summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--sys/pci/if_tl.c2707
-rw-r--r--sys/pci/if_tlreg.h826
2 files changed, 3533 insertions, 0 deletions
diff --git a/sys/pci/if_tl.c b/sys/pci/if_tl.c
new file mode 100644
index 0000000..8b1fa6e
--- /dev/null
+++ b/sys/pci/if_tl.c
@@ -0,0 +1,2707 @@
+/*
+ * Copyright (c) 1997, 1998
+ * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by Bill Paul.
+ * 4. Neither the name of the author nor the names of any co-contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * $Id: if_tl.c,v 1.37 1998/05/20 20:08:00 wpaul Exp $
+ */
+
+/*
+ * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
+ * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
+ * the National Semiconductor DP83840A physical interface and the
+ * Microchip Technology 24Cxx series serial EEPROM.
+ *
+ * Written using the following three documents:
+ *
+ * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
+ * National Semiconductor DP83840A data sheet (www.national.com)
+ * Microchip Technology 24C02C data sheet (www.microchip.com)
+ *
+ * Written by Bill Paul <wpaul@ctr.columbia.edu>
+ * Electrical Engineering Department
+ * Columbia University, New York City
+ */
+
+/*
+ * Some notes about the ThunderLAN:
+ *
+ * The ThunderLAN controller is a single chip containing PCI controller
+ * logic, approximately 3K of on-board SRAM, a LAN controller, and media
+ * independent interface (MII). The MII allows the ThunderLAN chip to
+ * control up to 32 different physical interfaces (PHYs). The ThunderLAN
+ * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
+ * to act as a complete ethernet interface.
+ *
+ * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
+ * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
+ * in full or half duplex. Some of the Compaq Deskpro machines use a
+ * Level 1 LXT970 PHY with the same capabilities. A serial EEPROM is also
+ * attached to the ThunderLAN chip to provide power-up default register
+ * settings and for storing the adapter's stattion address. Although not
+ * supported by this driver, the ThunderLAN chip can also be connected
+ * to token ring PHYs.
+ *
+ * It is important to note that while it is possible to have multiple
+ * PHYs attached to the ThunderLAN's MII, only one PHY may be active at
+ * any time. (This makes me wonder exactly how the dual port Compaq
+ * adapter is supposed to work.) This driver attempts to compensate for
+ * this in the following way:
+ *
+ * When the ThunderLAN chip is probed, the probe routine attempts to
+ * locate all attached PHYs by checking all 32 possible PHY addresses
+ * (0x00 to 0x1F). Each PHY is attached as a separate logical interface.
+ * The driver allows any one interface to be brought up at any given
+ * time: if an attempt is made to bring up a second PHY while another
+ * PHY is already enabled, the driver will return an error.
+ *
+ * The ThunderLAN has a set of registers which can be used to issue
+ * command, acknowledge interrupts, and to manipulate other internal
+ * registers on its DIO bus. The primary registers can be accessed
+ * using either programmed I/O (inb/outb) or via PCI memory mapping,
+ * depending on how the card is configured during the PCI probing
+ * phase. It is even possible to have both PIO and memory mapped
+ * access turned on at the same time.
+ *
+ * Frame reception and transmission with the ThunderLAN chip is done
+ * using frame 'lists.' A list structure looks more or less like this:
+ *
+ * struct tl_frag {
+ * u_int32_t fragment_address;
+ * u_int32_t fragment_size;
+ * };
+ * struct tl_list {
+ * u_int32_t forward_pointer;
+ * u_int16_t cstat;
+ * u_int16_t frame_size;
+ * struct tl_frag fragments[10];
+ * };
+ *
+ * The forward pointer in the list header can be either a 0 or the address
+ * of another list, which allows several lists to be linked together. Each
+ * list contains up to 10 fragment descriptors. This means the chip allows
+ * ethernet frames to be broken up into up to 10 chunks for transfer to
+ * and from the SRAM. Note that the forward pointer and fragment buffer
+ * addresses are physical memory addresses, not virtual. Note also that
+ * a single ethernet frame can not span lists: if the host wants to
+ * transmit a frame and the frame data is split up over more than 10
+ * buffers, the frame has to collapsed before it can be transmitted.
+ *
+ * To receive frames, the driver sets up a number of lists and populates
+ * the fragment descriptors, then it sends an RX GO command to the chip.
+ * When a frame is received, the chip will DMA it into the memory regions
+ * specified by the fragment descriptors and then trigger an RX 'end of
+ * frame interrupt' when done. The driver may choose to use only one
+ * fragment per list; this may result is slighltly less efficient use
+ * of memory in exchange for improving performance.
+ *
+ * To transmit frames, the driver again sets up lists and fragment
+ * descriptors, only this time the buffers contain frame data that
+ * is to be DMA'ed into the chip instead of out of it. Once the chip
+ * has transfered the data into its on-board SRAM, it will trigger a
+ * TX 'end of frame' interrupt. It will also generate an 'end of channel'
+ * interrupt when it reaches the end of the list.
+ */
+
+/*
+ * Some notes about this driver:
+ *
+ * The ThunderLAN chip provides a couple of different ways to organize
+ * reception, transmission and interrupt handling. The simplest approach
+ * is to use one list each for transmission and reception. In this mode,
+ * the ThunderLAN will generate two interrupts for every received frame
+ * (one RX EOF and one RX EOC) and two for each transmitted frame (one
+ * TX EOF and one TX EOC). This may make the driver simpler but it hurts
+ * performance to have to handle so many interrupts.
+ *
+ * Initially I wanted to create a circular list of receive buffers so
+ * that the ThunderLAN chip would think there was an infinitely long
+ * receive channel and never deliver an RXEOC interrupt. However this
+ * doesn't work correctly under heavy load: while the manual says the
+ * chip will trigger an RXEOF interrupt each time a frame is copied into
+ * memory, you can't count on the chip waiting around for you to acknowledge
+ * the interrupt before it starts trying to DMA the next frame. The result
+ * is that the chip might traverse the entire circular list and then wrap
+ * around before you have a chance to do anything about it. Consequently,
+ * the receive list is terminated (with a 0 in the forward pointer in the
+ * last element). Each time an RXEOF interrupt arrives, the used list
+ * is shifted to the end of the list. This gives the appearance of an
+ * infinitely large RX chain so long as the driver doesn't fall behind
+ * the chip and allow all of the lists to be filled up.
+ *
+ * If all the lists are filled, the adapter will deliver an RX 'end of
+ * channel' interrupt when it hits the 0 forward pointer at the end of
+ * the chain. The RXEOC handler then cleans out the RX chain and resets
+ * the list head pointer in the ch_parm register and restarts the receiver.
+ *
+ * For frame transmission, it is possible to program the ThunderLAN's
+ * transmit interrupt threshold so that the chip can acknowledge multiple
+ * lists with only a single TX EOF interrupt. This allows the driver to
+ * queue several frames in one shot, and only have to handle a total
+ * two interrupts (one TX EOF and one TX EOC) no matter how many frames
+ * are transmitted. Frame transmission is done directly out of the
+ * mbufs passed to the tl_start() routine via the interface send queue.
+ * The driver simply sets up the fragment descriptors in the transmit
+ * lists to point to the mbuf data regions and sends a TX GO command.
+ *
+ * Note that since the RX and TX lists themselves are always used
+ * only by the driver, the are malloc()ed once at driver initialization
+ * time and never free()ed.
+ *
+ * Also, in order to remain as platform independent as possible, this
+ * driver uses memory mapped register access to manipulate the card
+ * as opposed to programmed I/O. This avoids the use of the inb/outb
+ * (and related) instructions which are specific to the i386 platform.
+ *
+ * Using these techniques, this driver achieves very high performance
+ * by minimizing the amount of interrupts generated during large
+ * transfers and by completely avoiding buffer copies. Frame transfer
+ * to and from the ThunderLAN chip is performed entirely by the chip
+ * itself thereby reducing the load on the host CPU.
+ */
+
+#include "bpfilter.h"
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/sockio.h>
+#include <sys/mbuf.h>
+#include <sys/malloc.h>
+#include <sys/kernel.h>
+#include <sys/socket.h>
+#include <sys/syslog.h>
+
+#include <net/if.h>
+#include <net/if_arp.h>
+#include <net/ethernet.h>
+#include <net/if_dl.h>
+#include <net/if_mib.h>
+#include <net/if_media.h>
+#include <net/if_types.h>
+
+#ifdef INET
+#include <netinet/in.h>
+#include <netinet/in_systm.h>
+#include <netinet/in_var.h>
+#include <netinet/ip.h>
+#include <netinet/if_ether.h>
+#endif
+
+#ifdef IPX
+#include <netipx/ipx.h>
+#include <netipx/ipx_if.h>
+#endif
+
+#ifdef NS
+#include <netns/ns.h>
+#include <netns/ns_if.h>
+#endif
+
+#if NBPFILTER > 0
+#include <net/bpf.h>
+#include <net/bpfdesc.h>
+#endif
+
+#include <vm/vm.h> /* for vtophys */
+#include <vm/vm_param.h> /* for vtophys */
+#include <vm/pmap.h> /* for vtophys */
+#include <machine/clock.h> /* for DELAY */
+
+#include <pci/pcireg.h>
+#include <pci/pcivar.h>
+
+#include <osreldate.h>
+
+#include <pci/if_tlreg.h>
+
+#ifndef lint
+static char rcsid[] =
+ "$Id: if_tl.c,v 1.37 1998/05/20 20:08:00 wpaul Exp $";
+#endif
+
+/*
+ * Various supported device vendors/types and their names.
+ */
+
+static struct tl_type tl_devs[] = {
+ { TI_VENDORID, TI_DEVICEID_THUNDERLAN,
+ "Texas Instruments ThunderLAN" },
+ { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
+ "Compaq Netelligent 10" },
+ { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
+ "Compaq Netelligent 10/100" },
+ { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
+ "Compaq Netelligent 10/100 Proliant" },
+ { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
+ "Compaq Netelligent 10/100 Dual Port" },
+ { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
+ "Compaq NetFlex-3/P Integrated" },
+ { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
+ "Compaq NetFlex-3/P" },
+ { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
+ "Compaq NetFlex 3/P w/ BNC" },
+ { COMPAQ_VENDORID, COMPAQ_DEVICEID_DESKPRO_4000_5233MMX,
+ "Compaq Deskpro 4000 5233MMX" },
+ { 0, 0, NULL }
+};
+
+/*
+ * Various supported PHY vendors/types and their names. Note that
+ * this driver will work with pretty much any MII-compliant PHY,
+ * so failure to positively identify the chip is not a fatal error.
+ */
+
+static struct tl_type tl_phys[] = {
+ { TI_PHY_VENDORID, TI_PHY_10BT, "<TI ThunderLAN 10BT (internal)>" },
+ { TI_PHY_VENDORID, TI_PHY_100VGPMI, "<TI TNETE211 100VG Any-LAN>" },
+ { NS_PHY_VENDORID, NS_PHY_83840A, "<National Semiconductor DP83840A>"},
+ { LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "<Level 1 LXT970>" },
+ { INTEL_PHY_VENDORID, INTEL_PHY_82555, "<Intel 82555>" },
+ { SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "<SEEQ 80220>" },
+ { 0, 0, "<MII-compliant physical interface>" }
+};
+
+static struct tl_iflist *tl_iflist = NULL;
+static unsigned long tl_count;
+
+static char *tl_probe __P((pcici_t, pcidi_t));
+static void tl_attach_ctlr __P((pcici_t, int));
+static int tl_attach_phy __P((struct tl_csr *, int, char *,
+ int, struct tl_iflist *));
+static int tl_intvec_invalid __P((void *, u_int32_t));
+static int tl_intvec_dummy __P((void *, u_int32_t));
+static int tl_intvec_rxeoc __P((void *, u_int32_t));
+static int tl_intvec_txeoc __P((void *, u_int32_t));
+static int tl_intvec_txeof __P((void *, u_int32_t));
+static int tl_intvec_rxeof __P((void *, u_int32_t));
+static int tl_intvec_adchk __P((void *, u_int32_t));
+static int tl_intvec_netsts __P((void *, u_int32_t));
+static int tl_intvec_statoflow __P((void *, u_int32_t));
+
+static int tl_newbuf __P((struct tl_softc *, struct tl_chain *));
+static void tl_stats_update __P((void *));
+static int tl_encap __P((struct tl_softc *, struct tl_chain *,
+ struct mbuf *));
+
+static void tl_intr __P((void *));
+static void tl_start __P((struct ifnet *));
+static int tl_ioctl __P((struct ifnet *, int, caddr_t));
+static void tl_init __P((void *));
+static void tl_stop __P((struct tl_softc *));
+static void tl_watchdog __P((struct ifnet *));
+static void tl_shutdown __P((int, void *));
+static int tl_ifmedia_upd __P((struct ifnet *));
+static void tl_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
+
+static u_int8_t tl_eeprom_putbyte __P((struct tl_csr *, u_int8_t));
+static u_int8_t tl_eeprom_getbyte __P((struct tl_csr *, u_int8_t ,
+ u_int8_t * ));
+static int tl_read_eeprom __P((struct tl_csr *, caddr_t, int, int));
+
+static void tl_mii_sync __P((struct tl_csr *));
+static void tl_mii_send __P((struct tl_csr *, u_int32_t, int));
+static int tl_mii_readreg __P((struct tl_csr *, struct tl_mii_frame *));
+static int tl_mii_writereg __P((struct tl_csr *, struct tl_mii_frame *));
+static u_int16_t tl_phy_readreg __P((struct tl_softc *, int));
+static void tl_phy_writereg __P((struct tl_softc *, u_int16_t, u_int16_t));
+
+static void tl_autoneg __P((struct tl_softc *, int, int));
+static void tl_setmode __P((struct tl_softc *, int));
+static int tl_calchash __P((char *));
+static void tl_setmulti __P((struct tl_softc *));
+static void tl_softreset __P((struct tl_csr *, int));
+static int tl_list_rx_init __P((struct tl_softc *));
+static int tl_list_tx_init __P((struct tl_softc *));
+
+/*
+ * ThunderLAN adapters typically have a serial EEPROM containing
+ * configuration information. The main reason we're interested in
+ * it is because it also contains the adapters's station address.
+ *
+ * Access to the EEPROM is a bit goofy since it is a serial device:
+ * you have to do reads and writes one bit at a time. The state of
+ * the DATA bit can only change while the CLOCK line is held low.
+ * Transactions work basically like this:
+ *
+ * 1) Send the EEPROM_START sequence to prepare the EEPROM for
+ * accepting commands. This pulls the clock high, sets
+ * the data bit to 0, enables transmission to the EEPROM,
+ * pulls the data bit up to 1, then pulls the clock low.
+ * The idea is to do a 0 to 1 transition of the data bit
+ * while the clock pin is held high.
+ *
+ * 2) To write a bit to the EEPROM, set the TXENABLE bit, then
+ * set the EDATA bit to send a 1 or clear it to send a 0.
+ * Finally, set and then clear ECLOK. Strobing the clock
+ * transmits the bit. After 8 bits have been written, the
+ * EEPROM should respond with an ACK, which should be read.
+ *
+ * 3) To read a bit from the EEPROM, clear the TXENABLE bit,
+ * then set ECLOK. The bit can then be read by reading EDATA.
+ * ECLOCK should then be cleared again. This can be repeated
+ * 8 times to read a whole byte, after which the
+ *
+ * 4) We need to send the address byte to the EEPROM. For this
+ * we have to send the write control byte to the EEPROM to
+ * tell it to accept data. The byte is 0xA0. The EEPROM should
+ * ack this. The address byte can be send after that.
+ *
+ * 5) Now we have to tell the EEPROM to send us data. For that we
+ * have to transmit the read control byte, which is 0xA1. This
+ * byte should also be acked. We can then read the data bits
+ * from the EEPROM.
+ *
+ * 6) When we're all finished, send the EEPROM_STOP sequence.
+ *
+ * Note that we use the ThunderLAN's NetSio register to access the
+ * EEPROM, however there is an alternate method. There is a PCI NVRAM
+ * register at PCI offset 0xB4 which can also be used with minor changes.
+ * The difference is that access to PCI registers via pci_conf_read()
+ * and pci_conf_write() is done using programmed I/O, which we want to
+ * avoid.
+ */
+
+/*
+ * Note that EEPROM_START leaves transmission enabled.
+ */
+#define EEPROM_START \
+ DIO_SEL(TL_NETSIO); \
+ DIO_BYTE1_SET(TL_SIO_ECLOK); /* Pull clock pin high */ \
+ DIO_BYTE1_SET(TL_SIO_EDATA); /* Set DATA bit to 1 */ \
+ DIO_BYTE1_SET(TL_SIO_ETXEN); /* Enable xmit to write bit */ \
+ DIO_BYTE1_CLR(TL_SIO_EDATA); /* Pull DATA bit to 0 again */ \
+ DIO_BYTE1_CLR(TL_SIO_ECLOK); /* Pull clock low again */
+
+/*
+ * EEPROM_STOP ends access to the EEPROM and clears the ETXEN bit so
+ * that no further data can be written to the EEPROM I/O pin.
+ */
+#define EEPROM_STOP \
+ DIO_SEL(TL_NETSIO); \
+ DIO_BYTE1_CLR(TL_SIO_ETXEN); /* Disable xmit */ \
+ DIO_BYTE1_CLR(TL_SIO_EDATA); /* Pull DATA to 0 */ \
+ DIO_BYTE1_SET(TL_SIO_ECLOK); /* Pull clock high */ \
+ DIO_BYTE1_SET(TL_SIO_ETXEN); /* Enable xmit */ \
+ DIO_BYTE1_SET(TL_SIO_EDATA); /* Toggle DATA to 1 */ \
+ DIO_BYTE1_CLR(TL_SIO_ETXEN); /* Disable xmit. */ \
+ DIO_BYTE1_CLR(TL_SIO_ECLOK); /* Pull clock low again */
+
+/*
+ * Send an instruction or address to the EEPROM, check for ACK.
+ */
+static u_int8_t tl_eeprom_putbyte(csr, byte)
+ struct tl_csr *csr;
+ u_int8_t byte;
+{
+ register int i, ack = 0;
+
+ /*
+ * Make sure we're in TX mode.
+ */
+ DIO_SEL(TL_NETSIO);
+ DIO_BYTE1_SET(TL_SIO_ETXEN);
+
+ /*
+ * Feed in each bit and stobe the clock.
+ */
+ for (i = 0x80; i; i >>= 1) {
+ DIO_SEL(TL_NETSIO);
+ if (byte & i) {
+ DIO_BYTE1_SET(TL_SIO_EDATA);
+ } else {
+ DIO_BYTE1_CLR(TL_SIO_EDATA);
+ }
+ DIO_BYTE1_SET(TL_SIO_ECLOK);
+ DIO_BYTE1_CLR(TL_SIO_ECLOK);
+ }
+
+ /*
+ * Turn off TX mode.
+ */
+ DIO_BYTE1_CLR(TL_SIO_ETXEN);
+
+ /*
+ * Check for ack.
+ */
+ DIO_BYTE1_SET(TL_SIO_ECLOK);
+ ack = DIO_BYTE1_GET(TL_SIO_EDATA);
+ DIO_BYTE1_CLR(TL_SIO_ECLOK);
+
+ return(ack);
+}
+
+/*
+ * Read a byte of data stored in the EEPROM at address 'addr.'
+ */
+static u_int8_t tl_eeprom_getbyte(csr, addr, dest)
+ struct tl_csr *csr;
+ u_int8_t addr;
+ u_int8_t *dest;
+{
+ register int i;
+ u_int8_t byte = 0;
+
+ EEPROM_START;
+ /*
+ * Send write control code to EEPROM.
+ */
+ if (tl_eeprom_putbyte(csr, EEPROM_CTL_WRITE))
+ return(1);
+
+ /*
+ * Send address of byte we want to read.
+ */
+ if (tl_eeprom_putbyte(csr, addr))
+ return(1);
+
+ EEPROM_STOP;
+ EEPROM_START;
+ /*
+ * Send read control code to EEPROM.
+ */
+ if (tl_eeprom_putbyte(csr, EEPROM_CTL_READ))
+ return(1);
+
+ /*
+ * Start reading bits from EEPROM.
+ */
+ DIO_SEL(TL_NETSIO);
+ DIO_BYTE1_CLR(TL_SIO_ETXEN);
+ for (i = 0x80; i; i >>= 1) {
+ DIO_SEL(TL_NETSIO);
+ DIO_BYTE1_SET(TL_SIO_ECLOK);
+ if (DIO_BYTE1_GET(TL_SIO_EDATA))
+ byte |= i;
+ DIO_BYTE1_CLR(TL_SIO_ECLOK);
+ }
+
+ EEPROM_STOP;
+
+ /*
+ * No ACK generated for read, so just return byte.
+ */
+
+ *dest = byte;
+
+ return(0);
+}
+
+static void tl_mii_sync(csr)
+ struct tl_csr *csr;
+{
+ register int i;
+
+ DIO_SEL(TL_NETSIO);
+ DIO_BYTE1_CLR(TL_SIO_MTXEN);
+
+ for (i = 0; i < 32; i++) {
+ DIO_BYTE1_SET(TL_SIO_MCLK);
+ DIO_BYTE1_CLR(TL_SIO_MCLK);
+ }
+
+ return;
+}
+
+static void tl_mii_send(csr, bits, cnt)
+ struct tl_csr *csr;
+ u_int32_t bits;
+ int cnt;
+{
+ int i;
+
+ for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
+ DIO_BYTE1_CLR(TL_SIO_MCLK);
+ if (bits & i) {
+ DIO_BYTE1_SET(TL_SIO_MDATA);
+ } else {
+ DIO_BYTE1_CLR(TL_SIO_MDATA);
+ }
+ DIO_BYTE1_SET(TL_SIO_MCLK);
+ }
+}
+
+static int tl_mii_readreg(csr, frame)
+ struct tl_csr *csr;
+ struct tl_mii_frame *frame;
+
+{
+ int i, ack, s;
+ int minten = 0;
+
+ s = splimp();
+
+ tl_mii_sync(csr);
+
+ /*
+ * Set up frame for RX.
+ */
+ frame->mii_stdelim = TL_MII_STARTDELIM;
+ frame->mii_opcode = TL_MII_READOP;
+ frame->mii_turnaround = 0;
+ frame->mii_data = 0;
+
+ /*
+ * Select the NETSIO register. We will be using it
+ * to communicate indirectly with the MII.
+ */
+
+ DIO_SEL(TL_NETSIO);
+
+ /*
+ * Turn off MII interrupt by forcing MINTEN low.
+ */
+ minten = DIO_BYTE1_GET(TL_SIO_MINTEN);
+ if (minten) {
+ DIO_BYTE1_CLR(TL_SIO_MINTEN);
+ }
+
+ /*
+ * Turn on data xmit.
+ */
+ DIO_BYTE1_SET(TL_SIO_MTXEN);
+
+ /*
+ * Send command/address info.
+ */
+ tl_mii_send(csr, frame->mii_stdelim, 2);
+ tl_mii_send(csr, frame->mii_opcode, 2);
+ tl_mii_send(csr, frame->mii_phyaddr, 5);
+ tl_mii_send(csr, frame->mii_regaddr, 5);
+
+ /*
+ * Turn off xmit.
+ */
+ DIO_BYTE1_CLR(TL_SIO_MTXEN);
+
+ /* Idle bit */
+ DIO_BYTE1_CLR(TL_SIO_MCLK);
+ DIO_BYTE1_SET(TL_SIO_MCLK);
+
+ /* Check for ack */
+ DIO_BYTE1_CLR(TL_SIO_MCLK);
+ ack = DIO_BYTE1_GET(TL_SIO_MDATA);
+
+ /* Complete the cycle */
+ DIO_BYTE1_SET(TL_SIO_MCLK);
+
+ /*
+ * Now try reading data bits. If the ack failed, we still
+ * need to clock through 16 cycles to keep the PHYs in sync.
+ */
+ if (ack) {
+ for(i = 0; i < 16; i++) {
+ DIO_BYTE1_CLR(TL_SIO_MCLK);
+ DIO_BYTE1_SET(TL_SIO_MCLK);
+ }
+ goto fail;
+ }
+
+ for (i = 0x8000; i; i >>= 1) {
+ DIO_BYTE1_CLR(TL_SIO_MCLK);
+ if (!ack) {
+ if (DIO_BYTE1_GET(TL_SIO_MDATA))
+ frame->mii_data |= i;
+ }
+ DIO_BYTE1_SET(TL_SIO_MCLK);
+ }
+
+fail:
+
+ DIO_BYTE1_CLR(TL_SIO_MCLK);
+ DIO_BYTE1_SET(TL_SIO_MCLK);
+
+ /* Reenable interrupts */
+ if (minten) {
+ DIO_BYTE1_SET(TL_SIO_MINTEN);
+ }
+
+ splx(s);
+
+ if (ack)
+ return(1);
+ return(0);
+}
+
+static int tl_mii_writereg(csr, frame)
+ struct tl_csr *csr;
+ struct tl_mii_frame *frame;
+
+{
+ int s;
+ int minten;
+
+ tl_mii_sync(csr);
+
+ s = splimp();
+ /*
+ * Set up frame for TX.
+ */
+
+ frame->mii_stdelim = TL_MII_STARTDELIM;
+ frame->mii_opcode = TL_MII_WRITEOP;
+ frame->mii_turnaround = TL_MII_TURNAROUND;
+
+ /*
+ * Select the NETSIO register. We will be using it
+ * to communicate indirectly with the MII.
+ */
+
+ DIO_SEL(TL_NETSIO);
+
+ /*
+ * Turn off MII interrupt by forcing MINTEN low.
+ */
+ minten = DIO_BYTE1_GET(TL_SIO_MINTEN);
+ if (minten) {
+ DIO_BYTE1_CLR(TL_SIO_MINTEN);
+ }
+
+ /*
+ * Turn on data output.
+ */
+ DIO_BYTE1_SET(TL_SIO_MTXEN);
+
+ tl_mii_send(csr, frame->mii_stdelim, 2);
+ tl_mii_send(csr, frame->mii_opcode, 2);
+ tl_mii_send(csr, frame->mii_phyaddr, 5);
+ tl_mii_send(csr, frame->mii_regaddr, 5);
+ tl_mii_send(csr, frame->mii_turnaround, 2);
+ tl_mii_send(csr, frame->mii_data, 16);
+
+ DIO_BYTE1_SET(TL_SIO_MCLK);
+ DIO_BYTE1_CLR(TL_SIO_MCLK);
+
+ /*
+ * Turn off xmit.
+ */
+ DIO_BYTE1_CLR(TL_SIO_MTXEN);
+
+ /* Reenable interrupts */
+ if (minten)
+ DIO_BYTE1_SET(TL_SIO_MINTEN);
+
+ splx(s);
+
+ return(0);
+}
+
+static u_int16_t tl_phy_readreg(sc, reg)
+ struct tl_softc *sc;
+ int reg;
+{
+ struct tl_mii_frame frame;
+ struct tl_csr *csr;
+
+ bzero((char *)&frame, sizeof(frame));
+
+ csr = sc->csr;
+
+ frame.mii_phyaddr = sc->tl_phy_addr;
+ frame.mii_regaddr = reg;
+ tl_mii_readreg(sc->csr, &frame);
+
+ /* Reenable MII interrupts, just in case. */
+ DIO_SEL(TL_NETSIO);
+ DIO_BYTE1_SET(TL_SIO_MINTEN);
+
+ return(frame.mii_data);
+}
+
+static void tl_phy_writereg(sc, reg, data)
+ struct tl_softc *sc;
+ u_int16_t reg;
+ u_int16_t data;
+{
+ struct tl_mii_frame frame;
+ struct tl_csr *csr;
+
+ bzero((char *)&frame, sizeof(frame));
+
+ csr = sc->csr;
+ frame.mii_phyaddr = sc->tl_phy_addr;
+ frame.mii_regaddr = reg;
+ frame.mii_data = data;
+
+ tl_mii_writereg(sc->csr, &frame);
+
+ /* Reenable MII interrupts, just in case. */
+ DIO_SEL(TL_NETSIO);
+ DIO_BYTE1_SET(TL_SIO_MINTEN);
+
+ return;
+}
+
+/*
+ * Read a sequence of bytes from the EEPROM.
+ */
+static int tl_read_eeprom(csr, dest, off, cnt)
+ struct tl_csr *csr;
+ caddr_t dest;
+ int off;
+ int cnt;
+{
+ int err = 0, i;
+ u_int8_t byte = 0;
+
+ for (i = 0; i < cnt; i++) {
+ err = tl_eeprom_getbyte(csr, off + i, &byte);
+ if (err)
+ break;
+ *(dest + i) = byte;
+ }
+
+ return(err ? 1 : 0);
+}
+
+/*
+ * Initiate autonegotiation with a link partner.
+ *
+ * Note that the Texas Instruments ThunderLAN programmer's guide
+ * fails to mention one very important point about autonegotiation.
+ * Autonegotiation is done largely by the PHY, independent of the
+ * ThunderLAN chip itself: the PHY sets the flags in the BMCR
+ * register to indicate what modes were selected and if link status
+ * is good. In fact, the PHY does pretty much all of the work itself,
+ * except for one small detail.
+ *
+ * The PHY may negotiate a full-duplex of half-duplex link, and set
+ * the PHY_BMCR_DUPLEX bit accordingly, but the ThunderLAN's 'NetCommand'
+ * register _also_ has a half-duplex/full-duplex bit, and you MUST ALSO
+ * SET THIS BIT MANUALLY TO CORRESPOND TO THE MODE SELECTED FOR THE PHY!
+ * In other words, both the ThunderLAN chip and the PHY have to be
+ * programmed for full-duplex mode in order for full-duplex to actually
+ * work. So in order for autonegotiation to really work right, we have
+ * to wait for the link to come up, check the BMCR register, then set
+ * the ThunderLAN for full or half-duplex as needed.
+ *
+ * I struggled for two days to figure this out, so I'm making a point
+ * of drawing attention to this fact. I think it's very strange that
+ * the ThunderLAN doesn't automagically track the duplex state of the
+ * PHY, but there you have it.
+ *
+ * Also when, using a National Semiconductor DP83840A PHY, we have to
+ * allow a full three seconds for autonegotiation to complete. So what
+ * we do is flip the autonegotiation restart bit, then set a timeout
+ * to wake us up in three seconds to check the link state.
+ */
+static void tl_autoneg(sc, flag, verbose)
+ struct tl_softc *sc;
+ int flag;
+ int verbose;
+{
+ u_int16_t phy_sts = 0, media = 0;
+ struct ifnet *ifp;
+ struct ifmedia *ifm;
+ struct tl_csr *csr;
+
+ ifm = &sc->ifmedia;
+ ifp = &sc->arpcom.ac_if;
+ csr = sc->csr;
+
+ /*
+ * First, see if autoneg is supported. If not, there's
+ * no point in continuing.
+ */
+ phy_sts = tl_phy_readreg(sc, PHY_BMSR);
+ if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
+ if (verbose)
+ printf("tl%d: autonegotiation not supported\n",
+ sc->tl_unit);
+ return;
+ }
+
+ switch (flag) {
+ case TL_FLAG_FORCEDELAY:
+ /*
+ * XXX Never use this option anywhere but in the probe
+ * routine: making the kernel stop dead in its tracks
+ * for three whole seconds after we've gone multi-user
+ * is really bad manners.
+ */
+ phy_sts = tl_phy_readreg(sc, PHY_BMCR);
+ phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
+ tl_phy_writereg(sc, PHY_BMCR, phy_sts);
+ DELAY(3000000);
+ break;
+ case TL_FLAG_SCHEDDELAY:
+ phy_sts = tl_phy_readreg(sc, PHY_BMCR);
+ phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
+ tl_phy_writereg(sc, PHY_BMCR, phy_sts);
+ ifp->if_timer = 3;
+ sc->tl_autoneg = 1;
+ return;
+ case TL_FLAG_DELAYTIMEO:
+ ifp->if_timer = 0;
+ sc->tl_autoneg = 0;
+ break;
+ default:
+ printf("tl%d: invalid autoneg flag: %d\n", flag, sc->tl_unit);
+ return;
+ }
+
+ /*
+ * Read the BMSR register twice: the LINKSTAT bit is a
+ * latching bit.
+ */
+ tl_phy_readreg(sc, PHY_BMSR);
+ phy_sts = tl_phy_readreg(sc, PHY_BMSR);
+ if (phy_sts & PHY_BMSR_AUTONEGCOMP) {
+ if (verbose)
+ printf("tl%d: autoneg complete, ", sc->tl_unit);
+ phy_sts = tl_phy_readreg(sc, PHY_BMSR);
+ } else {
+ if (verbose)
+ printf("tl%d: autoneg not complete, ", sc->tl_unit);
+ }
+
+ /* Link is good. Report modes and set duplex mode. */
+ if (phy_sts & PHY_BMSR_LINKSTAT) {
+ if (verbose)
+ printf("link status good ");
+ media = tl_phy_readreg(sc, PHY_BMCR);
+
+ /* Set the DUPLEX bit in the NetCmd register accordingly. */
+ if (media & PHY_BMCR_DUPLEX) {
+ if (verbose)
+ printf("(full-duplex, ");
+ ifm->ifm_media |= IFM_FDX;
+ ifm->ifm_media &= ~IFM_HDX;
+ DIO_SEL(TL_NETCMD);
+ DIO_BYTE0_SET(TL_CMD_DUPLEX);
+ } else {
+ if (verbose)
+ printf("(half-duplex, ");
+ ifm->ifm_media &= ~IFM_FDX;
+ ifm->ifm_media |= IFM_HDX;
+ DIO_SEL(TL_NETCMD);
+ DIO_BYTE0_CLR(TL_CMD_DUPLEX);
+ }
+
+ if (media & PHY_BMCR_SPEEDSEL) {
+ if (verbose)
+ printf("100Mb/s)\n");
+ ifm->ifm_media |= IFM_100_TX;
+ ifm->ifm_media &= ~IFM_10_T;
+ } else {
+ if (verbose)
+ printf("10Mb/s)\n");
+ ifm->ifm_media &= ~IFM_100_TX;
+ ifm->ifm_media |= IFM_10_T;
+ }
+
+ /* Turn off autoneg */
+ media &= ~PHY_BMCR_AUTONEGENBL;
+ tl_phy_writereg(sc, PHY_BMCR, media);
+ } else {
+ if (verbose)
+ printf("no carrier\n");
+ }
+
+ return;
+}
+
+/*
+ * Set speed and duplex mode. Also program autoneg advertisements
+ * accordingly.
+ */
+static void tl_setmode(sc, media)
+ struct tl_softc *sc;
+ int media;
+{
+ u_int16_t bmcr, anar, ctl;
+ struct tl_csr *csr;
+
+ csr = sc->csr;
+ bmcr = tl_phy_readreg(sc, PHY_BMCR);
+ anar = tl_phy_readreg(sc, PHY_ANAR);
+ ctl = tl_phy_readreg(sc, TL_PHY_CTL);
+ DIO_SEL(TL_NETCMD);
+
+ bmcr &= ~(PHY_BMCR_SPEEDSEL|PHY_BMCR_DUPLEX|PHY_BMCR_AUTONEGENBL|
+ PHY_BMCR_LOOPBK);
+ anar &= ~(PHY_ANAR_100BT4|PHY_ANAR_100BTXFULL|PHY_ANAR_100BTXHALF|
+ PHY_ANAR_10BTFULL|PHY_ANAR_10BTHALF);
+
+ ctl &= ~PHY_CTL_AUISEL;
+
+ if (IFM_SUBTYPE(media) == IFM_LOOP)
+ bmcr |= PHY_BMCR_LOOPBK;
+
+ if (IFM_SUBTYPE(media) == IFM_AUTO)
+ bmcr |= PHY_BMCR_AUTONEGENBL;
+
+ if (IFM_SUBTYPE(media) == IFM_10_5)
+ ctl |= PHY_CTL_AUISEL;
+
+ if (IFM_SUBTYPE(media) == IFM_100_TX) {
+ bmcr |= PHY_BMCR_SPEEDSEL;
+ if ((media & IFM_GMASK) == IFM_FDX) {
+ bmcr |= PHY_BMCR_DUPLEX;
+ anar |= PHY_ANAR_100BTXFULL;
+ DIO_BYTE0_SET(TL_CMD_DUPLEX);
+ } else if ((media & IFM_GMASK) == IFM_HDX) {
+ bmcr &= ~PHY_BMCR_DUPLEX;
+ anar |= PHY_ANAR_100BTXHALF;
+ DIO_BYTE0_CLR(TL_CMD_DUPLEX);
+ } else {
+ bmcr &= ~PHY_BMCR_DUPLEX;
+ anar |= PHY_ANAR_100BTXHALF;
+ DIO_BYTE0_CLR(TL_CMD_DUPLEX);
+ }
+ }
+
+ if (IFM_SUBTYPE(media) == IFM_10_T) {
+ bmcr &= ~PHY_BMCR_SPEEDSEL;
+ if ((media & IFM_GMASK) == IFM_FDX) {
+ bmcr |= PHY_BMCR_DUPLEX;
+ anar |= PHY_ANAR_10BTFULL;
+ DIO_BYTE0_SET(TL_CMD_DUPLEX);
+ } else if ((media & IFM_GMASK) == IFM_HDX) {
+ bmcr &= ~PHY_BMCR_DUPLEX;
+ anar |= PHY_ANAR_10BTHALF;
+ DIO_BYTE0_CLR(TL_CMD_DUPLEX);
+ } else {
+ bmcr &= ~PHY_BMCR_DUPLEX;
+ anar |= PHY_ANAR_10BTHALF;
+ DIO_BYTE0_CLR(TL_CMD_DUPLEX);
+ }
+ }
+
+ tl_phy_writereg(sc, PHY_BMCR, bmcr);
+ tl_phy_writereg(sc, PHY_ANAR, anar);
+ tl_phy_writereg(sc, TL_PHY_CTL, ctl);
+
+ return;
+}
+
+#define XOR(a, b) ((a && !b) || (!a && b))
+#define DA(addr, offset) (addr[offset / 8] & (1 << (offset % 8)))
+
+static int tl_calchash(addr)
+ char *addr;
+{
+ int h;
+
+ h = XOR(DA(addr, 0), XOR(DA(addr, 6), XOR(DA(addr, 12),
+ XOR(DA(addr, 18), XOR(DA(addr, 24), XOR(DA(addr, 30),
+ XOR(DA(addr, 36), DA(addr, 42))))))));
+
+ h |= XOR(DA(addr, 1), XOR(DA(addr, 7), XOR(DA(addr, 13),
+ XOR(DA(addr, 19), XOR(DA(addr, 25), XOR(DA(addr, 31),
+ XOR(DA(addr, 37), DA(addr, 43)))))))) << 1;
+
+ h |= XOR(DA(addr, 2), XOR(DA(addr, 8), XOR(DA(addr, 14),
+ XOR(DA(addr, 20), XOR(DA(addr, 26), XOR(DA(addr, 32),
+ XOR(DA(addr, 38), DA(addr, 44)))))))) << 2;
+
+ h |= XOR(DA(addr, 3), XOR(DA(addr, 9), XOR(DA(addr, 15),
+ XOR(DA(addr, 21), XOR(DA(addr, 27), XOR(DA(addr, 33),
+ XOR(DA(addr, 39), DA(addr, 45)))))))) << 3;
+
+ h |= XOR(DA(addr, 4), XOR(DA(addr, 10), XOR(DA(addr, 16),
+ XOR(DA(addr, 22), XOR(DA(addr, 28), XOR(DA(addr, 34),
+ XOR(DA(addr, 40), DA(addr, 46)))))))) << 4;
+
+ h |= XOR(DA(addr, 5), XOR(DA(addr, 11), XOR(DA(addr, 17),
+ XOR(DA(addr, 23), XOR(DA(addr, 29), XOR(DA(addr, 35),
+ XOR(DA(addr, 41), DA(addr, 47)))))))) << 5;
+
+ return(h);
+}
+
+static void tl_setmulti(sc)
+ struct tl_softc *sc;
+{
+ struct ifnet *ifp;
+ struct tl_csr *csr;
+ u_int32_t hashes[2] = { 0, 0 };
+ int h;
+#if __FreeBSD_version >= 300000
+ struct ifmultiaddr *ifma;
+#else
+ struct ether_multi *enm;
+ struct ether_multistep step;
+#endif
+
+ csr = sc->csr;
+ ifp = &sc->arpcom.ac_if;
+
+ if (sc->arpcom.ac_multicnt > 64 || ifp->if_flags & IFF_ALLMULTI) {
+ hashes[0] = 0xFFFFFFFF;
+ hashes[1] = 0xFFFFFFFF;
+ } else {
+#if __FreeBSD_version >= 300000
+ for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
+ ifma = ifma->ifma_link.le_next) {
+ if (ifma->ifma_addr->sa_family != AF_LINK)
+ continue;
+ h = tl_calchash(
+ LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
+ if (h < 32)
+ hashes[0] |= (1 << h);
+ else
+ hashes[1] |= (1 << (h - 31));
+ }
+#else
+ ETHER_FIRST_MULTI(step, &sc->arpcom, enm);
+ while(enm != NULL) {
+ if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
+ ETHER_ADDR_LEN)) {
+ hashes[0] = 0xFFFFFFFF;
+ hashes[1] = 0xFFFFFFFF;
+ break;
+ } else {
+ h = tl_calchash(enm->enm_addrlo);
+ if (h < 32)
+ hashes[0] |= (1 << h);
+ else
+ hashes[1] |= (1 << (h - 31));
+ }
+ ETHER_NEXT_MULTI(step, enm);
+ }
+#endif
+ }
+
+ DIO_SEL(TL_HASH1);
+ DIO_LONG_PUT(hashes[0]);
+ DIO_SEL(TL_HASH2);
+ DIO_LONG_PUT(hashes[1]);
+
+ return;
+}
+
+static void tl_softreset(csr, internal)
+ struct tl_csr *csr;
+ int internal;
+{
+ u_int32_t cmd, dummy;
+
+ /* Assert the adapter reset bit. */
+ csr->tl_host_cmd |= TL_CMD_ADRST;
+ /* Turn off interrupts */
+ csr->tl_host_cmd |= TL_CMD_INTSOFF;
+
+ /* First, clear the stats registers. */
+ DIO_SEL(TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
+ DIO_LONG_GET(dummy);
+ DIO_LONG_GET(dummy);
+ DIO_LONG_GET(dummy);
+ DIO_LONG_GET(dummy);
+ DIO_LONG_GET(dummy);
+
+ /* Clear Areg and Hash registers */
+ DIO_SEL(TL_AREG0_B5|TL_DIO_ADDR_INC);
+ DIO_LONG_PUT(0x00000000);
+ DIO_LONG_PUT(0x00000000);
+ DIO_LONG_PUT(0x00000000);
+ DIO_LONG_PUT(0x00000000);
+ DIO_LONG_PUT(0x00000000);
+ DIO_LONG_PUT(0x00000000);
+ DIO_LONG_PUT(0x00000000);
+ DIO_LONG_PUT(0x00000000);
+
+ /*
+ * Set up Netconfig register. Enable one channel and
+ * one fragment mode.
+ */
+ DIO_SEL(TL_NETCONFIG);
+ DIO_WORD0_SET(TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
+ if (internal) {
+ DIO_SEL(TL_NETCONFIG);
+ DIO_WORD0_SET(TL_CFG_PHYEN);
+ } else {
+ DIO_SEL(TL_NETCONFIG);
+ DIO_WORD0_CLR(TL_CFG_PHYEN);
+ }
+
+ /* Set PCI burst size */
+ DIO_SEL(TL_BSIZEREG);
+ DIO_BYTE1_SET(0x33);
+
+ /*
+ * Load adapter irq pacing timer and tx threshold.
+ * We make the transmit threshold 1 initially but we may
+ * change that later.
+ */
+ cmd = csr->tl_host_cmd;
+ cmd |= TL_CMD_NES;
+ cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
+ csr->tl_host_cmd = cmd | (TL_CMD_LDTHR | TX_THR);
+ csr->tl_host_cmd = cmd | (TL_CMD_LDTMR | 0x00000003);
+
+ /* Unreset the MII */
+ DIO_SEL(TL_NETSIO);
+ DIO_BYTE1_SET(TL_SIO_NMRST);
+
+ /* Clear status register */
+ DIO_SEL(TL_NETSTS);
+ DIO_BYTE2_SET(TL_STS_MIRQ);
+ DIO_BYTE2_SET(TL_STS_HBEAT);
+ DIO_BYTE2_SET(TL_STS_TXSTOP);
+ DIO_BYTE2_SET(TL_STS_RXSTOP);
+
+ /* Enable network status interrupts for everything. */
+ DIO_SEL(TL_NETMASK);
+ DIO_BYTE3_SET(TL_MASK_MASK7|TL_MASK_MASK6|
+ TL_MASK_MASK5|TL_MASK_MASK4);
+
+ /* Take the adapter out of reset */
+ DIO_SEL(TL_NETCMD);
+ DIO_BYTE0_SET(TL_CMD_NRESET|TL_CMD_NWRAP);
+
+ /* Wait for things to settle down a little. */
+ DELAY(500);
+
+ return;
+}
+
+/*
+ * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
+ * against our list and return its name if we find a match. Note that
+ * we also save a pointer to the tl_type struct for this card since we
+ * will need it for the softc struct and attach routine later.
+ */
+static char *
+tl_probe(config_id, device_id)
+ pcici_t config_id;
+ pcidi_t device_id;
+{
+ struct tl_type *t;
+ struct tl_iflist *new;
+
+ t = tl_devs;
+
+ while(t->tl_name != NULL) {
+ if ((device_id & 0xFFFF) == t->tl_vid &&
+ ((device_id >> 16) & 0xFFFF) == t->tl_did) {
+ new = malloc(sizeof(struct tl_iflist),
+ M_DEVBUF, M_NOWAIT);
+ if (new == NULL) {
+ printf("no memory for controller struct!\n");
+ break;
+ }
+ bzero(new, sizeof(struct tl_iflist));
+ new->tl_config_id = config_id;
+ new->tl_dinfo = t;
+ new->tl_next = tl_iflist;
+ tl_iflist = new;
+ return(t->tl_name);
+ }
+ t++;
+ }
+
+ return(NULL);
+}
+
+/*
+ * The ThunderLAN controller can support multiple PHYs. Logically,
+ * this means we have to be able to deal with each PHY as a separate
+ * interface. We therefore consider ThunderLAN devices as follows:
+ *
+ * o Each ThunderLAN controller device is assigned the name tlcX where
+ * X is the controller's unit number. Each ThunderLAN device found
+ * is assigned a different number.
+ *
+ * o Each PHY on each controller is assigned the name tlX. X starts at
+ * 0 and is incremented each time an additional PHY is found.
+ *
+ * So, if you had two dual-channel ThunderLAN cards, you'd have
+ * tlc0 and tlc1 (the controllers) and tl0, tl1, tl2, tl3 (the logical
+ * interfaces). I think. I'm still not sure how dual chanel controllers
+ * work as I've yet to see one.
+ */
+
+/*
+ * Do the interface setup and attach for a PHY on a particular
+ * ThunderLAN chip. Also also set up interrupt vectors.
+ */
+static int tl_attach_phy(csr, tl_unit, eaddr, tl_phy, ilist)
+ struct tl_csr *csr;
+ int tl_unit;
+ char *eaddr;
+ int tl_phy;
+ struct tl_iflist *ilist;
+{
+ struct tl_softc *sc;
+ struct ifnet *ifp;
+ int phy_ctl;
+ struct tl_type *p = tl_phys;
+ struct tl_mii_frame frame;
+ int i, media = IFM_ETHER|IFM_100_TX|IFM_FDX;
+ unsigned int round;
+ caddr_t roundptr;
+
+ if (tl_phy != TL_PHYADDR_MAX)
+ tl_softreset(csr, 0);
+
+ /* Reset the PHY again, just in case. */
+ bzero((char *)&frame, sizeof(frame));
+ frame.mii_phyaddr = tl_phy;
+ frame.mii_regaddr = TL_PHY_GENCTL;
+ frame.mii_data = PHY_BMCR_RESET;
+ tl_mii_writereg(csr, &frame);
+ DELAY(500);
+ frame.mii_data = 0;
+
+ /* First, allocate memory for the softc struct. */
+ sc = malloc(sizeof(struct tl_softc), M_DEVBUF, M_NOWAIT);
+ if (sc == NULL) {
+ printf("tlc%d: no memory for softc struct!\n", ilist->tlc_unit);
+ return(1);
+ }
+
+ bzero(sc, sizeof(struct tl_softc));
+
+ /*
+ * Now allocate memory for the TX and RX lists. Note that
+ * we actually allocate 8 bytes more than we really need:
+ * this is because we need to adjust the final address to
+ * be aligned on a quadword (64-bit) boundary in order to
+ * make the chip happy. If the list structures aren't properly
+ * aligned, DMA fails and the chip generates an adapter check
+ * interrupt and has to be reset. If you set up the softc struct
+ * just right you can sort of obtain proper alignment 'by chance.'
+ * But I don't want to depend on this, so instead the alignment
+ * is forced here.
+ */
+ sc->tl_ldata_ptr = malloc(sizeof(struct tl_list_data) + 8,
+ M_DEVBUF, M_NOWAIT);
+
+ if (sc->tl_ldata_ptr == NULL) {
+ free(sc, M_DEVBUF);
+ printf("tlc%d: no memory for list buffers!\n", ilist->tlc_unit);
+ return(1);
+ }
+
+ /*
+ * Convoluted but satisfies my ANSI sensibilities. GCC lets
+ * you do casts on the LHS of an assignment, but ANSI doesn't
+ * allow that.
+ */
+ sc->tl_ldata = (struct tl_list_data *)sc->tl_ldata_ptr;
+ round = (unsigned int)sc->tl_ldata_ptr & 0xF;
+ roundptr = sc->tl_ldata_ptr;
+ for (i = 0; i < 8; i++) {
+ if (round % 8) {
+ round++;
+ roundptr++;
+ } else
+ break;
+ }
+ sc->tl_ldata = (struct tl_list_data *)roundptr;
+
+ bzero(sc->tl_ldata, sizeof(struct tl_list_data));
+
+ sc->csr = csr;
+ sc->tl_dinfo = ilist->tl_dinfo;
+ sc->tl_ctlr = ilist->tlc_unit;
+ sc->tl_unit = tl_unit;
+ sc->tl_phy_addr = tl_phy;
+ sc->tl_iflist = ilist;
+#if __FreeBSD_version >= 300000
+ callout_handle_init(&sc->tl_stat_ch);
+#endif
+
+ frame.mii_regaddr = TL_PHY_VENID;
+ tl_mii_readreg(csr, &frame);
+ sc->tl_phy_vid = frame.mii_data;
+
+ frame.mii_regaddr = TL_PHY_DEVID;
+ tl_mii_readreg(csr, &frame);
+ sc->tl_phy_did = frame.mii_data;
+
+ frame.mii_regaddr = TL_PHY_GENSTS;
+ tl_mii_readreg(csr, &frame);
+ sc->tl_phy_sts = frame.mii_data;
+
+ frame.mii_regaddr = TL_PHY_GENCTL;
+ tl_mii_readreg(csr, &frame);
+ phy_ctl = frame.mii_data;
+
+ /*
+ * PHY revision numbers tend to vary a bit. Our algorithm here
+ * is to check everything but the 8 least significant bits.
+ */
+ while(p->tl_vid) {
+ if (sc->tl_phy_vid == p->tl_vid &&
+ (sc->tl_phy_did | 0x000F) == p->tl_did) {
+ sc->tl_pinfo = p;
+ break;
+ }
+ p++;
+ }
+ if (sc->tl_pinfo == NULL) {
+ sc->tl_pinfo = &tl_phys[PHY_UNKNOWN];
+ }
+
+ bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
+ ifp = &sc->arpcom.ac_if;
+ ifp->if_softc = sc;
+ ifp->if_unit = tl_unit;
+ ifp->if_name = "tl";
+ ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
+ ifp->if_ioctl = tl_ioctl;
+ ifp->if_output = ether_output;
+ ifp->if_start = tl_start;
+ ifp->if_watchdog = tl_watchdog;
+ ifp->if_init = tl_init;
+
+ if (sc->tl_phy_sts & PHY_BMSR_100BT4 ||
+ sc->tl_phy_sts & PHY_BMSR_100BTXFULL ||
+ sc->tl_phy_sts & PHY_BMSR_100BTXHALF)
+ ifp->if_baudrate = 100000000;
+ else
+ ifp->if_baudrate = 10000000;
+
+ ilist->tl_sc[tl_phy] = sc;
+
+ printf("tl%d at tlc%d physical interface %d\n", ifp->if_unit,
+ sc->tl_ctlr,
+ sc->tl_phy_addr);
+
+ printf("tl%d: %s ", ifp->if_unit, sc->tl_pinfo->tl_name);
+
+ if (sc->tl_phy_sts & PHY_BMSR_100BT4 ||
+ sc->tl_phy_sts & PHY_BMSR_100BTXHALF ||
+ sc->tl_phy_sts & PHY_BMSR_100BTXHALF)
+ printf("10/100Mbps ");
+ else {
+ media &= ~IFM_100_TX;
+ media |= IFM_10_T;
+ printf("10Mbps ");
+ }
+
+ if (sc->tl_phy_sts & PHY_BMSR_100BTXFULL ||
+ sc->tl_phy_sts & PHY_BMSR_10BTFULL)
+ printf("full duplex ");
+ else {
+ printf("half duplex ");
+ media &= ~IFM_FDX;
+ }
+
+ if (sc->tl_phy_sts & PHY_BMSR_CANAUTONEG) {
+ media = IFM_ETHER|IFM_AUTO;
+ printf("autonegotiating\n");
+ } else
+ printf("\n");
+
+ /* If this isn't a known PHY, print the PHY indentifier info. */
+ if (sc->tl_pinfo->tl_vid == 0)
+ printf("tl%d: vendor id: %04x product id: %04x\n",
+ sc->tl_unit, sc->tl_phy_vid, sc->tl_phy_did);
+
+ /* Set up ifmedia data and callbacks. */
+ ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
+
+ /*
+ * All ThunderLANs support at least 10baseT half duplex.
+ * They also support AUI selection if used in 10Mb/s modes.
+ * They all also support a loopback mode.
+ */
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_LOOP, 0, NULL);
+
+ /* Some ThunderLAN PHYs support autonegotiation. */
+ if (sc->tl_phy_sts & PHY_BMSR_CANAUTONEG)
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
+
+ /* Some support 10baseT full duplex. */
+ if (sc->tl_phy_sts & PHY_BMSR_10BTFULL)
+ ifmedia_add(&sc->ifmedia,
+ IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
+
+ /* Some support 100BaseTX half duplex. */
+ if (sc->tl_phy_sts & PHY_BMSR_100BTXHALF)
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
+ if (sc->tl_phy_sts & PHY_BMSR_100BTXHALF)
+ ifmedia_add(&sc->ifmedia,
+ IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
+
+ /* Some support 100BaseTX full duplex. */
+ if (sc->tl_phy_sts & PHY_BMSR_100BTXFULL)
+ ifmedia_add(&sc->ifmedia,
+ IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
+
+ /* Some also support 100BaseT4. */
+ if (sc->tl_phy_sts & PHY_BMSR_100BT4)
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
+
+ /* Set default media. */
+ ifmedia_set(&sc->ifmedia, media);
+
+ /*
+ * Kick off an autonegotiation session if this PHY supports it.
+ * This is necessary to make sure the chip's duplex mode matches
+ * the PHY's duplex mode. It may not: once enabled, the PHY may
+ * autonegotiate full-duplex mode with its link partner, but the
+ * ThunderLAN chip defaults to half-duplex and stays there unless
+ * told otherwise.
+ */
+ if (sc->tl_phy_sts & PHY_BMSR_CANAUTONEG)
+ tl_autoneg(sc, TL_FLAG_FORCEDELAY, 0);
+
+ /*
+ * Call MI attach routines.
+ */
+ if_attach(ifp);
+ ether_ifattach(ifp);
+
+#if NBPFILTER > 0
+ bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
+#endif
+
+ return(0);
+}
+
+static void
+tl_attach_ctlr(config_id, unit)
+ pcici_t config_id;
+ int unit;
+{
+ int s, i, phys = 0;
+ vm_offset_t pbase, vbase;
+ struct tl_csr *csr;
+ char eaddr[ETHER_ADDR_LEN];
+ struct tl_mii_frame frame;
+ u_int32_t command;
+ struct tl_iflist *ilist;
+
+ s = splimp();
+
+ for (ilist = tl_iflist; ilist != NULL; ilist = ilist->tl_next)
+#if __FreeBSD_version >= 300000
+ if (ilist->tl_config_id == config_id)
+#else
+ if (sametag(ilist->tl_config_id, config_id))
+#endif
+ break;
+
+ if (ilist == NULL) {
+ printf("couldn't match config id with controller struct\n");
+ goto fail;
+ }
+
+ /*
+ * Map control/status registers.
+ */
+#if __FreeBSD_version >= 300000
+ pci_conf_write(config_id, PCI_COMMAND_STATUS_REG,
+ PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
+
+ command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
+
+ if (!(command & PCIM_CMD_MEMEN)) {
+ printf("tlc%d: failed to enable memory mapping!\n", unit);
+ goto fail;
+ }
+#else
+ pci_conf_write(config_id, PCI_COMMAND_STATUS_REG,
+ PCI_COMMAND_MEM_ENABLE|
+ PCI_COMMAND_MASTER_ENABLE);
+
+ command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
+
+ if (!(command & PCI_COMMAND_MEM_ENABLE)) {
+ printf("tlc%d: failed to enable memory mapping!\n", unit);
+ goto fail;
+ }
+#endif
+
+ if (!pci_map_mem(config_id, TL_PCI_LOMEM, &vbase, &pbase)) {
+ printf ("tlc%d: couldn't map memory\n", unit);
+ goto fail;
+ }
+
+ csr = (struct tl_csr *)vbase;
+
+ ilist->csr = csr;
+ ilist->tl_active_phy = TL_PHYS_IDLE;
+ ilist->tlc_unit = unit;
+
+ /* Allocate interrupt */
+ if (!pci_map_int(config_id, tl_intr, ilist, &net_imask)) {
+ printf("tlc%d: couldn't map interrupt\n", unit);
+ goto fail;
+ }
+
+ /* Reset the adapter. */
+ tl_softreset(csr, 1);
+
+ /*
+ * Get station address from the EEPROM.
+ */
+ if (tl_read_eeprom(csr, (caddr_t)&eaddr,
+ TL_EEPROM_EADDR, ETHER_ADDR_LEN)) {
+ printf("tlc%d: failed to read station address\n", unit);
+ goto fail;
+ }
+
+ /*
+ * A ThunderLAN chip was detected. Inform the world.
+ */
+ printf("tlc%d: Ethernet address: %6D\n", unit, eaddr, ":");
+
+ /*
+ * Now attach the ThunderLAN's PHYs. There will always
+ * be at least one PHY; if the PHY address is 0x1F, then
+ * it's the internal one. If we encounter a lower numbered
+ * PHY, we ignore the internal once since enabling the
+ * internal PHY disables the external one.
+ */
+
+ bzero((char *)&frame, sizeof(frame));
+
+ for (i = TL_PHYADDR_MIN; i < TL_PHYADDR_MAX + 1; i++) {
+ frame.mii_phyaddr = i;
+ frame.mii_regaddr = TL_PHY_GENCTL;
+ frame.mii_data = PHY_BMCR_RESET;
+ tl_mii_writereg(csr, &frame);
+ DELAY(500);
+ while(frame.mii_data & PHY_BMCR_RESET)
+ tl_mii_readreg(csr, &frame);
+ frame.mii_regaddr = TL_PHY_VENID;
+ frame.mii_data = 0;
+ tl_mii_readreg(csr, &frame);
+ if (!frame.mii_data)
+ continue;
+ if (tl_attach_phy(csr, phys, eaddr, i, ilist)) {
+ printf("tlc%d: failed to attach interface %d\n",
+ unit, i);
+ goto fail;
+ }
+ phys++;
+ if (phys && i != TL_PHYADDR_MAX)
+ break;
+ }
+
+ if (!phys) {
+ printf("tlc%d: no physical interfaces attached!\n", unit);
+ goto fail;
+ }
+
+ at_shutdown(tl_shutdown, ilist, SHUTDOWN_POST_SYNC);
+
+fail:
+ splx(s);
+ return;
+}
+
+/*
+ * Initialize the transmit lists.
+ */
+static int tl_list_tx_init(sc)
+ struct tl_softc *sc;
+{
+ struct tl_chain_data *cd;
+ struct tl_list_data *ld;
+ int i;
+
+ cd = &sc->tl_cdata;
+ ld = sc->tl_ldata;
+ for (i = 0; i < TL_TX_LIST_CNT; i++) {
+ cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
+ if (i == (TL_TX_LIST_CNT - 1))
+ cd->tl_tx_chain[i].tl_next = NULL;
+ else
+ cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
+ }
+
+ cd->tl_tx_free = &cd->tl_tx_chain[0];
+ cd->tl_tx_tail = cd->tl_tx_head = NULL;
+ sc->tl_txeoc = 1;
+
+ return(0);
+}
+
+/*
+ * Initialize the RX lists and allocate mbufs for them.
+ */
+static int tl_list_rx_init(sc)
+ struct tl_softc *sc;
+{
+ struct tl_chain_data *cd;
+ struct tl_list_data *ld;
+ int i;
+
+ cd = &sc->tl_cdata;
+ ld = sc->tl_ldata;
+
+ for (i = 0; i < TL_TX_LIST_CNT; i++) {
+ cd->tl_rx_chain[i].tl_ptr =
+ (struct tl_list *)&ld->tl_rx_list[i];
+ tl_newbuf(sc, &cd->tl_rx_chain[i]);
+ if (i == (TL_TX_LIST_CNT - 1)) {
+ cd->tl_rx_chain[i].tl_next = NULL;
+ ld->tl_rx_list[i].tlist_fptr = 0;
+ } else {
+ cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
+ ld->tl_rx_list[i].tlist_fptr =
+ vtophys(&ld->tl_rx_list[i + 1]);
+ }
+ }
+
+ cd->tl_rx_head = &cd->tl_rx_chain[0];
+ cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
+
+ return(0);
+}
+
+static int tl_newbuf(sc, c)
+ struct tl_softc *sc;
+ struct tl_chain *c;
+{
+ struct mbuf *m_new = NULL;
+
+ MGETHDR(m_new, M_DONTWAIT, MT_DATA);
+ if (m_new == NULL) {
+ printf("tl%d: no memory for rx list",
+ sc->tl_unit);
+ return(ENOBUFS);
+ }
+
+ MCLGET(m_new, M_DONTWAIT);
+ if (!(m_new->m_flags & M_EXT)) {
+ printf("tl%d: no memory for rx list", sc->tl_unit);
+ m_freem(m_new);
+ return(ENOBUFS);
+ }
+
+ c->tl_mbuf = m_new;
+ c->tl_next = NULL;
+ c->tl_ptr->tlist_frsize = MCLBYTES;
+ c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
+ c->tl_ptr->tlist_fptr = 0;
+ c->tl_ptr->tl_frag[0].tlist_dadr = vtophys(mtod(m_new, caddr_t));
+ c->tl_ptr->tl_frag[0].tlist_dcnt = MCLBYTES;
+
+ return(0);
+}
+/*
+ * Interrupt handler for RX 'end of frame' condition (EOF). This
+ * tells us that a full ethernet frame has been captured and we need
+ * to handle it.
+ *
+ * Reception is done using 'lists' which consist of a header and a
+ * series of 10 data count/data address pairs that point to buffers.
+ * Initially you're supposed to create a list, populate it with pointers
+ * to buffers, then load the physical address of the list into the
+ * ch_parm register. The adapter is then supposed to DMA the received
+ * frame into the buffers for you.
+ *
+ * To make things as fast as possible, we have the chip DMA directly
+ * into mbufs. This saves us from having to do a buffer copy: we can
+ * just hand the mbufs directly to ether_input(). Once the frame has
+ * been sent on its way, the 'list' structure is assigned a new buffer
+ * and moved to the end of the RX chain. As long we we stay ahead of
+ * the chip, it will always think it has an endless receive channel.
+ *
+ * If we happen to fall behind and the chip manages to fill up all of
+ * the buffers, it will generate an end of channel interrupt and wait
+ * for us to empty the chain and restart the receiver.
+ */
+static int tl_intvec_rxeof(xsc, type)
+ void *xsc;
+ u_int32_t type;
+{
+ struct tl_softc *sc;
+ int r = 0, total_len = 0;
+ struct ether_header *eh;
+ struct mbuf *m;
+ struct ifnet *ifp;
+ struct tl_chain *cur_rx;
+
+ sc = xsc;
+ ifp = &sc->arpcom.ac_if;
+
+ while(sc->tl_cdata.tl_rx_head->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP){
+ r++;
+ cur_rx = sc->tl_cdata.tl_rx_head;
+ sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
+ m = cur_rx->tl_mbuf;
+ total_len = cur_rx->tl_ptr->tlist_frsize;
+
+ tl_newbuf(sc, cur_rx);
+
+ sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
+ vtophys(cur_rx->tl_ptr);
+ sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
+ sc->tl_cdata.tl_rx_tail = cur_rx;
+
+ eh = mtod(m, struct ether_header *);
+ m->m_pkthdr.rcvif = ifp;
+
+#if NBPFILTER > 0
+ /*
+ * Handle BPF listeners. Let the BPF user see the packet, but
+ * don't pass it up to the ether_input() layer unless it's
+ * a broadcast packet, multicast packet, matches our ethernet
+ * address or the interface is in promiscuous mode. If we don't
+ * want the packet, just forget it. We leave the mbuf in place
+ * since it can be used again later.
+ */
+ if (ifp->if_bpf) {
+ m->m_pkthdr.len = m->m_len = total_len;
+ bpf_mtap(ifp, m);
+ if (ifp->if_flags & IFF_PROMISC &&
+ (bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
+ ETHER_ADDR_LEN) &&
+ (eh->ether_dhost[0] & 1) == 0)) {
+ m_freem(m);
+ continue;
+ }
+ }
+#endif
+ /* Remove header from mbuf and pass it on. */
+ m->m_pkthdr.len = m->m_len =
+ total_len - sizeof(struct ether_header);
+ m->m_data += sizeof(struct ether_header);
+ ether_input(ifp, eh, m);
+ }
+
+ return(r);
+}
+
+/*
+ * The RX-EOC condition hits when the ch_parm address hasn't been
+ * initialized or the adapter reached a list with a forward pointer
+ * of 0 (which indicates the end of the chain). In our case, this means
+ * the card has hit the end of the receive buffer chain and we need to
+ * empty out the buffers and shift the pointer back to the beginning again.
+ */
+static int tl_intvec_rxeoc(xsc, type)
+ void *xsc;
+ u_int32_t type;
+{
+ struct tl_softc *sc;
+ int r;
+
+ sc = xsc;
+
+ /* Flush out the receive queue and ack RXEOF interrupts. */
+ r = tl_intvec_rxeof(xsc, type);
+ sc->csr->tl_host_cmd = TL_CMD_ACK | r | (type & ~(0x00100000));
+ r = 1;
+ sc->csr->tl_ch_parm = vtophys(sc->tl_cdata.tl_rx_head->tl_ptr);
+ r |= (TL_CMD_GO|TL_CMD_RT);
+ return(r);
+}
+
+/*
+ * Invalid interrupt handler. The manual says invalid interrupts
+ * are caused by a hardware error in other hardware and that they
+ * should just be ignored.
+ */
+static int tl_intvec_invalid(xsc, type)
+ void *xsc;
+ u_int32_t type;
+{
+ struct tl_softc *sc;
+
+ sc = xsc;
+
+#ifdef DIAGNOSTIC
+ printf("tl%d: got an invalid interrupt!\n", sc->tl_unit);
+#endif
+ /* Re-enable interrupts but don't ack this one. */
+ sc->csr->tl_host_cmd |= type;
+
+ return(0);
+}
+
+/*
+ * Dummy interrupt handler. Dummy interrupts are generated by setting
+ * the ReqInt bit in the host command register. They should only occur
+ * if we ask for them, and we never do, so if one magically appears,
+ * we should make some noise about it.
+ */
+static int tl_intvec_dummy(xsc, type)
+ void *xsc;
+ u_int32_t type;
+{
+ struct tl_softc *sc;
+
+ sc = xsc;
+ printf("tl%d: got a dummy interrupt\n", sc->tl_unit);
+
+ return(1);
+}
+
+/*
+ * Stats counter overflow interrupt. The chip delivers one of these
+ * if we don't poll the stats counters often enough.
+ */
+static int tl_intvec_statoflow(xsc, type)
+ void *xsc;
+ u_int32_t type;
+{
+ struct tl_softc *sc;
+
+ sc = xsc;
+
+ tl_stats_update(sc);
+
+ return(1);
+}
+
+static int tl_intvec_txeof(xsc, type)
+ void *xsc;
+ u_int32_t type;
+{
+ struct tl_softc *sc;
+ int r = 0;
+ struct tl_chain *cur_tx;
+
+ sc = xsc;
+
+ /*
+ * Go through our tx list and free mbufs for those
+ * frames that have been sent.
+ */
+ while (sc->tl_cdata.tl_tx_head != NULL) {
+ cur_tx = sc->tl_cdata.tl_tx_head;
+ if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
+ break;
+ sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
+
+ r++;
+ m_freem(cur_tx->tl_mbuf);
+ cur_tx->tl_mbuf = NULL;
+
+ cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
+ sc->tl_cdata.tl_tx_free = cur_tx;
+ }
+
+ return(r);
+}
+
+/*
+ * The transmit end of channel interrupt. The adapter triggers this
+ * interrupt to tell us it hit the end of the current transmit list.
+ *
+ * A note about this: it's possible for a condition to arise where
+ * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
+ * You have to avoid this since the chip expects things to go in a
+ * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
+ * When the TXEOF handler is called, it will free all of the transmitted
+ * frames and reset the tx_head pointer to NULL. However, a TXEOC
+ * interrupt should be received and acknowledged before any more frames
+ * are queued for transmission. If tl_statrt() is called after TXEOF
+ * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
+ * it could attempt to issue a transmit command prematurely.
+ *
+ * To guard against this, tl_start() will only issue transmit commands
+ * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
+ * can set this flag once tl_start() has cleared it.
+ */
+static int tl_intvec_txeoc(xsc, type)
+ void *xsc;
+ u_int32_t type;
+{
+ struct tl_softc *sc;
+ struct ifnet *ifp;
+ u_int32_t cmd;
+
+ sc = xsc;
+ ifp = &sc->arpcom.ac_if;
+
+ /* Clear the timeout timer. */
+ ifp->if_timer = 0;
+
+ if (sc->tl_cdata.tl_tx_head == NULL) {
+ ifp->if_flags &= ~IFF_OACTIVE;
+ sc->tl_cdata.tl_tx_tail = NULL;
+ sc->tl_txeoc = 1;
+ } else {
+ sc->tl_txeoc = 0;
+ /* First we have to ack the EOC interrupt. */
+ sc->csr->tl_host_cmd = TL_CMD_ACK | 0x00000001 | type;
+ /* Then load the address of the next TX list. */
+ sc->csr->tl_ch_parm = vtophys(sc->tl_cdata.tl_tx_head->tl_ptr);
+ /* Restart TX channel. */
+ cmd = sc->csr->tl_host_cmd;
+ cmd &= ~TL_CMD_RT;
+ cmd |= TL_CMD_GO|TL_CMD_INTSON;
+ sc->csr->tl_host_cmd = cmd;
+ return(0);
+ }
+
+ return(1);
+}
+
+static int tl_intvec_adchk(xsc, type)
+ void *xsc;
+ u_int32_t type;
+{
+ struct tl_softc *sc;
+
+ sc = xsc;
+
+ printf("tl%d: adapter check: %x\n", sc->tl_unit, sc->csr->tl_ch_parm);
+
+ tl_softreset(sc->csr, sc->tl_phy_addr == TL_PHYADDR_MAX ? 1 : 0);
+ tl_init(sc);
+ sc->csr->tl_host_cmd |= TL_CMD_INTSON;
+
+ return(0);
+}
+
+static int tl_intvec_netsts(xsc, type)
+ void *xsc;
+ u_int32_t type;
+{
+ struct tl_softc *sc;
+ u_int16_t netsts;
+ struct tl_csr *csr;
+
+ sc = xsc;
+ csr = sc->csr;
+
+ DIO_SEL(TL_NETSTS);
+ netsts = DIO_BYTE2_GET(0xFF);
+ DIO_BYTE2_SET(netsts);
+
+ printf("tl%d: network status: %x\n", sc->tl_unit, netsts);
+
+ return(1);
+}
+
+static void tl_intr(xilist)
+ void *xilist;
+{
+ struct tl_iflist *ilist;
+ struct tl_softc *sc;
+ struct tl_csr *csr;
+ struct ifnet *ifp;
+ int r = 0;
+ u_int32_t type = 0;
+ u_int16_t ints = 0;
+ u_int8_t ivec = 0;
+
+ ilist = xilist;
+ csr = ilist->csr;
+
+ /* Disable interrupts */
+ ints = csr->tl_host_int;
+ csr->tl_host_int = ints;
+ type = (ints << 16) & 0xFFFF0000;
+ ivec = (ints & TL_VEC_MASK) >> 5;
+ ints = (ints & TL_INT_MASK) >> 2;
+ /*
+ * An interrupt has been posted by the ThunderLAN, but we
+ * have to figure out which PHY generated it before we can
+ * do anything with it. If we receive an interrupt when we
+ * know none of the PHYs are turned on, then either there's
+ * a bug in the driver or we we handed an interrupt that
+ * doesn't actually belong to us.
+ */
+ if (ilist->tl_active_phy == TL_PHYS_IDLE) {
+ printf("tlc%d: interrupt type %x with all phys idle\n",
+ ilist->tlc_unit, ints);
+ return;
+ }
+
+ sc = ilist->tl_sc[ilist->tl_active_phy];
+ csr = sc->csr;
+ ifp = &sc->arpcom.ac_if;
+
+ switch(ints) {
+ case (TL_INTR_INVALID):
+ r = tl_intvec_invalid((void *)sc, type);
+ break;
+ case (TL_INTR_TXEOF):
+ r = tl_intvec_txeof((void *)sc, type);
+ break;
+ case (TL_INTR_TXEOC):
+ r = tl_intvec_txeoc((void *)sc, type);
+ break;
+ case (TL_INTR_STATOFLOW):
+ r = tl_intvec_statoflow((void *)sc, type);
+ break;
+ case (TL_INTR_RXEOF):
+ r = tl_intvec_rxeof((void *)sc, type);
+ break;
+ case (TL_INTR_DUMMY):
+ r = tl_intvec_dummy((void *)sc, type);
+ break;
+ case (TL_INTR_ADCHK):
+ if (ivec)
+ r = tl_intvec_adchk((void *)sc, type);
+ else
+ r = tl_intvec_netsts((void *)sc, type);
+ break;
+ case (TL_INTR_RXEOC):
+ r = tl_intvec_rxeoc((void *)sc, type);
+ break;
+ default:
+ printf("tl%d: bogus interrupt type\n", ifp->if_unit);
+ break;
+ }
+
+ /* Re-enable interrupts */
+ if (r)
+ csr->tl_host_cmd = TL_CMD_ACK | r | type;
+
+ return;
+}
+
+static void tl_stats_update(xsc)
+ void *xsc;
+{
+ struct tl_softc *sc;
+ struct ifnet *ifp;
+ struct tl_csr *csr;
+ struct tl_stats tl_stats;
+ u_int32_t *p;
+
+ bzero((char *)&tl_stats, sizeof(struct tl_stats));
+
+ sc = xsc;
+ csr = sc->csr;
+ ifp = &sc->arpcom.ac_if;
+
+ p = (u_int32_t *)&tl_stats;
+
+ DIO_SEL(TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
+ DIO_LONG_GET(*p++);
+ DIO_LONG_GET(*p++);
+ DIO_LONG_GET(*p++);
+ DIO_LONG_GET(*p++);
+ DIO_LONG_GET(*p++);
+
+ ifp->if_opackets += tl_tx_goodframes(tl_stats);
+ ifp->if_collisions += tl_stats.tl_tx_single_collision +
+ tl_stats.tl_tx_multi_collision;
+ ifp->if_ipackets += tl_rx_goodframes(tl_stats);
+ ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
+ tl_rx_overrun(tl_stats);
+ ifp->if_oerrors += tl_tx_underrun(tl_stats);
+
+#if __FreeBSD_version >= 300000
+ sc->tl_stat_ch = timeout(tl_stats_update, sc, hz);
+#else
+ timeout(tl_stats_update, sc, hz);
+#endif
+}
+
+/*
+ * Encapsulate an mbuf chain in a list by coupling the mbuf data
+ * pointers to the fragment pointers.
+ */
+static int tl_encap(sc, c, m_head)
+ struct tl_softc *sc;
+ struct tl_chain *c;
+ struct mbuf *m_head;
+{
+ int frag = 0;
+ struct tl_frag *f = NULL;
+ int total_len;
+ struct mbuf *m;
+
+ /*
+ * Start packing the mbufs in this chain into
+ * the fragment pointers. Stop when we run out
+ * of fragments or hit the end of the mbuf chain.
+ */
+ m = m_head;
+ total_len = 0;
+
+ for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
+ if (m->m_len != 0) {
+ if (frag == TL_MAXFRAGS)
+ break;
+ total_len+= m->m_len;
+ c->tl_ptr->tl_frag[frag].tlist_dadr =
+ vtophys(mtod(m, vm_offset_t));
+ c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
+ frag++;
+ }
+ }
+
+ /*
+ * Handle special cases.
+ * Special case #1: we used up all 10 fragments, but
+ * we have more mbufs left in the chain. Copy the
+ * data into an mbuf cluster. Note that we don't
+ * bother clearing the values in the other fragment
+ * pointers/counters; it wouldn't gain us anything,
+ * and would waste cycles.
+ */
+ if (m != NULL) {
+ struct mbuf *m_new = NULL;
+
+ MGETHDR(m_new, M_DONTWAIT, MT_DATA);
+ if (m_new == NULL) {
+ printf("tl%d: no memory for tx list", sc->tl_unit);
+ return(1);
+ }
+ if (m_head->m_pkthdr.len > MHLEN) {
+ MCLGET(m_new, M_DONTWAIT);
+ if (!(m_new->m_flags & M_EXT)) {
+ m_freem(m_new);
+ printf("tl%d: no memory for tx list",
+ sc->tl_unit);
+ return(1);
+ }
+ }
+ m_copydata(m_head, 0, m_head->m_pkthdr.len,
+ mtod(m_new, caddr_t));
+ m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
+ m_freem(m_head);
+ m_head = m_new;
+ f = &c->tl_ptr->tl_frag[0];
+ f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
+ f->tlist_dcnt = total_len = m_new->m_len;
+ frag = 1;
+ }
+
+ /*
+ * Special case #2: the frame is smaller than the minimum
+ * frame size. We have to pad it to make the chip happy.
+ */
+ if (total_len < TL_MIN_FRAMELEN) {
+ if (frag == TL_MAXFRAGS)
+ printf("all frags filled but frame still to small!\n");
+ f = &c->tl_ptr->tl_frag[frag];
+ f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
+ f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
+ total_len += f->tlist_dcnt;
+ frag++;
+ }
+
+ c->tl_mbuf = m_head;
+ c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
+ c->tl_ptr->tlist_frsize = total_len;
+ c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
+ c->tl_ptr->tlist_fptr = 0;
+
+ return(0);
+}
+
+/*
+ * Main transmit routine. To avoid having to do mbuf copies, we put pointers
+ * to the mbuf data regions directly in the transmit lists. We also save a
+ * copy of the pointers since the transmit list fragment pointers are
+ * physical addresses.
+ */
+static void tl_start(ifp)
+ struct ifnet *ifp;
+{
+ struct tl_softc *sc;
+ struct tl_csr *csr;
+ struct mbuf *m_head = NULL;
+ u_int32_t cmd;
+ struct tl_chain *prev = NULL, *cur_tx = NULL, *start_tx;
+
+ sc = ifp->if_softc;
+ csr = sc->csr;
+
+ /*
+ * Check for an available queue slot. If there are none,
+ * punt.
+ */
+ if (sc->tl_cdata.tl_tx_free == NULL) {
+ ifp->if_flags |= IFF_OACTIVE;
+ return;
+ }
+
+ start_tx = sc->tl_cdata.tl_tx_free;
+
+ while(sc->tl_cdata.tl_tx_free != NULL) {
+ IF_DEQUEUE(&ifp->if_snd, m_head);
+ if (m_head == NULL)
+ break;
+
+ /* Pick a chain member off the free list. */
+ cur_tx = sc->tl_cdata.tl_tx_free;
+ sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
+
+ cur_tx->tl_next = NULL;
+
+ /* Pack the data into the list. */
+ tl_encap(sc, cur_tx, m_head);
+
+ /* Chain it together */
+ if (prev != NULL) {
+ prev->tl_next = cur_tx;
+ prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
+ }
+ prev = cur_tx;
+
+ /*
+ * If there's a BPF listener, bounce a copy of this frame
+ * to him.
+ */
+#if NBPFILTER > 0
+ if (ifp->if_bpf)
+ bpf_mtap(ifp, cur_tx->tl_mbuf);
+#endif
+ }
+
+ /*
+ * That's all we can stands, we can't stands no more.
+ * If there are no other transfers pending, then issue the
+ * TX GO command to the adapter to start things moving.
+ * Otherwise, just leave the data in the queue and let
+ * the EOF/EOC interrupt handler send.
+ */
+ if (sc->tl_cdata.tl_tx_head == NULL) {
+ sc->tl_cdata.tl_tx_head = start_tx;
+ sc->tl_cdata.tl_tx_tail = cur_tx;
+ if (sc->tl_txeoc) {
+ sc->tl_txeoc = 0;
+ sc->csr->tl_ch_parm = vtophys(start_tx->tl_ptr);
+ cmd = sc->csr->tl_host_cmd;
+ cmd &= ~TL_CMD_RT;
+ cmd |= TL_CMD_GO|TL_CMD_INTSON;
+ sc->csr->tl_host_cmd = cmd;
+ }
+ } else {
+ sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
+ sc->tl_cdata.tl_tx_tail->tl_ptr->tlist_fptr =
+ vtophys(start_tx->tl_ptr);
+ sc->tl_cdata.tl_tx_tail = start_tx;
+ }
+
+ /*
+ * Set a timeout in case the chip goes out to lunch.
+ */
+ ifp->if_timer = 5;
+
+ return;
+}
+
+static void tl_init(xsc)
+ void *xsc;
+{
+ struct tl_softc *sc = xsc;
+ struct ifnet *ifp = &sc->arpcom.ac_if;
+ struct tl_csr *csr = sc->csr;
+ int s;
+ u_int16_t phy_sts;
+
+ s = splimp();
+
+ ifp = &sc->arpcom.ac_if;
+
+ /*
+ * Cancel pending I/O.
+ */
+ tl_stop(sc);
+
+ /*
+ * Set 'capture all frames' bit for promiscuous mode.
+ */
+ if (ifp->if_flags & IFF_PROMISC) {
+ DIO_SEL(TL_NETCMD);
+ DIO_BYTE0_SET(TL_CMD_CAF);
+ } else {
+ DIO_SEL(TL_NETCMD);
+ DIO_BYTE0_CLR(TL_CMD_CAF);
+ }
+
+ /*
+ * Set capture broadcast bit to capture broadcast frames.
+ */
+ if (ifp->if_flags & IFF_BROADCAST) {
+ DIO_SEL(TL_NETCMD);
+ DIO_BYTE0_CLR(TL_CMD_NOBRX);
+ } else {
+ DIO_SEL(TL_NETCMD);
+ DIO_BYTE0_SET(TL_CMD_NOBRX);
+ }
+
+ /* Init our MAC address */
+ DIO_SEL(TL_AREG0_B5);
+ csr->u.tl_dio_bytes.byte0 = sc->arpcom.ac_enaddr[0];
+ csr->u.tl_dio_bytes.byte1 = sc->arpcom.ac_enaddr[1];
+ csr->u.tl_dio_bytes.byte2 = sc->arpcom.ac_enaddr[2];
+ csr->u.tl_dio_bytes.byte3 = sc->arpcom.ac_enaddr[3];
+ DIO_SEL(TL_AREG0_B1);
+ csr->u.tl_dio_bytes.byte0 = sc->arpcom.ac_enaddr[4];
+ csr->u.tl_dio_bytes.byte1 = sc->arpcom.ac_enaddr[5];
+
+ /* Init circular RX list. */
+ if (tl_list_rx_init(sc)) {
+ printf("tl%d: failed to set up rx lists\n", sc->tl_unit);
+ return;
+ }
+
+ /* Init TX pointers. */
+ tl_list_tx_init(sc);
+
+ /*
+ * Enable PHY interrupts.
+ */
+ phy_sts = tl_phy_readreg(sc, TL_PHY_CTL);
+ phy_sts |= PHY_CTL_INTEN;
+ tl_phy_writereg(sc, TL_PHY_CTL, phy_sts);
+
+ /* Enable MII interrupts. */
+ DIO_SEL(TL_NETSIO);
+ DIO_BYTE1_SET(TL_SIO_MINTEN);
+
+ /* Enable PCI interrupts. */
+ csr->tl_host_cmd |= TL_CMD_INTSON;
+
+ /* Load the address of the rx list */
+ sc->csr->tl_host_cmd |= TL_CMD_RT;
+ sc->csr->tl_ch_parm = vtophys(&sc->tl_ldata->tl_rx_list[0]);
+
+ /* Send the RX go command */
+ sc->csr->tl_host_cmd |= (TL_CMD_GO|TL_CMD_RT);
+ sc->tl_iflist->tl_active_phy = sc->tl_phy_addr;
+
+ ifp->if_flags |= IFF_RUNNING;
+ ifp->if_flags &= ~IFF_OACTIVE;
+
+ (void)splx(s);
+
+ /* Start the stats update counter */
+#if __FreeBSD_version >= 300000
+ sc->tl_stat_ch = timeout(tl_stats_update, sc, hz);
+#else
+ timeout(tl_stats_update, sc, hz);
+#endif
+
+ return;
+}
+
+/*
+ * Set media options.
+ */
+static int tl_ifmedia_upd(ifp)
+ struct ifnet *ifp;
+{
+ struct tl_softc *sc;
+ struct tl_csr *csr;
+ struct ifmedia *ifm;
+
+ sc = ifp->if_softc;
+ csr = sc->csr;
+ ifm = &sc->ifmedia;
+
+ if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
+ return(EINVAL);
+
+ if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
+ tl_autoneg(sc, TL_FLAG_SCHEDDELAY, 1);
+ else
+ tl_setmode(sc, ifm->ifm_media);
+
+ return(0);
+}
+
+/*
+ * Report current media status.
+ */
+static void tl_ifmedia_sts(ifp, ifmr)
+ struct ifnet *ifp;
+ struct ifmediareq *ifmr;
+{
+ u_int16_t phy_ctl;
+ u_int16_t phy_sts;
+ struct tl_softc *sc;
+ struct tl_csr *csr;
+
+ sc = ifp->if_softc;
+ csr = sc->csr;
+
+ ifmr->ifm_active = IFM_ETHER;
+
+ phy_ctl = tl_phy_readreg(sc, PHY_BMCR);
+ phy_sts = tl_phy_readreg(sc, TL_PHY_CTL);
+
+ if (phy_sts & PHY_CTL_AUISEL)
+ ifmr->ifm_active |= IFM_10_5;
+
+ if (phy_ctl & PHY_BMCR_LOOPBK)
+ ifmr->ifm_active |= IFM_LOOP;
+
+ if (phy_ctl & PHY_BMCR_SPEEDSEL)
+ ifmr->ifm_active |= IFM_100_TX;
+ else
+ ifmr->ifm_active |= IFM_10_T;
+
+ if (phy_ctl & PHY_BMCR_DUPLEX) {
+ ifmr->ifm_active |= IFM_FDX;
+ ifmr->ifm_active &= ~IFM_HDX;
+ } else {
+ ifmr->ifm_active &= ~IFM_FDX;
+ ifmr->ifm_active |= IFM_HDX;
+ }
+
+ if (phy_ctl & PHY_BMCR_AUTONEGENBL)
+ ifmr->ifm_active |= IFM_AUTO;
+
+ return;
+}
+
+static int tl_ioctl(ifp, command, data)
+ struct ifnet *ifp;
+ int command;
+ caddr_t data;
+{
+ struct tl_softc *sc = ifp->if_softc;
+ struct ifreq *ifr = (struct ifreq *) data;
+ int s, error = 0;
+
+ s = splimp();
+
+ switch(command) {
+ case SIOCSIFADDR:
+ case SIOCGIFADDR:
+ case SIOCSIFMTU:
+ error = ether_ioctl(ifp, command, data);
+ break;
+ case SIOCSIFFLAGS:
+ /*
+ * Make sure no more than one PHY is active
+ * at any one time.
+ */
+ if (ifp->if_flags & IFF_UP) {
+ if (sc->tl_iflist->tl_active_phy != TL_PHYS_IDLE &&
+ sc->tl_iflist->tl_active_phy != sc->tl_phy_addr) {
+ error = EINVAL;
+ break;
+ }
+ sc->tl_iflist->tl_active_phy = sc->tl_phy_addr;
+ tl_init(sc);
+ } else {
+ if (ifp->if_flags & IFF_RUNNING) {
+ sc->tl_iflist->tl_active_phy = TL_PHYS_IDLE;
+ tl_stop(sc);
+ }
+ }
+ error = 0;
+ break;
+ case SIOCADDMULTI:
+ case SIOCDELMULTI:
+#if __FreeBSD_version < 300000
+ if (command == SIOCADDMULTI)
+ error = ether_addmulti(ifr, &sc->arpcom);
+ else
+ error = ether_delmulti(ifr, &sc->arpcom);
+ if (error == ENETRESET) {
+ tl_setmulti(sc);
+ error = 0;
+ }
+#else
+ tl_setmulti(sc);
+ error = 0;
+#endif
+ break;
+ case SIOCSIFMEDIA:
+ case SIOCGIFMEDIA:
+ error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
+ break;
+ default:
+ error = EINVAL;
+ break;
+ }
+
+ (void)splx(s);
+
+ return(error);
+}
+
+static void tl_watchdog(ifp)
+ struct ifnet *ifp;
+{
+ struct tl_softc *sc;
+ u_int16_t bmsr;
+
+ sc = ifp->if_softc;
+
+ if (sc->tl_autoneg) {
+ tl_autoneg(sc, TL_FLAG_DELAYTIMEO, 1);
+ return;
+ }
+
+ /* Check that we're still connected. */
+ tl_phy_readreg(sc, PHY_BMSR);
+ bmsr = tl_phy_readreg(sc, PHY_BMSR);
+ if (!(bmsr & PHY_BMSR_LINKSTAT)) {
+ printf("tl%d: no carrier\n", sc->tl_unit);
+ tl_autoneg(sc, TL_FLAG_SCHEDDELAY, 1);
+ } else
+ printf("tl%d: device timeout\n", sc->tl_unit);
+
+ ifp->if_oerrors++;
+
+ tl_init(sc);
+
+ return;
+}
+
+/*
+ * Stop the adapter and free any mbufs allocated to the
+ * RX and TX lists.
+ */
+static void tl_stop(sc)
+ struct tl_softc *sc;
+{
+ register int i;
+ struct ifnet *ifp;
+ struct tl_csr *csr;
+ struct tl_mii_frame frame;
+
+ csr = sc->csr;
+ ifp = &sc->arpcom.ac_if;
+
+ /* Stop the stats updater. */
+#if __FreeBSD_version >= 300000
+ untimeout(tl_stats_update, sc, sc->tl_stat_ch);
+#else
+ untimeout(tl_stats_update, sc);
+#endif
+
+ /* Stop the transmitter */
+ sc->csr->tl_host_cmd &= TL_CMD_RT;
+ sc->csr->tl_host_cmd |= TL_CMD_STOP;
+
+ /* Stop the receiver */
+ sc->csr->tl_host_cmd |= TL_CMD_RT;
+ sc->csr->tl_host_cmd |= TL_CMD_STOP;
+
+ /*
+ * Disable host interrupts.
+ */
+ sc->csr->tl_host_cmd |= TL_CMD_INTSOFF;
+
+ /*
+ * Disable PHY interrupts.
+ */
+ bzero((char *)&frame, sizeof(frame));
+
+ frame.mii_phyaddr = sc->tl_phy_addr;
+ frame.mii_regaddr = TL_PHY_CTL;
+ tl_mii_readreg(csr, &frame);
+ frame.mii_data |= PHY_CTL_INTEN;
+ tl_mii_writereg(csr, &frame);
+
+ /*
+ * Disable MII interrupts.
+ */
+ DIO_SEL(TL_NETSIO);
+ DIO_BYTE1_CLR(TL_SIO_MINTEN);
+
+ /*
+ * Clear list pointer.
+ */
+ sc->csr->tl_ch_parm = 0;
+
+ /*
+ * Free the RX lists.
+ */
+ for (i = 0; i < TL_RX_LIST_CNT; i++) {
+ if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
+ m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
+ sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
+ }
+ }
+ bzero((char *)&sc->tl_ldata->tl_rx_list,
+ sizeof(sc->tl_ldata->tl_rx_list));
+
+ /*
+ * Free the TX list buffers.
+ */
+ for (i = 0; i < TL_TX_LIST_CNT; i++) {
+ if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
+ m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
+ sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
+ }
+ }
+ bzero((char *)&sc->tl_ldata->tl_tx_list,
+ sizeof(sc->tl_ldata->tl_tx_list));
+
+ sc->tl_iflist->tl_active_phy = TL_PHYS_IDLE;
+ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
+
+ return;
+}
+
+/*
+ * Stop all chip I/O so that the kernel's probe routines don't
+ * get confused by errant DMAs when rebooting.
+ */
+static void tl_shutdown(howto, xilist)
+ int howto;
+ void *xilist;
+{
+ struct tl_iflist *ilist = (struct tl_iflist *)xilist;
+ struct tl_csr *csr = ilist->csr;
+ struct tl_mii_frame frame;
+ int i;
+
+ /* Stop the transmitter */
+ csr->tl_host_cmd &= TL_CMD_RT;
+ csr->tl_host_cmd |= TL_CMD_STOP;
+
+ /* Stop the receiver */
+ csr->tl_host_cmd |= TL_CMD_RT;
+ csr->tl_host_cmd |= TL_CMD_STOP;
+
+ /*
+ * Disable host interrupts.
+ */
+ csr->tl_host_cmd |= TL_CMD_INTSOFF;
+
+ /*
+ * Disable PHY interrupts.
+ */
+ bzero((char *)&frame, sizeof(frame));
+
+ for (i = TL_PHYADDR_MIN; i < TL_PHYADDR_MAX + 1; i++) {
+ frame.mii_phyaddr = i;
+ frame.mii_regaddr = TL_PHY_CTL;
+ tl_mii_readreg(csr, &frame);
+ frame.mii_data |= PHY_CTL_INTEN;
+ tl_mii_writereg(csr, &frame);
+ };
+
+ /*
+ * Disable MII interrupts.
+ */
+ DIO_SEL(TL_NETSIO);
+ DIO_BYTE1_CLR(TL_SIO_MINTEN);
+
+ return;
+}
+
+
+static struct pci_device tlc_device = {
+ "tlc",
+ tl_probe,
+ tl_attach_ctlr,
+ &tl_count,
+ NULL
+};
+DATA_SET(pcidevice_set, tlc_device);
diff --git a/sys/pci/if_tlreg.h b/sys/pci/if_tlreg.h
new file mode 100644
index 0000000..019f692
--- /dev/null
+++ b/sys/pci/if_tlreg.h
@@ -0,0 +1,826 @@
+/*
+ * Copyright (c) 1997, 1998
+ * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by Bill Paul.
+ * 4. Neither the name of the author nor the names of any co-contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * $Id: if_tlreg.h,v 1.19 1998/05/14 16:49:24 wpaul Exp $
+ */
+
+
+struct tl_type {
+ u_int16_t tl_vid;
+ u_int16_t tl_did;
+ char *tl_name;
+};
+
+/*
+ * ThunderLAN TX/RX list format. The TX and RX lists are pretty much
+ * identical: the list begins with a 32-bit forward pointer which points
+ * at the next list in the chain, followed by 16 bits for the total
+ * frame size, and a 16 bit status field. This is followed by a series
+ * of 10 32-bit data count/data address pairs that point to the fragments
+ * that make up the complete frame.
+ */
+
+#define TL_MAXFRAGS 10
+#define TL_RX_LIST_CNT 10
+#define TL_TX_LIST_CNT 10
+#define TL_MIN_FRAMELEN 64
+
+struct tl_frag {
+ u_int32_t tlist_dcnt;
+ u_int32_t tlist_dadr;
+};
+
+struct tl_list {
+ u_int32_t tlist_fptr; /* phys address of next list */
+ u_int16_t tlist_cstat; /* status word */
+ u_int16_t tlist_frsize; /* size of data in frame */
+ struct tl_frag tl_frag[TL_MAXFRAGS];
+};
+
+/*
+ * This is a special case of an RX list. By setting the One_Frag
+ * bit in the NETCONFIG register, the driver can force the ThunderLAN
+ * chip to use only one fragment when DMAing RX frames.
+ */
+
+struct tl_list_onefrag {
+ u_int32_t tlist_fptr;
+ u_int16_t tlist_cstat;
+ u_int16_t tlist_frsize;
+ struct tl_frag tl_frag;
+};
+
+struct tl_list_data {
+ struct tl_list_onefrag tl_rx_list[TL_RX_LIST_CNT];
+ struct tl_list tl_tx_list[TL_TX_LIST_CNT];
+ unsigned char tl_pad[TL_MIN_FRAMELEN];
+};
+
+struct tl_chain {
+ struct tl_list *tl_ptr;
+ struct mbuf *tl_mbuf;
+ struct tl_chain *tl_next;
+};
+
+struct tl_chain_data {
+ struct tl_chain tl_rx_chain[TL_RX_LIST_CNT];
+ struct tl_chain tl_tx_chain[TL_TX_LIST_CNT];
+
+ struct tl_chain *tl_rx_head;
+ struct tl_chain *tl_rx_tail;
+
+ struct tl_chain *tl_tx_head;
+ struct tl_chain *tl_tx_tail;
+ struct tl_chain *tl_tx_free;
+};
+
+struct tl_iflist;
+
+struct tl_softc {
+ struct arpcom arpcom; /* interface info */
+ struct ifmedia ifmedia; /* media info */
+ struct tl_csr *csr; /* pointer to register map */
+ struct tl_type *tl_dinfo; /* ThunderLAN adapter info */
+ struct tl_type *tl_pinfo; /* PHY info struct */
+ u_int8_t tl_ctlr; /* chip number */
+ u_int8_t tl_unit; /* interface number */
+ u_int8_t tl_phy_addr; /* PHY address */
+ u_int8_t tl_autoneg; /* autoneg in progress */
+ u_int16_t tl_phy_sts; /* PHY status */
+ u_int16_t tl_phy_vid; /* PHY vendor ID */
+ u_int16_t tl_phy_did; /* PHY device ID */
+ struct tl_iflist *tl_iflist; /* Pointer to controller list */
+ caddr_t tl_ldata_ptr;
+ struct tl_list_data *tl_ldata; /* TX/RX lists and mbufs */
+ struct tl_chain_data tl_cdata;
+ int tl_txeoc;
+#if __FreeBSD_version >= 300000
+ struct callout_handle tl_stat_ch;
+#endif
+
+};
+
+#define TX_THR 0x00000007
+
+#define TL_FLAG_FORCEDELAY 1
+#define TL_FLAG_SCHEDDELAY 2
+#define TL_FLAG_DELAYTIMEO 3
+
+/*
+ * The ThunderLAN supports up to 32 PHYs.
+ */
+#define TL_PHYADDR_MIN 0x00
+#define TL_PHYADDR_MAX 0x1F
+
+#define PHY_UNKNOWN 6
+
+struct tl_iflist {
+ struct tl_csr *csr; /* Register map */
+ struct tl_type *tl_dinfo;
+ int tl_active_phy; /* # of active PHY */
+ int tlc_unit; /* TLAN chip # */
+ struct tl_softc *tl_sc[TL_PHYADDR_MAX]; /* pointers to PHYs */
+ pcici_t tl_config_id;
+ struct tl_iflist *tl_next;
+};
+
+#define TL_PHYS_IDLE -1
+
+/*
+ * General constants that are fun to know.
+ *
+ * The ThunderLAN controller is made by Texas Instruments. The
+ * manual indicates that if the EEPROM checksum fails, the PCI
+ * vendor and device ID registers will be loaded with TI-specific
+ * values.
+ */
+#define TI_VENDORID 0x104C
+#define TI_DEVICEID_THUNDERLAN 0x0500
+
+/*
+ * Known PHY Ids. According to the Level 1 documentation (which is
+ * very nice, incidentally), here's how they work:
+ *
+ * The PHY identifier register #1 is composed of bits 3 through 18
+ * of the OUI. (First 16-bit word.)
+ * The PHY identifier register #2 is composed of bits 19 through 24
+ * if the OUI.
+ * This is followed by 6 bits containing the manufacturer's model
+ * number.
+ * Lastly, there are 4 bits for the manufacturer's revision number.
+ *
+ * Honestly, there are a lot of these that don't make any sense; the
+ * only way to be really sure is to look at the data sheets.
+ */
+
+/*
+ * Texas Instruments PHY identifiers
+ *
+ * The ThunderLAN manual has a curious and confusing error in it.
+ * In chapter 7, which describes PHYs, it says that TI PHYs have
+ * the following ID codes, where xx denotes a revision:
+ *
+ * 0x4000501xx internal 10baseT PHY
+ * 0x4000502xx TNETE211 100VG-AnyLan PMI
+ *
+ * The problem here is that these are not valid 32-bit hex numbers:
+ * there's one digit too many. My guess is that they mean the internal
+ * 10baseT PHY is 0x4000501x and the TNETE211 is 0x4000502x since these
+ * are the only numbers that make sense.
+ */
+#define TI_PHY_VENDORID 0x4000
+#define TI_PHY_10BT 0x501F
+#define TI_PHY_100VGPMI 0x502F
+
+/*
+ * These ID values are for the NS DP83840A 10/100 PHY
+ */
+#define NS_PHY_VENDORID 0x2000
+#define NS_PHY_83840A 0x5C0F
+
+/*
+ * Level 1 10/100 PHY
+ */
+#define LEVEL1_PHY_VENDORID 0x7810
+#define LEVEL1_PHY_LXT970 0x000F
+
+/*
+ * Intel 82555 10/100 PHY
+ */
+#define INTEL_PHY_VENDORID 0x0A28
+#define INTEL_PHY_82555 0x015F
+
+/*
+ * SEEQ 80220 10/100 PHY
+ */
+#define SEEQ_PHY_VENDORID 0x0016
+#define SEEQ_PHY_80220 0xF83F
+
+/*
+ * These are the PCI vendor and device IDs for Compaq ethernet
+ * adapters based on the ThunderLAN controller.
+ */
+#define COMPAQ_VENDORID 0x0E11
+#define COMPAQ_DEVICEID_NETEL_10_100 0xAE32
+#define COMPAQ_DEVICEID_NETEL_10 0xAE34
+#define COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED 0xAE35
+#define COMPAQ_DEVICEID_NETEL_10_100_DUAL 0xAE40
+#define COMPAQ_DEVICEID_NETEL_10_100_PROLIANT 0xAE43
+#define COMPAQ_DEVICEID_DESKPRO_4000_5233MMX 0xB011
+#define COMPAQ_DEVICEID_NETFLEX_3P 0xF130
+#define COMPAQ_DEVICEID_NETFLEX_3P_BNC 0xF150
+
+/*
+ * PCI low memory base and low I/O base
+ */
+#define TL_PCI_LOIO 0x10
+#define TL_PCI_LOMEM 0x14
+
+/*
+ * ThunderLAN host register layout
+ */
+struct tl_regbytes {
+ volatile u_int8_t byte0;
+ volatile u_int8_t byte1;
+ volatile u_int8_t byte2;
+ volatile u_int8_t byte3;
+};
+
+struct tl_regwords {
+ volatile u_int16_t word0;
+ volatile u_int16_t word1;
+};
+
+struct tl_csr {
+ volatile u_int32_t tl_host_cmd;
+ volatile u_int32_t tl_ch_parm;
+ volatile u_int16_t tl_dio_addr;
+ volatile u_int16_t tl_host_int;
+ union {
+ volatile u_int32_t tl_dio_data;
+ volatile struct tl_regwords tl_dio_words;
+ volatile struct tl_regbytes tl_dio_bytes;
+ } u;
+};
+
+/*
+ * The DIO access macros allow us to read and write the ThunderLAN's
+ * internal registers. The ThunderLAN manual gives examples using PIO.
+ * This driver uses memory mapped I/O, which allows us to totally avoid
+ * the use of inb/outb & friends. Memory mapped registers are keen.
+ *
+ * Note that the set/clr macros go to the trouble of reading the registers
+ * back after they've been written. During initial development of this
+ * driver, I discovered that the EEPROM access routines wouldn't work
+ * properly unless I did this. I'm not sure why, though I suspect it
+ * may have something to do with defeating the cache on the processor.
+ */
+
+
+/* Select a register */
+#define DIO_SEL(x) csr->tl_dio_addr = (u_int16_t)x
+
+/*
+ * Set/clear/get a bit in the selected byte register
+ */
+#define DIO_BYTE0_SET(x) { \
+ int f; \
+ csr->u.tl_dio_bytes.byte0 |= \
+ (u_int8_t)x; \
+ f = csr->u.tl_dio_bytes.byte0; \
+ }
+#define DIO_BYTE0_CLR(x) { \
+ int f; \
+ csr->u.tl_dio_bytes.byte0 &= \
+ (u_int8_t)~x; \
+ f = csr->u.tl_dio_bytes.byte0; \
+ }
+#define DIO_BYTE0_GET(x) csr->u.tl_dio_bytes.byte0 & (u_int8_t)x
+
+#define DIO_BYTE1_SET(x) { \
+ int f; \
+ csr->u.tl_dio_bytes.byte1 |= \
+ (u_int8_t)x; \
+ f = csr->u.tl_dio_bytes.byte1; \
+ }
+#define DIO_BYTE1_CLR(x) { \
+ int f; \
+ csr->u.tl_dio_bytes.byte1 &= \
+ (u_int8_t)~x; \
+ f = csr->u.tl_dio_bytes.byte1; \
+ }
+#define DIO_BYTE1_GET(x) csr->u.tl_dio_bytes.byte1 & (u_int8_t)x
+
+#define DIO_BYTE2_SET(x) { \
+ int f; \
+ csr->u.tl_dio_bytes.byte2 |= \
+ (u_int8_t)x; \
+ f = csr->u.tl_dio_bytes.byte2; \
+ }
+#define DIO_BYTE2_CLR(x) { \
+ int f; \
+ csr->u.tl_dio_bytes.byte2 &= \
+ (u_int8_t)~x; \
+ f = csr->u.tl_dio_bytes.byte2; \
+ }
+#define DIO_BYTE2_GET(x) csr->u.tl_dio_bytes.byte2 & (u_int8_t)x
+
+#define DIO_BYTE3_SET(x) { \
+ int f; \
+ csr->u.tl_dio_bytes.byte3 |= \
+ (u_int8_t)x; \
+ f = csr->u.tl_dio_bytes.byte3; \
+ }
+#define DIO_BYTE3_CLR(x) { \
+ int f; \
+ csr->u.tl_dio_bytes.byte3 &= \
+ (u_int8_t)~x; \
+ f = csr->u.tl_dio_bytes.byte3; \
+ }
+#define DIO_BYTE3_GET(x) csr->u.tl_dio_bytes.byte3 & (u_int8_t)x
+/*
+ * Read/write 16-bit word
+ */
+#define DIO_WORD0_SET(x) { \
+ int f; \
+ csr->u.tl_dio_words.word0 |= \
+ (u_int16_t)x; \
+ f = csr->u.tl_dio_words.word0; \
+ }
+#define DIO_WORD0_CLR(x) { \
+ int f; \
+ csr->u.tl_dio_words.word0 &= \
+ ~(u_int16_t)x; \
+ f = csr->u.tl_dio_words.word0; \
+ }
+#define DIO_WORD0_GET(x) (csr->u.tl_dio_words.word0 & x)
+
+#define DIO_WORD1_SET(x) { \
+ int f; \
+ csr->u.tl_dio_words.word1 |= \
+ (u_int16_t)x; \
+ f = csr->u.tl_dio_words.word1; \
+ }
+#define DIO_WORD1_CLR(x) { \
+ int f; \
+ csr->u.tl_dio_words.word1 &= \
+ ~(u_int16_t)x; \
+ f = csr->u.tl_dio_words.word1; \
+ }
+#define DIO_WORD1_GET(x) (csr->u.tl_dio_words.word1 & x)
+
+/*
+ * Read/write 32-bit word
+ */
+#define DIO_LONG_GET(x) x = csr->u.tl_dio_data
+#define DIO_LONG_PUT(x) csr->u.tl_dio_data = (u_int32_t)x
+
+
+#define TL_DIO_ADDR_INC 0x8000 /* Increment addr on each read */
+#define TL_DIO_RAM_SEL 0x4000 /* RAM address select */
+#define TL_DIO_ADDR_MASK 0x3FFF /* address bits mask */
+
+/*
+ * Interrupt types
+ */
+#define TL_INTR_INVALID 0x0
+#define TL_INTR_TXEOF 0x1
+#define TL_INTR_STATOFLOW 0x2
+#define TL_INTR_RXEOF 0x3
+#define TL_INTR_DUMMY 0x4
+#define TL_INTR_TXEOC 0x5
+#define TL_INTR_ADCHK 0x6
+#define TL_INTR_RXEOC 0x7
+
+#define TL_INT_MASK 0x001C
+#define TL_VEC_MASK 0x1FE0
+/*
+ * Host command register bits
+ */
+#define TL_CMD_GO 0x80000000
+#define TL_CMD_STOP 0x40000000
+#define TL_CMD_ACK 0x20000000
+#define TL_CMD_CHSEL7 0x10000000
+#define TL_CMD_CHSEL6 0x08000000
+#define TL_CMD_CHSEL5 0x04000000
+#define TL_CMD_CHSEL4 0x02000000
+#define TL_CMD_CHSEL3 0x01000000
+#define TL_CMD_CHSEL2 0x00800000
+#define TL_CMD_CHSEL1 0x00400000
+#define TL_CMD_CHSEL0 0x00200000
+#define TL_CMD_EOC 0x00100000
+#define TL_CMD_RT 0x00080000
+#define TL_CMD_NES 0x00040000
+#define TL_CMD_ZERO0 0x00020000
+#define TL_CMD_ZERO1 0x00010000
+#define TL_CMD_ADRST 0x00008000
+#define TL_CMD_LDTMR 0x00004000
+#define TL_CMD_LDTHR 0x00002000
+#define TL_CMD_REQINT 0x00001000
+#define TL_CMD_INTSOFF 0x00000800
+#define TL_CMD_INTSON 0x00000400
+#define TL_CMD_RSVD0 0x00000200
+#define TL_CMD_RSVD1 0x00000100
+#define TL_CMD_ACK7 0x00000080
+#define TL_CMD_ACK6 0x00000040
+#define TL_CMD_ACK5 0x00000020
+#define TL_CMD_ACK4 0x00000010
+#define TL_CMD_ACK3 0x00000008
+#define TL_CMD_ACK2 0x00000004
+#define TL_CMD_ACK1 0x00000002
+#define TL_CMD_ACK0 0x00000001
+
+#define TL_CMD_CHSEL_MASK 0x01FE0000
+#define TL_CMD_ACK_MASK 0xFF
+
+/*
+ * EEPROM address where station address resides.
+ */
+#define TL_EEPROM_EADDR 0x83
+#define TL_EEPROM_EADDR2 0x99
+#define TL_EEPROM_EADDR3 0xAF
+
+/*
+ * ThunderLAN host command register offsets.
+ * (Can be accessed either by IO ports or memory map.)
+ */
+#define TL_HOSTCMD 0x00
+#define TL_CH_PARM 0x04
+#define TL_DIO_ADDR 0x08
+#define TL_HOST_INT 0x0A
+#define TL_DIO_DATA 0x0C
+
+/*
+ * ThunderLAN internal registers
+ */
+#define TL_NETCMD 0x00
+#define TL_NETSIO 0x01
+#define TL_NETSTS 0x02
+#define TL_NETMASK 0x03
+
+#define TL_NETCONFIG 0x04
+#define TL_MANTEST 0x06
+
+#define TL_VENID_LSB 0x08
+#define TL_VENID_MSB 0x09
+#define TL_DEVID_LSB 0x0A
+#define TL_DEVID_MSB 0x0B
+
+#define TL_REVISION 0x0C
+#define TL_SUBCLASS 0x0D
+#define TL_MINLAT 0x0E
+#define TL_MAXLAT 0x0F
+
+#define TL_AREG0_B5 0x10
+#define TL_AREG0_B4 0x11
+#define TL_AREG0_B3 0x12
+#define TL_AREG0_B2 0x13
+
+#define TL_AREG0_B1 0x14
+#define TL_AREG0_B0 0x15
+#define TL_AREG1_B5 0x16
+#define TL_AREG1_B4 0x17
+
+#define TL_AREG1_B3 0x18
+#define TL_AREG1_B2 0x19
+#define TL_AREG1_B1 0x1A
+#define TL_AREG1_B0 0x1B
+
+#define TL_AREG2_B5 0x1C
+#define TL_AREG2_B4 0x1D
+#define TL_AREG2_B3 0x1E
+#define TL_AREG2_B2 0x1F
+
+#define TL_AREG2_B1 0x20
+#define TL_AREG2_B0 0x21
+#define TL_AREG3_B5 0x22
+#define TL_AREG3_B4 0x23
+
+#define TL_AREG3_B3 0x24
+#define TL_AREG3_B2 0x25
+#define TL_AREG3_B1 0x26
+#define TL_AREG3_B0 0x27
+
+#define TL_HASH1 0x28
+#define TL_HASH2 0x2C
+#define TL_TXGOODFRAMES 0x30
+#define TL_TXUNDERRUN 0x33
+#define TL_RXGOODFRAMES 0x34
+#define TL_RXOVERRUN 0x37
+#define TL_DEFEREDTX 0x38
+#define TL_CRCERROR 0x3A
+#define TL_CODEERROR 0x3B
+#define TL_MULTICOLTX 0x3C
+#define TL_SINGLECOLTX 0x3E
+#define TL_EXCESSIVECOL 0x40
+#define TL_LATECOL 0x41
+#define TL_CARRIERLOSS 0x42
+#define TL_ACOMMIT 0x43
+#define TL_LDREG 0x44
+#define TL_BSIZEREG 0x45
+#define TL_MAXRX 0x46
+
+/*
+ * ThunderLAN SIO register bits
+ */
+#define TL_SIO_MINTEN 0x80
+#define TL_SIO_ECLOK 0x40
+#define TL_SIO_ETXEN 0x20
+#define TL_SIO_EDATA 0x10
+#define TL_SIO_NMRST 0x08
+#define TL_SIO_MCLK 0x04
+#define TL_SIO_MTXEN 0x02
+#define TL_SIO_MDATA 0x01
+
+/*
+ * Thunderlan NETCONFIG bits
+ */
+#define TL_CFG_RCLKTEST 0x8000
+#define TL_CFG_TCLKTEST 0x4000
+#define TL_CFG_BITRATE 0x2000
+#define TL_CFG_RXCRC 0x1000
+#define TL_CFG_PEF 0x0800
+#define TL_CFG_ONEFRAG 0x0400
+#define TL_CFG_ONECHAN 0x0200
+#define TL_CFG_MTEST 0x0100
+#define TL_CFG_PHYEN 0x0080
+#define TL_CFG_MACSEL6 0x0040
+#define TL_CFG_MACSEL5 0x0020
+#define TL_CFG_MACSEL4 0x0010
+#define TL_CFG_MACSEL3 0x0008
+#define TL_CFG_MACSEL2 0x0004
+#define TL_CFG_MACSEL1 0x0002
+#define TL_CFG_MACSEL0 0x0001
+
+/*
+ * ThunderLAN NETSTS bits
+ */
+#define TL_STS_MIRQ 0x80
+#define TL_STS_HBEAT 0x40
+#define TL_STS_TXSTOP 0x20
+#define TL_STS_RXSTOP 0x10
+
+/*
+ * ThunderLAN NETCMD bits
+ */
+#define TL_CMD_NRESET 0x80
+#define TL_CMD_NWRAP 0x40
+#define TL_CMD_CSF 0x20
+#define TL_CMD_CAF 0x10
+#define TL_CMD_NOBRX 0x08
+#define TL_CMD_DUPLEX 0x04
+#define TL_CMD_TRFRAM 0x02
+#define TL_CMD_TXPACE 0x01
+
+/*
+ * ThunderLAN NETMASK bits
+ */
+#define TL_MASK_MASK7 0x80
+#define TL_MASK_MASK6 0x40
+#define TL_MASK_MASK5 0x20
+#define TL_MASK_MASK4 0x10
+
+/*
+ * MII frame format
+ */
+#ifdef ANSI_DOESNT_ALLOW_BITFIELDS
+struct tl_mii_frame {
+ u_int16_t mii_stdelim:2,
+ mii_opcode:2,
+ mii_phyaddr:5,
+ mii_regaddr:5,
+ mii_turnaround:2;
+ u_int16_t mii_data;
+};
+#else
+struct tl_mii_frame {
+ u_int8_t mii_stdelim;
+ u_int8_t mii_opcode;
+ u_int8_t mii_phyaddr;
+ u_int8_t mii_regaddr;
+ u_int8_t mii_turnaround;
+ u_int16_t mii_data;
+};
+#endif
+/*
+ * MII constants
+ */
+#define TL_MII_STARTDELIM 0x01
+#define TL_MII_READOP 0x02
+#define TL_MII_WRITEOP 0x01
+#define TL_MII_TURNAROUND 0x02
+
+#define TL_LAST_FRAG 0x80000000
+#define TL_CSTAT_UNUSED 0x8000
+#define TL_CSTAT_FRAMECMP 0x4000
+#define TL_CSTAT_READY 0x3000
+#define TL_CSTAT_UNUSED13 0x2000
+#define TL_CSTAT_UNUSED12 0x1000
+#define TL_CSTAT_EOC 0x0800
+#define TL_CSTAT_RXERROR 0x0400
+#define TL_CSTAT_PASSCRC 0x0200
+#define TL_CSTAT_DPRIO 0x0100
+
+#define TL_FRAME_MASK 0x00FFFFFF
+#define tl_tx_goodframes(x) (x.tl_txstat & TL_FRAME_MASK)
+#define tl_tx_underrun(x) ((x.tl_txstat & ~TL_FRAME_MASK) >> 24)
+#define tl_rx_goodframes(x) (x.tl_rxstat & TL_FRAME_MASK)
+#define tl_rx_overrun(x) ((x.tl_rxstat & ~TL_FRAME_MASK) >> 24)
+
+struct tl_stats {
+ u_int32_t tl_txstat;
+ u_int32_t tl_rxstat;
+ u_int16_t tl_deferred;
+ u_int8_t tl_crc_errors;
+ u_int8_t tl_code_errors;
+ u_int16_t tl_tx_multi_collision;
+ u_int16_t tl_tx_single_collision;
+ u_int8_t tl_excessive_collision;
+ u_int8_t tl_late_collision;
+ u_int8_t tl_carrier_loss;
+ u_int8_t acommit;
+};
+
+/*
+ * These are the register definitions for the PHY (physical layer
+ * interface chip).
+ * The ThunderLAN chip has a built-in 10Mb/sec PHY which may be used
+ * in some configurations. The Compaq 10/100 cards based on the ThunderLAN
+ * use a National Semiconductor DP83840A PHY. The generic BMCR and BMSR
+ * layouts for both PHYs are identical, however some of the bits are not
+ * used by the ThunderLAN's internal PHY (most notably those dealing with
+ * switching between 10 and 100Mb/sec speeds). Since Both PHYs use the
+ * same bits, we #define them with generic names here.
+ */
+/*
+ * PHY BMCR Basic Mode Control Register
+ */
+#define PHY_BMCR 0x00
+#define PHY_BMCR_RESET 0x8000
+#define PHY_BMCR_LOOPBK 0x4000
+#define PHY_BMCR_SPEEDSEL 0x2000
+#define PHY_BMCR_AUTONEGENBL 0x1000
+#define PHY_BMCR_RSVD0 0x0800 /* write as zero */
+#define PHY_BMCR_ISOLATE 0x0400
+#define PHY_BMCR_AUTONEGRSTR 0x0200
+#define PHY_BMCR_DUPLEX 0x0100
+#define PHY_BMCR_COLLTEST 0x0080
+#define PHY_BMCR_RSVD1 0x0040 /* write as zero, don't care */
+#define PHY_BMCR_RSVD2 0x0020 /* write as zero, don't care */
+#define PHY_BMCR_RSVD3 0x0010 /* write as zero, don't care */
+#define PHY_BMCR_RSVD4 0x0008 /* write as zero, don't care */
+#define PHY_BMCR_RSVD5 0x0004 /* write as zero, don't care */
+#define PHY_BMCR_RSVD6 0x0002 /* write as zero, don't care */
+#define PHY_BMCR_RSVD7 0x0001 /* write as zero, don't care */
+/*
+ * RESET: 1 == software reset, 0 == normal operation
+ * Resets status and control registers to default values.
+ * Relatches all hardware config values.
+ *
+ * LOOPBK: 1 == loopback operation enabled, 0 == normal operation
+ *
+ * SPEEDSEL: 1 == 100Mb/s, 0 == 10Mb/s
+ * Link speed is selected byt his bit or if auto-negotiation if bit
+ * 12 (AUTONEGENBL) is set (in which case the value of this register
+ * is ignored).
+ *
+ * AUTONEGENBL: 1 == Autonegotiation enabled, 0 == Autonegotiation disabled
+ * Bits 8 and 13 are ignored when autoneg is set, otherwise bits 8 and 13
+ * determine speed and mode. Should be cleared and then set if PHY configured
+ * for no autoneg on startup.
+ *
+ * ISOLATE: 1 == isolate PHY from MII, 0 == normal operation
+ *
+ * AUTONEGRSTR: 1 == restart autonegotiation, 0 = normal operation
+ *
+ * DUPLEX: 1 == full duplex mode, 0 == half duplex mode
+ *
+ * COLLTEST: 1 == collision test enabled, 0 == normal operation
+ */
+
+/*
+ * PHY, BMSR Basic Mode Status Register
+ */
+#define PHY_BMSR 0x01
+#define PHY_BMSR_100BT4 0x8000
+#define PHY_BMSR_100BTXFULL 0x4000
+#define PHY_BMSR_100BTXHALF 0x2000
+#define PHY_BMSR_10BTFULL 0x1000
+#define PHY_BMSR_10BTHALF 0x0800
+#define PHY_BMSR_RSVD1 0x0400 /* write as zero, don't care */
+#define PHY_BMSR_RSVD2 0x0200 /* write as zero, don't care */
+#define PHY_BMSR_RSVD3 0x0100 /* write as zero, don't care */
+#define PHY_BMSR_RSVD4 0x0080 /* write as zero, don't care */
+#define PHY_BMSR_MFPRESUP 0x0040
+#define PHY_BMSR_AUTONEGCOMP 0x0020
+#define PHY_BMSR_REMFAULT 0x0010
+#define PHY_BMSR_CANAUTONEG 0x0008
+#define PHY_BMSR_LINKSTAT 0x0004
+#define PHY_BMSR_JABBER 0x0002
+#define PHY_BMSR_EXTENDED 0x0001
+
+#define PHY_CTL_IGLINK 0x8000
+#define PHY_CTL_SWAPOL 0x4000
+#define PHY_CTL_AUISEL 0x2000
+#define PHY_CTL_SQEEN 0x1000
+#define PHY_CTL_MTEST 0x0800
+#define PHY_CTL_NFEW 0x0004
+#define PHY_CTL_INTEN 0x0002
+#define PHY_CTL_TINT 0x0001
+
+#define TL_PHY_GENCTL 0x00
+#define TL_PHY_GENSTS 0x01
+
+/*
+ * PHY Generic Identifier Register, hi bits
+ */
+#define TL_PHY_VENID 0x02
+
+/*
+ * PHY Generic Identifier Register, lo bits
+ */
+#define TL_PHY_DEVID 0x03
+
+#define TL_PHY_ANAR 0x04
+#define TL_PHY_LPAR 0x05
+#define TL_PHY_ANEXP 0x06
+
+#define TL_PHY_PHYID 0x10
+#define TL_PHY_CTL 0x11
+#define TL_PHY_STS 0x12
+
+#define TL_LPAR_RMFLT 0x2000
+#define TL_LPAR_RSVD0 0x1000
+#define TL_LPAR_RSVD1 0x0800
+#define TL_LPAR_100BT4 0x0400
+#define TL_LPAR_100BTXFULL 0x0200
+#define TL_LPAR_100BTXHALF 0x0100
+#define TL_LPAR_10BTFULL 0x0080
+#define TL_LPAR_10BTHALF 0x0040
+
+/*
+ * PHY Antoneg advertisement register.
+ */
+#define PHY_ANAR TL_PHY_ANAR
+#define PHY_ANAR_NEXTPAGE 0x8000
+#define PHY_ANAR_RSVD0 0x4000
+#define PHY_ANAR_TLRFLT 0x2000
+#define PHY_ANAR_RSVD1 0x1000
+#define PHY_RSVD_RSDV2 0x0800
+#define PHY_RSVD_RSVD3 0x0400
+#define PHY_ANAR_100BT4 0x0200
+#define PHY_ANAR_100BTXFULL 0x0100
+#define PHY_ANAR_100BTXHALF 0x0080
+#define PHY_ANAR_10BTFULL 0x0040
+#define PHY_ANAR_10BTHALF 0x0020
+#define PHY_ANAR_PROTO4 0x0010
+#define PHY_ANAR_PROTO3 0x0008
+#define PHY_ANAR_PROTO2 0x0004
+#define PHY_AHAR_PROTO1 0x0002
+#define PHY_AHAR_PROTO0 0x0001
+
+/*
+ * DP83840 PHY, PCS Confifguration Register
+ */
+#define TL_DP83840_PCS 0x17
+#define TL_DP83840_PCS_LED4_MODE 0x0002
+#define TL_DP83840_PCS_F_CONNECT 0x0020
+#define TL_DP83840_PCS_BIT8 0x0100
+#define TL_DP83840_PCS_BIT10 0x0400
+
+/*
+ * DP83840 PHY, PAR register
+ */
+#define TL_DP83840_PAR 0x19
+
+#define PAR_RSVD0 0x8000
+#define PAR_RSVD1 0x4000
+#define PAR_RSVD2 0x2000
+#define PAR_RSVD3 0x1000
+#define PAR_DIS_CRS_JAB 0x0800
+#define PAR_AN_EN_STAT 0x0400
+#define PAR_RSVD4 0x0200
+#define PAR_FEFI_EN 0x0100
+#define PAR_DUPLEX_STAT 0x0080
+#define PAR_SPEED_10 0x0040
+#define PAR_CIM_STATUS 0x0020
+#define PAR_PHYADDR4 0x0010
+#define PAR_PHYADDR3 0x0008
+#define PAR_PHYADDR2 0x0004
+#define PAR_PHYADDR1 0x0002
+#define PAR_PHYADDR0 0x0001
+
+
+/*
+ * Microchip Technology 24Cxx EEPROM control bytes
+ */
+#define EEPROM_CTL_READ 0xA1 /* 0101 0001 */
+#define EEPROM_CTL_WRITE 0xA0 /* 0101 0000 */
OpenPOWER on IntegriCloud