR_RINDEX 34
-#define DIF_SUBR_HTONS 35
-#define DIF_SUBR_HTONL 36
-#define DIF_SUBR_HTONLL 37
-#define DIF_SUBR_NTOHS 38
-#define DIF_SUBR_NTOHL 39
-#define DIF_SUBR_NTOHLL 40
-#define DIF_SUBR_INET_NTOP 41
-#define DIF_SUBR_INET_NTOA 42
-#define DIF_SUBR_INET_NTOA6 43
-
-#define DIF_SUBR_MAX 43 /* max subroutine value */
-
-typedef uint32_t dif_instr_t;
-
-#define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
-#define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
-#define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
-#define DIF_INSTR_RD(i) ((i) & 0xff)
-#define DIF_INSTR_RS(i) ((i) & 0xff)
-#define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
-#define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
-#define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
-#define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
-#define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
-#define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
-#define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)
-
-#define DIF_INSTR_FMT(op, r1, r2, d) \
- (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
-
-#define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
-#define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
-#define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
-#define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
-#define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
-#define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
-#define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
-#define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
-#define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
-#define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
-#define DIF_INSTR_NOP (DIF_OP_NOP << 24)
-#define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
-#define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
-#define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
-#define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
-#define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
-#define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
-#define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
-#define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
-#define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
-#define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))
-
-#define DIF_REG_R0 0 /* %r0 is always set to zero */
-
-/*
- * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
- * of variables, function and associative array arguments, and the return type
- * for each DIF object (shown below). It contains a description of the type,
- * its size in bytes, and a module identifier.
- */
-typedef struct dtrace_diftype {
- uint8_t dtdt_kind; /* type kind (see below) */
- uint8_t dtdt_ckind; /* type kind in CTF */
- uint8_t dtdt_flags; /* type flags (see below) */
- uint8_t dtdt_pad; /* reserved for future use */
- uint32_t dtdt_size; /* type size in bytes (unless string) */
-} dtrace_diftype_t;
-
-#define DIF_TYPE_CTF 0 /* type is a CTF type */
-#define DIF_TYPE_STRING 1 /* type is a D string */
-
-#define DIF_TF_BYREF 0x1 /* type is passed by reference */
-
-/*
- * A DTrace Intermediate Format variable record is used to describe each of the
- * variables referenced by a given DIF object. It contains an integer variable
- * identifier along with variable scope and properties, as shown below. The
- * size of this structure must be sizeof (int) aligned.
- */
-typedef struct dtrace_difv {
- uint32_t dtdv_name; /* variable name index in dtdo_strtab */
- uint32_t dtdv_id; /* variable reference identifier */
- uint8_t dtdv_kind; /* variable kind (see below) */
- uint8_t dtdv_scope; /* variable scope (see below) */
- uint16_t dtdv_flags; /* variable flags (see below) */
- dtrace_diftype_t dtdv_type; /* variable type (see above) */
-} dtrace_difv_t;
-
-#define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */
-#define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */
-
-#define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */
-#define DIFV_SCOPE_THREAD 1 /* variable has thread scope */
-#define DIFV_SCOPE_LOCAL 2 /* variable has local scope */
-
-#define DIFV_F_REF 0x1 /* variable is referenced by DIFO */
-#define DIFV_F_MOD 0x2 /* variable is written by DIFO */
-
-/*
- * DTrace Actions
- *
- * The upper byte determines the class of the action; the low bytes determines
- * the specific action within that class. The classes of actions are as
- * follows:
- *
- * [ no class ] <= May record process- or kernel-related data
- * DTRACEACT_PROC <= Only records process-related data
- * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes
- * DTRACEACT_KERNEL <= Only records kernel-related data
- * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel
- * DTRACEACT_SPECULATIVE <= Speculation-related action
- * DTRACEACT_AGGREGATION <= Aggregating action
- */
-#define DTRACEACT_NONE 0 /* no action */
-#define DTRACEACT_DIFEXPR 1 /* action is DIF expression */
-#define DTRACEACT_EXIT 2 /* exit() action */
-#define DTRACEACT_PRINTF 3 /* printf() action */
-#define DTRACEACT_PRINTA 4 /* printa() action */
-#define DTRACEACT_LIBACT 5 /* library-controlled action */
-
-#define DTRACEACT_PROC 0x0100
-#define DTRACEACT_USTACK (DTRACEACT_PROC + 1)
-#define DTRACEACT_JSTACK (DTRACEACT_PROC + 2)
-#define DTRACEACT_USYM (DTRACEACT_PROC + 3)
-#define DTRACEACT_UMOD (DTRACEACT_PROC + 4)
-#define DTRACEACT_UADDR (DTRACEACT_PROC + 5)
-
-#define DTRACEACT_PROC_DESTRUCTIVE 0x0200
-#define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1)
-#define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2)
-#define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3)
-#define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4)
-
-#define DTRACEACT_PROC_CONTROL 0x0300
-
-#define DTRACEACT_KERNEL 0x0400
-#define DTRACEACT_STACK (DTRACEACT_KERNEL + 1)
-#define DTRACEACT_SYM (DTRACEACT_KERNEL + 2)
-#define DTRACEACT_MOD (DTRACEACT_KERNEL + 3)
-
-#define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500
-#define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1)
-#define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2)
-#define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3)
-
-#define DTRACEACT_SPECULATIVE 0x0600
-#define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1)
-#define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2)
-#define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3)
-
-#define DTRACEACT_CLASS(x) ((x) & 0xff00)
-
-#define DTRACEACT_ISDESTRUCTIVE(x) \
- (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
- DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
-
-#define DTRACEACT_ISSPECULATIVE(x) \
- (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
-
-#define DTRACEACT_ISPRINTFLIKE(x) \
- ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
- (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
-
-/*
- * DTrace Aggregating Actions
- *
- * These are functions f(x) for which the following is true:
- *
- * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
- *
- * where x_n is a set of arbitrary data. Aggregating actions are in their own
- * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow
- * for easier processing of the aggregation argument and data payload for a few
- * aggregating actions (notably: quantize(), lquantize(), and ustack()).
- */
-#define DTRACEACT_AGGREGATION 0x0700
-#define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1)
-#define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2)
-#define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3)
-#define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4)
-#define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5)
-#define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6)
-#define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7)
-#define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8)
-
-#define DTRACEACT_ISAGG(x) \
- (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
-
-#define DTRACE_QUANTIZE_NBUCKETS \
- (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
-
-#define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1)
-
-#define DTRACE_QUANTIZE_BUCKETVAL(buck) \
- (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \
- -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \
- (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \
- 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
-
-#define DTRACE_LQUANTIZE_STEPSHIFT 48
-#define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48)
-#define DTRACE_LQUANTIZE_LEVELSHIFT 32
-#define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32)
-#define DTRACE_LQUANTIZE_BASESHIFT 0
-#define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX
-
-#define DTRACE_LQUANTIZE_STEP(x) \
- (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
- DTRACE_LQUANTIZE_STEPSHIFT)
-
-#define DTRACE_LQUANTIZE_LEVELS(x) \
- (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
- DTRACE_LQUANTIZE_LEVELSHIFT)
-
-#define DTRACE_LQUANTIZE_BASE(x) \
- (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
- DTRACE_LQUANTIZE_BASESHIFT)
-
-#define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX)
-#define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32)
-#define DTRACE_USTACK_ARG(x, y) \
- ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
-
-#ifndef _LP64
-#ifndef _LITTLE_ENDIAN
-#define DTRACE_PTR(type, name) uint32_t name##pad; type *name
-#else
-#define DTRACE_PTR(type, name) type *name; uint32_t name##pad
-#endif
-#else
-#define DTRACE_PTR(type, name) type *name
-#endif
-
-/*
- * DTrace Object Format (DOF)
- *
- * DTrace programs can be persistently encoded in the DOF format so that they
- * may be embedded in other programs (for example, in an ELF file) or in the
- * dtrace driver configuration file for use in anonymous tracing. The DOF
- * format is versioned and extensible so that it can be revised and so that
- * internal data structures can be modified or extended compatibly. All DOF
- * structures use fixed-size types, so the 32-bit and 64-bit representations
- * are identical and consumers can use either data model transparently.
- *
- * The file layout is structured as follows:
- *
- * +---------------+-------------------+----- ... ----+---- ... ------+
- * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable |
- * | (file header) | (section headers) | section data | section data |
- * +---------------+-------------------+----- ... ----+---- ... ------+
- * |<------------ dof_hdr.dofh_loadsz --------------->| |
- * |<------------ dof_hdr.dofh_filesz ------------------------------->|
- *
- * The file header stores meta-data including a magic number, data model for
- * the instrumentation, data encoding, and properties of the DIF code within.
- * The header describes its own size and the size of the section headers. By
- * convention, an array of section headers follows the file header, and then
- * the data for all loadable sections and unloadable sections. This permits
- * consumer code to easily download the headers and all loadable data into the
- * DTrace driver in one contiguous chunk, omitting other extraneous sections.
- *
- * The section headers describe the size, offset, alignment, and section type
- * for each section. Sections are described using a set of #defines that tell
- * the consumer what kind of data is expected. Sections can contain links to
- * other sections by storing a dof_secidx_t, an index into the section header
- * array, inside of the section data structures. The section header includes
- * an entry size so that sections with data arrays can grow their structures.
- *
- * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
- * are represented themselves as a collection of related DOF sections. This
- * permits us to change the set of sections associated with a DIFO over time,
- * and also permits us to encode DIFOs that contain different sets of sections.
- * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
- * section of type DOF_SECT_DIFOHDR. This section's data is then an array of
- * dof_secidx_t's which in turn denote the sections associated with this DIFO.
- *
- * This loose coupling of the file structure (header and sections) to the
- * structure of the DTrace program itself (ECB descriptions, action
- * descriptions, and DIFOs) permits activities such as relocation processing
- * to occur in a single pass without having to understand D program structure.
- *
- * Finally, strings are always stored in ELF-style string tables along with a
- * string table section index and string table offset. Therefore strings in
- * DOF are always arbitrary-length and not bound to the current implementation.
- */
-
-#define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */
-
-typedef struct dof_hdr {
- uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
- uint32_t dofh_flags; /* file attribute flags (if any) */
- uint32_t dofh_hdrsize; /* size of file header in bytes */
- uint32_t dofh_secsize; /* size of section header in bytes */
- uint32_t dofh_secnum; /* number of section headers */
- uint64_t dofh_secoff; /* file offset of section headers */
- uint64_t dofh_loadsz; /* file size of loadable portion */
- uint64_t dofh_filesz; /* file size of entire DOF file */
- uint64_t dofh_pad; /* reserved for future use */
-} dof_hdr_t;
-
-#define DOF_ID_MAG0 0 /* first byte of magic number */
-#define DOF_ID_MAG1 1 /* second byte of magic number */
-#define DOF_ID_MAG2 2 /* third byte of magic number */
-#define DOF_ID_MAG3 3 /* fourth byte of magic number */
-#define DOF_ID_MODEL 4 /* DOF data model (see below) */
-#define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */
-#define DOF_ID_VERSION 6 /* DOF file format major version (see below) */
-#define DOF_ID_DIFVERS 7 /* DIF instruction set version */
-#define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */
-#define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */
-#define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */
-
-#define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */
-#define DOF_MAG_MAG1 'D'
-#define DOF_MAG_MAG2 'O'
-#define DOF_MAG_MAG3 'F'
-
-#define DOF_MAG_STRING "\177DOF"
-#define DOF_MAG_STRLEN 4
-
-#define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */
-#define DOF_MODEL_ILP32 1
-#define DOF_MODEL_LP64 2
-
-#ifdef _LP64
-#define DOF_MODEL_NATIVE DOF_MODEL_LP64
-#else
-#define DOF_MODEL_NATIVE DOF_MODEL_ILP32
-#endif
-
-#define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */
-#define DOF_ENCODE_LSB 1
-#define DOF_ENCODE_MSB 2
-
-#ifdef _BIG_ENDIAN
-#define DOF_ENCODE_NATIVE DOF_ENCODE_MSB
-#else
-#define DOF_ENCODE_NATIVE DOF_ENCODE_LSB
-#endif
-
-#define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */
-#define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */
-#define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */
-
-#define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */
-
-typedef uint32_t dof_secidx_t; /* section header table index type */
-typedef uint32_t dof_stridx_t; /* string table index type */
-
-#define DOF_SECIDX_NONE (-1U) /* null value for section indices */
-#define DOF_STRIDX_NONE (-1U) /* null value for string indices */
-
-typedef struct dof_sec {
- uint32_t dofs_type; /* section type (see below) */
- uint32_t dofs_align; /* section data memory alignment */
- uint32_t dofs_flags; /* section flags (if any) */
- uint32_t dofs_entsize; /* size of section entry (if table) */
- uint64_t dofs_offset; /* offset of section data within file */
- uint64_t dofs_size; /* size of section data in bytes */
-} dof_sec_t;
-
-#define DOF_SECT_NONE 0 /* null section */
-#define DOF_SECT_COMMENTS 1 /* compiler comments */
-#define DOF_SECT_SOURCE 2 /* D program source code */
-#define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */
-#define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */
-#define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */
-#define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */
-#define DOF_SECT_DIF 7 /* uint32_t array of byte code */
-#define DOF_SECT_STRTAB 8 /* string table */
-#define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */
-#define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */
-#define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */
-#define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */
-#define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */
-#define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */
-#define DOF_SECT_PROVIDER 15 /* dof_provider_t */
-#define DOF_SECT_PROBES 16 /* dof_probe_t array */
-#define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */
-#define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */
-#define DOF_SECT_INTTAB 19 /* uint64_t array */
-#define DOF_SECT_UTSNAME 20 /* struct utsname */
-#define DOF_SECT_XLTAB 21 /* dof_xlref_t array */
-#define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */
-#define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */
-#define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */
-#define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */
-#define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */
-
-#define DOF_SECF_LOAD 1 /* section should be loaded */
-
-typedef struct dof_ecbdesc {
- dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */
- dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */
- dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */
- uint32_t dofe_pad; /* reserved for future use */
- uint64_t dofe_uarg; /* user-supplied library argument */
-} dof_ecbdesc_t;
-
-typedef struct dof_probedesc {
- dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */
- dof_stridx_t dofp_provider; /* provider string */
- dof_stridx_t dofp_mod; /* module string */
- dof_stridx_t dofp_func; /* function string */
- dof_stridx_t dofp_name; /* name string */
- uint32_t dofp_id; /* probe identifier (or zero) */
-} dof_probedesc_t;
-
-typedef struct dof_actdesc {
- dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */
- dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */
- uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */
- uint32_t dofa_ntuple; /* number of subsequent tuple actions */
- uint64_t dofa_arg; /* kind-specific argument */
- uint64_t dofa_uarg; /* user-supplied argument */
-} dof_actdesc_t;
-
-typedef struct dof_difohdr {
- dtrace_diftype_t dofd_rtype; /* return type for this fragment */
- dof_secidx_t dofd_links[1]; /* variable length array of indices */
-} dof_difohdr_t;
-
-typedef struct dof_relohdr {
- dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */
- dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */
- dof_secidx_t dofr_tgtsec; /* link to section we are relocating */
-} dof_relohdr_t;
-
-typedef struct dof_relodesc {
- dof_stridx_t dofr_name; /* string name of relocation symbol */
- uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */
- uint64_t dofr_offset; /* byte offset for relocation */
- uint64_t dofr_data; /* additional type-specific data */
-} dof_relodesc_t;
-
-#define DOF_RELO_NONE 0 /* empty relocation entry */
-#define DOF_RELO_SETX 1 /* relocate setx value */
-
-typedef struct dof_optdesc {
- uint32_t dofo_option; /* option identifier */
- dof_secidx_t dofo_strtab; /* string table, if string option */
- uint64_t dofo_value; /* option value or string index */
-} dof_optdesc_t;
-
-typedef uint32_t dof_attr_t; /* encoded stability attributes */
-
-#define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8))
-#define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff)
-#define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff)
-#define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff)
-
-typedef struct dof_provider {
- dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */
- dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */
- dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */
- dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */
- dof_stridx_t dofpv_name; /* provider name string */
- dof_attr_t dofpv_provattr; /* provider attributes */
- dof_attr_t dofpv_modattr; /* module attributes */
- dof_attr_t dofpv_funcattr; /* function attributes */
- dof_attr_t dofpv_nameattr; /* name attributes */
- dof_attr_t dofpv_argsattr; /* args attributes */
- dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */
-} dof_provider_t;
-
-typedef struct dof_probe {
- uint64_t dofpr_addr; /* probe base address or offset */
- dof_stridx_t dofpr_func; /* probe function string */
- dof_stridx_t dofpr_name; /* probe name string */
- dof_stridx_t dofpr_nargv; /* native argument type strings */
- dof_stridx_t dofpr_xargv; /* translated argument type strings */
- uint32_t dofpr_argidx; /* index of first argument mapping */
- uint32_t dofpr_offidx; /* index of first offset entry */
- uint8_t dofpr_nargc; /* native argument count */
- uint8_t dofpr_xargc; /* translated argument count */
- uint16_t dofpr_noffs; /* number of offset entries for probe */
- uint32_t dofpr_enoffidx; /* index of first is-enabled offset */
- uint16_t dofpr_nenoffs; /* number of is-enabled offsets */
- uint16_t dofpr_pad1; /* reserved for future use */
- uint32_t dofpr_pad2; /* reserved for future use */
-} dof_probe_t;
-
-typedef struct dof_xlator {
- dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */
- dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */
- dof_stridx_t dofxl_argv; /* input parameter type strings */
- uint32_t dofxl_argc; /* input parameter list length */
- dof_stridx_t dofxl_type; /* output type string name */
- dof_attr_t dofxl_attr; /* output stability attributes */
-} dof_xlator_t;
-
-typedef struct dof_xlmember {
- dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */
- dof_stridx_t dofxm_name; /* member name */
- dtrace_diftype_t dofxm_type; /* member type */
-} dof_xlmember_t;
-
-typedef struct dof_xlref {
- dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */
- uint32_t dofxr_member; /* index of referenced dof_xlmember */
- uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */
-} dof_xlref_t;
-
-/*
- * DTrace Intermediate Format Object (DIFO)
- *
- * A DIFO is used to store the compiled DIF for a D expression, its return
- * type, and its string and variable tables. The string table is a single
- * buffer of character data into which sets instructions and variable
- * references can reference strings using a byte offset. The variable table
- * is an array of dtrace_difv_t structures that describe the name and type of
- * each variable and the id used in the DIF code. This structure is described
- * above in the DIF section of this header file. The DIFO is used at both
- * user-level (in the library) and in the kernel, but the structure is never
- * passed between the two: the DOF structures form the only interface. As a
- * result, the definition can change depending on the presence of _KERNEL.
- */
-typedef struct dtrace_difo {
- dif_instr_t *dtdo_buf; /* instruction buffer */
- uint64_t *dtdo_inttab; /* integer table (optional) */
- char *dtdo_strtab; /* string table (optional) */
- dtrace_difv_t *dtdo_vartab; /* variable table (optional) */
- uint_t dtdo_len; /* length of instruction buffer */
- uint_t dtdo_intlen; /* length of integer table */
- uint_t dtdo_strlen; /* length of string table */
- uint_t dtdo_varlen; /* length of variable table */
- dtrace_diftype_t dtdo_rtype; /* return type */
- uint_t dtdo_refcnt; /* owner reference count */
- uint_t dtdo_destructive; /* invokes destructive subroutines */
-#ifndef _KERNEL
- dof_relodesc_t *dtdo_kreltab; /* kernel relocations */
- dof_relodesc_t *dtdo_ureltab; /* user relocations */
- struct dt_node **dtdo_xlmtab; /* translator references */
- uint_t dtdo_krelen; /* length of krelo table */
- uint_t dtdo_urelen; /* length of urelo table */
- uint_t dtdo_xlmlen; /* length of translator table */
-#endif
-} dtrace_difo_t;
-
-/*
- * DTrace Enabling Description Structures
- *
- * When DTrace is tracking the description of a DTrace enabling entity (probe,
- * predicate, action, ECB, record, etc.), it does so in a description
- * structure. These structures all end in "desc", and are used at both
- * user-level and in the kernel -- but (with the exception of
- * dtrace_probedesc_t) they are never passed between them. Typically,
- * user-level will use the description structures when assembling an enabling.
- * It will then distill those description structures into a DOF object (see
- * above), and send it into the kernel. The kernel will again use the
- * description structures to create a description of the enabling as it reads
- * the DOF. When the description is complete, the enabling will be actually
- * created -- turning it into the structures that represent the enabling
- * instead of merely describing it. Not surprisingly, the description
- * structures bear a strong resemblance to the DOF structures that act as their
- * conduit.
- */
-struct dtrace_predicate;
-
-typedef struct dtrace_probedesc {
- dtrace_id_t dtpd_id; /* probe identifier */
- char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
- char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */
- char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */
- char dtpd_name[DTRACE_NAMELEN]; /* probe name */
-} dtrace_probedesc_t;
-
-typedef struct dtrace_repldesc {
- dtrace_probedesc_t dtrpd_match; /* probe descr. to match */
- dtrace_probedesc_t dtrpd_create; /* probe descr. to create */
-} dtrace_repldesc_t;
-
-typedef struct dtrace_preddesc {
- dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */
- struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
-} dtrace_preddesc_t;
-
-typedef struct dtrace_actdesc {
- dtrace_difo_t *dtad_difo; /* pointer to DIF object */
- struct dtrace_actdesc *dtad_next; /* next action */
- dtrace_actkind_t dtad_kind; /* kind of action */
- uint32_t dtad_ntuple; /* number in tuple */
- uint64_t dtad_arg; /* action argument */
- uint64_t dtad_uarg; /* user argument */
- int dtad_refcnt; /* reference count */
-} dtrace_actdesc_t;
-
-typedef struct dtrace_ecbdesc {
- dtrace_actdesc_t *dted_action; /* action description(s) */
- dtrace_preddesc_t dted_pred; /* predicate description */
- dtrace_probedesc_t dted_probe; /* probe description */
- uint64_t dted_uarg; /* library argument */
- int dted_refcnt; /* reference count */
-} dtrace_ecbdesc_t;
-
-/*
- * DTrace Metadata Description Structures
- *
- * DTrace separates the trace data stream from the metadata stream. The only
- * metadata tokens placed in the data stream are enabled probe identifiers
- * (EPIDs) or (in the case of aggregations) aggregation identifiers. In order
- * to determine the structure of the data, DTrace consumers pass the token to
- * the kernel, and receive in return a corresponding description of the enabled
- * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
- * dtrace_aggdesc structure). Both of these structures are expressed in terms
- * of record descriptions (via the dtrace_recdesc structure) that describe the
- * exact structure of the data. Some record descriptions may also contain a
- * format identifier; this additional bit of metadata can be retrieved from the
- * kernel, for which a format description is returned via the dtrace_fmtdesc
- * structure. Note that all four of these structures must be bitness-neutral
- * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
- */
-typedef struct dtrace_recdesc {
- dtrace_actkind_t dtrd_action; /* kind of action */
- uint32_t dtrd_size; /* size of record */
- uint32_t dtrd_offset; /* offset in ECB's data */
- uint16_t dtrd_alignment; /* required alignment */
- uint16_t dtrd_format; /* format, if any */
- uint64_t dtrd_arg; /* action argument */
- uint64_t dtrd_uarg; /* user argument */
-} dtrace_recdesc_t;
-
-typedef struct dtrace_eprobedesc {
- dtrace_epid_t dtepd_epid; /* enabled probe ID */
- dtrace_id_t dtepd_probeid; /* probe ID */
- uint64_t dtepd_uarg; /* library argument */
- uint32_t dtepd_size; /* total size */
- int dtepd_nrecs; /* number of records */
- dtrace_recdesc_t dtepd_rec[1]; /* records themselves */
-} dtrace_eprobedesc_t;
-
-typedef struct dtrace_aggdesc {
- DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */
- dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */
- int dtagd_flags; /* not filled in by kernel */
- dtrace_aggid_t dtagd_id; /* aggregation ID */
- dtrace_epid_t dtagd_epid; /* enabled probe ID */
- uint32_t dtagd_size; /* size in bytes */
- int dtagd_nrecs; /* number of records */
- uint32_t dtagd_pad; /* explicit padding */
- dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */
-} dtrace_aggdesc_t;
-
-typedef struct dtrace_fmtdesc {
- DTRACE_PTR(char, dtfd_string); /* format string */
- int dtfd_length; /* length of format string */
- uint16_t dtfd_format; /* format identifier */
-} dtrace_fmtdesc_t;
-
-#define DTRACE_SIZEOF_EPROBEDESC(desc) \
- (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \
- (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
-
-#define DTRACE_SIZEOF_AGGDESC(desc) \
- (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \
- (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
-
-/*
- * DTrace Option Interface
- *
- * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
- * in a DOF image. The dof_optdesc structure contains an option identifier and
- * an option value. The valid option identifiers are found below; the mapping
- * between option identifiers and option identifying strings is maintained at
- * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
- * following are potentially valid option values: all positive integers, zero
- * and negative one. Some options (notably "bufpolicy" and "bufresize") take
- * predefined tokens as their values; these are defined with
- * DTRACEOPT_{option}_{token}.
- */
-#define DTRACEOPT_BUFSIZE 0 /* buffer size */
-#define DTRACEOPT_BUFPOLICY 1 /* buffer policy */
-#define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */
-#define DTRACEOPT_AGGSIZE 3 /* aggregation size */
-#define DTRACEOPT_SPECSIZE 4 /* speculation size */
-#define DTRACEOPT_NSPEC 5 /* number of speculations */
-#define DTRACEOPT_STRSIZE 6 /* string size */
-#define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */
-#define DTRACEOPT_CPU 8 /* CPU to trace */
-#define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */
-#define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */
-#define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */
-#define DTRACEOPT_QUIET 12 /* only output explicitly traced data */
-#define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */
-#define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */
-#define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */
-#define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */
-#define DTRACEOPT_STATUSRATE 17 /* status rate */
-#define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */
-#define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */
-#define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */
-#define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */
-#define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */
-#define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */
-#define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */
-#define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */
-#define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
-#define DTRACEOPT_MAX 27 /* number of options */
-
-#define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */
-
-#define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */
-#define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */
-#define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */
-
-#define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */
-#define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */
-
-/*
- * DTrace Buffer Interface
- *
- * In order to get a snapshot of the principal or aggregation buffer,
- * user-level passes a buffer description to the kernel with the dtrace_bufdesc
- * structure. This describes which CPU user-level is interested in, and
- * where user-level wishes the kernel to snapshot the buffer to (the
- * dtbd_data field). The kernel uses the same structure to pass back some
- * information regarding the buffer: the size of data actually copied out, the
- * number of drops, the number of errors, and the offset of the oldest record.
- * If the buffer policy is a "switch" policy, taking a snapshot of the
- * principal buffer has the additional effect of switching the active and
- * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has
- * the additional effect of switching the active and inactive buffers.
- */
-typedef struct dtrace_bufdesc {
- uint64_t dtbd_size; /* size of buffer */
- uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */
- uint32_t dtbd_errors; /* number of errors */
- uint64_t dtbd_drops; /* number of drops */
- DTRACE_PTR(char, dtbd_data); /* data */
- uint64_t dtbd_oldest; /* offset of oldest record */
-} dtrace_bufdesc_t;
-
-/*
- * DTrace Status
- *
- * The status of DTrace is relayed via the dtrace_status structure. This
- * structure contains members to count drops other than the capacity drops
- * available via the buffer interface (see above). This consists of dynamic
- * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
- * speculative drops (including capacity speculative drops, drops due to busy
- * speculative buffers and drops due to unavailable speculative buffers).
- * Additionally, the status structure contains a field to indicate the number
- * of "fill"-policy buffers have been filled and a boolean field to indicate
- * that exit() has been called. If the dtst_exiting field is non-zero, no
- * further data will be generated until tracing is stopped (at which time any
- * enablings of the END action will be processed); if user-level sees that
- * this field is non-zero, tracing should be stopped as soon as possible.
- */
-typedef struct dtrace_status {
- uint64_t dtst_dyndrops; /* dynamic drops */
- uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */
- uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */
- uint64_t dtst_specdrops; /* speculative drops */
- uint64_t dtst_specdrops_busy; /* spec drops due to busy */
- uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */
- uint64_t dtst_errors; /* total errors */
- uint64_t dtst_filled; /* number of filled bufs */
- uint64_t dtst_stkstroverflows; /* stack string tab overflows */
- uint64_t dtst_dblerrors; /* errors in ERROR probes */
- char dtst_killed; /* non-zero if killed */
- char dtst_exiting; /* non-zero if exit() called */
- char dtst_pad[6]; /* pad out to 64-bit align */
-} dtrace_status_t;
-
-/*
- * DTrace Configuration
- *
- * User-level may need to understand some elements of the kernel DTrace
- * configuration in order to generate correct DIF. This information is
- * conveyed via the dtrace_conf structure.
- */
-typedef struct dtrace_conf {
- uint_t dtc_difversion; /* supported DIF version */
- uint_t dtc_difintregs; /* # of DIF integer registers */
- uint_t dtc_diftupregs; /* # of DIF tuple registers */
- uint_t dtc_ctfmodel; /* CTF data model */
- uint_t dtc_pad[8]; /* reserved for future use */
-} dtrace_conf_t;
-
-/*
- * DTrace Faults
- *
- * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
- * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
- * postprocessing at user-level. Probe processing faults induce an ERROR
- * probe and are replicated in unistd.d to allow users' ERROR probes to decode
- * the error condition using thse symbolic labels.
- */
-#define DTRACEFLT_UNKNOWN 0 /* Unknown fault */
-#define DTRACEFLT_BADADDR 1 /* Bad address */
-#define DTRACEFLT_BADALIGN 2 /* Bad alignment */
-#define DTRACEFLT_ILLOP 3 /* Illegal operation */
-#define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */
-#define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */
-#define DTRACEFLT_KPRIV 6 /* Illegal kernel access */
-#define DTRACEFLT_UPRIV 7 /* Illegal user access */
-#define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */
-#define DTRACEFLT_BADSTACK 9 /* Bad stack */
-
-#define DTRACEFLT_LIBRARY 1000 /* Library-level fault */
-
-/*
- * DTrace Argument Types
- *
- * Because it would waste both space and time, argument types do not reside
- * with the probe. In order to determine argument types for args[X]
- * variables, the D compiler queries for argument types on a probe-by-probe
- * basis. (This optimizes for the common case that arguments are either not
- * used or used in an untyped fashion.) Typed arguments are specified with a
- * string of the type name in the dtragd_native member of the argument
- * description structure. Typed arguments may be further translated to types
- * of greater stability; the provider indicates such a translated argument by
- * filling in the dtargd_xlate member with the string of the translated type.
- * Finally, the provider may indicate which argument value a given argument
- * maps to by setting the dtargd_mapping member -- allowing a single argument
- * to map to multiple args[X] variables.
- */
-typedef struct dtrace_argdesc {
- dtrace_id_t dtargd_id; /* probe identifier */
- int dtargd_ndx; /* arg number (-1 iff none) */
- int dtargd_mapping; /* value mapping */
- char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */
- char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */
-} dtrace_argdesc_t;
-
-/*
- * DTrace Stability Attributes
- *
- * Each DTrace provider advertises the name and data stability of each of its
- * probe description components, as well as its architectural dependencies.
- * The D compiler can query the provider attributes (dtrace_pattr_t below) in
- * order to compute the properties of an input program and report them.
- */
-typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */
-typedef uint8_t dtrace_class_t; /* architectural dependency class */
-
-#define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */
-#define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */
-#define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */
-#define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */
-#define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */
-#define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */
-#define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */
-#define DTRACE_STABILITY_STANDARD 7 /* industry standard */
-#define DTRACE_STABILITY_MAX 7 /* maximum valid stability */
-
-#define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
-#define DTRACE_CLASS_CPU 1 /* CPU-module-specific */
-#define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */
-#define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */
-#define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */
-#define DTRACE_CLASS_COMMON 5 /* common to all systems */
-#define DTRACE_CLASS_MAX 5 /* maximum valid class */
-
-#define DTRACE_PRIV_NONE 0x0000
-#define DTRACE_PRIV_KERNEL 0x0001
-#define DTRACE_PRIV_USER 0x0002
-#define DTRACE_PRIV_PROC 0x0004
-#define DTRACE_PRIV_OWNER 0x0008
-#define DTRACE_PRIV_ZONEOWNER 0x0010
-
-#define DTRACE_PRIV_ALL \
- (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
- DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
-
-typedef struct dtrace_ppriv {
- uint32_t dtpp_flags; /* privilege flags */
- uid_t dtpp_uid; /* user ID */
- zoneid_t dtpp_zoneid; /* zone ID */
-} dtrace_ppriv_t;
-
-typedef struct dtrace_attribute {
- dtrace_stability_t dtat_name; /* entity name stability */
- dtrace_stability_t dtat_data; /* entity data stability */
- dtrace_class_t dtat_class; /* entity data dependency */
-} dtrace_attribute_t;
-
-typedef struct dtrace_pattr {
- dtrace_attribute_t dtpa_provider; /* provider attributes */
- dtrace_attribute_t dtpa_mod; /* module attributes */
- dtrace_attribute_t dtpa_func; /* function attributes */
- dtrace_attribute_t dtpa_name; /* name attributes */
- dtrace_attribute_t dtpa_args; /* args[] attributes */
-} dtrace_pattr_t;
-
-typedef struct dtrace_providerdesc {
- char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */
- dtrace_pattr_t dtvd_attr; /* stability attributes */
- dtrace_ppriv_t dtvd_priv; /* privileges required */
-} dtrace_providerdesc_t;
-
-/*
- * DTrace Pseudodevice Interface
- *
- * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
- * pseudodevice driver. These ioctls comprise the user-kernel interface to
- * DTrace.
- */
-#define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8))
-#define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
-#define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
-#define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
-#define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
-#define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
-#define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
-#define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
-#define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
-#define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
-#define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
-#define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
-#define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
-#define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
-#define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
-#define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
-#define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
-
-/*
- * DTrace Helpers
- *
- * In general, DTrace establishes probes in processes and takes actions on
- * processes without knowing their specific user-level structures. Instead of
- * existing in the framework, process-specific knowledge is contained by the
- * enabling D program -- which can apply process-specific knowledge by making
- * appropriate use of DTrace primitives like copyin() and copyinstr() to
- * operate on user-level data. However, there may exist some specific probes
- * of particular semantic relevance that the application developer may wish to
- * explicitly export. For example, an application may wish to export a probe
- * at the point that it begins and ends certain well-defined transactions. In
- * addition to providing probes, programs may wish to offer assistance for
- * certain actions. For example, in highly dynamic environments (e.g., Java),
- * it may be difficult to obtain a stack trace in terms of meaningful symbol
- * names (the translation from instruction addresses to corresponding symbol
- * names may only be possible in situ); these environments may wish to define
- * a series of actions to be applied in situ to obtain a meaningful stack
- * trace.
- *
- * These two mechanisms -- user-level statically defined tracing and assisting
- * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified
- * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
- * providers, probes and their arguments. If a helper wishes to provide
- * action assistance, probe descriptions and corresponding DIF actions may be
- * specified in the helper DOF. For such helper actions, however, the probe
- * description describes the specific helper: all DTrace helpers have the
- * provider name "dtrace" and the module name "helper", and the name of the
- * helper is contained in the function name (for example, the ustack() helper
- * is named "ustack"). Any helper-specific name may be contained in the name
- * (for example, if a helper were to have a constructor, it might be named
- * "dtrace:helper:<helper>:init"). Helper actions are only called when the
- * action that they are helping is taken. Helper actions may only return DIF
- * expressions, and may only call the following subroutines:
- *
- * alloca() <= Allocates memory out of the consumer's scratch space
- * bcopy() <= Copies memory to scratch space
- * copyin() <= Copies memory from user-level into consumer's scratch
- * copyinto() <= Copies memory into a specific location in scratch
- * copyinstr() <= Copies a string into a specific location in scratch
- *
- * Helper actions may only access the following built-in variables:
- *
- * curthread <= Current kthread_t pointer
- * tid <= Current thread identifier
- * pid <= Current process identifier
- * ppid <= Parent process identifier
- * uid <= Current user ID
- * gid <= Current group ID
- * execname <= Current executable name
- * zonename <= Current zone name
- *
- * Helper actions may not manipulate or allocate dynamic variables, but they
- * may have clause-local and statically-allocated global variables. The
- * helper action variable state is specific to the helper action -- variables
- * used by the helper action may not be accessed outside of the helper
- * action, and the helper action may not access variables that like outside
- * of it. Helper actions may not load from kernel memory at-large; they are
- * restricting to loading current user state (via copyin() and variants) and
- * scratch space. As with probe enablings, helper actions are executed in
- * program order. The result of the helper action is the result of the last
- * executing helper expression.
- *
- * Helpers -- composed of either providers/probes or probes/actions (or both)
- * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
- * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
- * encapsulates the name and base address of the user-level library or
- * executable publishing the helpers and probes as well as the DOF that
- * contains the definitions of those helpers and probes.
- *
- * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
- * helpers and should no longer be used. No other ioctls are valid on the
- * helper minor node.
- */
-#define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8))
-#define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */
-#define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */
-#define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */
-
-typedef struct dof_helper {
- char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */
- uint64_t dofhp_addr; /* base address of object */
- uint64_t dofhp_dof; /* address of helper DOF */
-} dof_helper_t;
-
-#define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
-#define DTRACEMNR_HELPER "helper" /* node for helpers */
-#define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
-#define DTRACEMNRN_HELPER 1 /* minor for helpers */
-#define DTRACEMNRN_CLONE 2 /* first clone minor */
-
-#ifdef _KERNEL
-
-/*
- * DTrace Provider API
- *
- * The following functions are implemented by the DTrace framework and are
- * used to implement separate in-kernel DTrace providers. Common functions
- * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
- * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
- *
- * The provider API has two halves: the API that the providers consume from
- * DTrace, and the API that providers make available to DTrace.
- *
- * 1 Framework-to-Provider API
- *
- * 1.1 Overview
- *
- * The Framework-to-Provider API is represented by the dtrace_pops structure
- * that the provider passes to the framework when registering itself. This
- * structure consists of the following members:
- *
- * dtps_provide() <-- Provide all probes, all modules
- * dtps_provide_module() <-- Provide all probes in specified module
- * dtps_enable() <-- Enable specified probe
- * dtps_disable() <-- Disable specified probe
- * dtps_suspend() <-- Suspend specified probe
- * dtps_resume() <-- Resume specified probe
- * dtps_getargdesc() <-- Get the argument description for args[X]
- * dtps_getargval() <-- Get the value for an argX or args[X] variable
- * dtps_usermode() <-- Find out if the probe was fired in user mode
- * dtps_destroy() <-- Destroy all state associated with this probe
- *
- * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
- *
- * 1.2.1 Overview
- *
- * Called to indicate that the provider should provide all probes. If the
- * specified description is non-NULL, dtps_provide() is being called because
- * no probe matched a specified probe -- if the provider has the ability to
- * create custom probes, it may wish to create a probe that matches the
- * specified description.
- *
- * 1.2.2 Arguments and notes
- *
- * The first argument is the cookie as passed to dtrace_register(). The
- * second argument is a pointer to a probe description that the provider may
- * wish to consider when creating custom probes. The provider is expected to
- * call back into the DTrace framework via dtrace_probe_create() to create
- * any necessary probes. dtps_provide() may be called even if the provider
- * has made available all probes; the provider should check the return value
- * of dtrace_probe_create() to handle this case. Note that the provider need
- * not implement both dtps_provide() and dtps_provide_module(); see
- * "Arguments and Notes" for dtrace_register(), below.
- *
- * 1.2.3 Return value
- *
- * None.
- *
- * 1.2.4 Caller's context
- *
- * dtps_provide() is typically called from open() or ioctl() context, but may
- * be called from other contexts as well. The DTrace framework is locked in
- * such a way that providers may not register or unregister. This means that
- * the provider may not call any DTrace API that affects its registration with
- * the framework, including dtrace_register(), dtrace_unregister(),
- * dtrace_invalidate(), and dtrace_condense(). However, the context is such
- * that the provider may (and indeed, is expected to) call probe-related
- * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
- * and dtrace_probe_arg().
- *
- * 1.3 void dtps_provide_module(void *arg, struct modctl *mp)
- *
- * 1.3.1 Overview
- *
- * Called to indicate that the provider should provide all probes in the
- * specified module.
- *
- * 1.3.2 Arguments and notes
- *
- * The first argument is the cookie as passed to dtrace_register(). The
- * second argument is a pointer to a modctl structure that indicates the
- * module for which probes should be created.
- *
- * 1.3.3 Return value
- *
- * None.
- *
- * 1.3.4 Caller's context
- *
- * dtps_provide_module() may be called from open() or ioctl() context, but
- * may also be called from a module loading context. mod_lock is held, and
- * the DTrace framework is locked in such a way that providers may not
- * register or unregister. This means that the provider may not call any
- * DTrace API that affects its registration with the framework, including
- * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
- * dtrace_condense(). However, the context is such that the provider may (and
- * indeed, is expected to) call probe-related DTrace routines, including
- * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
- * that the provider need not implement both dtps_provide() and
- * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
- * below.
- *
- * 1.4 void dtps_enable(void *arg, dtrace_id_t id, void *parg)
- *
- * 1.4.1 Overview
- *
- * Called to enable the specified probe.
- *
- * 1.4.2 Arguments and notes
- *
- * The first argument is the cookie as passed to dtrace_register(). The
- * second argument is the identifier of the probe to be enabled. The third
- * argument is the probe argument as passed to dtrace_probe_create().
- * dtps_enable() will be called when a probe transitions from not being
- * enabled at all to having one or more ECB. The number of ECBs associated
- * with the probe may change without subsequent calls into the provider.
- * When the number of ECBs drops to zero, the provider will be explicitly
- * told to disable the probe via dtps_disable(). dtrace_probe() should never
- * be called for a probe identifier that hasn't been explicitly enabled via
- * dtps_enable().
- *
- * 1.4.3 Return value
- *
- * None.
- *
- * 1.4.4 Caller's context
- *
- * The DTrace framework is locked in such a way that it may not be called
- * back into at all. cpu_lock is held. mod_lock is not held and may not
- * be acquired.
- *
- * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
- *
- * 1.5.1 Overview
- *
- * Called to disable the specified probe.
- *
- * 1.5.2 Arguments and notes
- *
- * The first argument is the cookie as passed to dtrace_register(). The
- * second argument is the identifier of the probe to be disabled. The third
- * argument is the probe argument as passed to dtrace_probe_create().
- * dtps_disable() will be called when a probe transitions from being enabled
- * to having zero ECBs. dtrace_probe() should never be called for a probe
- * identifier that has been explicitly enabled via dtps_disable().
- *
- * 1.5.3 Return value
- *
- * None.
- *
- * 1.5.4 Caller's context
- *
- * The DTrace framework is locked in such a way that it may not be called
- * back into at all. cpu_lock is held. mod_lock is not held and may not
- * be acquired.
- *
- * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
- *
- * 1.6.1 Overview
- *
- * Called to suspend the specified enabled probe. This entry point is for
- * providers that may need to suspend some or all of their probes when CPUs
- * are being powered on or when the boot monitor is being entered for a
- * prolonged period of time.
- *
- * 1.6.2 Arguments and notes
- *
- * The first argument is the cookie as passed to dtrace_register(). The
- * second argument is the identifier of the probe to be suspended. The
- * third argument is the probe argument as passed to dtrace_probe_create().
- * dtps_suspend will only be called on an enabled probe. Providers that
- * provide a dtps_suspend entry point will want to take roughly the action
- * that it takes for dtps_disable.
- *
- * 1.6.3 Return value
- *
- * None.
- *
- * 1.6.4 Caller's context
- *
- * Interrupts are disabled. The DTrace framework is in a state such that the
- * specified probe cannot be disabled or destroyed for the duration of
- * dtps_suspend(). As interrupts are disabled, the provider is afforded
- * little latitude; the provider is expected to do no more than a store to
- * memory.
- *
- * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
- *
- * 1.7.1 Overview
- *
- * Called to resume the specified enabled probe. This entry point is for
- * providers that may need to resume some or all of their probes after the
- * completion of an event that induced a call to dtps_suspend().
- *
- * 1.7.2 Arguments and notes
- *
- * The first argument is the cookie as passed to dtrace_register(). The
- * second argument is the identifier of the probe to be resumed. The
- * third argument is the probe argument as passed to dtrace_probe_create().
- * dtps_resume will only be called on an enabled probe. Providers that
- * provide a dtps_resume entry point will want to take roughly the action
- * that it takes for dtps_enable.
- *
- * 1.7.3 Return value
- *
- * None.
- *
- * 1.7.4 Caller's context
- *
- * Interrupts are disabled. The DTrace framework is in a state such that the
- * specified probe cannot be disabled or destroyed for the duration of
- * dtps_resume(). As interrupts are disabled, the provider is afforded
- * little latitude; the provider is expected to do no more than a store to
- * memory.
- *
- * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
- * dtrace_argdesc_t *desc)
- *
- * 1.8.1 Overview
- *
- * Called to retrieve the argument description for an args[X] variable.
- *
- * 1.8.2 Arguments and notes
- *
- * The first argument is the cookie as passed to dtrace_register(). The
- * second argument is the identifier of the current probe. The third
- * argument is the probe argument as passed to dtrace_probe_create(). The
- * fourth argument is a pointer to the argument description. This
- * description is both an input and output parameter: it contains the
- * index of the desired argument in the dtargd_ndx field, and expects
- * the other fields to be filled in upon return. If there is no argument
- * corresponding to the specified index, the dtargd_ndx field should be set
- * to DTRACE_ARGNONE.
- *
- * 1.8.3 Return value
- *
- * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
- * members of the dtrace_argdesc_t structure are all output values.
- *
- * 1.8.4 Caller's context
- *
- * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
- * the DTrace framework is locked in such a way that providers may not
- * register or unregister. This means that the provider may not call any
- * DTrace API that affects its registration with the framework, including
- * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
- * dtrace_condense().
- *
- * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
- * int argno, int aframes)
- *
- * 1.9.1 Overview
- *
- * Called to retrieve a value for an argX or args[X] variable.
- *
- * 1.9.2 Arguments and notes
- *
- * The first argument is the cookie as passed to dtrace_register(). The
- * second argument is the identifier of the current probe. The third
- * argument is the probe argument as passed to dtrace_probe_create(). The
- * fourth argument is the number of the argument (the X in the example in
- * 1.9.1). The fifth argument is the number of stack frames that were used
- * to get from the actual place in the code that fired the probe to
- * dtrace_probe() itself, the so-called artificial frames. This argument may
- * be used to descend an appropriate number of frames to find the correct
- * values. If this entry point is left NULL, the dtrace_getarg() built-in
- * function is used.
- *
- * 1.9.3 Return value
- *
- * The value of the argument.
- *
- * 1.9.4 Caller's context
- *
- * This is called from within dtrace_probe() meaning that interrupts
- * are disabled. No locks should be taken within this entry point.
- *
- * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
- *
- * 1.10.1 Overview
- *
- * Called to determine if the probe was fired in a user context.
- *
- * 1.10.2 Arguments and notes
- *
- * The first argument is the cookie as passed to dtrace_register(). The
- * second argument is the identifier of the current probe. The third
- * argument is the probe argument as passed to dtrace_probe_create(). This
- * entry point must not be left NULL for providers whose probes allow for
- * mixed mode tracing, that is to say those probes that can fire during
- * kernel- _or_ user-mode execution
- *
- * 1.10.3 Return value
- *
- * A boolean value.
- *
- * 1.10.4 Caller's context
- *
- * This is called from within dtrace_probe() meaning that interrupts
- * are disabled. No locks should be taken within this entry point.
- *
- * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
- *
- * 1.11.1 Overview
- *
- * Called to destroy the specified probe.
- *
- * 1.11.2 Arguments and notes
- *
- * The first argument is the cookie as passed to dtrace_register(). The
- * second argument is the identifier of the probe to be destroyed. The third
- * argument is the probe argument as passed to dtrace_probe_create(). The
- * provider should free all state associated with the probe. The framework
- * guarantees that dtps_destroy() is only called for probes that have either
- * been disabled via dtps_disable() or were never enabled via dtps_enable().
- * Once dtps_disable() has been called for a probe, no further call will be
- * made specifying the probe.
- *
- * 1.11.3 Return value
- *
- * None.
- *
- * 1.11.4 Caller's context
- *
- * The DTrace framework is locked in such a way that it may not be called
- * back into at all. mod_lock is held. cpu_lock is not held, and may not be
- * acquired.
- *
- *
- * 2 Provider-to-Framework API
- *
- * 2.1 Overview
- *
- * The Provider-to-Framework API provides the mechanism for the provider to
- * register itself with the DTrace framework, to create probes, to lookup
- * probes and (most importantly) to fire probes. The Provider-to-Framework
- * consists of:
- *
- * dtrace_register() <-- Register a provider with the DTrace framework
- * dtrace_unregister() <-- Remove a provider's DTrace registration
- * dtrace_invalidate() <-- Invalidate the specified provider
- * dtrace_condense() <-- Remove a provider's unenabled probes
- * dtrace_attached() <-- Indicates whether or not DTrace has attached
- * dtrace_probe_create() <-- Create a DTrace probe
- * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
- * dtrace_probe_arg() <-- Return the probe argument for a specific probe
- * dtrace_probe() <-- Fire the specified probe
- *
- * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
- * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
- * dtrace_provider_id_t *idp)
- *
- * 2.2.1 Overview
- *
- * dtrace_register() registers the calling provider with the DTrace
- * framework. It should generally be called by DTrace providers in their
- * attach(9E) entry point.
- *
- * 2.2.2 Arguments and Notes
- *
- * The first argument is the name of the provider. The second argument is a
- * pointer to the stability attributes for the provider. The third argument
- * is the privilege flags for the provider, and must be some combination of:
- *
- * DTRACE_PRIV_NONE <= All users may enable probes from this provider
- *
- * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
- * enable probes from this provider
- *
- * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
- * enable probes from this provider
- *
- * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
- * may enable probes from this provider
- *
- * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
- * the privilege requirements above. These probes
- * require either (a) a user ID matching the user
- * ID of the cred passed in the fourth argument
- * or (b) the PRIV_PROC_OWNER privilege.
- *
- * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
- * the privilege requirements above. These probes
- * require either (a) a zone ID matching the zone
- * ID of the cred passed in the fourth argument
- * or (b) the PRIV_PROC_ZONE privilege.
- *
- * Note that these flags designate the _visibility_ of the probes, not
- * the conditions under which they may or may not fire.
- *
- * The fourth argument is the credential that is associated with the
- * provider. This argument should be NULL if the privilege flags don't
- * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
- * framework stashes the uid and zoneid represented by this credential
- * for use at probe-time, in implicit predicates. These limit visibility
- * of the probes to users and/or zones which have sufficient privilege to
- * access them.
- *
- * The fifth argument is a DTrace provider operations vector, which provides
- * the implementation for the Framework-to-Provider API. (See Section 1,
- * above.) This must be non-NULL, and each member must be non-NULL. The
- * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
- * members (if the provider so desires, _one_ of these members may be left
- * NULL -- denoting that the provider only implements the other) and (2)
- * the dtps_suspend() and dtps_resume() members, which must either both be
- * NULL or both be non-NULL.
- *
- * The sixth argument is a cookie to be specified as the first argument for
- * each function in the Framework-to-Provider API. This argument may have
- * any value.
- *
- * The final argument is a pointer to dtrace_provider_id_t. If
- * dtrace_register() successfully completes, the provider identifier will be
- * stored in the memory pointed to be this argument. This argument must be
- * non-NULL.
- *
- * 2.2.3 Return value
- *
- * On success, dtrace_register() returns 0 and stores the new provider's
- * identifier into the memory pointed to by the idp argument. On failure,
- * dtrace_register() returns an errno:
- *
- * EINVAL The arguments passed to dtrace_register() were somehow invalid.
- * This may because a parameter that must be non-NULL was NULL,
- * because the name was invalid (either empty or an illegal
- * provider name) or because the attributes were invalid.
- *
- * No other failure code is returned.
- *
- * 2.2.4 Caller's context
- *
- * dtrace_register() may induce calls to dtrace_provide(); the provider must
- * hold no locks across dtrace_register() that may also be acquired by
- * dtrace_provide(). cpu_lock and mod_lock must not be held.
- *
- * 2.3 int dtrace_unregister(dtrace_provider_t id)
- *
- * 2.3.1 Overview
- *
- * Unregisters the specified provider from the DTrace framework. It should
- * generally be called by DTrace providers in their detach(9E) entry point.
- *
- * 2.3.2 Arguments and Notes
- *
- * The only argument is the provider identifier, as returned from a
- * successful call to dtrace_register(). As a result of calling
- * dtrace_unregister(), the DTrace framework will call back into the provider
- * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
- * completes, however, the DTrace framework will no longer make calls through
- * the Framework-to-Provider API.
- *
- * 2.3.3 Return value
- *
- * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
- * returns an errno:
- *
- * EBUSY There are currently processes that have the DTrace pseudodevice
- * open, or there exists an anonymous enabling that hasn't yet
- * been claimed.
- *
- * No other failure code is returned.
- *
- * 2.3.4 Caller's context
- *
- * Because a call to dtrace_unregister() may induce calls through the
- * Framework-to-Provider API, the caller may not hold any lock across
- * dtrace_register() that is also acquired in any of the Framework-to-
- * Provider API functions. Additionally, mod_lock may not be held.
- *
- * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
- *
- * 2.4.1 Overview
- *
- * Invalidates the specified provider. All subsequent probe lookups for the
- * specified provider will fail, but its probes will not be removed.
- *
- * 2.4.2 Arguments and note
- *
- * The only argument is the provider identifier, as returned from a
- * successful call to dtrace_register(). In general, a provider's probes
- * always remain valid; dtrace_invalidate() is a mechanism for invalidating
- * an entire provider, regardless of whether or not probes are enabled or
- * not. Note that dtrace_invalidate() will _not_ prevent already enabled
- * probes from firing -- it will merely prevent any new enablings of the
- * provider's probes.
- *
- * 2.5 int dtrace_condense(dtrace_provider_id_t id)
- *
- * 2.5.1 Overview
- *
- * Removes all the unenabled probes for the given provider. This function is
- * not unlike dtrace_unregister(), except that it doesn't remove the
- * provider just as many of its associated probes as it can.
- *
- * 2.5.2 Arguments and Notes
- *
- * As with dtrace_unregister(), the sole argument is the provider identifier
- * as returned from a successful call to dtrace_register(). As a result of
- * calling dtrace_condense(), the DTrace framework will call back into the
- * given provider's dtps_destroy() entry point for each of the provider's
- * unenabled probes.
- *
- * 2.5.3 Return value
- *
- * Currently, dtrace_condense() always returns 0. However, consumers of this
- * function should check the return value as appropriate; its behavior may
- * change in the future.
- *
- * 2.5.4 Caller's context
- *
- * As with dtrace_unregister(), the caller may not hold any lock across
- * dtrace_condense() that is also acquired in the provider's entry points.
- * Also, mod_lock may not be held.
- *
- * 2.6 int dtrace_attached()
- *
- * 2.6.1 Overview
- *
- * Indicates whether or not DTrace has attached.
- *
- * 2.6.2 Arguments and Notes
- *
- * For most providers, DTrace makes initial contact beyond registration.
- * That is, once a provider has registered with DTrace, it waits to hear
- * from DTrace to create probes. However, some providers may wish to
- * proactively create probes without first being told by DTrace to do so.
- * If providers wish to do this, they must first call dtrace_attached() to
- * determine if DTrace itself has attached. If dtrace_attached() returns 0,
- * the provider must not make any other Provider-to-Framework API call.
- *
- * 2.6.3 Return value
- *
- * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
- *
- * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
- * const char *func, const char *name, int aframes, void *arg)
- *
- * 2.7.1 Overview
- *
- * Creates a probe with specified module name, function name, and name.
- *
- * 2.7.2 Arguments and Notes
- *
- * The first argument is the provider identifier, as returned from a
- * successful call to dtrace_register(). The second, third, and fourth
- * arguments are the module name, function name, and probe name,
- * respectively. Of these, module name and function name may both be NULL
- * (in which case the probe is considered to be unanchored), or they may both
- * be non-NULL. The name must be non-NULL, and must point to a non-empty
- * string.
- *
- * The fifth argument is the number of artificial stack frames that will be
- * found on the stack when dtrace_probe() is called for the new probe. These
- * artificial frames will be automatically be pruned should the stack() or
- * stackdepth() functions be called as part of one of the probe's ECBs. If
- * the parameter doesn't add an artificial frame, this parameter should be
- * zero.
- *
- * The final argument is a probe argument that will be passed back to the
- * provider when a probe-specific operation is called. (e.g., via
- * dtps_enable(), dtps_disable(), etc.)
- *
- * Note that it is up to the provider to be sure that the probe that it
- * creates does not already exist -- if the provider is unsure of the probe's
- * existence, it should assure its absence with dtrace_probe_lookup() before
- * calling dtrace_probe_create().
- *
- * 2.7.3 Return value
- *
- * dtrace_probe_create() always succeeds, and always returns the identifier
- * of the newly-created probe.
- *
- * 2.7.4 Caller's context
- *
- * While dtrace_probe_create() is generally expected to be called from
- * dtps_provide() and/or dtps_provide_module(), it may be called from other
- * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
- *
- * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
- * const char *func, const char *name)
- *
- * 2.8.1 Overview
- *
- * Looks up a probe based on provdider and one or more of module name,
- * function name and probe name.
- *
- * 2.8.2 Arguments and Notes
- *
- * The first argument is the provider identifier, as returned from a
- * successful call to dtrace_register(). The second, third, and fourth
- * arguments are the module name, function name, and probe name,
- * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
- * the identifier of the first probe that is provided by the specified
- * provider and matches all of the non-NULL matching criteria.
- * dtrace_probe_lookup() is generally used by a provider to be check the
- * existence of a probe before creating it with dtrace_probe_create().
- *
- * 2.8.3 Return value
- *
- * If the probe exists, returns its identifier. If the probe does not exist,
- * return DTRACE_IDNONE.
- *
- * 2.8.4 Caller's context
- *
- * While dtrace_probe_lookup() is generally expected to be called from
- * dtps_provide() and/or dtps_provide_module(), it may also be called from
- * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
- *
- * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
- *
- * 2.9.1 Overview
- *
- * Returns the probe argument associated with the specified probe.
- *
- * 2.9.2 Arguments and Notes
- *
- * The first argument is the provider identifier, as returned from a
- * successful call to dtrace_register(). The second argument is a probe
- * identifier, as returned from dtrace_probe_lookup() or
- * dtrace_probe_create(). This is useful if a probe has multiple
- * provider-specific components to it: the provider can create the probe
- * once with provider-specific state, and then add to the state by looking
- * up the probe based on probe identifier.
- *
- * 2.9.3 Return value
- *
- * Returns the argument associated with the specified probe. If the
- * specified probe does not exist, or if the specified probe is not provided
- * by the specified provider, NULL is returned.
- *
- * 2.9.4 Caller's context
- *
- * While dtrace_probe_arg() is generally expected to be called from
- * dtps_provide() and/or dtps_provide_module(), it may also be called from
- * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
- *
- * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
- * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
- *
- * 2.10.1 Overview
- *
- * The epicenter of DTrace: fires the specified probes with the specified
- * arguments.
- *
- * 2.10.2 Arguments and Notes
- *
- * The first argument is a probe identifier as returned by
- * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
- * arguments are the values to which the D variables "arg0" through "arg4"
- * will be mapped.
- *
- * dtrace_probe() should be called whenever the specified probe has fired --
- * however the provider defines it.
- *
- * 2.10.3 Return value
- *
- * None.
- *
- * 2.10.4 Caller's context
- *
- * dtrace_probe() may be called in virtually any context: kernel, user,
- * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
- * dispatcher locks held, with interrupts disabled, etc. The only latitude
- * that must be afforded to DTrace is the ability to make calls within
- * itself (and to its in-kernel subroutines) and the ability to access
- * arbitrary (but mapped) memory. On some platforms, this constrains
- * context. For example, on UltraSPARC, dtrace_probe() cannot be called
- * from any context in which TL is greater than zero. dtrace_probe() may
- * also not be called from any routine which may be called by dtrace_probe()
- * -- which includes functions in the DTrace framework and some in-kernel
- * DTrace subroutines. All such functions "dtrace_"; providers that
- * instrument the kernel arbitrarily should be sure to not instrument these
- * routines.
- */
-typedef struct dtrace_pops {
- void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
- void (*dtps_provide_module)(void *arg, struct modctl *mp);
- void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
- void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
- void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
- void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
- void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
- dtrace_argdesc_t *desc);
- uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
- int argno, int aframes);
- int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
- void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
-} dtrace_pops_t;
-
-typedef uintptr_t dtrace_provider_id_t;
-
-extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
- cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
-extern int dtrace_unregister(dtrace_provider_id_t);
-extern int dtrace_condense(dtrace_provider_id_t);
-extern void dtrace_invalidate(dtrace_provider_id_t);
-extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
- const char *, const char *);
-extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
- const char *, const char *, int, void *);
-extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
-extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
- uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
-
-/*
- * DTrace Meta Provider API
- *
- * The following functions are implemented by the DTrace framework and are
- * used to implement meta providers. Meta providers plug into the DTrace
- * framework and are used to instantiate new providers on the fly. At
- * present, there is only one type of meta provider and only one meta
- * provider may be registered with the DTrace framework at a time. The
- * sole meta provider type provides user-land static tracing facilities
- * by taking meta probe descriptions and adding a corresponding provider
- * into the DTrace framework.
- *
- * 1 Framework-to-Provider
- *
- * 1.1 Overview
- *
- * The Framework-to-Provider API is represented by the dtrace_mops structure
- * that the meta provider passes to the framework when registering itself as
- * a meta provider. This structure consists of the following members:
- *
- * dtms_create_probe() <-- Add a new probe to a created provider
- * dtms_provide_pid() <-- Create a new provider for a given process
- * dtms_remove_pid() <-- Remove a previously created provider
- *
- * 1.2 void dtms_create_probe(void *arg, void *parg,
- * dtrace_helper_probedesc_t *probedesc);
- *
- * 1.2.1 Overview
- *
- * Called by the DTrace framework to create a new probe in a provider
- * created by this meta provider.
- *
- * 1.2.2 Arguments and notes
- *
- * The first argument is the cookie as passed to dtrace_meta_register().
- * The second argument is the provider cookie for the associated provider;
- * this is obtained from the return value of dtms_provide_pid(). The third
- * argument is the helper probe description.
- *
- * 1.2.3 Return value
- *
- * None
- *
- * 1.2.4 Caller's context
- *
- * dtms_create_probe() is called from either ioctl() or module load context.
- * The DTrace framework is locked in such a way that meta providers may not
- * register or unregister. This means that the meta provider cannot call
- * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
- * such that the provider may (and is expected to) call provider-related
- * DTrace provider APIs including dtrace_probe_create().
- *
- * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
- * pid_t pid)
- *
- * 1.3.1 Overview
- *
- * Called by the DTrace framework to instantiate a new provider given the
- * description of the provider and probes in the mprov argument. The
- * meta provider should call dtrace_register() to insert the new provider
- * into the DTrace framework.
- *
- * 1.3.2 Arguments and notes
- *
- * The first argument is the cookie as passed to dtrace_meta_register().
- * The second argument is a pointer to a structure describing the new
- * helper provider. The third argument is the process identifier for
- * process associated with this new provider. Note that the name of the
- * provider as passed to dtrace_register() should be the contatenation of
- * the dtmpb_provname member of the mprov argument and the processs
- * identifier as a string.
- *
- * 1.3.3 Return value
- *
- * The cookie for the provider that the meta provider creates. This is
- * the same value that it passed to dtrace_register().
- *
- * 1.3.4 Caller's context
- *
- * dtms_provide_pid() is called from either ioctl() or module load context.
- * The DTrace framework is locked in such a way that meta providers may not
- * register or unregister. This means that the meta provider cannot call
- * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
- * is such that the provider may -- and is expected to -- call
- * provider-related DTrace provider APIs including dtrace_register().
- *
- * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
- * pid_t pid)
- *
- * 1.4.1 Overview
- *
- * Called by the DTrace framework to remove a provider that had previously
- * been instantiated via the dtms_provide_pid() entry point. The meta
- * provider need not remove the provider immediately, but this entry
- * point indicates that the provider should be removed as soon as possible
- * using the dtrace_unregister() API.
- *
- * 1.4.2 Arguments and notes
- *
- * The first argument is the cookie as passed to dtrace_meta_register().
- * The second argument is a pointer to a structure describing the helper
- * provider. The third argument is the process identifier for process
- * associated with this new provider.
- *
- * 1.4.3 Return value
- *
- * None
- *
- * 1.4.4 Caller's context
- *
- * dtms_remove_pid() is called from either ioctl() or exit() context.
- * The DTrace framework is locked in such a way that meta providers may not
- * register or unregister. This means that the meta provider cannot call
- * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
- * is such that the provider may -- and is expected to -- call
- * provider-related DTrace provider APIs including dtrace_unregister().
- */
-typedef struct dtrace_helper_probedesc {
- char *dthpb_mod; /* probe module */
- char *dthpb_func; /* probe function */
- char *dthpb_name; /* probe name */
- uint64_t dthpb_base; /* base address */
- uint32_t *dthpb_offs; /* offsets array */
- uint32_t *dthpb_enoffs; /* is-enabled offsets array */
- uint32_t dthpb_noffs; /* offsets count */
- uint32_t dthpb_nenoffs; /* is-enabled offsets count */
- uint8_t *dthpb_args; /* argument mapping array */
- uint8_t dthpb_xargc; /* translated argument count */
- uint8_t dthpb_nargc; /* native argument count */
- char *dthpb_xtypes; /* translated types strings */
- char *dthpb_ntypes; /* native types strings */
-} dtrace_helper_probedesc_t;
-
-typedef struct dtrace_helper_provdesc {
- char *dthpv_provname; /* provider name */
- dtrace_pattr_t dthpv_pattr; /* stability attributes */
-} dtrace_helper_provdesc_t;
-
-typedef struct dtrace_mops {
- void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
- void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
- void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
-} dtrace_mops_t;
-
-typedef uintptr_t dtrace_meta_provider_id_t;
-
-extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
- dtrace_meta_provider_id_t *);
-extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
-
-/*
- * DTrace Kernel Hooks
- *
- * The following functions are implemented by the base kernel and form a set of
- * hooks used by the DTrace framework. DTrace hooks are implemented in either
- * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
- * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
- */
-
-typedef enum dtrace_vtime_state {
- DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */
- DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */
- DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */
- DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */
-} dtrace_vtime_state_t;
-
-extern dtrace_vtime_state_t dtrace_vtime_active;
-extern void dtrace_vtime_switch(kthread_t *next);
-extern void dtrace_vtime_enable_tnf(void);
-extern void dtrace_vtime_disable_tnf(void);
-extern void dtrace_vtime_enable(void);
-extern void dtrace_vtime_disable(void);
-
-struct regs;
-
-extern int (*dtrace_pid_probe_ptr)(struct regs *);
-extern int (*dtrace_return_probe_ptr)(struct regs *);
-extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
-extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
-extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
-extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
-
-typedef uintptr_t dtrace_icookie_t;
-typedef void (*dtrace_xcall_t)(void *);
-
-extern dtrace_icookie_t dtrace_interrupt_disable(void);
-extern void dtrace_interrupt_enable(dtrace_icookie_t);
-
-extern void dtrace_membar_producer(void);
-extern void dtrace_membar_consumer(void);
-
-extern void (*dtrace_cpu_init)(processorid_t);
-extern void (*dtrace_modload)(struct modctl *);
-extern void (*dtrace_modunload)(struct modctl *);
-extern void (*dtrace_helpers_cleanup)();
-extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
-extern void (*dtrace_cpustart_init)();
-extern void (*dtrace_cpustart_fini)();
-
-extern void (*dtrace_debugger_init)();
-extern void (*dtrace_debugger_fini)();
-extern dtrace_cacheid_t dtrace_predcache_id;
-
-extern hrtime_t dtrace_gethrtime(void);
-extern void dtrace_sync(void);
-extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
-extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
-extern void dtrace_vpanic(const char *, __va_list);
-extern void dtrace_panic(const char *, ...);
-
-extern int dtrace_safe_defer_signal(void);
-extern void dtrace_safe_synchronous_signal(void);
-
-extern int dtrace_mach_aframes(void);
-
-#if defined(__i386) || defined(__amd64)
-extern int dtrace_instr_size(uchar_t *instr);
-extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
-extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
-extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
-extern void dtrace_invop_callsite(void);
-#endif
-
-#ifdef __sparc
-extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
-extern void dtrace_getfsr(uint64_t *);
-#endif
-
-#define DTRACE_CPUFLAG_ISSET(flag) \
- (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
-
-#define DTRACE_CPUFLAG_SET(flag) \
- (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
-
-#define DTRACE_CPUFLAG_CLEAR(flag) \
- (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
-
-#endif /* _KERNEL */
-
-#endif /* _ASM */
-
-#if defined(__i386) || defined(__amd64)
-
-#define DTRACE_INVOP_PUSHL_EBP 1
-#define DTRACE_INVOP_POPL_EBP 2
-#define DTRACE_INVOP_LEAVE 3
-#define DTRACE_INVOP_NOP 4
-#define DTRACE_INVOP_RET 5
-
-#endif
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* _SYS_DTRACE_H */
diff --git a/cddl/contrib/opensolaris/uts/common/sys/dtrace_impl.h b/cddl/contrib/opensolaris/uts/common/sys/dtrace_impl.h
deleted file mode 100644
index fed537e..0000000
--- a/cddl/contrib/opensolaris/uts/common/sys/dtrace_impl.h
+++ /dev/null
@@ -1,1298 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-
-/*
- * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _SYS_DTRACE_IMPL_H
-#define _SYS_DTRACE_IMPL_H
-
-#pragma ident "%Z%%M% %I% %E% SMI"
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*
- * DTrace Dynamic Tracing Software: Kernel Implementation Interfaces
- *
- * Note: The contents of this file are private to the implementation of the
- * Solaris system and DTrace subsystem and are subject to change at any time
- * without notice. Applications and drivers using these interfaces will fail
- * to run on future releases. These interfaces should not be used for any
- * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
- * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
- */
-
-#include <sys/dtrace.h>
-
-/*
- * DTrace Implementation Constants and Typedefs
- */
-#define DTRACE_MAXPROPLEN 128
-#define DTRACE_DYNVAR_CHUNKSIZE 256
-
-struct dtrace_probe;
-struct dtrace_ecb;
-struct dtrace_predicate;
-struct dtrace_action;
-struct dtrace_provider;
-struct dtrace_state;
-
-typedef struct dtrace_probe dtrace_probe_t;
-typedef struct dtrace_ecb dtrace_ecb_t;
-typedef struct dtrace_predicate dtrace_predicate_t;
-typedef struct dtrace_action dtrace_action_t;
-typedef struct dtrace_provider dtrace_provider_t;
-typedef struct dtrace_meta dtrace_meta_t;
-typedef struct dtrace_state dtrace_state_t;
-typedef uint32_t dtrace_optid_t;
-typedef uint32_t dtrace_specid_t;
-typedef uint64_t dtrace_genid_t;
-
-/*
- * DTrace Probes
- *
- * The probe is the fundamental unit of the DTrace architecture. Probes are
- * created by DTrace providers, and managed by the DTrace framework. A probe
- * is identified by a unique <provider, module, function, name> tuple, and has
- * a unique probe identifier assigned to it. (Some probes are not associated
- * with a specific point in text; these are called _unanchored probes_ and have
- * no module or function associated with them.) Probes are represented as a
- * dtrace_probe structure. To allow quick lookups based on each element of the
- * probe tuple, probes are hashed by each of provider, module, function and
- * name. (If a lookup is performed based on a regular expression, a
- * dtrace_probekey is prepared, and a linear search is performed.) Each probe
- * is additionally pointed to by a linear array indexed by its identifier. The
- * identifier is the provider's mechanism for indicating to the DTrace
- * framework that a probe has fired: the identifier is passed as the first
- * argument to dtrace_probe(), where it is then mapped into the corresponding
- * dtrace_probe structure. From the dtrace_probe structure, dtrace_probe() can
- * iterate over the probe's list of enabling control blocks; see "DTrace
- * Enabling Control Blocks", below.)
- */
-struct dtrace_probe {
- dtrace_id_t dtpr_id; /* probe identifier */
- dtrace_ecb_t *dtpr_ecb; /* ECB list; see below */
- dtrace_ecb_t *dtpr_ecb_last; /* last ECB in list */
- void *dtpr_arg; /* provider argument */
- dtrace_cacheid_t dtpr_predcache; /* predicate cache ID */
- int dtpr_aframes; /* artificial frames */
- dtrace_provider_t *dtpr_provider; /* pointer to provider */
- char *dtpr_mod; /* probe's module name */
- char *dtpr_func; /* probe's function name */
- char *dtpr_name; /* probe's name */
- dtrace_probe_t *dtpr_nextmod; /* next in module hash */
- dtrace_probe_t *dtpr_prevmod; /* previous in module hash */
- dtrace_probe_t *dtpr_nextfunc; /* next in function hash */
- dtrace_probe_t *dtpr_prevfunc; /* previous in function hash */
- dtrace_probe_t *dtpr_nextname; /* next in name hash */
- dtrace_probe_t *dtpr_prevname; /* previous in name hash */
- dtrace_genid_t dtpr_gen; /* probe generation ID */
-};
-
-typedef int dtrace_probekey_f(const char *, const char *, int);
-
-typedef struct dtrace_probekey {
- const char *dtpk_prov; /* provider name to match */
- dtrace_probekey_f *dtpk_pmatch; /* provider matching function */
- const char *dtpk_mod; /* module name to match */
- dtrace_probekey_f *dtpk_mmatch; /* module matching function */
- const char *dtpk_func; /* func name to match */
- dtrace_probekey_f *dtpk_fmatch; /* func matching function */
- const char *dtpk_name; /* name to match */
- dtrace_probekey_f *dtpk_nmatch; /* name matching function */
- dtrace_id_t dtpk_id; /* identifier to match */
-} dtrace_probekey_t;
-
-typedef struct dtrace_hashbucket {
- struct dtrace_hashbucket *dthb_next; /* next on hash chain */
- dtrace_probe_t *dthb_chain; /* chain of probes */
- int dthb_len; /* number of probes here */
-} dtrace_hashbucket_t;
-
-typedef struct dtrace_hash {
- dtrace_hashbucket_t **dth_tab; /* hash table */
- int dth_size; /* size of hash table */
- int dth_mask; /* mask to index into table */
- int dth_nbuckets; /* total number of buckets */
- uintptr_t dth_nextoffs; /* offset of next in probe */
- uintptr_t dth_prevoffs; /* offset of prev in probe */
- uintptr_t dth_stroffs; /* offset of str in probe */
-} dtrace_hash_t;
-
-/*
- * DTrace Enabling Control Blocks
- *
- * When a provider wishes to fire a probe, it calls into dtrace_probe(),
- * passing the probe identifier as the first argument. As described above,
- * dtrace_probe() maps the identifier into a pointer to a dtrace_probe_t
- * structure. This structure contains information about the probe, and a
- * pointer to the list of Enabling Control Blocks (ECBs). Each ECB points to
- * DTrace consumer state, and contains an optional predicate, and a list of
- * actions. (Shown schematically below.) The ECB abstraction allows a single
- * probe to be multiplexed across disjoint consumers, or across disjoint
- * enablings of a single probe within one consumer.
- *
- * Enabling Control Block
- * dtrace_ecb_t
- * +------------------------+
- * | dtrace_epid_t ---------+--------------> Enabled Probe ID (EPID)
- * | dtrace_state_t * ------+--------------> State associated with this ECB
- * | dtrace_predicate_t * --+---------+
- * | dtrace_action_t * -----+----+ |
- * | dtrace_ecb_t * ---+ | | | Predicate (if any)
- * +-------------------+----+ | | dtrace_predicate_t
- * | | +---> +--------------------+
- * | | | dtrace_difo_t * ---+----> DIFO
- * | | +--------------------+
- * | |
- * Next ECB | | Action
- * (if any) | | dtrace_action_t
- * : +--> +-------------------+
- * : | dtrace_actkind_t -+------> kind
- * v | dtrace_difo_t * --+------> DIFO (if any)
- * | dtrace_recdesc_t -+------> record descr.
- * | dtrace_action_t * +------+
- * +-------------------+ |
- * | Next action
- * +-------------------------------+ (if any)
- * |
- * | Action
- * | dtrace_action_t
- * +--> +-------------------+
- * | dtrace_actkind_t -+------> kind
- * | dtrace_difo_t * --+------> DIFO (if any)
- * | dtrace_action_t * +------+
- * +-------------------+ |
- * | Next action
- * +-------------------------------+ (if any)
- * |
- * :
- * v
- *
- *
- * dtrace_probe() iterates over the ECB list. If the ECB needs less space
- * than is available in the principal buffer, the ECB is processed: if the
- * predicate is non-NULL, the DIF object is executed. If the result is
- * non-zero, the action list is processed, with each action being executed
- * accordingly. When the action list has been completely executed, processing
- * advances to the next ECB. processing advances to the next ECB. If the
- * result is non-zero; For each ECB, it first determines the The ECB
- * abstraction allows disjoint consumers to multiplex on single probes.
- */
-struct dtrace_ecb {
- dtrace_epid_t dte_epid; /* enabled probe ID */
- uint32_t dte_alignment; /* required alignment */
- size_t dte_needed; /* bytes needed */
- size_t dte_size; /* total size of payload */
- dtrace_predicate_t *dte_predicate; /* predicate, if any */
- dtrace_action_t *dte_action; /* actions, if any */
- dtrace_ecb_t *dte_next; /* next ECB on probe */
- dtrace_state_t *dte_state; /* pointer to state */
- uint32_t dte_cond; /* security condition */
- dtrace_probe_t *dte_probe; /* pointer to probe */
- dtrace_action_t *dte_action_last; /* last action on ECB */
- uint64_t dte_uarg; /* library argument */
-};
-
-struct dtrace_predicate {
- dtrace_difo_t *dtp_difo; /* DIF object */
- dtrace_cacheid_t dtp_cacheid; /* cache identifier */
- int dtp_refcnt; /* reference count */
-};
-
-struct dtrace_action {
- dtrace_actkind_t dta_kind; /* kind of action */
- uint16_t dta_intuple; /* boolean: in aggregation */
- uint32_t dta_refcnt; /* reference count */
- dtrace_difo_t *dta_difo; /* pointer to DIFO */
- dtrace_recdesc_t dta_rec; /* record description */
- dtrace_action_t *dta_prev; /* previous action */
- dtrace_action_t *dta_next; /* next action */
-};
-
-typedef struct dtrace_aggregation {
- dtrace_action_t dtag_action; /* action; must be first */
- dtrace_aggid_t dtag_id; /* identifier */
- dtrace_ecb_t *dtag_ecb; /* corresponding ECB */
- dtrace_action_t *dtag_first; /* first action in tuple */
- uint32_t dtag_base; /* base of aggregation */
- uint8_t dtag_hasarg; /* boolean: has argument */
- uint64_t dtag_initial; /* initial value */
- void (*dtag_aggregate)(uint64_t *, uint64_t, uint64_t);
-} dtrace_aggregation_t;
-
-/*
- * DTrace Buffers
- *
- * Principal buffers, aggregation buffers, and speculative buffers are all
- * managed with the dtrace_buffer structure. By default, this structure
- * includes twin data buffers -- dtb_tomax and dtb_xamot -- that serve as the
- * active and passive buffers, respectively. For speculative buffers,
- * dtb_xamot will be NULL; for "ring" and "fill" buffers, dtb_xamot will point
- * to a scratch buffer. For all buffer types, the dtrace_buffer structure is
- * always allocated on a per-CPU basis; a single dtrace_buffer structure is
- * never shared among CPUs. (That is, there is never true sharing of the
- * dtrace_buffer structure; to prevent false sharing of the structure, it must
- * always be aligned to the coherence granularity -- generally 64 bytes.)
- *
- * One of the critical design decisions of DTrace is that a given ECB always
- * stores the same quantity and type of data. This is done to assure that the
- * only metadata required for an ECB's traced data is the EPID. That is, from
- * the EPID, the consumer can determine the data layout. (The data buffer
- * layout is shown schematically below.) By assuring that one can determine
- * data layout from the EPID, the metadata stream can be separated from the
- * data stream -- simplifying the data stream enormously.
- *
- * base of data buffer ---> +------+--------------------+------+
- * | EPID | data | EPID |
- * +------+--------+------+----+------+
- * | data | EPID | data |
- * +---------------+------+-----------+
- * | data, cont. |
- * +------+--------------------+------+
- * | EPID | data | |
- * +------+--------------------+ |
- * | || |
- * | || |
- * | \/ |
- * : :
- * . .
- * . .
- * . .
- * : :
- * | |
- * limit of data buffer ---> +----------------------------------+
- *
- * When evaluating an ECB, dtrace_probe() determines if the ECB's needs of the
- * principal buffer (both scratch and payload) exceed the available space. If
- * the ECB's needs exceed available space (and if the principal buffer policy
- * is the default "switch" policy), the ECB is dropped, the buffer's drop count
- * is incremented, and processing advances to the next ECB. If the ECB's needs
- * can be met with the available space, the ECB is processed, but the offset in
- * the principal buffer is only advanced if the ECB completes processing
- * without error.
- *
- * When a buffer is to be switched (either because the buffer is the principal
- * buffer with a "switch" policy or because it is an aggregation buffer), a
- * cross call is issued to the CPU associated with the buffer. In the cross
- * call context, interrupts are disabled, and the active and the inactive
- * buffers are atomically switched. This involves switching the data pointers,
- * copying the various state fields (offset, drops, errors, etc.) into their
- * inactive equivalents, and clearing the state fields. Because interrupts are
- * disabled during this procedure, the switch is guaranteed to appear atomic to
- * dtrace_probe().
- *
- * DTrace Ring Buffering
- *
- * To process a ring buffer correctly, one must know the oldest valid record.
- * Processing starts at the oldest record in the buffer and continues until
- * the end of the buffer is reached. Processing then resumes starting with
- * the record stored at offset 0 in the buffer, and continues until the
- * youngest record is processed. If trace records are of a fixed-length,
- * determining the oldest record is trivial:
- *
- * - If the ring buffer has not wrapped, the oldest record is the record
- * stored at offset 0.
- *
- * - If the ring buffer has wrapped, the oldest record is the record stored
- * at the current offset.
- *
- * With variable length records, however, just knowing the current offset
- * doesn't suffice for determining the oldest valid record: assuming that one
- * allows for arbitrary data, one has no way of searching forward from the
- * current offset to find the oldest valid record. (That is, one has no way
- * of separating data from metadata.) It would be possible to simply refuse to
- * process any data in the ring buffer between the current offset and the
- * limit, but this leaves (potentially) an enormous amount of otherwise valid
- * data unprocessed.
- *
- * To effect ring buffering, we track two offsets in the buffer: the current
- * offset and the _wrapped_ offset. If a request is made to reserve some
- * amount of data, and the buffer has wrapped, the wrapped offset is
- * incremented until the wrapped offset minus the current offset is greater
- * than or equal to the reserve request. This is done by repeatedly looking
- * up the ECB corresponding to the EPID at the current wrapped offset, and
- * incrementing the wrapped offset by the size of the data payload
- * corresponding to that ECB. If this offset is greater than or equal to the
- * limit of the data buffer, the wrapped offset is set to 0. Thus, the
- * current offset effectively "chases" the wrapped offset around the buffer.
- * Schematically:
- *
- * base of data buffer ---> +------+--------------------+------+
- * | EPID | data | EPID |
- * +------+--------+------+----+------+
- * | data | EPID | data |
- * +---------------+------+-----------+
- * | data, cont. |
- * +------+---------------------------+
- * | EPID | data |
- * current offset ---> +------+---------------------------+
- * | invalid data |
- * wrapped offset ---> +------+--------------------+------+
- * | EPID | data | EPID |
- * +------+--------+------+----+------+
- * | data | EPID | data |
- * +---------------+------+-----------+
- * : :
- * . .
- * . ... valid data ... .
- * . .
- * : :
- * +------+-------------+------+------+
- * | EPID | data | EPID | data |
- * +------+------------++------+------+
- * | data, cont. | leftover |
- * limit of data buffer ---> +-------------------+--------------+
- *
- * If the amount of requested buffer space exceeds the amount of space
- * available between the current offset and the end of the buffer:
- *
- * (1) all words in the data buffer between the current offset and the limit
- * of the data buffer (marked "leftover", above) are set to
- * DTRACE_EPIDNONE
- *
- * (2) the wrapped offset is set to zero
- *
- * (3) the iteration process described above occurs until the wrapped offset
- * is greater than the amount of desired space.
- *
- * The wrapped offset is implemented by (re-)using the inactive offset.
- * In a "switch" buffer policy, the inactive offset stores the offset in
- * the inactive buffer; in a "ring" buffer policy, it stores the wrapped
- * offset.
- *
- * DTrace Scratch Buffering
- *
- * Some ECBs may wish to allocate dynamically-sized temporary scratch memory.
- * To accommodate such requests easily, scratch memory may be allocated in
- * the buffer beyond the current offset plus the needed memory of the current
- * ECB. If there isn't sufficient room in the buffer for the requested amount
- * of scratch space, the allocation fails and an error is generated. Scratch
- * memory is tracked in the dtrace_mstate_t and is automatically freed when
- * the ECB ceases processing. Note that ring buffers cannot allocate their
- * scratch from the principal buffer -- lest they needlessly overwrite older,
- * valid data. Ring buffers therefore have their own dedicated scratch buffer
- * from which scratch is allocated.
- */
-#define DTRACEBUF_RING 0x0001 /* bufpolicy set to "ring" */
-#define DTRACEBUF_FILL 0x0002 /* bufpolicy set to "fill" */
-#define DTRACEBUF_NOSWITCH 0x0004 /* do not switch buffer */
-#define DTRACEBUF_WRAPPED 0x0008 /* ring buffer has wrapped */
-#define DTRACEBUF_DROPPED 0x0010 /* drops occurred */
-#define DTRACEBUF_ERROR 0x0020 /* errors occurred */
-#define DTRACEBUF_FULL 0x0040 /* "fill" buffer is full */
-#define DTRACEBUF_CONSUMED 0x0080 /* buffer has been consumed */
-#define DTRACEBUF_INACTIVE 0x0100 /* buffer is not yet active */
-
-typedef struct dtrace_buffer {
- uint64_t dtb_offset; /* current offset in buffer */
- uint64_t dtb_size; /* size of buffer */
- uint32_t dtb_flags; /* flags */
- uint32_t dtb_drops; /* number of drops */
- caddr_t dtb_tomax; /* active buffer */
- caddr_t dtb_xamot; /* inactive buffer */
- uint32_t dtb_xamot_flags; /* inactive flags */
- uint32_t dtb_xamot_drops; /* drops in inactive buffer */
- uint64_t dtb_xamot_offset; /* offset in inactive buffer */
- uint32_t dtb_errors; /* number of errors */
- uint32_t dtb_xamot_errors; /* errors in inactive buffer */
-#ifndef _LP64
- uint64_t dtb_pad1;
-#endif
-} dtrace_buffer_t;
-
-/*
- * DTrace Aggregation Buffers
- *
- * Aggregation buffers use much of the same mechanism as described above
- * ("DTrace Buffers"). However, because an aggregation is fundamentally a
- * hash, there exists dynamic metadata associated with an aggregation buffer
- * that is not associated with other kinds of buffers. This aggregation
- * metadata is _only_ relevant for the in-kernel implementation of
- * aggregations; it is not actually relevant to user-level consumers. To do
- * this, we allocate dynamic aggregation data (hash keys and hash buckets)
- * starting below the _limit_ of the buffer, and we allocate data from the
- * _base_ of the buffer. When the aggregation buffer is copied out, _only_ the
- * data is copied out; the metadata is simply discarded. Schematically,
- * aggregation buffers look like:
- *
- * base of data buffer ---> +-------+------+-----------+-------+
- * | aggid | key | value | aggid |
- * +-------+------+-----------+-------+
- * | key |
- * +-------+-------+-----+------------+
- * | value | aggid | key | value |
- * +-------+------++-----+------+-----+
- * | aggid | key | value | |
- * +-------+------+-------------+ |
- * | || |
- * | || |
- * | \/ |
- * : :
- * . .
- * . .
- * . .
- * : :
- * | /\ |
- * | || +------------+
- * | || | |
- * +---------------------+ |
- * | hash keys |
- * | (dtrace_aggkey structures) |
- * | |
- * +----------------------------------+
- * | hash buckets |
- * | (dtrace_aggbuffer structure) |
- * | |
- * limit of data buffer ---> +----------------------------------+
- *
- *
- * As implied above, just as we assure that ECBs always store a constant
- * amount of data, we assure that a given aggregation -- identified by its
- * aggregation ID -- always stores data of a constant quantity and type.
- * As with EPIDs, this allows the aggregation ID to serve as the metadata for a
- * given record.
- *
- * Note that the size of the dtrace_aggkey structure must be sizeof (uintptr_t)
- * aligned. (If this the structure changes such that this becomes false, an
- * assertion will fail in dtrace_aggregate().)
- */
-typedef struct dtrace_aggkey {
- uint32_t dtak_hashval; /* hash value */
- uint32_t dtak_action:4; /* action -- 4 bits */
- uint32_t dtak_size:28; /* size -- 28 bits */
- caddr_t dtak_data; /* data pointer */
- struct dtrace_aggkey *dtak_next; /* next in hash chain */
-} dtrace_aggkey_t;
-
-typedef struct dtrace_aggbuffer {
- uintptr_t dtagb_hashsize; /* number of buckets */
- uintptr_t dtagb_free; /* free list of keys */
- dtrace_aggkey_t **dtagb_hash; /* hash table */
-} dtrace_aggbuffer_t;
-
-/*
- * DTrace Speculations
- *
- * Speculations have a per-CPU buffer and a global state. Once a speculation
- * buffer has been comitted or discarded, it cannot be reused until all CPUs
- * have taken the same action (commit or discard) on their respective
- * speculative buffer. However, because DTrace probes may execute in arbitrary
- * context, other CPUs cannot simply be cross-called at probe firing time to
- * perform the necessary commit or discard. The speculation states thus
- * optimize for the case that a speculative buffer is only active on one CPU at
- * the time of a commit() or discard() -- for if this is the case, other CPUs
- * need not take action, and the speculation is immediately available for
- * reuse. If the speculation is active on multiple CPUs, it must be
- * asynchronously cleaned -- potentially leading to a higher rate of dirty
- * speculative drops. The speculation states are as follows:
- *
- * DTRACESPEC_INACTIVE <= Initial state; inactive speculation
- * DTRACESPEC_ACTIVE <= Allocated, but not yet speculatively traced to
- * DTRACESPEC_ACTIVEONE <= Speculatively traced to on one CPU
- * DTRACESPEC_ACTIVEMANY <= Speculatively traced to on more than one CPU
- * DTRACESPEC_COMMITTING <= Currently being commited on one CPU
- * DTRACESPEC_COMMITTINGMANY <= Currently being commited on many CPUs
- * DTRACESPEC_DISCARDING <= Currently being discarded on many CPUs
- *
- * The state transition diagram is as follows:
- *
- * +----------------------------------------------------------+
- * | |
- * | +------------+ |
- * | +-------------------| COMMITTING |<-----------------+ |
- * | | +------------+ | |
- * | | copied spec. ^ commit() on | | discard() on
- * | | into principal | active CPU | | active CPU
- * | | | commit() | |
- * V V | | |
- * +----------+ +--------+ +-----------+
- * | INACTIVE |---------------->| ACTIVE |--------------->| ACTIVEONE |
- * +----------+ speculation() +--------+ speculate() +-----------+
- * ^ ^ | | |
- * | | | discard() | |
- * | | asynchronously | discard() on | | speculate()
- * | | cleaned V inactive CPU | | on inactive
- * | | +------------+ | | CPU
- * | +-------------------| DISCARDING |<-----------------+ |
- * | +------------+ |
- * | asynchronously ^ |
- * | copied spec. | discard() |
- * | into principal +------------------------+ |
- * | | V
- * +----------------+ commit() +------------+
- * | COMMITTINGMANY |<----------------------------------| ACTIVEMANY |
- * +----------------+ +------------+
- */
-typedef enum dtrace_speculation_state {
- DTRACESPEC_INACTIVE = 0,
- DTRACESPEC_ACTIVE,
- DTRACESPEC_ACTIVEONE,
- DTRACESPEC_ACTIVEMANY,
- DTRACESPEC_COMMITTING,
- DTRACESPEC_COMMITTINGMANY,
- DTRACESPEC_DISCARDING
-} dtrace_speculation_state_t;
-
-typedef struct dtrace_speculation {
- dtrace_speculation_state_t dtsp_state; /* current speculation state */
- int dtsp_cleaning; /* non-zero if being cleaned */
- dtrace_buffer_t *dtsp_buffer; /* speculative buffer */
-} dtrace_speculation_t;
-
-/*
- * DTrace Dynamic Variables
- *
- * The dynamic variable problem is obviously decomposed into two subproblems:
- * allocating new dynamic storage, and freeing old dynamic storage. The
- * presence of the second problem makes the first much more complicated -- or
- * rather, the absence of the second renders the first trivial. This is the
- * case with aggregations, for which there is effectively no deallocation of
- * dynamic storage. (Or more accurately, all dynamic storage is deallocated
- * when a snapshot is taken of the aggregation.) As DTrace dynamic variables
- * allow for both dynamic allocation and dynamic deallocation, the
- * implementation of dynamic variables is quite a bit more complicated than
- * that of their aggregation kin.
- *
- * We observe that allocating new dynamic storage is tricky only because the
- * size can vary -- the allocation problem is much easier if allocation sizes
- * are uniform. We further observe that in D, the size of dynamic variables is
- * actually _not_ dynamic -- dynamic variable sizes may be determined by static
- * analysis of DIF text. (This is true even of putatively dynamically-sized
- * objects like strings and stacks, the sizes of which are dictated by the
- * "stringsize" and "stackframes" variables, respectively.) We exploit this by
- * performing this analysis on all DIF before enabling any probes. For each
- * dynamic load or store, we calculate the dynamically-allocated size plus the
- * size of the dtrace_dynvar structure plus the storage required to key the
- * data. For all DIF, we take the largest value and dub it the _chunksize_.
- * We then divide dynamic memory into two parts: a hash table that is wide
- * enough to have every chunk in its own bucket, and a larger region of equal
- * chunksize units. Whenever we wish to dynamically allocate a variable, we
- * always allocate a single chunk of memory. Depending on the uniformity of
- * allocation, this will waste some amount of memory -- but it eliminates the
- * non-determinism inherent in traditional heap fragmentation.
- *
- * Dynamic objects are allocated by storing a non-zero value to them; they are
- * deallocated by storing a zero value to them. Dynamic variables are
- * complicated enormously by being shared between CPUs. In particular,
- * consider the following scenario:
- *
- * CPU A CPU B
- * +---------------------------------+ +---------------------------------+
- * | | | |
- * | allocates dynamic object a[123] | | |
- * | by storing the value 345 to it | | |
- * | ---------> |
- * | | | wishing to load from object |
- * | | | a[123], performs lookup in |
- * | | | dynamic variable space |
- * | <--------- |
- * | deallocates object a[123] by | | |
- * | storing 0 to it | | |
- * | | | |
- * | allocates dynamic object b[567] | | performs load from a[123] |
- * | by storing the value 789 to it | | |
- * : : : :
- * . . . .
- *
- * This is obviously a race in the D program, but there are nonetheless only
- * two valid values for CPU B's load from a[123]: 345 or 0. Most importantly,
- * CPU B may _not_ see the value 789 for a[123].
- *
- * There are essentially two ways to deal with this:
- *
- * (1) Explicitly spin-lock variables. That is, if CPU B wishes to load
- * from a[123], it needs to lock a[123] and hold the lock for the
- * duration that it wishes to manipulate it.
- *
- * (2) Avoid reusing freed chunks until it is known that no CPU is referring
- * to them.
- *
- * The implementation of (1) is rife with complexity, because it requires the
- * user of a dynamic variable to explicitly decree when they are done using it.
- * Were all variables by value, this perhaps wouldn't be debilitating -- but
- * dynamic variables of non-scalar types are tracked by reference. That is, if
- * a dynamic variable is, say, a string, and that variable is to be traced to,
- * say, the principal buffer, the DIF emulation code returns to the main
- * dtrace_probe() loop a pointer to the underlying storage, not the contents of
- * the storage. Further, code calling on DIF emulation would have to be aware
- * that the DIF emulation has returned a reference to a dynamic variable that
- * has been potentially locked. The variable would have to be unlocked after
- * the main dtrace_probe() loop is finished with the variable, and the main
- * dtrace_probe() loop would have to be careful to not call any further DIF
- * emulation while the variable is locked to avoid deadlock. More generally,
- * if one were to implement (1), DIF emulation code dealing with dynamic
- * variables could only deal with one dynamic variable at a time (lest deadlock
- * result). To sum, (1) exports too much subtlety to the users of dynamic
- * variables -- increasing maintenance burden and imposing serious constraints
- * on future DTrace development.
- *
- * The implementation of (2) is also complex, but the complexity is more
- * manageable. We need to be sure that when a variable is deallocated, it is
- * not placed on a traditional free list, but rather on a _dirty_ list. Once a
- * variable is on a dirty list, it cannot be found by CPUs performing a
- * subsequent lookup of the variable -- but it may still be in use by other
- * CPUs. To assure that all CPUs that may be seeing the old variable have
- * cleared out of probe context, a dtrace_sync() can be issued. Once the
- * dtrace_sync() has completed, it can be known that all CPUs are done
- * manipulating the dynamic variable -- the dirty list can be atomically
- * appended to the free list. Unfortunately, there's a slight hiccup in this
- * mechanism: dtrace_sync() may not be issued from probe context. The
- * dtrace_sync() must be therefore issued asynchronously from non-probe
- * context. For this we rely on the DTrace cleaner, a cyclic that runs at the
- * "cleanrate" frequency. To ease this implementation, we define several chunk
- * lists:
- *
- * - Dirty. Deallocated chunks, not yet cleaned. Not available.
- *
- * - Rinsing. Formerly dirty chunks that are currently being asynchronously
- * cleaned. Not available, but will be shortly. Dynamic variable
- * allocation may not spin or block for availability, however.
- *
- * - Clean. Clean chunks, ready for allocation -- but not on the free list.
- *
- * - Free. Available for allocation.
- *
- * Moreover, to avoid absurd contention, _each_ of these lists is implemented
- * on a per-CPU basis. This is only for performance, not correctness; chunks
- * may be allocated from another CPU's free list. The algorithm for allocation
- * then is this:
- *
- * (1) Attempt to atomically allocate from current CPU's free list. If list
- * is non-empty and allocation is successful, allocation is complete.
- *
- * (2) If the clean list is non-empty, atomically move it to the free list,
- * and reattempt (1).
- *
- * (3) If the dynamic variable space is in the CLEAN state, look for free
- * and clean lists on other CPUs by setting the current CPU to the next
- * CPU, and reattempting (1). If the next CPU is the current CPU (that
- * is, if all CPUs have been checked), atomically switch the state of
- * the dynamic variable space based on the following:
- *
- * - If no free chunks were found and no dirty chunks were found,
- * atomically set the state to EMPTY.
- *
- * - If dirty chunks were found, atomically set the state to DIRTY.
- *
- * - If rinsing chunks were found, atomically set the state to RINSING.
- *
- * (4) Based on state of dynamic variable space state, increment appropriate
- * counter to indicate dynamic drops (if in EMPTY state) vs. dynamic
- * dirty drops (if in DIRTY state) vs. dynamic rinsing drops (if in
- * RINSING state). Fail the allocation.
- *
- * The cleaning cyclic operates with the following algorithm: for all CPUs
- * with a non-empty dirty list, atomically move the dirty list to the rinsing
- * list. Perform a dtrace_sync(). For all CPUs with a non-empty rinsing list,
- * atomically move the rinsing list to the clean list. Perform another
- * dtrace_sync(). By this point, all CPUs have seen the new clean list; the
- * state of the dynamic variable space can be restored to CLEAN.
- *
- * There exist two final races that merit explanation. The first is a simple
- * allocation race:
- *
- * CPU A CPU B
- * +---------------------------------+ +---------------------------------+
- * | | | |
- * | allocates dynamic object a[123] | | allocates dynamic object a[123] |
- * | by storing the value 345 to it | | by storing the value 567 to it |
- * | | | |
- * : : : :
- * . . . .
- *
- * Again, this is a race in the D program. It can be resolved by having a[123]
- * hold the value 345 or a[123] hold the value 567 -- but it must be true that
- * a[123] have only _one_ of these values. (That is, the racing CPUs may not
- * put the same element twice on the same hash chain.) This is resolved
- * simply: before the allocation is undertaken, the start of the new chunk's
- * hash chain is noted. Later, after the allocation is complete, the hash
- * chain is atomically switched to point to the new element. If this fails
- * (because of either concurrent allocations or an allocation concurrent with a
- * deletion), the newly allocated chunk is deallocated to the dirty list, and
- * the whole process of looking up (and potentially allocating) the dynamic
- * variable is reattempted.
- *
- * The final race is a simple deallocation race:
- *
- * CPU A CPU B
- * +---------------------------------+ +---------------------------------+
- * | | | |
- * | deallocates dynamic object | | deallocates dynamic object |
- * | a[123] by storing the value 0 | | a[123] by storing the value 0 |
- * | to it | | to it |
- * | | | |
- * : : : :
- * . . . .
- *
- * Once again, this is a race in the D program, but it is one that we must
- * handle without corrupting the underlying data structures. Because
- * deallocations require the deletion of a chunk from the middle of a hash
- * chain, we cannot use a single-word atomic operation to remove it. For this,
- * we add a spin lock to the hash buckets that is _only_ used for deallocations
- * (allocation races are handled as above). Further, this spin lock is _only_
- * held for the duration of the delete; before control is returned to the DIF
- * emulation code, the hash bucket is unlocked.
- */
-typedef struct dtrace_key {
- uint64_t dttk_value; /* data value or data pointer */
- uint64_t dttk_size; /* 0 if by-val, >0 if by-ref */
-} dtrace_key_t;
-
-typedef struct dtrace_tuple {
- uint32_t dtt_nkeys; /* number of keys in tuple */
- uint32_t dtt_pad; /* padding */
- dtrace_key_t dtt_key[1]; /* array of tuple keys */
-} dtrace_tuple_t;
-
-typedef struct dtrace_dynvar {
- uint64_t dtdv_hashval; /* hash value -- 0 if free */
- struct dtrace_dynvar *dtdv_next; /* next on list or hash chain */
- void *dtdv_data; /* pointer to data */
- dtrace_tuple_t dtdv_tuple; /* tuple key */
-} dtrace_dynvar_t;
-
-typedef enum dtrace_dynvar_op {
- DTRACE_DYNVAR_ALLOC,
- DTRACE_DYNVAR_NOALLOC,
- DTRACE_DYNVAR_DEALLOC
-} dtrace_dynvar_op_t;
-
-typedef struct dtrace_dynhash {
- dtrace_dynvar_t *dtdh_chain; /* hash chain for this bucket */
- uintptr_t dtdh_lock; /* deallocation lock */
-#ifdef _LP64
- uintptr_t dtdh_pad[6]; /* pad to avoid false sharing */
-#else
- uintptr_t dtdh_pad[14]; /* pad to avoid false sharing */
-#endif
-} dtrace_dynhash_t;
-
-typedef struct dtrace_dstate_percpu {
- dtrace_dynvar_t *dtdsc_free; /* free list for this CPU */
- dtrace_dynvar_t *dtdsc_dirty; /* dirty list for this CPU */
- dtrace_dynvar_t *dtdsc_rinsing; /* rinsing list for this CPU */
- dtrace_dynvar_t *dtdsc_clean; /* clean list for this CPU */
- uint64_t dtdsc_drops; /* number of capacity drops */
- uint64_t dtdsc_dirty_drops; /* number of dirty drops */
- uint64_t dtdsc_rinsing_drops; /* number of rinsing drops */
-#ifdef _LP64
- uint64_t dtdsc_pad; /* pad to avoid false sharing */
-#else
- uint64_t dtdsc_pad[2]; /* pad to avoid false sharing */
-#endif
-} dtrace_dstate_percpu_t;
-
-typedef enum dtrace_dstate_state {
- DTRACE_DSTATE_CLEAN = 0,
- DTRACE_DSTATE_EMPTY,
- DTRACE_DSTATE_DIRTY,
- DTRACE_DSTATE_RINSING
-} dtrace_dstate_state_t;
-
-typedef struct dtrace_dstate {
- void *dtds_base; /* base of dynamic var. space */
- size_t dtds_size; /* size of dynamic var. space */
- size_t dtds_hashsize; /* number of buckets in hash */
- size_t dtds_chunksize; /* size of each chunk */
- dtrace_dynhash_t *dtds_hash; /* pointer to hash table */
- dtrace_dstate_state_t dtds_state; /* current dynamic var. state */
- dtrace_dstate_percpu_t *dtds_percpu; /* per-CPU dyn. var. state */
-} dtrace_dstate_t;
-
-/*
- * DTrace Variable State
- *
- * The DTrace variable state tracks user-defined variables in its dtrace_vstate
- * structure. Each DTrace consumer has exactly one dtrace_vstate structure,
- * but some dtrace_vstate structures may exist without a corresponding DTrace
- * consumer (see "DTrace Helpers", below). As described in <sys/dtrace.h>,
- * user-defined variables can have one of three scopes:
- *
- * DIFV_SCOPE_GLOBAL => global scope
- * DIFV_SCOPE_THREAD => thread-local scope (i.e. "self->" variables)
- * DIFV_SCOPE_LOCAL => clause-local scope (i.e. "this->" variables)
- *
- * The variable state tracks variables by both their scope and their allocation
- * type:
- *
- * - The dtvs_globals and dtvs_locals members each point to an array of
- * dtrace_statvar structures. These structures contain both the variable
- * metadata (dtrace_difv structures) and the underlying storage for all
- * statically allocated variables, including statically allocated
- * DIFV_SCOPE_GLOBAL variables and all DIFV_SCOPE_LOCAL variables.
- *
- * - The dtvs_tlocals member points to an array of dtrace_difv structures for
- * DIFV_SCOPE_THREAD variables. As such, this array tracks _only_ the
- * variable metadata for DIFV_SCOPE_THREAD variables; the underlying storage
- * is allocated out of the dynamic variable space.
- *
- * - The dtvs_dynvars member is the dynamic variable state associated with the
- * variable state. The dynamic variable state (described in "DTrace Dynamic
- * Variables", above) tracks all DIFV_SCOPE_THREAD variables and all
- * dynamically-allocated DIFV_SCOPE_GLOBAL variables.
- */
-typedef struct dtrace_statvar {
- uint64_t dtsv_data; /* data or pointer to it */
- size_t dtsv_size; /* size of pointed-to data */
- int dtsv_refcnt; /* reference count */
- dtrace_difv_t dtsv_var; /* variable metadata */
-} dtrace_statvar_t;
-
-typedef struct dtrace_vstate {
- dtrace_state_t *dtvs_state; /* back pointer to state */
- dtrace_statvar_t **dtvs_globals; /* statically-allocated glbls */
- int dtvs_nglobals; /* number of globals */
- dtrace_difv_t *dtvs_tlocals; /* thread-local metadata */
- int dtvs_ntlocals; /* number of thread-locals */
- dtrace_statvar_t **dtvs_locals; /* clause-local data */
- int dtvs_nlocals; /* number of clause-locals */
- dtrace_dstate_t dtvs_dynvars; /* dynamic variable state */
-} dtrace_vstate_t;
-
-/*
- * DTrace Machine State
- *
- * In the process of processing a fired probe, DTrace needs to track and/or
- * cache some per-CPU state associated with that particular firing. This is
- * state that is always discarded after the probe firing has completed, and
- * much of it is not specific to any DTrace consumer, remaining valid across
- * all ECBs. This state is tracked in the dtrace_mstate structure.
- */
-#define DTRACE_MSTATE_ARGS 0x00000001
-#define DTRACE_MSTATE_PROBE 0x00000002
-#define DTRACE_MSTATE_EPID 0x00000004
-#define DTRACE_MSTATE_TIMESTAMP 0x00000008
-#define DTRACE_MSTATE_STACKDEPTH 0x00000010
-#define DTRACE_MSTATE_CALLER 0x00000020
-#define DTRACE_MSTATE_IPL 0x00000040
-#define DTRACE_MSTATE_FLTOFFS 0x00000080
-#define DTRACE_MSTATE_WALLTIMESTAMP 0x00000100
-#define DTRACE_MSTATE_USTACKDEPTH 0x00000200
-#define DTRACE_MSTATE_UCALLER 0x00000400
-
-typedef struct dtrace_mstate {
- uintptr_t dtms_scratch_base; /* base of scratch space */
- uintptr_t dtms_scratch_ptr; /* current scratch pointer */
- size_t dtms_scratch_size; /* scratch size */
- uint32_t dtms_present; /* variables that are present */
- uint64_t dtms_arg[5]; /* cached arguments */
- dtrace_epid_t dtms_epid; /* current EPID */
- uint64_t dtms_timestamp; /* cached timestamp */
- hrtime_t dtms_walltimestamp; /* cached wall timestamp */
- int dtms_stackdepth; /* cached stackdepth */
- int dtms_ustackdepth; /* cached ustackdepth */
- struct dtrace_probe *dtms_probe; /* current probe */
- uintptr_t dtms_caller; /* cached caller */
- uint64_t dtms_ucaller; /* cached user-level caller */
- int dtms_ipl; /* cached interrupt pri lev */
- int dtms_fltoffs; /* faulting DIFO offset */
- uintptr_t dtms_strtok; /* saved strtok() pointer */
- uint32_t dtms_access; /* memory access rights */
- dtrace_difo_t *dtms_difo; /* current dif object */
-} dtrace_mstate_t;
-
-#define DTRACE_COND_OWNER 0x1
-#define DTRACE_COND_USERMODE 0x2
-#define DTRACE_COND_ZONEOWNER 0x4
-
-#define DTRACE_PROBEKEY_MAXDEPTH 8 /* max glob recursion depth */
-
-/*
- * Access flag used by dtrace_mstate.dtms_access.
- */
-#define DTRACE_ACCESS_KERNEL 0x1 /* the priv to read kmem */
-
-
-/*
- * DTrace Activity
- *
- * Each DTrace consumer is in one of several states, which (for purposes of
- * avoiding yet-another overloading of the noun "state") we call the current
- * _activity_. The activity transitions on dtrace_go() (from DTRACIOCGO), on
- * dtrace_stop() (from DTRACIOCSTOP) and on the exit() action. Activities may
- * only transition in one direction; the activity transition diagram is a
- * directed acyclic graph. The activity transition diagram is as follows:
- *
- *
- * +----------+ +--------+ +--------+
- * | INACTIVE |------------------>| WARMUP |------------------>| ACTIVE |
- * +----------+ dtrace_go(), +--------+ dtrace_go(), +--------+
- * before BEGIN | after BEGIN | | |
- * | | | |
- * exit() action | | | |
- * from BEGIN ECB | | | |
- * | | | |
- * v | | |
- * +----------+ exit() action | | |
- * +-----------------------------| DRAINING |<-------------------+ | |
- * | +----------+ | |
- * | | | |
- * | dtrace_stop(), | | |
- * | before END | | |
- * | | | |
- * | v | |
- * | +---------+ +----------+ | |
- * | | STOPPED |<----------------| COOLDOWN |<----------------------+ |
- * | +---------+ dtrace_stop(), +----------+ dtrace_stop(), |
- * | after END before END |
- * | |
- * | +--------+ |
- * +----------------------------->| KILLED |<--------------------------+
- * deadman timeout or +--------+ deadman timeout or
- * killed consumer killed consumer
- *
- * Note that once a DTrace consumer has stopped tracing, there is no way to
- * restart it; if a DTrace consumer wishes to restart tracing, it must reopen
- * the DTrace pseudodevice.
- */
-typedef enum dtrace_activity {
- DTRACE_ACTIVITY_INACTIVE = 0, /* not yet running */
- DTRACE_ACTIVITY_WARMUP, /* while starting */
- DTRACE_ACTIVITY_ACTIVE, /* running */
- DTRACE_ACTIVITY_DRAINING, /* before stopping */
- DTRACE_ACTIVITY_COOLDOWN, /* while stopping */
- DTRACE_ACTIVITY_STOPPED, /* after stopping */
- DTRACE_ACTIVITY_KILLED /* killed */
-} dtrace_activity_t;
-
-/*
- * DTrace Helper Implementation
- *
- * A description of the helper architecture may be found in <sys/dtrace.h>.
- * Each process contains a pointer to its helpers in its p_dtrace_helpers
- * member. This is a pointer to a dtrace_helpers structure, which contains an
- * array of pointers to dtrace_helper structures, helper variable state (shared
- * among a process's helpers) and a generation count. (The generation count is
- * used to provide an identifier when a helper is added so that it may be
- * subsequently removed.) The dtrace_helper structure is self-explanatory,
- * containing pointers to the objects needed to execute the helper. Note that
- * helpers are _duplicated_ across fork(2), and destroyed on exec(2). No more
- * than dtrace_helpers_max are allowed per-process.
- */
-#define DTRACE_HELPER_ACTION_USTACK 0
-#define DTRACE_NHELPER_ACTIONS 1
-
-typedef struct dtrace_helper_action {
- int dtha_generation; /* helper action generation */
- int dtha_nactions; /* number of actions */
- dtrace_difo_t *dtha_predicate; /* helper action predicate */
- dtrace_difo_t **dtha_actions; /* array of actions */
- struct dtrace_helper_action *dtha_next; /* next helper action */
-} dtrace_helper_action_t;
-
-typedef struct dtrace_helper_provider {
- int dthp_generation; /* helper provider generation */
- uint32_t dthp_ref; /* reference count */
- dof_helper_t dthp_prov; /* DOF w/ provider and probes */
-} dtrace_helper_provider_t;
-
-typedef struct dtrace_helpers {
- dtrace_helper_action_t **dthps_actions; /* array of helper actions */
- dtrace_vstate_t dthps_vstate; /* helper action var. state */
- dtrace_helper_provider_t **dthps_provs; /* array of providers */
- uint_t dthps_nprovs; /* count of providers */
- uint_t dthps_maxprovs; /* provider array size */
- int dthps_generation; /* current generation */
- pid_t dthps_pid; /* pid of associated proc */
- int dthps_deferred; /* helper in deferred list */
- struct dtrace_helpers *dthps_next; /* next pointer */
- struct dtrace_helpers *dthps_prev; /* prev pointer */
-} dtrace_helpers_t;
-
-/*
- * DTrace Helper Action Tracing
- *
- * Debugging helper actions can be arduous. To ease the development and
- * debugging of helpers, DTrace contains a tracing-framework-within-a-tracing-
- * framework: helper tracing. If dtrace_helptrace_enabled is non-zero (which
- * it is by default on DEBUG kernels), all helper activity will be traced to a
- * global, in-kernel ring buffer. Each entry includes a pointer to the specific
- * helper, the location within the helper, and a trace of all local variables.
- * The ring buffer may be displayed in a human-readable format with the
- * ::dtrace_helptrace mdb(1) dcmd.
- */
-#define DTRACE_HELPTRACE_NEXT (-1)
-#define DTRACE_HELPTRACE_DONE (-2)
-#define DTRACE_HELPTRACE_ERR (-3)
-
-typedef struct dtrace_helptrace {
- dtrace_helper_action_t *dtht_helper; /* helper action */
- int dtht_where; /* where in helper action */
- int dtht_nlocals; /* number of locals */
- int dtht_fault; /* type of fault (if any) */
- int dtht_fltoffs; /* DIF offset */
- uint64_t dtht_illval; /* faulting value */
- uint64_t dtht_locals[1]; /* local variables */
-} dtrace_helptrace_t;
-
-/*
- * DTrace Credentials
- *
- * In probe context, we have limited flexibility to examine the credentials
- * of the DTrace consumer that created a particular enabling. We use
- * the Least Privilege interfaces to cache the consumer's cred pointer and
- * some facts about that credential in a dtrace_cred_t structure. These
- * can limit the consumer's breadth of visibility and what actions the
- * consumer may take.
- */
-#define DTRACE_CRV_ALLPROC 0x01
-#define DTRACE_CRV_KERNEL 0x02
-#define DTRACE_CRV_ALLZONE 0x04
-
-#define DTRACE_CRV_ALL (DTRACE_CRV_ALLPROC | DTRACE_CRV_KERNEL | \
- DTRACE_CRV_ALLZONE)
-
-#define DTRACE_CRA_PROC 0x0001
-#define DTRACE_CRA_PROC_CONTROL 0x0002
-#define DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER 0x0004
-#define DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE 0x0008
-#define DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG 0x0010
-#define DTRACE_CRA_KERNEL 0x0020
-#define DTRACE_CRA_KERNEL_DESTRUCTIVE 0x0040
-
-#define DTRACE_CRA_ALL (DTRACE_CRA_PROC | \
- DTRACE_CRA_PROC_CONTROL | \
- DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER | \
- DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE | \
- DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG | \
- DTRACE_CRA_KERNEL | \
- DTRACE_CRA_KERNEL_DESTRUCTIVE)
-
-typedef struct dtrace_cred {
- cred_t *dcr_cred;
- uint8_t dcr_destructive;
- uint8_t dcr_visible;
- uint16_t dcr_action;
-} dtrace_cred_t;
-
-/*
- * DTrace Consumer State
- *
- * Each DTrace consumer has an associated dtrace_state structure that contains
- * its in-kernel DTrace state -- including options, credentials, statistics and
- * pointers to ECBs, buffers, speculations and formats. A dtrace_state
- * structure is also allocated for anonymous enablings. When anonymous state
- * is grabbed, the grabbing consumers dts_anon pointer is set to the grabbed
- * dtrace_state structure.
- */
-struct dtrace_state {
- dev_t dts_dev; /* device */
- int dts_necbs; /* total number of ECBs */
- dtrace_ecb_t **dts_ecbs; /* array of ECBs */
- dtrace_epid_t dts_epid; /* next EPID to allocate */
- size_t dts_needed; /* greatest needed space */
- struct dtrace_state *dts_anon; /* anon. state, if grabbed */
- dtrace_activity_t dts_activity; /* current activity */
- dtrace_vstate_t dts_vstate; /* variable state */
- dtrace_buffer_t *dts_buffer; /* principal buffer */
- dtrace_buffer_t *dts_aggbuffer; /* aggregation buffer */
- dtrace_speculation_t *dts_speculations; /* speculation array */
- int dts_nspeculations; /* number of speculations */
- int dts_naggregations; /* number of aggregations */
- dtrace_aggregation_t **dts_aggregations; /* aggregation array */
- vmem_t *dts_aggid_arena; /* arena for aggregation IDs */
- uint64_t dts_errors; /* total number of errors */
- uint32_t dts_speculations_busy; /* number of spec. busy */
- uint32_t dts_speculations_unavail; /* number of spec unavail */
- uint32_t dts_stkstroverflows; /* stack string tab overflows */
- uint32_t dts_dblerrors; /* errors in ERROR probes */
- uint32_t dts_reserve; /* space reserved for END */
- hrtime_t dts_laststatus; /* time of last status */
- cyclic_id_t dts_cleaner; /* cleaning cyclic */
- cyclic_id_t dts_deadman; /* deadman cyclic */
- hrtime_t dts_alive; /* time last alive */
- char dts_speculates; /* boolean: has speculations */
- char dts_destructive; /* boolean: has dest. actions */
- int dts_nformats; /* number of formats */
- char **dts_formats; /* format string array */
- dtrace_optval_t dts_options[DTRACEOPT_MAX]; /* options */
- dtrace_cred_t dts_cred; /* credentials */
- size_t dts_nretained; /* number of retained enabs */
-};
-
-struct dtrace_provider {
- dtrace_pattr_t dtpv_attr; /* provider attributes */
- dtrace_ppriv_t dtpv_priv; /* provider privileges */
- dtrace_pops_t dtpv_pops; /* provider operations */
- char *dtpv_name; /* provider name */
- void *dtpv_arg; /* provider argument */
- uint_t dtpv_defunct; /* boolean: defunct provider */
- struct dtrace_provider *dtpv_next; /* next provider */
-};
-
-struct dtrace_meta {
- dtrace_mops_t dtm_mops; /* meta provider operations */
- char *dtm_name; /* meta provider name */
- void *dtm_arg; /* meta provider user arg */
- uint64_t dtm_count; /* no. of associated provs. */
-};
-
-/*
- * DTrace Enablings
- *
- * A dtrace_enabling structure is used to track a collection of ECB
- * descriptions -- before they have been turned into actual ECBs. This is
- * created as a result of DOF processing, and is generally used to generate
- * ECBs immediately thereafter. However, enablings are also generally
- * retained should the probes they describe be created at a later time; as
- * each new module or provider registers with the framework, the retained
- * enablings are reevaluated, with any new match resulting in new ECBs. To
- * prevent probes from being matched more than once, the enabling tracks the
- * last probe generation matched, and only matches probes from subsequent
- * generations.
- */
-typedef struct dtrace_enabling {
- dtrace_ecbdesc_t **dten_desc; /* all ECB descriptions */
- int dten_ndesc; /* number of ECB descriptions */
- int dten_maxdesc; /* size of ECB array */
- dtrace_vstate_t *dten_vstate; /* associated variable state */
- dtrace_genid_t dten_probegen; /* matched probe generation */
- dtrace_ecbdesc_t *dten_current; /* current ECB description */
- int dten_error; /* current error value */
- int dten_primed; /* boolean: set if primed */
- struct dtrace_enabling *dten_prev; /* previous enabling */
- struct dtrace_enabling *dten_next; /* next enabling */
-} dtrace_enabling_t;
-
-/*
- * DTrace Anonymous Enablings
- *
- * Anonymous enablings are DTrace enablings that are not associated with a
- * controlling process, but rather derive their enabling from DOF stored as
- * properties in the dtrace.conf file. If there is an anonymous enabling, a
- * DTrace consumer state and enabling are created on attach. The state may be
- * subsequently grabbed by the first consumer specifying the "grabanon"
- * option. As long as an anonymous DTrace enabling exists, dtrace(7D) will
- * refuse to unload.
- */
-typedef struct dtrace_anon {
- dtrace_state_t *dta_state; /* DTrace consumer state */
- dtrace_enabling_t *dta_enabling; /* pointer to enabling */
- processorid_t dta_beganon; /* which CPU BEGIN ran on */
-} dtrace_anon_t;
-
-/*
- * DTrace Error Debugging
- */
-#ifdef DEBUG
-#define DTRACE_ERRDEBUG
-#endif
-
-#ifdef DTRACE_ERRDEBUG
-
-typedef struct dtrace_errhash {
- const char *dter_msg; /* error message */
- int dter_count; /* number of times seen */
-} dtrace_errhash_t;
-
-#define DTRACE_ERRHASHSZ 256 /* must be > number of err msgs */
-
-#endif /* DTRACE_ERRDEBUG */
-
-/*
- * DTrace Toxic Ranges
- *
- * DTrace supports safe loads from probe context; if the address turns out to
- * be invalid, a bit will be set by the kernel indicating that DTrace
- * encountered a memory error, and DTrace will propagate the error to the user
- * accordingly. However, there may exist some regions of memory in which an
- * arbitrary load can change system state, and from which it is impossible to
- * recover from such a load after it has been attempted. Examples of this may
- * include memory in which programmable I/O registers are mapped (for which a
- * read may have some implications for the device) or (in the specific case of
- * UltraSPARC-I and -II) the virtual address hole. The platform is required
- * to make DTrace aware of these toxic ranges; DTrace will then check that
- * target addresses are not in a toxic range before attempting to issue a
- * safe load.
- */
-typedef struct dtrace_toxrange {
- uintptr_t dtt_base; /* base of toxic range */
- uintptr_t dtt_limit; /* limit of toxic range */
-} dtrace_toxrange_t;
-
-extern uint64_t dtrace_getarg(int, int);
-extern greg_t dtrace_getfp(void);
-extern int dtrace_getipl(void);
-extern uintptr_t dtrace_caller(int);
-extern uint32_t dtrace_cas32(uint32_t *, uint32_t, uint32_t);
-extern void *dtrace_casptr(void *, void *, void *);
-extern void dtrace_copyin(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
-extern void dtrace_copyinstr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
-extern void dtrace_copyout(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
-extern void dtrace_copyoutstr(uintptr_t, uintptr_t, size_t,
- volatile uint16_t *);
-extern void dtrace_getpcstack(pc_t *, int, int, uint32_t *);
-extern ulong_t dtrace_getreg(struct regs *, uint_t);
-extern int dtrace_getstackdepth(int);
-extern void dtrace_getupcstack(uint64_t *, int);
-extern void dtrace_getufpstack(uint64_t *, uint64_t *, int);
-extern int dtrace_getustackdepth(void);
-extern uintptr_t dtrace_fulword(void *);
-extern uint8_t dtrace_fuword8(void *);
-extern uint16_t dtrace_fuword16(void *);
-extern uint32_t dtrace_fuword32(void *);
-extern uint64_t dtrace_fuword64(void *);
-extern void dtrace_probe_error(dtrace_state_t *, dtrace_epid_t, int, int,
- int, uintptr_t);
-extern int dtrace_assfail(const char *, const char *, int);
-extern int dtrace_attached(void);
-extern hrtime_t dtrace_gethrestime();
-
-#ifdef __sparc
-extern void dtrace_flush_windows(void);
-extern void dtrace_flush_user_windows(void);
-extern uint_t dtrace_getotherwin(void);
-extern uint_t dtrace_getfprs(void);
-#else
-extern void dtrace_copy(uintptr_t, uintptr_t, size_t);
-extern void dtrace_copystr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
-#endif
-
-/*
- * DTrace Assertions
- *
- * DTrace calls ASSERT from probe context. To assure that a failed ASSERT
- * does not induce a markedly more catastrophic failure (e.g., one from which
- * a dump cannot be gleaned), DTrace must define its own ASSERT to be one that
- * may safely be called from probe context. This header file must thus be
- * included by any DTrace component that calls ASSERT from probe context, and
- * _only_ by those components. (The only exception to this is kernel
- * debugging infrastructure at user-level that doesn't depend on calling
- * ASSERT.)
- */
-#undef ASSERT
-#ifdef DEBUG
-#define ASSERT(EX) ((void)((EX) || \
- dtrace_assfail(#EX, __FILE__, __LINE__)))
-#else
-#define ASSERT(X) ((void)0)
-#endif
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* _SYS_DTRACE_IMPL_H */
diff --git a/cddl/contrib/opensolaris/uts/common/sys/fasttrap.h b/cddl/contrib/opensolaris/uts/common/sys/fasttrap.h
deleted file mode 100644
index 7f80314..0000000
--- a/cddl/contrib/opensolaris/uts/common/sys/fasttrap.h
+++ /dev/null
@@ -1,93 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-
-/*
- * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _SYS_FASTTRAP_H
-#define _SYS_FASTTRAP_H
-
-#pragma ident "%Z%%M% %I% %E% SMI"
-
-#include <sys/fasttrap_isa.h>
-#include <sys/dtrace.h>
-#include <sys/types.h>
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#define FASTTRAPIOC (('m' << 24) | ('r' << 16) | ('f' << 8))
-#define FASTTRAPIOC_MAKEPROBE (FASTTRAPIOC | 1)
-#define FASTTRAPIOC_GETINSTR (FASTTRAPIOC | 2)
-
-typedef enum fasttrap_probe_type {
- DTFTP_NONE = 0,
- DTFTP_ENTRY,
- DTFTP_RETURN,
- DTFTP_OFFSETS,
- DTFTP_POST_OFFSETS,
- DTFTP_IS_ENABLED
-} fasttrap_probe_type_t;
-
-typedef struct fasttrap_probe_spec {
- pid_t ftps_pid;
- fasttrap_probe_type_t ftps_type;
-
- char ftps_func[DTRACE_FUNCNAMELEN];
- char ftps_mod[DTRACE_MODNAMELEN];
-
- uint64_t ftps_pc;
- uint64_t ftps_size;
- uint64_t ftps_noffs;
- uint64_t ftps_offs[1];
-} fasttrap_probe_spec_t;
-
-typedef struct fasttrap_instr_query {
- uint64_t ftiq_pc;
- pid_t ftiq_pid;
- fasttrap_instr_t ftiq_instr;
-} fasttrap_instr_query_t;
-
-/*
- * To support the fasttrap provider from very early in a process's life,
- * the run-time linker, ld.so.1, has a program header of type PT_SUNWDTRACE
- * which points to a data object which must be PT_SUNWDTRACE_SIZE bytes.
- * This structure mimics the fasttrap provider section of the ulwp_t structure.
- * When the fasttrap provider is changed to require new or different
- * instructions, the data object in ld.so.1 and the thread initializers in libc
- * (libc_init() and _thrp_create()) need to be updated to include the new
- * instructions, and PT_SUNWDTRACE needs to be changed to a new unique number
- * (while the old value gets assigned something like PT_SUNWDTRACE_1). Since the
- * linker must be backward compatible with old Solaris releases, it must have
- * program headers for each of the PT_SUNWDTRACE versions. The kernel's
- * elfexec() function only has to look for the latest version of the
- * PT_SUNWDTRACE program header.
- */
-#define PT_SUNWDTRACE_SIZE FASTTRAP_SUNWDTRACE_SIZE
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* _SYS_FASTTRAP_H */
OpenPOWER on IntegriCloud