summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--sys/conf/files1
-rw-r--r--sys/kern/imgact_gzip.c1220
-rw-r--r--sys/kern/inflate.c1228
-rw-r--r--sys/sys/inflate.h81
4 files changed, 1319 insertions, 1211 deletions
diff --git a/sys/conf/files b/sys/conf/files
index 405ced6..ead2914 100644
--- a/sys/conf/files
+++ b/sys/conf/files
@@ -37,6 +37,7 @@ kdb/kdb_sym.c optional kadb
kdb/kdb_trap.c optional kadb
kern/imgact_aout.c standard
kern/imgact_gzip.c optional gzip
+kern/inflate.c optional gzip
kern/imgact_shell.c standard
kern/init_main.c standard
kern/init_sysent.c standard
diff --git a/sys/kern/imgact_gzip.c b/sys/kern/imgact_gzip.c
index a9a6d3a..270daae 100644
--- a/sys/kern/imgact_gzip.c
+++ b/sys/kern/imgact_gzip.c
@@ -7,7 +7,7 @@
* this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
* ----------------------------------------------------------------------------
*
- * $Id: imgact_gzip.c,v 1.5 1994/10/05 00:58:33 phk Exp $
+ * $Id: imgact_gzip.c,v 1.4 1994/10/04 06:51:42 phk Exp $
*
* This module handles execution of a.out files which have been run through
* "gzip -9".
@@ -23,12 +23,14 @@
* inflate isn't quite reentrant yet...
* error-handling is a mess...
* so is the rest...
+ * tidy up unnecesary includes
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/resourcevar.h>
#include <sys/exec.h>
+#include <sys/inflate.h>
#include <sys/mman.h>
#include <sys/malloc.h>
#include <sys/imgact.h>
@@ -39,30 +41,8 @@
#include <vm/vm.h>
#include <vm/vm_kern.h>
-#define WSIZE 0x8000
-
-struct gzip {
- struct image_params *ip;
- struct exec a_out;
- int error;
- int where;
- u_char *inbuf;
- u_long offset;
- u_long output;
- u_long len;
- int idx;
- u_long virtual_offset, file_offset, file_end, bss_size;
- unsigned gz_wp;
- u_char *gz_slide;
-};
-
-int inflate __P((struct gzip *));
-
extern struct sysentvec aout_sysvec;
-#define slide (gz->gz_slide)
-#define wp (gz->gz_wp)
-
int
exec_gzip_imgact(iparams)
struct image_params *iparams;
@@ -70,6 +50,7 @@ exec_gzip_imgact(iparams)
int error,error2=0;
u_char *p = (u_char *) iparams->image_header;
struct gzip *gz;
+ struct gz_global gz_glbl;
/* If these four are not OK, it isn't a gzip file */
if (p[0] != 0x1f) return -1; /* 0 Simply magic */
@@ -91,10 +72,10 @@ exec_gzip_imgact(iparams)
return ENOMEM;
bzero(gz,sizeof *gz); /* waste of time ? */
- error = vm_allocate(kernel_map, &gz->gz_slide, WSIZE, TRUE);
- if (error) {
+ gz->gz_slide = malloc(WSIZE,M_TEMP,M_NOWAIT);
+ if (!gz->gz_slide) {
free(gz,M_GZIP);
- return error;
+ return ENOMEM;
}
gz->ip = iparams;
@@ -117,7 +98,7 @@ exec_gzip_imgact(iparams)
gz->error = 0;
- error = inflate(gz);
+ error = inflate(gz, &gz_glbl);
if (gz->inbuf) {
error2 =
@@ -142,7 +123,7 @@ exec_gzip_imgact(iparams)
done:
error = gz->error;
- vm_deallocate(kernel_map, gz->gz_slide, WSIZE);
+ free(gz->gz_slide,M_TEMP);
free(gz,M_GZIP);
return error;
}
@@ -305,1186 +286,3 @@ do_aout_hdr(struct gzip *gz)
static const struct execsw gzip_execsw = { exec_gzip_imgact, "gzip" };
TEXT_SET(execsw_set, gzip_execsw);
-/* Stuff to make inflate() work */
-# define uch u_char
-# define ush u_short
-# define ulg u_long
-# define memzero(dest,len) bzero(dest,len)
-# define NOMEMCPY
-#define FPRINTF printf
-
-#define EOF -1
-#define CHECK_EOF
-static int
-NextByte(struct gzip *gz)
-{
- int error;
-
- if(gz->idx >= gz->len) {
- gz->where = __LINE__;
- return EOF;
- }
-
- if((!gz->inbuf) || gz->idx >= (gz->offset+PAGE_SIZE)) {
- if(gz->inbuf) {
- error = vm_deallocate(kernel_map,
- (vm_offset_t)gz->inbuf, PAGE_SIZE);
- if(error) {
- gz->where = __LINE__;
- gz->error = error;
- return EOF;
- }
- }
-
- gz->offset += PAGE_SIZE;
-
- error = vm_mmap(kernel_map, /* map */
- (vm_offset_t *)&gz->inbuf, /* address */
- PAGE_SIZE, /* size */
- VM_PROT_READ, /* protection */
- VM_PROT_READ, /* max protection */
- 0, /* flags */
- (caddr_t)gz->ip->vnodep, /* vnode */
- gz->offset); /* offset */
- if(error) {
- gz->where = __LINE__;
- gz->error = error;
- return EOF;
- }
-
- }
- return gz->inbuf[(gz->idx++) - gz->offset];
-}
-
-#define NEXTBYTE NextByte(gz)
-
-static int
-Flush(struct gzip *gz,u_long siz)
-{
- u_char *p = slide,*q;
- int i;
-
- /* First, find a a.out-header */
- if(gz->output < sizeof gz->a_out) {
- q = (u_char*) &gz->a_out;
- i = min(siz,sizeof gz->a_out - gz->output);
- bcopy(p,q+gz->output,i);
- gz->output += i;
- p += i;
- siz -= i;
- if(gz->output == sizeof gz->a_out) {
- i = do_aout_hdr(gz);
- if (i == -1) {
- gz->where = __LINE__;
- gz->error = ENOEXEC;
- return ENOEXEC;
- } else if (i) {
- gz->where = __LINE__;
- gz->error = i;
- return ENOEXEC;
- }
- if(gz->file_offset < sizeof gz->a_out) {
- q = (u_char*) gz->virtual_offset + gz->output - gz->file_offset;
- bcopy(&gz->a_out,q,sizeof gz->a_out - gz->file_offset);
- }
- }
- }
- /* Skip over zero-padded first PAGE if needed */
- if(gz->output < gz->file_offset && (gz->output+siz) > gz->file_offset) {
- i = min(siz, gz->file_offset - gz->output);
- gz->output += i;
- p += i;
- siz -= i;
- }
- if(gz->output >= gz->file_offset && gz->output < gz->file_end) {
- i = min(siz, gz->file_end - gz->output);
- q = (u_char*) gz->virtual_offset + gz->output - gz->file_offset;
- bcopy(p,q,i);
- gz->output += i;
- p += i;
- siz -= i;
- }
- gz->output += siz;
- return 0;
-}
-
-#define FLUSH(x,y) {int foo = Flush(x,y); if (foo) return foo;}
-static
-void *
-myalloc(u_long size)
-{
- return malloc(size, M_GZIP, M_NOWAIT);
-}
-#define malloc myalloc
-
-static
-void
-myfree(void * ptr)
-{
- free(ptr,M_GZIP);
-}
-#define free myfree
-
-static int qflag;
-#define Trace(x) /* */
-
-
-/* This came from unzip-5.12. I have changed it to pass a "gz" pointer
- * around, thus hopefully making it re-entrant. Poul-Henningi
- */
-
-/* inflate.c -- put in the public domain by Mark Adler
- version c14o, 23 August 1994 */
-
-/* You can do whatever you like with this source file, though I would
- prefer that if you modify it and redistribute it that you include
- comments to that effect with your name and the date. Thank you.
-
- History:
- vers date who what
- ---- --------- -------------- ------------------------------------
- a ~~ Feb 92 M. Adler used full (large, one-step) lookup table
- b1 21 Mar 92 M. Adler first version with partial lookup tables
- b2 21 Mar 92 M. Adler fixed bug in fixed-code blocks
- b3 22 Mar 92 M. Adler sped up match copies, cleaned up some
- b4 25 Mar 92 M. Adler added prototypes; removed window[] (now
- is the responsibility of unzip.h--also
- changed name to slide[]), so needs diffs
- for unzip.c and unzip.h (this allows
- compiling in the small model on MSDOS);
- fixed cast of q in huft_build();
- b5 26 Mar 92 M. Adler got rid of unintended macro recursion.
- b6 27 Mar 92 M. Adler got rid of nextbyte() routine. fixed
- bug in inflate_fixed().
- c1 30 Mar 92 M. Adler removed lbits, dbits environment variables.
- changed BMAX to 16 for explode. Removed
- OUTB usage, and replaced it with flush()--
- this was a 20% speed improvement! Added
- an explode.c (to replace unimplod.c) that
- uses the huft routines here. Removed
- register union.
- c2 4 Apr 92 M. Adler fixed bug for file sizes a multiple of 32k.
- c3 10 Apr 92 M. Adler reduced memory of code tables made by
- huft_build significantly (factor of two to
- three).
- c4 15 Apr 92 M. Adler added NOMEMCPY do kill use of memcpy().
- worked around a Turbo C optimization bug.
- c5 21 Apr 92 M. Adler added the WSIZE #define to allow reducing
- the 32K window size for specialized
- applications.
- c6 31 May 92 M. Adler added some typecasts to eliminate warnings
- c7 27 Jun 92 G. Roelofs added some more typecasts (444: MSC bug).
- c8 5 Oct 92 J-l. Gailly added ifdef'd code to deal with PKZIP bug.
- c9 9 Oct 92 M. Adler removed a memory error message (~line 416).
- c10 17 Oct 92 G. Roelofs changed ULONG/UWORD/byte to ulg/ush/uch,
- removed old inflate, renamed inflate_entry
- to inflate, added Mark's fix to a comment.
- c10.5 14 Dec 92 M. Adler fix up error messages for incomplete trees.
- c11 2 Jan 93 M. Adler fixed bug in detection of incomplete
- tables, and removed assumption that EOB is
- the longest code (bad assumption).
- c12 3 Jan 93 M. Adler make tables for fixed blocks only once.
- c13 5 Jan 93 M. Adler allow all zero length codes (pkzip 2.04c
- outputs one zero length code for an empty
- distance tree).
- c14 12 Mar 93 M. Adler made inflate.c standalone with the
- introduction of inflate.h.
- c14b 16 Jul 93 G. Roelofs added (unsigned) typecast to w at 470.
- c14c 19 Jul 93 J. Bush changed v[N_MAX], l[288], ll[28x+3x] arrays
- to static for Amiga.
- c14d 13 Aug 93 J-l. Gailly de-complicatified Mark's c[*p++]++ thing.
- c14e 8 Oct 93 G. Roelofs changed memset() to memzero().
- c14f 22 Oct 93 G. Roelofs renamed quietflg to qflag; made Trace()
- conditional; added inflate_free().
- c14g 28 Oct 93 G. Roelofs changed l/(lx+1) macro to pointer (Cray bug)
- c14h 7 Dec 93 C. Ghisler huft_build() optimizations.
- c14i 9 Jan 94 A. Verheijen set fixed_t{d,l} to NULL after freeing;
- G. Roelofs check NEXTBYTE macro for EOF.
- c14j 23 Jan 94 G. Roelofs removed Ghisler "optimizations"; ifdef'd
- EOF check.
- c14k 27 Feb 94 G. Roelofs added some typecasts to avoid warnings.
- c14l 9 Apr 94 G. Roelofs fixed split comments on preprocessor lines
- to avoid bug in Encore compiler.
- c14m 7 Jul 94 P. Kienitz modified to allow assembler version of
- inflate_codes() (define ASM_INFLATECODES)
- c14n 22 Jul 94 G. Roelofs changed fprintf to FPRINTF for DLL versions
- c14o 23 Aug 94 C. Spieler added a newline to a debug statement;
- G. Roelofs added another typecast to avoid MSC warning
- */
-
-
-/*
- Inflate deflated (PKZIP's method 8 compressed) data. The compression
- method searches for as much of the current string of bytes (up to a
- length of 258) in the previous 32K bytes. If it doesn't find any
- matches (of at least length 3), it codes the next byte. Otherwise, it
- codes the length of the matched string and its distance backwards from
- the current position. There is a single Huffman code that codes both
- single bytes (called "literals") and match lengths. A second Huffman
- code codes the distance information, which follows a length code. Each
- length or distance code actually represents a base value and a number
- of "extra" (sometimes zero) bits to get to add to the base value. At
- the end of each deflated block is a special end-of-block (EOB) literal/
- length code. The decoding process is basically: get a literal/length
- code; if EOB then done; if a literal, emit the decoded byte; if a
- length then get the distance and emit the referred-to bytes from the
- sliding window of previously emitted data.
-
- There are (currently) three kinds of inflate blocks: stored, fixed, and
- dynamic. The compressor outputs a chunk of data at a time and decides
- which method to use on a chunk-by-chunk basis. A chunk might typically
- be 32K to 64K, uncompressed. If the chunk is uncompressible, then the
- "stored" method is used. In this case, the bytes are simply stored as
- is, eight bits per byte, with none of the above coding. The bytes are
- preceded by a count, since there is no longer an EOB code.
-
- If the data is compressible, then either the fixed or dynamic methods
- are used. In the dynamic method, the compressed data is preceded by
- an encoding of the literal/length and distance Huffman codes that are
- to be used to decode this block. The representation is itself Huffman
- coded, and so is preceded by a description of that code. These code
- descriptions take up a little space, and so for small blocks, there is
- a predefined set of codes, called the fixed codes. The fixed method is
- used if the block ends up smaller that way (usually for quite small
- chunks); otherwise the dynamic method is used. In the latter case, the
- codes are customized to the probabilities in the current block and so
- can code it much better than the pre-determined fixed codes can.
-
- The Huffman codes themselves are decoded using a mutli-level table
- lookup, in order to maximize the speed of decoding plus the speed of
- building the decoding tables. See the comments below that precede the
- lbits and dbits tuning parameters.
- */
-
-
-/*
- Notes beyond the 1.93a appnote.txt:
-
- 1. Distance pointers never point before the beginning of the output
- stream.
- 2. Distance pointers can point back across blocks, up to 32k away.
- 3. There is an implied maximum of 7 bits for the bit length table and
- 15 bits for the actual data.
- 4. If only one code exists, then it is encoded using one bit. (Zero
- would be more efficient, but perhaps a little confusing.) If two
- codes exist, they are coded using one bit each (0 and 1).
- 5. There is no way of sending zero distance codes--a dummy must be
- sent if there are none. (History: a pre 2.0 version of PKZIP would
- store blocks with no distance codes, but this was discovered to be
- too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
- zero distance codes, which is sent as one code of zero bits in
- length.
- 6. There are up to 286 literal/length codes. Code 256 represents the
- end-of-block. Note however that the static length tree defines
- 288 codes just to fill out the Huffman codes. Codes 286 and 287
- cannot be used though, since there is no length base or extra bits
- defined for them. Similarily, there are up to 30 distance codes.
- However, static trees define 32 codes (all 5 bits) to fill out the
- Huffman codes, but the last two had better not show up in the data.
- 7. Unzip can check dynamic Huffman blocks for complete code sets.
- The exception is that a single code would not be complete (see #4).
- 8. The five bits following the block type is really the number of
- literal codes sent minus 257.
- 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
- (1+6+6). Therefore, to output three times the length, you output
- three codes (1+1+1), whereas to output four times the same length,
- you only need two codes (1+3). Hmm.
- 10. In the tree reconstruction algorithm, Code = Code + Increment
- only if BitLength(i) is not zero. (Pretty obvious.)
- 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
- 12. Note: length code 284 can represent 227-258, but length code 285
- really is 258. The last length deserves its own, short code
- since it gets used a lot in very redundant files. The length
- 258 is special since 258 - 3 (the min match length) is 255.
- 13. The literal/length and distance code bit lengths are read as a
- single stream of lengths. It is possible (and advantageous) for
- a repeat code (16, 17, or 18) to go across the boundary between
- the two sets of lengths.
- */
-
-
-#define PKZIP_BUG_WORKAROUND /* PKZIP 1.93a problem--live with it */
-
-/*
- inflate.h must supply the uch slide[WSIZE] array and the NEXTBYTE,
- FLUSH() and memzero macros. If the window size is not 32K, it
- should also define WSIZE. If INFMOD is defined, it can include
- compiled functions to support the NEXTBYTE and/or FLUSH() macros.
- There are defaults for NEXTBYTE and FLUSH() below for use as
- examples of what those functions need to do. Normally, you would
- also want FLUSH() to compute a crc on the data. inflate.h also
- needs to provide these typedefs:
-
- typedef unsigned char uch;
- typedef unsigned short ush;
- typedef unsigned long ulg;
-
- This module uses the external functions malloc() and free() (and
- probably memset() or bzero() in the memzero() macro). Their
- prototypes are normally found in <string.h> and <stdlib.h>.
- */
-#define INFMOD /* tell inflate.h to include code to be compiled */
-
-/* Huffman code lookup table entry--this entry is four bytes for machines
- that have 16-bit pointers (e.g. PC's in the small or medium model).
- Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16
- means that v is a literal, 16 < e < 32 means that v is a pointer to
- the next table, which codes e - 16 bits, and lastly e == 99 indicates
- an unused code. If a code with e == 99 is looked up, this implies an
- error in the data. */
-struct huft {
- uch e; /* number of extra bits or operation */
- uch b; /* number of bits in this code or subcode */
- union {
- ush n; /* literal, length base, or distance base */
- struct huft *t; /* pointer to next level of table */
- } v;
-};
-
-
-/* Function prototypes */
-#ifndef OF
-# ifdef __STDC__
-# define OF(a) a
-# else /* !__STDC__ */
-# define OF(a) ()
-# endif /* ?__STDC__ */
-#endif
-int huft_build OF((struct gzip *,unsigned *, unsigned, unsigned, ush *, ush *,
- struct huft **, int *));
-int huft_free OF((struct gzip *,struct huft *));
-int inflate_codes OF((struct gzip *,struct huft *, struct huft *, int, int));
-int inflate_stored OF((struct gzip *));
-int inflate_fixed OF((struct gzip *));
-int inflate_dynamic OF((struct gzip *));
-int inflate_block OF((struct gzip *,int *));
-int inflate_free OF((struct gzip *));
-
-
-/* The inflate algorithm uses a sliding 32K byte window on the uncompressed
- stream to find repeated byte strings. This is implemented here as a
- circular buffer. The index is updated simply by incrementing and then
- and'ing with 0x7fff (32K-1). */
-/* It is left to other modules to supply the 32K area. It is assumed
- to be usable as if it were declared "uch slide[32768];" or as just
- "uch *slide;" and then malloc'ed in the latter case. The definition
- must be in unzip.h, included above. */
-
-
-/* Tables for deflate from PKZIP's appnote.txt. */
-static unsigned border[] = { /* Order of the bit length code lengths */
- 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
-static ush cplens[] = { /* Copy lengths for literal codes 257..285 */
- 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
- 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
- /* note: see note #13 above about the 258 in this list. */
-static ush cplext[] = { /* Extra bits for literal codes 257..285 */
- 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
- 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
-static ush cpdist[] = { /* Copy offsets for distance codes 0..29 */
- 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
- 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
- 8193, 12289, 16385, 24577};
-static ush cpdext[] = { /* Extra bits for distance codes */
- 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
- 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
- 12, 12, 13, 13};
-
-/* And'ing with mask[n] masks the lower n bits */
-ush mask[] = {
- 0x0000,
- 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
- 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
-};
-
-
-/* Macros for inflate() bit peeking and grabbing.
- The usage is:
-
- NEEDBITS(j)
- x = b & mask[j];
- DUMPBITS(j)
-
- where NEEDBITS makes sure that b has at least j bits in it, and
- DUMPBITS removes the bits from b. The macros use the variable k
- for the number of bits in b. Normally, b and k are register
- variables for speed, and are initialized at the begining of a
- routine that uses these macros from a global bit buffer and count.
-
- In order to not ask for more bits than there are in the compressed
- stream, the Huffman tables are constructed to only ask for just
- enough bits to make up the end-of-block code (value 256). Then no
- bytes need to be "returned" to the buffer at the end of the last
- block. See the huft_build() routine.
- */
-
-ulg bb; /* bit buffer */
-unsigned bk; /* bits in bit buffer */
-
-#ifndef CHECK_EOF
-# define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE)<<k;k+=8;}}
-#else
-# define NEEDBITS(n) {while(k<(n)){int c=NEXTBYTE;if(c==EOF)return 1;\
- b|=((ulg)c)<<k;k+=8;}}
-#endif /* Piet Plomp: change "return 1" to "break" */
-
-#define DUMPBITS(n) {b>>=(n);k-=(n);}
-
-
-/*
- Huffman code decoding is performed using a multi-level table lookup.
- The fastest way to decode is to simply build a lookup table whose
- size is determined by the longest code. However, the time it takes
- to build this table can also be a factor if the data being decoded
- is not very long. The most common codes are necessarily the
- shortest codes, so those codes dominate the decoding time, and hence
- the speed. The idea is you can have a shorter table that decodes the
- shorter, more probable codes, and then point to subsidiary tables for
- the longer codes. The time it costs to decode the longer codes is
- then traded against the time it takes to make longer tables.
-
- This results of this trade are in the variables lbits and dbits
- below. lbits is the number of bits the first level table for literal/
- length codes can decode in one step, and dbits is the same thing for
- the distance codes. Subsequent tables are also less than or equal to
- those sizes. These values may be adjusted either when all of the
- codes are shorter than that, in which case the longest code length in
- bits is used, or when the shortest code is *longer* than the requested
- table size, in which case the length of the shortest code in bits is
- used.
-
- There are two different values for the two tables, since they code a
- different number of possibilities each. The literal/length table
- codes 286 possible values, or in a flat code, a little over eight
- bits. The distance table codes 30 possible values, or a little less
- than five bits, flat. The optimum values for speed end up being
- about one bit more than those, so lbits is 8+1 and dbits is 5+1.
- The optimum values may differ though from machine to machine, and
- possibly even between compilers. Your mileage may vary.
- */
-
-
-int lbits = 9; /* bits in base literal/length lookup table */
-int dbits = 6; /* bits in base distance lookup table */
-
-
-/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
-#define BMAX 16 /* maximum bit length of any code (16 for explode) */
-#define N_MAX 288 /* maximum number of codes in any set */
-
-
-unsigned hufts; /* track memory usage */
-
-
-int huft_build(gz,b, n, s, d, e, t, m)
-struct gzip *gz;
-unsigned *b; /* code lengths in bits (all assumed <= BMAX) */
-unsigned n; /* number of codes (assumed <= N_MAX) */
-unsigned s; /* number of simple-valued codes (0..s-1) */
-ush *d; /* list of base values for non-simple codes */
-ush *e; /* list of extra bits for non-simple codes */
-struct huft **t; /* result: starting table */
-int *m; /* maximum lookup bits, returns actual */
-/* Given a list of code lengths and a maximum table size, make a set of
- tables to decode that set of codes. Return zero on success, one if
- the given code set is incomplete (the tables are still built in this
- case), two if the input is invalid (all zero length codes or an
- oversubscribed set of lengths), and three if not enough memory.
- The code with value 256 is special, and the tables are constructed
- so that no bits beyond that code are fetched when that code is
- decoded. */
-{
- unsigned a; /* counter for codes of length k */
- unsigned c[BMAX+1]; /* bit length count table */
- unsigned el; /* length of EOB code (value 256) */
- unsigned f; /* i repeats in table every f entries */
- int g; /* maximum code length */
- int h; /* table level */
- register unsigned i; /* counter, current code */
- register unsigned j; /* counter */
- register int k; /* number of bits in current code */
- int lx[BMAX+1]; /* memory for l[-1..BMAX-1] */
- int *l = lx+1; /* stack of bits per table */
- register unsigned *p; /* pointer into c[], b[], or v[] */
- register struct huft *q; /* points to current table */
- struct huft r; /* table entry for structure assignment */
- struct huft *u[BMAX]; /* table stack */
- static unsigned v[N_MAX]; /* values in order of bit length */
- register int w; /* bits before this table == (l * h) */
- unsigned x[BMAX+1]; /* bit offsets, then code stack */
- unsigned *xp; /* pointer into x */
- int y; /* number of dummy codes added */
- unsigned z; /* number of entries in current table */
-
-
- /* Generate counts for each bit length */
- el = n > 256 ? b[256] : BMAX; /* set length of EOB code, if any */
- memzero((char *)c, sizeof(c));
- p = b; i = n;
- do {
- c[*p]++; p++; /* assume all entries <= BMAX */
- } while (--i);
- if (c[0] == n) /* null input--all zero length codes */
- {
- *t = (struct huft *)NULL;
- *m = 0;
- return 0;
- }
-
-
- /* Find minimum and maximum length, bound *m by those */
- for (j = 1; j <= BMAX; j++)
- if (c[j])
- break;
- k = j; /* minimum code length */
- if ((unsigned)*m < j)
- *m = j;
- for (i = BMAX; i; i--)
- if (c[i])
- break;
- g = i; /* maximum code length */
- if ((unsigned)*m > i)
- *m = i;
-
-
- /* Adjust last length count to fill out codes, if needed */
- for (y = 1 << j; j < i; j++, y <<= 1)
- if ((y -= c[j]) < 0)
- return 2; /* bad input: more codes than bits */
- if ((y -= c[i]) < 0)
- return 2;
- c[i] += y;
-
-
- /* Generate starting offsets into the value table for each length */
- x[1] = j = 0;
- p = c + 1; xp = x + 2;
- while (--i) { /* note that i == g from above */
- *xp++ = (j += *p++);
- }
-
-
- /* Make a table of values in order of bit lengths */
- p = b; i = 0;
- do {
- if ((j = *p++) != 0)
- v[x[j]++] = i;
- } while (++i < n);
-
-
- /* Generate the Huffman codes and for each, make the table entries */
- x[0] = i = 0; /* first Huffman code is zero */
- p = v; /* grab values in bit order */
- h = -1; /* no tables yet--level -1 */
- w = l[-1] = 0; /* no bits decoded yet */
- u[0] = (struct huft *)NULL; /* just to keep compilers happy */
- q = (struct huft *)NULL; /* ditto */
- z = 0; /* ditto */
-
- /* go through the bit lengths (k already is bits in shortest code) */
- for (; k <= g; k++)
- {
- a = c[k];
- while (a--)
- {
- /* here i is the Huffman code of length k bits for value *p */
- /* make tables up to required level */
- while (k > w + l[h])
- {
- w += l[h++]; /* add bits already decoded */
-
- /* compute minimum size table less than or equal to *m bits */
- z = (z = g - w) > (unsigned)*m ? *m : z; /* upper limit */
- if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
- { /* too few codes for k-w bit table */
- f -= a + 1; /* deduct codes from patterns left */
- xp = c + k;
- while (++j < z) /* try smaller tables up to z bits */
- {
- if ((f <<= 1) <= *++xp)
- break; /* enough codes to use up j bits */
- f -= *xp; /* else deduct codes from patterns */
- }
- }
- if ((unsigned)w + j > el && (unsigned)w < el)
- j = el - w; /* make EOB code end at table */
- z = 1 << j; /* table entries for j-bit table */
- l[h] = j; /* set table size in stack */
-
- /* allocate and link in new table */
- if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
- (struct huft *)NULL)
- {
- if (h)
- huft_free(gz,u[0]);
- return 3; /* not enough memory */
- }
- hufts += z + 1; /* track memory usage */
- *t = q + 1; /* link to list for huft_free() */
- *(t = &(q->v.t)) = (struct huft *)NULL;
- u[h] = ++q; /* table starts after link */
-
- /* connect to last table, if there is one */
- if (h)
- {
- x[h] = i; /* save pattern for backing up */
- r.b = (uch)l[h-1]; /* bits to dump before this table */
- r.e = (uch)(16 + j); /* bits in this table */
- r.v.t = q; /* pointer to this table */
- j = (i & ((1 << w) - 1)) >> (w - l[h-1]);
- u[h-1][j] = r; /* connect to last table */
- }
- }
-
- /* set up table entry in r */
- r.b = (uch)(k - w);
- if (p >= v + n)
- r.e = 99; /* out of values--invalid code */
- else if (*p < s)
- {
- r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
- r.v.n = *p++; /* simple code is just the value */
- }
- else
- {
- r.e = (uch)e[*p - s]; /* non-simple--look up in lists */
- r.v.n = d[*p++ - s];
- }
-
- /* fill code-like entries with r */
- f = 1 << (k - w);
- for (j = i >> w; j < z; j += f)
- q[j] = r;
-
- /* backwards increment the k-bit code i */
- for (j = 1 << (k - 1); i & j; j >>= 1)
- i ^= j;
- i ^= j;
-
- /* backup over finished tables */
- while ((i & ((1 << w) - 1)) != x[h])
- w -= l[--h]; /* don't need to update q */
- }
- }
-
-
- /* return actual size of base table */
- *m = l[0];
-
-
- /* Return true (1) if we were given an incomplete table */
- return y != 0 && g != 1;
-}
-
-
-
-int huft_free(gz,t)
-struct gzip *gz;
-struct huft *t; /* table to free */
-/* Free the malloc'ed tables built by huft_build(), which makes a linked
- list of the tables it made, with the links in a dummy first entry of
- each table. */
-{
- register struct huft *p, *q;
-
-
- /* Go through linked list, freeing from the malloced (t[-1]) address. */
- p = t;
- while (p != (struct huft *)NULL)
- {
- q = (--p)->v.t;
- free(p);
- p = q;
- }
- return 0;
-}
-
-
-
-#ifdef ASM_INFLATECODES
-# define inflate_codes(tl,td,bl,bd) flate_codes(tl,td,bl,bd,(uch *)slide)
- int flate_codes OF((struct huft *, struct huft *, int, int, uch *));
-
-#else
-
-int inflate_codes(gz,tl, td, bl, bd)
-struct gzip *gz;
-struct huft *tl, *td; /* literal/length and distance decoder tables */
-int bl, bd; /* number of bits decoded by tl[] and td[] */
-/* inflate (decompress) the codes in a deflated (compressed) block.
- Return an error code or zero if it all goes ok. */
-{
- register unsigned e; /* table entry flag/number of extra bits */
- unsigned n, d; /* length and index for copy */
- unsigned w; /* current window position */
- struct huft *t; /* pointer to table entry */
- unsigned ml, md; /* masks for bl and bd bits */
- register ulg b; /* bit buffer */
- register unsigned k; /* number of bits in bit buffer */
-
-
- /* make local copies of globals */
- b = bb; /* initialize bit buffer */
- k = bk;
- w = wp; /* initialize window position */
-
-
- /* inflate the coded data */
- ml = mask[bl]; /* precompute masks for speed */
- md = mask[bd];
- while (1) /* do until end of block */
- {
- NEEDBITS((unsigned)bl)
- if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
- do {
- if (e == 99)
- return 1;
- DUMPBITS(t->b)
- e -= 16;
- NEEDBITS(e)
- } while ((e = (t = t->v.t + ((unsigned)b & mask[e]))->e) > 16);
- DUMPBITS(t->b)
- if (e == 16) /* then it's a literal */
- {
- slide[w++] = (uch)t->v.n;
- if (w == WSIZE)
- {
- FLUSH(gz,w);
- w = 0;
- }
- }
- else /* it's an EOB or a length */
- {
- /* exit if end of block */
- if (e == 15)
- break;
-
- /* get length of block to copy */
- NEEDBITS(e)
- n = t->v.n + ((unsigned)b & mask[e]);
- DUMPBITS(e);
-
- /* decode distance of block to copy */
- NEEDBITS((unsigned)bd)
- if ((e = (t = td + ((unsigned)b & md))->e) > 16)
- do {
- if (e == 99)
- return 1;
- DUMPBITS(t->b)
- e -= 16;
- NEEDBITS(e)
- } while ((e = (t = t->v.t + ((unsigned)b & mask[e]))->e) > 16);
- DUMPBITS(t->b)
- NEEDBITS(e)
- d = w - t->v.n - ((unsigned)b & mask[e]);
- DUMPBITS(e)
-
- /* do the copy */
- do {
- n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
-#ifndef NOMEMCPY
- if (w - d >= e) /* (this test assumes unsigned comparison) */
- {
- memcpy(slide + w, slide + d, e);
- w += e;
- d += e;
- }
- else /* do it slow to avoid memcpy() overlap */
-#endif /* !NOMEMCPY */
- do {
- slide[w++] = slide[d++];
- } while (--e);
- if (w == WSIZE)
- {
- FLUSH(gz,w);
- w = 0;
- }
- } while (n);
- }
- }
-
-
- /* restore the globals from the locals */
- wp = w; /* restore global window pointer */
- bb = b; /* restore global bit buffer */
- bk = k;
-
-
- /* done */
- return 0;
-}
-
-#endif /* ASM_INFLATECODES */
-
-
-
-int inflate_stored(gz)
-struct gzip *gz;
-/* "decompress" an inflated type 0 (stored) block. */
-{
- unsigned n; /* number of bytes in block */
- unsigned w; /* current window position */
- register ulg b; /* bit buffer */
- register unsigned k; /* number of bits in bit buffer */
-
-
- /* make local copies of globals */
- Trace((stderr, "\nstored block"));
- b = bb; /* initialize bit buffer */
- k = bk;
- w = wp; /* initialize window position */
-
-
- /* go to byte boundary */
- n = k & 7;
- DUMPBITS(n);
-
-
- /* get the length and its complement */
- NEEDBITS(16)
- n = ((unsigned)b & 0xffff);
- DUMPBITS(16)
- NEEDBITS(16)
- if (n != (unsigned)((~b) & 0xffff))
- return 1; /* error in compressed data */
- DUMPBITS(16)
-
-
- /* read and output the compressed data */
- while (n--)
- {
- NEEDBITS(8)
- slide[w++] = (uch)b;
- if (w == WSIZE)
- {
- FLUSH(gz,w);
- w = 0;
- }
- DUMPBITS(8)
- }
-
-
- /* restore the globals from the locals */
- wp = w; /* restore global window pointer */
- bb = b; /* restore global bit buffer */
- bk = k;
- return 0;
-}
-
-
-/* Globals for literal tables (built once) */
-struct huft *fixed_tl = (struct huft *)NULL;
-struct huft *fixed_td;
-int fixed_bl, fixed_bd;
-
-int inflate_fixed(gz)
-struct gzip *gz;
-/* decompress an inflated type 1 (fixed Huffman codes) block. We should
- either replace this with a custom decoder, or at least precompute the
- Huffman tables. */
-{
- /* if first time, set up tables for fixed blocks */
- Trace((stderr, "\nliteral block"));
- if (fixed_tl == (struct huft *)NULL)
- {
- int i; /* temporary variable */
- static unsigned l[288]; /* length list for huft_build */
-
- /* literal table */
- for (i = 0; i < 144; i++)
- l[i] = 8;
- for (; i < 256; i++)
- l[i] = 9;
- for (; i < 280; i++)
- l[i] = 7;
- for (; i < 288; i++) /* make a complete, but wrong code set */
- l[i] = 8;
- fixed_bl = 7;
- if ((i = huft_build(gz,l, 288, 257, cplens, cplext,
- &fixed_tl, &fixed_bl)) != 0)
- {
- fixed_tl = (struct huft *)NULL;
- return i;
- }
-
- /* distance table */
- for (i = 0; i < 30; i++) /* make an incomplete code set */
- l[i] = 5;
- fixed_bd = 5;
- if ((i = huft_build(gz,l, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd)) > 1)
- {
- huft_free(gz,fixed_tl);
- fixed_tl = (struct huft *)NULL;
- return i;
- }
- }
-
-
- /* decompress until an end-of-block code */
- return inflate_codes(gz,fixed_tl, fixed_td, fixed_bl, fixed_bd) != 0;
-}
-
-
-
-int inflate_dynamic(gz)
-struct gzip *gz;
-/* decompress an inflated type 2 (dynamic Huffman codes) block. */
-{
- int i; /* temporary variables */
- unsigned j;
- unsigned l; /* last length */
- unsigned m; /* mask for bit lengths table */
- unsigned n; /* number of lengths to get */
- struct huft *tl; /* literal/length code table */
- struct huft *td; /* distance code table */
- int bl; /* lookup bits for tl */
- int bd; /* lookup bits for td */
- unsigned nb; /* number of bit length codes */
- unsigned nl; /* number of literal/length codes */
- unsigned nd; /* number of distance codes */
-#ifdef PKZIP_BUG_WORKAROUND
- static unsigned ll[288+32]; /* literal/length and distance code lengths */
-#else
- static unsigned ll[286+30]; /* literal/length and distance code lengths */
-#endif
- register ulg b; /* bit buffer */
- register unsigned k; /* number of bits in bit buffer */
-
-
- /* make local bit buffer */
- Trace((stderr, "\ndynamic block"));
- b = bb;
- k = bk;
-
-
- /* read in table lengths */
- NEEDBITS(5)
- nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
- DUMPBITS(5)
- NEEDBITS(5)
- nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
- DUMPBITS(5)
- NEEDBITS(4)
- nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
- DUMPBITS(4)
-#ifdef PKZIP_BUG_WORKAROUND
- if (nl > 288 || nd > 32)
-#else
- if (nl > 286 || nd > 30)
-#endif
- return 1; /* bad lengths */
-
-
- /* read in bit-length-code lengths */
- for (j = 0; j < nb; j++)
- {
- NEEDBITS(3)
- ll[border[j]] = (unsigned)b & 7;
- DUMPBITS(3)
- }
- for (; j < 19; j++)
- ll[border[j]] = 0;
-
-
- /* build decoding table for trees--single level, 7 bit lookup */
- bl = 7;
- if ((i = huft_build(gz,ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
- {
- if (i == 1)
- huft_free(gz,tl);
- return i; /* incomplete code set */
- }
-
-
- /* read in literal and distance code lengths */
- n = nl + nd;
- m = mask[bl];
- i = l = 0;
- while ((unsigned)i < n)
- {
- NEEDBITS((unsigned)bl)
- j = (td = tl + ((unsigned)b & m))->b;
- DUMPBITS(j)
- j = td->v.n;
- if (j < 16) /* length of code in bits (0..15) */
- ll[i++] = l = j; /* save last length in l */
- else if (j == 16) /* repeat last length 3 to 6 times */
- {
- NEEDBITS(2)
- j = 3 + ((unsigned)b & 3);
- DUMPBITS(2)
- if ((unsigned)i + j > n)
- return 1;
- while (j--)
- ll[i++] = l;
- }
- else if (j == 17) /* 3 to 10 zero length codes */
- {
- NEEDBITS(3)
- j = 3 + ((unsigned)b & 7);
- DUMPBITS(3)
- if ((unsigned)i + j > n)
- return 1;
- while (j--)
- ll[i++] = 0;
- l = 0;
- }
- else /* j == 18: 11 to 138 zero length codes */
- {
- NEEDBITS(7)
- j = 11 + ((unsigned)b & 0x7f);
- DUMPBITS(7)
- if ((unsigned)i + j > n)
- return 1;
- while (j--)
- ll[i++] = 0;
- l = 0;
- }
- }
-
-
- /* free decoding table for trees */
- huft_free(gz,tl);
-
-
- /* restore the global bit buffer */
- bb = b;
- bk = k;
-
-
- /* build the decoding tables for literal/length and distance codes */
- bl = lbits;
- if ((i = huft_build(gz,ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
- {
- if (i == 1 && !qflag) {
- FPRINTF( "(incomplete l-tree) ");
- huft_free(gz,tl);
- }
- return i; /* incomplete code set */
- }
- bd = dbits;
- if ((i = huft_build(gz,ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
- {
- if (i == 1 && !qflag) {
- FPRINTF( "(incomplete d-tree) ");
-#ifdef PKZIP_BUG_WORKAROUND
- i = 0;
- }
-#else
- huft_free(gz,td);
- }
- huft_free(gz,tl);
- return i; /* incomplete code set */
-#endif
- }
-
-
- /* decompress until an end-of-block code */
- if (inflate_codes(gz,tl, td, bl, bd))
- return 1;
-
-
- /* free the decoding tables, return */
- huft_free(gz,tl);
- huft_free(gz,td);
- return 0;
-}
-
-
-
-int inflate_block(gz,e)
-struct gzip *gz;
-int *e; /* last block flag */
-/* decompress an inflated block */
-{
- unsigned t; /* block type */
- register ulg b; /* bit buffer */
- register unsigned k; /* number of bits in bit buffer */
-
-
- /* make local bit buffer */
- b = bb;
- k = bk;
-
-
- /* read in last block bit */
- NEEDBITS(1)
- *e = (int)b & 1;
- DUMPBITS(1)
-
-
- /* read in block type */
- NEEDBITS(2)
- t = (unsigned)b & 3;
- DUMPBITS(2)
-
-
- /* restore the global bit buffer */
- bb = b;
- bk = k;
-
-
- /* inflate that block type */
- if (t == 2)
- return inflate_dynamic(gz);
- if (t == 0)
- return inflate_stored(gz);
- if (t == 1)
- return inflate_fixed(gz);
-
-
- /* bad block type */
- return 2;
-}
-
-
-
-int inflate(gz)
-struct gzip *gz;
-/* decompress an inflated entry */
-{
- int e; /* last block flag */
- int r; /* result code */
- unsigned h; /* maximum struct huft's malloc'ed */
-
-
- /* initialize window, bit buffer */
- wp = 0;
- bk = 0;
- bb = 0;
-
-
- /* decompress until the last block */
- h = 0;
- do {
- hufts = 0;
- if ((r = inflate_block(gz,&e)) != 0)
- return r;
- if (hufts > h)
- h = hufts;
- } while (!e);
-
-
- /* flush out slide */
- FLUSH(gz,wp);
-
-
- /* return success */
- Trace((stderr, "\n%u bytes in Huffman tables (%d/entry)\n",
- h * sizeof(struct huft), sizeof(struct huft)));
- return 0;
-}
-
-
-
-int inflate_free(gz)
-struct gzip *gz;
-{
- if (fixed_tl != (struct huft *)NULL)
- {
- huft_free(gz,fixed_td);
- huft_free(gz,fixed_tl);
- fixed_td = fixed_tl = (struct huft *)NULL;
- }
- return 0;
-}
diff --git a/sys/kern/inflate.c b/sys/kern/inflate.c
new file mode 100644
index 0000000..f68fab8
--- /dev/null
+++ b/sys/kern/inflate.c
@@ -0,0 +1,1228 @@
+/*
+ * Parts of this file are not covered by:
+ * ----------------------------------------------------------------------------
+ * "THE BEER-WARE LICENSE" (Revision 42):
+ * <phk@login.dknet.dk> wrote this file. As long as you retain this notice you
+ * can do whatever you want with this stuff. If we meet some day, and you think
+ * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
+ * ----------------------------------------------------------------------------
+ *
+ * $Id: imgact_gzip.c,v 1.4 1994/10/04 06:51:42 phk Exp $
+ *
+ * This module handles execution of a.out files which have been run through
+ * "gzip -9".
+ *
+ * For now you need to use exactly this command to compress the binaries:
+ *
+ * gzip -9 -v < /bin/sh > /tmp/sh
+ *
+ * TODO:
+ * text-segments should be made R/O after being filled
+ * is the vm-stuff safe ?
+ * should handle the entire header of gzip'ed stuff.
+ * inflate isn't quite reentrant yet...
+ * error-handling is a mess...
+ * so is the rest...
+ */
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/resourcevar.h>
+#include <sys/exec.h>
+#include <sys/inflate.h>
+#include <sys/mman.h>
+#include <sys/malloc.h>
+#include <sys/imgact.h>
+#include <sys/imgact_aout.h>
+#include <sys/kernel.h>
+#include <sys/sysent.h>
+
+#include <vm/vm.h>
+#include <vm/vm_kern.h>
+
+/* Stuff to make inflate() work */
+# define uch u_char
+# define ush u_short
+# define ulg u_long
+# define memzero(dest,len) bzero(dest,len)
+# define NOMEMCPY
+#define FPRINTF printf
+
+#define EOF -1
+#define CHECK_EOF
+static int
+NextByte(struct gzip *gz)
+{
+ int error;
+
+ if(gz->idx >= gz->len) {
+ gz->where = __LINE__;
+ return EOF;
+ }
+
+ if((!gz->inbuf) || gz->idx >= (gz->offset+PAGE_SIZE)) {
+ if(gz->inbuf) {
+ error = vm_deallocate(kernel_map,
+ (vm_offset_t)gz->inbuf, PAGE_SIZE);
+ if(error) {
+ gz->where = __LINE__;
+ gz->error = error;
+ return EOF;
+ }
+ }
+
+ gz->offset += PAGE_SIZE;
+
+ error = vm_mmap(kernel_map, /* map */
+ (vm_offset_t *)&gz->inbuf, /* address */
+ PAGE_SIZE, /* size */
+ VM_PROT_READ, /* protection */
+ VM_PROT_READ, /* max protection */
+ 0, /* flags */
+ (caddr_t)gz->ip->vnodep, /* vnode */
+ gz->offset); /* offset */
+ if(error) {
+ gz->where = __LINE__;
+ gz->error = error;
+ return EOF;
+ }
+
+ }
+ return gz->inbuf[(gz->idx++) - gz->offset];
+}
+
+#define NEXTBYTE NextByte(gz)
+
+static int
+Flush(struct gzip *gz,u_long siz)
+{
+ u_char *p = slide,*q;
+ int i;
+
+ /* First, find a a.out-header */
+ if(gz->output < sizeof gz->a_out) {
+ q = (u_char*) &gz->a_out;
+ i = min(siz,sizeof gz->a_out - gz->output);
+ bcopy(p,q+gz->output,i);
+ gz->output += i;
+ p += i;
+ siz -= i;
+ if(gz->output == sizeof gz->a_out) {
+ i = do_aout_hdr(gz);
+ if (i == -1) {
+ gz->where = __LINE__;
+ gz->error = ENOEXEC;
+ return ENOEXEC;
+ } else if (i) {
+ gz->where = __LINE__;
+ gz->error = i;
+ return ENOEXEC;
+ }
+ if(gz->file_offset < sizeof gz->a_out) {
+ q = (u_char*) gz->virtual_offset + gz->output - gz->file_offset;
+ bcopy(&gz->a_out,q,sizeof gz->a_out - gz->file_offset);
+ }
+ }
+ }
+ /* Skip over zero-padded first PAGE if needed */
+ if(gz->output < gz->file_offset && (gz->output+siz) > gz->file_offset) {
+ i = min(siz, gz->file_offset - gz->output);
+ gz->output += i;
+ p += i;
+ siz -= i;
+ }
+ if(gz->output >= gz->file_offset && gz->output < gz->file_end) {
+ i = min(siz, gz->file_end - gz->output);
+ q = (u_char*) gz->virtual_offset + gz->output - gz->file_offset;
+ bcopy(p,q,i);
+ gz->output += i;
+ p += i;
+ siz -= i;
+ }
+ gz->output += siz;
+ return 0;
+}
+
+#define FLUSH(x,y) {int foo = Flush(x,y); if (foo) return foo;}
+static
+void *
+myalloc(u_long size)
+{
+ return malloc(size, M_GZIP, M_NOWAIT);
+}
+#define malloc myalloc
+
+static
+void
+myfree(void * ptr)
+{
+ free(ptr,M_GZIP);
+}
+#define free myfree
+
+static const int qflag = 0;
+#define Trace(x) /* */
+
+
+/* This came from unzip-5.12. I have changed it to pass a "gz" pointer
+ * around, thus hopefully making it re-entrant. Poul-Henningi
+ */
+
+/* inflate.c -- put in the public domain by Mark Adler
+ version c14o, 23 August 1994 */
+
+/* You can do whatever you like with this source file, though I would
+ prefer that if you modify it and redistribute it that you include
+ comments to that effect with your name and the date. Thank you.
+
+ History:
+ vers date who what
+ ---- --------- -------------- ------------------------------------
+ a ~~ Feb 92 M. Adler used full (large, one-step) lookup table
+ b1 21 Mar 92 M. Adler first version with partial lookup tables
+ b2 21 Mar 92 M. Adler fixed bug in fixed-code blocks
+ b3 22 Mar 92 M. Adler sped up match copies, cleaned up some
+ b4 25 Mar 92 M. Adler added prototypes; removed window[] (now
+ is the responsibility of unzip.h--also
+ changed name to slide[]), so needs diffs
+ for unzip.c and unzip.h (this allows
+ compiling in the small model on MSDOS);
+ fixed cast of q in huft_build();
+ b5 26 Mar 92 M. Adler got rid of unintended macro recursion.
+ b6 27 Mar 92 M. Adler got rid of nextbyte() routine. fixed
+ bug in inflate_fixed().
+ c1 30 Mar 92 M. Adler removed lbits, dbits environment variables.
+ changed BMAX to 16 for explode. Removed
+ OUTB usage, and replaced it with flush()--
+ this was a 20% speed improvement! Added
+ an explode.c (to replace unimplod.c) that
+ uses the huft routines here. Removed
+ register union.
+ c2 4 Apr 92 M. Adler fixed bug for file sizes a multiple of 32k.
+ c3 10 Apr 92 M. Adler reduced memory of code tables made by
+ huft_build significantly (factor of two to
+ three).
+ c4 15 Apr 92 M. Adler added NOMEMCPY do kill use of memcpy().
+ worked around a Turbo C optimization bug.
+ c5 21 Apr 92 M. Adler added the WSIZE #define to allow reducing
+ the 32K window size for specialized
+ applications.
+ c6 31 May 92 M. Adler added some typecasts to eliminate warnings
+ c7 27 Jun 92 G. Roelofs added some more typecasts (444: MSC bug).
+ c8 5 Oct 92 J-l. Gailly added ifdef'd code to deal with PKZIP bug.
+ c9 9 Oct 92 M. Adler removed a memory error message (~line 416).
+ c10 17 Oct 92 G. Roelofs changed ULONG/UWORD/byte to ulg/ush/uch,
+ removed old inflate, renamed inflate_entry
+ to inflate, added Mark's fix to a comment.
+ c10.5 14 Dec 92 M. Adler fix up error messages for incomplete trees.
+ c11 2 Jan 93 M. Adler fixed bug in detection of incomplete
+ tables, and removed assumption that EOB is
+ the longest code (bad assumption).
+ c12 3 Jan 93 M. Adler make tables for fixed blocks only once.
+ c13 5 Jan 93 M. Adler allow all zero length codes (pkzip 2.04c
+ outputs one zero length code for an empty
+ distance tree).
+ c14 12 Mar 93 M. Adler made inflate.c standalone with the
+ introduction of inflate.h.
+ c14b 16 Jul 93 G. Roelofs added (unsigned) typecast to w at 470.
+ c14c 19 Jul 93 J. Bush changed v[N_MAX], l[288], ll[28x+3x] arrays
+ to static for Amiga.
+ c14d 13 Aug 93 J-l. Gailly de-complicatified Mark's c[*p++]++ thing.
+ c14e 8 Oct 93 G. Roelofs changed memset() to memzero().
+ c14f 22 Oct 93 G. Roelofs renamed quietflg to qflag; made Trace()
+ conditional; added inflate_free().
+ c14g 28 Oct 93 G. Roelofs changed l/(lx+1) macro to pointer (Cray bug)
+ c14h 7 Dec 93 C. Ghisler huft_build() optimizations.
+ c14i 9 Jan 94 A. Verheijen set fixed_t{d,l} to NULL after freeing;
+ G. Roelofs check NEXTBYTE macro for EOF.
+ c14j 23 Jan 94 G. Roelofs removed Ghisler "optimizations"; ifdef'd
+ EOF check.
+ c14k 27 Feb 94 G. Roelofs added some typecasts to avoid warnings.
+ c14l 9 Apr 94 G. Roelofs fixed split comments on preprocessor lines
+ to avoid bug in Encore compiler.
+ c14m 7 Jul 94 P. Kienitz modified to allow assembler version of
+ inflate_codes() (define ASM_INFLATECODES)
+ c14n 22 Jul 94 G. Roelofs changed fprintf to FPRINTF for DLL versions
+ c14o 23 Aug 94 C. Spieler added a newline to a debug statement;
+ G. Roelofs added another typecast to avoid MSC warning
+ */
+
+
+/*
+ Inflate deflated (PKZIP's method 8 compressed) data. The compression
+ method searches for as much of the current string of bytes (up to a
+ length of 258) in the previous 32K bytes. If it doesn't find any
+ matches (of at least length 3), it codes the next byte. Otherwise, it
+ codes the length of the matched string and its distance backwards from
+ the current position. There is a single Huffman code that codes both
+ single bytes (called "literals") and match lengths. A second Huffman
+ code codes the distance information, which follows a length code. Each
+ length or distance code actually represents a base value and a number
+ of "extra" (sometimes zero) bits to get to add to the base value. At
+ the end of each deflated block is a special end-of-block (EOB) literal/
+ length code. The decoding process is basically: get a literal/length
+ code; if EOB then done; if a literal, emit the decoded byte; if a
+ length then get the distance and emit the referred-to bytes from the
+ sliding window of previously emitted data.
+
+ There are (currently) three kinds of inflate blocks: stored, fixed, and
+ dynamic. The compressor outputs a chunk of data at a time and decides
+ which method to use on a chunk-by-chunk basis. A chunk might typically
+ be 32K to 64K, uncompressed. If the chunk is uncompressible, then the
+ "stored" method is used. In this case, the bytes are simply stored as
+ is, eight bits per byte, with none of the above coding. The bytes are
+ preceded by a count, since there is no longer an EOB code.
+
+ If the data is compressible, then either the fixed or dynamic methods
+ are used. In the dynamic method, the compressed data is preceded by
+ an encoding of the literal/length and distance Huffman codes that are
+ to be used to decode this block. The representation is itself Huffman
+ coded, and so is preceded by a description of that code. These code
+ descriptions take up a little space, and so for small blocks, there is
+ a predefined set of codes, called the fixed codes. The fixed method is
+ used if the block ends up smaller that way (usually for quite small
+ chunks); otherwise the dynamic method is used. In the latter case, the
+ codes are customized to the probabilities in the current block and so
+ can code it much better than the pre-determined fixed codes can.
+
+ The Huffman codes themselves are decoded using a mutli-level table
+ lookup, in order to maximize the speed of decoding plus the speed of
+ building the decoding tables. See the comments below that precede the
+ lbits and dbits tuning parameters.
+ */
+
+
+/*
+ Notes beyond the 1.93a appnote.txt:
+
+ 1. Distance pointers never point before the beginning of the output
+ stream.
+ 2. Distance pointers can point back across blocks, up to 32k away.
+ 3. There is an implied maximum of 7 bits for the bit length table and
+ 15 bits for the actual data.
+ 4. If only one code exists, then it is encoded using one bit. (Zero
+ would be more efficient, but perhaps a little confusing.) If two
+ codes exist, they are coded using one bit each (0 and 1).
+ 5. There is no way of sending zero distance codes--a dummy must be
+ sent if there are none. (History: a pre 2.0 version of PKZIP would
+ store blocks with no distance codes, but this was discovered to be
+ too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
+ zero distance codes, which is sent as one code of zero bits in
+ length.
+ 6. There are up to 286 literal/length codes. Code 256 represents the
+ end-of-block. Note however that the static length tree defines
+ 288 codes just to fill out the Huffman codes. Codes 286 and 287
+ cannot be used though, since there is no length base or extra bits
+ defined for them. Similarily, there are up to 30 distance codes.
+ However, static trees define 32 codes (all 5 bits) to fill out the
+ Huffman codes, but the last two had better not show up in the data.
+ 7. Unzip can check dynamic Huffman blocks for complete code sets.
+ The exception is that a single code would not be complete (see #4).
+ 8. The five bits following the block type is really the number of
+ literal codes sent minus 257.
+ 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
+ (1+6+6). Therefore, to output three times the length, you output
+ three codes (1+1+1), whereas to output four times the same length,
+ you only need two codes (1+3). Hmm.
+ 10. In the tree reconstruction algorithm, Code = Code + Increment
+ only if BitLength(i) is not zero. (Pretty obvious.)
+ 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
+ 12. Note: length code 284 can represent 227-258, but length code 285
+ really is 258. The last length deserves its own, short code
+ since it gets used a lot in very redundant files. The length
+ 258 is special since 258 - 3 (the min match length) is 255.
+ 13. The literal/length and distance code bit lengths are read as a
+ single stream of lengths. It is possible (and advantageous) for
+ a repeat code (16, 17, or 18) to go across the boundary between
+ the two sets of lengths.
+ */
+
+
+#define PKZIP_BUG_WORKAROUND /* PKZIP 1.93a problem--live with it */
+
+/*
+ inflate.h must supply the uch slide[WSIZE] array and the NEXTBYTE,
+ FLUSH() and memzero macros. If the window size is not 32K, it
+ should also define WSIZE. If INFMOD is defined, it can include
+ compiled functions to support the NEXTBYTE and/or FLUSH() macros.
+ There are defaults for NEXTBYTE and FLUSH() below for use as
+ examples of what those functions need to do. Normally, you would
+ also want FLUSH() to compute a crc on the data. inflate.h also
+ needs to provide these typedefs:
+
+ typedef unsigned char uch;
+ typedef unsigned short ush;
+ typedef unsigned long ulg;
+
+ This module uses the external functions malloc() and free() (and
+ probably memset() or bzero() in the memzero() macro). Their
+ prototypes are normally found in <string.h> and <stdlib.h>.
+ */
+#define INFMOD /* tell inflate.h to include code to be compiled */
+
+/* Huffman code lookup table entry--this entry is four bytes for machines
+ that have 16-bit pointers (e.g. PC's in the small or medium model).
+ Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16
+ means that v is a literal, 16 < e < 32 means that v is a pointer to
+ the next table, which codes e - 16 bits, and lastly e == 99 indicates
+ an unused code. If a code with e == 99 is looked up, this implies an
+ error in the data. */
+struct huft {
+ uch e; /* number of extra bits or operation */
+ uch b; /* number of bits in this code or subcode */
+ union {
+ ush n; /* literal, length base, or distance base */
+ struct huft *t; /* pointer to next level of table */
+ } v;
+};
+
+
+/* Function prototypes */
+#ifndef OF
+# ifdef __STDC__
+# define OF(a) a
+# else /* !__STDC__ */
+# define OF(a) ()
+# endif /* ?__STDC__ */
+#endif
+static int huft_build OF((struct gzip *,unsigned *, unsigned, unsigned, const ush *, const ush *,
+ struct huft **, int *));
+static int huft_free OF((struct gzip *,struct huft *));
+static int inflate_codes OF((struct gzip *,struct huft *, struct huft *, int, int));
+static int inflate_stored OF((struct gzip *));
+static int inflate_fixed OF((struct gzip *));
+static int inflate_dynamic OF((struct gzip *));
+static int inflate_block OF((struct gzip *,int *));
+static int inflate_free OF((struct gzip *));
+
+
+/* The inflate algorithm uses a sliding 32K byte window on the uncompressed
+ stream to find repeated byte strings. This is implemented here as a
+ circular buffer. The index is updated simply by incrementing and then
+ and'ing with 0x7fff (32K-1). */
+/* It is left to other modules to supply the 32K area. It is assumed
+ to be usable as if it were declared "uch slide[32768];" or as just
+ "uch *slide;" and then malloc'ed in the latter case. The definition
+ must be in unzip.h, included above. */
+
+
+/* Tables for deflate from PKZIP's appnote.txt. */
+static const unsigned border[] = { /* Order of the bit length code lengths */
+ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
+static const ush cplens[] = { /* Copy lengths for literal codes 257..285 */
+ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
+ 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
+ /* note: see note #13 above about the 258 in this list. */
+static const ush cplext[] = { /* Extra bits for literal codes 257..285 */
+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
+ 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
+static const ush cpdist[] = { /* Copy offsets for distance codes 0..29 */
+ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
+ 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
+ 8193, 12289, 16385, 24577};
+static const ush cpdext[] = { /* Extra bits for distance codes */
+ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
+ 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
+ 12, 12, 13, 13};
+
+/* And'ing with mask[n] masks the lower n bits */
+const ush mask[] = {
+ 0x0000,
+ 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
+ 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
+};
+
+
+/* Macros for inflate() bit peeking and grabbing.
+ The usage is:
+
+ NEEDBITS(j)
+ x = b & mask[j];
+ DUMPBITS(j)
+
+ where NEEDBITS makes sure that b has at least j bits in it, and
+ DUMPBITS removes the bits from b. The macros use the variable k
+ for the number of bits in b. Normally, b and k are register
+ variables for speed, and are initialized at the begining of a
+ routine that uses these macros from a global bit buffer and count.
+
+ In order to not ask for more bits than there are in the compressed
+ stream, the Huffman tables are constructed to only ask for just
+ enough bits to make up the end-of-block code (value 256). Then no
+ bytes need to be "returned" to the buffer at the end of the last
+ block. See the huft_build() routine.
+ */
+
+/* !!! XXX !!! */
+ulg bb; /* bit buffer */
+unsigned bk; /* bits in bit buffer */
+
+#ifndef CHECK_EOF
+# define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE)<<k;k+=8;}}
+#else
+# define NEEDBITS(n) {while(k<(n)){int c=NEXTBYTE;if(c==EOF)return 1;\
+ b|=((ulg)c)<<k;k+=8;}}
+#endif /* Piet Plomp: change "return 1" to "break" */
+
+#define DUMPBITS(n) {b>>=(n);k-=(n);}
+
+
+/*
+ Huffman code decoding is performed using a multi-level table lookup.
+ The fastest way to decode is to simply build a lookup table whose
+ size is determined by the longest code. However, the time it takes
+ to build this table can also be a factor if the data being decoded
+ is not very long. The most common codes are necessarily the
+ shortest codes, so those codes dominate the decoding time, and hence
+ the speed. The idea is you can have a shorter table that decodes the
+ shorter, more probable codes, and then point to subsidiary tables for
+ the longer codes. The time it costs to decode the longer codes is
+ then traded against the time it takes to make longer tables.
+
+ This results of this trade are in the variables lbits and dbits
+ below. lbits is the number of bits the first level table for literal/
+ length codes can decode in one step, and dbits is the same thing for
+ the distance codes. Subsequent tables are also less than or equal to
+ those sizes. These values may be adjusted either when all of the
+ codes are shorter than that, in which case the longest code length in
+ bits is used, or when the shortest code is *longer* than the requested
+ table size, in which case the length of the shortest code in bits is
+ used.
+
+ There are two different values for the two tables, since they code a
+ different number of possibilities each. The literal/length table
+ codes 286 possible values, or in a flat code, a little over eight
+ bits. The distance table codes 30 possible values, or a little less
+ than five bits, flat. The optimum values for speed end up being
+ about one bit more than those, so lbits is 8+1 and dbits is 5+1.
+ The optimum values may differ though from machine to machine, and
+ possibly even between compilers. Your mileage may vary.
+ */
+
+
+const int lbits = 9; /* bits in base literal/length lookup table */
+const int dbits = 6; /* bits in base distance lookup table */
+
+
+/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
+#define BMAX 16 /* maximum bit length of any code (16 for explode) */
+#define N_MAX 288 /* maximum number of codes in any set */
+
+/* !!! XXX !!! */
+unsigned hufts; /* track memory usage */
+
+
+static int huft_build(gz,b, n, s, d, e, t, m)
+struct gzip *gz;
+unsigned *b; /* code lengths in bits (all assumed <= BMAX) */
+unsigned n; /* number of codes (assumed <= N_MAX) */
+unsigned s; /* number of simple-valued codes (0..s-1) */
+const ush *d; /* list of base values for non-simple codes */
+const ush *e; /* list of extra bits for non-simple codes */
+struct huft **t; /* result: starting table */
+int *m; /* maximum lookup bits, returns actual */
+/* Given a list of code lengths and a maximum table size, make a set of
+ tables to decode that set of codes. Return zero on success, one if
+ the given code set is incomplete (the tables are still built in this
+ case), two if the input is invalid (all zero length codes or an
+ oversubscribed set of lengths), and three if not enough memory.
+ The code with value 256 is special, and the tables are constructed
+ so that no bits beyond that code are fetched when that code is
+ decoded. */
+{
+ unsigned a; /* counter for codes of length k */
+ unsigned c[BMAX+1]; /* bit length count table */
+ unsigned el; /* length of EOB code (value 256) */
+ unsigned f; /* i repeats in table every f entries */
+ int g; /* maximum code length */
+ int h; /* table level */
+ register unsigned i; /* counter, current code */
+ register unsigned j; /* counter */
+ register int k; /* number of bits in current code */
+ int lx[BMAX+1]; /* memory for l[-1..BMAX-1] */
+ int *l = lx+1; /* stack of bits per table */
+ register unsigned *p; /* pointer into c[], b[], or v[] */
+ register struct huft *q; /* points to current table */
+ struct huft r; /* table entry for structure assignment */
+ struct huft *u[BMAX]; /* table stack */
+ static unsigned v[N_MAX]; /* values in order of bit length */
+ register int w; /* bits before this table == (l * h) */
+ unsigned x[BMAX+1]; /* bit offsets, then code stack */
+ unsigned *xp; /* pointer into x */
+ int y; /* number of dummy codes added */
+ unsigned z; /* number of entries in current table */
+
+
+ /* Generate counts for each bit length */
+ el = n > 256 ? b[256] : BMAX; /* set length of EOB code, if any */
+ memzero((char *)c, sizeof(c));
+ p = b; i = n;
+ do {
+ c[*p]++; p++; /* assume all entries <= BMAX */
+ } while (--i);
+ if (c[0] == n) /* null input--all zero length codes */
+ {
+ *t = (struct huft *)NULL;
+ *m = 0;
+ return 0;
+ }
+
+
+ /* Find minimum and maximum length, bound *m by those */
+ for (j = 1; j <= BMAX; j++)
+ if (c[j])
+ break;
+ k = j; /* minimum code length */
+ if ((unsigned)*m < j)
+ *m = j;
+ for (i = BMAX; i; i--)
+ if (c[i])
+ break;
+ g = i; /* maximum code length */
+ if ((unsigned)*m > i)
+ *m = i;
+
+
+ /* Adjust last length count to fill out codes, if needed */
+ for (y = 1 << j; j < i; j++, y <<= 1)
+ if ((y -= c[j]) < 0)
+ return 2; /* bad input: more codes than bits */
+ if ((y -= c[i]) < 0)
+ return 2;
+ c[i] += y;
+
+
+ /* Generate starting offsets into the value table for each length */
+ x[1] = j = 0;
+ p = c + 1; xp = x + 2;
+ while (--i) { /* note that i == g from above */
+ *xp++ = (j += *p++);
+ }
+
+
+ /* Make a table of values in order of bit lengths */
+ p = b; i = 0;
+ do {
+ if ((j = *p++) != 0)
+ v[x[j]++] = i;
+ } while (++i < n);
+
+
+ /* Generate the Huffman codes and for each, make the table entries */
+ x[0] = i = 0; /* first Huffman code is zero */
+ p = v; /* grab values in bit order */
+ h = -1; /* no tables yet--level -1 */
+ w = l[-1] = 0; /* no bits decoded yet */
+ u[0] = (struct huft *)NULL; /* just to keep compilers happy */
+ q = (struct huft *)NULL; /* ditto */
+ z = 0; /* ditto */
+
+ /* go through the bit lengths (k already is bits in shortest code) */
+ for (; k <= g; k++)
+ {
+ a = c[k];
+ while (a--)
+ {
+ /* here i is the Huffman code of length k bits for value *p */
+ /* make tables up to required level */
+ while (k > w + l[h])
+ {
+ w += l[h++]; /* add bits already decoded */
+
+ /* compute minimum size table less than or equal to *m bits */
+ z = (z = g - w) > (unsigned)*m ? *m : z; /* upper limit */
+ if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
+ { /* too few codes for k-w bit table */
+ f -= a + 1; /* deduct codes from patterns left */
+ xp = c + k;
+ while (++j < z) /* try smaller tables up to z bits */
+ {
+ if ((f <<= 1) <= *++xp)
+ break; /* enough codes to use up j bits */
+ f -= *xp; /* else deduct codes from patterns */
+ }
+ }
+ if ((unsigned)w + j > el && (unsigned)w < el)
+ j = el - w; /* make EOB code end at table */
+ z = 1 << j; /* table entries for j-bit table */
+ l[h] = j; /* set table size in stack */
+
+ /* allocate and link in new table */
+ if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
+ (struct huft *)NULL)
+ {
+ if (h)
+ huft_free(gz,u[0]);
+ return 3; /* not enough memory */
+ }
+ hufts += z + 1; /* track memory usage */
+ *t = q + 1; /* link to list for huft_free() */
+ *(t = &(q->v.t)) = (struct huft *)NULL;
+ u[h] = ++q; /* table starts after link */
+
+ /* connect to last table, if there is one */
+ if (h)
+ {
+ x[h] = i; /* save pattern for backing up */
+ r.b = (uch)l[h-1]; /* bits to dump before this table */
+ r.e = (uch)(16 + j); /* bits in this table */
+ r.v.t = q; /* pointer to this table */
+ j = (i & ((1 << w) - 1)) >> (w - l[h-1]);
+ u[h-1][j] = r; /* connect to last table */
+ }
+ }
+
+ /* set up table entry in r */
+ r.b = (uch)(k - w);
+ if (p >= v + n)
+ r.e = 99; /* out of values--invalid code */
+ else if (*p < s)
+ {
+ r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
+ r.v.n = *p++; /* simple code is just the value */
+ }
+ else
+ {
+ r.e = (uch)e[*p - s]; /* non-simple--look up in lists */
+ r.v.n = d[*p++ - s];
+ }
+
+ /* fill code-like entries with r */
+ f = 1 << (k - w);
+ for (j = i >> w; j < z; j += f)
+ q[j] = r;
+
+ /* backwards increment the k-bit code i */
+ for (j = 1 << (k - 1); i & j; j >>= 1)
+ i ^= j;
+ i ^= j;
+
+ /* backup over finished tables */
+ while ((i & ((1 << w) - 1)) != x[h])
+ w -= l[--h]; /* don't need to update q */
+ }
+ }
+
+
+ /* return actual size of base table */
+ *m = l[0];
+
+
+ /* Return true (1) if we were given an incomplete table */
+ return y != 0 && g != 1;
+}
+
+
+
+static int huft_free(gz,t)
+struct gzip *gz;
+struct huft *t; /* table to free */
+/* Free the malloc'ed tables built by huft_build(), which makes a linked
+ list of the tables it made, with the links in a dummy first entry of
+ each table. */
+{
+ register struct huft *p, *q;
+
+
+ /* Go through linked list, freeing from the malloced (t[-1]) address. */
+ p = t;
+ while (p != (struct huft *)NULL)
+ {
+ q = (--p)->v.t;
+ free(p);
+ p = q;
+ }
+ return 0;
+}
+
+
+
+#ifdef ASM_INFLATECODES
+# define inflate_codes(tl,td,bl,bd) flate_codes(tl,td,bl,bd,(uch *)slide)
+ int flate_codes OF((struct huft *, struct huft *, int, int, uch *));
+
+#else
+
+static int inflate_codes(gz,tl, td, bl, bd)
+struct gzip *gz;
+struct huft *tl, *td; /* literal/length and distance decoder tables */
+int bl, bd; /* number of bits decoded by tl[] and td[] */
+/* inflate (decompress) the codes in a deflated (compressed) block.
+ Return an error code or zero if it all goes ok. */
+{
+ register unsigned e; /* table entry flag/number of extra bits */
+ unsigned n, d; /* length and index for copy */
+ unsigned w; /* current window position */
+ struct huft *t; /* pointer to table entry */
+ unsigned ml, md; /* masks for bl and bd bits */
+ register ulg b; /* bit buffer */
+ register unsigned k; /* number of bits in bit buffer */
+
+
+ /* make local copies of globals */
+ b = bb; /* initialize bit buffer */
+ k = bk;
+ w = wp; /* initialize window position */
+
+
+ /* inflate the coded data */
+ ml = mask[bl]; /* precompute masks for speed */
+ md = mask[bd];
+ while (1) /* do until end of block */
+ {
+ NEEDBITS((unsigned)bl)
+ if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
+ do {
+ if (e == 99)
+ return 1;
+ DUMPBITS(t->b)
+ e -= 16;
+ NEEDBITS(e)
+ } while ((e = (t = t->v.t + ((unsigned)b & mask[e]))->e) > 16);
+ DUMPBITS(t->b)
+ if (e == 16) /* then it's a literal */
+ {
+ slide[w++] = (uch)t->v.n;
+ if (w == WSIZE)
+ {
+ FLUSH(gz,w);
+ w = 0;
+ }
+ }
+ else /* it's an EOB or a length */
+ {
+ /* exit if end of block */
+ if (e == 15)
+ break;
+
+ /* get length of block to copy */
+ NEEDBITS(e)
+ n = t->v.n + ((unsigned)b & mask[e]);
+ DUMPBITS(e);
+
+ /* decode distance of block to copy */
+ NEEDBITS((unsigned)bd)
+ if ((e = (t = td + ((unsigned)b & md))->e) > 16)
+ do {
+ if (e == 99)
+ return 1;
+ DUMPBITS(t->b)
+ e -= 16;
+ NEEDBITS(e)
+ } while ((e = (t = t->v.t + ((unsigned)b & mask[e]))->e) > 16);
+ DUMPBITS(t->b)
+ NEEDBITS(e)
+ d = w - t->v.n - ((unsigned)b & mask[e]);
+ DUMPBITS(e)
+
+ /* do the copy */
+ do {
+ n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
+#ifndef NOMEMCPY
+ if (w - d >= e) /* (this test assumes unsigned comparison) */
+ {
+ memcpy(slide + w, slide + d, e);
+ w += e;
+ d += e;
+ }
+ else /* do it slow to avoid memcpy() overlap */
+#endif /* !NOMEMCPY */
+ do {
+ slide[w++] = slide[d++];
+ } while (--e);
+ if (w == WSIZE)
+ {
+ FLUSH(gz,w);
+ w = 0;
+ }
+ } while (n);
+ }
+ }
+
+
+ /* restore the globals from the locals */
+ wp = w; /* restore global window pointer */
+ bb = b; /* restore global bit buffer */
+ bk = k;
+
+
+ /* done */
+ return 0;
+}
+
+#endif /* ASM_INFLATECODES */
+
+
+
+static int inflate_stored(gz)
+struct gzip *gz;
+/* "decompress" an inflated type 0 (stored) block. */
+{
+ unsigned n; /* number of bytes in block */
+ unsigned w; /* current window position */
+ register ulg b; /* bit buffer */
+ register unsigned k; /* number of bits in bit buffer */
+
+
+ /* make local copies of globals */
+ Trace((stderr, "\nstored block"));
+ b = bb; /* initialize bit buffer */
+ k = bk;
+ w = wp; /* initialize window position */
+
+
+ /* go to byte boundary */
+ n = k & 7;
+ DUMPBITS(n);
+
+
+ /* get the length and its complement */
+ NEEDBITS(16)
+ n = ((unsigned)b & 0xffff);
+ DUMPBITS(16)
+ NEEDBITS(16)
+ if (n != (unsigned)((~b) & 0xffff))
+ return 1; /* error in compressed data */
+ DUMPBITS(16)
+
+
+ /* read and output the compressed data */
+ while (n--)
+ {
+ NEEDBITS(8)
+ slide[w++] = (uch)b;
+ if (w == WSIZE)
+ {
+ FLUSH(gz,w);
+ w = 0;
+ }
+ DUMPBITS(8)
+ }
+
+
+ /* restore the globals from the locals */
+ wp = w; /* restore global window pointer */
+ bb = b; /* restore global bit buffer */
+ bk = k;
+ return 0;
+}
+
+
+/* Globals for literal tables (built once) */
+/* !!! XXX !!! */
+struct huft *fixed_tl = (struct huft *)NULL;
+struct huft *fixed_td;
+int fixed_bl, fixed_bd;
+
+static int inflate_fixed(gz)
+struct gzip *gz;
+/* decompress an inflated type 1 (fixed Huffman codes) block. We should
+ either replace this with a custom decoder, or at least precompute the
+ Huffman tables. */
+{
+ /* if first time, set up tables for fixed blocks */
+ Trace((stderr, "\nliteral block"));
+ if (fixed_tl == (struct huft *)NULL)
+ {
+ int i; /* temporary variable */
+ static unsigned l[288]; /* length list for huft_build */
+
+ /* literal table */
+ for (i = 0; i < 144; i++)
+ l[i] = 8;
+ for (; i < 256; i++)
+ l[i] = 9;
+ for (; i < 280; i++)
+ l[i] = 7;
+ for (; i < 288; i++) /* make a complete, but wrong code set */
+ l[i] = 8;
+ fixed_bl = 7;
+ if ((i = huft_build(gz,l, 288, 257, cplens, cplext,
+ &fixed_tl, &fixed_bl)) != 0)
+ {
+ fixed_tl = (struct huft *)NULL;
+ return i;
+ }
+
+ /* distance table */
+ for (i = 0; i < 30; i++) /* make an incomplete code set */
+ l[i] = 5;
+ fixed_bd = 5;
+ if ((i = huft_build(gz,l, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd)) > 1)
+ {
+ huft_free(gz,fixed_tl);
+ fixed_tl = (struct huft *)NULL;
+ return i;
+ }
+ }
+
+
+ /* decompress until an end-of-block code */
+ return inflate_codes(gz,fixed_tl, fixed_td, fixed_bl, fixed_bd) != 0;
+}
+
+
+
+static int inflate_dynamic(gz)
+struct gzip *gz;
+/* decompress an inflated type 2 (dynamic Huffman codes) block. */
+{
+ int i; /* temporary variables */
+ unsigned j;
+ unsigned l; /* last length */
+ unsigned m; /* mask for bit lengths table */
+ unsigned n; /* number of lengths to get */
+ struct huft *tl; /* literal/length code table */
+ struct huft *td; /* distance code table */
+ int bl; /* lookup bits for tl */
+ int bd; /* lookup bits for td */
+ unsigned nb; /* number of bit length codes */
+ unsigned nl; /* number of literal/length codes */
+ unsigned nd; /* number of distance codes */
+#ifdef PKZIP_BUG_WORKAROUND
+ static unsigned ll[288+32]; /* literal/length and distance code lengths */
+#else
+ static unsigned ll[286+30]; /* literal/length and distance code lengths */
+#endif
+ register ulg b; /* bit buffer */
+ register unsigned k; /* number of bits in bit buffer */
+
+
+ /* make local bit buffer */
+ Trace((stderr, "\ndynamic block"));
+ b = bb;
+ k = bk;
+
+
+ /* read in table lengths */
+ NEEDBITS(5)
+ nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
+ DUMPBITS(5)
+ NEEDBITS(5)
+ nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
+ DUMPBITS(5)
+ NEEDBITS(4)
+ nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
+ DUMPBITS(4)
+#ifdef PKZIP_BUG_WORKAROUND
+ if (nl > 288 || nd > 32)
+#else
+ if (nl > 286 || nd > 30)
+#endif
+ return 1; /* bad lengths */
+
+
+ /* read in bit-length-code lengths */
+ for (j = 0; j < nb; j++)
+ {
+ NEEDBITS(3)
+ ll[border[j]] = (unsigned)b & 7;
+ DUMPBITS(3)
+ }
+ for (; j < 19; j++)
+ ll[border[j]] = 0;
+
+
+ /* build decoding table for trees--single level, 7 bit lookup */
+ bl = 7;
+ if ((i = huft_build(gz,ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
+ {
+ if (i == 1)
+ huft_free(gz,tl);
+ return i; /* incomplete code set */
+ }
+
+
+ /* read in literal and distance code lengths */
+ n = nl + nd;
+ m = mask[bl];
+ i = l = 0;
+ while ((unsigned)i < n)
+ {
+ NEEDBITS((unsigned)bl)
+ j = (td = tl + ((unsigned)b & m))->b;
+ DUMPBITS(j)
+ j = td->v.n;
+ if (j < 16) /* length of code in bits (0..15) */
+ ll[i++] = l = j; /* save last length in l */
+ else if (j == 16) /* repeat last length 3 to 6 times */
+ {
+ NEEDBITS(2)
+ j = 3 + ((unsigned)b & 3);
+ DUMPBITS(2)
+ if ((unsigned)i + j > n)
+ return 1;
+ while (j--)
+ ll[i++] = l;
+ }
+ else if (j == 17) /* 3 to 10 zero length codes */
+ {
+ NEEDBITS(3)
+ j = 3 + ((unsigned)b & 7);
+ DUMPBITS(3)
+ if ((unsigned)i + j > n)
+ return 1;
+ while (j--)
+ ll[i++] = 0;
+ l = 0;
+ }
+ else /* j == 18: 11 to 138 zero length codes */
+ {
+ NEEDBITS(7)
+ j = 11 + ((unsigned)b & 0x7f);
+ DUMPBITS(7)
+ if ((unsigned)i + j > n)
+ return 1;
+ while (j--)
+ ll[i++] = 0;
+ l = 0;
+ }
+ }
+
+
+ /* free decoding table for trees */
+ huft_free(gz,tl);
+
+
+ /* restore the global bit buffer */
+ bb = b;
+ bk = k;
+
+
+ /* build the decoding tables for literal/length and distance codes */
+ bl = lbits;
+ if ((i = huft_build(gz,ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
+ {
+ if (i == 1 && !qflag) {
+ FPRINTF( "(incomplete l-tree) ");
+ huft_free(gz,tl);
+ }
+ return i; /* incomplete code set */
+ }
+ bd = dbits;
+ if ((i = huft_build(gz,ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
+ {
+ if (i == 1 && !qflag) {
+ FPRINTF( "(incomplete d-tree) ");
+#ifdef PKZIP_BUG_WORKAROUND
+ i = 0;
+ }
+#else
+ huft_free(gz,td);
+ }
+ huft_free(gz,tl);
+ return i; /* incomplete code set */
+#endif
+ }
+
+
+ /* decompress until an end-of-block code */
+ if (inflate_codes(gz,tl, td, bl, bd))
+ return 1;
+
+
+ /* free the decoding tables, return */
+ huft_free(gz,tl);
+ huft_free(gz,td);
+ return 0;
+}
+
+
+
+static int inflate_block(gz,e)
+struct gzip *gz;
+int *e; /* last block flag */
+/* decompress an inflated block */
+{
+ unsigned t; /* block type */
+ register ulg b; /* bit buffer */
+ register unsigned k; /* number of bits in bit buffer */
+
+
+ /* make local bit buffer */
+ b = bb;
+ k = bk;
+
+
+ /* read in last block bit */
+ NEEDBITS(1)
+ *e = (int)b & 1;
+ DUMPBITS(1)
+
+
+ /* read in block type */
+ NEEDBITS(2)
+ t = (unsigned)b & 3;
+ DUMPBITS(2)
+
+
+ /* restore the global bit buffer */
+ bb = b;
+ bk = k;
+
+
+ /* inflate that block type */
+ if (t == 2)
+ return inflate_dynamic(gz);
+ if (t == 0)
+ return inflate_stored(gz);
+ if (t == 1)
+ return inflate_fixed(gz);
+
+
+ /* bad block type */
+ return 2;
+}
+
+
+
+int inflate(gz, glbl)
+struct gzip *gz;
+struct gz_global * glbl;
+/* decompress an inflated entry */
+{
+ int e; /* last block flag */
+ int r; /* result code */
+ unsigned h; /* maximum struct huft's malloc'ed */
+
+
+ /* initialize window, bit buffer */
+ wp = 0;
+ bk = 0;
+ bb = 0;
+
+
+ /* decompress until the last block */
+ h = 0;
+ do {
+ hufts = 0;
+ if ((r = inflate_block(gz,&e)) != 0)
+ return r;
+ if (hufts > h)
+ h = hufts;
+ } while (!e);
+
+
+ /* flush out slide */
+ FLUSH(gz,wp);
+
+
+ /* return success */
+ Trace((stderr, "\n%u bytes in Huffman tables (%d/entry)\n",
+ h * sizeof(struct huft), sizeof(struct huft)));
+ return 0;
+}
+
+
+
+static int inflate_free(gz)
+struct gzip *gz;
+{
+ if (fixed_tl != (struct huft *)NULL)
+ {
+ huft_free(gz,fixed_td);
+ huft_free(gz,fixed_tl);
+ fixed_td = fixed_tl = (struct huft *)NULL;
+ }
+ return 0;
+}
diff --git a/sys/sys/inflate.h b/sys/sys/inflate.h
new file mode 100644
index 0000000..2415cdd
--- /dev/null
+++ b/sys/sys/inflate.h
@@ -0,0 +1,81 @@
+/*
+ * Parts of this file are not covered by:
+ * ----------------------------------------------------------------------------
+ * "THE BEER-WARE LICENSE" (Revision 42):
+ * <phk@login.dknet.dk> wrote this file. As long as you retain this notice you
+ * can do whatever you want with this stuff. If we meet some day, and you think
+ * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
+ * ----------------------------------------------------------------------------
+ *
+ * $Id: imgact_gzip.c,v 1.4 1994/10/04 06:51:42 phk Exp $
+ *
+ * This module handles execution of a.out files which have been run through
+ * "gzip -9".
+ *
+ * For now you need to use exactly this command to compress the binaries:
+ *
+ * gzip -9 -v < /bin/sh > /tmp/sh
+ *
+ * TODO:
+ * text-segments should be made R/O after being filled
+ * is the vm-stuff safe ?
+ * should handle the entire header of gzip'ed stuff.
+ * inflate isn't quite reentrant yet...
+ * error-handling is a mess...
+ * so is the rest...
+ * tidy up unnecessary includes
+ */
+
+
+#ifndef _SYS_INFLATE_H_
+#define _SYS_INFLATE_H_
+
+#ifdef KERNEL
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/resourcevar.h>
+#include <sys/exec.h>
+#include <sys/mman.h>
+#include <sys/malloc.h>
+#include <sys/imgact.h>
+#include <sys/imgact_aout.h>
+#include <sys/kernel.h>
+#include <sys/sysent.h>
+
+#include <vm/vm.h>
+#include <vm/vm_kern.h>
+
+#define WSIZE 0x8000
+
+struct gzip {
+ struct image_params *ip;
+ struct exec a_out;
+ int error;
+ int where;
+ u_char *inbuf;
+ u_long offset;
+ u_long output;
+ u_long len;
+ int idx;
+ u_long virtual_offset, file_offset, file_end, bss_size;
+ unsigned gz_wp;
+ u_char *gz_slide;
+};
+
+/*
+ * Global variables used by inflate and friends.
+ * This structure is used in order to make inflate() reentrant.
+ */
+struct gz_global {
+ int foo;
+};
+
+int inflate __P((struct gzip *, struct gz_global *));
+
+#define slide (gz->gz_slide)
+#define wp (gz->gz_wp)
+
+#endif /* KERNEL */
+
+#endif /* ! _SYS_INFLATE_H_ */
OpenPOWER on IntegriCloud