summaryrefslogtreecommitdiffstats
path: root/utils/TableGen/CodeGenDAGPatterns.cpp
diff options
context:
space:
mode:
authored <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
committered <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
commit3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch)
tree64ba909838c23261cace781ece27d106134ea451 /utils/TableGen/CodeGenDAGPatterns.cpp
downloadFreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip
FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz
Import LLVM, at r72732.
Diffstat (limited to 'utils/TableGen/CodeGenDAGPatterns.cpp')
-rw-r--r--utils/TableGen/CodeGenDAGPatterns.cpp2395
1 files changed, 2395 insertions, 0 deletions
diff --git a/utils/TableGen/CodeGenDAGPatterns.cpp b/utils/TableGen/CodeGenDAGPatterns.cpp
new file mode 100644
index 0000000..db76dab
--- /dev/null
+++ b/utils/TableGen/CodeGenDAGPatterns.cpp
@@ -0,0 +1,2395 @@
+//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the CodeGenDAGPatterns class, which is used to read and
+// represent the patterns present in a .td file for instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenDAGPatterns.h"
+#include "Record.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Streams.h"
+#include <set>
+#include <algorithm>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Helpers for working with extended types.
+
+/// FilterVTs - Filter a list of VT's according to a predicate.
+///
+template<typename T>
+static std::vector<MVT::SimpleValueType>
+FilterVTs(const std::vector<MVT::SimpleValueType> &InVTs, T Filter) {
+ std::vector<MVT::SimpleValueType> Result;
+ for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
+ if (Filter(InVTs[i]))
+ Result.push_back(InVTs[i]);
+ return Result;
+}
+
+template<typename T>
+static std::vector<unsigned char>
+FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
+ std::vector<unsigned char> Result;
+ for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
+ if (Filter((MVT::SimpleValueType)InVTs[i]))
+ Result.push_back(InVTs[i]);
+ return Result;
+}
+
+static std::vector<unsigned char>
+ConvertVTs(const std::vector<MVT::SimpleValueType> &InVTs) {
+ std::vector<unsigned char> Result;
+ for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
+ Result.push_back(InVTs[i]);
+ return Result;
+}
+
+static inline bool isInteger(MVT::SimpleValueType VT) {
+ return MVT(VT).isInteger();
+}
+
+static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
+ return MVT(VT).isFloatingPoint();
+}
+
+static inline bool isVector(MVT::SimpleValueType VT) {
+ return MVT(VT).isVector();
+}
+
+static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
+ const std::vector<unsigned char> &RHS) {
+ if (LHS.size() > RHS.size()) return false;
+ for (unsigned i = 0, e = LHS.size(); i != e; ++i)
+ if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
+ return false;
+ return true;
+}
+
+namespace llvm {
+namespace EMVT {
+/// isExtIntegerInVTs - Return true if the specified extended value type vector
+/// contains isInt or an integer value type.
+bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
+ assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
+ return EVTs[0] == isInt || !(FilterEVTs(EVTs, isInteger).empty());
+}
+
+/// isExtFloatingPointInVTs - Return true if the specified extended value type
+/// vector contains isFP or a FP value type.
+bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
+ assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
+ return EVTs[0] == isFP || !(FilterEVTs(EVTs, isFloatingPoint).empty());
+}
+} // end namespace EMVT.
+} // end namespace llvm.
+
+
+/// Dependent variable map for CodeGenDAGPattern variant generation
+typedef std::map<std::string, int> DepVarMap;
+
+/// Const iterator shorthand for DepVarMap
+typedef DepVarMap::const_iterator DepVarMap_citer;
+
+namespace {
+void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
+ if (N->isLeaf()) {
+ if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) {
+ DepMap[N->getName()]++;
+ }
+ } else {
+ for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
+ FindDepVarsOf(N->getChild(i), DepMap);
+ }
+}
+
+//! Find dependent variables within child patterns
+/*!
+ */
+void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
+ DepVarMap depcounts;
+ FindDepVarsOf(N, depcounts);
+ for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
+ if (i->second > 1) { // std::pair<std::string, int>
+ DepVars.insert(i->first);
+ }
+ }
+}
+
+//! Dump the dependent variable set:
+void DumpDepVars(MultipleUseVarSet &DepVars) {
+ if (DepVars.empty()) {
+ DOUT << "<empty set>";
+ } else {
+ DOUT << "[ ";
+ for (MultipleUseVarSet::const_iterator i = DepVars.begin(), e = DepVars.end();
+ i != e; ++i) {
+ DOUT << (*i) << " ";
+ }
+ DOUT << "]";
+ }
+}
+}
+
+//===----------------------------------------------------------------------===//
+// PatternToMatch implementation
+//
+
+/// getPredicateCheck - Return a single string containing all of this
+/// pattern's predicates concatenated with "&&" operators.
+///
+std::string PatternToMatch::getPredicateCheck() const {
+ std::string PredicateCheck;
+ for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
+ if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
+ Record *Def = Pred->getDef();
+ if (!Def->isSubClassOf("Predicate")) {
+#ifndef NDEBUG
+ Def->dump();
+#endif
+ assert(0 && "Unknown predicate type!");
+ }
+ if (!PredicateCheck.empty())
+ PredicateCheck += " && ";
+ PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
+ }
+ }
+
+ return PredicateCheck;
+}
+
+//===----------------------------------------------------------------------===//
+// SDTypeConstraint implementation
+//
+
+SDTypeConstraint::SDTypeConstraint(Record *R) {
+ OperandNo = R->getValueAsInt("OperandNum");
+
+ if (R->isSubClassOf("SDTCisVT")) {
+ ConstraintType = SDTCisVT;
+ x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
+ } else if (R->isSubClassOf("SDTCisPtrTy")) {
+ ConstraintType = SDTCisPtrTy;
+ } else if (R->isSubClassOf("SDTCisInt")) {
+ ConstraintType = SDTCisInt;
+ } else if (R->isSubClassOf("SDTCisFP")) {
+ ConstraintType = SDTCisFP;
+ } else if (R->isSubClassOf("SDTCisSameAs")) {
+ ConstraintType = SDTCisSameAs;
+ x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
+ } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
+ ConstraintType = SDTCisVTSmallerThanOp;
+ x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
+ R->getValueAsInt("OtherOperandNum");
+ } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
+ ConstraintType = SDTCisOpSmallerThanOp;
+ x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
+ R->getValueAsInt("BigOperandNum");
+ } else if (R->isSubClassOf("SDTCisEltOfVec")) {
+ ConstraintType = SDTCisEltOfVec;
+ x.SDTCisEltOfVec_Info.OtherOperandNum =
+ R->getValueAsInt("OtherOpNum");
+ } else {
+ cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
+ exit(1);
+ }
+}
+
+/// getOperandNum - Return the node corresponding to operand #OpNo in tree
+/// N, which has NumResults results.
+TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
+ TreePatternNode *N,
+ unsigned NumResults) const {
+ assert(NumResults <= 1 &&
+ "We only work with nodes with zero or one result so far!");
+
+ if (OpNo >= (NumResults + N->getNumChildren())) {
+ cerr << "Invalid operand number " << OpNo << " ";
+ N->dump();
+ cerr << '\n';
+ exit(1);
+ }
+
+ if (OpNo < NumResults)
+ return N; // FIXME: need value #
+ else
+ return N->getChild(OpNo-NumResults);
+}
+
+/// ApplyTypeConstraint - Given a node in a pattern, apply this type
+/// constraint to the nodes operands. This returns true if it makes a
+/// change, false otherwise. If a type contradiction is found, throw an
+/// exception.
+bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
+ const SDNodeInfo &NodeInfo,
+ TreePattern &TP) const {
+ unsigned NumResults = NodeInfo.getNumResults();
+ assert(NumResults <= 1 &&
+ "We only work with nodes with zero or one result so far!");
+
+ // Check that the number of operands is sane. Negative operands -> varargs.
+ if (NodeInfo.getNumOperands() >= 0) {
+ if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
+ TP.error(N->getOperator()->getName() + " node requires exactly " +
+ itostr(NodeInfo.getNumOperands()) + " operands!");
+ }
+
+ const CodeGenTarget &CGT = TP.getDAGPatterns().getTargetInfo();
+
+ TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
+
+ switch (ConstraintType) {
+ default: assert(0 && "Unknown constraint type!");
+ case SDTCisVT:
+ // Operand must be a particular type.
+ return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
+ case SDTCisPtrTy: {
+ // Operand must be same as target pointer type.
+ return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
+ }
+ case SDTCisInt: {
+ // If there is only one integer type supported, this must be it.
+ std::vector<MVT::SimpleValueType> IntVTs =
+ FilterVTs(CGT.getLegalValueTypes(), isInteger);
+
+ // If we found exactly one supported integer type, apply it.
+ if (IntVTs.size() == 1)
+ return NodeToApply->UpdateNodeType(IntVTs[0], TP);
+ return NodeToApply->UpdateNodeType(EMVT::isInt, TP);
+ }
+ case SDTCisFP: {
+ // If there is only one FP type supported, this must be it.
+ std::vector<MVT::SimpleValueType> FPVTs =
+ FilterVTs(CGT.getLegalValueTypes(), isFloatingPoint);
+
+ // If we found exactly one supported FP type, apply it.
+ if (FPVTs.size() == 1)
+ return NodeToApply->UpdateNodeType(FPVTs[0], TP);
+ return NodeToApply->UpdateNodeType(EMVT::isFP, TP);
+ }
+ case SDTCisSameAs: {
+ TreePatternNode *OtherNode =
+ getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
+ return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
+ OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
+ }
+ case SDTCisVTSmallerThanOp: {
+ // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
+ // have an integer type that is smaller than the VT.
+ if (!NodeToApply->isLeaf() ||
+ !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
+ !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
+ ->isSubClassOf("ValueType"))
+ TP.error(N->getOperator()->getName() + " expects a VT operand!");
+ MVT::SimpleValueType VT =
+ getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
+ if (!isInteger(VT))
+ TP.error(N->getOperator()->getName() + " VT operand must be integer!");
+
+ TreePatternNode *OtherNode =
+ getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
+
+ // It must be integer.
+ bool MadeChange = false;
+ MadeChange |= OtherNode->UpdateNodeType(EMVT::isInt, TP);
+
+ // This code only handles nodes that have one type set. Assert here so
+ // that we can change this if we ever need to deal with multiple value
+ // types at this point.
+ assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
+ if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
+ OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error.
+ return false;
+ }
+ case SDTCisOpSmallerThanOp: {
+ TreePatternNode *BigOperand =
+ getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
+
+ // Both operands must be integer or FP, but we don't care which.
+ bool MadeChange = false;
+
+ // This code does not currently handle nodes which have multiple types,
+ // where some types are integer, and some are fp. Assert that this is not
+ // the case.
+ assert(!(EMVT::isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
+ EMVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
+ !(EMVT::isExtIntegerInVTs(BigOperand->getExtTypes()) &&
+ EMVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
+ "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
+ if (EMVT::isExtIntegerInVTs(NodeToApply->getExtTypes()))
+ MadeChange |= BigOperand->UpdateNodeType(EMVT::isInt, TP);
+ else if (EMVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
+ MadeChange |= BigOperand->UpdateNodeType(EMVT::isFP, TP);
+ if (EMVT::isExtIntegerInVTs(BigOperand->getExtTypes()))
+ MadeChange |= NodeToApply->UpdateNodeType(EMVT::isInt, TP);
+ else if (EMVT::isExtFloatingPointInVTs(BigOperand->getExtTypes()))
+ MadeChange |= NodeToApply->UpdateNodeType(EMVT::isFP, TP);
+
+ std::vector<MVT::SimpleValueType> VTs = CGT.getLegalValueTypes();
+
+ if (EMVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) {
+ VTs = FilterVTs(VTs, isInteger);
+ } else if (EMVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
+ VTs = FilterVTs(VTs, isFloatingPoint);
+ } else {
+ VTs.clear();
+ }
+
+ switch (VTs.size()) {
+ default: // Too many VT's to pick from.
+ case 0: break; // No info yet.
+ case 1:
+ // Only one VT of this flavor. Cannot ever satisfy the constraints.
+ return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw
+ case 2:
+ // If we have exactly two possible types, the little operand must be the
+ // small one, the big operand should be the big one. Common with
+ // float/double for example.
+ assert(VTs[0] < VTs[1] && "Should be sorted!");
+ MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
+ MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
+ break;
+ }
+ return MadeChange;
+ }
+ case SDTCisEltOfVec: {
+ TreePatternNode *OtherOperand =
+ getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum,
+ N, NumResults);
+ if (OtherOperand->hasTypeSet()) {
+ if (!isVector(OtherOperand->getTypeNum(0)))
+ TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
+ MVT IVT = OtherOperand->getTypeNum(0);
+ IVT = IVT.getVectorElementType();
+ return NodeToApply->UpdateNodeType(IVT.getSimpleVT(), TP);
+ }
+ return false;
+ }
+ }
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// SDNodeInfo implementation
+//
+SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
+ EnumName = R->getValueAsString("Opcode");
+ SDClassName = R->getValueAsString("SDClass");
+ Record *TypeProfile = R->getValueAsDef("TypeProfile");
+ NumResults = TypeProfile->getValueAsInt("NumResults");
+ NumOperands = TypeProfile->getValueAsInt("NumOperands");
+
+ // Parse the properties.
+ Properties = 0;
+ std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
+ for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
+ if (PropList[i]->getName() == "SDNPCommutative") {
+ Properties |= 1 << SDNPCommutative;
+ } else if (PropList[i]->getName() == "SDNPAssociative") {
+ Properties |= 1 << SDNPAssociative;
+ } else if (PropList[i]->getName() == "SDNPHasChain") {
+ Properties |= 1 << SDNPHasChain;
+ } else if (PropList[i]->getName() == "SDNPOutFlag") {
+ Properties |= 1 << SDNPOutFlag;
+ } else if (PropList[i]->getName() == "SDNPInFlag") {
+ Properties |= 1 << SDNPInFlag;
+ } else if (PropList[i]->getName() == "SDNPOptInFlag") {
+ Properties |= 1 << SDNPOptInFlag;
+ } else if (PropList[i]->getName() == "SDNPMayStore") {
+ Properties |= 1 << SDNPMayStore;
+ } else if (PropList[i]->getName() == "SDNPMayLoad") {
+ Properties |= 1 << SDNPMayLoad;
+ } else if (PropList[i]->getName() == "SDNPSideEffect") {
+ Properties |= 1 << SDNPSideEffect;
+ } else if (PropList[i]->getName() == "SDNPMemOperand") {
+ Properties |= 1 << SDNPMemOperand;
+ } else {
+ cerr << "Unknown SD Node property '" << PropList[i]->getName()
+ << "' on node '" << R->getName() << "'!\n";
+ exit(1);
+ }
+ }
+
+
+ // Parse the type constraints.
+ std::vector<Record*> ConstraintList =
+ TypeProfile->getValueAsListOfDefs("Constraints");
+ TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
+}
+
+//===----------------------------------------------------------------------===//
+// TreePatternNode implementation
+//
+
+TreePatternNode::~TreePatternNode() {
+#if 0 // FIXME: implement refcounted tree nodes!
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ delete getChild(i);
+#endif
+}
+
+/// UpdateNodeType - Set the node type of N to VT if VT contains
+/// information. If N already contains a conflicting type, then throw an
+/// exception. This returns true if any information was updated.
+///
+bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
+ TreePattern &TP) {
+ assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
+
+ if (ExtVTs[0] == EMVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
+ return false;
+ if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
+ setTypes(ExtVTs);
+ return true;
+ }
+
+ if (getExtTypeNum(0) == MVT::iPTR || getExtTypeNum(0) == MVT::iPTRAny) {
+ if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny ||
+ ExtVTs[0] == EMVT::isInt)
+ return false;
+ if (EMVT::isExtIntegerInVTs(ExtVTs)) {
+ std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, isInteger);
+ if (FVTs.size()) {
+ setTypes(ExtVTs);
+ return true;
+ }
+ }
+ }
+
+ if ((ExtVTs[0] == EMVT::isInt || ExtVTs[0] == MVT::iAny) &&
+ EMVT::isExtIntegerInVTs(getExtTypes())) {
+ assert(hasTypeSet() && "should be handled above!");
+ std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger);
+ if (getExtTypes() == FVTs)
+ return false;
+ setTypes(FVTs);
+ return true;
+ }
+ if ((ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny) &&
+ EMVT::isExtIntegerInVTs(getExtTypes())) {
+ //assert(hasTypeSet() && "should be handled above!");
+ std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger);
+ if (getExtTypes() == FVTs)
+ return false;
+ if (FVTs.size()) {
+ setTypes(FVTs);
+ return true;
+ }
+ }
+ if ((ExtVTs[0] == EMVT::isFP || ExtVTs[0] == MVT::fAny) &&
+ EMVT::isExtFloatingPointInVTs(getExtTypes())) {
+ assert(hasTypeSet() && "should be handled above!");
+ std::vector<unsigned char> FVTs =
+ FilterEVTs(getExtTypes(), isFloatingPoint);
+ if (getExtTypes() == FVTs)
+ return false;
+ setTypes(FVTs);
+ return true;
+ }
+
+ // If we know this is an int or fp type, and we are told it is a specific one,
+ // take the advice.
+ //
+ // Similarly, we should probably set the type here to the intersection of
+ // {isInt|isFP} and ExtVTs
+ if (((getExtTypeNum(0) == EMVT::isInt || getExtTypeNum(0) == MVT::iAny) &&
+ EMVT::isExtIntegerInVTs(ExtVTs)) ||
+ ((getExtTypeNum(0) == EMVT::isFP || getExtTypeNum(0) == MVT::fAny) &&
+ EMVT::isExtFloatingPointInVTs(ExtVTs))) {
+ setTypes(ExtVTs);
+ return true;
+ }
+ if (getExtTypeNum(0) == EMVT::isInt &&
+ (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny)) {
+ setTypes(ExtVTs);
+ return true;
+ }
+
+ if (isLeaf()) {
+ dump();
+ cerr << " ";
+ TP.error("Type inference contradiction found in node!");
+ } else {
+ TP.error("Type inference contradiction found in node " +
+ getOperator()->getName() + "!");
+ }
+ return true; // unreachable
+}
+
+
+void TreePatternNode::print(std::ostream &OS) const {
+ if (isLeaf()) {
+ OS << *getLeafValue();
+ } else {
+ OS << "(" << getOperator()->getName();
+ }
+
+ // FIXME: At some point we should handle printing all the value types for
+ // nodes that are multiply typed.
+ switch (getExtTypeNum(0)) {
+ case MVT::Other: OS << ":Other"; break;
+ case EMVT::isInt: OS << ":isInt"; break;
+ case EMVT::isFP : OS << ":isFP"; break;
+ case EMVT::isUnknown: ; /*OS << ":?";*/ break;
+ case MVT::iPTR: OS << ":iPTR"; break;
+ case MVT::iPTRAny: OS << ":iPTRAny"; break;
+ default: {
+ std::string VTName = llvm::getName(getTypeNum(0));
+ // Strip off MVT:: prefix if present.
+ if (VTName.substr(0,5) == "MVT::")
+ VTName = VTName.substr(5);
+ OS << ":" << VTName;
+ break;
+ }
+ }
+
+ if (!isLeaf()) {
+ if (getNumChildren() != 0) {
+ OS << " ";
+ getChild(0)->print(OS);
+ for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
+ OS << ", ";
+ getChild(i)->print(OS);
+ }
+ }
+ OS << ")";
+ }
+
+ for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
+ OS << "<<P:" << PredicateFns[i] << ">>";
+ if (TransformFn)
+ OS << "<<X:" << TransformFn->getName() << ">>";
+ if (!getName().empty())
+ OS << ":$" << getName();
+
+}
+void TreePatternNode::dump() const {
+ print(*cerr.stream());
+}
+
+/// isIsomorphicTo - Return true if this node is recursively
+/// isomorphic to the specified node. For this comparison, the node's
+/// entire state is considered. The assigned name is ignored, since
+/// nodes with differing names are considered isomorphic. However, if
+/// the assigned name is present in the dependent variable set, then
+/// the assigned name is considered significant and the node is
+/// isomorphic if the names match.
+bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
+ const MultipleUseVarSet &DepVars) const {
+ if (N == this) return true;
+ if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
+ getPredicateFns() != N->getPredicateFns() ||
+ getTransformFn() != N->getTransformFn())
+ return false;
+
+ if (isLeaf()) {
+ if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
+ if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) {
+ return ((DI->getDef() == NDI->getDef())
+ && (DepVars.find(getName()) == DepVars.end()
+ || getName() == N->getName()));
+ }
+ }
+ return getLeafValue() == N->getLeafValue();
+ }
+
+ if (N->getOperator() != getOperator() ||
+ N->getNumChildren() != getNumChildren()) return false;
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
+ return false;
+ return true;
+}
+
+/// clone - Make a copy of this tree and all of its children.
+///
+TreePatternNode *TreePatternNode::clone() const {
+ TreePatternNode *New;
+ if (isLeaf()) {
+ New = new TreePatternNode(getLeafValue());
+ } else {
+ std::vector<TreePatternNode*> CChildren;
+ CChildren.reserve(Children.size());
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ CChildren.push_back(getChild(i)->clone());
+ New = new TreePatternNode(getOperator(), CChildren);
+ }
+ New->setName(getName());
+ New->setTypes(getExtTypes());
+ New->setPredicateFns(getPredicateFns());
+ New->setTransformFn(getTransformFn());
+ return New;
+}
+
+/// SubstituteFormalArguments - Replace the formal arguments in this tree
+/// with actual values specified by ArgMap.
+void TreePatternNode::
+SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
+ if (isLeaf()) return;
+
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = getChild(i);
+ if (Child->isLeaf()) {
+ Init *Val = Child->getLeafValue();
+ if (dynamic_cast<DefInit*>(Val) &&
+ static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
+ // We found a use of a formal argument, replace it with its value.
+ TreePatternNode *NewChild = ArgMap[Child->getName()];
+ assert(NewChild && "Couldn't find formal argument!");
+ assert((Child->getPredicateFns().empty() ||
+ NewChild->getPredicateFns() == Child->getPredicateFns()) &&
+ "Non-empty child predicate clobbered!");
+ setChild(i, NewChild);
+ }
+ } else {
+ getChild(i)->SubstituteFormalArguments(ArgMap);
+ }
+ }
+}
+
+
+/// InlinePatternFragments - If this pattern refers to any pattern
+/// fragments, inline them into place, giving us a pattern without any
+/// PatFrag references.
+TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
+ if (isLeaf()) return this; // nothing to do.
+ Record *Op = getOperator();
+
+ if (!Op->isSubClassOf("PatFrag")) {
+ // Just recursively inline children nodes.
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = getChild(i);
+ TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
+
+ assert((Child->getPredicateFns().empty() ||
+ NewChild->getPredicateFns() == Child->getPredicateFns()) &&
+ "Non-empty child predicate clobbered!");
+
+ setChild(i, NewChild);
+ }
+ return this;
+ }
+
+ // Otherwise, we found a reference to a fragment. First, look up its
+ // TreePattern record.
+ TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
+
+ // Verify that we are passing the right number of operands.
+ if (Frag->getNumArgs() != Children.size())
+ TP.error("'" + Op->getName() + "' fragment requires " +
+ utostr(Frag->getNumArgs()) + " operands!");
+
+ TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
+
+ std::string Code = Op->getValueAsCode("Predicate");
+ if (!Code.empty())
+ FragTree->addPredicateFn("Predicate_"+Op->getName());
+
+ // Resolve formal arguments to their actual value.
+ if (Frag->getNumArgs()) {
+ // Compute the map of formal to actual arguments.
+ std::map<std::string, TreePatternNode*> ArgMap;
+ for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
+ ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
+
+ FragTree->SubstituteFormalArguments(ArgMap);
+ }
+
+ FragTree->setName(getName());
+ FragTree->UpdateNodeType(getExtTypes(), TP);
+
+ // Transfer in the old predicates.
+ for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
+ FragTree->addPredicateFn(getPredicateFns()[i]);
+
+ // Get a new copy of this fragment to stitch into here.
+ //delete this; // FIXME: implement refcounting!
+
+ // The fragment we inlined could have recursive inlining that is needed. See
+ // if there are any pattern fragments in it and inline them as needed.
+ return FragTree->InlinePatternFragments(TP);
+}
+
+/// getImplicitType - Check to see if the specified record has an implicit
+/// type which should be applied to it. This infer the type of register
+/// references from the register file information, for example.
+///
+static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
+ TreePattern &TP) {
+ // Some common return values
+ std::vector<unsigned char> Unknown(1, EMVT::isUnknown);
+ std::vector<unsigned char> Other(1, MVT::Other);
+
+ // Check to see if this is a register or a register class...
+ if (R->isSubClassOf("RegisterClass")) {
+ if (NotRegisters)
+ return Unknown;
+ const CodeGenRegisterClass &RC =
+ TP.getDAGPatterns().getTargetInfo().getRegisterClass(R);
+ return ConvertVTs(RC.getValueTypes());
+ } else if (R->isSubClassOf("PatFrag")) {
+ // Pattern fragment types will be resolved when they are inlined.
+ return Unknown;
+ } else if (R->isSubClassOf("Register")) {
+ if (NotRegisters)
+ return Unknown;
+ const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
+ return T.getRegisterVTs(R);
+ } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
+ // Using a VTSDNode or CondCodeSDNode.
+ return Other;
+ } else if (R->isSubClassOf("ComplexPattern")) {
+ if (NotRegisters)
+ return Unknown;
+ std::vector<unsigned char>
+ ComplexPat(1, TP.getDAGPatterns().getComplexPattern(R).getValueType());
+ return ComplexPat;
+ } else if (R->getName() == "ptr_rc") {
+ Other[0] = MVT::iPTR;
+ return Other;
+ } else if (R->getName() == "node" || R->getName() == "srcvalue" ||
+ R->getName() == "zero_reg") {
+ // Placeholder.
+ return Unknown;
+ }
+
+ TP.error("Unknown node flavor used in pattern: " + R->getName());
+ return Other;
+}
+
+
+/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
+/// CodeGenIntrinsic information for it, otherwise return a null pointer.
+const CodeGenIntrinsic *TreePatternNode::
+getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
+ if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
+ getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
+ getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
+ return 0;
+
+ unsigned IID =
+ dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
+ return &CDP.getIntrinsicInfo(IID);
+}
+
+/// isCommutativeIntrinsic - Return true if the node corresponds to a
+/// commutative intrinsic.
+bool
+TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
+ if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
+ return Int->isCommutative;
+ return false;
+}
+
+
+/// ApplyTypeConstraints - Apply all of the type constraints relevant to
+/// this node and its children in the tree. This returns true if it makes a
+/// change, false otherwise. If a type contradiction is found, throw an
+/// exception.
+bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
+ CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
+ if (isLeaf()) {
+ if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
+ // If it's a regclass or something else known, include the type.
+ return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
+ } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
+ // Int inits are always integers. :)
+ bool MadeChange = UpdateNodeType(EMVT::isInt, TP);
+
+ if (hasTypeSet()) {
+ // At some point, it may make sense for this tree pattern to have
+ // multiple types. Assert here that it does not, so we revisit this
+ // code when appropriate.
+ assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
+ MVT::SimpleValueType VT = getTypeNum(0);
+ for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
+ assert(getTypeNum(i) == VT && "TreePattern has too many types!");
+
+ VT = getTypeNum(0);
+ if (VT != MVT::iPTR && VT != MVT::iPTRAny) {
+ unsigned Size = MVT(VT).getSizeInBits();
+ // Make sure that the value is representable for this type.
+ if (Size < 32) {
+ int Val = (II->getValue() << (32-Size)) >> (32-Size);
+ if (Val != II->getValue()) {
+ // If sign-extended doesn't fit, does it fit as unsigned?
+ unsigned ValueMask;
+ unsigned UnsignedVal;
+ ValueMask = unsigned(~uint32_t(0UL) >> (32-Size));
+ UnsignedVal = unsigned(II->getValue());
+
+ if ((ValueMask & UnsignedVal) != UnsignedVal) {
+ TP.error("Integer value '" + itostr(II->getValue())+
+ "' is out of range for type '" +
+ getEnumName(getTypeNum(0)) + "'!");
+ }
+ }
+ }
+ }
+ }
+
+ return MadeChange;
+ }
+ return false;
+ }
+
+ // special handling for set, which isn't really an SDNode.
+ if (getOperator()->getName() == "set") {
+ assert (getNumChildren() >= 2 && "Missing RHS of a set?");
+ unsigned NC = getNumChildren();
+ bool MadeChange = false;
+ for (unsigned i = 0; i < NC-1; ++i) {
+ MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
+ MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters);
+
+ // Types of operands must match.
+ MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(),
+ TP);
+ MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(),
+ TP);
+ MadeChange |= UpdateNodeType(MVT::isVoid, TP);
+ }
+ return MadeChange;
+ } else if (getOperator()->getName() == "implicit" ||
+ getOperator()->getName() == "parallel") {
+ bool MadeChange = false;
+ for (unsigned i = 0; i < getNumChildren(); ++i)
+ MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
+ MadeChange |= UpdateNodeType(MVT::isVoid, TP);
+ return MadeChange;
+ } else if (getOperator()->getName() == "COPY_TO_REGCLASS") {
+ bool MadeChange = false;
+ MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
+ MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
+ MadeChange |= UpdateNodeType(getChild(1)->getTypeNum(0), TP);
+ return MadeChange;
+ } else if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
+ bool MadeChange = false;
+
+ // Apply the result type to the node.
+ unsigned NumRetVTs = Int->IS.RetVTs.size();
+ unsigned NumParamVTs = Int->IS.ParamVTs.size();
+
+ for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
+ MadeChange |= UpdateNodeType(Int->IS.RetVTs[i], TP);
+
+ if (getNumChildren() != NumParamVTs + NumRetVTs)
+ TP.error("Intrinsic '" + Int->Name + "' expects " +
+ utostr(NumParamVTs + NumRetVTs - 1) + " operands, not " +
+ utostr(getNumChildren() - 1) + " operands!");
+
+ // Apply type info to the intrinsic ID.
+ MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
+
+ for (unsigned i = NumRetVTs, e = getNumChildren(); i != e; ++i) {
+ MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i - NumRetVTs];
+ MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
+ MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
+ }
+ return MadeChange;
+ } else if (getOperator()->isSubClassOf("SDNode")) {
+ const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
+
+ bool MadeChange = NI.ApplyTypeConstraints(this, TP);
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
+ // Branch, etc. do not produce results and top-level forms in instr pattern
+ // must have void types.
+ if (NI.getNumResults() == 0)
+ MadeChange |= UpdateNodeType(MVT::isVoid, TP);
+
+ return MadeChange;
+ } else if (getOperator()->isSubClassOf("Instruction")) {
+ const DAGInstruction &Inst = CDP.getInstruction(getOperator());
+ bool MadeChange = false;
+ unsigned NumResults = Inst.getNumResults();
+
+ assert(NumResults <= 1 &&
+ "Only supports zero or one result instrs!");
+
+ CodeGenInstruction &InstInfo =
+ CDP.getTargetInfo().getInstruction(getOperator()->getName());
+ // Apply the result type to the node
+ if (NumResults == 0 || InstInfo.NumDefs == 0) {
+ MadeChange = UpdateNodeType(MVT::isVoid, TP);
+ } else {
+ Record *ResultNode = Inst.getResult(0);
+
+ if (ResultNode->getName() == "ptr_rc") {
+ std::vector<unsigned char> VT;
+ VT.push_back(MVT::iPTR);
+ MadeChange = UpdateNodeType(VT, TP);
+ } else if (ResultNode->getName() == "unknown") {
+ std::vector<unsigned char> VT;
+ VT.push_back(EMVT::isUnknown);
+ MadeChange = UpdateNodeType(VT, TP);
+ } else {
+ assert(ResultNode->isSubClassOf("RegisterClass") &&
+ "Operands should be register classes!");
+
+ const CodeGenRegisterClass &RC =
+ CDP.getTargetInfo().getRegisterClass(ResultNode);
+ MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
+ }
+ }
+
+ unsigned ChildNo = 0;
+ for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
+ Record *OperandNode = Inst.getOperand(i);
+
+ // If the instruction expects a predicate or optional def operand, we
+ // codegen this by setting the operand to it's default value if it has a
+ // non-empty DefaultOps field.
+ if ((OperandNode->isSubClassOf("PredicateOperand") ||
+ OperandNode->isSubClassOf("OptionalDefOperand")) &&
+ !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
+ continue;
+
+ // Verify that we didn't run out of provided operands.
+ if (ChildNo >= getNumChildren())
+ TP.error("Instruction '" + getOperator()->getName() +
+ "' expects more operands than were provided.");
+
+ MVT::SimpleValueType VT;
+ TreePatternNode *Child = getChild(ChildNo++);
+ if (OperandNode->isSubClassOf("RegisterClass")) {
+ const CodeGenRegisterClass &RC =
+ CDP.getTargetInfo().getRegisterClass(OperandNode);
+ MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
+ } else if (OperandNode->isSubClassOf("Operand")) {
+ VT = getValueType(OperandNode->getValueAsDef("Type"));
+ MadeChange |= Child->UpdateNodeType(VT, TP);
+ } else if (OperandNode->getName() == "ptr_rc") {
+ MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP);
+ } else if (OperandNode->getName() == "unknown") {
+ MadeChange |= Child->UpdateNodeType(EMVT::isUnknown, TP);
+ } else {
+ assert(0 && "Unknown operand type!");
+ abort();
+ }
+ MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
+ }
+
+ if (ChildNo != getNumChildren())
+ TP.error("Instruction '" + getOperator()->getName() +
+ "' was provided too many operands!");
+
+ return MadeChange;
+ } else {
+ assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
+
+ // Node transforms always take one operand.
+ if (getNumChildren() != 1)
+ TP.error("Node transform '" + getOperator()->getName() +
+ "' requires one operand!");
+
+ // If either the output or input of the xform does not have exact
+ // type info. We assume they must be the same. Otherwise, it is perfectly
+ // legal to transform from one type to a completely different type.
+ if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
+ bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
+ MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
+ return MadeChange;
+ }
+ return false;
+ }
+}
+
+/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
+/// RHS of a commutative operation, not the on LHS.
+static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
+ if (!N->isLeaf() && N->getOperator()->getName() == "imm")
+ return true;
+ if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
+ return true;
+ return false;
+}
+
+
+/// canPatternMatch - If it is impossible for this pattern to match on this
+/// target, fill in Reason and return false. Otherwise, return true. This is
+/// used as a sanity check for .td files (to prevent people from writing stuff
+/// that can never possibly work), and to prevent the pattern permuter from
+/// generating stuff that is useless.
+bool TreePatternNode::canPatternMatch(std::string &Reason,
+ const CodeGenDAGPatterns &CDP) {
+ if (isLeaf()) return true;
+
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ if (!getChild(i)->canPatternMatch(Reason, CDP))
+ return false;
+
+ // If this is an intrinsic, handle cases that would make it not match. For
+ // example, if an operand is required to be an immediate.
+ if (getOperator()->isSubClassOf("Intrinsic")) {
+ // TODO:
+ return true;
+ }
+
+ // If this node is a commutative operator, check that the LHS isn't an
+ // immediate.
+ const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
+ bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
+ if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
+ // Scan all of the operands of the node and make sure that only the last one
+ // is a constant node, unless the RHS also is.
+ if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
+ bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
+ for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
+ if (OnlyOnRHSOfCommutative(getChild(i))) {
+ Reason="Immediate value must be on the RHS of commutative operators!";
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// TreePattern implementation
+//
+
+TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
+ CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
+ isInputPattern = isInput;
+ for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
+ Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
+}
+
+TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
+ CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
+ isInputPattern = isInput;
+ Trees.push_back(ParseTreePattern(Pat));
+}
+
+TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
+ CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
+ isInputPattern = isInput;
+ Trees.push_back(Pat);
+}
+
+
+
+void TreePattern::error(const std::string &Msg) const {
+ dump();
+ throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
+}
+
+TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
+ DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
+ if (!OpDef) error("Pattern has unexpected operator type!");
+ Record *Operator = OpDef->getDef();
+
+ if (Operator->isSubClassOf("ValueType")) {
+ // If the operator is a ValueType, then this must be "type cast" of a leaf
+ // node.
+ if (Dag->getNumArgs() != 1)
+ error("Type cast only takes one operand!");
+
+ Init *Arg = Dag->getArg(0);
+ TreePatternNode *New;
+ if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
+ Record *R = DI->getDef();
+ if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
+ Dag->setArg(0, new DagInit(DI, "",
+ std::vector<std::pair<Init*, std::string> >()));
+ return ParseTreePattern(Dag);
+ }
+ New = new TreePatternNode(DI);
+ } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
+ New = ParseTreePattern(DI);
+ } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
+ New = new TreePatternNode(II);
+ if (!Dag->getArgName(0).empty())
+ error("Constant int argument should not have a name!");
+ } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
+ // Turn this into an IntInit.
+ Init *II = BI->convertInitializerTo(new IntRecTy());
+ if (II == 0 || !dynamic_cast<IntInit*>(II))
+ error("Bits value must be constants!");
+
+ New = new TreePatternNode(dynamic_cast<IntInit*>(II));
+ if (!Dag->getArgName(0).empty())
+ error("Constant int argument should not have a name!");
+ } else {
+ Arg->dump();
+ error("Unknown leaf value for tree pattern!");
+ return 0;
+ }
+
+ // Apply the type cast.
+ New->UpdateNodeType(getValueType(Operator), *this);
+ if (New->getNumChildren() == 0)
+ New->setName(Dag->getArgName(0));
+ return New;
+ }
+
+ // Verify that this is something that makes sense for an operator.
+ if (!Operator->isSubClassOf("PatFrag") &&
+ !Operator->isSubClassOf("SDNode") &&
+ !Operator->isSubClassOf("Instruction") &&
+ !Operator->isSubClassOf("SDNodeXForm") &&
+ !Operator->isSubClassOf("Intrinsic") &&
+ Operator->getName() != "set" &&
+ Operator->getName() != "implicit" &&
+ Operator->getName() != "parallel")
+ error("Unrecognized node '" + Operator->getName() + "'!");
+
+ // Check to see if this is something that is illegal in an input pattern.
+ if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
+ Operator->isSubClassOf("SDNodeXForm")))
+ error("Cannot use '" + Operator->getName() + "' in an input pattern!");
+
+ std::vector<TreePatternNode*> Children;
+
+ for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
+ Init *Arg = Dag->getArg(i);
+ if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
+ Children.push_back(ParseTreePattern(DI));
+ if (Children.back()->getName().empty())
+ Children.back()->setName(Dag->getArgName(i));
+ } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
+ Record *R = DefI->getDef();
+ // Direct reference to a leaf DagNode or PatFrag? Turn it into a
+ // TreePatternNode if its own.
+ if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
+ Dag->setArg(i, new DagInit(DefI, "",
+ std::vector<std::pair<Init*, std::string> >()));
+ --i; // Revisit this node...
+ } else {
+ TreePatternNode *Node = new TreePatternNode(DefI);
+ Node->setName(Dag->getArgName(i));
+ Children.push_back(Node);
+
+ // Input argument?
+ if (R->getName() == "node") {
+ if (Dag->getArgName(i).empty())
+ error("'node' argument requires a name to match with operand list");
+ Args.push_back(Dag->getArgName(i));
+ }
+ }
+ } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
+ TreePatternNode *Node = new TreePatternNode(II);
+ if (!Dag->getArgName(i).empty())
+ error("Constant int argument should not have a name!");
+ Children.push_back(Node);
+ } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
+ // Turn this into an IntInit.
+ Init *II = BI->convertInitializerTo(new IntRecTy());
+ if (II == 0 || !dynamic_cast<IntInit*>(II))
+ error("Bits value must be constants!");
+
+ TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
+ if (!Dag->getArgName(i).empty())
+ error("Constant int argument should not have a name!");
+ Children.push_back(Node);
+ } else {
+ cerr << '"';
+ Arg->dump();
+ cerr << "\": ";
+ error("Unknown leaf value for tree pattern!");
+ }
+ }
+
+ // If the operator is an intrinsic, then this is just syntactic sugar for for
+ // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
+ // convert the intrinsic name to a number.
+ if (Operator->isSubClassOf("Intrinsic")) {
+ const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
+ unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
+
+ // If this intrinsic returns void, it must have side-effects and thus a
+ // chain.
+ if (Int.IS.RetVTs[0] == MVT::isVoid) {
+ Operator = getDAGPatterns().get_intrinsic_void_sdnode();
+ } else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
+ // Has side-effects, requires chain.
+ Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
+ } else {
+ // Otherwise, no chain.
+ Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
+ }
+
+ TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
+ Children.insert(Children.begin(), IIDNode);
+ }
+
+ TreePatternNode *Result = new TreePatternNode(Operator, Children);
+ Result->setName(Dag->getName());
+ return Result;
+}
+
+/// InferAllTypes - Infer/propagate as many types throughout the expression
+/// patterns as possible. Return true if all types are inferred, false
+/// otherwise. Throw an exception if a type contradiction is found.
+bool TreePattern::InferAllTypes() {
+ bool MadeChange = true;
+ while (MadeChange) {
+ MadeChange = false;
+ for (unsigned i = 0, e = Trees.size(); i != e; ++i)
+ MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
+ }
+
+ bool HasUnresolvedTypes = false;
+ for (unsigned i = 0, e = Trees.size(); i != e; ++i)
+ HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
+ return !HasUnresolvedTypes;
+}
+
+void TreePattern::print(std::ostream &OS) const {
+ OS << getRecord()->getName();
+ if (!Args.empty()) {
+ OS << "(" << Args[0];
+ for (unsigned i = 1, e = Args.size(); i != e; ++i)
+ OS << ", " << Args[i];
+ OS << ")";
+ }
+ OS << ": ";
+
+ if (Trees.size() > 1)
+ OS << "[\n";
+ for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
+ OS << "\t";
+ Trees[i]->print(OS);
+ OS << "\n";
+ }
+
+ if (Trees.size() > 1)
+ OS << "]\n";
+}
+
+void TreePattern::dump() const { print(*cerr.stream()); }
+
+//===----------------------------------------------------------------------===//
+// CodeGenDAGPatterns implementation
+//
+
+// FIXME: REMOVE OSTREAM ARGUMENT
+CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) {
+ Intrinsics = LoadIntrinsics(Records, false);
+ TgtIntrinsics = LoadIntrinsics(Records, true);
+ ParseNodeInfo();
+ ParseNodeTransforms();
+ ParseComplexPatterns();
+ ParsePatternFragments();
+ ParseDefaultOperands();
+ ParseInstructions();
+ ParsePatterns();
+
+ // Generate variants. For example, commutative patterns can match
+ // multiple ways. Add them to PatternsToMatch as well.
+ GenerateVariants();
+
+ // Infer instruction flags. For example, we can detect loads,
+ // stores, and side effects in many cases by examining an
+ // instruction's pattern.
+ InferInstructionFlags();
+}
+
+CodeGenDAGPatterns::~CodeGenDAGPatterns() {
+ for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
+ E = PatternFragments.end(); I != E; ++I)
+ delete I->second;
+}
+
+
+Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
+ Record *N = Records.getDef(Name);
+ if (!N || !N->isSubClassOf("SDNode")) {
+ cerr << "Error getting SDNode '" << Name << "'!\n";
+ exit(1);
+ }
+ return N;
+}
+
+// Parse all of the SDNode definitions for the target, populating SDNodes.
+void CodeGenDAGPatterns::ParseNodeInfo() {
+ std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
+ while (!Nodes.empty()) {
+ SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
+ Nodes.pop_back();
+ }
+
+ // Get the builtin intrinsic nodes.
+ intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
+ intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
+ intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
+}
+
+/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
+/// map, and emit them to the file as functions.
+void CodeGenDAGPatterns::ParseNodeTransforms() {
+ std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
+ while (!Xforms.empty()) {
+ Record *XFormNode = Xforms.back();
+ Record *SDNode = XFormNode->getValueAsDef("Opcode");
+ std::string Code = XFormNode->getValueAsCode("XFormFunction");
+ SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
+
+ Xforms.pop_back();
+ }
+}
+
+void CodeGenDAGPatterns::ParseComplexPatterns() {
+ std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
+ while (!AMs.empty()) {
+ ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
+ AMs.pop_back();
+ }
+}
+
+
+/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
+/// file, building up the PatternFragments map. After we've collected them all,
+/// inline fragments together as necessary, so that there are no references left
+/// inside a pattern fragment to a pattern fragment.
+///
+void CodeGenDAGPatterns::ParsePatternFragments() {
+ std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
+
+ // First step, parse all of the fragments.
+ for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
+ DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
+ TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
+ PatternFragments[Fragments[i]] = P;
+
+ // Validate the argument list, converting it to set, to discard duplicates.
+ std::vector<std::string> &Args = P->getArgList();
+ std::set<std::string> OperandsSet(Args.begin(), Args.end());
+
+ if (OperandsSet.count(""))
+ P->error("Cannot have unnamed 'node' values in pattern fragment!");
+
+ // Parse the operands list.
+ DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
+ DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
+ // Special cases: ops == outs == ins. Different names are used to
+ // improve readability.
+ if (!OpsOp ||
+ (OpsOp->getDef()->getName() != "ops" &&
+ OpsOp->getDef()->getName() != "outs" &&
+ OpsOp->getDef()->getName() != "ins"))
+ P->error("Operands list should start with '(ops ... '!");
+
+ // Copy over the arguments.
+ Args.clear();
+ for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
+ if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
+ static_cast<DefInit*>(OpsList->getArg(j))->
+ getDef()->getName() != "node")
+ P->error("Operands list should all be 'node' values.");
+ if (OpsList->getArgName(j).empty())
+ P->error("Operands list should have names for each operand!");
+ if (!OperandsSet.count(OpsList->getArgName(j)))
+ P->error("'" + OpsList->getArgName(j) +
+ "' does not occur in pattern or was multiply specified!");
+ OperandsSet.erase(OpsList->getArgName(j));
+ Args.push_back(OpsList->getArgName(j));
+ }
+
+ if (!OperandsSet.empty())
+ P->error("Operands list does not contain an entry for operand '" +
+ *OperandsSet.begin() + "'!");
+
+ // If there is a code init for this fragment, keep track of the fact that
+ // this fragment uses it.
+ std::string Code = Fragments[i]->getValueAsCode("Predicate");
+ if (!Code.empty())
+ P->getOnlyTree()->addPredicateFn("Predicate_"+Fragments[i]->getName());
+
+ // If there is a node transformation corresponding to this, keep track of
+ // it.
+ Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
+ if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
+ P->getOnlyTree()->setTransformFn(Transform);
+ }
+
+ // Now that we've parsed all of the tree fragments, do a closure on them so
+ // that there are not references to PatFrags left inside of them.
+ for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
+ TreePattern *ThePat = PatternFragments[Fragments[i]];
+ ThePat->InlinePatternFragments();
+
+ // Infer as many types as possible. Don't worry about it if we don't infer
+ // all of them, some may depend on the inputs of the pattern.
+ try {
+ ThePat->InferAllTypes();
+ } catch (...) {
+ // If this pattern fragment is not supported by this target (no types can
+ // satisfy its constraints), just ignore it. If the bogus pattern is
+ // actually used by instructions, the type consistency error will be
+ // reported there.
+ }
+
+ // If debugging, print out the pattern fragment result.
+ DEBUG(ThePat->dump());
+ }
+}
+
+void CodeGenDAGPatterns::ParseDefaultOperands() {
+ std::vector<Record*> DefaultOps[2];
+ DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
+ DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
+
+ // Find some SDNode.
+ assert(!SDNodes.empty() && "No SDNodes parsed?");
+ Init *SomeSDNode = new DefInit(SDNodes.begin()->first);
+
+ for (unsigned iter = 0; iter != 2; ++iter) {
+ for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
+ DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
+
+ // Clone the DefaultInfo dag node, changing the operator from 'ops' to
+ // SomeSDnode so that we can parse this.
+ std::vector<std::pair<Init*, std::string> > Ops;
+ for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
+ Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
+ DefaultInfo->getArgName(op)));
+ DagInit *DI = new DagInit(SomeSDNode, "", Ops);
+
+ // Create a TreePattern to parse this.
+ TreePattern P(DefaultOps[iter][i], DI, false, *this);
+ assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
+
+ // Copy the operands over into a DAGDefaultOperand.
+ DAGDefaultOperand DefaultOpInfo;
+
+ TreePatternNode *T = P.getTree(0);
+ for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
+ TreePatternNode *TPN = T->getChild(op);
+ while (TPN->ApplyTypeConstraints(P, false))
+ /* Resolve all types */;
+
+ if (TPN->ContainsUnresolvedType()) {
+ if (iter == 0)
+ throw "Value #" + utostr(i) + " of PredicateOperand '" +
+ DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
+ else
+ throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
+ DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
+ }
+ DefaultOpInfo.DefaultOps.push_back(TPN);
+ }
+
+ // Insert it into the DefaultOperands map so we can find it later.
+ DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
+ }
+ }
+}
+
+/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
+/// instruction input. Return true if this is a real use.
+static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
+ std::map<std::string, TreePatternNode*> &InstInputs,
+ std::vector<Record*> &InstImpInputs) {
+ // No name -> not interesting.
+ if (Pat->getName().empty()) {
+ if (Pat->isLeaf()) {
+ DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
+ if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
+ I->error("Input " + DI->getDef()->getName() + " must be named!");
+ else if (DI && DI->getDef()->isSubClassOf("Register"))
+ InstImpInputs.push_back(DI->getDef());
+ }
+ return false;
+ }
+
+ Record *Rec;
+ if (Pat->isLeaf()) {
+ DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
+ if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
+ Rec = DI->getDef();
+ } else {
+ Rec = Pat->getOperator();
+ }
+
+ // SRCVALUE nodes are ignored.
+ if (Rec->getName() == "srcvalue")
+ return false;
+
+ TreePatternNode *&Slot = InstInputs[Pat->getName()];
+ if (!Slot) {
+ Slot = Pat;
+ } else {
+ Record *SlotRec;
+ if (Slot->isLeaf()) {
+ SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
+ } else {
+ assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
+ SlotRec = Slot->getOperator();
+ }
+
+ // Ensure that the inputs agree if we've already seen this input.
+ if (Rec != SlotRec)
+ I->error("All $" + Pat->getName() + " inputs must agree with each other");
+ if (Slot->getExtTypes() != Pat->getExtTypes())
+ I->error("All $" + Pat->getName() + " inputs must agree with each other");
+ }
+ return true;
+}
+
+/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
+/// part of "I", the instruction), computing the set of inputs and outputs of
+/// the pattern. Report errors if we see anything naughty.
+void CodeGenDAGPatterns::
+FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
+ std::map<std::string, TreePatternNode*> &InstInputs,
+ std::map<std::string, TreePatternNode*>&InstResults,
+ std::vector<Record*> &InstImpInputs,
+ std::vector<Record*> &InstImpResults) {
+ if (Pat->isLeaf()) {
+ bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
+ if (!isUse && Pat->getTransformFn())
+ I->error("Cannot specify a transform function for a non-input value!");
+ return;
+ } else if (Pat->getOperator()->getName() == "implicit") {
+ for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
+ TreePatternNode *Dest = Pat->getChild(i);
+ if (!Dest->isLeaf())
+ I->error("implicitly defined value should be a register!");
+
+ DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
+ if (!Val || !Val->getDef()->isSubClassOf("Register"))
+ I->error("implicitly defined value should be a register!");
+ InstImpResults.push_back(Val->getDef());
+ }
+ return;
+ } else if (Pat->getOperator()->getName() != "set") {
+ // If this is not a set, verify that the children nodes are not void typed,
+ // and recurse.
+ for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
+ if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
+ I->error("Cannot have void nodes inside of patterns!");
+ FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
+ InstImpInputs, InstImpResults);
+ }
+
+ // If this is a non-leaf node with no children, treat it basically as if
+ // it were a leaf. This handles nodes like (imm).
+ bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
+
+ if (!isUse && Pat->getTransformFn())
+ I->error("Cannot specify a transform function for a non-input value!");
+ return;
+ }
+
+ // Otherwise, this is a set, validate and collect instruction results.
+ if (Pat->getNumChildren() == 0)
+ I->error("set requires operands!");
+
+ if (Pat->getTransformFn())
+ I->error("Cannot specify a transform function on a set node!");
+
+ // Check the set destinations.
+ unsigned NumDests = Pat->getNumChildren()-1;
+ for (unsigned i = 0; i != NumDests; ++i) {
+ TreePatternNode *Dest = Pat->getChild(i);
+ if (!Dest->isLeaf())
+ I->error("set destination should be a register!");
+
+ DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
+ if (!Val)
+ I->error("set destination should be a register!");
+
+ if (Val->getDef()->isSubClassOf("RegisterClass") ||
+ Val->getDef()->getName() == "ptr_rc") {
+ if (Dest->getName().empty())
+ I->error("set destination must have a name!");
+ if (InstResults.count(Dest->getName()))
+ I->error("cannot set '" + Dest->getName() +"' multiple times");
+ InstResults[Dest->getName()] = Dest;
+ } else if (Val->getDef()->isSubClassOf("Register")) {
+ InstImpResults.push_back(Val->getDef());
+ } else {
+ I->error("set destination should be a register!");
+ }
+ }
+
+ // Verify and collect info from the computation.
+ FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
+ InstInputs, InstResults,
+ InstImpInputs, InstImpResults);
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction Analysis
+//===----------------------------------------------------------------------===//
+
+class InstAnalyzer {
+ const CodeGenDAGPatterns &CDP;
+ bool &mayStore;
+ bool &mayLoad;
+ bool &HasSideEffects;
+public:
+ InstAnalyzer(const CodeGenDAGPatterns &cdp,
+ bool &maystore, bool &mayload, bool &hse)
+ : CDP(cdp), mayStore(maystore), mayLoad(mayload), HasSideEffects(hse){
+ }
+
+ /// Analyze - Analyze the specified instruction, returning true if the
+ /// instruction had a pattern.
+ bool Analyze(Record *InstRecord) {
+ const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern();
+ if (Pattern == 0) {
+ HasSideEffects = 1;
+ return false; // No pattern.
+ }
+
+ // FIXME: Assume only the first tree is the pattern. The others are clobber
+ // nodes.
+ AnalyzeNode(Pattern->getTree(0));
+ return true;
+ }
+
+private:
+ void AnalyzeNode(const TreePatternNode *N) {
+ if (N->isLeaf()) {
+ if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
+ Record *LeafRec = DI->getDef();
+ // Handle ComplexPattern leaves.
+ if (LeafRec->isSubClassOf("ComplexPattern")) {
+ const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
+ if (CP.hasProperty(SDNPMayStore)) mayStore = true;
+ if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
+ if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true;
+ }
+ }
+ return;
+ }
+
+ // Analyze children.
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
+ AnalyzeNode(N->getChild(i));
+
+ // Ignore set nodes, which are not SDNodes.
+ if (N->getOperator()->getName() == "set")
+ return;
+
+ // Get information about the SDNode for the operator.
+ const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
+
+ // Notice properties of the node.
+ if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
+ if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
+ if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true;
+
+ if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
+ // If this is an intrinsic, analyze it.
+ if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
+ mayLoad = true;// These may load memory.
+
+ if (IntInfo->ModRef >= CodeGenIntrinsic::WriteArgMem)
+ mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
+
+ if (IntInfo->ModRef >= CodeGenIntrinsic::WriteMem)
+ // WriteMem intrinsics can have other strange effects.
+ HasSideEffects = true;
+ }
+ }
+
+};
+
+static void InferFromPattern(const CodeGenInstruction &Inst,
+ bool &MayStore, bool &MayLoad,
+ bool &HasSideEffects,
+ const CodeGenDAGPatterns &CDP) {
+ MayStore = MayLoad = HasSideEffects = false;
+
+ bool HadPattern =
+ InstAnalyzer(CDP, MayStore, MayLoad, HasSideEffects).Analyze(Inst.TheDef);
+
+ // InstAnalyzer only correctly analyzes mayStore/mayLoad so far.
+ if (Inst.mayStore) { // If the .td file explicitly sets mayStore, use it.
+ // If we decided that this is a store from the pattern, then the .td file
+ // entry is redundant.
+ if (MayStore)
+ fprintf(stderr,
+ "Warning: mayStore flag explicitly set on instruction '%s'"
+ " but flag already inferred from pattern.\n",
+ Inst.TheDef->getName().c_str());
+ MayStore = true;
+ }
+
+ if (Inst.mayLoad) { // If the .td file explicitly sets mayLoad, use it.
+ // If we decided that this is a load from the pattern, then the .td file
+ // entry is redundant.
+ if (MayLoad)
+ fprintf(stderr,
+ "Warning: mayLoad flag explicitly set on instruction '%s'"
+ " but flag already inferred from pattern.\n",
+ Inst.TheDef->getName().c_str());
+ MayLoad = true;
+ }
+
+ if (Inst.neverHasSideEffects) {
+ if (HadPattern)
+ fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' "
+ "which already has a pattern\n", Inst.TheDef->getName().c_str());
+ HasSideEffects = false;
+ }
+
+ if (Inst.hasSideEffects) {
+ if (HasSideEffects)
+ fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' "
+ "which already inferred this.\n", Inst.TheDef->getName().c_str());
+ HasSideEffects = true;
+ }
+}
+
+/// ParseInstructions - Parse all of the instructions, inlining and resolving
+/// any fragments involved. This populates the Instructions list with fully
+/// resolved instructions.
+void CodeGenDAGPatterns::ParseInstructions() {
+ std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
+
+ for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
+ ListInit *LI = 0;
+
+ if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
+ LI = Instrs[i]->getValueAsListInit("Pattern");
+
+ // If there is no pattern, only collect minimal information about the
+ // instruction for its operand list. We have to assume that there is one
+ // result, as we have no detailed info.
+ if (!LI || LI->getSize() == 0) {
+ std::vector<Record*> Results;
+ std::vector<Record*> Operands;
+
+ CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
+
+ if (InstInfo.OperandList.size() != 0) {
+ if (InstInfo.NumDefs == 0) {
+ // These produce no results
+ for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
+ Operands.push_back(InstInfo.OperandList[j].Rec);
+ } else {
+ // Assume the first operand is the result.
+ Results.push_back(InstInfo.OperandList[0].Rec);
+
+ // The rest are inputs.
+ for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
+ Operands.push_back(InstInfo.OperandList[j].Rec);
+ }
+ }
+
+ // Create and insert the instruction.
+ std::vector<Record*> ImpResults;
+ std::vector<Record*> ImpOperands;
+ Instructions.insert(std::make_pair(Instrs[i],
+ DAGInstruction(0, Results, Operands, ImpResults,
+ ImpOperands)));
+ continue; // no pattern.
+ }
+
+ // Parse the instruction.
+ TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
+ // Inline pattern fragments into it.
+ I->InlinePatternFragments();
+
+ // Infer as many types as possible. If we cannot infer all of them, we can
+ // never do anything with this instruction pattern: report it to the user.
+ if (!I->InferAllTypes())
+ I->error("Could not infer all types in pattern!");
+
+ // InstInputs - Keep track of all of the inputs of the instruction, along
+ // with the record they are declared as.
+ std::map<std::string, TreePatternNode*> InstInputs;
+
+ // InstResults - Keep track of all the virtual registers that are 'set'
+ // in the instruction, including what reg class they are.
+ std::map<std::string, TreePatternNode*> InstResults;
+
+ std::vector<Record*> InstImpInputs;
+ std::vector<Record*> InstImpResults;
+
+ // Verify that the top-level forms in the instruction are of void type, and
+ // fill in the InstResults map.
+ for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
+ TreePatternNode *Pat = I->getTree(j);
+ if (Pat->getExtTypeNum(0) != MVT::isVoid)
+ I->error("Top-level forms in instruction pattern should have"
+ " void types");
+
+ // Find inputs and outputs, and verify the structure of the uses/defs.
+ FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
+ InstImpInputs, InstImpResults);
+ }
+
+ // Now that we have inputs and outputs of the pattern, inspect the operands
+ // list for the instruction. This determines the order that operands are
+ // added to the machine instruction the node corresponds to.
+ unsigned NumResults = InstResults.size();
+
+ // Parse the operands list from the (ops) list, validating it.
+ assert(I->getArgList().empty() && "Args list should still be empty here!");
+ CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
+
+ // Check that all of the results occur first in the list.
+ std::vector<Record*> Results;
+ TreePatternNode *Res0Node = NULL;
+ for (unsigned i = 0; i != NumResults; ++i) {
+ if (i == CGI.OperandList.size())
+ I->error("'" + InstResults.begin()->first +
+ "' set but does not appear in operand list!");
+ const std::string &OpName = CGI.OperandList[i].Name;
+
+ // Check that it exists in InstResults.
+ TreePatternNode *RNode = InstResults[OpName];
+ if (RNode == 0)
+ I->error("Operand $" + OpName + " does not exist in operand list!");
+
+ if (i == 0)
+ Res0Node = RNode;
+ Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
+ if (R == 0)
+ I->error("Operand $" + OpName + " should be a set destination: all "
+ "outputs must occur before inputs in operand list!");
+
+ if (CGI.OperandList[i].Rec != R)
+ I->error("Operand $" + OpName + " class mismatch!");
+
+ // Remember the return type.
+ Results.push_back(CGI.OperandList[i].Rec);
+
+ // Okay, this one checks out.
+ InstResults.erase(OpName);
+ }
+
+ // Loop over the inputs next. Make a copy of InstInputs so we can destroy
+ // the copy while we're checking the inputs.
+ std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
+
+ std::vector<TreePatternNode*> ResultNodeOperands;
+ std::vector<Record*> Operands;
+ for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
+ CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i];
+ const std::string &OpName = Op.Name;
+ if (OpName.empty())
+ I->error("Operand #" + utostr(i) + " in operands list has no name!");
+
+ if (!InstInputsCheck.count(OpName)) {
+ // If this is an predicate operand or optional def operand with an
+ // DefaultOps set filled in, we can ignore this. When we codegen it,
+ // we will do so as always executed.
+ if (Op.Rec->isSubClassOf("PredicateOperand") ||
+ Op.Rec->isSubClassOf("OptionalDefOperand")) {
+ // Does it have a non-empty DefaultOps field? If so, ignore this
+ // operand.
+ if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
+ continue;
+ }
+ I->error("Operand $" + OpName +
+ " does not appear in the instruction pattern");
+ }
+ TreePatternNode *InVal = InstInputsCheck[OpName];
+ InstInputsCheck.erase(OpName); // It occurred, remove from map.
+
+ if (InVal->isLeaf() &&
+ dynamic_cast<DefInit*>(InVal->getLeafValue())) {
+ Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
+ if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
+ I->error("Operand $" + OpName + "'s register class disagrees"
+ " between the operand and pattern");
+ }
+ Operands.push_back(Op.Rec);
+
+ // Construct the result for the dest-pattern operand list.
+ TreePatternNode *OpNode = InVal->clone();
+
+ // No predicate is useful on the result.
+ OpNode->clearPredicateFns();
+
+ // Promote the xform function to be an explicit node if set.
+ if (Record *Xform = OpNode->getTransformFn()) {
+ OpNode->setTransformFn(0);
+ std::vector<TreePatternNode*> Children;
+ Children.push_back(OpNode);
+ OpNode = new TreePatternNode(Xform, Children);
+ }
+
+ ResultNodeOperands.push_back(OpNode);
+ }
+
+ if (!InstInputsCheck.empty())
+ I->error("Input operand $" + InstInputsCheck.begin()->first +
+ " occurs in pattern but not in operands list!");
+
+ TreePatternNode *ResultPattern =
+ new TreePatternNode(I->getRecord(), ResultNodeOperands);
+ // Copy fully inferred output node type to instruction result pattern.
+ if (NumResults > 0)
+ ResultPattern->setTypes(Res0Node->getExtTypes());
+
+ // Create and insert the instruction.
+ // FIXME: InstImpResults and InstImpInputs should not be part of
+ // DAGInstruction.
+ DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
+ Instructions.insert(std::make_pair(I->getRecord(), TheInst));
+
+ // Use a temporary tree pattern to infer all types and make sure that the
+ // constructed result is correct. This depends on the instruction already
+ // being inserted into the Instructions map.
+ TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
+ Temp.InferAllTypes();
+
+ DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
+ TheInsertedInst.setResultPattern(Temp.getOnlyTree());
+
+ DEBUG(I->dump());
+ }
+
+ // If we can, convert the instructions to be patterns that are matched!
+ for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
+ E = Instructions.end(); II != E; ++II) {
+ DAGInstruction &TheInst = II->second;
+ const TreePattern *I = TheInst.getPattern();
+ if (I == 0) continue; // No pattern.
+
+ // FIXME: Assume only the first tree is the pattern. The others are clobber
+ // nodes.
+ TreePatternNode *Pattern = I->getTree(0);
+ TreePatternNode *SrcPattern;
+ if (Pattern->getOperator()->getName() == "set") {
+ SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
+ } else{
+ // Not a set (store or something?)
+ SrcPattern = Pattern;
+ }
+
+ std::string Reason;
+ if (!SrcPattern->canPatternMatch(Reason, *this))
+ I->error("Instruction can never match: " + Reason);
+
+ Record *Instr = II->first;
+ TreePatternNode *DstPattern = TheInst.getResultPattern();
+ PatternsToMatch.
+ push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
+ SrcPattern, DstPattern, TheInst.getImpResults(),
+ Instr->getValueAsInt("AddedComplexity")));
+ }
+}
+
+
+void CodeGenDAGPatterns::InferInstructionFlags() {
+ std::map<std::string, CodeGenInstruction> &InstrDescs =
+ Target.getInstructions();
+ for (std::map<std::string, CodeGenInstruction>::iterator
+ II = InstrDescs.begin(), E = InstrDescs.end(); II != E; ++II) {
+ CodeGenInstruction &InstInfo = II->second;
+ // Determine properties of the instruction from its pattern.
+ bool MayStore, MayLoad, HasSideEffects;
+ InferFromPattern(InstInfo, MayStore, MayLoad, HasSideEffects, *this);
+ InstInfo.mayStore = MayStore;
+ InstInfo.mayLoad = MayLoad;
+ InstInfo.hasSideEffects = HasSideEffects;
+ }
+}
+
+void CodeGenDAGPatterns::ParsePatterns() {
+ std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
+
+ for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
+ DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
+ DefInit *OpDef = dynamic_cast<DefInit*>(Tree->getOperator());
+ Record *Operator = OpDef->getDef();
+ TreePattern *Pattern;
+ if (Operator->getName() != "parallel")
+ Pattern = new TreePattern(Patterns[i], Tree, true, *this);
+ else {
+ std::vector<Init*> Values;
+ for (unsigned j = 0, ee = Tree->getNumArgs(); j != ee; ++j)
+ Values.push_back(Tree->getArg(j));
+ ListInit *LI = new ListInit(Values);
+ Pattern = new TreePattern(Patterns[i], LI, true, *this);
+ }
+
+ // Inline pattern fragments into it.
+ Pattern->InlinePatternFragments();
+
+ ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
+ if (LI->getSize() == 0) continue; // no pattern.
+
+ // Parse the instruction.
+ TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
+
+ // Inline pattern fragments into it.
+ Result->InlinePatternFragments();
+
+ if (Result->getNumTrees() != 1)
+ Result->error("Cannot handle instructions producing instructions "
+ "with temporaries yet!");
+
+ bool IterateInference;
+ bool InferredAllPatternTypes, InferredAllResultTypes;
+ do {
+ // Infer as many types as possible. If we cannot infer all of them, we
+ // can never do anything with this pattern: report it to the user.
+ InferredAllPatternTypes = Pattern->InferAllTypes();
+
+ // Infer as many types as possible. If we cannot infer all of them, we
+ // can never do anything with this pattern: report it to the user.
+ InferredAllResultTypes = Result->InferAllTypes();
+
+ // Apply the type of the result to the source pattern. This helps us
+ // resolve cases where the input type is known to be a pointer type (which
+ // is considered resolved), but the result knows it needs to be 32- or
+ // 64-bits. Infer the other way for good measure.
+ IterateInference = Pattern->getTree(0)->
+ UpdateNodeType(Result->getTree(0)->getExtTypes(), *Result);
+ IterateInference |= Result->getTree(0)->
+ UpdateNodeType(Pattern->getTree(0)->getExtTypes(), *Result);
+ } while (IterateInference);
+
+ // Verify that we inferred enough types that we can do something with the
+ // pattern and result. If these fire the user has to add type casts.
+ if (!InferredAllPatternTypes)
+ Pattern->error("Could not infer all types in pattern!");
+ if (!InferredAllResultTypes)
+ Result->error("Could not infer all types in pattern result!");
+
+ // Validate that the input pattern is correct.
+ std::map<std::string, TreePatternNode*> InstInputs;
+ std::map<std::string, TreePatternNode*> InstResults;
+ std::vector<Record*> InstImpInputs;
+ std::vector<Record*> InstImpResults;
+ for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
+ FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
+ InstInputs, InstResults,
+ InstImpInputs, InstImpResults);
+
+ // Promote the xform function to be an explicit node if set.
+ TreePatternNode *DstPattern = Result->getOnlyTree();
+ std::vector<TreePatternNode*> ResultNodeOperands;
+ for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
+ TreePatternNode *OpNode = DstPattern->getChild(ii);
+ if (Record *Xform = OpNode->getTransformFn()) {
+ OpNode->setTransformFn(0);
+ std::vector<TreePatternNode*> Children;
+ Children.push_back(OpNode);
+ OpNode = new TreePatternNode(Xform, Children);
+ }
+ ResultNodeOperands.push_back(OpNode);
+ }
+ DstPattern = Result->getOnlyTree();
+ if (!DstPattern->isLeaf())
+ DstPattern = new TreePatternNode(DstPattern->getOperator(),
+ ResultNodeOperands);
+ DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
+ TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
+ Temp.InferAllTypes();
+
+ std::string Reason;
+ if (!Pattern->getTree(0)->canPatternMatch(Reason, *this))
+ Pattern->error("Pattern can never match: " + Reason);
+
+ PatternsToMatch.
+ push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
+ Pattern->getTree(0),
+ Temp.getOnlyTree(), InstImpResults,
+ Patterns[i]->getValueAsInt("AddedComplexity")));
+ }
+}
+
+/// CombineChildVariants - Given a bunch of permutations of each child of the
+/// 'operator' node, put them together in all possible ways.
+static void CombineChildVariants(TreePatternNode *Orig,
+ const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
+ std::vector<TreePatternNode*> &OutVariants,
+ CodeGenDAGPatterns &CDP,
+ const MultipleUseVarSet &DepVars) {
+ // Make sure that each operand has at least one variant to choose from.
+ for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
+ if (ChildVariants[i].empty())
+ return;
+
+ // The end result is an all-pairs construction of the resultant pattern.
+ std::vector<unsigned> Idxs;
+ Idxs.resize(ChildVariants.size());
+ bool NotDone;
+ do {
+#ifndef NDEBUG
+ if (DebugFlag && !Idxs.empty()) {
+ cerr << Orig->getOperator()->getName() << ": Idxs = [ ";
+ for (unsigned i = 0; i < Idxs.size(); ++i) {
+ cerr << Idxs[i] << " ";
+ }
+ cerr << "]\n";
+ }
+#endif
+ // Create the variant and add it to the output list.
+ std::vector<TreePatternNode*> NewChildren;
+ for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
+ NewChildren.push_back(ChildVariants[i][Idxs[i]]);
+ TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
+
+ // Copy over properties.
+ R->setName(Orig->getName());
+ R->setPredicateFns(Orig->getPredicateFns());
+ R->setTransformFn(Orig->getTransformFn());
+ R->setTypes(Orig->getExtTypes());
+
+ // If this pattern cannot match, do not include it as a variant.
+ std::string ErrString;
+ if (!R->canPatternMatch(ErrString, CDP)) {
+ delete R;
+ } else {
+ bool AlreadyExists = false;
+
+ // Scan to see if this pattern has already been emitted. We can get
+ // duplication due to things like commuting:
+ // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
+ // which are the same pattern. Ignore the dups.
+ for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
+ if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
+ AlreadyExists = true;
+ break;
+ }
+
+ if (AlreadyExists)
+ delete R;
+ else
+ OutVariants.push_back(R);
+ }
+
+ // Increment indices to the next permutation by incrementing the
+ // indicies from last index backward, e.g., generate the sequence
+ // [0, 0], [0, 1], [1, 0], [1, 1].
+ int IdxsIdx;
+ for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
+ if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
+ Idxs[IdxsIdx] = 0;
+ else
+ break;
+ }
+ NotDone = (IdxsIdx >= 0);
+ } while (NotDone);
+}
+
+/// CombineChildVariants - A helper function for binary operators.
+///
+static void CombineChildVariants(TreePatternNode *Orig,
+ const std::vector<TreePatternNode*> &LHS,
+ const std::vector<TreePatternNode*> &RHS,
+ std::vector<TreePatternNode*> &OutVariants,
+ CodeGenDAGPatterns &CDP,
+ const MultipleUseVarSet &DepVars) {
+ std::vector<std::vector<TreePatternNode*> > ChildVariants;
+ ChildVariants.push_back(LHS);
+ ChildVariants.push_back(RHS);
+ CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
+}
+
+
+static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
+ std::vector<TreePatternNode *> &Children) {
+ assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
+ Record *Operator = N->getOperator();
+
+ // Only permit raw nodes.
+ if (!N->getName().empty() || !N->getPredicateFns().empty() ||
+ N->getTransformFn()) {
+ Children.push_back(N);
+ return;
+ }
+
+ if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
+ Children.push_back(N->getChild(0));
+ else
+ GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
+
+ if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
+ Children.push_back(N->getChild(1));
+ else
+ GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
+}
+
+/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
+/// the (potentially recursive) pattern by using algebraic laws.
+///
+static void GenerateVariantsOf(TreePatternNode *N,
+ std::vector<TreePatternNode*> &OutVariants,
+ CodeGenDAGPatterns &CDP,
+ const MultipleUseVarSet &DepVars) {
+ // We cannot permute leaves.
+ if (N->isLeaf()) {
+ OutVariants.push_back(N);
+ return;
+ }
+
+ // Look up interesting info about the node.
+ const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
+
+ // If this node is associative, re-associate.
+ if (NodeInfo.hasProperty(SDNPAssociative)) {
+ // Re-associate by pulling together all of the linked operators
+ std::vector<TreePatternNode*> MaximalChildren;
+ GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
+
+ // Only handle child sizes of 3. Otherwise we'll end up trying too many
+ // permutations.
+ if (MaximalChildren.size() == 3) {
+ // Find the variants of all of our maximal children.
+ std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
+ GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
+ GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
+ GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
+
+ // There are only two ways we can permute the tree:
+ // (A op B) op C and A op (B op C)
+ // Within these forms, we can also permute A/B/C.
+
+ // Generate legal pair permutations of A/B/C.
+ std::vector<TreePatternNode*> ABVariants;
+ std::vector<TreePatternNode*> BAVariants;
+ std::vector<TreePatternNode*> ACVariants;
+ std::vector<TreePatternNode*> CAVariants;
+ std::vector<TreePatternNode*> BCVariants;
+ std::vector<TreePatternNode*> CBVariants;
+ CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
+ CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
+ CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
+ CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
+ CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
+ CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
+
+ // Combine those into the result: (x op x) op x
+ CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
+
+ // Combine those into the result: x op (x op x)
+ CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
+ return;
+ }
+ }
+
+ // Compute permutations of all children.
+ std::vector<std::vector<TreePatternNode*> > ChildVariants;
+ ChildVariants.resize(N->getNumChildren());
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
+ GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
+
+ // Build all permutations based on how the children were formed.
+ CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
+
+ // If this node is commutative, consider the commuted order.
+ bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
+ if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
+ assert((N->getNumChildren()==2 || isCommIntrinsic) &&
+ "Commutative but doesn't have 2 children!");
+ // Don't count children which are actually register references.
+ unsigned NC = 0;
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = N->getChild(i);
+ if (Child->isLeaf())
+ if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
+ Record *RR = DI->getDef();
+ if (RR->isSubClassOf("Register"))
+ continue;
+ }
+ NC++;
+ }
+ // Consider the commuted order.
+ if (isCommIntrinsic) {
+ // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
+ // operands are the commutative operands, and there might be more operands
+ // after those.
+ assert(NC >= 3 &&
+ "Commutative intrinsic should have at least 3 childrean!");
+ std::vector<std::vector<TreePatternNode*> > Variants;
+ Variants.push_back(ChildVariants[0]); // Intrinsic id.
+ Variants.push_back(ChildVariants[2]);
+ Variants.push_back(ChildVariants[1]);
+ for (unsigned i = 3; i != NC; ++i)
+ Variants.push_back(ChildVariants[i]);
+ CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
+ } else if (NC == 2)
+ CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
+ OutVariants, CDP, DepVars);
+ }
+}
+
+
+// GenerateVariants - Generate variants. For example, commutative patterns can
+// match multiple ways. Add them to PatternsToMatch as well.
+void CodeGenDAGPatterns::GenerateVariants() {
+ DOUT << "Generating instruction variants.\n";
+
+ // Loop over all of the patterns we've collected, checking to see if we can
+ // generate variants of the instruction, through the exploitation of
+ // identities. This permits the target to provide aggressive matching without
+ // the .td file having to contain tons of variants of instructions.
+ //
+ // Note that this loop adds new patterns to the PatternsToMatch list, but we
+ // intentionally do not reconsider these. Any variants of added patterns have
+ // already been added.
+ //
+ for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
+ MultipleUseVarSet DepVars;
+ std::vector<TreePatternNode*> Variants;
+ FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
+ DOUT << "Dependent/multiply used variables: ";
+ DEBUG(DumpDepVars(DepVars));
+ DOUT << "\n";
+ GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, DepVars);
+
+ assert(!Variants.empty() && "Must create at least original variant!");
+ Variants.erase(Variants.begin()); // Remove the original pattern.
+
+ if (Variants.empty()) // No variants for this pattern.
+ continue;
+
+ DOUT << "FOUND VARIANTS OF: ";
+ DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
+ DOUT << "\n";
+
+ for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
+ TreePatternNode *Variant = Variants[v];
+
+ DOUT << " VAR#" << v << ": ";
+ DEBUG(Variant->dump());
+ DOUT << "\n";
+
+ // Scan to see if an instruction or explicit pattern already matches this.
+ bool AlreadyExists = false;
+ for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
+ // Check to see if this variant already exists.
+ if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), DepVars)) {
+ DOUT << " *** ALREADY EXISTS, ignoring variant.\n";
+ AlreadyExists = true;
+ break;
+ }
+ }
+ // If we already have it, ignore the variant.
+ if (AlreadyExists) continue;
+
+ // Otherwise, add it to the list of patterns we have.
+ PatternsToMatch.
+ push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
+ Variant, PatternsToMatch[i].getDstPattern(),
+ PatternsToMatch[i].getDstRegs(),
+ PatternsToMatch[i].getAddedComplexity()));
+ }
+
+ DOUT << "\n";
+ }
+}
+
OpenPOWER on IntegriCloud