summaryrefslogtreecommitdiffstats
path: root/sys/vm/uma_int.h
diff options
context:
space:
mode:
authorjeff <jeff@FreeBSD.org>2002-03-19 09:11:49 +0000
committerjeff <jeff@FreeBSD.org>2002-03-19 09:11:49 +0000
commit2923687da3c046deea227e675d5af075b9fa52d4 (patch)
tree9added529dcba41e3e9f6e15e334a8a06d6cb0f2 /sys/vm/uma_int.h
parentd95a4801fc26e963b0da94ad73f00ce63c5ed657 (diff)
downloadFreeBSD-src-2923687da3c046deea227e675d5af075b9fa52d4.zip
FreeBSD-src-2923687da3c046deea227e675d5af075b9fa52d4.tar.gz
This is the first part of the new kernel memory allocator. This replaces
malloc(9) and vm_zone with a slab like allocator. Reviewed by: arch@
Diffstat (limited to 'sys/vm/uma_int.h')
-rw-r--r--sys/vm/uma_int.h328
1 files changed, 328 insertions, 0 deletions
diff --git a/sys/vm/uma_int.h b/sys/vm/uma_int.h
new file mode 100644
index 0000000..77e7c38
--- /dev/null
+++ b/sys/vm/uma_int.h
@@ -0,0 +1,328 @@
+/*
+ * Copyright (c) 2002, Jeffrey Roberson <jroberson@chesapeake.net>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice unmodified, this list of conditions, and the following
+ * disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * $FreeBSD$
+ *
+ */
+
+/*
+ *
+ * Jeff Roberson <jroberson@chesapeake.net>
+ *
+ * This file includes definitions, structures, prototypes, and inlines that
+ * should not be used outside of the actual implementation of UMA.
+ *
+ */
+
+/*
+ * Here's a quick description of the relationship between the objects:
+ *
+ * Zones contain lists of slabs which are stored in either the full bin, empty
+ * bin, or partially allocated bin, to reduce fragmentation. They also contain
+ * the user supplied value for size, which is adjusted for alignment purposes
+ * and rsize is the result of that. The zone also stores information for
+ * managing a hash of page addresses that maps pages to uma_slab_t structures
+ * for pages that don't have embedded uma_slab_t's.
+ *
+ * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
+ * be allocated off the page from a special slab zone. The free list within a
+ * slab is managed with a linked list of indexes, which are 8 bit values. If
+ * UMA_SLAB_SIZE is defined to be too large I will have to switch to 16bit
+ * values. Currently on alpha you can get 250 or so 32 byte items and on x86
+ * you can get 250 or so 16byte items. For item sizes that would yield more
+ * than 10% memory waste we potentially allocate a seperate uma_slab_t if this
+ * will improve the number of items per slab that will fit.
+ *
+ * Other potential space optimizations are storing the 8bit of linkage in space
+ * wasted between items due to alignment problems. This may yield a much better
+ * memory footprint for certain sizes of objects. Another alternative is to
+ * increase the UMA_SLAB_SIZE, or allow for dynamic slab sizes. I prefer
+ * dynamic slab sizes because we could stick with 8 bit indexes and only use
+ * large slab sizes for zones with a lot of waste per slab. This may create
+ * ineffeciencies in the vm subsystem due to fragmentation in the address space.
+ *
+ * The only really gross cases, with regards to memory waste, are for those
+ * items that are just over half the page size. You can get nearly 50% waste,
+ * so you fall back to the memory footprint of the power of two allocator. I
+ * have looked at memory allocation sizes on many of the machines available to
+ * me, and there does not seem to be an abundance of allocations at this range
+ * so at this time it may not make sense to optimize for it. This can, of
+ * course, be solved with dynamic slab sizes.
+ *
+ */
+
+/*
+ * This is the representation for normal (Non OFFPAGE slab)
+ *
+ * i == item
+ * s == slab pointer
+ *
+ * <---------------- Page (UMA_SLAB_SIZE) ------------------>
+ * ___________________________________________________________
+ * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ |
+ * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
+ * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
+ * |___________________________________________________________|
+ *
+ *
+ * This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
+ *
+ * ___________________________________________________________
+ * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
+ * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |
+ * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |
+ * |___________________________________________________________|
+ * ___________ ^
+ * |slab header| |
+ * |___________|---*
+ *
+ */
+
+#ifndef VM_UMA_INT_H
+#define VM_UMA_INT_H
+
+#include <sys/mutex.h>
+
+#define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */
+#define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */
+#define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */
+
+#define UMA_BOOT_PAGES 15 /* Number of pages allocated for startup */
+#define UMA_WORKING_TIME 20 /* Seconds worth of items to keep */
+
+
+/* Max waste before going to off page slab management */
+#define UMA_MAX_WASTE (UMA_SLAB_SIZE / 10)
+
+/*
+ * I doubt there will be many cases where this is exceeded. This is the initial
+ * size of the hash table for uma_slabs that are managed off page. This hash
+ * does expand by powers of two. Currently it doesn't get smaller.
+ */
+#define UMA_HASH_SIZE_INIT 32
+
+
+/*
+ * I should investigate other hashing algorithms. This should yield a low
+ * number of collisions if the pages are relatively contiguous.
+ *
+ * This is the same algorithm that most processor caches use.
+ *
+ * I'm shifting and masking instead of % because it should be faster.
+ */
+
+#define UMA_HASH(h, s) ((((unsigned long)s) >> UMA_SLAB_SHIFT) & \
+ (h)->uh_hashmask)
+
+#define UMA_HASH_INSERT(h, s, mem) \
+ SLIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \
+ (mem))], (s), us_hlink);
+#define UMA_HASH_REMOVE(h, s, mem) \
+ SLIST_REMOVE(&(h)->uh_slab_hash[UMA_HASH((h), \
+ (mem))], (s), uma_slab, us_hlink);
+
+/* Page management structure */
+
+/* Sorry for the union, but space efficiency is important */
+struct uma_slab {
+ uma_zone_t us_zone; /* Zone we live in */
+ union {
+ LIST_ENTRY(uma_slab) us_link; /* slabs in zone */
+ unsigned long us_size; /* Size of allocation */
+ } us_type;
+ SLIST_ENTRY(uma_slab) us_hlink; /* Link for hash table */
+ u_int8_t *us_data; /* First item */
+ u_int8_t us_flags; /* Page flags see uma.h */
+ u_int8_t us_freecount; /* How many are free? */
+ u_int8_t us_firstfree; /* First free item index */
+ u_int8_t us_freelist[1]; /* Free List (actually larger) */
+};
+
+#define us_link us_type.us_link
+#define us_size us_type.us_size
+
+typedef struct uma_slab * uma_slab_t;
+
+/* Hash table for freed address -> slab translation */
+
+SLIST_HEAD(slabhead, uma_slab);
+
+struct uma_hash {
+ struct slabhead *uh_slab_hash; /* Hash table for slabs */
+ int uh_hashsize; /* Current size of the hash table */
+ int uh_hashmask; /* Mask used during hashing */
+};
+
+extern struct uma_hash *mallochash;
+
+/*
+ * Structures for per cpu queues.
+ */
+
+/*
+ * This size was chosen so that the struct bucket size is roughly
+ * 128 * sizeof(void *). This is exactly true for x86, and for alpha
+ * it will would be 32bits smaller if it didn't have alignment adjustments.
+ */
+
+#define UMA_BUCKET_SIZE 125
+
+struct uma_bucket {
+ LIST_ENTRY(uma_bucket) ub_link; /* Link into the zone */
+ int16_t ub_ptr; /* Pointer to current item */
+ void *ub_bucket[UMA_BUCKET_SIZE]; /* actual allocation storage */
+};
+
+typedef struct uma_bucket * uma_bucket_t;
+
+struct uma_cache {
+ struct mtx uc_lock; /* Spin lock on this cpu's bucket */
+ int uc_count; /* Highest value ub_ptr can have */
+ uma_bucket_t uc_freebucket; /* Bucket we're freeing to */
+ uma_bucket_t uc_allocbucket; /* Bucket to allocate from */
+ u_int64_t uc_allocs; /* Count of allocations */
+};
+
+typedef struct uma_cache * uma_cache_t;
+
+#define LOCKNAME_LEN 16 /* Length of the name for cpu locks */
+
+/*
+ * Zone management structure
+ *
+ * TODO: Optimize for cache line size
+ *
+ */
+struct uma_zone {
+ char uz_lname[LOCKNAME_LEN]; /* Text name for the cpu lock */
+ char *uz_name; /* Text name of the zone */
+ LIST_ENTRY(uma_zone) uz_link; /* List of all zones */
+ u_int32_t uz_align; /* Alignment mask */
+ u_int32_t uz_pages; /* Total page count */
+
+/* Used during alloc / free */
+ struct mtx uz_lock; /* Lock for the zone */
+ u_int32_t uz_free; /* Count of items free in slabs */
+ u_int16_t uz_ipers; /* Items per slab */
+ u_int16_t uz_flags; /* Internal flags */
+
+ LIST_HEAD(,uma_slab) uz_part_slab; /* partially allocated slabs */
+ LIST_HEAD(,uma_slab) uz_free_slab; /* empty slab list */
+ LIST_HEAD(,uma_slab) uz_full_slab; /* full slabs */
+ LIST_HEAD(,uma_bucket) uz_full_bucket; /* full buckets */
+ LIST_HEAD(,uma_bucket) uz_free_bucket; /* Buckets for frees */
+ u_int32_t uz_size; /* Requested size of each item */
+ u_int32_t uz_rsize; /* Real size of each item */
+
+ struct uma_hash uz_hash;
+ u_int16_t uz_pgoff; /* Offset to uma_slab struct */
+ u_int16_t uz_ppera; /* pages per allocation from backend */
+ u_int16_t uz_cacheoff; /* Next cache offset */
+ u_int16_t uz_cachemax; /* Max cache offset */
+
+ uma_ctor uz_ctor; /* Constructor for each allocation */
+ uma_dtor uz_dtor; /* Destructor */
+ u_int64_t uz_allocs; /* Total number of allocations */
+
+ uma_init uz_init; /* Initializer for each item */
+ uma_fini uz_fini; /* Discards memory */
+ uma_alloc uz_allocf; /* Allocation function */
+ uma_free uz_freef; /* Free routine */
+ struct vm_object *uz_obj; /* Zone specific object */
+ vm_offset_t uz_kva; /* Base kva for zones with objs */
+ u_int32_t uz_maxpages; /* Maximum number of pages to alloc */
+ u_int32_t uz_cachefree; /* Last count of items free in caches */
+ u_int64_t uz_oallocs; /* old allocs count */
+ u_int64_t uz_wssize; /* Working set size */
+ int uz_recurse; /* Allocation recursion count */
+ /*
+ * This HAS to be the last item because we adjust the zone size
+ * based on NCPU and then allocate the space for the zones.
+ */
+ struct uma_cache uz_cpu[1]; /* Per cpu caches */
+};
+
+#define UMA_CACHE_INC 16 /* How much will we move data */
+
+#define UMA_ZFLAG_OFFPAGE 0x0001 /* Struct slab/freelist off page */
+#define UMA_ZFLAG_PRIVALLOC 0x0002 /* Zone has supplied it's own alloc */
+#define UMA_ZFLAG_INTERNAL 0x0004 /* Internal zone, no offpage no PCPU */
+#define UMA_ZFLAG_MALLOC 0x0008 /* Zone created by malloc */
+#define UMA_ZFLAG_NOFREE 0x0010 /* Don't free data from this zone */
+/* This lives in uflags */
+#define UMA_ZONE_INTERNAL 0x1000 /* Internal zone for uflags */
+
+/* Internal prototypes */
+static __inline uma_slab_t hash_sfind(struct uma_hash *hash, u_int8_t *data);
+void *uma_large_malloc(int size, int wait);
+void uma_large_free(uma_slab_t slab);
+
+/* Lock Macros */
+
+#define ZONE_LOCK_INIT(z) mtx_init(&(z)->uz_lock, (z)->uz_name, MTX_DEF)
+#define ZONE_LOCK_FINI(z) mtx_destroy(&(z)->uz_lock)
+#define ZONE_LOCK(z) mtx_lock(&(z)->uz_lock)
+#define ZONE_UNLOCK(z) mtx_unlock(&(z)->uz_lock)
+
+#define CPU_LOCK_INIT(z, cpu) \
+ mtx_init(&(z)->uz_cpu[(cpu)].uc_lock, (z)->uz_lname, MTX_DEF)
+
+#define CPU_LOCK_FINI(z, cpu) \
+ mtx_destroy(&(z)->uz_cpu[(cpu)].uc_lock)
+
+#define CPU_LOCK(z, cpu) \
+ mtx_lock(&(z)->uz_cpu[(cpu)].uc_lock)
+
+#define CPU_UNLOCK(z, cpu) \
+ mtx_unlock(&(z)->uz_cpu[(cpu)].uc_lock)
+
+/*
+ * Find a slab within a hash table. This is used for OFFPAGE zones to lookup
+ * the slab structure.
+ *
+ * Arguments:
+ * hash The hash table to search.
+ * data The base page of the item.
+ *
+ * Returns:
+ * A pointer to a slab if successful, else NULL.
+ */
+static __inline uma_slab_t
+hash_sfind(struct uma_hash *hash, u_int8_t *data)
+{
+ uma_slab_t slab;
+ int hval;
+
+ hval = UMA_HASH(hash, data);
+
+ SLIST_FOREACH(slab, &hash->uh_slab_hash[hval], us_hlink) {
+ if ((u_int8_t *)slab->us_data == data)
+ return (slab);
+ }
+ return (NULL);
+}
+
+
+#endif /* VM_UMA_INT_H */
OpenPOWER on IntegriCloud