summaryrefslogtreecommitdiffstats
path: root/tools/bugpoint
diff options
context:
space:
mode:
authored <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
committered <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
commit3277b69d734b9c90b44ebde4ede005717e2c3b2e (patch)
tree64ba909838c23261cace781ece27d106134ea451 /tools/bugpoint
downloadFreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.zip
FreeBSD-src-3277b69d734b9c90b44ebde4ede005717e2c3b2e.tar.gz
Import LLVM, at r72732.
Diffstat (limited to 'tools/bugpoint')
-rw-r--r--tools/bugpoint/BugDriver.cpp241
-rw-r--r--tools/bugpoint/BugDriver.h322
-rw-r--r--tools/bugpoint/CMakeLists.txt16
-rw-r--r--tools/bugpoint/CrashDebugger.cpp648
-rw-r--r--tools/bugpoint/ExecutionDriver.cpp473
-rw-r--r--tools/bugpoint/ExtractFunction.cpp375
-rw-r--r--tools/bugpoint/FindBugs.cpp112
-rw-r--r--tools/bugpoint/ListReducer.h189
-rw-r--r--tools/bugpoint/Makefile17
-rw-r--r--tools/bugpoint/Miscompilation.cpp932
-rw-r--r--tools/bugpoint/OptimizerDriver.cpp266
-rw-r--r--tools/bugpoint/TestPasses.cpp75
-rw-r--r--tools/bugpoint/ToolRunner.cpp748
-rw-r--r--tools/bugpoint/ToolRunner.h230
-rw-r--r--tools/bugpoint/bugpoint.cpp104
15 files changed, 4748 insertions, 0 deletions
diff --git a/tools/bugpoint/BugDriver.cpp b/tools/bugpoint/BugDriver.cpp
new file mode 100644
index 0000000..d050b59
--- /dev/null
+++ b/tools/bugpoint/BugDriver.cpp
@@ -0,0 +1,241 @@
+//===- BugDriver.cpp - Top-Level BugPoint class implementation ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class contains all of the shared state and information that is used by
+// the BugPoint tool to track down errors in optimizations. This class is the
+// main driver class that invokes all sub-functionality.
+//
+//===----------------------------------------------------------------------===//
+
+#include "BugDriver.h"
+#include "ToolRunner.h"
+#include "llvm/Linker.h"
+#include "llvm/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Assembly/Parser.h"
+#include "llvm/Bitcode/ReaderWriter.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/FileUtilities.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <iostream>
+#include <memory>
+using namespace llvm;
+
+// Anonymous namespace to define command line options for debugging.
+//
+namespace {
+ // Output - The user can specify a file containing the expected output of the
+ // program. If this filename is set, it is used as the reference diff source,
+ // otherwise the raw input run through an interpreter is used as the reference
+ // source.
+ //
+ cl::opt<std::string>
+ OutputFile("output", cl::desc("Specify a reference program output "
+ "(for miscompilation detection)"));
+}
+
+/// setNewProgram - If we reduce or update the program somehow, call this method
+/// to update bugdriver with it. This deletes the old module and sets the
+/// specified one as the current program.
+void BugDriver::setNewProgram(Module *M) {
+ delete Program;
+ Program = M;
+}
+
+
+/// getPassesString - Turn a list of passes into a string which indicates the
+/// command line options that must be passed to add the passes.
+///
+std::string llvm::getPassesString(const std::vector<const PassInfo*> &Passes) {
+ std::string Result;
+ for (unsigned i = 0, e = Passes.size(); i != e; ++i) {
+ if (i) Result += " ";
+ Result += "-";
+ Result += Passes[i]->getPassArgument();
+ }
+ return Result;
+}
+
+BugDriver::BugDriver(const char *toolname, bool as_child, bool find_bugs,
+ unsigned timeout, unsigned memlimit)
+ : ToolName(toolname), ReferenceOutputFile(OutputFile),
+ Program(0), Interpreter(0), SafeInterpreter(0), gcc(0),
+ run_as_child(as_child),
+ run_find_bugs(find_bugs), Timeout(timeout), MemoryLimit(memlimit) {}
+
+
+/// ParseInputFile - Given a bitcode or assembly input filename, parse and
+/// return it, or return null if not possible.
+///
+Module *llvm::ParseInputFile(const std::string &Filename) {
+ std::auto_ptr<MemoryBuffer> Buffer(MemoryBuffer::getFileOrSTDIN(Filename));
+ Module *Result = 0;
+ if (Buffer.get())
+ Result = ParseBitcodeFile(Buffer.get());
+
+ ParseError Err;
+ if (!Result && !(Result = ParseAssemblyFile(Filename, Err))) {
+ Err.PrintError("bugpoint", errs());
+ Result = 0;
+ }
+
+ return Result;
+}
+
+// This method takes the specified list of LLVM input files, attempts to load
+// them, either as assembly or bitcode, then link them together. It returns
+// true on failure (if, for example, an input bitcode file could not be
+// parsed), and false on success.
+//
+bool BugDriver::addSources(const std::vector<std::string> &Filenames) {
+ assert(Program == 0 && "Cannot call addSources multiple times!");
+ assert(!Filenames.empty() && "Must specify at least on input filename!");
+
+ try {
+ // Load the first input file.
+ Program = ParseInputFile(Filenames[0]);
+ if (Program == 0) return true;
+
+ if (!run_as_child)
+ std::cout << "Read input file : '" << Filenames[0] << "'\n";
+
+ for (unsigned i = 1, e = Filenames.size(); i != e; ++i) {
+ std::auto_ptr<Module> M(ParseInputFile(Filenames[i]));
+ if (M.get() == 0) return true;
+
+ if (!run_as_child)
+ std::cout << "Linking in input file: '" << Filenames[i] << "'\n";
+ std::string ErrorMessage;
+ if (Linker::LinkModules(Program, M.get(), &ErrorMessage)) {
+ std::cerr << ToolName << ": error linking in '" << Filenames[i] << "': "
+ << ErrorMessage << '\n';
+ return true;
+ }
+ }
+ } catch (const std::string &Error) {
+ std::cerr << ToolName << ": error reading input '" << Error << "'\n";
+ return true;
+ }
+
+ if (!run_as_child)
+ std::cout << "*** All input ok\n";
+
+ // All input files read successfully!
+ return false;
+}
+
+
+
+/// run - The top level method that is invoked after all of the instance
+/// variables are set up from command line arguments.
+///
+bool BugDriver::run() {
+ // The first thing to do is determine if we're running as a child. If we are,
+ // then what to do is very narrow. This form of invocation is only called
+ // from the runPasses method to actually run those passes in a child process.
+ if (run_as_child) {
+ // Execute the passes
+ return runPassesAsChild(PassesToRun);
+ }
+
+ if (run_find_bugs) {
+ // Rearrange the passes and apply them to the program. Repeat this process
+ // until the user kills the program or we find a bug.
+ return runManyPasses(PassesToRun);
+ }
+
+ // If we're not running as a child, the first thing that we must do is
+ // determine what the problem is. Does the optimization series crash the
+ // compiler, or does it produce illegal code? We make the top-level
+ // decision by trying to run all of the passes on the the input program,
+ // which should generate a bitcode file. If it does generate a bitcode
+ // file, then we know the compiler didn't crash, so try to diagnose a
+ // miscompilation.
+ if (!PassesToRun.empty()) {
+ std::cout << "Running selected passes on program to test for crash: ";
+ if (runPasses(PassesToRun))
+ return debugOptimizerCrash();
+ }
+
+ // Set up the execution environment, selecting a method to run LLVM bitcode.
+ if (initializeExecutionEnvironment()) return true;
+
+ // Test to see if we have a code generator crash.
+ std::cout << "Running the code generator to test for a crash: ";
+ try {
+ compileProgram(Program);
+ std::cout << '\n';
+ } catch (ToolExecutionError &TEE) {
+ std::cout << TEE.what();
+ return debugCodeGeneratorCrash();
+ }
+
+
+ // Run the raw input to see where we are coming from. If a reference output
+ // was specified, make sure that the raw output matches it. If not, it's a
+ // problem in the front-end or the code generator.
+ //
+ bool CreatedOutput = false;
+ if (ReferenceOutputFile.empty()) {
+ std::cout << "Generating reference output from raw program: ";
+ if(!createReferenceFile(Program)){
+ return debugCodeGeneratorCrash();
+ }
+ CreatedOutput = true;
+ }
+
+ // Make sure the reference output file gets deleted on exit from this
+ // function, if appropriate.
+ sys::Path ROF(ReferenceOutputFile);
+ FileRemover RemoverInstance(ROF, CreatedOutput);
+
+ // Diff the output of the raw program against the reference output. If it
+ // matches, then we assume there is a miscompilation bug and try to
+ // diagnose it.
+ std::cout << "*** Checking the code generator...\n";
+ try {
+ if (!diffProgram()) {
+ std::cout << "\n*** Debugging miscompilation!\n";
+ return debugMiscompilation();
+ }
+ } catch (ToolExecutionError &TEE) {
+ std::cerr << TEE.what();
+ return debugCodeGeneratorCrash();
+ }
+
+ std::cout << "\n*** Input program does not match reference diff!\n";
+ std::cout << "Debugging code generator problem!\n";
+ try {
+ return debugCodeGenerator();
+ } catch (ToolExecutionError &TEE) {
+ std::cerr << TEE.what();
+ return debugCodeGeneratorCrash();
+ }
+}
+
+void llvm::PrintFunctionList(const std::vector<Function*> &Funcs) {
+ unsigned NumPrint = Funcs.size();
+ if (NumPrint > 10) NumPrint = 10;
+ for (unsigned i = 0; i != NumPrint; ++i)
+ std::cout << " " << Funcs[i]->getName();
+ if (NumPrint < Funcs.size())
+ std::cout << "... <" << Funcs.size() << " total>";
+ std::cout << std::flush;
+}
+
+void llvm::PrintGlobalVariableList(const std::vector<GlobalVariable*> &GVs) {
+ unsigned NumPrint = GVs.size();
+ if (NumPrint > 10) NumPrint = 10;
+ for (unsigned i = 0; i != NumPrint; ++i)
+ std::cout << " " << GVs[i]->getName();
+ if (NumPrint < GVs.size())
+ std::cout << "... <" << GVs.size() << " total>";
+ std::cout << std::flush;
+}
diff --git a/tools/bugpoint/BugDriver.h b/tools/bugpoint/BugDriver.h
new file mode 100644
index 0000000..96e9fb9
--- /dev/null
+++ b/tools/bugpoint/BugDriver.h
@@ -0,0 +1,322 @@
+//===- BugDriver.h - Top-Level BugPoint class -------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class contains all of the shared state and information that is used by
+// the BugPoint tool to track down errors in optimizations. This class is the
+// main driver class that invokes all sub-functionality.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef BUGDRIVER_H
+#define BUGDRIVER_H
+
+#include "llvm/ADT/DenseMap.h"
+#include <vector>
+#include <string>
+
+namespace llvm {
+
+class Value;
+class PassInfo;
+class Module;
+class GlobalVariable;
+class Function;
+class BasicBlock;
+class AbstractInterpreter;
+class Instruction;
+
+class DebugCrashes;
+
+class GCC;
+
+extern bool DisableSimplifyCFG;
+
+/// BugpointIsInterrupted - Set to true when the user presses ctrl-c.
+///
+extern bool BugpointIsInterrupted;
+
+class BugDriver {
+ const std::string ToolName; // Name of bugpoint
+ std::string ReferenceOutputFile; // Name of `good' output file
+ Module *Program; // The raw program, linked together
+ std::vector<const PassInfo*> PassesToRun;
+ AbstractInterpreter *Interpreter; // How to run the program
+ AbstractInterpreter *SafeInterpreter; // To generate reference output, etc.
+ GCC *gcc;
+ bool run_as_child;
+ bool run_find_bugs;
+ unsigned Timeout;
+ unsigned MemoryLimit;
+
+ // FIXME: sort out public/private distinctions...
+ friend class ReducePassList;
+ friend class ReduceMisCodegenFunctions;
+
+public:
+ BugDriver(const char *toolname, bool as_child, bool find_bugs,
+ unsigned timeout, unsigned memlimit);
+
+ const std::string &getToolName() const { return ToolName; }
+
+ // Set up methods... these methods are used to copy information about the
+ // command line arguments into instance variables of BugDriver.
+ //
+ bool addSources(const std::vector<std::string> &FileNames);
+ template<class It>
+ void addPasses(It I, It E) { PassesToRun.insert(PassesToRun.end(), I, E); }
+ void setPassesToRun(const std::vector<const PassInfo*> &PTR) {
+ PassesToRun = PTR;
+ }
+ const std::vector<const PassInfo*> &getPassesToRun() const {
+ return PassesToRun;
+ }
+
+ /// run - The top level method that is invoked after all of the instance
+ /// variables are set up from command line arguments. The \p as_child argument
+ /// indicates whether the driver is to run in parent mode or child mode.
+ ///
+ bool run();
+
+ /// debugOptimizerCrash - This method is called when some optimizer pass
+ /// crashes on input. It attempts to prune down the testcase to something
+ /// reasonable, and figure out exactly which pass is crashing.
+ ///
+ bool debugOptimizerCrash(const std::string &ID = "passes");
+
+ /// debugCodeGeneratorCrash - This method is called when the code generator
+ /// crashes on an input. It attempts to reduce the input as much as possible
+ /// while still causing the code generator to crash.
+ bool debugCodeGeneratorCrash();
+
+ /// debugMiscompilation - This method is used when the passes selected are not
+ /// crashing, but the generated output is semantically different from the
+ /// input.
+ bool debugMiscompilation();
+
+ /// debugPassMiscompilation - This method is called when the specified pass
+ /// miscompiles Program as input. It tries to reduce the testcase to
+ /// something that smaller that still miscompiles the program.
+ /// ReferenceOutput contains the filename of the file containing the output we
+ /// are to match.
+ ///
+ bool debugPassMiscompilation(const PassInfo *ThePass,
+ const std::string &ReferenceOutput);
+
+ /// compileSharedObject - This method creates a SharedObject from a given
+ /// BitcodeFile for debugging a code generator.
+ ///
+ std::string compileSharedObject(const std::string &BitcodeFile);
+
+ /// debugCodeGenerator - This method narrows down a module to a function or
+ /// set of functions, using the CBE as a ``safe'' code generator for other
+ /// functions that are not under consideration.
+ bool debugCodeGenerator();
+
+ /// isExecutingJIT - Returns true if bugpoint is currently testing the JIT
+ ///
+ bool isExecutingJIT();
+
+ /// runPasses - Run all of the passes in the "PassesToRun" list, discard the
+ /// output, and return true if any of the passes crashed.
+ bool runPasses(Module *M = 0) {
+ if (M == 0) M = Program;
+ std::swap(M, Program);
+ bool Result = runPasses(PassesToRun);
+ std::swap(M, Program);
+ return Result;
+ }
+
+ Module *getProgram() const { return Program; }
+
+ /// swapProgramIn - Set the current module to the specified module, returning
+ /// the old one.
+ Module *swapProgramIn(Module *M) {
+ Module *OldProgram = Program;
+ Program = M;
+ return OldProgram;
+ }
+
+ AbstractInterpreter *switchToSafeInterpreter() {
+ AbstractInterpreter *Old = Interpreter;
+ Interpreter = (AbstractInterpreter*)SafeInterpreter;
+ return Old;
+ }
+
+ void switchToInterpreter(AbstractInterpreter *AI) {
+ Interpreter = AI;
+ }
+
+ /// setNewProgram - If we reduce or update the program somehow, call this
+ /// method to update bugdriver with it. This deletes the old module and sets
+ /// the specified one as the current program.
+ void setNewProgram(Module *M);
+
+ /// compileProgram - Try to compile the specified module, throwing an
+ /// exception if an error occurs, or returning normally if not. This is used
+ /// for code generation crash testing.
+ ///
+ void compileProgram(Module *M);
+
+ /// executeProgram - This method runs "Program", capturing the output of the
+ /// program to a file, returning the filename of the file. A recommended
+ /// filename may be optionally specified. If there is a problem with the code
+ /// generator (e.g., llc crashes), this will throw an exception.
+ ///
+ std::string executeProgram(std::string RequestedOutputFilename = "",
+ std::string Bitcode = "",
+ const std::string &SharedObjects = "",
+ AbstractInterpreter *AI = 0,
+ bool *ProgramExitedNonzero = 0);
+
+ /// executeProgramSafely - Used to create reference output with the "safe"
+ /// backend, if reference output is not provided. If there is a problem with
+ /// the code generator (e.g., llc crashes), this will throw an exception.
+ ///
+ std::string executeProgramSafely(std::string OutputFile = "");
+
+ /// createReferenceFile - calls compileProgram and then records the output
+ /// into ReferenceOutputFile. Returns true if reference file created, false
+ /// otherwise. Note: initializeExecutionEnvironment should be called BEFORE
+ /// this function.
+ ///
+ bool createReferenceFile(Module *M, const std::string &Filename
+ = "bugpoint.reference.out");
+
+ /// diffProgram - This method executes the specified module and diffs the
+ /// output against the file specified by ReferenceOutputFile. If the output
+ /// is different, true is returned. If there is a problem with the code
+ /// generator (e.g., llc crashes), this will throw an exception.
+ ///
+ bool diffProgram(const std::string &BitcodeFile = "",
+ const std::string &SharedObj = "",
+ bool RemoveBitcode = false);
+
+ /// EmitProgressBitcode - This function is used to output the current Program
+ /// to a file named "bugpoint-ID.bc".
+ ///
+ void EmitProgressBitcode(const std::string &ID, bool NoFlyer = false);
+
+ /// deleteInstructionFromProgram - This method clones the current Program and
+ /// deletes the specified instruction from the cloned module. It then runs a
+ /// series of cleanup passes (ADCE and SimplifyCFG) to eliminate any code
+ /// which depends on the value. The modified module is then returned.
+ ///
+ Module *deleteInstructionFromProgram(const Instruction *I, unsigned Simp)
+ const;
+
+ /// performFinalCleanups - This method clones the current Program and performs
+ /// a series of cleanups intended to get rid of extra cruft on the module. If
+ /// the MayModifySemantics argument is true, then the cleanups is allowed to
+ /// modify how the code behaves.
+ ///
+ Module *performFinalCleanups(Module *M, bool MayModifySemantics = false);
+
+ /// ExtractLoop - Given a module, extract up to one loop from it into a new
+ /// function. This returns null if there are no extractable loops in the
+ /// program or if the loop extractor crashes.
+ Module *ExtractLoop(Module *M);
+
+ /// ExtractMappedBlocksFromModule - Extract all but the specified basic blocks
+ /// into their own functions. The only detail is that M is actually a module
+ /// cloned from the one the BBs are in, so some mapping needs to be performed.
+ /// If this operation fails for some reason (ie the implementation is buggy),
+ /// this function should return null, otherwise it returns a new Module.
+ Module *ExtractMappedBlocksFromModule(const std::vector<BasicBlock*> &BBs,
+ Module *M);
+
+ /// runPassesOn - Carefully run the specified set of pass on the specified
+ /// module, returning the transformed module on success, or a null pointer on
+ /// failure. If AutoDebugCrashes is set to true, then bugpoint will
+ /// automatically attempt to track down a crashing pass if one exists, and
+ /// this method will never return null.
+ Module *runPassesOn(Module *M, const std::vector<const PassInfo*> &Passes,
+ bool AutoDebugCrashes = false, unsigned NumExtraArgs = 0,
+ const char * const *ExtraArgs = NULL);
+
+ /// runPasses - Run the specified passes on Program, outputting a bitcode
+ /// file and writting the filename into OutputFile if successful. If the
+ /// optimizations fail for some reason (optimizer crashes), return true,
+ /// otherwise return false. If DeleteOutput is set to true, the bitcode is
+ /// deleted on success, and the filename string is undefined. This prints to
+ /// cout a single line message indicating whether compilation was successful
+ /// or failed, unless Quiet is set. ExtraArgs specifies additional arguments
+ /// to pass to the child bugpoint instance.
+ ///
+ bool runPasses(const std::vector<const PassInfo*> &PassesToRun,
+ std::string &OutputFilename, bool DeleteOutput = false,
+ bool Quiet = false, unsigned NumExtraArgs = 0,
+ const char * const *ExtraArgs = NULL) const;
+
+ /// runManyPasses - Take the specified pass list and create different
+ /// combinations of passes to compile the program with. Compile the program with
+ /// each set and mark test to see if it compiled correctly. If the passes
+ /// compiled correctly output nothing and rearrange the passes into a new order.
+ /// If the passes did not compile correctly, output the command required to
+ /// recreate the failure. This returns true if a compiler error is found.
+ ///
+ bool runManyPasses(const std::vector<const PassInfo*> &AllPasses);
+
+ /// writeProgramToFile - This writes the current "Program" to the named
+ /// bitcode file. If an error occurs, true is returned.
+ ///
+ bool writeProgramToFile(const std::string &Filename, Module *M = 0) const;
+
+private:
+ /// runPasses - Just like the method above, but this just returns true or
+ /// false indicating whether or not the optimizer crashed on the specified
+ /// input (true = crashed).
+ ///
+ bool runPasses(const std::vector<const PassInfo*> &PassesToRun,
+ bool DeleteOutput = true) const {
+ std::string Filename;
+ return runPasses(PassesToRun, Filename, DeleteOutput);
+ }
+
+ /// runAsChild - The actual "runPasses" guts that runs in a child process.
+ int runPassesAsChild(const std::vector<const PassInfo*> &PassesToRun);
+
+ /// initializeExecutionEnvironment - This method is used to set up the
+ /// environment for executing LLVM programs.
+ ///
+ bool initializeExecutionEnvironment();
+};
+
+/// ParseInputFile - Given a bitcode or assembly input filename, parse and
+/// return it, or return null if not possible.
+///
+Module *ParseInputFile(const std::string &InputFilename);
+
+
+/// getPassesString - Turn a list of passes into a string which indicates the
+/// command line options that must be passed to add the passes.
+///
+std::string getPassesString(const std::vector<const PassInfo*> &Passes);
+
+/// PrintFunctionList - prints out list of problematic functions
+///
+void PrintFunctionList(const std::vector<Function*> &Funcs);
+
+/// PrintGlobalVariableList - prints out list of problematic global variables
+///
+void PrintGlobalVariableList(const std::vector<GlobalVariable*> &GVs);
+
+// DeleteFunctionBody - "Remove" the function by deleting all of it's basic
+// blocks, making it external.
+//
+void DeleteFunctionBody(Function *F);
+
+/// SplitFunctionsOutOfModule - Given a module and a list of functions in the
+/// module, split the functions OUT of the specified module, and place them in
+/// the new module.
+Module *SplitFunctionsOutOfModule(Module *M, const std::vector<Function*> &F,
+ DenseMap<const Value*, Value*> &ValueMap);
+
+} // End llvm namespace
+
+#endif
diff --git a/tools/bugpoint/CMakeLists.txt b/tools/bugpoint/CMakeLists.txt
new file mode 100644
index 0000000..90f24ba
--- /dev/null
+++ b/tools/bugpoint/CMakeLists.txt
@@ -0,0 +1,16 @@
+set(LLVM_LINK_COMPONENTS asmparser instrumentation scalaropts ipo
+ linker bitreader bitwriter)
+set(LLVM_REQUIRES_EH 1)
+
+add_llvm_tool(bugpoint
+ BugDriver.cpp
+ CrashDebugger.cpp
+ ExecutionDriver.cpp
+ ExtractFunction.cpp
+ FindBugs.cpp
+ Miscompilation.cpp
+ OptimizerDriver.cpp
+ TestPasses.cpp
+ ToolRunner.cpp
+ bugpoint.cpp
+ )
diff --git a/tools/bugpoint/CrashDebugger.cpp b/tools/bugpoint/CrashDebugger.cpp
new file mode 100644
index 0000000..7daf57c
--- /dev/null
+++ b/tools/bugpoint/CrashDebugger.cpp
@@ -0,0 +1,648 @@
+//===- CrashDebugger.cpp - Debug compilation crashes ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the bugpoint internals that narrow down compilation crashes
+//
+//===----------------------------------------------------------------------===//
+
+#include "BugDriver.h"
+#include "ToolRunner.h"
+#include "ListReducer.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Instructions.h"
+#include "llvm/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/PassManager.h"
+#include "llvm/ValueSymbolTable.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Support/FileUtilities.h"
+#include "llvm/Support/CommandLine.h"
+#include <fstream>
+#include <set>
+using namespace llvm;
+
+namespace {
+ cl::opt<bool>
+ KeepMain("keep-main",
+ cl::desc("Force function reduction to keep main"),
+ cl::init(false));
+ cl::opt<bool>
+ NoGlobalRM ("disable-global-remove",
+ cl::desc("Do not remove global variables"),
+ cl::init(false));
+}
+
+namespace llvm {
+ class ReducePassList : public ListReducer<const PassInfo*> {
+ BugDriver &BD;
+ public:
+ ReducePassList(BugDriver &bd) : BD(bd) {}
+
+ // doTest - Return true iff running the "removed" passes succeeds, and
+ // running the "Kept" passes fail when run on the output of the "removed"
+ // passes. If we return true, we update the current module of bugpoint.
+ //
+ virtual TestResult doTest(std::vector<const PassInfo*> &Removed,
+ std::vector<const PassInfo*> &Kept);
+ };
+}
+
+ReducePassList::TestResult
+ReducePassList::doTest(std::vector<const PassInfo*> &Prefix,
+ std::vector<const PassInfo*> &Suffix) {
+ sys::Path PrefixOutput;
+ Module *OrigProgram = 0;
+ if (!Prefix.empty()) {
+ std::cout << "Checking to see if these passes crash: "
+ << getPassesString(Prefix) << ": ";
+ std::string PfxOutput;
+ if (BD.runPasses(Prefix, PfxOutput))
+ return KeepPrefix;
+
+ PrefixOutput.set(PfxOutput);
+ OrigProgram = BD.Program;
+
+ BD.Program = ParseInputFile(PrefixOutput.toString());
+ if (BD.Program == 0) {
+ std::cerr << BD.getToolName() << ": Error reading bitcode file '"
+ << PrefixOutput << "'!\n";
+ exit(1);
+ }
+ PrefixOutput.eraseFromDisk();
+ }
+
+ std::cout << "Checking to see if these passes crash: "
+ << getPassesString(Suffix) << ": ";
+
+ if (BD.runPasses(Suffix)) {
+ delete OrigProgram; // The suffix crashes alone...
+ return KeepSuffix;
+ }
+
+ // Nothing failed, restore state...
+ if (OrigProgram) {
+ delete BD.Program;
+ BD.Program = OrigProgram;
+ }
+ return NoFailure;
+}
+
+namespace {
+ /// ReduceCrashingGlobalVariables - This works by removing the global
+ /// variable's initializer and seeing if the program still crashes. If it
+ /// does, then we keep that program and try again.
+ ///
+ class ReduceCrashingGlobalVariables : public ListReducer<GlobalVariable*> {
+ BugDriver &BD;
+ bool (*TestFn)(BugDriver &, Module *);
+ public:
+ ReduceCrashingGlobalVariables(BugDriver &bd,
+ bool (*testFn)(BugDriver&, Module*))
+ : BD(bd), TestFn(testFn) {}
+
+ virtual TestResult doTest(std::vector<GlobalVariable*>& Prefix,
+ std::vector<GlobalVariable*>& Kept) {
+ if (!Kept.empty() && TestGlobalVariables(Kept))
+ return KeepSuffix;
+
+ if (!Prefix.empty() && TestGlobalVariables(Prefix))
+ return KeepPrefix;
+
+ return NoFailure;
+ }
+
+ bool TestGlobalVariables(std::vector<GlobalVariable*>& GVs);
+ };
+}
+
+bool
+ReduceCrashingGlobalVariables::TestGlobalVariables(
+ std::vector<GlobalVariable*>& GVs) {
+ // Clone the program to try hacking it apart...
+ DenseMap<const Value*, Value*> ValueMap;
+ Module *M = CloneModule(BD.getProgram(), ValueMap);
+
+ // Convert list to set for fast lookup...
+ std::set<GlobalVariable*> GVSet;
+
+ for (unsigned i = 0, e = GVs.size(); i != e; ++i) {
+ GlobalVariable* CMGV = cast<GlobalVariable>(ValueMap[GVs[i]]);
+ assert(CMGV && "Global Variable not in module?!");
+ GVSet.insert(CMGV);
+ }
+
+ std::cout << "Checking for crash with only these global variables: ";
+ PrintGlobalVariableList(GVs);
+ std::cout << ": ";
+
+ // Loop over and delete any global variables which we aren't supposed to be
+ // playing with...
+ for (Module::global_iterator I = M->global_begin(), E = M->global_end();
+ I != E; ++I)
+ if (I->hasInitializer() && !GVSet.count(I)) {
+ I->setInitializer(0);
+ I->setLinkage(GlobalValue::ExternalLinkage);
+ }
+
+ // Try running the hacked up program...
+ if (TestFn(BD, M)) {
+ BD.setNewProgram(M); // It crashed, keep the trimmed version...
+
+ // Make sure to use global variable pointers that point into the now-current
+ // module.
+ GVs.assign(GVSet.begin(), GVSet.end());
+ return true;
+ }
+
+ delete M;
+ return false;
+}
+
+namespace llvm {
+ /// ReduceCrashingFunctions reducer - This works by removing functions and
+ /// seeing if the program still crashes. If it does, then keep the newer,
+ /// smaller program.
+ ///
+ class ReduceCrashingFunctions : public ListReducer<Function*> {
+ BugDriver &BD;
+ bool (*TestFn)(BugDriver &, Module *);
+ public:
+ ReduceCrashingFunctions(BugDriver &bd,
+ bool (*testFn)(BugDriver &, Module *))
+ : BD(bd), TestFn(testFn) {}
+
+ virtual TestResult doTest(std::vector<Function*> &Prefix,
+ std::vector<Function*> &Kept) {
+ if (!Kept.empty() && TestFuncs(Kept))
+ return KeepSuffix;
+ if (!Prefix.empty() && TestFuncs(Prefix))
+ return KeepPrefix;
+ return NoFailure;
+ }
+
+ bool TestFuncs(std::vector<Function*> &Prefix);
+ };
+}
+
+bool ReduceCrashingFunctions::TestFuncs(std::vector<Function*> &Funcs) {
+
+ //if main isn't present, claim there is no problem
+ if (KeepMain && find(Funcs.begin(), Funcs.end(),
+ BD.getProgram()->getFunction("main")) == Funcs.end())
+ return false;
+
+ // Clone the program to try hacking it apart...
+ DenseMap<const Value*, Value*> ValueMap;
+ Module *M = CloneModule(BD.getProgram(), ValueMap);
+
+ // Convert list to set for fast lookup...
+ std::set<Function*> Functions;
+ for (unsigned i = 0, e = Funcs.size(); i != e; ++i) {
+ Function *CMF = cast<Function>(ValueMap[Funcs[i]]);
+ assert(CMF && "Function not in module?!");
+ assert(CMF->getFunctionType() == Funcs[i]->getFunctionType() && "wrong ty");
+ assert(CMF->getName() == Funcs[i]->getName() && "wrong name");
+ Functions.insert(CMF);
+ }
+
+ std::cout << "Checking for crash with only these functions: ";
+ PrintFunctionList(Funcs);
+ std::cout << ": ";
+
+ // Loop over and delete any functions which we aren't supposed to be playing
+ // with...
+ for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
+ if (!I->isDeclaration() && !Functions.count(I))
+ DeleteFunctionBody(I);
+
+ // Try running the hacked up program...
+ if (TestFn(BD, M)) {
+ BD.setNewProgram(M); // It crashed, keep the trimmed version...
+
+ // Make sure to use function pointers that point into the now-current
+ // module.
+ Funcs.assign(Functions.begin(), Functions.end());
+ return true;
+ }
+ delete M;
+ return false;
+}
+
+
+namespace {
+ /// ReduceCrashingBlocks reducer - This works by setting the terminators of
+ /// all terminators except the specified basic blocks to a 'ret' instruction,
+ /// then running the simplify-cfg pass. This has the effect of chopping up
+ /// the CFG really fast which can reduce large functions quickly.
+ ///
+ class ReduceCrashingBlocks : public ListReducer<const BasicBlock*> {
+ BugDriver &BD;
+ bool (*TestFn)(BugDriver &, Module *);
+ public:
+ ReduceCrashingBlocks(BugDriver &bd, bool (*testFn)(BugDriver &, Module *))
+ : BD(bd), TestFn(testFn) {}
+
+ virtual TestResult doTest(std::vector<const BasicBlock*> &Prefix,
+ std::vector<const BasicBlock*> &Kept) {
+ if (!Kept.empty() && TestBlocks(Kept))
+ return KeepSuffix;
+ if (!Prefix.empty() && TestBlocks(Prefix))
+ return KeepPrefix;
+ return NoFailure;
+ }
+
+ bool TestBlocks(std::vector<const BasicBlock*> &Prefix);
+ };
+}
+
+bool ReduceCrashingBlocks::TestBlocks(std::vector<const BasicBlock*> &BBs) {
+ // Clone the program to try hacking it apart...
+ DenseMap<const Value*, Value*> ValueMap;
+ Module *M = CloneModule(BD.getProgram(), ValueMap);
+
+ // Convert list to set for fast lookup...
+ SmallPtrSet<BasicBlock*, 8> Blocks;
+ for (unsigned i = 0, e = BBs.size(); i != e; ++i)
+ Blocks.insert(cast<BasicBlock>(ValueMap[BBs[i]]));
+
+ std::cout << "Checking for crash with only these blocks:";
+ unsigned NumPrint = Blocks.size();
+ if (NumPrint > 10) NumPrint = 10;
+ for (unsigned i = 0, e = NumPrint; i != e; ++i)
+ std::cout << " " << BBs[i]->getName();
+ if (NumPrint < Blocks.size())
+ std::cout << "... <" << Blocks.size() << " total>";
+ std::cout << ": ";
+
+ // Loop over and delete any hack up any blocks that are not listed...
+ for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
+ for (Function::iterator BB = I->begin(), E = I->end(); BB != E; ++BB)
+ if (!Blocks.count(BB) && BB->getTerminator()->getNumSuccessors()) {
+ // Loop over all of the successors of this block, deleting any PHI nodes
+ // that might include it.
+ for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
+ (*SI)->removePredecessor(BB);
+
+ TerminatorInst *BBTerm = BB->getTerminator();
+
+ if (isa<StructType>(BBTerm->getType()))
+ BBTerm->replaceAllUsesWith(UndefValue::get(BBTerm->getType()));
+ else if (BB->getTerminator()->getType() != Type::VoidTy)
+ BBTerm->replaceAllUsesWith(Constant::getNullValue(BBTerm->getType()));
+
+ // Replace the old terminator instruction.
+ BB->getInstList().pop_back();
+ new UnreachableInst(BB);
+ }
+
+ // The CFG Simplifier pass may delete one of the basic blocks we are
+ // interested in. If it does we need to take the block out of the list. Make
+ // a "persistent mapping" by turning basic blocks into <function, name> pairs.
+ // This won't work well if blocks are unnamed, but that is just the risk we
+ // have to take.
+ std::vector<std::pair<Function*, std::string> > BlockInfo;
+
+ for (SmallPtrSet<BasicBlock*, 8>::iterator I = Blocks.begin(),
+ E = Blocks.end(); I != E; ++I)
+ BlockInfo.push_back(std::make_pair((*I)->getParent(), (*I)->getName()));
+
+ // Now run the CFG simplify pass on the function...
+ PassManager Passes;
+ Passes.add(createCFGSimplificationPass());
+ Passes.add(createVerifierPass());
+ Passes.run(*M);
+
+ // Try running on the hacked up program...
+ if (TestFn(BD, M)) {
+ BD.setNewProgram(M); // It crashed, keep the trimmed version...
+
+ // Make sure to use basic block pointers that point into the now-current
+ // module, and that they don't include any deleted blocks.
+ BBs.clear();
+ for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) {
+ ValueSymbolTable &ST = BlockInfo[i].first->getValueSymbolTable();
+ Value* V = ST.lookup(BlockInfo[i].second);
+ if (V && V->getType() == Type::LabelTy)
+ BBs.push_back(cast<BasicBlock>(V));
+ }
+ return true;
+ }
+ delete M; // It didn't crash, try something else.
+ return false;
+}
+
+namespace {
+ /// ReduceCrashingInstructions reducer - This works by removing the specified
+ /// non-terminator instructions and replacing them with undef.
+ ///
+ class ReduceCrashingInstructions : public ListReducer<const Instruction*> {
+ BugDriver &BD;
+ bool (*TestFn)(BugDriver &, Module *);
+ public:
+ ReduceCrashingInstructions(BugDriver &bd, bool (*testFn)(BugDriver &,
+ Module *))
+ : BD(bd), TestFn(testFn) {}
+
+ virtual TestResult doTest(std::vector<const Instruction*> &Prefix,
+ std::vector<const Instruction*> &Kept) {
+ if (!Kept.empty() && TestInsts(Kept))
+ return KeepSuffix;
+ if (!Prefix.empty() && TestInsts(Prefix))
+ return KeepPrefix;
+ return NoFailure;
+ }
+
+ bool TestInsts(std::vector<const Instruction*> &Prefix);
+ };
+}
+
+bool ReduceCrashingInstructions::TestInsts(std::vector<const Instruction*>
+ &Insts) {
+ // Clone the program to try hacking it apart...
+ DenseMap<const Value*, Value*> ValueMap;
+ Module *M = CloneModule(BD.getProgram(), ValueMap);
+
+ // Convert list to set for fast lookup...
+ SmallPtrSet<Instruction*, 64> Instructions;
+ for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
+ assert(!isa<TerminatorInst>(Insts[i]));
+ Instructions.insert(cast<Instruction>(ValueMap[Insts[i]]));
+ }
+
+ std::cout << "Checking for crash with only " << Instructions.size();
+ if (Instructions.size() == 1)
+ std::cout << " instruction: ";
+ else
+ std::cout << " instructions: ";
+
+ for (Module::iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI)
+ for (Function::iterator FI = MI->begin(), FE = MI->end(); FI != FE; ++FI)
+ for (BasicBlock::iterator I = FI->begin(), E = FI->end(); I != E;) {
+ Instruction *Inst = I++;
+ if (!Instructions.count(Inst) && !isa<TerminatorInst>(Inst)) {
+ if (Inst->getType() != Type::VoidTy)
+ Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
+ Inst->eraseFromParent();
+ }
+ }
+
+ // Verify that this is still valid.
+ PassManager Passes;
+ Passes.add(createVerifierPass());
+ Passes.run(*M);
+
+ // Try running on the hacked up program...
+ if (TestFn(BD, M)) {
+ BD.setNewProgram(M); // It crashed, keep the trimmed version...
+
+ // Make sure to use instruction pointers that point into the now-current
+ // module, and that they don't include any deleted blocks.
+ Insts.clear();
+ for (SmallPtrSet<Instruction*, 64>::const_iterator I = Instructions.begin(),
+ E = Instructions.end(); I != E; ++I)
+ Insts.push_back(*I);
+ return true;
+ }
+ delete M; // It didn't crash, try something else.
+ return false;
+}
+
+/// DebugACrash - Given a predicate that determines whether a component crashes
+/// on a program, try to destructively reduce the program while still keeping
+/// the predicate true.
+static bool DebugACrash(BugDriver &BD, bool (*TestFn)(BugDriver &, Module *)) {
+ // See if we can get away with nuking some of the global variable initializers
+ // in the program...
+ if (!NoGlobalRM &&
+ BD.getProgram()->global_begin() != BD.getProgram()->global_end()) {
+ // Now try to reduce the number of global variable initializers in the
+ // module to something small.
+ Module *M = CloneModule(BD.getProgram());
+ bool DeletedInit = false;
+
+ for (Module::global_iterator I = M->global_begin(), E = M->global_end();
+ I != E; ++I)
+ if (I->hasInitializer()) {
+ I->setInitializer(0);
+ I->setLinkage(GlobalValue::ExternalLinkage);
+ DeletedInit = true;
+ }
+
+ if (!DeletedInit) {
+ delete M; // No change made...
+ } else {
+ // See if the program still causes a crash...
+ std::cout << "\nChecking to see if we can delete global inits: ";
+
+ if (TestFn(BD, M)) { // Still crashes?
+ BD.setNewProgram(M);
+ std::cout << "\n*** Able to remove all global initializers!\n";
+ } else { // No longer crashes?
+ std::cout << " - Removing all global inits hides problem!\n";
+ delete M;
+
+ std::vector<GlobalVariable*> GVs;
+
+ for (Module::global_iterator I = BD.getProgram()->global_begin(),
+ E = BD.getProgram()->global_end(); I != E; ++I)
+ if (I->hasInitializer())
+ GVs.push_back(I);
+
+ if (GVs.size() > 1 && !BugpointIsInterrupted) {
+ std::cout << "\n*** Attempting to reduce the number of global "
+ << "variables in the testcase\n";
+
+ unsigned OldSize = GVs.size();
+ ReduceCrashingGlobalVariables(BD, TestFn).reduceList(GVs);
+
+ if (GVs.size() < OldSize)
+ BD.EmitProgressBitcode("reduced-global-variables");
+ }
+ }
+ }
+ }
+
+ // Now try to reduce the number of functions in the module to something small.
+ std::vector<Function*> Functions;
+ for (Module::iterator I = BD.getProgram()->begin(),
+ E = BD.getProgram()->end(); I != E; ++I)
+ if (!I->isDeclaration())
+ Functions.push_back(I);
+
+ if (Functions.size() > 1 && !BugpointIsInterrupted) {
+ std::cout << "\n*** Attempting to reduce the number of functions "
+ "in the testcase\n";
+
+ unsigned OldSize = Functions.size();
+ ReduceCrashingFunctions(BD, TestFn).reduceList(Functions);
+
+ if (Functions.size() < OldSize)
+ BD.EmitProgressBitcode("reduced-function");
+ }
+
+ // Attempt to delete entire basic blocks at a time to speed up
+ // convergence... this actually works by setting the terminator of the blocks
+ // to a return instruction then running simplifycfg, which can potentially
+ // shrinks the code dramatically quickly
+ //
+ if (!DisableSimplifyCFG && !BugpointIsInterrupted) {
+ std::vector<const BasicBlock*> Blocks;
+ for (Module::const_iterator I = BD.getProgram()->begin(),
+ E = BD.getProgram()->end(); I != E; ++I)
+ for (Function::const_iterator FI = I->begin(), E = I->end(); FI !=E; ++FI)
+ Blocks.push_back(FI);
+ unsigned OldSize = Blocks.size();
+ ReduceCrashingBlocks(BD, TestFn).reduceList(Blocks);
+ if (Blocks.size() < OldSize)
+ BD.EmitProgressBitcode("reduced-blocks");
+ }
+
+ // Attempt to delete instructions using bisection. This should help out nasty
+ // cases with large basic blocks where the problem is at one end.
+ if (!BugpointIsInterrupted) {
+ std::vector<const Instruction*> Insts;
+ for (Module::const_iterator MI = BD.getProgram()->begin(),
+ ME = BD.getProgram()->end(); MI != ME; ++MI)
+ for (Function::const_iterator FI = MI->begin(), FE = MI->end(); FI != FE;
+ ++FI)
+ for (BasicBlock::const_iterator I = FI->begin(), E = FI->end();
+ I != E; ++I)
+ if (!isa<TerminatorInst>(I))
+ Insts.push_back(I);
+
+ ReduceCrashingInstructions(BD, TestFn).reduceList(Insts);
+ }
+
+ // FIXME: This should use the list reducer to converge faster by deleting
+ // larger chunks of instructions at a time!
+ unsigned Simplification = 2;
+ do {
+ if (BugpointIsInterrupted) break;
+ --Simplification;
+ std::cout << "\n*** Attempting to reduce testcase by deleting instruc"
+ << "tions: Simplification Level #" << Simplification << '\n';
+
+ // Now that we have deleted the functions that are unnecessary for the
+ // program, try to remove instructions that are not necessary to cause the
+ // crash. To do this, we loop through all of the instructions in the
+ // remaining functions, deleting them (replacing any values produced with
+ // nulls), and then running ADCE and SimplifyCFG. If the transformed input
+ // still triggers failure, keep deleting until we cannot trigger failure
+ // anymore.
+ //
+ unsigned InstructionsToSkipBeforeDeleting = 0;
+ TryAgain:
+
+ // Loop over all of the (non-terminator) instructions remaining in the
+ // function, attempting to delete them.
+ unsigned CurInstructionNum = 0;
+ for (Module::const_iterator FI = BD.getProgram()->begin(),
+ E = BD.getProgram()->end(); FI != E; ++FI)
+ if (!FI->isDeclaration())
+ for (Function::const_iterator BI = FI->begin(), E = FI->end(); BI != E;
+ ++BI)
+ for (BasicBlock::const_iterator I = BI->begin(), E = --BI->end();
+ I != E; ++I, ++CurInstructionNum)
+ if (InstructionsToSkipBeforeDeleting) {
+ --InstructionsToSkipBeforeDeleting;
+ } else {
+ if (BugpointIsInterrupted) goto ExitLoops;
+
+ std::cout << "Checking instruction: " << *I;
+ Module *M = BD.deleteInstructionFromProgram(I, Simplification);
+
+ // Find out if the pass still crashes on this pass...
+ if (TestFn(BD, M)) {
+ // Yup, it does, we delete the old module, and continue trying
+ // to reduce the testcase...
+ BD.setNewProgram(M);
+ InstructionsToSkipBeforeDeleting = CurInstructionNum;
+ goto TryAgain; // I wish I had a multi-level break here!
+ }
+
+ // This pass didn't crash without this instruction, try the next
+ // one.
+ delete M;
+ }
+
+ if (InstructionsToSkipBeforeDeleting) {
+ InstructionsToSkipBeforeDeleting = 0;
+ goto TryAgain;
+ }
+
+ } while (Simplification);
+ExitLoops:
+
+ // Try to clean up the testcase by running funcresolve and globaldce...
+ if (!BugpointIsInterrupted) {
+ std::cout << "\n*** Attempting to perform final cleanups: ";
+ Module *M = CloneModule(BD.getProgram());
+ M = BD.performFinalCleanups(M, true);
+
+ // Find out if the pass still crashes on the cleaned up program...
+ if (TestFn(BD, M)) {
+ BD.setNewProgram(M); // Yup, it does, keep the reduced version...
+ } else {
+ delete M;
+ }
+ }
+
+ BD.EmitProgressBitcode("reduced-simplified");
+
+ return false;
+}
+
+static bool TestForOptimizerCrash(BugDriver &BD, Module *M) {
+ return BD.runPasses(M);
+}
+
+/// debugOptimizerCrash - This method is called when some pass crashes on input.
+/// It attempts to prune down the testcase to something reasonable, and figure
+/// out exactly which pass is crashing.
+///
+bool BugDriver::debugOptimizerCrash(const std::string &ID) {
+ std::cout << "\n*** Debugging optimizer crash!\n";
+
+ // Reduce the list of passes which causes the optimizer to crash...
+ if (!BugpointIsInterrupted)
+ ReducePassList(*this).reduceList(PassesToRun);
+
+ std::cout << "\n*** Found crashing pass"
+ << (PassesToRun.size() == 1 ? ": " : "es: ")
+ << getPassesString(PassesToRun) << '\n';
+
+ EmitProgressBitcode(ID);
+
+ return DebugACrash(*this, TestForOptimizerCrash);
+}
+
+static bool TestForCodeGenCrash(BugDriver &BD, Module *M) {
+ try {
+ BD.compileProgram(M);
+ std::cerr << '\n';
+ return false;
+ } catch (ToolExecutionError &) {
+ std::cerr << "<crash>\n";
+ return true; // Tool is still crashing.
+ }
+}
+
+/// debugCodeGeneratorCrash - This method is called when the code generator
+/// crashes on an input. It attempts to reduce the input as much as possible
+/// while still causing the code generator to crash.
+bool BugDriver::debugCodeGeneratorCrash() {
+ std::cerr << "*** Debugging code generator crash!\n";
+
+ return DebugACrash(*this, TestForCodeGenCrash);
+}
diff --git a/tools/bugpoint/ExecutionDriver.cpp b/tools/bugpoint/ExecutionDriver.cpp
new file mode 100644
index 0000000..640fe28
--- /dev/null
+++ b/tools/bugpoint/ExecutionDriver.cpp
@@ -0,0 +1,473 @@
+//===- ExecutionDriver.cpp - Allow execution of LLVM program --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains code used to execute the program utilizing one of the
+// various ways of running LLVM bitcode.
+//
+//===----------------------------------------------------------------------===//
+
+#include "BugDriver.h"
+#include "ToolRunner.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/FileUtilities.h"
+#include "llvm/Support/SystemUtils.h"
+#include <fstream>
+#include <iostream>
+
+using namespace llvm;
+
+namespace {
+ // OutputType - Allow the user to specify the way code should be run, to test
+ // for miscompilation.
+ //
+ enum OutputType {
+ AutoPick, RunLLI, RunJIT, RunLLC, RunCBE, CBE_bug, LLC_Safe, Custom
+ };
+
+ cl::opt<double>
+ AbsTolerance("abs-tolerance", cl::desc("Absolute error tolerated"),
+ cl::init(0.0));
+ cl::opt<double>
+ RelTolerance("rel-tolerance", cl::desc("Relative error tolerated"),
+ cl::init(0.0));
+
+ cl::opt<OutputType>
+ InterpreterSel(cl::desc("Specify the \"test\" i.e. suspect back-end:"),
+ cl::values(clEnumValN(AutoPick, "auto", "Use best guess"),
+ clEnumValN(RunLLI, "run-int",
+ "Execute with the interpreter"),
+ clEnumValN(RunJIT, "run-jit", "Execute with JIT"),
+ clEnumValN(RunLLC, "run-llc", "Compile with LLC"),
+ clEnumValN(RunCBE, "run-cbe", "Compile with CBE"),
+ clEnumValN(CBE_bug,"cbe-bug", "Find CBE bugs"),
+ clEnumValN(LLC_Safe, "llc-safe", "Use LLC for all"),
+ clEnumValN(Custom, "run-custom",
+ "Use -exec-command to define a command to execute "
+ "the bitcode. Useful for cross-compilation."),
+ clEnumValEnd),
+ cl::init(AutoPick));
+
+ cl::opt<OutputType>
+ SafeInterpreterSel(cl::desc("Specify \"safe\" i.e. known-good backend:"),
+ cl::values(clEnumValN(AutoPick, "safe-auto", "Use best guess"),
+ clEnumValN(RunLLC, "safe-run-llc", "Compile with LLC"),
+ clEnumValN(RunCBE, "safe-run-cbe", "Compile with CBE"),
+ clEnumValN(Custom, "safe-run-custom",
+ "Use -exec-command to define a command to execute "
+ "the bitcode. Useful for cross-compilation."),
+ clEnumValEnd),
+ cl::init(AutoPick));
+
+ cl::opt<std::string>
+ SafeInterpreterPath("safe-path",
+ cl::desc("Specify the path to the \"safe\" backend program"),
+ cl::init(""));
+
+ cl::opt<bool>
+ AppendProgramExitCode("append-exit-code",
+ cl::desc("Append the exit code to the output so it gets diff'd too"),
+ cl::init(false));
+
+ cl::opt<std::string>
+ InputFile("input", cl::init("/dev/null"),
+ cl::desc("Filename to pipe in as stdin (default: /dev/null)"));
+
+ cl::list<std::string>
+ AdditionalSOs("additional-so",
+ cl::desc("Additional shared objects to load "
+ "into executing programs"));
+
+ cl::list<std::string>
+ AdditionalLinkerArgs("Xlinker",
+ cl::desc("Additional arguments to pass to the linker"));
+
+ cl::opt<std::string>
+ CustomExecCommand("exec-command", cl::init("simulate"),
+ cl::desc("Command to execute the bitcode (use with -run-custom) "
+ "(default: simulate)"));
+}
+
+namespace llvm {
+ // Anything specified after the --args option are taken as arguments to the
+ // program being debugged.
+ cl::list<std::string>
+ InputArgv("args", cl::Positional, cl::desc("<program arguments>..."),
+ cl::ZeroOrMore, cl::PositionalEatsArgs);
+}
+
+namespace {
+ cl::list<std::string>
+ ToolArgv("tool-args", cl::Positional, cl::desc("<tool arguments>..."),
+ cl::ZeroOrMore, cl::PositionalEatsArgs);
+
+ cl::list<std::string>
+ SafeToolArgv("safe-tool-args", cl::Positional,
+ cl::desc("<safe-tool arguments>..."),
+ cl::ZeroOrMore, cl::PositionalEatsArgs);
+
+ cl::list<std::string>
+ GCCToolArgv("gcc-tool-args", cl::Positional,
+ cl::desc("<gcc-tool arguments>..."),
+ cl::ZeroOrMore, cl::PositionalEatsArgs);
+}
+
+//===----------------------------------------------------------------------===//
+// BugDriver method implementation
+//
+
+/// initializeExecutionEnvironment - This method is used to set up the
+/// environment for executing LLVM programs.
+///
+bool BugDriver::initializeExecutionEnvironment() {
+ std::cout << "Initializing execution environment: ";
+
+ // Create an instance of the AbstractInterpreter interface as specified on
+ // the command line
+ SafeInterpreter = 0;
+ std::string Message;
+
+ switch (InterpreterSel) {
+ case AutoPick:
+ InterpreterSel = RunCBE;
+ Interpreter =
+ AbstractInterpreter::createCBE(getToolName(), Message, &ToolArgv,
+ &GCCToolArgv);
+ if (!Interpreter) {
+ InterpreterSel = RunJIT;
+ Interpreter = AbstractInterpreter::createJIT(getToolName(), Message,
+ &ToolArgv);
+ }
+ if (!Interpreter) {
+ InterpreterSel = RunLLC;
+ Interpreter = AbstractInterpreter::createLLC(getToolName(), Message,
+ &ToolArgv, &GCCToolArgv);
+ }
+ if (!Interpreter) {
+ InterpreterSel = RunLLI;
+ Interpreter = AbstractInterpreter::createLLI(getToolName(), Message,
+ &ToolArgv);
+ }
+ if (!Interpreter) {
+ InterpreterSel = AutoPick;
+ Message = "Sorry, I can't automatically select an interpreter!\n";
+ }
+ break;
+ case RunLLI:
+ Interpreter = AbstractInterpreter::createLLI(getToolName(), Message,
+ &ToolArgv);
+ break;
+ case RunLLC:
+ case LLC_Safe:
+ Interpreter = AbstractInterpreter::createLLC(getToolName(), Message,
+ &ToolArgv, &GCCToolArgv);
+ break;
+ case RunJIT:
+ Interpreter = AbstractInterpreter::createJIT(getToolName(), Message,
+ &ToolArgv);
+ break;
+ case RunCBE:
+ case CBE_bug:
+ Interpreter = AbstractInterpreter::createCBE(getToolName(), Message,
+ &ToolArgv, &GCCToolArgv);
+ break;
+ case Custom:
+ Interpreter = AbstractInterpreter::createCustom(getToolName(), Message,
+ CustomExecCommand);
+ break;
+ default:
+ Message = "Sorry, this back-end is not supported by bugpoint right now!\n";
+ break;
+ }
+ if (!Interpreter)
+ std::cerr << Message;
+ else // Display informational messages on stdout instead of stderr
+ std::cout << Message;
+
+ std::string Path = SafeInterpreterPath;
+ if (Path.empty())
+ Path = getToolName();
+ std::vector<std::string> SafeToolArgs = SafeToolArgv;
+ switch (SafeInterpreterSel) {
+ case AutoPick:
+ // In "cbe-bug" mode, default to using LLC as the "safe" backend.
+ if (!SafeInterpreter &&
+ InterpreterSel == CBE_bug) {
+ SafeInterpreterSel = RunLLC;
+ SafeToolArgs.push_back("--relocation-model=pic");
+ SafeInterpreter = AbstractInterpreter::createLLC(Path, Message,
+ &SafeToolArgs,
+ &GCCToolArgv);
+ }
+
+ // In "llc-safe" mode, default to using LLC as the "safe" backend.
+ if (!SafeInterpreter &&
+ InterpreterSel == LLC_Safe) {
+ SafeInterpreterSel = RunLLC;
+ SafeToolArgs.push_back("--relocation-model=pic");
+ SafeInterpreter = AbstractInterpreter::createLLC(Path, Message,
+ &SafeToolArgs,
+ &GCCToolArgv);
+ }
+
+ // Pick a backend that's different from the test backend. The JIT and
+ // LLC backends share a lot of code, so prefer to use the CBE as the
+ // safe back-end when testing them.
+ if (!SafeInterpreter &&
+ InterpreterSel != RunCBE) {
+ SafeInterpreterSel = RunCBE;
+ SafeInterpreter = AbstractInterpreter::createCBE(Path, Message,
+ &SafeToolArgs,
+ &GCCToolArgv);
+ }
+ if (!SafeInterpreter &&
+ InterpreterSel != RunLLC &&
+ InterpreterSel != RunJIT) {
+ SafeInterpreterSel = RunLLC;
+ SafeToolArgs.push_back("--relocation-model=pic");
+ SafeInterpreter = AbstractInterpreter::createLLC(Path, Message,
+ &SafeToolArgs,
+ &GCCToolArgv);
+ }
+ if (!SafeInterpreter) {
+ SafeInterpreterSel = AutoPick;
+ Message = "Sorry, I can't automatically select an interpreter!\n";
+ }
+ break;
+ case RunLLC:
+ SafeToolArgs.push_back("--relocation-model=pic");
+ SafeInterpreter = AbstractInterpreter::createLLC(Path, Message,
+ &SafeToolArgs,
+ &GCCToolArgv);
+ break;
+ case RunCBE:
+ SafeInterpreter = AbstractInterpreter::createCBE(Path, Message,
+ &SafeToolArgs,
+ &GCCToolArgv);
+ break;
+ case Custom:
+ SafeInterpreter = AbstractInterpreter::createCustom(Path, Message,
+ CustomExecCommand);
+ break;
+ default:
+ Message = "Sorry, this back-end is not supported by bugpoint as the "
+ "\"safe\" backend right now!\n";
+ break;
+ }
+ if (!SafeInterpreter) { std::cout << Message << "\nExiting.\n"; exit(1); }
+
+ gcc = GCC::create(getToolName(), Message, &GCCToolArgv);
+ if (!gcc) { std::cout << Message << "\nExiting.\n"; exit(1); }
+
+ // If there was an error creating the selected interpreter, quit with error.
+ return Interpreter == 0;
+}
+
+/// compileProgram - Try to compile the specified module, throwing an exception
+/// if an error occurs, or returning normally if not. This is used for code
+/// generation crash testing.
+///
+void BugDriver::compileProgram(Module *M) {
+ // Emit the program to a bitcode file...
+ sys::Path BitcodeFile ("bugpoint-test-program.bc");
+ std::string ErrMsg;
+ if (BitcodeFile.makeUnique(true,&ErrMsg)) {
+ std::cerr << ToolName << ": Error making unique filename: " << ErrMsg
+ << "\n";
+ exit(1);
+ }
+ if (writeProgramToFile(BitcodeFile.toString(), M)) {
+ std::cerr << ToolName << ": Error emitting bitcode to file '"
+ << BitcodeFile << "'!\n";
+ exit(1);
+ }
+
+ // Remove the temporary bitcode file when we are done.
+ FileRemover BitcodeFileRemover(BitcodeFile);
+
+ // Actually compile the program!
+ Interpreter->compileProgram(BitcodeFile.toString());
+}
+
+
+/// executeProgram - This method runs "Program", capturing the output of the
+/// program to a file, returning the filename of the file. A recommended
+/// filename may be optionally specified.
+///
+std::string BugDriver::executeProgram(std::string OutputFile,
+ std::string BitcodeFile,
+ const std::string &SharedObj,
+ AbstractInterpreter *AI,
+ bool *ProgramExitedNonzero) {
+ if (AI == 0) AI = Interpreter;
+ assert(AI && "Interpreter should have been created already!");
+ bool CreatedBitcode = false;
+ std::string ErrMsg;
+ if (BitcodeFile.empty()) {
+ // Emit the program to a bitcode file...
+ sys::Path uniqueFilename("bugpoint-test-program.bc");
+ if (uniqueFilename.makeUnique(true, &ErrMsg)) {
+ std::cerr << ToolName << ": Error making unique filename: "
+ << ErrMsg << "!\n";
+ exit(1);
+ }
+ BitcodeFile = uniqueFilename.toString();
+
+ if (writeProgramToFile(BitcodeFile, Program)) {
+ std::cerr << ToolName << ": Error emitting bitcode to file '"
+ << BitcodeFile << "'!\n";
+ exit(1);
+ }
+ CreatedBitcode = true;
+ }
+
+ // Remove the temporary bitcode file when we are done.
+ sys::Path BitcodePath (BitcodeFile);
+ FileRemover BitcodeFileRemover(BitcodePath, CreatedBitcode);
+
+ if (OutputFile.empty()) OutputFile = "bugpoint-execution-output";
+
+ // Check to see if this is a valid output filename...
+ sys::Path uniqueFile(OutputFile);
+ if (uniqueFile.makeUnique(true, &ErrMsg)) {
+ std::cerr << ToolName << ": Error making unique filename: "
+ << ErrMsg << "\n";
+ exit(1);
+ }
+ OutputFile = uniqueFile.toString();
+
+ // Figure out which shared objects to run, if any.
+ std::vector<std::string> SharedObjs(AdditionalSOs);
+ if (!SharedObj.empty())
+ SharedObjs.push_back(SharedObj);
+
+ int RetVal = AI->ExecuteProgram(BitcodeFile, InputArgv, InputFile,
+ OutputFile, AdditionalLinkerArgs, SharedObjs,
+ Timeout, MemoryLimit);
+
+ if (RetVal == -1) {
+ std::cerr << "<timeout>";
+ static bool FirstTimeout = true;
+ if (FirstTimeout) {
+ std::cout << "\n"
+ "*** Program execution timed out! This mechanism is designed to handle\n"
+ " programs stuck in infinite loops gracefully. The -timeout option\n"
+ " can be used to change the timeout threshold or disable it completely\n"
+ " (with -timeout=0). This message is only displayed once.\n";
+ FirstTimeout = false;
+ }
+ }
+
+ if (AppendProgramExitCode) {
+ std::ofstream outFile(OutputFile.c_str(), std::ios_base::app);
+ outFile << "exit " << RetVal << '\n';
+ outFile.close();
+ }
+
+ if (ProgramExitedNonzero != 0)
+ *ProgramExitedNonzero = (RetVal != 0);
+
+ // Return the filename we captured the output to.
+ return OutputFile;
+}
+
+/// executeProgramSafely - Used to create reference output with the "safe"
+/// backend, if reference output is not provided.
+///
+std::string BugDriver::executeProgramSafely(std::string OutputFile) {
+ bool ProgramExitedNonzero;
+ std::string outFN = executeProgram(OutputFile, "", "", SafeInterpreter,
+ &ProgramExitedNonzero);
+ return outFN;
+}
+
+std::string BugDriver::compileSharedObject(const std::string &BitcodeFile) {
+ assert(Interpreter && "Interpreter should have been created already!");
+ sys::Path OutputFile;
+
+ // Using the known-good backend.
+ GCC::FileType FT = SafeInterpreter->OutputCode(BitcodeFile, OutputFile);
+
+ std::string SharedObjectFile;
+ if (gcc->MakeSharedObject(OutputFile.toString(), FT,
+ SharedObjectFile, AdditionalLinkerArgs))
+ exit(1);
+
+ // Remove the intermediate C file
+ OutputFile.eraseFromDisk();
+
+ return "./" + SharedObjectFile;
+}
+
+/// createReferenceFile - calls compileProgram and then records the output
+/// into ReferenceOutputFile. Returns true if reference file created, false
+/// otherwise. Note: initializeExecutionEnvironment should be called BEFORE
+/// this function.
+///
+bool BugDriver::createReferenceFile(Module *M, const std::string &Filename) {
+ try {
+ compileProgram(Program);
+ } catch (ToolExecutionError &) {
+ return false;
+ }
+ try {
+ ReferenceOutputFile = executeProgramSafely(Filename);
+ std::cout << "\nReference output is: " << ReferenceOutputFile << "\n\n";
+ } catch (ToolExecutionError &TEE) {
+ std::cerr << TEE.what();
+ if (Interpreter != SafeInterpreter) {
+ std::cerr << "*** There is a bug running the \"safe\" backend. Either"
+ << " debug it (for example with the -run-cbe bugpoint option,"
+ << " if CBE is being used as the \"safe\" backend), or fix the"
+ << " error some other way.\n";
+ }
+ return false;
+ }
+ return true;
+}
+
+/// diffProgram - This method executes the specified module and diffs the
+/// output against the file specified by ReferenceOutputFile. If the output
+/// is different, true is returned. If there is a problem with the code
+/// generator (e.g., llc crashes), this will throw an exception.
+///
+bool BugDriver::diffProgram(const std::string &BitcodeFile,
+ const std::string &SharedObject,
+ bool RemoveBitcode) {
+ bool ProgramExitedNonzero;
+
+ // Execute the program, generating an output file...
+ sys::Path Output(executeProgram("", BitcodeFile, SharedObject, 0,
+ &ProgramExitedNonzero));
+
+ std::string Error;
+ bool FilesDifferent = false;
+ if (int Diff = DiffFilesWithTolerance(sys::Path(ReferenceOutputFile),
+ sys::Path(Output.toString()),
+ AbsTolerance, RelTolerance, &Error)) {
+ if (Diff == 2) {
+ std::cerr << "While diffing output: " << Error << '\n';
+ exit(1);
+ }
+ FilesDifferent = true;
+ }
+
+ // Remove the generated output.
+ Output.eraseFromDisk();
+
+ // Remove the bitcode file if we are supposed to.
+ if (RemoveBitcode)
+ sys::Path(BitcodeFile).eraseFromDisk();
+ return FilesDifferent;
+}
+
+bool BugDriver::isExecutingJIT() {
+ return InterpreterSel == RunJIT;
+}
+
diff --git a/tools/bugpoint/ExtractFunction.cpp b/tools/bugpoint/ExtractFunction.cpp
new file mode 100644
index 0000000..e4affbb
--- /dev/null
+++ b/tools/bugpoint/ExtractFunction.cpp
@@ -0,0 +1,375 @@
+//===- ExtractFunction.cpp - Extract a function from Program --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements several methods that are used to extract functions,
+// loops, or portions of a module from the rest of the module.
+//
+//===----------------------------------------------------------------------===//
+
+#include "BugDriver.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/PassManager.h"
+#include "llvm/Pass.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/FunctionUtils.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/FileUtilities.h"
+#include "llvm/System/Path.h"
+#include "llvm/System/Signals.h"
+#include <set>
+#include <fstream>
+#include <iostream>
+using namespace llvm;
+
+namespace llvm {
+ bool DisableSimplifyCFG = false;
+} // End llvm namespace
+
+namespace {
+ cl::opt<bool>
+ NoDCE ("disable-dce",
+ cl::desc("Do not use the -dce pass to reduce testcases"));
+ cl::opt<bool, true>
+ NoSCFG("disable-simplifycfg", cl::location(DisableSimplifyCFG),
+ cl::desc("Do not use the -simplifycfg pass to reduce testcases"));
+}
+
+/// deleteInstructionFromProgram - This method clones the current Program and
+/// deletes the specified instruction from the cloned module. It then runs a
+/// series of cleanup passes (ADCE and SimplifyCFG) to eliminate any code which
+/// depends on the value. The modified module is then returned.
+///
+Module *BugDriver::deleteInstructionFromProgram(const Instruction *I,
+ unsigned Simplification) const {
+ Module *Result = CloneModule(Program);
+
+ const BasicBlock *PBB = I->getParent();
+ const Function *PF = PBB->getParent();
+
+ Module::iterator RFI = Result->begin(); // Get iterator to corresponding fn
+ std::advance(RFI, std::distance(PF->getParent()->begin(),
+ Module::const_iterator(PF)));
+
+ Function::iterator RBI = RFI->begin(); // Get iterator to corresponding BB
+ std::advance(RBI, std::distance(PF->begin(), Function::const_iterator(PBB)));
+
+ BasicBlock::iterator RI = RBI->begin(); // Get iterator to corresponding inst
+ std::advance(RI, std::distance(PBB->begin(), BasicBlock::const_iterator(I)));
+ Instruction *TheInst = RI; // Got the corresponding instruction!
+
+ // If this instruction produces a value, replace any users with null values
+ if (isa<StructType>(TheInst->getType()))
+ TheInst->replaceAllUsesWith(UndefValue::get(TheInst->getType()));
+ else if (TheInst->getType() != Type::VoidTy)
+ TheInst->replaceAllUsesWith(Constant::getNullValue(TheInst->getType()));
+
+ // Remove the instruction from the program.
+ TheInst->getParent()->getInstList().erase(TheInst);
+
+
+ //writeProgramToFile("current.bc", Result);
+
+ // Spiff up the output a little bit.
+ PassManager Passes;
+ // Make sure that the appropriate target data is always used...
+ Passes.add(new TargetData(Result));
+
+ /// FIXME: If this used runPasses() like the methods below, we could get rid
+ /// of the -disable-* options!
+ if (Simplification > 1 && !NoDCE)
+ Passes.add(createDeadCodeEliminationPass());
+ if (Simplification && !DisableSimplifyCFG)
+ Passes.add(createCFGSimplificationPass()); // Delete dead control flow
+
+ Passes.add(createVerifierPass());
+ Passes.run(*Result);
+ return Result;
+}
+
+static const PassInfo *getPI(Pass *P) {
+ const PassInfo *PI = P->getPassInfo();
+ delete P;
+ return PI;
+}
+
+/// performFinalCleanups - This method clones the current Program and performs
+/// a series of cleanups intended to get rid of extra cruft on the module
+/// before handing it to the user.
+///
+Module *BugDriver::performFinalCleanups(Module *M, bool MayModifySemantics) {
+ // Make all functions external, so GlobalDCE doesn't delete them...
+ for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
+ I->setLinkage(GlobalValue::ExternalLinkage);
+
+ std::vector<const PassInfo*> CleanupPasses;
+ CleanupPasses.push_back(getPI(createGlobalDCEPass()));
+ CleanupPasses.push_back(getPI(createDeadTypeEliminationPass()));
+
+ if (MayModifySemantics)
+ CleanupPasses.push_back(getPI(createDeadArgHackingPass()));
+ else
+ CleanupPasses.push_back(getPI(createDeadArgEliminationPass()));
+
+ Module *New = runPassesOn(M, CleanupPasses);
+ if (New == 0) {
+ std::cerr << "Final cleanups failed. Sorry. :( Please report a bug!\n";
+ return M;
+ }
+ delete M;
+ return New;
+}
+
+
+/// ExtractLoop - Given a module, extract up to one loop from it into a new
+/// function. This returns null if there are no extractable loops in the
+/// program or if the loop extractor crashes.
+Module *BugDriver::ExtractLoop(Module *M) {
+ std::vector<const PassInfo*> LoopExtractPasses;
+ LoopExtractPasses.push_back(getPI(createSingleLoopExtractorPass()));
+
+ Module *NewM = runPassesOn(M, LoopExtractPasses);
+ if (NewM == 0) {
+ Module *Old = swapProgramIn(M);
+ std::cout << "*** Loop extraction failed: ";
+ EmitProgressBitcode("loopextraction", true);
+ std::cout << "*** Sorry. :( Please report a bug!\n";
+ swapProgramIn(Old);
+ return 0;
+ }
+
+ // Check to see if we created any new functions. If not, no loops were
+ // extracted and we should return null. Limit the number of loops we extract
+ // to avoid taking forever.
+ static unsigned NumExtracted = 32;
+ if (M->size() == NewM->size() || --NumExtracted == 0) {
+ delete NewM;
+ return 0;
+ } else {
+ assert(M->size() < NewM->size() && "Loop extract removed functions?");
+ Module::iterator MI = NewM->begin();
+ for (unsigned i = 0, e = M->size(); i != e; ++i)
+ ++MI;
+ }
+
+ return NewM;
+}
+
+
+// DeleteFunctionBody - "Remove" the function by deleting all of its basic
+// blocks, making it external.
+//
+void llvm::DeleteFunctionBody(Function *F) {
+ // delete the body of the function...
+ F->deleteBody();
+ assert(F->isDeclaration() && "This didn't make the function external!");
+}
+
+/// GetTorInit - Given a list of entries for static ctors/dtors, return them
+/// as a constant array.
+static Constant *GetTorInit(std::vector<std::pair<Function*, int> > &TorList) {
+ assert(!TorList.empty() && "Don't create empty tor list!");
+ std::vector<Constant*> ArrayElts;
+ for (unsigned i = 0, e = TorList.size(); i != e; ++i) {
+ std::vector<Constant*> Elts;
+ Elts.push_back(ConstantInt::get(Type::Int32Ty, TorList[i].second));
+ Elts.push_back(TorList[i].first);
+ ArrayElts.push_back(ConstantStruct::get(Elts));
+ }
+ return ConstantArray::get(ArrayType::get(ArrayElts[0]->getType(),
+ ArrayElts.size()),
+ ArrayElts);
+}
+
+/// SplitStaticCtorDtor - A module was recently split into two parts, M1/M2, and
+/// M1 has all of the global variables. If M2 contains any functions that are
+/// static ctors/dtors, we need to add an llvm.global_[cd]tors global to M2, and
+/// prune appropriate entries out of M1s list.
+static void SplitStaticCtorDtor(const char *GlobalName, Module *M1, Module *M2,
+ DenseMap<const Value*, Value*> ValueMap) {
+ GlobalVariable *GV = M1->getNamedGlobal(GlobalName);
+ if (!GV || GV->isDeclaration() || GV->hasLocalLinkage() ||
+ !GV->use_empty()) return;
+
+ std::vector<std::pair<Function*, int> > M1Tors, M2Tors;
+ ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
+ if (!InitList) return;
+
+ for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
+ if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
+ if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
+
+ if (CS->getOperand(1)->isNullValue())
+ break; // Found a null terminator, stop here.
+
+ ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
+ int Priority = CI ? CI->getSExtValue() : 0;
+
+ Constant *FP = CS->getOperand(1);
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
+ if (CE->isCast())
+ FP = CE->getOperand(0);
+ if (Function *F = dyn_cast<Function>(FP)) {
+ if (!F->isDeclaration())
+ M1Tors.push_back(std::make_pair(F, Priority));
+ else {
+ // Map to M2's version of the function.
+ F = cast<Function>(ValueMap[F]);
+ M2Tors.push_back(std::make_pair(F, Priority));
+ }
+ }
+ }
+ }
+
+ GV->eraseFromParent();
+ if (!M1Tors.empty()) {
+ Constant *M1Init = GetTorInit(M1Tors);
+ new GlobalVariable(M1Init->getType(), false, GlobalValue::AppendingLinkage,
+ M1Init, GlobalName, M1);
+ }
+
+ GV = M2->getNamedGlobal(GlobalName);
+ assert(GV && "Not a clone of M1?");
+ assert(GV->use_empty() && "llvm.ctors shouldn't have uses!");
+
+ GV->eraseFromParent();
+ if (!M2Tors.empty()) {
+ Constant *M2Init = GetTorInit(M2Tors);
+ new GlobalVariable(M2Init->getType(), false, GlobalValue::AppendingLinkage,
+ M2Init, GlobalName, M2);
+ }
+}
+
+
+/// SplitFunctionsOutOfModule - Given a module and a list of functions in the
+/// module, split the functions OUT of the specified module, and place them in
+/// the new module.
+Module *
+llvm::SplitFunctionsOutOfModule(Module *M,
+ const std::vector<Function*> &F,
+ DenseMap<const Value*, Value*> &ValueMap) {
+ // Make sure functions & globals are all external so that linkage
+ // between the two modules will work.
+ for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
+ I->setLinkage(GlobalValue::ExternalLinkage);
+ for (Module::global_iterator I = M->global_begin(), E = M->global_end();
+ I != E; ++I) {
+ if (I->hasName() && *I->getNameStart() == '\01')
+ I->setName(I->getNameStart()+1, I->getNameLen()-1);
+ I->setLinkage(GlobalValue::ExternalLinkage);
+ }
+
+ DenseMap<const Value*, Value*> NewValueMap;
+ Module *New = CloneModule(M, NewValueMap);
+
+ // Make sure global initializers exist only in the safe module (CBE->.so)
+ for (Module::global_iterator I = New->global_begin(), E = New->global_end();
+ I != E; ++I)
+ I->setInitializer(0); // Delete the initializer to make it external
+
+ // Remove the Test functions from the Safe module
+ std::set<Function *> TestFunctions;
+ for (unsigned i = 0, e = F.size(); i != e; ++i) {
+ Function *TNOF = cast<Function>(ValueMap[F[i]]);
+ DEBUG(std::cerr << "Removing function ");
+ DEBUG(WriteAsOperand(std::cerr, TNOF, false));
+ DEBUG(std::cerr << "\n");
+ TestFunctions.insert(cast<Function>(NewValueMap[TNOF]));
+ DeleteFunctionBody(TNOF); // Function is now external in this module!
+ }
+
+
+ // Remove the Safe functions from the Test module
+ for (Module::iterator I = New->begin(), E = New->end(); I != E; ++I)
+ if (!TestFunctions.count(I))
+ DeleteFunctionBody(I);
+
+
+ // Make sure that there is a global ctor/dtor array in both halves of the
+ // module if they both have static ctor/dtor functions.
+ SplitStaticCtorDtor("llvm.global_ctors", M, New, NewValueMap);
+ SplitStaticCtorDtor("llvm.global_dtors", M, New, NewValueMap);
+
+ return New;
+}
+
+//===----------------------------------------------------------------------===//
+// Basic Block Extraction Code
+//===----------------------------------------------------------------------===//
+
+/// ExtractMappedBlocksFromModule - Extract all but the specified basic blocks
+/// into their own functions. The only detail is that M is actually a module
+/// cloned from the one the BBs are in, so some mapping needs to be performed.
+/// If this operation fails for some reason (ie the implementation is buggy),
+/// this function should return null, otherwise it returns a new Module.
+Module *BugDriver::ExtractMappedBlocksFromModule(const
+ std::vector<BasicBlock*> &BBs,
+ Module *M) {
+ char *ExtraArg = NULL;
+
+ sys::Path uniqueFilename("bugpoint-extractblocks");
+ std::string ErrMsg;
+ if (uniqueFilename.createTemporaryFileOnDisk(true, &ErrMsg)) {
+ std::cout << "*** Basic Block extraction failed!\n";
+ std::cerr << "Error creating temporary file: " << ErrMsg << "\n";
+ M = swapProgramIn(M);
+ EmitProgressBitcode("basicblockextractfail", true);
+ swapProgramIn(M);
+ return 0;
+ }
+ sys::RemoveFileOnSignal(uniqueFilename);
+
+ std::ofstream BlocksToNotExtractFile(uniqueFilename.c_str());
+ if (!BlocksToNotExtractFile) {
+ std::cout << "*** Basic Block extraction failed!\n";
+ std::cerr << "Error writing list of blocks to not extract: " << ErrMsg
+ << "\n";
+ M = swapProgramIn(M);
+ EmitProgressBitcode("basicblockextractfail", true);
+ swapProgramIn(M);
+ return 0;
+ }
+ for (std::vector<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
+ I != E; ++I) {
+ BasicBlock *BB = *I;
+ // If the BB doesn't have a name, give it one so we have something to key
+ // off of.
+ if (!BB->hasName()) BB->setName("tmpbb");
+ BlocksToNotExtractFile << BB->getParent()->getName() << " "
+ << BB->getName() << "\n";
+ }
+ BlocksToNotExtractFile.close();
+
+ const char *uniqueFN = uniqueFilename.c_str();
+ ExtraArg = (char*)malloc(23 + strlen(uniqueFN));
+ strcat(strcpy(ExtraArg, "--extract-blocks-file="), uniqueFN);
+
+ std::vector<const PassInfo*> PI;
+ std::vector<BasicBlock *> EmptyBBs; // This parameter is ignored.
+ PI.push_back(getPI(createBlockExtractorPass(EmptyBBs)));
+ Module *Ret = runPassesOn(M, PI, false, 1, &ExtraArg);
+
+ if (uniqueFilename.exists())
+ uniqueFilename.eraseFromDisk(); // Free disk space
+ free(ExtraArg);
+
+ if (Ret == 0) {
+ std::cout << "*** Basic Block extraction failed, please report a bug!\n";
+ M = swapProgramIn(M);
+ EmitProgressBitcode("basicblockextractfail", true);
+ swapProgramIn(M);
+ }
+ return Ret;
+}
diff --git a/tools/bugpoint/FindBugs.cpp b/tools/bugpoint/FindBugs.cpp
new file mode 100644
index 0000000..e42cce4
--- /dev/null
+++ b/tools/bugpoint/FindBugs.cpp
@@ -0,0 +1,112 @@
+//===-- FindBugs.cpp - Run Many Different Optimizations -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an interface that allows bugpoint to choose different
+// combinations of optimizations to run on the selected input. Bugpoint will
+// run these optimizations and record the success/failure of each. This way
+// we can hopefully spot bugs in the optimizations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "BugDriver.h"
+#include "ToolRunner.h"
+#include "llvm/Pass.h"
+#include <algorithm>
+#include <ctime>
+#include <iostream>
+using namespace llvm;
+
+/// runManyPasses - Take the specified pass list and create different
+/// combinations of passes to compile the program with. Compile the program with
+/// each set and mark test to see if it compiled correctly. If the passes
+/// compiled correctly output nothing and rearrange the passes into a new order.
+/// If the passes did not compile correctly, output the command required to
+/// recreate the failure. This returns true if a compiler error is found.
+///
+bool BugDriver::runManyPasses(const std::vector<const PassInfo*> &AllPasses) {
+ setPassesToRun(AllPasses);
+ std::cout << "Starting bug finding procedure...\n\n";
+
+ // Creating a reference output if necessary
+ if (initializeExecutionEnvironment()) return false;
+
+ std::cout << "\n";
+ if (ReferenceOutputFile.empty()) {
+ std::cout << "Generating reference output from raw program: \n";
+ if (!createReferenceFile(Program))
+ return false;
+ }
+
+ srand(time(NULL));
+
+ unsigned num = 1;
+ while(1) {
+ //
+ // Step 1: Randomize the order of the optimizer passes.
+ //
+ std::random_shuffle(PassesToRun.begin(), PassesToRun.end());
+
+ //
+ // Step 2: Run optimizer passes on the program and check for success.
+ //
+ std::cout << "Running selected passes on program to test for crash: ";
+ for(int i = 0, e = PassesToRun.size(); i != e; i++) {
+ std::cout << "-" << PassesToRun[i]->getPassArgument( )<< " ";
+ }
+
+ std::string Filename;
+ if(runPasses(PassesToRun, Filename, false)) {
+ std::cout << "\n";
+ std::cout << "Optimizer passes caused failure!\n\n";
+ debugOptimizerCrash();
+ return true;
+ } else {
+ std::cout << "Combination " << num << " optimized successfully!\n";
+ }
+
+ //
+ // Step 3: Compile the optimized code.
+ //
+ std::cout << "Running the code generator to test for a crash: ";
+ try {
+ compileProgram(Program);
+ std::cout << '\n';
+ } catch (ToolExecutionError &TEE) {
+ std::cout << "\n*** compileProgram threw an exception: ";
+ std::cout << TEE.what();
+ return debugCodeGeneratorCrash();
+ }
+
+ //
+ // Step 4: Run the program and compare its output to the reference
+ // output (created above).
+ //
+ std::cout << "*** Checking if passes caused miscompliation:\n";
+ try {
+ if (diffProgram(Filename, "", false)) {
+ std::cout << "\n*** diffProgram returned true!\n";
+ debugMiscompilation();
+ return true;
+ } else {
+ std::cout << "\n*** diff'd output matches!\n";
+ }
+ } catch (ToolExecutionError &TEE) {
+ std::cerr << TEE.what();
+ debugCodeGeneratorCrash();
+ return true;
+ }
+
+ sys::Path(Filename).eraseFromDisk();
+
+ std::cout << "\n\n";
+ num++;
+ } //end while
+
+ // Unreachable.
+}
diff --git a/tools/bugpoint/ListReducer.h b/tools/bugpoint/ListReducer.h
new file mode 100644
index 0000000..de3f389
--- /dev/null
+++ b/tools/bugpoint/ListReducer.h
@@ -0,0 +1,189 @@
+//===- ListReducer.h - Trim down list while retaining property --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class is to be used as a base class for operations that want to zero in
+// on a subset of the input which still causes the bug we are tracking.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef BUGPOINT_LIST_REDUCER_H
+#define BUGPOINT_LIST_REDUCER_H
+
+#include <vector>
+#include <iostream>
+#include <cstdlib>
+#include <algorithm>
+
+namespace llvm {
+
+ extern bool BugpointIsInterrupted;
+
+template<typename ElTy>
+struct ListReducer {
+ enum TestResult {
+ NoFailure, // No failure of the predicate was detected
+ KeepSuffix, // The suffix alone satisfies the predicate
+ KeepPrefix // The prefix alone satisfies the predicate
+ };
+
+ virtual ~ListReducer() {}
+
+ // doTest - This virtual function should be overriden by subclasses to
+ // implement the test desired. The testcase is only required to test to see
+ // if the Kept list still satisfies the property, but if it is going to check
+ // the prefix anyway, it can.
+ //
+ virtual TestResult doTest(std::vector<ElTy> &Prefix,
+ std::vector<ElTy> &Kept) = 0;
+
+ // reduceList - This function attempts to reduce the length of the specified
+ // list while still maintaining the "test" property. This is the core of the
+ // "work" that bugpoint does.
+ //
+ bool reduceList(std::vector<ElTy> &TheList) {
+ std::vector<ElTy> empty;
+ std::srand(0x6e5ea738); // Seed the random number generator
+ switch (doTest(TheList, empty)) {
+ case KeepPrefix:
+ if (TheList.size() == 1) // we are done, it's the base case and it fails
+ return true;
+ else
+ break; // there's definitely an error, but we need to narrow it down
+
+ case KeepSuffix:
+ // cannot be reached!
+ std::cerr << "bugpoint ListReducer internal error: selected empty set.\n";
+ abort();
+
+ case NoFailure:
+ return false; // there is no failure with the full set of passes/funcs!
+ }
+
+ // Maximal number of allowed splitting iterations,
+ // before the elements are randomly shuffled.
+ const unsigned MaxIterationsWithoutProgress = 3;
+ bool ShufflingEnabled = true;
+
+Backjump:
+ unsigned MidTop = TheList.size();
+ unsigned MaxIterations = MaxIterationsWithoutProgress;
+ unsigned NumOfIterationsWithoutProgress = 0;
+ while (MidTop > 1) { // Binary split reduction loop
+ // Halt if the user presses ctrl-c.
+ if (BugpointIsInterrupted) {
+ std::cerr << "\n\n*** Reduction Interrupted, cleaning up...\n\n";
+ return true;
+ }
+
+ // If the loop doesn't make satisfying progress, try shuffling.
+ // The purpose of shuffling is to avoid the heavy tails of the
+ // distribution (improving the speed of convergence).
+ if (ShufflingEnabled &&
+ NumOfIterationsWithoutProgress > MaxIterations) {
+ std::vector<ElTy> ShuffledList(TheList);
+ std::random_shuffle(ShuffledList.begin(), ShuffledList.end());
+ std::cerr << "\n\n*** Testing shuffled set...\n\n";
+ // Check that random shuffle doesn't loose the bug
+ if (doTest(ShuffledList, empty) == KeepPrefix) {
+ // If the bug is still here, use the shuffled list.
+ TheList.swap(ShuffledList);
+ MidTop = TheList.size();
+ // Must increase the shuffling treshold to avoid the small
+ // probability of inifinite looping without making progress.
+ MaxIterations += 2;
+ std::cerr << "\n\n*** Shuffling does not hide the bug...\n\n";
+ } else {
+ ShufflingEnabled = false; // Disable shuffling further on
+ std::cerr << "\n\n*** Shuffling hides the bug...\n\n";
+ }
+ NumOfIterationsWithoutProgress = 0;
+ }
+
+ unsigned Mid = MidTop / 2;
+ std::vector<ElTy> Prefix(TheList.begin(), TheList.begin()+Mid);
+ std::vector<ElTy> Suffix(TheList.begin()+Mid, TheList.end());
+
+ switch (doTest(Prefix, Suffix)) {
+ case KeepSuffix:
+ // The property still holds. We can just drop the prefix elements, and
+ // shorten the list to the "kept" elements.
+ TheList.swap(Suffix);
+ MidTop = TheList.size();
+ // Reset progress treshold and progress counter
+ MaxIterations = MaxIterationsWithoutProgress;
+ NumOfIterationsWithoutProgress = 0;
+ break;
+ case KeepPrefix:
+ // The predicate still holds, shorten the list to the prefix elements.
+ TheList.swap(Prefix);
+ MidTop = TheList.size();
+ // Reset progress treshold and progress counter
+ MaxIterations = MaxIterationsWithoutProgress;
+ NumOfIterationsWithoutProgress = 0;
+ break;
+ case NoFailure:
+ // Otherwise the property doesn't hold. Some of the elements we removed
+ // must be necessary to maintain the property.
+ MidTop = Mid;
+ NumOfIterationsWithoutProgress++;
+ break;
+ }
+ }
+
+ // Probability of backjumping from the trimming loop back to the binary
+ // split reduction loop.
+ const int BackjumpProbability = 10;
+
+ // Okay, we trimmed as much off the top and the bottom of the list as we
+ // could. If there is more than two elements in the list, try deleting
+ // interior elements and testing that.
+ //
+ if (TheList.size() > 2) {
+ bool Changed = true;
+ std::vector<ElTy> EmptyList;
+ while (Changed) { // Trimming loop.
+ Changed = false;
+
+ // If the binary split reduction loop made an unfortunate sequence of
+ // splits, the trimming loop might be left off with a huge number of
+ // remaining elements (large search space). Backjumping out of that
+ // search space and attempting a different split can significantly
+ // improve the convergence speed.
+ if (std::rand() % 100 < BackjumpProbability)
+ goto Backjump;
+
+ for (unsigned i = 1; i < TheList.size()-1; ++i) { // Check interior elts
+ if (BugpointIsInterrupted) {
+ std::cerr << "\n\n*** Reduction Interrupted, cleaning up...\n\n";
+ return true;
+ }
+
+ std::vector<ElTy> TestList(TheList);
+ TestList.erase(TestList.begin()+i);
+
+ if (doTest(EmptyList, TestList) == KeepSuffix) {
+ // We can trim down the list!
+ TheList.swap(TestList);
+ --i; // Don't skip an element of the list
+ Changed = true;
+ }
+ }
+ // This can take a long time if left uncontrolled. For now, don't
+ // iterate.
+ break;
+ }
+ }
+
+ return true; // there are some failure and we've narrowed them down
+ }
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/tools/bugpoint/Makefile b/tools/bugpoint/Makefile
new file mode 100644
index 0000000..b821b6c
--- /dev/null
+++ b/tools/bugpoint/Makefile
@@ -0,0 +1,17 @@
+##===- tools/bugpoint/Makefile -----------------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../..
+
+TOOLNAME = bugpoint
+
+LINK_COMPONENTS := asmparser instrumentation scalaropts ipo \
+ linker bitreader bitwriter
+REQUIRES_EH := 1
+
+include $(LEVEL)/Makefile.common
diff --git a/tools/bugpoint/Miscompilation.cpp b/tools/bugpoint/Miscompilation.cpp
new file mode 100644
index 0000000..7e8ff78
--- /dev/null
+++ b/tools/bugpoint/Miscompilation.cpp
@@ -0,0 +1,932 @@
+//===- Miscompilation.cpp - Debug program miscompilations -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements optimizer and code generation miscompilation debugging
+// support.
+//
+//===----------------------------------------------------------------------===//
+
+#include "BugDriver.h"
+#include "ListReducer.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Instructions.h"
+#include "llvm/Linker.h"
+#include "llvm/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/Support/Mangler.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/FileUtilities.h"
+#include "llvm/Config/config.h" // for HAVE_LINK_R
+using namespace llvm;
+
+namespace llvm {
+ extern cl::list<std::string> InputArgv;
+}
+
+namespace {
+ static llvm::cl::opt<bool>
+ DisableLoopExtraction("disable-loop-extraction",
+ cl::desc("Don't extract loops when searching for miscompilations"),
+ cl::init(false));
+
+ class ReduceMiscompilingPasses : public ListReducer<const PassInfo*> {
+ BugDriver &BD;
+ public:
+ ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
+
+ virtual TestResult doTest(std::vector<const PassInfo*> &Prefix,
+ std::vector<const PassInfo*> &Suffix);
+ };
+}
+
+/// TestResult - After passes have been split into a test group and a control
+/// group, see if they still break the program.
+///
+ReduceMiscompilingPasses::TestResult
+ReduceMiscompilingPasses::doTest(std::vector<const PassInfo*> &Prefix,
+ std::vector<const PassInfo*> &Suffix) {
+ // First, run the program with just the Suffix passes. If it is still broken
+ // with JUST the kept passes, discard the prefix passes.
+ std::cout << "Checking to see if '" << getPassesString(Suffix)
+ << "' compile correctly: ";
+
+ std::string BitcodeResult;
+ if (BD.runPasses(Suffix, BitcodeResult, false/*delete*/, true/*quiet*/)) {
+ std::cerr << " Error running this sequence of passes"
+ << " on the input program!\n";
+ BD.setPassesToRun(Suffix);
+ BD.EmitProgressBitcode("pass-error", false);
+ exit(BD.debugOptimizerCrash());
+ }
+
+ // Check to see if the finished program matches the reference output...
+ if (BD.diffProgram(BitcodeResult, "", true /*delete bitcode*/)) {
+ std::cout << " nope.\n";
+ if (Suffix.empty()) {
+ std::cerr << BD.getToolName() << ": I'm confused: the test fails when "
+ << "no passes are run, nondeterministic program?\n";
+ exit(1);
+ }
+ return KeepSuffix; // Miscompilation detected!
+ }
+ std::cout << " yup.\n"; // No miscompilation!
+
+ if (Prefix.empty()) return NoFailure;
+
+ // Next, see if the program is broken if we run the "prefix" passes first,
+ // then separately run the "kept" passes.
+ std::cout << "Checking to see if '" << getPassesString(Prefix)
+ << "' compile correctly: ";
+
+ // If it is not broken with the kept passes, it's possible that the prefix
+ // passes must be run before the kept passes to break it. If the program
+ // WORKS after the prefix passes, but then fails if running the prefix AND
+ // kept passes, we can update our bitcode file to include the result of the
+ // prefix passes, then discard the prefix passes.
+ //
+ if (BD.runPasses(Prefix, BitcodeResult, false/*delete*/, true/*quiet*/)) {
+ std::cerr << " Error running this sequence of passes"
+ << " on the input program!\n";
+ BD.setPassesToRun(Prefix);
+ BD.EmitProgressBitcode("pass-error", false);
+ exit(BD.debugOptimizerCrash());
+ }
+
+ // If the prefix maintains the predicate by itself, only keep the prefix!
+ if (BD.diffProgram(BitcodeResult)) {
+ std::cout << " nope.\n";
+ sys::Path(BitcodeResult).eraseFromDisk();
+ return KeepPrefix;
+ }
+ std::cout << " yup.\n"; // No miscompilation!
+
+ // Ok, so now we know that the prefix passes work, try running the suffix
+ // passes on the result of the prefix passes.
+ //
+ Module *PrefixOutput = ParseInputFile(BitcodeResult);
+ if (PrefixOutput == 0) {
+ std::cerr << BD.getToolName() << ": Error reading bitcode file '"
+ << BitcodeResult << "'!\n";
+ exit(1);
+ }
+ sys::Path(BitcodeResult).eraseFromDisk(); // No longer need the file on disk
+
+ // Don't check if there are no passes in the suffix.
+ if (Suffix.empty())
+ return NoFailure;
+
+ std::cout << "Checking to see if '" << getPassesString(Suffix)
+ << "' passes compile correctly after the '"
+ << getPassesString(Prefix) << "' passes: ";
+
+ Module *OriginalInput = BD.swapProgramIn(PrefixOutput);
+ if (BD.runPasses(Suffix, BitcodeResult, false/*delete*/, true/*quiet*/)) {
+ std::cerr << " Error running this sequence of passes"
+ << " on the input program!\n";
+ BD.setPassesToRun(Suffix);
+ BD.EmitProgressBitcode("pass-error", false);
+ exit(BD.debugOptimizerCrash());
+ }
+
+ // Run the result...
+ if (BD.diffProgram(BitcodeResult, "", true/*delete bitcode*/)) {
+ std::cout << " nope.\n";
+ delete OriginalInput; // We pruned down the original input...
+ return KeepSuffix;
+ }
+
+ // Otherwise, we must not be running the bad pass anymore.
+ std::cout << " yup.\n"; // No miscompilation!
+ delete BD.swapProgramIn(OriginalInput); // Restore orig program & free test
+ return NoFailure;
+}
+
+namespace {
+ class ReduceMiscompilingFunctions : public ListReducer<Function*> {
+ BugDriver &BD;
+ bool (*TestFn)(BugDriver &, Module *, Module *);
+ public:
+ ReduceMiscompilingFunctions(BugDriver &bd,
+ bool (*F)(BugDriver &, Module *, Module *))
+ : BD(bd), TestFn(F) {}
+
+ virtual TestResult doTest(std::vector<Function*> &Prefix,
+ std::vector<Function*> &Suffix) {
+ if (!Suffix.empty() && TestFuncs(Suffix))
+ return KeepSuffix;
+ if (!Prefix.empty() && TestFuncs(Prefix))
+ return KeepPrefix;
+ return NoFailure;
+ }
+
+ bool TestFuncs(const std::vector<Function*> &Prefix);
+ };
+}
+
+/// TestMergedProgram - Given two modules, link them together and run the
+/// program, checking to see if the program matches the diff. If the diff
+/// matches, return false, otherwise return true. If the DeleteInputs argument
+/// is set to true then this function deletes both input modules before it
+/// returns.
+///
+static bool TestMergedProgram(BugDriver &BD, Module *M1, Module *M2,
+ bool DeleteInputs) {
+ // Link the two portions of the program back to together.
+ std::string ErrorMsg;
+ if (!DeleteInputs) {
+ M1 = CloneModule(M1);
+ M2 = CloneModule(M2);
+ }
+ if (Linker::LinkModules(M1, M2, &ErrorMsg)) {
+ std::cerr << BD.getToolName() << ": Error linking modules together:"
+ << ErrorMsg << '\n';
+ exit(1);
+ }
+ delete M2; // We are done with this module.
+
+ Module *OldProgram = BD.swapProgramIn(M1);
+
+ // Execute the program. If it does not match the expected output, we must
+ // return true.
+ bool Broken = BD.diffProgram();
+
+ // Delete the linked module & restore the original
+ BD.swapProgramIn(OldProgram);
+ delete M1;
+ return Broken;
+}
+
+/// TestFuncs - split functions in a Module into two groups: those that are
+/// under consideration for miscompilation vs. those that are not, and test
+/// accordingly. Each group of functions becomes a separate Module.
+///
+bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*>&Funcs){
+ // Test to see if the function is misoptimized if we ONLY run it on the
+ // functions listed in Funcs.
+ std::cout << "Checking to see if the program is misoptimized when "
+ << (Funcs.size()==1 ? "this function is" : "these functions are")
+ << " run through the pass"
+ << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
+ PrintFunctionList(Funcs);
+ std::cout << '\n';
+
+ // Split the module into the two halves of the program we want.
+ DenseMap<const Value*, Value*> ValueMap;
+ Module *ToNotOptimize = CloneModule(BD.getProgram(), ValueMap);
+ Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, Funcs,
+ ValueMap);
+
+ // Run the predicate, note that the predicate will delete both input modules.
+ return TestFn(BD, ToOptimize, ToNotOptimize);
+}
+
+/// DisambiguateGlobalSymbols - Mangle symbols to guarantee uniqueness by
+/// modifying predominantly internal symbols rather than external ones.
+///
+static void DisambiguateGlobalSymbols(Module *M) {
+ // Try not to cause collisions by minimizing chances of renaming an
+ // already-external symbol, so take in external globals and functions as-is.
+ // The code should work correctly without disambiguation (assuming the same
+ // mangler is used by the two code generators), but having symbols with the
+ // same name causes warnings to be emitted by the code generator.
+ Mangler Mang(*M);
+ // Agree with the CBE on symbol naming
+ Mang.markCharUnacceptable('.');
+ Mang.setPreserveAsmNames(true);
+ for (Module::global_iterator I = M->global_begin(), E = M->global_end();
+ I != E; ++I)
+ I->setName(Mang.getValueName(I));
+ for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
+ I->setName(Mang.getValueName(I));
+}
+
+/// ExtractLoops - Given a reduced list of functions that still exposed the bug,
+/// check to see if we can extract the loops in the region without obscuring the
+/// bug. If so, it reduces the amount of code identified.
+///
+static bool ExtractLoops(BugDriver &BD,
+ bool (*TestFn)(BugDriver &, Module *, Module *),
+ std::vector<Function*> &MiscompiledFunctions) {
+ bool MadeChange = false;
+ while (1) {
+ if (BugpointIsInterrupted) return MadeChange;
+
+ DenseMap<const Value*, Value*> ValueMap;
+ Module *ToNotOptimize = CloneModule(BD.getProgram(), ValueMap);
+ Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
+ MiscompiledFunctions,
+ ValueMap);
+ Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize);
+ if (!ToOptimizeLoopExtracted) {
+ // If the loop extractor crashed or if there were no extractible loops,
+ // then this chapter of our odyssey is over with.
+ delete ToNotOptimize;
+ delete ToOptimize;
+ return MadeChange;
+ }
+
+ std::cerr << "Extracted a loop from the breaking portion of the program.\n";
+
+ // Bugpoint is intentionally not very trusting of LLVM transformations. In
+ // particular, we're not going to assume that the loop extractor works, so
+ // we're going to test the newly loop extracted program to make sure nothing
+ // has broken. If something broke, then we'll inform the user and stop
+ // extraction.
+ AbstractInterpreter *AI = BD.switchToSafeInterpreter();
+ if (TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, false)) {
+ BD.switchToInterpreter(AI);
+
+ // Merged program doesn't work anymore!
+ std::cerr << " *** ERROR: Loop extraction broke the program. :("
+ << " Please report a bug!\n";
+ std::cerr << " Continuing on with un-loop-extracted version.\n";
+
+ BD.writeProgramToFile("bugpoint-loop-extract-fail-tno.bc", ToNotOptimize);
+ BD.writeProgramToFile("bugpoint-loop-extract-fail-to.bc", ToOptimize);
+ BD.writeProgramToFile("bugpoint-loop-extract-fail-to-le.bc",
+ ToOptimizeLoopExtracted);
+
+ std::cerr << "Please submit the bugpoint-loop-extract-fail-*.bc files.\n";
+ delete ToOptimize;
+ delete ToNotOptimize;
+ delete ToOptimizeLoopExtracted;
+ return MadeChange;
+ }
+ delete ToOptimize;
+ BD.switchToInterpreter(AI);
+
+ std::cout << " Testing after loop extraction:\n";
+ // Clone modules, the tester function will free them.
+ Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted);
+ Module *TNOBackup = CloneModule(ToNotOptimize);
+ if (!TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize)) {
+ std::cout << "*** Loop extraction masked the problem. Undoing.\n";
+ // If the program is not still broken, then loop extraction did something
+ // that masked the error. Stop loop extraction now.
+ delete TOLEBackup;
+ delete TNOBackup;
+ return MadeChange;
+ }
+ ToOptimizeLoopExtracted = TOLEBackup;
+ ToNotOptimize = TNOBackup;
+
+ std::cout << "*** Loop extraction successful!\n";
+
+ std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
+ for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
+ E = ToOptimizeLoopExtracted->end(); I != E; ++I)
+ if (!I->isDeclaration())
+ MisCompFunctions.push_back(std::make_pair(I->getName(),
+ I->getFunctionType()));
+
+ // Okay, great! Now we know that we extracted a loop and that loop
+ // extraction both didn't break the program, and didn't mask the problem.
+ // Replace the current program with the loop extracted version, and try to
+ // extract another loop.
+ std::string ErrorMsg;
+ if (Linker::LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, &ErrorMsg)){
+ std::cerr << BD.getToolName() << ": Error linking modules together:"
+ << ErrorMsg << '\n';
+ exit(1);
+ }
+ delete ToOptimizeLoopExtracted;
+
+ // All of the Function*'s in the MiscompiledFunctions list are in the old
+ // module. Update this list to include all of the functions in the
+ // optimized and loop extracted module.
+ MiscompiledFunctions.clear();
+ for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
+ Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first);
+
+ assert(NewF && "Function not found??");
+ assert(NewF->getFunctionType() == MisCompFunctions[i].second &&
+ "found wrong function type?");
+ MiscompiledFunctions.push_back(NewF);
+ }
+
+ BD.setNewProgram(ToNotOptimize);
+ MadeChange = true;
+ }
+}
+
+namespace {
+ class ReduceMiscompiledBlocks : public ListReducer<BasicBlock*> {
+ BugDriver &BD;
+ bool (*TestFn)(BugDriver &, Module *, Module *);
+ std::vector<Function*> FunctionsBeingTested;
+ public:
+ ReduceMiscompiledBlocks(BugDriver &bd,
+ bool (*F)(BugDriver &, Module *, Module *),
+ const std::vector<Function*> &Fns)
+ : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {}
+
+ virtual TestResult doTest(std::vector<BasicBlock*> &Prefix,
+ std::vector<BasicBlock*> &Suffix) {
+ if (!Suffix.empty() && TestFuncs(Suffix))
+ return KeepSuffix;
+ if (TestFuncs(Prefix))
+ return KeepPrefix;
+ return NoFailure;
+ }
+
+ bool TestFuncs(const std::vector<BasicBlock*> &Prefix);
+ };
+}
+
+/// TestFuncs - Extract all blocks for the miscompiled functions except for the
+/// specified blocks. If the problem still exists, return true.
+///
+bool ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock*> &BBs) {
+ // Test to see if the function is misoptimized if we ONLY run it on the
+ // functions listed in Funcs.
+ std::cout << "Checking to see if the program is misoptimized when all ";
+ if (!BBs.empty()) {
+ std::cout << "but these " << BBs.size() << " blocks are extracted: ";
+ for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i)
+ std::cout << BBs[i]->getName() << " ";
+ if (BBs.size() > 10) std::cout << "...";
+ } else {
+ std::cout << "blocks are extracted.";
+ }
+ std::cout << '\n';
+
+ // Split the module into the two halves of the program we want.
+ DenseMap<const Value*, Value*> ValueMap;
+ Module *ToNotOptimize = CloneModule(BD.getProgram(), ValueMap);
+ Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
+ FunctionsBeingTested,
+ ValueMap);
+
+ // Try the extraction. If it doesn't work, then the block extractor crashed
+ // or something, in which case bugpoint can't chase down this possibility.
+ if (Module *New = BD.ExtractMappedBlocksFromModule(BBs, ToOptimize)) {
+ delete ToOptimize;
+ // Run the predicate, not that the predicate will delete both input modules.
+ return TestFn(BD, New, ToNotOptimize);
+ }
+ delete ToOptimize;
+ delete ToNotOptimize;
+ return false;
+}
+
+
+/// ExtractBlocks - Given a reduced list of functions that still expose the bug,
+/// extract as many basic blocks from the region as possible without obscuring
+/// the bug.
+///
+static bool ExtractBlocks(BugDriver &BD,
+ bool (*TestFn)(BugDriver &, Module *, Module *),
+ std::vector<Function*> &MiscompiledFunctions) {
+ if (BugpointIsInterrupted) return false;
+
+ std::vector<BasicBlock*> Blocks;
+ for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
+ for (Function::iterator I = MiscompiledFunctions[i]->begin(),
+ E = MiscompiledFunctions[i]->end(); I != E; ++I)
+ Blocks.push_back(I);
+
+ // Use the list reducer to identify blocks that can be extracted without
+ // obscuring the bug. The Blocks list will end up containing blocks that must
+ // be retained from the original program.
+ unsigned OldSize = Blocks.size();
+
+ // Check to see if all blocks are extractible first.
+ if (ReduceMiscompiledBlocks(BD, TestFn,
+ MiscompiledFunctions).TestFuncs(std::vector<BasicBlock*>())) {
+ Blocks.clear();
+ } else {
+ ReduceMiscompiledBlocks(BD, TestFn,MiscompiledFunctions).reduceList(Blocks);
+ if (Blocks.size() == OldSize)
+ return false;
+ }
+
+ DenseMap<const Value*, Value*> ValueMap;
+ Module *ProgClone = CloneModule(BD.getProgram(), ValueMap);
+ Module *ToExtract = SplitFunctionsOutOfModule(ProgClone,
+ MiscompiledFunctions,
+ ValueMap);
+ Module *Extracted = BD.ExtractMappedBlocksFromModule(Blocks, ToExtract);
+ if (Extracted == 0) {
+ // Weird, extraction should have worked.
+ std::cerr << "Nondeterministic problem extracting blocks??\n";
+ delete ProgClone;
+ delete ToExtract;
+ return false;
+ }
+
+ // Otherwise, block extraction succeeded. Link the two program fragments back
+ // together.
+ delete ToExtract;
+
+ std::vector<std::pair<std::string, const FunctionType*> > MisCompFunctions;
+ for (Module::iterator I = Extracted->begin(), E = Extracted->end();
+ I != E; ++I)
+ if (!I->isDeclaration())
+ MisCompFunctions.push_back(std::make_pair(I->getName(),
+ I->getFunctionType()));
+
+ std::string ErrorMsg;
+ if (Linker::LinkModules(ProgClone, Extracted, &ErrorMsg)) {
+ std::cerr << BD.getToolName() << ": Error linking modules together:"
+ << ErrorMsg << '\n';
+ exit(1);
+ }
+ delete Extracted;
+
+ // Set the new program and delete the old one.
+ BD.setNewProgram(ProgClone);
+
+ // Update the list of miscompiled functions.
+ MiscompiledFunctions.clear();
+
+ for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
+ Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first);
+ assert(NewF && "Function not found??");
+ assert(NewF->getFunctionType() == MisCompFunctions[i].second &&
+ "Function has wrong type??");
+ MiscompiledFunctions.push_back(NewF);
+ }
+
+ return true;
+}
+
+
+/// DebugAMiscompilation - This is a generic driver to narrow down
+/// miscompilations, either in an optimization or a code generator.
+///
+static std::vector<Function*>
+DebugAMiscompilation(BugDriver &BD,
+ bool (*TestFn)(BugDriver &, Module *, Module *)) {
+ // Okay, now that we have reduced the list of passes which are causing the
+ // failure, see if we can pin down which functions are being
+ // miscompiled... first build a list of all of the non-external functions in
+ // the program.
+ std::vector<Function*> MiscompiledFunctions;
+ Module *Prog = BD.getProgram();
+ for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I)
+ if (!I->isDeclaration())
+ MiscompiledFunctions.push_back(I);
+
+ // Do the reduction...
+ if (!BugpointIsInterrupted)
+ ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
+
+ std::cout << "\n*** The following function"
+ << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
+ << " being miscompiled: ";
+ PrintFunctionList(MiscompiledFunctions);
+ std::cout << '\n';
+
+ // See if we can rip any loops out of the miscompiled functions and still
+ // trigger the problem.
+
+ if (!BugpointIsInterrupted && !DisableLoopExtraction &&
+ ExtractLoops(BD, TestFn, MiscompiledFunctions)) {
+ // Okay, we extracted some loops and the problem still appears. See if we
+ // can eliminate some of the created functions from being candidates.
+
+ // Loop extraction can introduce functions with the same name (foo_code).
+ // Make sure to disambiguate the symbols so that when the program is split
+ // apart that we can link it back together again.
+ DisambiguateGlobalSymbols(BD.getProgram());
+
+ // Do the reduction...
+ if (!BugpointIsInterrupted)
+ ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
+
+ std::cout << "\n*** The following function"
+ << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
+ << " being miscompiled: ";
+ PrintFunctionList(MiscompiledFunctions);
+ std::cout << '\n';
+ }
+
+ if (!BugpointIsInterrupted &&
+ ExtractBlocks(BD, TestFn, MiscompiledFunctions)) {
+ // Okay, we extracted some blocks and the problem still appears. See if we
+ // can eliminate some of the created functions from being candidates.
+
+ // Block extraction can introduce functions with the same name (foo_code).
+ // Make sure to disambiguate the symbols so that when the program is split
+ // apart that we can link it back together again.
+ DisambiguateGlobalSymbols(BD.getProgram());
+
+ // Do the reduction...
+ ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions);
+
+ std::cout << "\n*** The following function"
+ << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
+ << " being miscompiled: ";
+ PrintFunctionList(MiscompiledFunctions);
+ std::cout << '\n';
+ }
+
+ return MiscompiledFunctions;
+}
+
+/// TestOptimizer - This is the predicate function used to check to see if the
+/// "Test" portion of the program is misoptimized. If so, return true. In any
+/// case, both module arguments are deleted.
+///
+static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe) {
+ // Run the optimization passes on ToOptimize, producing a transformed version
+ // of the functions being tested.
+ std::cout << " Optimizing functions being tested: ";
+ Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(),
+ /*AutoDebugCrashes*/true);
+ std::cout << "done.\n";
+ delete Test;
+
+ std::cout << " Checking to see if the merged program executes correctly: ";
+ bool Broken = TestMergedProgram(BD, Optimized, Safe, true);
+ std::cout << (Broken ? " nope.\n" : " yup.\n");
+ return Broken;
+}
+
+
+/// debugMiscompilation - This method is used when the passes selected are not
+/// crashing, but the generated output is semantically different from the
+/// input.
+///
+bool BugDriver::debugMiscompilation() {
+ // Make sure something was miscompiled...
+ if (!BugpointIsInterrupted)
+ if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun)) {
+ std::cerr << "*** Optimized program matches reference output! No problem"
+ << " detected...\nbugpoint can't help you with your problem!\n";
+ return false;
+ }
+
+ std::cout << "\n*** Found miscompiling pass"
+ << (getPassesToRun().size() == 1 ? "" : "es") << ": "
+ << getPassesString(getPassesToRun()) << '\n';
+ EmitProgressBitcode("passinput");
+
+ std::vector<Function*> MiscompiledFunctions =
+ DebugAMiscompilation(*this, TestOptimizer);
+
+ // Output a bunch of bitcode files for the user...
+ std::cout << "Outputting reduced bitcode files which expose the problem:\n";
+ DenseMap<const Value*, Value*> ValueMap;
+ Module *ToNotOptimize = CloneModule(getProgram(), ValueMap);
+ Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize,
+ MiscompiledFunctions,
+ ValueMap);
+
+ std::cout << " Non-optimized portion: ";
+ ToNotOptimize = swapProgramIn(ToNotOptimize);
+ EmitProgressBitcode("tonotoptimize", true);
+ setNewProgram(ToNotOptimize); // Delete hacked module.
+
+ std::cout << " Portion that is input to optimizer: ";
+ ToOptimize = swapProgramIn(ToOptimize);
+ EmitProgressBitcode("tooptimize");
+ setNewProgram(ToOptimize); // Delete hacked module.
+
+ return false;
+}
+
+/// CleanupAndPrepareModules - Get the specified modules ready for code
+/// generator testing.
+///
+static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test,
+ Module *Safe) {
+ // Clean up the modules, removing extra cruft that we don't need anymore...
+ Test = BD.performFinalCleanups(Test);
+
+ // If we are executing the JIT, we have several nasty issues to take care of.
+ if (!BD.isExecutingJIT()) return;
+
+ // First, if the main function is in the Safe module, we must add a stub to
+ // the Test module to call into it. Thus, we create a new function `main'
+ // which just calls the old one.
+ if (Function *oldMain = Safe->getFunction("main"))
+ if (!oldMain->isDeclaration()) {
+ // Rename it
+ oldMain->setName("llvm_bugpoint_old_main");
+ // Create a NEW `main' function with same type in the test module.
+ Function *newMain = Function::Create(oldMain->getFunctionType(),
+ GlobalValue::ExternalLinkage,
+ "main", Test);
+ // Create an `oldmain' prototype in the test module, which will
+ // corresponds to the real main function in the same module.
+ Function *oldMainProto = Function::Create(oldMain->getFunctionType(),
+ GlobalValue::ExternalLinkage,
+ oldMain->getName(), Test);
+ // Set up and remember the argument list for the main function.
+ std::vector<Value*> args;
+ for (Function::arg_iterator
+ I = newMain->arg_begin(), E = newMain->arg_end(),
+ OI = oldMain->arg_begin(); I != E; ++I, ++OI) {
+ I->setName(OI->getName()); // Copy argument names from oldMain
+ args.push_back(I);
+ }
+
+ // Call the old main function and return its result
+ BasicBlock *BB = BasicBlock::Create("entry", newMain);
+ CallInst *call = CallInst::Create(oldMainProto, args.begin(), args.end(),
+ "", BB);
+
+ // If the type of old function wasn't void, return value of call
+ ReturnInst::Create(call, BB);
+ }
+
+ // The second nasty issue we must deal with in the JIT is that the Safe
+ // module cannot directly reference any functions defined in the test
+ // module. Instead, we use a JIT API call to dynamically resolve the
+ // symbol.
+
+ // Add the resolver to the Safe module.
+ // Prototype: void *getPointerToNamedFunction(const char* Name)
+ Constant *resolverFunc =
+ Safe->getOrInsertFunction("getPointerToNamedFunction",
+ PointerType::getUnqual(Type::Int8Ty),
+ PointerType::getUnqual(Type::Int8Ty), (Type *)0);
+
+ // Use the function we just added to get addresses of functions we need.
+ for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
+ if (F->isDeclaration() && !F->use_empty() && &*F != resolverFunc &&
+ !F->isIntrinsic() /* ignore intrinsics */) {
+ Function *TestFn = Test->getFunction(F->getName());
+
+ // Don't forward functions which are external in the test module too.
+ if (TestFn && !TestFn->isDeclaration()) {
+ // 1. Add a string constant with its name to the global file
+ Constant *InitArray = ConstantArray::get(F->getName());
+ GlobalVariable *funcName =
+ new GlobalVariable(InitArray->getType(), true /*isConstant*/,
+ GlobalValue::InternalLinkage, InitArray,
+ F->getName() + "_name", Safe);
+
+ // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
+ // sbyte* so it matches the signature of the resolver function.
+
+ // GetElementPtr *funcName, ulong 0, ulong 0
+ std::vector<Constant*> GEPargs(2,Constant::getNullValue(Type::Int32Ty));
+ Value *GEP = ConstantExpr::getGetElementPtr(funcName, &GEPargs[0], 2);
+ std::vector<Value*> ResolverArgs;
+ ResolverArgs.push_back(GEP);
+
+ // Rewrite uses of F in global initializers, etc. to uses of a wrapper
+ // function that dynamically resolves the calls to F via our JIT API
+ if (!F->use_empty()) {
+ // Create a new global to hold the cached function pointer.
+ Constant *NullPtr = ConstantPointerNull::get(F->getType());
+ GlobalVariable *Cache =
+ new GlobalVariable(F->getType(), false,GlobalValue::InternalLinkage,
+ NullPtr,F->getName()+".fpcache", F->getParent());
+
+ // Construct a new stub function that will re-route calls to F
+ const FunctionType *FuncTy = F->getFunctionType();
+ Function *FuncWrapper = Function::Create(FuncTy,
+ GlobalValue::InternalLinkage,
+ F->getName() + "_wrapper",
+ F->getParent());
+ BasicBlock *EntryBB = BasicBlock::Create("entry", FuncWrapper);
+ BasicBlock *DoCallBB = BasicBlock::Create("usecache", FuncWrapper);
+ BasicBlock *LookupBB = BasicBlock::Create("lookupfp", FuncWrapper);
+
+ // Check to see if we already looked up the value.
+ Value *CachedVal = new LoadInst(Cache, "fpcache", EntryBB);
+ Value *IsNull = new ICmpInst(ICmpInst::ICMP_EQ, CachedVal,
+ NullPtr, "isNull", EntryBB);
+ BranchInst::Create(LookupBB, DoCallBB, IsNull, EntryBB);
+
+ // Resolve the call to function F via the JIT API:
+ //
+ // call resolver(GetElementPtr...)
+ CallInst *Resolver =
+ CallInst::Create(resolverFunc, ResolverArgs.begin(),
+ ResolverArgs.end(), "resolver", LookupBB);
+
+ // Cast the result from the resolver to correctly-typed function.
+ CastInst *CastedResolver =
+ new BitCastInst(Resolver,
+ PointerType::getUnqual(F->getFunctionType()),
+ "resolverCast", LookupBB);
+
+ // Save the value in our cache.
+ new StoreInst(CastedResolver, Cache, LookupBB);
+ BranchInst::Create(DoCallBB, LookupBB);
+
+ PHINode *FuncPtr = PHINode::Create(NullPtr->getType(),
+ "fp", DoCallBB);
+ FuncPtr->addIncoming(CastedResolver, LookupBB);
+ FuncPtr->addIncoming(CachedVal, EntryBB);
+
+ // Save the argument list.
+ std::vector<Value*> Args;
+ for (Function::arg_iterator i = FuncWrapper->arg_begin(),
+ e = FuncWrapper->arg_end(); i != e; ++i)
+ Args.push_back(i);
+
+ // Pass on the arguments to the real function, return its result
+ if (F->getReturnType() == Type::VoidTy) {
+ CallInst::Create(FuncPtr, Args.begin(), Args.end(), "", DoCallBB);
+ ReturnInst::Create(DoCallBB);
+ } else {
+ CallInst *Call = CallInst::Create(FuncPtr, Args.begin(), Args.end(),
+ "retval", DoCallBB);
+ ReturnInst::Create(Call, DoCallBB);
+ }
+
+ // Use the wrapper function instead of the old function
+ F->replaceAllUsesWith(FuncWrapper);
+ }
+ }
+ }
+ }
+
+ if (verifyModule(*Test) || verifyModule(*Safe)) {
+ std::cerr << "Bugpoint has a bug, which corrupted a module!!\n";
+ abort();
+ }
+}
+
+
+
+/// TestCodeGenerator - This is the predicate function used to check to see if
+/// the "Test" portion of the program is miscompiled by the code generator under
+/// test. If so, return true. In any case, both module arguments are deleted.
+///
+static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe) {
+ CleanupAndPrepareModules(BD, Test, Safe);
+
+ sys::Path TestModuleBC("bugpoint.test.bc");
+ std::string ErrMsg;
+ if (TestModuleBC.makeUnique(true, &ErrMsg)) {
+ std::cerr << BD.getToolName() << "Error making unique filename: "
+ << ErrMsg << "\n";
+ exit(1);
+ }
+ if (BD.writeProgramToFile(TestModuleBC.toString(), Test)) {
+ std::cerr << "Error writing bitcode to `" << TestModuleBC << "'\nExiting.";
+ exit(1);
+ }
+ delete Test;
+
+ // Make the shared library
+ sys::Path SafeModuleBC("bugpoint.safe.bc");
+ if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
+ std::cerr << BD.getToolName() << "Error making unique filename: "
+ << ErrMsg << "\n";
+ exit(1);
+ }
+
+ if (BD.writeProgramToFile(SafeModuleBC.toString(), Safe)) {
+ std::cerr << "Error writing bitcode to `" << SafeModuleBC << "'\nExiting.";
+ exit(1);
+ }
+ std::string SharedObject = BD.compileSharedObject(SafeModuleBC.toString());
+ delete Safe;
+
+ // Run the code generator on the `Test' code, loading the shared library.
+ // The function returns whether or not the new output differs from reference.
+ int Result = BD.diffProgram(TestModuleBC.toString(), SharedObject, false);
+
+ if (Result)
+ std::cerr << ": still failing!\n";
+ else
+ std::cerr << ": didn't fail.\n";
+ TestModuleBC.eraseFromDisk();
+ SafeModuleBC.eraseFromDisk();
+ sys::Path(SharedObject).eraseFromDisk();
+
+ return Result;
+}
+
+
+/// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
+///
+bool BugDriver::debugCodeGenerator() {
+ if ((void*)SafeInterpreter == (void*)Interpreter) {
+ std::string Result = executeProgramSafely("bugpoint.safe.out");
+ std::cout << "\n*** The \"safe\" i.e. 'known good' backend cannot match "
+ << "the reference diff. This may be due to a\n front-end "
+ << "bug or a bug in the original program, but this can also "
+ << "happen if bugpoint isn't running the program with the "
+ << "right flags or input.\n I left the result of executing "
+ << "the program with the \"safe\" backend in this file for "
+ << "you: '"
+ << Result << "'.\n";
+ return true;
+ }
+
+ DisambiguateGlobalSymbols(Program);
+
+ std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator);
+
+ // Split the module into the two halves of the program we want.
+ DenseMap<const Value*, Value*> ValueMap;
+ Module *ToNotCodeGen = CloneModule(getProgram(), ValueMap);
+ Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs, ValueMap);
+
+ // Condition the modules
+ CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen);
+
+ sys::Path TestModuleBC("bugpoint.test.bc");
+ std::string ErrMsg;
+ if (TestModuleBC.makeUnique(true, &ErrMsg)) {
+ std::cerr << getToolName() << "Error making unique filename: "
+ << ErrMsg << "\n";
+ exit(1);
+ }
+
+ if (writeProgramToFile(TestModuleBC.toString(), ToCodeGen)) {
+ std::cerr << "Error writing bitcode to `" << TestModuleBC << "'\nExiting.";
+ exit(1);
+ }
+ delete ToCodeGen;
+
+ // Make the shared library
+ sys::Path SafeModuleBC("bugpoint.safe.bc");
+ if (SafeModuleBC.makeUnique(true, &ErrMsg)) {
+ std::cerr << getToolName() << "Error making unique filename: "
+ << ErrMsg << "\n";
+ exit(1);
+ }
+
+ if (writeProgramToFile(SafeModuleBC.toString(), ToNotCodeGen)) {
+ std::cerr << "Error writing bitcode to `" << SafeModuleBC << "'\nExiting.";
+ exit(1);
+ }
+ std::string SharedObject = compileSharedObject(SafeModuleBC.toString());
+ delete ToNotCodeGen;
+
+ std::cout << "You can reproduce the problem with the command line: \n";
+ if (isExecutingJIT()) {
+ std::cout << " lli -load " << SharedObject << " " << TestModuleBC;
+ } else {
+ std::cout << " llc -f " << TestModuleBC << " -o " << TestModuleBC<< ".s\n";
+ std::cout << " gcc " << SharedObject << " " << TestModuleBC
+ << ".s -o " << TestModuleBC << ".exe";
+#if defined (HAVE_LINK_R)
+ std::cout << " -Wl,-R.";
+#endif
+ std::cout << "\n";
+ std::cout << " " << TestModuleBC << ".exe";
+ }
+ for (unsigned i=0, e = InputArgv.size(); i != e; ++i)
+ std::cout << " " << InputArgv[i];
+ std::cout << '\n';
+ std::cout << "The shared object was created with:\n llc -march=c "
+ << SafeModuleBC << " -o temporary.c\n"
+ << " gcc -xc temporary.c -O2 -o " << SharedObject
+#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
+ << " -G" // Compile a shared library, `-G' for Sparc
+#else
+ << " -fPIC -shared" // `-shared' for Linux/X86, maybe others
+#endif
+ << " -fno-strict-aliasing\n";
+
+ return false;
+}
diff --git a/tools/bugpoint/OptimizerDriver.cpp b/tools/bugpoint/OptimizerDriver.cpp
new file mode 100644
index 0000000..3ded5e8
--- /dev/null
+++ b/tools/bugpoint/OptimizerDriver.cpp
@@ -0,0 +1,266 @@
+//===- OptimizerDriver.cpp - Allow BugPoint to run passes safely ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an interface that allows bugpoint to run various passes
+// without the threat of a buggy pass corrupting bugpoint (of course, bugpoint
+// may have its own bugs, but that's another story...). It achieves this by
+// forking a copy of itself and having the child process do the optimizations.
+// If this client dies, we can always fork a new one. :)
+//
+//===----------------------------------------------------------------------===//
+
+// Note: as a short term hack, the old Unix-specific code and platform-
+// independent code co-exist via conditional compilation until it is verified
+// that the new code works correctly on Unix.
+
+#include "BugDriver.h"
+#include "llvm/Module.h"
+#include "llvm/PassManager.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/Bitcode/ReaderWriter.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/FileUtilities.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Streams.h"
+#include "llvm/System/Path.h"
+#include "llvm/System/Program.h"
+#include "llvm/Config/alloca.h"
+
+#define DONT_GET_PLUGIN_LOADER_OPTION
+#include "llvm/Support/PluginLoader.h"
+
+#include <fstream>
+using namespace llvm;
+
+
+namespace {
+ // ChildOutput - This option captures the name of the child output file that
+ // is set up by the parent bugpoint process
+ cl::opt<std::string> ChildOutput("child-output", cl::ReallyHidden);
+ cl::opt<bool> UseValgrind("enable-valgrind",
+ cl::desc("Run optimizations through valgrind"));
+}
+
+/// writeProgramToFile - This writes the current "Program" to the named bitcode
+/// file. If an error occurs, true is returned.
+///
+bool BugDriver::writeProgramToFile(const std::string &Filename,
+ Module *M) const {
+ std::ios::openmode io_mode = std::ios::out | std::ios::trunc |
+ std::ios::binary;
+ std::ofstream Out(Filename.c_str(), io_mode);
+ if (!Out.good()) return true;
+
+ WriteBitcodeToFile(M ? M : Program, Out);
+ return false;
+}
+
+
+/// EmitProgressBitcode - This function is used to output the current Program
+/// to a file named "bugpoint-ID.bc".
+///
+void BugDriver::EmitProgressBitcode(const std::string &ID, bool NoFlyer) {
+ // Output the input to the current pass to a bitcode file, emit a message
+ // telling the user how to reproduce it: opt -foo blah.bc
+ //
+ std::string Filename = "bugpoint-" + ID + ".bc";
+ if (writeProgramToFile(Filename)) {
+ cerr << "Error opening file '" << Filename << "' for writing!\n";
+ return;
+ }
+
+ cout << "Emitted bitcode to '" << Filename << "'\n";
+ if (NoFlyer || PassesToRun.empty()) return;
+ cout << "\n*** You can reproduce the problem with: ";
+ cout << "opt " << Filename << " ";
+ cout << getPassesString(PassesToRun) << "\n";
+}
+
+int BugDriver::runPassesAsChild(const std::vector<const PassInfo*> &Passes) {
+
+ std::ios::openmode io_mode = std::ios::out | std::ios::trunc |
+ std::ios::binary;
+ std::ofstream OutFile(ChildOutput.c_str(), io_mode);
+ if (!OutFile.good()) {
+ cerr << "Error opening bitcode file: " << ChildOutput << "\n";
+ return 1;
+ }
+
+ PassManager PM;
+ // Make sure that the appropriate target data is always used...
+ PM.add(new TargetData(Program));
+
+ for (unsigned i = 0, e = Passes.size(); i != e; ++i) {
+ if (Passes[i]->getNormalCtor())
+ PM.add(Passes[i]->getNormalCtor()());
+ else
+ cerr << "Cannot create pass yet: " << Passes[i]->getPassName() << "\n";
+ }
+ // Check that the module is well formed on completion of optimization
+ PM.add(createVerifierPass());
+
+ // Write bitcode out to disk as the last step...
+ PM.add(CreateBitcodeWriterPass(OutFile));
+
+ // Run all queued passes.
+ PM.run(*Program);
+
+ return 0;
+}
+
+cl::opt<bool> SilencePasses("silence-passes", cl::desc("Suppress output of running passes (both stdout and stderr)"));
+
+/// runPasses - Run the specified passes on Program, outputting a bitcode file
+/// and writing the filename into OutputFile if successful. If the
+/// optimizations fail for some reason (optimizer crashes), return true,
+/// otherwise return false. If DeleteOutput is set to true, the bitcode is
+/// deleted on success, and the filename string is undefined. This prints to
+/// cout a single line message indicating whether compilation was successful or
+/// failed.
+///
+bool BugDriver::runPasses(const std::vector<const PassInfo*> &Passes,
+ std::string &OutputFilename, bool DeleteOutput,
+ bool Quiet, unsigned NumExtraArgs,
+ const char * const *ExtraArgs) const {
+ // setup the output file name
+ cout << std::flush;
+ sys::Path uniqueFilename("bugpoint-output.bc");
+ std::string ErrMsg;
+ if (uniqueFilename.makeUnique(true, &ErrMsg)) {
+ cerr << getToolName() << ": Error making unique filename: "
+ << ErrMsg << "\n";
+ return(1);
+ }
+ OutputFilename = uniqueFilename.toString();
+
+ // set up the input file name
+ sys::Path inputFilename("bugpoint-input.bc");
+ if (inputFilename.makeUnique(true, &ErrMsg)) {
+ cerr << getToolName() << ": Error making unique filename: "
+ << ErrMsg << "\n";
+ return(1);
+ }
+ std::ios::openmode io_mode = std::ios::out | std::ios::trunc |
+ std::ios::binary;
+ std::ofstream InFile(inputFilename.c_str(), io_mode);
+ if (!InFile.good()) {
+ cerr << "Error opening bitcode file: " << inputFilename << "\n";
+ return(1);
+ }
+ WriteBitcodeToFile(Program, InFile);
+ InFile.close();
+
+ // setup the child process' arguments
+ const char** args = (const char**)
+ alloca(sizeof(const char*) *
+ (Passes.size()+13+2*PluginLoader::getNumPlugins()+NumExtraArgs));
+ int n = 0;
+ sys::Path tool = sys::Program::FindProgramByName(ToolName);
+ if (UseValgrind) {
+ args[n++] = "valgrind";
+ args[n++] = "--error-exitcode=1";
+ args[n++] = "-q";
+ args[n++] = tool.c_str();
+ } else
+ args[n++] = ToolName.c_str();
+
+ args[n++] = "-as-child";
+ args[n++] = "-child-output";
+ args[n++] = OutputFilename.c_str();
+ std::vector<std::string> pass_args;
+ for (unsigned i = 0, e = PluginLoader::getNumPlugins(); i != e; ++i) {
+ pass_args.push_back( std::string("-load"));
+ pass_args.push_back( PluginLoader::getPlugin(i));
+ }
+ for (std::vector<const PassInfo*>::const_iterator I = Passes.begin(),
+ E = Passes.end(); I != E; ++I )
+ pass_args.push_back( std::string("-") + (*I)->getPassArgument() );
+ for (std::vector<std::string>::const_iterator I = pass_args.begin(),
+ E = pass_args.end(); I != E; ++I )
+ args[n++] = I->c_str();
+ args[n++] = inputFilename.c_str();
+ for (unsigned i = 0; i < NumExtraArgs; ++i)
+ args[n++] = *ExtraArgs;
+ args[n++] = 0;
+
+ sys::Path prog;
+ if (UseValgrind)
+ prog = sys::Program::FindProgramByName("valgrind");
+ else
+ prog = tool;
+
+ // Redirect stdout and stderr to nowhere if SilencePasses is given
+ sys::Path Nowhere;
+ const sys::Path *Redirects[3] = {0, &Nowhere, &Nowhere};
+
+ int result = sys::Program::ExecuteAndWait(prog, args, 0, (SilencePasses ? Redirects : 0),
+ Timeout, MemoryLimit, &ErrMsg);
+
+ // If we are supposed to delete the bitcode file or if the passes crashed,
+ // remove it now. This may fail if the file was never created, but that's ok.
+ if (DeleteOutput || result != 0)
+ sys::Path(OutputFilename).eraseFromDisk();
+
+ // Remove the temporary input file as well
+ inputFilename.eraseFromDisk();
+
+ if (!Quiet) {
+ if (result == 0)
+ cout << "Success!\n";
+ else if (result > 0)
+ cout << "Exited with error code '" << result << "'\n";
+ else if (result < 0) {
+ if (result == -1)
+ cout << "Execute failed: " << ErrMsg << "\n";
+ else
+ cout << "Crashed with signal #" << abs(result) << "\n";
+ }
+ if (result & 0x01000000)
+ cout << "Dumped core\n";
+ }
+
+ // Was the child successful?
+ return result != 0;
+}
+
+
+/// runPassesOn - Carefully run the specified set of pass on the specified
+/// module, returning the transformed module on success, or a null pointer on
+/// failure.
+Module *BugDriver::runPassesOn(Module *M,
+ const std::vector<const PassInfo*> &Passes,
+ bool AutoDebugCrashes, unsigned NumExtraArgs,
+ const char * const *ExtraArgs) {
+ Module *OldProgram = swapProgramIn(M);
+ std::string BitcodeResult;
+ if (runPasses(Passes, BitcodeResult, false/*delete*/, true/*quiet*/,
+ NumExtraArgs, ExtraArgs)) {
+ if (AutoDebugCrashes) {
+ cerr << " Error running this sequence of passes"
+ << " on the input program!\n";
+ delete OldProgram;
+ EmitProgressBitcode("pass-error", false);
+ exit(debugOptimizerCrash());
+ }
+ swapProgramIn(OldProgram);
+ return 0;
+ }
+
+ // Restore the current program.
+ swapProgramIn(OldProgram);
+
+ Module *Ret = ParseInputFile(BitcodeResult);
+ if (Ret == 0) {
+ cerr << getToolName() << ": Error reading bitcode file '"
+ << BitcodeResult << "'!\n";
+ exit(1);
+ }
+ sys::Path(BitcodeResult).eraseFromDisk(); // No longer need the file on disk
+ return Ret;
+}
diff --git a/tools/bugpoint/TestPasses.cpp b/tools/bugpoint/TestPasses.cpp
new file mode 100644
index 0000000..900bf63
--- /dev/null
+++ b/tools/bugpoint/TestPasses.cpp
@@ -0,0 +1,75 @@
+//===- TestPasses.cpp - "buggy" passes used to test bugpoint --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains "buggy" passes that are used to test bugpoint, to check
+// that it is narrowing down testcases correctly.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/BasicBlock.h"
+#include "llvm/Constant.h"
+#include "llvm/Instructions.h"
+#include "llvm/Pass.h"
+#include "llvm/Type.h"
+#include "llvm/Support/InstVisitor.h"
+
+using namespace llvm;
+
+namespace {
+ /// CrashOnCalls - This pass is used to test bugpoint. It intentionally
+ /// crashes on any call instructions.
+ class CrashOnCalls : public BasicBlockPass {
+ public:
+ static char ID; // Pass ID, replacement for typeid
+ CrashOnCalls() : BasicBlockPass(&ID) {}
+ private:
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ }
+
+ bool runOnBasicBlock(BasicBlock &BB) {
+ for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
+ if (isa<CallInst>(*I))
+ abort();
+
+ return false;
+ }
+ };
+
+ char CrashOnCalls::ID = 0;
+ RegisterPass<CrashOnCalls>
+ X("bugpoint-crashcalls",
+ "BugPoint Test Pass - Intentionally crash on CallInsts");
+}
+
+namespace {
+ /// DeleteCalls - This pass is used to test bugpoint. It intentionally
+ /// deletes some call instructions, "misoptimizing" the program.
+ class DeleteCalls : public BasicBlockPass {
+ public:
+ static char ID; // Pass ID, replacement for typeid
+ DeleteCalls() : BasicBlockPass(&ID) {}
+ private:
+ bool runOnBasicBlock(BasicBlock &BB) {
+ for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
+ if (CallInst *CI = dyn_cast<CallInst>(I)) {
+ if (!CI->use_empty())
+ CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
+ CI->getParent()->getInstList().erase(CI);
+ break;
+ }
+ return false;
+ }
+ };
+
+ char DeleteCalls::ID = 0;
+ RegisterPass<DeleteCalls>
+ Y("bugpoint-deletecalls",
+ "BugPoint Test Pass - Intentionally 'misoptimize' CallInsts");
+}
diff --git a/tools/bugpoint/ToolRunner.cpp b/tools/bugpoint/ToolRunner.cpp
new file mode 100644
index 0000000..978e60b
--- /dev/null
+++ b/tools/bugpoint/ToolRunner.cpp
@@ -0,0 +1,748 @@
+//===-- ToolRunner.cpp ----------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the interfaces described in the ToolRunner.h file.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "toolrunner"
+#include "ToolRunner.h"
+#include "llvm/Config/config.h" // for HAVE_LINK_R
+#include "llvm/System/Program.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/FileUtilities.h"
+#include <fstream>
+#include <sstream>
+#include <iostream>
+using namespace llvm;
+
+namespace {
+ cl::opt<std::string>
+ RemoteClient("remote-client",
+ cl::desc("Remote execution client (rsh/ssh)"));
+
+ cl::opt<std::string>
+ RemoteHost("remote-host",
+ cl::desc("Remote execution (rsh/ssh) host"));
+
+ cl::opt<std::string>
+ RemoteUser("remote-user",
+ cl::desc("Remote execution (rsh/ssh) user id"));
+
+ cl::opt<std::string>
+ RemoteExtra("remote-extra-options",
+ cl::desc("Remote execution (rsh/ssh) extra options"));
+}
+
+ToolExecutionError::~ToolExecutionError() throw() { }
+
+/// RunProgramWithTimeout - This function provides an alternate interface to the
+/// sys::Program::ExecuteAndWait interface.
+/// @see sys:Program::ExecuteAndWait
+static int RunProgramWithTimeout(const sys::Path &ProgramPath,
+ const char **Args,
+ const sys::Path &StdInFile,
+ const sys::Path &StdOutFile,
+ const sys::Path &StdErrFile,
+ unsigned NumSeconds = 0,
+ unsigned MemoryLimit = 0) {
+ const sys::Path* redirects[3];
+ redirects[0] = &StdInFile;
+ redirects[1] = &StdOutFile;
+ redirects[2] = &StdErrFile;
+
+ if (0) {
+ std::cerr << "RUN:";
+ for (unsigned i = 0; Args[i]; ++i)
+ std::cerr << " " << Args[i];
+ std::cerr << "\n";
+ }
+
+ return
+ sys::Program::ExecuteAndWait(ProgramPath, Args, 0, redirects,
+ NumSeconds, MemoryLimit);
+}
+
+
+
+static void ProcessFailure(sys::Path ProgPath, const char** Args) {
+ std::ostringstream OS;
+ OS << "\nError running tool:\n ";
+ for (const char **Arg = Args; *Arg; ++Arg)
+ OS << " " << *Arg;
+ OS << "\n";
+
+ // Rerun the compiler, capturing any error messages to print them.
+ sys::Path ErrorFilename("bugpoint.program_error_messages");
+ std::string ErrMsg;
+ if (ErrorFilename.makeUnique(true, &ErrMsg)) {
+ std::cerr << "Error making unique filename: " << ErrMsg << "\n";
+ exit(1);
+ }
+ RunProgramWithTimeout(ProgPath, Args, sys::Path(""), ErrorFilename,
+ ErrorFilename); // FIXME: check return code ?
+
+ // Print out the error messages generated by GCC if possible...
+ std::ifstream ErrorFile(ErrorFilename.c_str());
+ if (ErrorFile) {
+ std::copy(std::istreambuf_iterator<char>(ErrorFile),
+ std::istreambuf_iterator<char>(),
+ std::ostreambuf_iterator<char>(OS));
+ ErrorFile.close();
+ }
+
+ ErrorFilename.eraseFromDisk();
+ throw ToolExecutionError(OS.str());
+}
+
+//===---------------------------------------------------------------------===//
+// LLI Implementation of AbstractIntepreter interface
+//
+namespace {
+ class LLI : public AbstractInterpreter {
+ std::string LLIPath; // The path to the LLI executable
+ std::vector<std::string> ToolArgs; // Args to pass to LLI
+ public:
+ LLI(const std::string &Path, const std::vector<std::string> *Args)
+ : LLIPath(Path) {
+ ToolArgs.clear ();
+ if (Args) { ToolArgs = *Args; }
+ }
+
+ virtual int ExecuteProgram(const std::string &Bitcode,
+ const std::vector<std::string> &Args,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ const std::vector<std::string> &GCCArgs,
+ const std::vector<std::string> &SharedLibs =
+ std::vector<std::string>(),
+ unsigned Timeout = 0,
+ unsigned MemoryLimit = 0);
+ };
+}
+
+int LLI::ExecuteProgram(const std::string &Bitcode,
+ const std::vector<std::string> &Args,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ const std::vector<std::string> &GCCArgs,
+ const std::vector<std::string> &SharedLibs,
+ unsigned Timeout,
+ unsigned MemoryLimit) {
+ if (!SharedLibs.empty())
+ throw ToolExecutionError("LLI currently does not support "
+ "loading shared libraries.");
+
+ std::vector<const char*> LLIArgs;
+ LLIArgs.push_back(LLIPath.c_str());
+ LLIArgs.push_back("-force-interpreter=true");
+
+ // Add any extra LLI args.
+ for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
+ LLIArgs.push_back(ToolArgs[i].c_str());
+
+ LLIArgs.push_back(Bitcode.c_str());
+ // Add optional parameters to the running program from Argv
+ for (unsigned i=0, e = Args.size(); i != e; ++i)
+ LLIArgs.push_back(Args[i].c_str());
+ LLIArgs.push_back(0);
+
+ std::cout << "<lli>" << std::flush;
+ DEBUG(std::cerr << "\nAbout to run:\t";
+ for (unsigned i=0, e = LLIArgs.size()-1; i != e; ++i)
+ std::cerr << " " << LLIArgs[i];
+ std::cerr << "\n";
+ );
+ return RunProgramWithTimeout(sys::Path(LLIPath), &LLIArgs[0],
+ sys::Path(InputFile), sys::Path(OutputFile), sys::Path(OutputFile),
+ Timeout, MemoryLimit);
+}
+
+// LLI create method - Try to find the LLI executable
+AbstractInterpreter *AbstractInterpreter::createLLI(const std::string &ProgPath,
+ std::string &Message,
+ const std::vector<std::string> *ToolArgs) {
+ std::string LLIPath = FindExecutable("lli", ProgPath).toString();
+ if (!LLIPath.empty()) {
+ Message = "Found lli: " + LLIPath + "\n";
+ return new LLI(LLIPath, ToolArgs);
+ }
+
+ Message = "Cannot find `lli' in executable directory or PATH!\n";
+ return 0;
+}
+
+//===---------------------------------------------------------------------===//
+// Custom execution command implementation of AbstractIntepreter interface
+//
+// Allows using a custom command for executing the bitcode, thus allows,
+// for example, to invoke a cross compiler for code generation followed by
+// a simulator that executes the generated binary.
+namespace {
+ class CustomExecutor : public AbstractInterpreter {
+ std::string ExecutionCommand;
+ std::vector<std::string> ExecutorArgs;
+ public:
+ CustomExecutor(
+ const std::string &ExecutionCmd, std::vector<std::string> ExecArgs) :
+ ExecutionCommand(ExecutionCmd), ExecutorArgs(ExecArgs) {}
+
+ virtual int ExecuteProgram(const std::string &Bitcode,
+ const std::vector<std::string> &Args,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ const std::vector<std::string> &GCCArgs,
+ const std::vector<std::string> &SharedLibs =
+ std::vector<std::string>(),
+ unsigned Timeout = 0,
+ unsigned MemoryLimit = 0);
+ };
+}
+
+int CustomExecutor::ExecuteProgram(const std::string &Bitcode,
+ const std::vector<std::string> &Args,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ const std::vector<std::string> &GCCArgs,
+ const std::vector<std::string> &SharedLibs,
+ unsigned Timeout,
+ unsigned MemoryLimit) {
+
+ std::vector<const char*> ProgramArgs;
+ ProgramArgs.push_back(ExecutionCommand.c_str());
+
+ for (std::size_t i = 0; i < ExecutorArgs.size(); ++i)
+ ProgramArgs.push_back(ExecutorArgs.at(i).c_str());
+ ProgramArgs.push_back(Bitcode.c_str());
+ ProgramArgs.push_back(0);
+
+ // Add optional parameters to the running program from Argv
+ for (unsigned i=0, e = Args.size(); i != e; ++i)
+ ProgramArgs.push_back(Args[i].c_str());
+
+ return RunProgramWithTimeout(
+ sys::Path(ExecutionCommand),
+ &ProgramArgs[0], sys::Path(InputFile), sys::Path(OutputFile),
+ sys::Path(OutputFile), Timeout, MemoryLimit);
+}
+
+// Custom execution environment create method, takes the execution command
+// as arguments
+AbstractInterpreter *AbstractInterpreter::createCustom(
+ const std::string &ProgramPath,
+ std::string &Message,
+ const std::string &ExecCommandLine) {
+
+ std::string Command = "";
+ std::vector<std::string> Args;
+ std::string delimiters = " ";
+
+ // Tokenize the ExecCommandLine to the command and the args to allow
+ // defining a full command line as the command instead of just the
+ // executed program. We cannot just pass the whole string after the command
+ // as a single argument because then program sees only a single
+ // command line argument (with spaces in it: "foo bar" instead
+ // of "foo" and "bar").
+
+ // code borrowed from:
+ // http://oopweb.com/CPP/Documents/CPPHOWTO/Volume/C++Programming-HOWTO-7.html
+ std::string::size_type lastPos =
+ ExecCommandLine.find_first_not_of(delimiters, 0);
+ std::string::size_type pos =
+ ExecCommandLine.find_first_of(delimiters, lastPos);
+
+ while (std::string::npos != pos || std::string::npos != lastPos) {
+ std::string token = ExecCommandLine.substr(lastPos, pos - lastPos);
+ if (Command == "")
+ Command = token;
+ else
+ Args.push_back(token);
+ // Skip delimiters. Note the "not_of"
+ lastPos = ExecCommandLine.find_first_not_of(delimiters, pos);
+ // Find next "non-delimiter"
+ pos = ExecCommandLine.find_first_of(delimiters, lastPos);
+ }
+
+ std::string CmdPath = FindExecutable(Command, ProgramPath).toString();
+ if (CmdPath.empty()) {
+ Message =
+ std::string("Cannot find '") + Command +
+ "' in executable directory or PATH!\n";
+ return 0;
+ }
+
+ Message = "Found command in: " + CmdPath + "\n";
+
+ return new CustomExecutor(CmdPath, Args);
+}
+
+//===----------------------------------------------------------------------===//
+// LLC Implementation of AbstractIntepreter interface
+//
+GCC::FileType LLC::OutputCode(const std::string &Bitcode,
+ sys::Path &OutputAsmFile) {
+ sys::Path uniqueFile(Bitcode+".llc.s");
+ std::string ErrMsg;
+ if (uniqueFile.makeUnique(true, &ErrMsg)) {
+ std::cerr << "Error making unique filename: " << ErrMsg << "\n";
+ exit(1);
+ }
+ OutputAsmFile = uniqueFile;
+ std::vector<const char *> LLCArgs;
+ LLCArgs.push_back (LLCPath.c_str());
+
+ // Add any extra LLC args.
+ for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
+ LLCArgs.push_back(ToolArgs[i].c_str());
+
+ LLCArgs.push_back ("-o");
+ LLCArgs.push_back (OutputAsmFile.c_str()); // Output to the Asm file
+ LLCArgs.push_back ("-f"); // Overwrite as necessary...
+ LLCArgs.push_back (Bitcode.c_str()); // This is the input bitcode
+ LLCArgs.push_back (0);
+
+ std::cout << "<llc>" << std::flush;
+ DEBUG(std::cerr << "\nAbout to run:\t";
+ for (unsigned i=0, e = LLCArgs.size()-1; i != e; ++i)
+ std::cerr << " " << LLCArgs[i];
+ std::cerr << "\n";
+ );
+ if (RunProgramWithTimeout(sys::Path(LLCPath), &LLCArgs[0],
+ sys::Path(), sys::Path(), sys::Path()))
+ ProcessFailure(sys::Path(LLCPath), &LLCArgs[0]);
+
+ return GCC::AsmFile;
+}
+
+void LLC::compileProgram(const std::string &Bitcode) {
+ sys::Path OutputAsmFile;
+ OutputCode(Bitcode, OutputAsmFile);
+ OutputAsmFile.eraseFromDisk();
+}
+
+int LLC::ExecuteProgram(const std::string &Bitcode,
+ const std::vector<std::string> &Args,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ const std::vector<std::string> &ArgsForGCC,
+ const std::vector<std::string> &SharedLibs,
+ unsigned Timeout,
+ unsigned MemoryLimit) {
+
+ sys::Path OutputAsmFile;
+ OutputCode(Bitcode, OutputAsmFile);
+ FileRemover OutFileRemover(OutputAsmFile);
+
+ std::vector<std::string> GCCArgs(ArgsForGCC);
+ GCCArgs.insert(GCCArgs.end(), SharedLibs.begin(), SharedLibs.end());
+ GCCArgs.insert(GCCArgs.end(), gccArgs.begin(), gccArgs.end());
+
+ // Assuming LLC worked, compile the result with GCC and run it.
+ return gcc->ExecuteProgram(OutputAsmFile.toString(), Args, GCC::AsmFile,
+ InputFile, OutputFile, GCCArgs,
+ Timeout, MemoryLimit);
+}
+
+/// createLLC - Try to find the LLC executable
+///
+LLC *AbstractInterpreter::createLLC(const std::string &ProgramPath,
+ std::string &Message,
+ const std::vector<std::string> *Args,
+ const std::vector<std::string> *GCCArgs) {
+ std::string LLCPath = FindExecutable("llc", ProgramPath).toString();
+ if (LLCPath.empty()) {
+ Message = "Cannot find `llc' in executable directory or PATH!\n";
+ return 0;
+ }
+
+ Message = "Found llc: " + LLCPath + "\n";
+ GCC *gcc = GCC::create(ProgramPath, Message, GCCArgs);
+ if (!gcc) {
+ std::cerr << Message << "\n";
+ exit(1);
+ }
+ return new LLC(LLCPath, gcc, Args, GCCArgs);
+}
+
+//===---------------------------------------------------------------------===//
+// JIT Implementation of AbstractIntepreter interface
+//
+namespace {
+ class JIT : public AbstractInterpreter {
+ std::string LLIPath; // The path to the LLI executable
+ std::vector<std::string> ToolArgs; // Args to pass to LLI
+ public:
+ JIT(const std::string &Path, const std::vector<std::string> *Args)
+ : LLIPath(Path) {
+ ToolArgs.clear ();
+ if (Args) { ToolArgs = *Args; }
+ }
+
+ virtual int ExecuteProgram(const std::string &Bitcode,
+ const std::vector<std::string> &Args,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ const std::vector<std::string> &GCCArgs =
+ std::vector<std::string>(),
+ const std::vector<std::string> &SharedLibs =
+ std::vector<std::string>(),
+ unsigned Timeout =0,
+ unsigned MemoryLimit =0);
+ };
+}
+
+int JIT::ExecuteProgram(const std::string &Bitcode,
+ const std::vector<std::string> &Args,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ const std::vector<std::string> &GCCArgs,
+ const std::vector<std::string> &SharedLibs,
+ unsigned Timeout,
+ unsigned MemoryLimit) {
+ // Construct a vector of parameters, incorporating those from the command-line
+ std::vector<const char*> JITArgs;
+ JITArgs.push_back(LLIPath.c_str());
+ JITArgs.push_back("-force-interpreter=false");
+
+ // Add any extra LLI args.
+ for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
+ JITArgs.push_back(ToolArgs[i].c_str());
+
+ for (unsigned i = 0, e = SharedLibs.size(); i != e; ++i) {
+ JITArgs.push_back("-load");
+ JITArgs.push_back(SharedLibs[i].c_str());
+ }
+ JITArgs.push_back(Bitcode.c_str());
+ // Add optional parameters to the running program from Argv
+ for (unsigned i=0, e = Args.size(); i != e; ++i)
+ JITArgs.push_back(Args[i].c_str());
+ JITArgs.push_back(0);
+
+ std::cout << "<jit>" << std::flush;
+ DEBUG(std::cerr << "\nAbout to run:\t";
+ for (unsigned i=0, e = JITArgs.size()-1; i != e; ++i)
+ std::cerr << " " << JITArgs[i];
+ std::cerr << "\n";
+ );
+ DEBUG(std::cerr << "\nSending output to " << OutputFile << "\n");
+ return RunProgramWithTimeout(sys::Path(LLIPath), &JITArgs[0],
+ sys::Path(InputFile), sys::Path(OutputFile), sys::Path(OutputFile),
+ Timeout, MemoryLimit);
+}
+
+/// createJIT - Try to find the LLI executable
+///
+AbstractInterpreter *AbstractInterpreter::createJIT(const std::string &ProgPath,
+ std::string &Message, const std::vector<std::string> *Args) {
+ std::string LLIPath = FindExecutable("lli", ProgPath).toString();
+ if (!LLIPath.empty()) {
+ Message = "Found lli: " + LLIPath + "\n";
+ return new JIT(LLIPath, Args);
+ }
+
+ Message = "Cannot find `lli' in executable directory or PATH!\n";
+ return 0;
+}
+
+GCC::FileType CBE::OutputCode(const std::string &Bitcode,
+ sys::Path &OutputCFile) {
+ sys::Path uniqueFile(Bitcode+".cbe.c");
+ std::string ErrMsg;
+ if (uniqueFile.makeUnique(true, &ErrMsg)) {
+ std::cerr << "Error making unique filename: " << ErrMsg << "\n";
+ exit(1);
+ }
+ OutputCFile = uniqueFile;
+ std::vector<const char *> LLCArgs;
+ LLCArgs.push_back (LLCPath.c_str());
+
+ // Add any extra LLC args.
+ for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
+ LLCArgs.push_back(ToolArgs[i].c_str());
+
+ LLCArgs.push_back ("-o");
+ LLCArgs.push_back (OutputCFile.c_str()); // Output to the C file
+ LLCArgs.push_back ("-march=c"); // Output C language
+ LLCArgs.push_back ("-f"); // Overwrite as necessary...
+ LLCArgs.push_back (Bitcode.c_str()); // This is the input bitcode
+ LLCArgs.push_back (0);
+
+ std::cout << "<cbe>" << std::flush;
+ DEBUG(std::cerr << "\nAbout to run:\t";
+ for (unsigned i=0, e = LLCArgs.size()-1; i != e; ++i)
+ std::cerr << " " << LLCArgs[i];
+ std::cerr << "\n";
+ );
+ if (RunProgramWithTimeout(LLCPath, &LLCArgs[0], sys::Path(), sys::Path(),
+ sys::Path()))
+ ProcessFailure(LLCPath, &LLCArgs[0]);
+ return GCC::CFile;
+}
+
+void CBE::compileProgram(const std::string &Bitcode) {
+ sys::Path OutputCFile;
+ OutputCode(Bitcode, OutputCFile);
+ OutputCFile.eraseFromDisk();
+}
+
+int CBE::ExecuteProgram(const std::string &Bitcode,
+ const std::vector<std::string> &Args,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ const std::vector<std::string> &ArgsForGCC,
+ const std::vector<std::string> &SharedLibs,
+ unsigned Timeout,
+ unsigned MemoryLimit) {
+ sys::Path OutputCFile;
+ OutputCode(Bitcode, OutputCFile);
+
+ FileRemover CFileRemove(OutputCFile);
+
+ std::vector<std::string> GCCArgs(ArgsForGCC);
+ GCCArgs.insert(GCCArgs.end(), SharedLibs.begin(), SharedLibs.end());
+
+ return gcc->ExecuteProgram(OutputCFile.toString(), Args, GCC::CFile,
+ InputFile, OutputFile, GCCArgs,
+ Timeout, MemoryLimit);
+}
+
+/// createCBE - Try to find the 'llc' executable
+///
+CBE *AbstractInterpreter::createCBE(const std::string &ProgramPath,
+ std::string &Message,
+ const std::vector<std::string> *Args,
+ const std::vector<std::string> *GCCArgs) {
+ sys::Path LLCPath = FindExecutable("llc", ProgramPath);
+ if (LLCPath.isEmpty()) {
+ Message =
+ "Cannot find `llc' in executable directory or PATH!\n";
+ return 0;
+ }
+
+ Message = "Found llc: " + LLCPath.toString() + "\n";
+ GCC *gcc = GCC::create(ProgramPath, Message, GCCArgs);
+ if (!gcc) {
+ std::cerr << Message << "\n";
+ exit(1);
+ }
+ return new CBE(LLCPath, gcc, Args);
+}
+
+//===---------------------------------------------------------------------===//
+// GCC abstraction
+//
+int GCC::ExecuteProgram(const std::string &ProgramFile,
+ const std::vector<std::string> &Args,
+ FileType fileType,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ const std::vector<std::string> &ArgsForGCC,
+ unsigned Timeout,
+ unsigned MemoryLimit) {
+ std::vector<const char*> GCCArgs;
+
+ GCCArgs.push_back(GCCPath.c_str());
+
+ for (std::vector<std::string>::const_iterator
+ I = gccArgs.begin(), E = gccArgs.end(); I != E; ++I)
+ GCCArgs.push_back(I->c_str());
+
+ // Specify -x explicitly in case the extension is wonky
+ GCCArgs.push_back("-x");
+ if (fileType == CFile) {
+ GCCArgs.push_back("c");
+ GCCArgs.push_back("-fno-strict-aliasing");
+ } else {
+ GCCArgs.push_back("assembler");
+#ifdef __APPLE__
+ GCCArgs.push_back("-force_cpusubtype_ALL");
+#endif
+ }
+ GCCArgs.push_back(ProgramFile.c_str()); // Specify the input filename...
+ GCCArgs.push_back("-x");
+ GCCArgs.push_back("none");
+ GCCArgs.push_back("-o");
+ sys::Path OutputBinary (ProgramFile+".gcc.exe");
+ std::string ErrMsg;
+ if (OutputBinary.makeUnique(true, &ErrMsg)) {
+ std::cerr << "Error making unique filename: " << ErrMsg << "\n";
+ exit(1);
+ }
+ GCCArgs.push_back(OutputBinary.c_str()); // Output to the right file...
+
+ // Add any arguments intended for GCC. We locate them here because this is
+ // most likely -L and -l options that need to come before other libraries but
+ // after the source. Other options won't be sensitive to placement on the
+ // command line, so this should be safe.
+ for (unsigned i = 0, e = ArgsForGCC.size(); i != e; ++i)
+ GCCArgs.push_back(ArgsForGCC[i].c_str());
+
+ GCCArgs.push_back("-lm"); // Hard-code the math library...
+ GCCArgs.push_back("-O2"); // Optimize the program a bit...
+#if defined (HAVE_LINK_R)
+ GCCArgs.push_back("-Wl,-R."); // Search this dir for .so files
+#endif
+#ifdef __sparc__
+ GCCArgs.push_back("-mcpu=v9");
+#endif
+ GCCArgs.push_back(0); // NULL terminator
+
+ std::cout << "<gcc>" << std::flush;
+ DEBUG(std::cerr << "\nAbout to run:\t";
+ for (unsigned i=0, e = GCCArgs.size()-1; i != e; ++i)
+ std::cerr << " " << GCCArgs[i];
+ std::cerr << "\n";
+ );
+ if (RunProgramWithTimeout(GCCPath, &GCCArgs[0], sys::Path(), sys::Path(),
+ sys::Path())) {
+ ProcessFailure(GCCPath, &GCCArgs[0]);
+ exit(1);
+ }
+
+ std::vector<const char*> ProgramArgs;
+
+ if (RemoteClientPath.isEmpty())
+ ProgramArgs.push_back(OutputBinary.c_str());
+ else {
+ ProgramArgs.push_back(RemoteClientPath.c_str());
+ ProgramArgs.push_back(RemoteHost.c_str());
+ ProgramArgs.push_back("-l");
+ ProgramArgs.push_back(RemoteUser.c_str());
+ if (!RemoteExtra.empty()) {
+ ProgramArgs.push_back(RemoteExtra.c_str());
+ }
+
+ char* env_pwd = getenv("PWD");
+ std::string Exec = "cd ";
+ Exec += env_pwd;
+ Exec += "; ./";
+ Exec += OutputBinary.c_str();
+ ProgramArgs.push_back(Exec.c_str());
+ }
+
+ // Add optional parameters to the running program from Argv
+ for (unsigned i=0, e = Args.size(); i != e; ++i)
+ ProgramArgs.push_back(Args[i].c_str());
+ ProgramArgs.push_back(0); // NULL terminator
+
+ // Now that we have a binary, run it!
+ std::cout << "<program>" << std::flush;
+ DEBUG(std::cerr << "\nAbout to run:\t";
+ for (unsigned i=0, e = ProgramArgs.size()-1; i != e; ++i)
+ std::cerr << " " << ProgramArgs[i];
+ std::cerr << "\n";
+ );
+
+ FileRemover OutputBinaryRemover(OutputBinary);
+
+ if (RemoteClientPath.isEmpty())
+ return RunProgramWithTimeout(OutputBinary, &ProgramArgs[0],
+ sys::Path(InputFile), sys::Path(OutputFile), sys::Path(OutputFile),
+ Timeout, MemoryLimit);
+ else
+ return RunProgramWithTimeout(sys::Path(RemoteClientPath), &ProgramArgs[0],
+ sys::Path(InputFile), sys::Path(OutputFile), sys::Path(OutputFile),
+ Timeout, MemoryLimit);
+}
+
+int GCC::MakeSharedObject(const std::string &InputFile, FileType fileType,
+ std::string &OutputFile,
+ const std::vector<std::string> &ArgsForGCC) {
+ sys::Path uniqueFilename(InputFile+LTDL_SHLIB_EXT);
+ std::string ErrMsg;
+ if (uniqueFilename.makeUnique(true, &ErrMsg)) {
+ std::cerr << "Error making unique filename: " << ErrMsg << "\n";
+ exit(1);
+ }
+ OutputFile = uniqueFilename.toString();
+
+ std::vector<const char*> GCCArgs;
+
+ GCCArgs.push_back(GCCPath.c_str());
+
+ for (std::vector<std::string>::const_iterator
+ I = gccArgs.begin(), E = gccArgs.end(); I != E; ++I)
+ GCCArgs.push_back(I->c_str());
+
+ // Compile the C/asm file into a shared object
+ GCCArgs.push_back("-x");
+ GCCArgs.push_back(fileType == AsmFile ? "assembler" : "c");
+ GCCArgs.push_back("-fno-strict-aliasing");
+ GCCArgs.push_back(InputFile.c_str()); // Specify the input filename.
+ GCCArgs.push_back("-x");
+ GCCArgs.push_back("none");
+#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
+ GCCArgs.push_back("-G"); // Compile a shared library, `-G' for Sparc
+#elif defined(__APPLE__)
+ // link all source files into a single module in data segment, rather than
+ // generating blocks. dynamic_lookup requires that you set
+ // MACOSX_DEPLOYMENT_TARGET=10.3 in your env. FIXME: it would be better for
+ // bugpoint to just pass that in the environment of GCC.
+ GCCArgs.push_back("-single_module");
+ GCCArgs.push_back("-dynamiclib"); // `-dynamiclib' for MacOS X/PowerPC
+ GCCArgs.push_back("-undefined");
+ GCCArgs.push_back("dynamic_lookup");
+#else
+ GCCArgs.push_back("-shared"); // `-shared' for Linux/X86, maybe others
+#endif
+
+#if defined(__ia64__) || defined(__alpha__) || defined(__amd64__)
+ GCCArgs.push_back("-fPIC"); // Requires shared objs to contain PIC
+#endif
+#ifdef __sparc__
+ GCCArgs.push_back("-mcpu=v9");
+#endif
+ GCCArgs.push_back("-o");
+ GCCArgs.push_back(OutputFile.c_str()); // Output to the right filename.
+ GCCArgs.push_back("-O2"); // Optimize the program a bit.
+
+
+
+ // Add any arguments intended for GCC. We locate them here because this is
+ // most likely -L and -l options that need to come before other libraries but
+ // after the source. Other options won't be sensitive to placement on the
+ // command line, so this should be safe.
+ for (unsigned i = 0, e = ArgsForGCC.size(); i != e; ++i)
+ GCCArgs.push_back(ArgsForGCC[i].c_str());
+ GCCArgs.push_back(0); // NULL terminator
+
+
+
+ std::cout << "<gcc>" << std::flush;
+ DEBUG(std::cerr << "\nAbout to run:\t";
+ for (unsigned i=0, e = GCCArgs.size()-1; i != e; ++i)
+ std::cerr << " " << GCCArgs[i];
+ std::cerr << "\n";
+ );
+ if (RunProgramWithTimeout(GCCPath, &GCCArgs[0], sys::Path(), sys::Path(),
+ sys::Path())) {
+ ProcessFailure(GCCPath, &GCCArgs[0]);
+ return 1;
+ }
+ return 0;
+}
+
+/// create - Try to find the `gcc' executable
+///
+GCC *GCC::create(const std::string &ProgramPath, std::string &Message,
+ const std::vector<std::string> *Args) {
+ sys::Path GCCPath = FindExecutable("gcc", ProgramPath);
+ if (GCCPath.isEmpty()) {
+ Message = "Cannot find `gcc' in executable directory or PATH!\n";
+ return 0;
+ }
+
+ sys::Path RemoteClientPath;
+ if (!RemoteClient.empty())
+ RemoteClientPath = FindExecutable(RemoteClient.c_str(), ProgramPath);
+
+ Message = "Found gcc: " + GCCPath.toString() + "\n";
+ return new GCC(GCCPath, RemoteClientPath, Args);
+}
diff --git a/tools/bugpoint/ToolRunner.h b/tools/bugpoint/ToolRunner.h
new file mode 100644
index 0000000..721f66c
--- /dev/null
+++ b/tools/bugpoint/ToolRunner.h
@@ -0,0 +1,230 @@
+//===-- tools/bugpoint/ToolRunner.h -----------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file exposes an abstraction around a platform C compiler, used to
+// compile C and assembly code. It also exposes an "AbstractIntepreter"
+// interface, which is used to execute code using one of the LLVM execution
+// engines.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef BUGPOINT_TOOLRUNNER_H
+#define BUGPOINT_TOOLRUNNER_H
+
+#include "llvm/Support/SystemUtils.h"
+#include <exception>
+#include <vector>
+
+namespace llvm {
+
+class CBE;
+class LLC;
+
+/// ToolExecutionError - An instance of this class is thrown by the
+/// AbstractInterpreter instances if there is an error running a tool (e.g., LLC
+/// crashes) which prevents execution of the program.
+///
+class ToolExecutionError : std::exception {
+ std::string Message;
+public:
+ explicit ToolExecutionError(const std::string &M) : Message(M) {}
+ virtual ~ToolExecutionError() throw();
+ virtual const char* what() const throw() { return Message.c_str(); }
+};
+
+
+//===---------------------------------------------------------------------===//
+// GCC abstraction
+//
+class GCC {
+ sys::Path GCCPath; // The path to the gcc executable.
+ sys::Path RemoteClientPath; // The path to the rsh / ssh executable.
+ std::vector<std::string> gccArgs; // GCC-specific arguments.
+ GCC(const sys::Path &gccPath, const sys::Path &RemotePath,
+ const std::vector<std::string> *GCCArgs)
+ : GCCPath(gccPath), RemoteClientPath(RemotePath) {
+ if (GCCArgs) gccArgs = *GCCArgs;
+ }
+public:
+ enum FileType { AsmFile, CFile };
+
+ static GCC *create(const std::string &ProgramPath, std::string &Message,
+ const std::vector<std::string> *Args);
+
+ /// ExecuteProgram - Execute the program specified by "ProgramFile" (which is
+ /// either a .s file, or a .c file, specified by FileType), with the specified
+ /// arguments. Standard input is specified with InputFile, and standard
+ /// Output is captured to the specified OutputFile location. The SharedLibs
+ /// option specifies optional native shared objects that can be loaded into
+ /// the program for execution.
+ ///
+ int ExecuteProgram(const std::string &ProgramFile,
+ const std::vector<std::string> &Args,
+ FileType fileType,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ const std::vector<std::string> &GCCArgs =
+ std::vector<std::string>(),
+ unsigned Timeout = 0,
+ unsigned MemoryLimit = 0);
+
+ /// MakeSharedObject - This compiles the specified file (which is either a .c
+ /// file or a .s file) into a shared object.
+ ///
+ int MakeSharedObject(const std::string &InputFile, FileType fileType,
+ std::string &OutputFile,
+ const std::vector<std::string> &ArgsForGCC);
+};
+
+
+//===---------------------------------------------------------------------===//
+/// AbstractInterpreter Class - Subclasses of this class are used to execute
+/// LLVM bitcode in a variety of ways. This abstract interface hides this
+/// complexity behind a simple interface.
+///
+class AbstractInterpreter {
+public:
+ static CBE *createCBE(const std::string &ProgramPath, std::string &Message,
+ const std::vector<std::string> *Args = 0,
+ const std::vector<std::string> *GCCArgs = 0);
+ static LLC *createLLC(const std::string &ProgramPath, std::string &Message,
+ const std::vector<std::string> *Args = 0,
+ const std::vector<std::string> *GCCArgs = 0);
+
+ static AbstractInterpreter* createLLI(const std::string &ProgramPath,
+ std::string &Message,
+ const std::vector<std::string> *Args=0);
+
+ static AbstractInterpreter* createJIT(const std::string &ProgramPath,
+ std::string &Message,
+ const std::vector<std::string> *Args=0);
+
+ static AbstractInterpreter* createCustom(const std::string &ProgramPath,
+ std::string &Message,
+ const std::string &ExecCommandLine);
+
+
+ virtual ~AbstractInterpreter() {}
+
+ /// compileProgram - Compile the specified program from bitcode to executable
+ /// code. This does not produce any output, it is only used when debugging
+ /// the code generator. If the code generator fails, an exception should be
+ /// thrown, otherwise, this function will just return.
+ virtual void compileProgram(const std::string &Bitcode) {}
+
+ /// OutputCode - Compile the specified program from bitcode to code
+ /// understood by the GCC driver (either C or asm). If the code generator
+ /// fails, an exception should be thrown, otherwise, this function returns the
+ /// type of code emitted.
+ virtual GCC::FileType OutputCode(const std::string &Bitcode,
+ sys::Path &OutFile) {
+ throw std::string("OutputCode not supported by this AbstractInterpreter!");
+ }
+
+ /// ExecuteProgram - Run the specified bitcode file, emitting output to the
+ /// specified filename. This returns the exit code of the program.
+ ///
+ virtual int ExecuteProgram(const std::string &Bitcode,
+ const std::vector<std::string> &Args,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ const std::vector<std::string> &GCCArgs =
+ std::vector<std::string>(),
+ const std::vector<std::string> &SharedLibs =
+ std::vector<std::string>(),
+ unsigned Timeout = 0,
+ unsigned MemoryLimit = 0) = 0;
+};
+
+//===---------------------------------------------------------------------===//
+// CBE Implementation of AbstractIntepreter interface
+//
+class CBE : public AbstractInterpreter {
+ sys::Path LLCPath; // The path to the `llc' executable.
+ std::vector<std::string> ToolArgs; // Extra args to pass to LLC.
+ GCC *gcc;
+public:
+ CBE(const sys::Path &llcPath, GCC *Gcc,
+ const std::vector<std::string> *Args)
+ : LLCPath(llcPath), gcc(Gcc) {
+ ToolArgs.clear ();
+ if (Args) ToolArgs = *Args;
+ }
+ ~CBE() { delete gcc; }
+
+ /// compileProgram - Compile the specified program from bitcode to executable
+ /// code. This does not produce any output, it is only used when debugging
+ /// the code generator. If the code generator fails, an exception should be
+ /// thrown, otherwise, this function will just return.
+ virtual void compileProgram(const std::string &Bitcode);
+
+ virtual int ExecuteProgram(const std::string &Bitcode,
+ const std::vector<std::string> &Args,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ const std::vector<std::string> &GCCArgs =
+ std::vector<std::string>(),
+ const std::vector<std::string> &SharedLibs =
+ std::vector<std::string>(),
+ unsigned Timeout = 0,
+ unsigned MemoryLimit = 0);
+
+ /// OutputCode - Compile the specified program from bitcode to code
+ /// understood by the GCC driver (either C or asm). If the code generator
+ /// fails, an exception should be thrown, otherwise, this function returns the
+ /// type of code emitted.
+ virtual GCC::FileType OutputCode(const std::string &Bitcode,
+ sys::Path &OutFile);
+};
+
+
+//===---------------------------------------------------------------------===//
+// LLC Implementation of AbstractIntepreter interface
+//
+class LLC : public AbstractInterpreter {
+ std::string LLCPath; // The path to the LLC executable.
+ std::vector<std::string> ToolArgs; // Extra args to pass to LLC.
+ std::vector<std::string> gccArgs; // Extra args to pass to GCC.
+ GCC *gcc;
+public:
+ LLC(const std::string &llcPath, GCC *Gcc,
+ const std::vector<std::string> *Args,
+ const std::vector<std::string> *GCCArgs)
+ : LLCPath(llcPath), gcc(Gcc) {
+ ToolArgs.clear();
+ if (Args) ToolArgs = *Args;
+ if (GCCArgs) gccArgs = *GCCArgs;
+ }
+ ~LLC() { delete gcc; }
+
+ /// compileProgram - Compile the specified program from bitcode to executable
+ /// code. This does not produce any output, it is only used when debugging
+ /// the code generator. If the code generator fails, an exception should be
+ /// thrown, otherwise, this function will just return.
+ virtual void compileProgram(const std::string &Bitcode);
+
+ virtual int ExecuteProgram(const std::string &Bitcode,
+ const std::vector<std::string> &Args,
+ const std::string &InputFile,
+ const std::string &OutputFile,
+ const std::vector<std::string> &GCCArgs =
+ std::vector<std::string>(),
+ const std::vector<std::string> &SharedLibs =
+ std::vector<std::string>(),
+ unsigned Timeout = 0,
+ unsigned MemoryLimit = 0);
+
+ virtual GCC::FileType OutputCode(const std::string &Bitcode,
+ sys::Path &OutFile);
+
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/tools/bugpoint/bugpoint.cpp b/tools/bugpoint/bugpoint.cpp
new file mode 100644
index 0000000..20f0e99
--- /dev/null
+++ b/tools/bugpoint/bugpoint.cpp
@@ -0,0 +1,104 @@
+//===- bugpoint.cpp - The LLVM Bugpoint utility ---------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This program is an automated compiler debugger tool. It is used to narrow
+// down miscompilations and crash problems to a specific pass in the compiler,
+// and the specific Module or Function input that is causing the problem.
+//
+//===----------------------------------------------------------------------===//
+
+#include "BugDriver.h"
+#include "ToolRunner.h"
+#include "llvm/LinkAllPasses.h"
+#include "llvm/Support/PassNameParser.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/PluginLoader.h"
+#include "llvm/Support/PrettyStackTrace.h"
+#include "llvm/System/Process.h"
+#include "llvm/System/Signals.h"
+#include "llvm/LinkAllVMCore.h"
+#include <iostream>
+using namespace llvm;
+
+// AsChild - Specifies that this invocation of bugpoint is being generated
+// from a parent process. It is not intended to be used by users so the
+// option is hidden.
+static cl::opt<bool>
+AsChild("as-child", cl::desc("Run bugpoint as child process"),
+ cl::ReallyHidden);
+
+static cl::opt<bool>
+FindBugs("find-bugs", cl::desc("Run many different optimization sequences "
+ "on program to find bugs"), cl::init(false));
+
+static cl::list<std::string>
+InputFilenames(cl::Positional, cl::OneOrMore,
+ cl::desc("<input llvm ll/bc files>"));
+
+static cl::opt<unsigned>
+TimeoutValue("timeout", cl::init(300), cl::value_desc("seconds"),
+ cl::desc("Number of seconds program is allowed to run before it "
+ "is killed (default is 300s), 0 disables timeout"));
+
+static cl::opt<unsigned>
+MemoryLimit("mlimit", cl::init(100), cl::value_desc("MBytes"),
+ cl::desc("Maximum amount of memory to use. 0 disables check."));
+
+// The AnalysesList is automatically populated with registered Passes by the
+// PassNameParser.
+//
+static cl::list<const PassInfo*, bool, PassNameParser>
+PassList(cl::desc("Passes available:"), cl::ZeroOrMore);
+
+/// BugpointIsInterrupted - Set to true when the user presses ctrl-c.
+bool llvm::BugpointIsInterrupted = false;
+
+static void BugpointInterruptFunction() {
+ BugpointIsInterrupted = true;
+}
+
+int main(int argc, char **argv) {
+ llvm::sys::PrintStackTraceOnErrorSignal();
+ llvm::PrettyStackTraceProgram X(argc, argv);
+ llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
+ cl::ParseCommandLineOptions(argc, argv,
+ "LLVM automatic testcase reducer. See\nhttp://"
+ "llvm.org/cmds/bugpoint.html"
+ " for more information.\n");
+ sys::SetInterruptFunction(BugpointInterruptFunction);
+
+ BugDriver D(argv[0], AsChild, FindBugs, TimeoutValue, MemoryLimit);
+ if (D.addSources(InputFilenames)) return 1;
+ D.addPasses(PassList.begin(), PassList.end());
+
+ // Bugpoint has the ability of generating a plethora of core files, so to
+ // avoid filling up the disk, we prevent it
+ sys::Process::PreventCoreFiles();
+
+ try {
+ return D.run();
+ } catch (ToolExecutionError &TEE) {
+ std::cerr << "Tool execution error: " << TEE.what() << '\n';
+ } catch (const std::string& msg) {
+ std::cerr << argv[0] << ": " << msg << "\n";
+ } catch (const std::bad_alloc &e) {
+ std::cerr << "Oh no, a bugpoint process ran out of memory!\n"
+ "To increase the allocation limits for bugpoint child\n"
+ "processes, use the -mlimit option.\n";
+ } catch (const std::exception &e) {
+ std::cerr << "Whoops, a std::exception leaked out of bugpoint: "
+ << e.what() << "\n"
+ << "This is a bug in bugpoint!\n";
+ } catch (...) {
+ std::cerr << "Whoops, an exception leaked out of bugpoint. "
+ << "This is a bug in bugpoint!\n";
+ }
+ return 1;
+}
OpenPOWER on IntegriCloud