diff options
Diffstat (limited to 'cddl/contrib/opensolaris/common/ctf/ctf_open.c')
-rw-r--r-- | cddl/contrib/opensolaris/common/ctf/ctf_open.c | 1045 |
1 files changed, 1045 insertions, 0 deletions
diff --git a/cddl/contrib/opensolaris/common/ctf/ctf_open.c b/cddl/contrib/opensolaris/common/ctf/ctf_open.c new file mode 100644 index 0000000..001cf5c --- /dev/null +++ b/cddl/contrib/opensolaris/common/ctf/ctf_open.c @@ -0,0 +1,1045 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License, Version 1.0 only + * (the "License"). You may not use this file except in compliance + * with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ + +/* + * Copyright 2006 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ +/* + * Copyright (c) 2013, Joyent, Inc. All rights reserved. + */ + +#include <ctf_impl.h> +#include <sys/mman.h> +#include <sys/zmod.h> + +static const ctf_dmodel_t _libctf_models[] = { + { "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 }, + { "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 }, + { NULL, 0, 0, 0, 0, 0, 0 } +}; + +const char _CTF_SECTION[] = ".SUNW_ctf"; +const char _CTF_NULLSTR[] = ""; + +int _libctf_version = CTF_VERSION; /* library client version */ +int _libctf_debug = 0; /* debugging messages enabled */ + +static ushort_t +get_kind_v1(ushort_t info) +{ + return (CTF_INFO_KIND_V1(info)); +} + +static ushort_t +get_kind_v2(ushort_t info) +{ + return (CTF_INFO_KIND(info)); +} + +static ushort_t +get_root_v1(ushort_t info) +{ + return (CTF_INFO_ISROOT_V1(info)); +} + +static ushort_t +get_root_v2(ushort_t info) +{ + return (CTF_INFO_ISROOT(info)); +} + +static ushort_t +get_vlen_v1(ushort_t info) +{ + return (CTF_INFO_VLEN_V1(info)); +} + +static ushort_t +get_vlen_v2(ushort_t info) +{ + return (CTF_INFO_VLEN(info)); +} + +static const ctf_fileops_t ctf_fileops[] = { + { NULL, NULL }, + { get_kind_v1, get_root_v1, get_vlen_v1 }, + { get_kind_v2, get_root_v2, get_vlen_v2 }, +}; + +/* + * Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it. + */ +static Elf64_Sym * +sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst) +{ + dst->st_name = src->st_name; + dst->st_value = src->st_value; + dst->st_size = src->st_size; + dst->st_info = src->st_info; + dst->st_other = src->st_other; + dst->st_shndx = src->st_shndx; + + return (dst); +} + +/* + * Initialize the symtab translation table by filling each entry with the + * offset of the CTF type or function data corresponding to each STT_FUNC or + * STT_OBJECT entry in the symbol table. + */ +static int +init_symtab(ctf_file_t *fp, const ctf_header_t *hp, + const ctf_sect_t *sp, const ctf_sect_t *strp) +{ + const uchar_t *symp = sp->cts_data; + uint_t *xp = fp->ctf_sxlate; + uint_t *xend = xp + fp->ctf_nsyms; + + uint_t objtoff = hp->cth_objtoff; + uint_t funcoff = hp->cth_funcoff; + + ushort_t info, vlen; + Elf64_Sym sym, *gsp; + const char *name; + + /* + * The CTF data object and function type sections are ordered to match + * the relative order of the respective symbol types in the symtab. + * If no type information is available for a symbol table entry, a + * pad is inserted in the CTF section. As a further optimization, + * anonymous or undefined symbols are omitted from the CTF data. + */ + for (; xp < xend; xp++, symp += sp->cts_entsize) { + if (sp->cts_entsize == sizeof (Elf32_Sym)) + gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym); + else + gsp = (Elf64_Sym *)(uintptr_t)symp; + + if (gsp->st_name < strp->cts_size) + name = (const char *)strp->cts_data + gsp->st_name; + else + name = _CTF_NULLSTR; + + if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF || + strcmp(name, "_START_") == 0 || + strcmp(name, "_END_") == 0) { + *xp = -1u; + continue; + } + + switch (ELF64_ST_TYPE(gsp->st_info)) { + case STT_OBJECT: + if (objtoff >= hp->cth_funcoff || + (gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) { + *xp = -1u; + break; + } + + *xp = objtoff; + objtoff += sizeof (ushort_t); + break; + + case STT_FUNC: + if (funcoff >= hp->cth_typeoff) { + *xp = -1u; + break; + } + + *xp = funcoff; + + info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff); + vlen = LCTF_INFO_VLEN(fp, info); + + /* + * If we encounter a zero pad at the end, just skip it. + * Otherwise skip over the function and its return type + * (+2) and the argument list (vlen). + */ + if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN && + vlen == 0) + funcoff += sizeof (ushort_t); /* skip pad */ + else + funcoff += sizeof (ushort_t) * (vlen + 2); + break; + + default: + *xp = -1u; + break; + } + } + + ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms); + return (0); +} + +/* + * Initialize the type ID translation table with the byte offset of each type, + * and initialize the hash tables of each named type. + */ +static int +init_types(ctf_file_t *fp, const ctf_header_t *cth) +{ + /* LINTED - pointer alignment */ + const ctf_type_t *tbuf = (ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff); + /* LINTED - pointer alignment */ + const ctf_type_t *tend = (ctf_type_t *)(fp->ctf_buf + cth->cth_stroff); + + ulong_t pop[CTF_K_MAX + 1] = { 0 }; + const ctf_type_t *tp; + ctf_hash_t *hp; + ushort_t id, dst; + uint_t *xp; + + /* + * We initially determine whether the container is a child or a parent + * based on the value of cth_parname. To support containers that pre- + * date cth_parname, we also scan the types themselves for references + * to values in the range reserved for child types in our first pass. + */ + int child = cth->cth_parname != 0; + int nlstructs = 0, nlunions = 0; + int err; + + /* + * We make two passes through the entire type section. In this first + * pass, we count the number of each type and the total number of types. + */ + for (tp = tbuf; tp < tend; fp->ctf_typemax++) { + ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info); + ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info); + ssize_t size, increment; + + size_t vbytes; + uint_t n; + + (void) ctf_get_ctt_size(fp, tp, &size, &increment); + + switch (kind) { + case CTF_K_INTEGER: + case CTF_K_FLOAT: + vbytes = sizeof (uint_t); + break; + case CTF_K_ARRAY: + vbytes = sizeof (ctf_array_t); + break; + case CTF_K_FUNCTION: + vbytes = sizeof (ushort_t) * (vlen + (vlen & 1)); + break; + case CTF_K_STRUCT: + case CTF_K_UNION: + if (fp->ctf_version == CTF_VERSION_1 || + size < CTF_LSTRUCT_THRESH) { + ctf_member_t *mp = (ctf_member_t *) + ((uintptr_t)tp + increment); + + vbytes = sizeof (ctf_member_t) * vlen; + for (n = vlen; n != 0; n--, mp++) + child |= CTF_TYPE_ISCHILD(mp->ctm_type); + } else { + ctf_lmember_t *lmp = (ctf_lmember_t *) + ((uintptr_t)tp + increment); + + vbytes = sizeof (ctf_lmember_t) * vlen; + for (n = vlen; n != 0; n--, lmp++) + child |= + CTF_TYPE_ISCHILD(lmp->ctlm_type); + } + break; + case CTF_K_ENUM: + vbytes = sizeof (ctf_enum_t) * vlen; + break; + case CTF_K_FORWARD: + /* + * For forward declarations, ctt_type is the CTF_K_* + * kind for the tag, so bump that population count too. + * If ctt_type is unknown, treat the tag as a struct. + */ + if (tp->ctt_type == CTF_K_UNKNOWN || + tp->ctt_type >= CTF_K_MAX) + pop[CTF_K_STRUCT]++; + else + pop[tp->ctt_type]++; + /*FALLTHRU*/ + case CTF_K_UNKNOWN: + vbytes = 0; + break; + case CTF_K_POINTER: + case CTF_K_TYPEDEF: + case CTF_K_VOLATILE: + case CTF_K_CONST: + case CTF_K_RESTRICT: + child |= CTF_TYPE_ISCHILD(tp->ctt_type); + vbytes = 0; + break; + default: + ctf_dprintf("detected invalid CTF kind -- %u\n", kind); + return (ECTF_CORRUPT); + } + tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes); + pop[kind]++; + } + + /* + * If we detected a reference to a child type ID, then we know this + * container is a child and may have a parent's types imported later. + */ + if (child) { + ctf_dprintf("CTF container %p is a child\n", (void *)fp); + fp->ctf_flags |= LCTF_CHILD; + } else + ctf_dprintf("CTF container %p is a parent\n", (void *)fp); + + /* + * Now that we've counted up the number of each type, we can allocate + * the hash tables, type translation table, and pointer table. + */ + if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0) + return (err); + + if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0) + return (err); + + if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0) + return (err); + + if ((err = ctf_hash_create(&fp->ctf_names, + pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] + + pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] + + pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0) + return (err); + + fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1)); + fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1)); + + if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL) + return (EAGAIN); /* memory allocation failed */ + + xp = fp->ctf_txlate; + *xp++ = 0; /* type id 0 is used as a sentinel value */ + + bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1)); + bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1)); + + /* + * In the second pass through the types, we fill in each entry of the + * type and pointer tables and add names to the appropriate hashes. + */ + for (id = 1, tp = tbuf; tp < tend; xp++, id++) { + ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info); + ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info); + ssize_t size, increment; + + const char *name; + size_t vbytes; + ctf_helem_t *hep; + ctf_encoding_t cte; + + (void) ctf_get_ctt_size(fp, tp, &size, &increment); + name = ctf_strptr(fp, tp->ctt_name); + + switch (kind) { + case CTF_K_INTEGER: + case CTF_K_FLOAT: + /* + * Only insert a new integer base type definition if + * this type name has not been defined yet. We re-use + * the names with different encodings for bit-fields. + */ + if ((hep = ctf_hash_lookup(&fp->ctf_names, fp, + name, strlen(name))) == NULL) { + err = ctf_hash_insert(&fp->ctf_names, fp, + CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); + if (err != 0 && err != ECTF_STRTAB) + return (err); + } else if (ctf_type_encoding(fp, hep->h_type, + &cte) == 0 && cte.cte_bits == 0) { + /* + * Work-around SOS8 stabs bug: replace existing + * intrinsic w/ same name if it was zero bits. + */ + hep->h_type = CTF_INDEX_TO_TYPE(id, child); + } + vbytes = sizeof (uint_t); + break; + + case CTF_K_ARRAY: + vbytes = sizeof (ctf_array_t); + break; + + case CTF_K_FUNCTION: + err = ctf_hash_insert(&fp->ctf_names, fp, + CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); + if (err != 0 && err != ECTF_STRTAB) + return (err); + vbytes = sizeof (ushort_t) * (vlen + (vlen & 1)); + break; + + case CTF_K_STRUCT: + err = ctf_hash_define(&fp->ctf_structs, fp, + CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); + + if (err != 0 && err != ECTF_STRTAB) + return (err); + + if (fp->ctf_version == CTF_VERSION_1 || + size < CTF_LSTRUCT_THRESH) + vbytes = sizeof (ctf_member_t) * vlen; + else { + vbytes = sizeof (ctf_lmember_t) * vlen; + nlstructs++; + } + break; + + case CTF_K_UNION: + err = ctf_hash_define(&fp->ctf_unions, fp, + CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); + + if (err != 0 && err != ECTF_STRTAB) + return (err); + + if (fp->ctf_version == CTF_VERSION_1 || + size < CTF_LSTRUCT_THRESH) + vbytes = sizeof (ctf_member_t) * vlen; + else { + vbytes = sizeof (ctf_lmember_t) * vlen; + nlunions++; + } + break; + + case CTF_K_ENUM: + err = ctf_hash_define(&fp->ctf_enums, fp, + CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); + + if (err != 0 && err != ECTF_STRTAB) + return (err); + + vbytes = sizeof (ctf_enum_t) * vlen; + break; + + case CTF_K_TYPEDEF: + err = ctf_hash_insert(&fp->ctf_names, fp, + CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); + if (err != 0 && err != ECTF_STRTAB) + return (err); + vbytes = 0; + break; + + case CTF_K_FORWARD: + /* + * Only insert forward tags into the given hash if the + * type or tag name is not already present. + */ + switch (tp->ctt_type) { + case CTF_K_STRUCT: + hp = &fp->ctf_structs; + break; + case CTF_K_UNION: + hp = &fp->ctf_unions; + break; + case CTF_K_ENUM: + hp = &fp->ctf_enums; + break; + default: + hp = &fp->ctf_structs; + } + + if (ctf_hash_lookup(hp, fp, + name, strlen(name)) == NULL) { + err = ctf_hash_insert(hp, fp, + CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); + if (err != 0 && err != ECTF_STRTAB) + return (err); + } + vbytes = 0; + break; + + case CTF_K_POINTER: + /* + * If the type referenced by the pointer is in this CTF + * container, then store the index of the pointer type + * in fp->ctf_ptrtab[ index of referenced type ]. + */ + if (CTF_TYPE_ISCHILD(tp->ctt_type) == child && + CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax) + fp->ctf_ptrtab[ + CTF_TYPE_TO_INDEX(tp->ctt_type)] = id; + /*FALLTHRU*/ + + case CTF_K_VOLATILE: + case CTF_K_CONST: + case CTF_K_RESTRICT: + err = ctf_hash_insert(&fp->ctf_names, fp, + CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); + if (err != 0 && err != ECTF_STRTAB) + return (err); + /*FALLTHRU*/ + + default: + vbytes = 0; + break; + } + + *xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf); + tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes); + } + + ctf_dprintf("%lu total types processed\n", fp->ctf_typemax); + ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums)); + ctf_dprintf("%u struct names hashed (%d long)\n", + ctf_hash_size(&fp->ctf_structs), nlstructs); + ctf_dprintf("%u union names hashed (%d long)\n", + ctf_hash_size(&fp->ctf_unions), nlunions); + ctf_dprintf("%u base type names hashed\n", + ctf_hash_size(&fp->ctf_names)); + + /* + * Make an additional pass through the pointer table to find pointers + * that point to anonymous typedef nodes. If we find one, modify the + * pointer table so that the pointer is also known to point to the + * node that is referenced by the anonymous typedef node. + */ + for (id = 1; id <= fp->ctf_typemax; id++) { + if ((dst = fp->ctf_ptrtab[id]) != 0) { + tp = LCTF_INDEX_TO_TYPEPTR(fp, id); + + if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF && + strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 && + CTF_TYPE_ISCHILD(tp->ctt_type) == child && + CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax) + fp->ctf_ptrtab[ + CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst; + } + } + + return (0); +} + +/* + * Decode the specified CTF buffer and optional symbol table and create a new + * CTF container representing the symbolic debugging information. This code + * can be used directly by the debugger, or it can be used as the engine for + * ctf_fdopen() or ctf_open(), below. + */ +ctf_file_t * +ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect, + const ctf_sect_t *strsect, int *errp) +{ + const ctf_preamble_t *pp; + ctf_header_t hp; + ctf_file_t *fp; + void *buf, *base; + size_t size, hdrsz; + int err; + + if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL))) + return (ctf_set_open_errno(errp, EINVAL)); + + if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) && + symsect->cts_entsize != sizeof (Elf64_Sym)) + return (ctf_set_open_errno(errp, ECTF_SYMTAB)); + + if (symsect != NULL && symsect->cts_data == NULL) + return (ctf_set_open_errno(errp, ECTF_SYMBAD)); + + if (strsect != NULL && strsect->cts_data == NULL) + return (ctf_set_open_errno(errp, ECTF_STRBAD)); + + if (ctfsect->cts_size < sizeof (ctf_preamble_t)) + return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); + + pp = (const ctf_preamble_t *)ctfsect->cts_data; + + ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n", + pp->ctp_magic, pp->ctp_version); + + /* + * Validate each part of the CTF header (either V1 or V2). + * First, we validate the preamble (common to all versions). At that + * point, we know specific header version, and can validate the + * version-specific parts including section offsets and alignments. + */ + if (pp->ctp_magic != CTF_MAGIC) + return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); + + if (pp->ctp_version == CTF_VERSION_2) { + if (ctfsect->cts_size < sizeof (ctf_header_t)) + return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); + + bcopy(ctfsect->cts_data, &hp, sizeof (hp)); + hdrsz = sizeof (ctf_header_t); + + } else if (pp->ctp_version == CTF_VERSION_1) { + const ctf_header_v1_t *h1p = + (const ctf_header_v1_t *)ctfsect->cts_data; + + if (ctfsect->cts_size < sizeof (ctf_header_v1_t)) + return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); + + bzero(&hp, sizeof (hp)); + hp.cth_preamble = h1p->cth_preamble; + hp.cth_objtoff = h1p->cth_objtoff; + hp.cth_funcoff = h1p->cth_funcoff; + hp.cth_typeoff = h1p->cth_typeoff; + hp.cth_stroff = h1p->cth_stroff; + hp.cth_strlen = h1p->cth_strlen; + + hdrsz = sizeof (ctf_header_v1_t); + } else + return (ctf_set_open_errno(errp, ECTF_CTFVERS)); + + size = hp.cth_stroff + hp.cth_strlen; + + ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size); + + if (hp.cth_lbloff > size || hp.cth_objtoff > size || + hp.cth_funcoff > size || hp.cth_typeoff > size || + hp.cth_stroff > size) + return (ctf_set_open_errno(errp, ECTF_CORRUPT)); + + if (hp.cth_lbloff > hp.cth_objtoff || + hp.cth_objtoff > hp.cth_funcoff || + hp.cth_funcoff > hp.cth_typeoff || + hp.cth_typeoff > hp.cth_stroff) + return (ctf_set_open_errno(errp, ECTF_CORRUPT)); + + if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) || + (hp.cth_funcoff & 1) || (hp.cth_typeoff & 3)) + return (ctf_set_open_errno(errp, ECTF_CORRUPT)); + + /* + * Once everything is determined to be valid, attempt to decompress + * the CTF data buffer if it is compressed. Otherwise we just put + * the data section's buffer pointer into ctf_buf, below. + */ + if (hp.cth_flags & CTF_F_COMPRESS) { + size_t srclen, dstlen; + const void *src; + int rc = Z_OK; + + if (ctf_zopen(errp) == NULL) + return (NULL); /* errp is set for us */ + + if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED) + return (ctf_set_open_errno(errp, ECTF_ZALLOC)); + + bcopy(ctfsect->cts_data, base, hdrsz); + ((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS; + buf = (uchar_t *)base + hdrsz; + + src = (uchar_t *)ctfsect->cts_data + hdrsz; + srclen = ctfsect->cts_size - hdrsz; + dstlen = size; + + if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) { + ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc)); + ctf_data_free(base, size + hdrsz); + return (ctf_set_open_errno(errp, ECTF_DECOMPRESS)); + } + + if (dstlen != size) { + ctf_dprintf("zlib inflate short -- got %lu of %lu " + "bytes\n", (ulong_t)dstlen, (ulong_t)size); + ctf_data_free(base, size + hdrsz); + return (ctf_set_open_errno(errp, ECTF_CORRUPT)); + } + + ctf_data_protect(base, size + hdrsz); + + } else { + base = (void *)ctfsect->cts_data; + buf = (uchar_t *)base + hdrsz; + } + + /* + * Once we have uncompressed and validated the CTF data buffer, we can + * proceed with allocating a ctf_file_t and initializing it. + */ + if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL) + return (ctf_set_open_errno(errp, EAGAIN)); + + bzero(fp, sizeof (ctf_file_t)); + fp->ctf_version = hp.cth_version; + fp->ctf_fileops = &ctf_fileops[hp.cth_version]; + bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t)); + + if (symsect != NULL) { + bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t)); + bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t)); + } + + if (fp->ctf_data.cts_name != NULL) + fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name); + if (fp->ctf_symtab.cts_name != NULL) + fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name); + if (fp->ctf_strtab.cts_name != NULL) + fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name); + + if (fp->ctf_data.cts_name == NULL) + fp->ctf_data.cts_name = _CTF_NULLSTR; + if (fp->ctf_symtab.cts_name == NULL) + fp->ctf_symtab.cts_name = _CTF_NULLSTR; + if (fp->ctf_strtab.cts_name == NULL) + fp->ctf_strtab.cts_name = _CTF_NULLSTR; + + fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff; + fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen; + + if (strsect != NULL) { + fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data; + fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size; + } + + fp->ctf_base = base; + fp->ctf_buf = buf; + fp->ctf_size = size + hdrsz; + + /* + * If we have a parent container name and label, store the relocated + * string pointers in the CTF container for easy access later. + */ + if (hp.cth_parlabel != 0) + fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel); + if (hp.cth_parname != 0) + fp->ctf_parname = ctf_strptr(fp, hp.cth_parname); + + ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n", + fp->ctf_parname ? fp->ctf_parname : "<NULL>", + fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>"); + + /* + * If we have a symbol table section, allocate and initialize + * the symtab translation table, pointed to by ctf_sxlate. + */ + if (symsect != NULL) { + fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize; + fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t)); + + if (fp->ctf_sxlate == NULL) { + (void) ctf_set_open_errno(errp, EAGAIN); + goto bad; + } + + if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) { + (void) ctf_set_open_errno(errp, err); + goto bad; + } + } + + if ((err = init_types(fp, &hp)) != 0) { + (void) ctf_set_open_errno(errp, err); + goto bad; + } + + /* + * Initialize the ctf_lookup_by_name top-level dictionary. We keep an + * array of type name prefixes and the corresponding ctf_hash to use. + * NOTE: This code must be kept in sync with the code in ctf_update(). + */ + fp->ctf_lookups[0].ctl_prefix = "struct"; + fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix); + fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs; + fp->ctf_lookups[1].ctl_prefix = "union"; + fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix); + fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions; + fp->ctf_lookups[2].ctl_prefix = "enum"; + fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix); + fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums; + fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR; + fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix); + fp->ctf_lookups[3].ctl_hash = &fp->ctf_names; + fp->ctf_lookups[4].ctl_prefix = NULL; + fp->ctf_lookups[4].ctl_len = 0; + fp->ctf_lookups[4].ctl_hash = NULL; + + if (symsect != NULL) { + if (symsect->cts_entsize == sizeof (Elf64_Sym)) + (void) ctf_setmodel(fp, CTF_MODEL_LP64); + else + (void) ctf_setmodel(fp, CTF_MODEL_ILP32); + } else + (void) ctf_setmodel(fp, CTF_MODEL_NATIVE); + + fp->ctf_refcnt = 1; + return (fp); + +bad: + ctf_close(fp); + return (NULL); +} + +/* + * Dupliate a ctf_file_t and its underlying section information into a new + * container. This works by copying the three ctf_sect_t's of the original + * container if they exist and passing those into ctf_bufopen. To copy those, we + * mmap anonymous memory with ctf_data_alloc and bcopy the data across. It's not + * the cheapest thing, but it's what we've got. + */ +ctf_file_t * +ctf_dup(ctf_file_t *ofp) +{ + ctf_file_t *fp; + ctf_sect_t ctfsect, symsect, strsect; + ctf_sect_t *ctp, *symp, *strp; + void *cbuf, *symbuf, *strbuf; + int err; + + cbuf = symbuf = strbuf = NULL; + /* + * The ctfsect isn't allowed to not exist, but the symbol and string + * section might not. We only need to copy the data of the section, not + * the name, as ctf_bufopen will take care of that. + */ + bcopy(&ofp->ctf_data, &ctfsect, sizeof (ctf_sect_t)); + cbuf = ctf_data_alloc(ctfsect.cts_size); + if (cbuf == NULL) { + (void) ctf_set_errno(ofp, ECTF_MMAP); + return (NULL); + } + + bcopy(ctfsect.cts_data, cbuf, ctfsect.cts_size); + ctf_data_protect(cbuf, ctfsect.cts_size); + ctfsect.cts_data = cbuf; + ctfsect.cts_offset = 0; + ctp = &ctfsect; + + if (ofp->ctf_symtab.cts_data != NULL) { + bcopy(&ofp->ctf_symtab, &symsect, sizeof (ctf_sect_t)); + symbuf = ctf_data_alloc(symsect.cts_size); + if (symbuf == NULL) { + (void) ctf_set_errno(ofp, ECTF_MMAP); + goto err; + } + bcopy(symsect.cts_data, symbuf, symsect.cts_size); + ctf_data_protect(symbuf, symsect.cts_size); + symsect.cts_data = symbuf; + symsect.cts_offset = 0; + symp = &symsect; + } else { + symp = NULL; + } + + if (ofp->ctf_strtab.cts_data != NULL) { + bcopy(&ofp->ctf_strtab, &strsect, sizeof (ctf_sect_t)); + strbuf = ctf_data_alloc(strsect.cts_size); + if (strbuf == NULL) { + (void) ctf_set_errno(ofp, ECTF_MMAP); + goto err; + } + bcopy(strsect.cts_data, strbuf, strsect.cts_size); + ctf_data_protect(strbuf, strsect.cts_size); + strsect.cts_data = strbuf; + strsect.cts_offset = 0; + strp = &strsect; + } else { + strp = NULL; + } + + fp = ctf_bufopen(ctp, symp, strp, &err); + if (fp == NULL) { + (void) ctf_set_errno(ofp, err); + goto err; + } + + fp->ctf_flags |= LCTF_MMAP; + + return (fp); + +err: + ctf_data_free(cbuf, ctfsect.cts_size); + if (symbuf != NULL) + ctf_data_free(symbuf, symsect.cts_size); + if (strbuf != NULL) + ctf_data_free(strbuf, strsect.cts_size); + return (NULL); +} + +/* + * Close the specified CTF container and free associated data structures. Note + * that ctf_close() is a reference counted operation: if the specified file is + * the parent of other active containers, its reference count will be greater + * than one and it will be freed later when no active children exist. + */ +void +ctf_close(ctf_file_t *fp) +{ + ctf_dtdef_t *dtd, *ntd; + + if (fp == NULL) + return; /* allow ctf_close(NULL) to simplify caller code */ + + ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt); + + if (fp->ctf_refcnt > 1) { + fp->ctf_refcnt--; + return; + } + + if (fp->ctf_parent != NULL) + ctf_close(fp->ctf_parent); + + /* + * Note, to work properly with reference counting on the dynamic + * section, we must delete the list in reverse. + */ + for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) { + ntd = ctf_list_prev(dtd); + ctf_dtd_delete(fp, dtd); + } + + ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *)); + + if (fp->ctf_flags & LCTF_MMAP) { + if (fp->ctf_data.cts_data != NULL) + ctf_sect_munmap(&fp->ctf_data); + if (fp->ctf_symtab.cts_data != NULL) + ctf_sect_munmap(&fp->ctf_symtab); + if (fp->ctf_strtab.cts_data != NULL) + ctf_sect_munmap(&fp->ctf_strtab); + } + + if (fp->ctf_data.cts_name != _CTF_NULLSTR && + fp->ctf_data.cts_name != NULL) { + ctf_free((char *)fp->ctf_data.cts_name, + strlen(fp->ctf_data.cts_name) + 1); + } + + if (fp->ctf_symtab.cts_name != _CTF_NULLSTR && + fp->ctf_symtab.cts_name != NULL) { + ctf_free((char *)fp->ctf_symtab.cts_name, + strlen(fp->ctf_symtab.cts_name) + 1); + } + + if (fp->ctf_strtab.cts_name != _CTF_NULLSTR && + fp->ctf_strtab.cts_name != NULL) { + ctf_free((char *)fp->ctf_strtab.cts_name, + strlen(fp->ctf_strtab.cts_name) + 1); + } + + if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL) + ctf_data_free((void *)fp->ctf_base, fp->ctf_size); + + if (fp->ctf_sxlate != NULL) + ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms); + + if (fp->ctf_txlate != NULL) { + ctf_free(fp->ctf_txlate, + sizeof (uint_t) * (fp->ctf_typemax + 1)); + } + + if (fp->ctf_ptrtab != NULL) { + ctf_free(fp->ctf_ptrtab, + sizeof (ushort_t) * (fp->ctf_typemax + 1)); + } + + ctf_hash_destroy(&fp->ctf_structs); + ctf_hash_destroy(&fp->ctf_unions); + ctf_hash_destroy(&fp->ctf_enums); + ctf_hash_destroy(&fp->ctf_names); + + ctf_free(fp, sizeof (ctf_file_t)); +} + +/* + * Return the CTF handle for the parent CTF container, if one exists. + * Otherwise return NULL to indicate this container has no imported parent. + */ +ctf_file_t * +ctf_parent_file(ctf_file_t *fp) +{ + return (fp->ctf_parent); +} + +/* + * Return the name of the parent CTF container, if one exists. Otherwise + * return NULL to indicate this container is a root container. + */ +const char * +ctf_parent_name(ctf_file_t *fp) +{ + return (fp->ctf_parname); +} + +/* + * Import the types from the specified parent container by storing a pointer + * to it in ctf_parent and incrementing its reference count. Only one parent + * is allowed: if a parent already exists, it is replaced by the new parent. + */ +int +ctf_import(ctf_file_t *fp, ctf_file_t *pfp) +{ + if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0)) + return (ctf_set_errno(fp, EINVAL)); + + if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel) + return (ctf_set_errno(fp, ECTF_DMODEL)); + + if (fp->ctf_parent != NULL) + ctf_close(fp->ctf_parent); + + if (pfp != NULL) { + fp->ctf_flags |= LCTF_CHILD; + pfp->ctf_refcnt++; + } + + fp->ctf_parent = pfp; + return (0); +} + +/* + * Set the data model constant for the CTF container. + */ +int +ctf_setmodel(ctf_file_t *fp, int model) +{ + const ctf_dmodel_t *dp; + + for (dp = _libctf_models; dp->ctd_name != NULL; dp++) { + if (dp->ctd_code == model) { + fp->ctf_dmodel = dp; + return (0); + } + } + + return (ctf_set_errno(fp, EINVAL)); +} + +/* + * Return the data model constant for the CTF container. + */ +int +ctf_getmodel(ctf_file_t *fp) +{ + return (fp->ctf_dmodel->ctd_code); +} + +void +ctf_setspecific(ctf_file_t *fp, void *data) +{ + fp->ctf_specific = data; +} + +void * +ctf_getspecific(ctf_file_t *fp) +{ + return (fp->ctf_specific); +} |