summaryrefslogtreecommitdiffstats
path: root/sys/vm/vm_map.c
diff options
context:
space:
mode:
authoralc <alc@FreeBSD.org>2004-08-13 08:06:34 +0000
committeralc <alc@FreeBSD.org>2004-08-13 08:06:34 +0000
commit482b6818afd4db4c0be3027d637df4d534bc9eee (patch)
tree5e8beccffc1dea81c083b35c99a888b52aa69c82 /sys/vm/vm_map.c
parentd2ff11056b54e4dbd55e3694dae3e033afe5d344 (diff)
downloadFreeBSD-src-482b6818afd4db4c0be3027d637df4d534bc9eee.zip
FreeBSD-src-482b6818afd4db4c0be3027d637df4d534bc9eee.tar.gz
Replace the linear search in vm_map_findspace() with an O(log n)
algorithm built into the map entry splay tree. This replaces the first_free hint in struct vm_map with two fields in vm_map_entry: adj_free, the amount of free space following a map entry, and max_free, the maximum amount of free space in the entry's subtree. These fields make it possible to find a first-fit free region of a given size in one pass down the tree, so O(log n) amortized using splay trees. This significantly reduces the overhead in vm_map_findspace() for applications that mmap() many hundreds or thousands of regions, and has a negligible slowdown (0.1%) on buildworld. See, for example, the discussion of a micro-benchmark titled "Some mmap observations compared to Linux 2.6/OpenBSD" on -hackers in late October 2003. OpenBSD adopted this approach in March 2002, and NetBSD added it in November 2003, both with Red-Black trees. Submitted by: Mark W. Krentel
Diffstat (limited to 'sys/vm/vm_map.c')
-rw-r--r--sys/vm/vm_map.c308
1 files changed, 211 insertions, 97 deletions
diff --git a/sys/vm/vm_map.c b/sys/vm/vm_map.c
index 55eaef7..0676155 100644
--- a/sys/vm/vm_map.c
+++ b/sys/vm/vm_map.c
@@ -514,7 +514,6 @@ _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
map->system_map = 0;
map->min_offset = min;
map->max_offset = max;
- map->first_free = &map->header;
map->flags = 0;
map->root = NULL;
map->timestamp = 0;
@@ -573,59 +572,129 @@ vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
}
/*
+ * vm_map_entry_set_max_free:
+ *
+ * Set the max_free field in a vm_map_entry.
+ */
+static __inline void
+vm_map_entry_set_max_free(vm_map_entry_t entry)
+{
+
+ entry->max_free = entry->adj_free;
+ if (entry->left != NULL && entry->left->max_free > entry->max_free)
+ entry->max_free = entry->left->max_free;
+ if (entry->right != NULL && entry->right->max_free > entry->max_free)
+ entry->max_free = entry->right->max_free;
+}
+
+/*
* vm_map_entry_splay:
*
- * Implements Sleator and Tarjan's top-down splay algorithm. Returns
- * the vm_map_entry containing the given address. If, however, that
- * address is not found in the vm_map, returns a vm_map_entry that is
- * adjacent to the address, coming before or after it.
+ * The Sleator and Tarjan top-down splay algorithm with the
+ * following variation. Max_free must be computed bottom-up, so
+ * on the downward pass, maintain the left and right spines in
+ * reverse order. Then, make a second pass up each side to fix
+ * the pointers and compute max_free. The time bound is O(log n)
+ * amortized.
+ *
+ * The new root is the vm_map_entry containing "addr", or else an
+ * adjacent entry (lower or higher) if addr is not in the tree.
+ *
+ * The map must be locked, and leaves it so.
+ *
+ * Returns: the new root.
*/
static vm_map_entry_t
-vm_map_entry_splay(vm_offset_t address, vm_map_entry_t root)
+vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
{
- struct vm_map_entry dummy;
- vm_map_entry_t lefttreemax, righttreemin, y;
+ vm_map_entry_t llist, rlist;
+ vm_map_entry_t ltree, rtree;
+ vm_map_entry_t y;
+ /* Special case of empty tree. */
if (root == NULL)
return (root);
- lefttreemax = righttreemin = &dummy;
- for (;; root = y) {
- if (address < root->start) {
- if ((y = root->left) == NULL)
+
+ /*
+ * Pass One: Splay down the tree until we find addr or a NULL
+ * pointer where addr would go. llist and rlist are the two
+ * sides in reverse order (bottom-up), with llist linked by
+ * the right pointer and rlist linked by the left pointer in
+ * the vm_map_entry. Wait until Pass Two to set max_free on
+ * the two spines.
+ */
+ llist = NULL;
+ rlist = NULL;
+ for (;;) {
+ /* root is never NULL in here. */
+ if (addr < root->start) {
+ y = root->left;
+ if (y == NULL)
break;
- if (address < y->start) {
- /* Rotate right. */
+ if (addr < y->start && y->left != NULL) {
+ /* Rotate right and put y on rlist. */
root->left = y->right;
y->right = root;
+ vm_map_entry_set_max_free(root);
+ root = y->left;
+ y->left = rlist;
+ rlist = y;
+ } else {
+ /* Put root on rlist. */
+ root->left = rlist;
+ rlist = root;
root = y;
- if ((y = root->left) == NULL)
- break;
}
- /* Link into the new root's right tree. */
- righttreemin->left = root;
- righttreemin = root;
- } else if (address >= root->end) {
- if ((y = root->right) == NULL)
+ } else {
+ y = root->right;
+ if (addr < root->end || y == NULL)
break;
- if (address >= y->end) {
- /* Rotate left. */
+ if (addr >= y->end && y->right != NULL) {
+ /* Rotate left and put y on llist. */
root->right = y->left;
y->left = root;
+ vm_map_entry_set_max_free(root);
+ root = y->right;
+ y->right = llist;
+ llist = y;
+ } else {
+ /* Put root on llist. */
+ root->right = llist;
+ llist = root;
root = y;
- if ((y = root->right) == NULL)
- break;
}
- /* Link into the new root's left tree. */
- lefttreemax->right = root;
- lefttreemax = root;
- } else
- break;
+ }
}
- /* Assemble the new root. */
- lefttreemax->right = root->left;
- righttreemin->left = root->right;
- root->left = dummy.right;
- root->right = dummy.left;
+
+ /*
+ * Pass Two: Walk back up the two spines, flip the pointers
+ * and set max_free. The subtrees of the root go at the
+ * bottom of llist and rlist.
+ */
+ ltree = root->left;
+ while (llist != NULL) {
+ y = llist->right;
+ llist->right = ltree;
+ vm_map_entry_set_max_free(llist);
+ ltree = llist;
+ llist = y;
+ }
+ rtree = root->right;
+ while (rlist != NULL) {
+ y = rlist->left;
+ rlist->left = rtree;
+ vm_map_entry_set_max_free(rlist);
+ rtree = rlist;
+ rlist = y;
+ }
+
+ /*
+ * Final assembly: add ltree and rtree as subtrees of root.
+ */
+ root->left = ltree;
+ root->right = rtree;
+ vm_map_entry_set_max_free(root);
+
return (root);
}
@@ -655,10 +724,15 @@ vm_map_entry_link(vm_map_t map,
entry->right = after_where->right;
entry->left = after_where;
after_where->right = NULL;
+ after_where->adj_free = entry->start - after_where->end;
+ vm_map_entry_set_max_free(after_where);
} else {
entry->right = map->root;
entry->left = NULL;
}
+ entry->adj_free = (entry->next == &map->header ? map->max_offset :
+ entry->next->start) - entry->end;
+ vm_map_entry_set_max_free(entry);
map->root = entry;
}
@@ -675,6 +749,9 @@ vm_map_entry_unlink(vm_map_t map,
else {
root = vm_map_entry_splay(entry->start, entry->left);
root->right = entry->right;
+ root->adj_free = (entry->next == &map->header ? map->max_offset :
+ entry->next->start) - root->end;
+ vm_map_entry_set_max_free(root);
}
map->root = root;
@@ -688,6 +765,33 @@ vm_map_entry_unlink(vm_map_t map,
}
/*
+ * vm_map_entry_resize_free:
+ *
+ * Recompute the amount of free space following a vm_map_entry
+ * and propagate that value up the tree. Call this function after
+ * resizing a map entry in-place, that is, without a call to
+ * vm_map_entry_link() or _unlink().
+ *
+ * The map must be locked, and leaves it so.
+ */
+static void
+vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
+{
+
+ /*
+ * Using splay trees without parent pointers, propagating
+ * max_free up the tree is done by moving the entry to the
+ * root and making the change there.
+ */
+ if (entry != map->root)
+ map->root = vm_map_entry_splay(entry->start, map->root);
+
+ entry->adj_free = (entry->next == &map->header ? map->max_offset :
+ entry->next->start) - entry->end;
+ vm_map_entry_set_max_free(entry);
+}
+
+/*
* vm_map_lookup_entry: [ internal use only ]
*
* Finds the map entry containing (or
@@ -814,6 +918,7 @@ vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
(prev_entry->max_protection == max)) {
map->size += (end - prev_entry->end);
prev_entry->end = end;
+ vm_map_entry_resize_free(map, prev_entry);
vm_map_simplify_entry(map, prev_entry);
return (KERN_SUCCESS);
}
@@ -859,14 +964,6 @@ vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
vm_map_entry_link(map, prev_entry, new_entry);
map->size += new_entry->end - new_entry->start;
- /*
- * Update the free space hint
- */
- if ((map->first_free == prev_entry) &&
- (prev_entry->end >= new_entry->start)) {
- map->first_free = new_entry;
- }
-
#if 0
/*
* Temporarily removed to avoid MAP_STACK panic, due to
@@ -889,64 +986,90 @@ vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
}
/*
- * Find sufficient space for `length' bytes in the given map, starting at
- * `start'. The map must be locked. Returns 0 on success, 1 on no space.
+ * vm_map_findspace:
+ *
+ * Find the first fit (lowest VM address) for "length" free bytes
+ * beginning at address >= start in the given map.
+ *
+ * In a vm_map_entry, "adj_free" is the amount of free space
+ * adjacent (higher address) to this entry, and "max_free" is the
+ * maximum amount of contiguous free space in its subtree. This
+ * allows finding a free region in one path down the tree, so
+ * O(log n) amortized with splay trees.
+ *
+ * The map must be locked, and leaves it so.
+ *
+ * Returns: 0 on success, and starting address in *addr,
+ * 1 if insufficient space.
*/
int
-vm_map_findspace(
- vm_map_t map,
- vm_offset_t start,
- vm_size_t length,
- vm_offset_t *addr)
+vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
+ vm_offset_t *addr) /* OUT */
{
- vm_map_entry_t entry, next;
- vm_offset_t end;
+ vm_map_entry_t entry;
+ vm_offset_t end, st;
+ /* Request must fit within min/max VM address. */
if (start < map->min_offset)
start = map->min_offset;
- if (start > map->max_offset)
+ if (start + length > map->max_offset)
return (1);
+ /* Empty tree means wide open address space. */
+ if (map->root == NULL) {
+ *addr = start;
+ goto found;
+ }
+
/*
- * Look for the first possible address; if there's already something
- * at this address, we have to start after it.
+ * After splay, if start comes before root node, then there
+ * must be a gap from start to the root.
*/
- if (start == map->min_offset) {
- if ((entry = map->first_free) != &map->header)
- start = entry->end;
- } else {
- vm_map_entry_t tmp;
+ map->root = vm_map_entry_splay(start, map->root);
+ if (start + length <= map->root->start) {
+ *addr = start;
+ goto found;
+ }
- if (vm_map_lookup_entry(map, start, &tmp))
- start = tmp->end;
- entry = tmp;
+ /*
+ * Root is the last node that might begin its gap before
+ * start.
+ */
+ st = (start > map->root->end) ? start : map->root->end;
+ if (st + length <= map->root->end + map->root->adj_free) {
+ *addr = st;
+ goto found;
}
+ /* With max_free, can immediately tell if no solution. */
+ entry = map->root->right;
+ if (entry == NULL || length > entry->max_free)
+ return (1);
+
/*
- * Look through the rest of the map, trying to fit a new region in the
- * gap between existing regions, or after the very last region.
+ * Search the right subtree in the order: left subtree, root,
+ * right subtree (first fit). The previous splay implies that
+ * all regions in the right subtree have addresses > start.
*/
- for (;; start = (entry = next)->end) {
- /*
- * Find the end of the proposed new region. Be sure we didn't
- * go beyond the end of the map, or wrap around the address;
- * if so, we lose. Otherwise, if this is the last entry, or
- * if the proposed new region fits before the next entry, we
- * win.
- */
- end = start + length;
- if (end > map->max_offset || end < start)
- return (1);
- next = entry->next;
- if (next == &map->header || next->start >= end)
- break;
+ while (entry != NULL) {
+ if (entry->left != NULL && entry->left->max_free >= length)
+ entry = entry->left;
+ else if (entry->adj_free >= length) {
+ *addr = entry->end;
+ goto found;
+ } else
+ entry = entry->right;
}
- *addr = start;
+
+ /* Can't get here, so panic if we do. */
+ panic("vm_map_findspace: max_free corrupt");
+
+found:
+ /* Expand the kernel pmap, if necessary. */
if (map == kernel_map) {
- vm_offset_t ksize;
- if ((ksize = round_page(start + length)) > kernel_vm_end) {
- pmap_growkernel(ksize);
- }
+ end = round_page(*addr + length);
+ if (end > kernel_vm_end)
+ pmap_growkernel(end);
}
return (0);
}
@@ -1027,11 +1150,11 @@ vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
(prev->max_protection == entry->max_protection) &&
(prev->inheritance == entry->inheritance) &&
(prev->wired_count == entry->wired_count)) {
- if (map->first_free == prev)
- map->first_free = entry;
vm_map_entry_unlink(map, prev);
entry->start = prev->start;
entry->offset = prev->offset;
+ if (entry->prev != &map->header)
+ vm_map_entry_resize_free(map, entry->prev);
if (prev->object.vm_object)
vm_object_deallocate(prev->object.vm_object);
vm_map_entry_dispose(map, prev);
@@ -1050,10 +1173,9 @@ vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
(next->max_protection == entry->max_protection) &&
(next->inheritance == entry->inheritance) &&
(next->wired_count == entry->wired_count)) {
- if (map->first_free == next)
- map->first_free = entry;
vm_map_entry_unlink(map, next);
entry->end = next->end;
+ vm_map_entry_resize_free(map, entry);
if (next->object.vm_object)
vm_object_deallocate(next->object.vm_object);
vm_map_entry_dispose(map, next);
@@ -2117,15 +2239,6 @@ vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
}
/*
- * Save the free space hint
- */
- if (entry == &map->header) {
- map->first_free = &map->header;
- } else if (map->first_free->start >= start) {
- map->first_free = entry->prev;
- }
-
- /*
* Step through all entries in this region
*/
while ((entry != &map->header) && (entry->start < end)) {
@@ -2777,6 +2890,7 @@ Retry:
/* Update the current entry. */
stack_entry->end = addr;
stack_entry->avail_ssize -= grow_amount;
+ vm_map_entry_resize_free(map, stack_entry);
rv = KERN_SUCCESS;
if (next_entry != &map->header)
OpenPOWER on IntegriCloud