summaryrefslogtreecommitdiffstats
path: root/sys/pci
diff options
context:
space:
mode:
authorimp <imp@FreeBSD.org>2008-08-14 20:02:34 +0000
committerimp <imp@FreeBSD.org>2008-08-14 20:02:34 +0000
commit6a728b4e53204fcbd8423d013a8beb811574b400 (patch)
treee84c1c79e9ff01bb6a99e12d1867afeed2865ac1 /sys/pci
parent463ec8e02d0db95b50ab7a1c71563cb72e824d7c (diff)
downloadFreeBSD-src-6a728b4e53204fcbd8423d013a8beb811574b400.zip
FreeBSD-src-6a728b4e53204fcbd8423d013a8beb811574b400.tar.gz
Move the tl driver form sys/pci to sys/dev/tl.
Diffstat (limited to 'sys/pci')
-rw-r--r--sys/pci/if_tl.c2363
-rw-r--r--sys/pci/if_tlreg.h592
2 files changed, 0 insertions, 2955 deletions
diff --git a/sys/pci/if_tl.c b/sys/pci/if_tl.c
deleted file mode 100644
index f2993e2..0000000
--- a/sys/pci/if_tl.c
+++ /dev/null
@@ -1,2363 +0,0 @@
-/*-
- * Copyright (c) 1997, 1998
- * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * This product includes software developed by Bill Paul.
- * 4. Neither the name of the author nor the names of any co-contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
- * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
- * THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#include <sys/cdefs.h>
-__FBSDID("$FreeBSD$");
-
-/*
- * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
- * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
- * the National Semiconductor DP83840A physical interface and the
- * Microchip Technology 24Cxx series serial EEPROM.
- *
- * Written using the following four documents:
- *
- * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
- * National Semiconductor DP83840A data sheet (www.national.com)
- * Microchip Technology 24C02C data sheet (www.microchip.com)
- * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
- *
- * Written by Bill Paul <wpaul@ctr.columbia.edu>
- * Electrical Engineering Department
- * Columbia University, New York City
- */
-/*
- * Some notes about the ThunderLAN:
- *
- * The ThunderLAN controller is a single chip containing PCI controller
- * logic, approximately 3K of on-board SRAM, a LAN controller, and media
- * independent interface (MII) bus. The MII allows the ThunderLAN chip to
- * control up to 32 different physical interfaces (PHYs). The ThunderLAN
- * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
- * to act as a complete ethernet interface.
- *
- * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
- * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
- * in full or half duplex. Some of the Compaq Deskpro machines use a
- * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
- * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
- * concert with the ThunderLAN's internal PHY to provide full 10/100
- * support. This is cheaper than using a standalone external PHY for both
- * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
- * A serial EEPROM is also attached to the ThunderLAN chip to provide
- * power-up default register settings and for storing the adapter's
- * station address. Although not supported by this driver, the ThunderLAN
- * chip can also be connected to token ring PHYs.
- *
- * The ThunderLAN has a set of registers which can be used to issue
- * commands, acknowledge interrupts, and to manipulate other internal
- * registers on its DIO bus. The primary registers can be accessed
- * using either programmed I/O (inb/outb) or via PCI memory mapping,
- * depending on how the card is configured during the PCI probing
- * phase. It is even possible to have both PIO and memory mapped
- * access turned on at the same time.
- *
- * Frame reception and transmission with the ThunderLAN chip is done
- * using frame 'lists.' A list structure looks more or less like this:
- *
- * struct tl_frag {
- * u_int32_t fragment_address;
- * u_int32_t fragment_size;
- * };
- * struct tl_list {
- * u_int32_t forward_pointer;
- * u_int16_t cstat;
- * u_int16_t frame_size;
- * struct tl_frag fragments[10];
- * };
- *
- * The forward pointer in the list header can be either a 0 or the address
- * of another list, which allows several lists to be linked together. Each
- * list contains up to 10 fragment descriptors. This means the chip allows
- * ethernet frames to be broken up into up to 10 chunks for transfer to
- * and from the SRAM. Note that the forward pointer and fragment buffer
- * addresses are physical memory addresses, not virtual. Note also that
- * a single ethernet frame can not span lists: if the host wants to
- * transmit a frame and the frame data is split up over more than 10
- * buffers, the frame has to collapsed before it can be transmitted.
- *
- * To receive frames, the driver sets up a number of lists and populates
- * the fragment descriptors, then it sends an RX GO command to the chip.
- * When a frame is received, the chip will DMA it into the memory regions
- * specified by the fragment descriptors and then trigger an RX 'end of
- * frame interrupt' when done. The driver may choose to use only one
- * fragment per list; this may result is slighltly less efficient use
- * of memory in exchange for improving performance.
- *
- * To transmit frames, the driver again sets up lists and fragment
- * descriptors, only this time the buffers contain frame data that
- * is to be DMA'ed into the chip instead of out of it. Once the chip
- * has transfered the data into its on-board SRAM, it will trigger a
- * TX 'end of frame' interrupt. It will also generate an 'end of channel'
- * interrupt when it reaches the end of the list.
- */
-/*
- * Some notes about this driver:
- *
- * The ThunderLAN chip provides a couple of different ways to organize
- * reception, transmission and interrupt handling. The simplest approach
- * is to use one list each for transmission and reception. In this mode,
- * the ThunderLAN will generate two interrupts for every received frame
- * (one RX EOF and one RX EOC) and two for each transmitted frame (one
- * TX EOF and one TX EOC). This may make the driver simpler but it hurts
- * performance to have to handle so many interrupts.
- *
- * Initially I wanted to create a circular list of receive buffers so
- * that the ThunderLAN chip would think there was an infinitely long
- * receive channel and never deliver an RXEOC interrupt. However this
- * doesn't work correctly under heavy load: while the manual says the
- * chip will trigger an RXEOF interrupt each time a frame is copied into
- * memory, you can't count on the chip waiting around for you to acknowledge
- * the interrupt before it starts trying to DMA the next frame. The result
- * is that the chip might traverse the entire circular list and then wrap
- * around before you have a chance to do anything about it. Consequently,
- * the receive list is terminated (with a 0 in the forward pointer in the
- * last element). Each time an RXEOF interrupt arrives, the used list
- * is shifted to the end of the list. This gives the appearance of an
- * infinitely large RX chain so long as the driver doesn't fall behind
- * the chip and allow all of the lists to be filled up.
- *
- * If all the lists are filled, the adapter will deliver an RX 'end of
- * channel' interrupt when it hits the 0 forward pointer at the end of
- * the chain. The RXEOC handler then cleans out the RX chain and resets
- * the list head pointer in the ch_parm register and restarts the receiver.
- *
- * For frame transmission, it is possible to program the ThunderLAN's
- * transmit interrupt threshold so that the chip can acknowledge multiple
- * lists with only a single TX EOF interrupt. This allows the driver to
- * queue several frames in one shot, and only have to handle a total
- * two interrupts (one TX EOF and one TX EOC) no matter how many frames
- * are transmitted. Frame transmission is done directly out of the
- * mbufs passed to the tl_start() routine via the interface send queue.
- * The driver simply sets up the fragment descriptors in the transmit
- * lists to point to the mbuf data regions and sends a TX GO command.
- *
- * Note that since the RX and TX lists themselves are always used
- * only by the driver, the are malloc()ed once at driver initialization
- * time and never free()ed.
- *
- * Also, in order to remain as platform independent as possible, this
- * driver uses memory mapped register access to manipulate the card
- * as opposed to programmed I/O. This avoids the use of the inb/outb
- * (and related) instructions which are specific to the i386 platform.
- *
- * Using these techniques, this driver achieves very high performance
- * by minimizing the amount of interrupts generated during large
- * transfers and by completely avoiding buffer copies. Frame transfer
- * to and from the ThunderLAN chip is performed entirely by the chip
- * itself thereby reducing the load on the host CPU.
- */
-
-#include <sys/param.h>
-#include <sys/systm.h>
-#include <sys/sockio.h>
-#include <sys/mbuf.h>
-#include <sys/malloc.h>
-#include <sys/kernel.h>
-#include <sys/module.h>
-#include <sys/socket.h>
-
-#include <net/if.h>
-#include <net/if_arp.h>
-#include <net/ethernet.h>
-#include <net/if_dl.h>
-#include <net/if_media.h>
-#include <net/if_types.h>
-
-#include <net/bpf.h>
-
-#include <vm/vm.h> /* for vtophys */
-#include <vm/pmap.h> /* for vtophys */
-#include <machine/bus.h>
-#include <machine/resource.h>
-#include <sys/bus.h>
-#include <sys/rman.h>
-
-#include <dev/mii/mii.h>
-#include <dev/mii/miivar.h>
-
-#include <dev/pci/pcireg.h>
-#include <dev/pci/pcivar.h>
-
-/*
- * Default to using PIO register access mode to pacify certain
- * laptop docking stations with built-in ThunderLAN chips that
- * don't seem to handle memory mapped mode properly.
- */
-#define TL_USEIOSPACE
-
-#include <pci/if_tlreg.h>
-
-MODULE_DEPEND(tl, pci, 1, 1, 1);
-MODULE_DEPEND(tl, ether, 1, 1, 1);
-MODULE_DEPEND(tl, miibus, 1, 1, 1);
-
-/* "device miibus" required. See GENERIC if you get errors here. */
-#include "miibus_if.h"
-
-/*
- * Various supported device vendors/types and their names.
- */
-
-static struct tl_type tl_devs[] = {
- { TI_VENDORID, TI_DEVICEID_THUNDERLAN,
- "Texas Instruments ThunderLAN" },
- { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
- "Compaq Netelligent 10" },
- { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
- "Compaq Netelligent 10/100" },
- { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
- "Compaq Netelligent 10/100 Proliant" },
- { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
- "Compaq Netelligent 10/100 Dual Port" },
- { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
- "Compaq NetFlex-3/P Integrated" },
- { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
- "Compaq NetFlex-3/P" },
- { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
- "Compaq NetFlex 3/P w/ BNC" },
- { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
- "Compaq Netelligent 10/100 TX Embedded UTP" },
- { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
- "Compaq Netelligent 10 T/2 PCI UTP/Coax" },
- { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
- "Compaq Netelligent 10/100 TX UTP" },
- { OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
- "Olicom OC-2183/2185" },
- { OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
- "Olicom OC-2325" },
- { OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
- "Olicom OC-2326 10/100 TX UTP" },
- { 0, 0, NULL }
-};
-
-static int tl_probe(device_t);
-static int tl_attach(device_t);
-static int tl_detach(device_t);
-static int tl_intvec_rxeoc(void *, u_int32_t);
-static int tl_intvec_txeoc(void *, u_int32_t);
-static int tl_intvec_txeof(void *, u_int32_t);
-static int tl_intvec_rxeof(void *, u_int32_t);
-static int tl_intvec_adchk(void *, u_int32_t);
-static int tl_intvec_netsts(void *, u_int32_t);
-
-static int tl_newbuf(struct tl_softc *, struct tl_chain_onefrag *);
-static void tl_stats_update(void *);
-static int tl_encap(struct tl_softc *, struct tl_chain *, struct mbuf *);
-
-static void tl_intr(void *);
-static void tl_start(struct ifnet *);
-static void tl_start_locked(struct ifnet *);
-static int tl_ioctl(struct ifnet *, u_long, caddr_t);
-static void tl_init(void *);
-static void tl_init_locked(struct tl_softc *);
-static void tl_stop(struct tl_softc *);
-static void tl_watchdog(struct ifnet *);
-static void tl_shutdown(device_t);
-static int tl_ifmedia_upd(struct ifnet *);
-static void tl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
-
-static u_int8_t tl_eeprom_putbyte(struct tl_softc *, int);
-static u_int8_t tl_eeprom_getbyte(struct tl_softc *, int, u_int8_t *);
-static int tl_read_eeprom(struct tl_softc *, caddr_t, int, int);
-
-static void tl_mii_sync(struct tl_softc *);
-static void tl_mii_send(struct tl_softc *, u_int32_t, int);
-static int tl_mii_readreg(struct tl_softc *, struct tl_mii_frame *);
-static int tl_mii_writereg(struct tl_softc *, struct tl_mii_frame *);
-static int tl_miibus_readreg(device_t, int, int);
-static int tl_miibus_writereg(device_t, int, int, int);
-static void tl_miibus_statchg(device_t);
-
-static void tl_setmode(struct tl_softc *, int);
-static uint32_t tl_mchash(const uint8_t *);
-static void tl_setmulti(struct tl_softc *);
-static void tl_setfilt(struct tl_softc *, caddr_t, int);
-static void tl_softreset(struct tl_softc *, int);
-static void tl_hardreset(device_t);
-static int tl_list_rx_init(struct tl_softc *);
-static int tl_list_tx_init(struct tl_softc *);
-
-static u_int8_t tl_dio_read8(struct tl_softc *, int);
-static u_int16_t tl_dio_read16(struct tl_softc *, int);
-static u_int32_t tl_dio_read32(struct tl_softc *, int);
-static void tl_dio_write8(struct tl_softc *, int, int);
-static void tl_dio_write16(struct tl_softc *, int, int);
-static void tl_dio_write32(struct tl_softc *, int, int);
-static void tl_dio_setbit(struct tl_softc *, int, int);
-static void tl_dio_clrbit(struct tl_softc *, int, int);
-static void tl_dio_setbit16(struct tl_softc *, int, int);
-static void tl_dio_clrbit16(struct tl_softc *, int, int);
-
-#ifdef TL_USEIOSPACE
-#define TL_RES SYS_RES_IOPORT
-#define TL_RID TL_PCI_LOIO
-#else
-#define TL_RES SYS_RES_MEMORY
-#define TL_RID TL_PCI_LOMEM
-#endif
-
-static device_method_t tl_methods[] = {
- /* Device interface */
- DEVMETHOD(device_probe, tl_probe),
- DEVMETHOD(device_attach, tl_attach),
- DEVMETHOD(device_detach, tl_detach),
- DEVMETHOD(device_shutdown, tl_shutdown),
-
- /* bus interface */
- DEVMETHOD(bus_print_child, bus_generic_print_child),
- DEVMETHOD(bus_driver_added, bus_generic_driver_added),
-
- /* MII interface */
- DEVMETHOD(miibus_readreg, tl_miibus_readreg),
- DEVMETHOD(miibus_writereg, tl_miibus_writereg),
- DEVMETHOD(miibus_statchg, tl_miibus_statchg),
-
- { 0, 0 }
-};
-
-static driver_t tl_driver = {
- "tl",
- tl_methods,
- sizeof(struct tl_softc)
-};
-
-static devclass_t tl_devclass;
-
-DRIVER_MODULE(tl, pci, tl_driver, tl_devclass, 0, 0);
-DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0);
-
-static u_int8_t tl_dio_read8(sc, reg)
- struct tl_softc *sc;
- int reg;
-{
- CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
- return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
-}
-
-static u_int16_t tl_dio_read16(sc, reg)
- struct tl_softc *sc;
- int reg;
-{
- CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
- return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
-}
-
-static u_int32_t tl_dio_read32(sc, reg)
- struct tl_softc *sc;
- int reg;
-{
- CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
- return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
-}
-
-static void tl_dio_write8(sc, reg, val)
- struct tl_softc *sc;
- int reg;
- int val;
-{
- CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
- CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
- return;
-}
-
-static void tl_dio_write16(sc, reg, val)
- struct tl_softc *sc;
- int reg;
- int val;
-{
- CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
- CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
- return;
-}
-
-static void tl_dio_write32(sc, reg, val)
- struct tl_softc *sc;
- int reg;
- int val;
-{
- CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
- CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
- return;
-}
-
-static void
-tl_dio_setbit(sc, reg, bit)
- struct tl_softc *sc;
- int reg;
- int bit;
-{
- u_int8_t f;
-
- CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
- f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
- f |= bit;
- CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
-
- return;
-}
-
-static void
-tl_dio_clrbit(sc, reg, bit)
- struct tl_softc *sc;
- int reg;
- int bit;
-{
- u_int8_t f;
-
- CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
- f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
- f &= ~bit;
- CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
-
- return;
-}
-
-static void tl_dio_setbit16(sc, reg, bit)
- struct tl_softc *sc;
- int reg;
- int bit;
-{
- u_int16_t f;
-
- CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
- f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
- f |= bit;
- CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
-
- return;
-}
-
-static void tl_dio_clrbit16(sc, reg, bit)
- struct tl_softc *sc;
- int reg;
- int bit;
-{
- u_int16_t f;
-
- CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
- f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
- f &= ~bit;
- CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
-
- return;
-}
-
-/*
- * Send an instruction or address to the EEPROM, check for ACK.
- */
-static u_int8_t tl_eeprom_putbyte(sc, byte)
- struct tl_softc *sc;
- int byte;
-{
- register int i, ack = 0;
-
- /*
- * Make sure we're in TX mode.
- */
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
-
- /*
- * Feed in each bit and stobe the clock.
- */
- for (i = 0x80; i; i >>= 1) {
- if (byte & i) {
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
- } else {
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
- }
- DELAY(1);
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
- DELAY(1);
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
- }
-
- /*
- * Turn off TX mode.
- */
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
-
- /*
- * Check for ack.
- */
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
- ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
-
- return(ack);
-}
-
-/*
- * Read a byte of data stored in the EEPROM at address 'addr.'
- */
-static u_int8_t tl_eeprom_getbyte(sc, addr, dest)
- struct tl_softc *sc;
- int addr;
- u_int8_t *dest;
-{
- register int i;
- u_int8_t byte = 0;
- device_t tl_dev = sc->tl_dev;
-
- tl_dio_write8(sc, TL_NETSIO, 0);
-
- EEPROM_START;
-
- /*
- * Send write control code to EEPROM.
- */
- if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
- device_printf(tl_dev, "failed to send write command, status: %x\n",
- tl_dio_read8(sc, TL_NETSIO));
- return(1);
- }
-
- /*
- * Send address of byte we want to read.
- */
- if (tl_eeprom_putbyte(sc, addr)) {
- device_printf(tl_dev, "failed to send address, status: %x\n",
- tl_dio_read8(sc, TL_NETSIO));
- return(1);
- }
-
- EEPROM_STOP;
- EEPROM_START;
- /*
- * Send read control code to EEPROM.
- */
- if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
- device_printf(tl_dev, "failed to send write command, status: %x\n",
- tl_dio_read8(sc, TL_NETSIO));
- return(1);
- }
-
- /*
- * Start reading bits from EEPROM.
- */
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
- for (i = 0x80; i; i >>= 1) {
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
- DELAY(1);
- if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
- byte |= i;
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
- DELAY(1);
- }
-
- EEPROM_STOP;
-
- /*
- * No ACK generated for read, so just return byte.
- */
-
- *dest = byte;
-
- return(0);
-}
-
-/*
- * Read a sequence of bytes from the EEPROM.
- */
-static int
-tl_read_eeprom(sc, dest, off, cnt)
- struct tl_softc *sc;
- caddr_t dest;
- int off;
- int cnt;
-{
- int err = 0, i;
- u_int8_t byte = 0;
-
- for (i = 0; i < cnt; i++) {
- err = tl_eeprom_getbyte(sc, off + i, &byte);
- if (err)
- break;
- *(dest + i) = byte;
- }
-
- return(err ? 1 : 0);
-}
-
-static void
-tl_mii_sync(sc)
- struct tl_softc *sc;
-{
- register int i;
-
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
-
- for (i = 0; i < 32; i++) {
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
- }
-
- return;
-}
-
-static void
-tl_mii_send(sc, bits, cnt)
- struct tl_softc *sc;
- u_int32_t bits;
- int cnt;
-{
- int i;
-
- for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
- if (bits & i) {
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
- } else {
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
- }
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
- }
-}
-
-static int
-tl_mii_readreg(sc, frame)
- struct tl_softc *sc;
- struct tl_mii_frame *frame;
-
-{
- int i, ack;
- int minten = 0;
-
- tl_mii_sync(sc);
-
- /*
- * Set up frame for RX.
- */
- frame->mii_stdelim = TL_MII_STARTDELIM;
- frame->mii_opcode = TL_MII_READOP;
- frame->mii_turnaround = 0;
- frame->mii_data = 0;
-
- /*
- * Turn off MII interrupt by forcing MINTEN low.
- */
- minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
- if (minten) {
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
- }
-
- /*
- * Turn on data xmit.
- */
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
-
- /*
- * Send command/address info.
- */
- tl_mii_send(sc, frame->mii_stdelim, 2);
- tl_mii_send(sc, frame->mii_opcode, 2);
- tl_mii_send(sc, frame->mii_phyaddr, 5);
- tl_mii_send(sc, frame->mii_regaddr, 5);
-
- /*
- * Turn off xmit.
- */
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
-
- /* Idle bit */
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
-
- /* Check for ack */
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
- ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
-
- /* Complete the cycle */
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
-
- /*
- * Now try reading data bits. If the ack failed, we still
- * need to clock through 16 cycles to keep the PHYs in sync.
- */
- if (ack) {
- for(i = 0; i < 16; i++) {
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
- }
- goto fail;
- }
-
- for (i = 0x8000; i; i >>= 1) {
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
- if (!ack) {
- if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
- frame->mii_data |= i;
- }
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
- }
-
-fail:
-
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
-
- /* Reenable interrupts */
- if (minten) {
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
- }
-
- if (ack)
- return(1);
- return(0);
-}
-
-static int
-tl_mii_writereg(sc, frame)
- struct tl_softc *sc;
- struct tl_mii_frame *frame;
-
-{
- int minten;
-
- tl_mii_sync(sc);
-
- /*
- * Set up frame for TX.
- */
-
- frame->mii_stdelim = TL_MII_STARTDELIM;
- frame->mii_opcode = TL_MII_WRITEOP;
- frame->mii_turnaround = TL_MII_TURNAROUND;
-
- /*
- * Turn off MII interrupt by forcing MINTEN low.
- */
- minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
- if (minten) {
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
- }
-
- /*
- * Turn on data output.
- */
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
-
- tl_mii_send(sc, frame->mii_stdelim, 2);
- tl_mii_send(sc, frame->mii_opcode, 2);
- tl_mii_send(sc, frame->mii_phyaddr, 5);
- tl_mii_send(sc, frame->mii_regaddr, 5);
- tl_mii_send(sc, frame->mii_turnaround, 2);
- tl_mii_send(sc, frame->mii_data, 16);
-
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
-
- /*
- * Turn off xmit.
- */
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
-
- /* Reenable interrupts */
- if (minten)
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
-
- return(0);
-}
-
-static int
-tl_miibus_readreg(dev, phy, reg)
- device_t dev;
- int phy, reg;
-{
- struct tl_softc *sc;
- struct tl_mii_frame frame;
-
- sc = device_get_softc(dev);
- bzero((char *)&frame, sizeof(frame));
-
- frame.mii_phyaddr = phy;
- frame.mii_regaddr = reg;
- tl_mii_readreg(sc, &frame);
-
- return(frame.mii_data);
-}
-
-static int
-tl_miibus_writereg(dev, phy, reg, data)
- device_t dev;
- int phy, reg, data;
-{
- struct tl_softc *sc;
- struct tl_mii_frame frame;
-
- sc = device_get_softc(dev);
- bzero((char *)&frame, sizeof(frame));
-
- frame.mii_phyaddr = phy;
- frame.mii_regaddr = reg;
- frame.mii_data = data;
-
- tl_mii_writereg(sc, &frame);
-
- return(0);
-}
-
-static void
-tl_miibus_statchg(dev)
- device_t dev;
-{
- struct tl_softc *sc;
- struct mii_data *mii;
-
- sc = device_get_softc(dev);
- mii = device_get_softc(sc->tl_miibus);
-
- if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
- tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
- } else {
- tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
- }
-
- return;
-}
-
-/*
- * Set modes for bitrate devices.
- */
-static void
-tl_setmode(sc, media)
- struct tl_softc *sc;
- int media;
-{
- if (IFM_SUBTYPE(media) == IFM_10_5)
- tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
- if (IFM_SUBTYPE(media) == IFM_10_T) {
- tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
- if ((media & IFM_GMASK) == IFM_FDX) {
- tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
- tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
- } else {
- tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
- tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
- }
- }
-
- return;
-}
-
-/*
- * Calculate the hash of a MAC address for programming the multicast hash
- * table. This hash is simply the address split into 6-bit chunks
- * XOR'd, e.g.
- * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
- * bit: 765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
- * Bytes 0-2 and 3-5 are symmetrical, so are folded together. Then
- * the folded 24-bit value is split into 6-bit portions and XOR'd.
- */
-static uint32_t
-tl_mchash(addr)
- const uint8_t *addr;
-{
- int t;
-
- t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
- (addr[2] ^ addr[5]);
- return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
-}
-
-/*
- * The ThunderLAN has a perfect MAC address filter in addition to
- * the multicast hash filter. The perfect filter can be programmed
- * with up to four MAC addresses. The first one is always used to
- * hold the station address, which leaves us free to use the other
- * three for multicast addresses.
- */
-static void
-tl_setfilt(sc, addr, slot)
- struct tl_softc *sc;
- caddr_t addr;
- int slot;
-{
- int i;
- u_int16_t regaddr;
-
- regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
-
- for (i = 0; i < ETHER_ADDR_LEN; i++)
- tl_dio_write8(sc, regaddr + i, *(addr + i));
-
- return;
-}
-
-/*
- * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
- * linked list. This is fine, except addresses are added from the head
- * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
- * group to always be in the perfect filter, but as more groups are added,
- * the 224.0.0.1 entry (which is always added first) gets pushed down
- * the list and ends up at the tail. So after 3 or 4 multicast groups
- * are added, the all-hosts entry gets pushed out of the perfect filter
- * and into the hash table.
- *
- * Because the multicast list is a doubly-linked list as opposed to a
- * circular queue, we don't have the ability to just grab the tail of
- * the list and traverse it backwards. Instead, we have to traverse
- * the list once to find the tail, then traverse it again backwards to
- * update the multicast filter.
- */
-static void
-tl_setmulti(sc)
- struct tl_softc *sc;
-{
- struct ifnet *ifp;
- u_int32_t hashes[2] = { 0, 0 };
- int h, i;
- struct ifmultiaddr *ifma;
- u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
- ifp = sc->tl_ifp;
-
- /* First, zot all the existing filters. */
- for (i = 1; i < 4; i++)
- tl_setfilt(sc, (caddr_t)&dummy, i);
- tl_dio_write32(sc, TL_HASH1, 0);
- tl_dio_write32(sc, TL_HASH2, 0);
-
- /* Now program new ones. */
- if (ifp->if_flags & IFF_ALLMULTI) {
- hashes[0] = 0xFFFFFFFF;
- hashes[1] = 0xFFFFFFFF;
- } else {
- i = 1;
- IF_ADDR_LOCK(ifp);
- TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
- if (ifma->ifma_addr->sa_family != AF_LINK)
- continue;
- /*
- * Program the first three multicast groups
- * into the perfect filter. For all others,
- * use the hash table.
- */
- if (i < 4) {
- tl_setfilt(sc,
- LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
- i++;
- continue;
- }
-
- h = tl_mchash(
- LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
- if (h < 32)
- hashes[0] |= (1 << h);
- else
- hashes[1] |= (1 << (h - 32));
- }
- IF_ADDR_UNLOCK(ifp);
- }
-
- tl_dio_write32(sc, TL_HASH1, hashes[0]);
- tl_dio_write32(sc, TL_HASH2, hashes[1]);
-
- return;
-}
-
-/*
- * This routine is recommended by the ThunderLAN manual to insure that
- * the internal PHY is powered up correctly. It also recommends a one
- * second pause at the end to 'wait for the clocks to start' but in my
- * experience this isn't necessary.
- */
-static void
-tl_hardreset(dev)
- device_t dev;
-{
- struct tl_softc *sc;
- int i;
- u_int16_t flags;
-
- sc = device_get_softc(dev);
-
- tl_mii_sync(sc);
-
- flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
-
- for (i = 0; i < MII_NPHY; i++)
- tl_miibus_writereg(dev, i, MII_BMCR, flags);
-
- tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
- DELAY(50000);
- tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
- tl_mii_sync(sc);
- while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
-
- DELAY(50000);
- return;
-}
-
-static void
-tl_softreset(sc, internal)
- struct tl_softc *sc;
- int internal;
-{
- u_int32_t cmd, dummy, i;
-
- /* Assert the adapter reset bit. */
- CMD_SET(sc, TL_CMD_ADRST);
-
- /* Turn off interrupts */
- CMD_SET(sc, TL_CMD_INTSOFF);
-
- /* First, clear the stats registers. */
- for (i = 0; i < 5; i++)
- dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
-
- /* Clear Areg and Hash registers */
- for (i = 0; i < 8; i++)
- tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
-
- /*
- * Set up Netconfig register. Enable one channel and
- * one fragment mode.
- */
- tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
- if (internal && !sc->tl_bitrate) {
- tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
- } else {
- tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
- }
-
- /* Handle cards with bitrate devices. */
- if (sc->tl_bitrate)
- tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
-
- /*
- * Load adapter irq pacing timer and tx threshold.
- * We make the transmit threshold 1 initially but we may
- * change that later.
- */
- cmd = CSR_READ_4(sc, TL_HOSTCMD);
- cmd |= TL_CMD_NES;
- cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
- CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
- CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
-
- /* Unreset the MII */
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
-
- /* Take the adapter out of reset */
- tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
-
- /* Wait for things to settle down a little. */
- DELAY(500);
-
- return;
-}
-
-/*
- * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
- * against our list and return its name if we find a match.
- */
-static int
-tl_probe(dev)
- device_t dev;
-{
- struct tl_type *t;
-
- t = tl_devs;
-
- while(t->tl_name != NULL) {
- if ((pci_get_vendor(dev) == t->tl_vid) &&
- (pci_get_device(dev) == t->tl_did)) {
- device_set_desc(dev, t->tl_name);
- return (BUS_PROBE_DEFAULT);
- }
- t++;
- }
-
- return(ENXIO);
-}
-
-static int
-tl_attach(dev)
- device_t dev;
-{
- int i;
- u_int16_t did, vid;
- struct tl_type *t;
- struct ifnet *ifp;
- struct tl_softc *sc;
- int unit, error = 0, rid;
- u_char eaddr[6];
-
- vid = pci_get_vendor(dev);
- did = pci_get_device(dev);
- sc = device_get_softc(dev);
- sc->tl_dev = dev;
- unit = device_get_unit(dev);
-
- t = tl_devs;
- while(t->tl_name != NULL) {
- if (vid == t->tl_vid && did == t->tl_did)
- break;
- t++;
- }
-
- if (t->tl_name == NULL) {
- device_printf(dev, "unknown device!?\n");
- return (ENXIO);
- }
-
- mtx_init(&sc->tl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
- MTX_DEF);
-
- /*
- * Map control/status registers.
- */
- pci_enable_busmaster(dev);
-
-#ifdef TL_USEIOSPACE
-
- rid = TL_PCI_LOIO;
- sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
- RF_ACTIVE);
-
- /*
- * Some cards have the I/O and memory mapped address registers
- * reversed. Try both combinations before giving up.
- */
- if (sc->tl_res == NULL) {
- rid = TL_PCI_LOMEM;
- sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
- RF_ACTIVE);
- }
-#else
- rid = TL_PCI_LOMEM;
- sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
- RF_ACTIVE);
- if (sc->tl_res == NULL) {
- rid = TL_PCI_LOIO;
- sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
- RF_ACTIVE);
- }
-#endif
-
- if (sc->tl_res == NULL) {
- device_printf(dev, "couldn't map ports/memory\n");
- error = ENXIO;
- goto fail;
- }
-
- sc->tl_btag = rman_get_bustag(sc->tl_res);
- sc->tl_bhandle = rman_get_bushandle(sc->tl_res);
-
-#ifdef notdef
- /*
- * The ThunderLAN manual suggests jacking the PCI latency
- * timer all the way up to its maximum value. I'm not sure
- * if this is really necessary, but what the manual wants,
- * the manual gets.
- */
- command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
- command |= 0x0000FF00;
- pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
-#endif
-
- /* Allocate interrupt */
- rid = 0;
- sc->tl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
- RF_SHAREABLE | RF_ACTIVE);
-
- if (sc->tl_irq == NULL) {
- device_printf(dev, "couldn't map interrupt\n");
- error = ENXIO;
- goto fail;
- }
-
- /*
- * Now allocate memory for the TX and RX lists.
- */
- sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
- M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
-
- if (sc->tl_ldata == NULL) {
- device_printf(dev, "no memory for list buffers!\n");
- error = ENXIO;
- goto fail;
- }
-
- bzero(sc->tl_ldata, sizeof(struct tl_list_data));
-
- sc->tl_dinfo = t;
- if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID)
- sc->tl_eeaddr = TL_EEPROM_EADDR;
- if (t->tl_vid == OLICOM_VENDORID)
- sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
-
- /* Reset the adapter. */
- tl_softreset(sc, 1);
- tl_hardreset(dev);
- tl_softreset(sc, 1);
-
- /*
- * Get station address from the EEPROM.
- */
- if (tl_read_eeprom(sc, eaddr, sc->tl_eeaddr, ETHER_ADDR_LEN)) {
- device_printf(dev, "failed to read station address\n");
- error = ENXIO;
- goto fail;
- }
-
- /*
- * XXX Olicom, in its desire to be different from the
- * rest of the world, has done strange things with the
- * encoding of the station address in the EEPROM. First
- * of all, they store the address at offset 0xF8 rather
- * than at 0x83 like the ThunderLAN manual suggests.
- * Second, they store the address in three 16-bit words in
- * network byte order, as opposed to storing it sequentially
- * like all the other ThunderLAN cards. In order to get
- * the station address in a form that matches what the Olicom
- * diagnostic utility specifies, we have to byte-swap each
- * word. To make things even more confusing, neither 00:00:28
- * nor 00:00:24 appear in the IEEE OUI database.
- */
- if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) {
- for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
- u_int16_t *p;
- p = (u_int16_t *)&eaddr[i];
- *p = ntohs(*p);
- }
- }
-
- ifp = sc->tl_ifp = if_alloc(IFT_ETHER);
- if (ifp == NULL) {
- device_printf(dev, "can not if_alloc()\n");
- error = ENOSPC;
- goto fail;
- }
- ifp->if_softc = sc;
- if_initname(ifp, device_get_name(dev), device_get_unit(dev));
- ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
- ifp->if_ioctl = tl_ioctl;
- ifp->if_start = tl_start;
- ifp->if_watchdog = tl_watchdog;
- ifp->if_init = tl_init;
- ifp->if_mtu = ETHERMTU;
- ifp->if_snd.ifq_maxlen = TL_TX_LIST_CNT - 1;
- ifp->if_capabilities |= IFCAP_VLAN_MTU;
- ifp->if_capenable |= IFCAP_VLAN_MTU;
- callout_init_mtx(&sc->tl_stat_callout, &sc->tl_mtx, 0);
-
- /* Reset the adapter again. */
- tl_softreset(sc, 1);
- tl_hardreset(dev);
- tl_softreset(sc, 1);
-
- /*
- * Do MII setup. If no PHYs are found, then this is a
- * bitrate ThunderLAN chip that only supports 10baseT
- * and AUI/BNC.
- */
- if (mii_phy_probe(dev, &sc->tl_miibus,
- tl_ifmedia_upd, tl_ifmedia_sts)) {
- struct ifmedia *ifm;
- sc->tl_bitrate = 1;
- ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
- ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
- ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
- ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
- ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
- ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
- /* Reset again, this time setting bitrate mode. */
- tl_softreset(sc, 1);
- ifm = &sc->ifmedia;
- ifm->ifm_media = ifm->ifm_cur->ifm_media;
- tl_ifmedia_upd(ifp);
- }
-
- /*
- * Call MI attach routine.
- */
- ether_ifattach(ifp, eaddr);
-
- /* Hook interrupt last to avoid having to lock softc */
- error = bus_setup_intr(dev, sc->tl_irq, INTR_TYPE_NET | INTR_MPSAFE,
- NULL, tl_intr, sc, &sc->tl_intrhand);
-
- if (error) {
- device_printf(dev, "couldn't set up irq\n");
- ether_ifdetach(ifp);
- goto fail;
- }
-
-fail:
- if (error)
- tl_detach(dev);
-
- return(error);
-}
-
-/*
- * Shutdown hardware and free up resources. This can be called any
- * time after the mutex has been initialized. It is called in both
- * the error case in attach and the normal detach case so it needs
- * to be careful about only freeing resources that have actually been
- * allocated.
- */
-static int
-tl_detach(dev)
- device_t dev;
-{
- struct tl_softc *sc;
- struct ifnet *ifp;
-
- sc = device_get_softc(dev);
- KASSERT(mtx_initialized(&sc->tl_mtx), ("tl mutex not initialized"));
- ifp = sc->tl_ifp;
-
- /* These should only be active if attach succeeded */
- if (device_is_attached(dev)) {
- TL_LOCK(sc);
- tl_stop(sc);
- TL_UNLOCK(sc);
- callout_drain(&sc->tl_stat_callout);
- ether_ifdetach(ifp);
- }
- if (sc->tl_miibus)
- device_delete_child(dev, sc->tl_miibus);
- bus_generic_detach(dev);
-
- if (sc->tl_ldata)
- contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
- if (sc->tl_bitrate)
- ifmedia_removeall(&sc->ifmedia);
-
- if (sc->tl_intrhand)
- bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
- if (sc->tl_irq)
- bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
- if (sc->tl_res)
- bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
-
- if (ifp)
- if_free(ifp);
-
- mtx_destroy(&sc->tl_mtx);
-
- return(0);
-}
-
-/*
- * Initialize the transmit lists.
- */
-static int
-tl_list_tx_init(sc)
- struct tl_softc *sc;
-{
- struct tl_chain_data *cd;
- struct tl_list_data *ld;
- int i;
-
- cd = &sc->tl_cdata;
- ld = sc->tl_ldata;
- for (i = 0; i < TL_TX_LIST_CNT; i++) {
- cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
- if (i == (TL_TX_LIST_CNT - 1))
- cd->tl_tx_chain[i].tl_next = NULL;
- else
- cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
- }
-
- cd->tl_tx_free = &cd->tl_tx_chain[0];
- cd->tl_tx_tail = cd->tl_tx_head = NULL;
- sc->tl_txeoc = 1;
-
- return(0);
-}
-
-/*
- * Initialize the RX lists and allocate mbufs for them.
- */
-static int
-tl_list_rx_init(sc)
- struct tl_softc *sc;
-{
- struct tl_chain_data *cd;
- struct tl_list_data *ld;
- int i;
-
- cd = &sc->tl_cdata;
- ld = sc->tl_ldata;
-
- for (i = 0; i < TL_RX_LIST_CNT; i++) {
- cd->tl_rx_chain[i].tl_ptr =
- (struct tl_list_onefrag *)&ld->tl_rx_list[i];
- if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
- return(ENOBUFS);
- if (i == (TL_RX_LIST_CNT - 1)) {
- cd->tl_rx_chain[i].tl_next = NULL;
- ld->tl_rx_list[i].tlist_fptr = 0;
- } else {
- cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
- ld->tl_rx_list[i].tlist_fptr =
- vtophys(&ld->tl_rx_list[i + 1]);
- }
- }
-
- cd->tl_rx_head = &cd->tl_rx_chain[0];
- cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
-
- return(0);
-}
-
-static int
-tl_newbuf(sc, c)
- struct tl_softc *sc;
- struct tl_chain_onefrag *c;
-{
- struct mbuf *m_new = NULL;
-
- m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
- if (m_new == NULL)
- return(ENOBUFS);
-
- c->tl_mbuf = m_new;
- c->tl_next = NULL;
- c->tl_ptr->tlist_frsize = MCLBYTES;
- c->tl_ptr->tlist_fptr = 0;
- c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
- c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
- c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
-
- return(0);
-}
-/*
- * Interrupt handler for RX 'end of frame' condition (EOF). This
- * tells us that a full ethernet frame has been captured and we need
- * to handle it.
- *
- * Reception is done using 'lists' which consist of a header and a
- * series of 10 data count/data address pairs that point to buffers.
- * Initially you're supposed to create a list, populate it with pointers
- * to buffers, then load the physical address of the list into the
- * ch_parm register. The adapter is then supposed to DMA the received
- * frame into the buffers for you.
- *
- * To make things as fast as possible, we have the chip DMA directly
- * into mbufs. This saves us from having to do a buffer copy: we can
- * just hand the mbufs directly to ether_input(). Once the frame has
- * been sent on its way, the 'list' structure is assigned a new buffer
- * and moved to the end of the RX chain. As long we we stay ahead of
- * the chip, it will always think it has an endless receive channel.
- *
- * If we happen to fall behind and the chip manages to fill up all of
- * the buffers, it will generate an end of channel interrupt and wait
- * for us to empty the chain and restart the receiver.
- */
-static int
-tl_intvec_rxeof(xsc, type)
- void *xsc;
- u_int32_t type;
-{
- struct tl_softc *sc;
- int r = 0, total_len = 0;
- struct ether_header *eh;
- struct mbuf *m;
- struct ifnet *ifp;
- struct tl_chain_onefrag *cur_rx;
-
- sc = xsc;
- ifp = sc->tl_ifp;
-
- TL_LOCK_ASSERT(sc);
-
- while(sc->tl_cdata.tl_rx_head != NULL) {
- cur_rx = sc->tl_cdata.tl_rx_head;
- if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
- break;
- r++;
- sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
- m = cur_rx->tl_mbuf;
- total_len = cur_rx->tl_ptr->tlist_frsize;
-
- if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
- ifp->if_ierrors++;
- cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
- cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
- cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
- continue;
- }
-
- sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
- vtophys(cur_rx->tl_ptr);
- sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
- sc->tl_cdata.tl_rx_tail = cur_rx;
-
- /*
- * Note: when the ThunderLAN chip is in 'capture all
- * frames' mode, it will receive its own transmissions.
- * We drop don't need to process our own transmissions,
- * so we drop them here and continue.
- */
- eh = mtod(m, struct ether_header *);
- /*if (ifp->if_flags & IFF_PROMISC && */
- if (!bcmp(eh->ether_shost, IF_LLADDR(sc->tl_ifp),
- ETHER_ADDR_LEN)) {
- m_freem(m);
- continue;
- }
-
- m->m_pkthdr.rcvif = ifp;
- m->m_pkthdr.len = m->m_len = total_len;
-
- TL_UNLOCK(sc);
- (*ifp->if_input)(ifp, m);
- TL_LOCK(sc);
- }
-
- return(r);
-}
-
-/*
- * The RX-EOC condition hits when the ch_parm address hasn't been
- * initialized or the adapter reached a list with a forward pointer
- * of 0 (which indicates the end of the chain). In our case, this means
- * the card has hit the end of the receive buffer chain and we need to
- * empty out the buffers and shift the pointer back to the beginning again.
- */
-static int
-tl_intvec_rxeoc(xsc, type)
- void *xsc;
- u_int32_t type;
-{
- struct tl_softc *sc;
- int r;
- struct tl_chain_data *cd;
-
-
- sc = xsc;
- cd = &sc->tl_cdata;
-
- /* Flush out the receive queue and ack RXEOF interrupts. */
- r = tl_intvec_rxeof(xsc, type);
- CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
- r = 1;
- cd->tl_rx_head = &cd->tl_rx_chain[0];
- cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
- CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
- r |= (TL_CMD_GO|TL_CMD_RT);
- return(r);
-}
-
-static int
-tl_intvec_txeof(xsc, type)
- void *xsc;
- u_int32_t type;
-{
- struct tl_softc *sc;
- int r = 0;
- struct tl_chain *cur_tx;
-
- sc = xsc;
-
- /*
- * Go through our tx list and free mbufs for those
- * frames that have been sent.
- */
- while (sc->tl_cdata.tl_tx_head != NULL) {
- cur_tx = sc->tl_cdata.tl_tx_head;
- if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
- break;
- sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
-
- r++;
- m_freem(cur_tx->tl_mbuf);
- cur_tx->tl_mbuf = NULL;
-
- cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
- sc->tl_cdata.tl_tx_free = cur_tx;
- if (!cur_tx->tl_ptr->tlist_fptr)
- break;
- }
-
- return(r);
-}
-
-/*
- * The transmit end of channel interrupt. The adapter triggers this
- * interrupt to tell us it hit the end of the current transmit list.
- *
- * A note about this: it's possible for a condition to arise where
- * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
- * You have to avoid this since the chip expects things to go in a
- * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
- * When the TXEOF handler is called, it will free all of the transmitted
- * frames and reset the tx_head pointer to NULL. However, a TXEOC
- * interrupt should be received and acknowledged before any more frames
- * are queued for transmission. If tl_statrt() is called after TXEOF
- * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
- * it could attempt to issue a transmit command prematurely.
- *
- * To guard against this, tl_start() will only issue transmit commands
- * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
- * can set this flag once tl_start() has cleared it.
- */
-static int
-tl_intvec_txeoc(xsc, type)
- void *xsc;
- u_int32_t type;
-{
- struct tl_softc *sc;
- struct ifnet *ifp;
- u_int32_t cmd;
-
- sc = xsc;
- ifp = sc->tl_ifp;
-
- /* Clear the timeout timer. */
- ifp->if_timer = 0;
-
- if (sc->tl_cdata.tl_tx_head == NULL) {
- ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
- sc->tl_cdata.tl_tx_tail = NULL;
- sc->tl_txeoc = 1;
- } else {
- sc->tl_txeoc = 0;
- /* First we have to ack the EOC interrupt. */
- CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
- /* Then load the address of the next TX list. */
- CSR_WRITE_4(sc, TL_CH_PARM,
- vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
- /* Restart TX channel. */
- cmd = CSR_READ_4(sc, TL_HOSTCMD);
- cmd &= ~TL_CMD_RT;
- cmd |= TL_CMD_GO|TL_CMD_INTSON;
- CMD_PUT(sc, cmd);
- return(0);
- }
-
- return(1);
-}
-
-static int
-tl_intvec_adchk(xsc, type)
- void *xsc;
- u_int32_t type;
-{
- struct tl_softc *sc;
-
- sc = xsc;
-
- if (type)
- device_printf(sc->tl_dev, "adapter check: %x\n",
- (unsigned int)CSR_READ_4(sc, TL_CH_PARM));
-
- tl_softreset(sc, 1);
- tl_stop(sc);
- tl_init_locked(sc);
- CMD_SET(sc, TL_CMD_INTSON);
-
- return(0);
-}
-
-static int
-tl_intvec_netsts(xsc, type)
- void *xsc;
- u_int32_t type;
-{
- struct tl_softc *sc;
- u_int16_t netsts;
-
- sc = xsc;
-
- netsts = tl_dio_read16(sc, TL_NETSTS);
- tl_dio_write16(sc, TL_NETSTS, netsts);
-
- device_printf(sc->tl_dev, "network status: %x\n", netsts);
-
- return(1);
-}
-
-static void
-tl_intr(xsc)
- void *xsc;
-{
- struct tl_softc *sc;
- struct ifnet *ifp;
- int r = 0;
- u_int32_t type = 0;
- u_int16_t ints = 0;
- u_int8_t ivec = 0;
-
- sc = xsc;
- TL_LOCK(sc);
-
- /* Disable interrupts */
- ints = CSR_READ_2(sc, TL_HOST_INT);
- CSR_WRITE_2(sc, TL_HOST_INT, ints);
- type = (ints << 16) & 0xFFFF0000;
- ivec = (ints & TL_VEC_MASK) >> 5;
- ints = (ints & TL_INT_MASK) >> 2;
-
- ifp = sc->tl_ifp;
-
- switch(ints) {
- case (TL_INTR_INVALID):
-#ifdef DIAGNOSTIC
- device_printf(sc->tl_dev, "got an invalid interrupt!\n");
-#endif
- /* Re-enable interrupts but don't ack this one. */
- CMD_PUT(sc, type);
- r = 0;
- break;
- case (TL_INTR_TXEOF):
- r = tl_intvec_txeof((void *)sc, type);
- break;
- case (TL_INTR_TXEOC):
- r = tl_intvec_txeoc((void *)sc, type);
- break;
- case (TL_INTR_STATOFLOW):
- tl_stats_update(sc);
- r = 1;
- break;
- case (TL_INTR_RXEOF):
- r = tl_intvec_rxeof((void *)sc, type);
- break;
- case (TL_INTR_DUMMY):
- device_printf(sc->tl_dev, "got a dummy interrupt\n");
- r = 1;
- break;
- case (TL_INTR_ADCHK):
- if (ivec)
- r = tl_intvec_adchk((void *)sc, type);
- else
- r = tl_intvec_netsts((void *)sc, type);
- break;
- case (TL_INTR_RXEOC):
- r = tl_intvec_rxeoc((void *)sc, type);
- break;
- default:
- device_printf(sc->tl_dev, "bogus interrupt type\n");
- break;
- }
-
- /* Re-enable interrupts */
- if (r) {
- CMD_PUT(sc, TL_CMD_ACK | r | type);
- }
-
- if (ifp->if_snd.ifq_head != NULL)
- tl_start_locked(ifp);
-
- TL_UNLOCK(sc);
-
- return;
-}
-
-static void
-tl_stats_update(xsc)
- void *xsc;
-{
- struct tl_softc *sc;
- struct ifnet *ifp;
- struct tl_stats tl_stats;
- struct mii_data *mii;
- u_int32_t *p;
-
- bzero((char *)&tl_stats, sizeof(struct tl_stats));
-
- sc = xsc;
- TL_LOCK_ASSERT(sc);
- ifp = sc->tl_ifp;
-
- p = (u_int32_t *)&tl_stats;
-
- CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
- *p++ = CSR_READ_4(sc, TL_DIO_DATA);
- *p++ = CSR_READ_4(sc, TL_DIO_DATA);
- *p++ = CSR_READ_4(sc, TL_DIO_DATA);
- *p++ = CSR_READ_4(sc, TL_DIO_DATA);
- *p++ = CSR_READ_4(sc, TL_DIO_DATA);
-
- ifp->if_opackets += tl_tx_goodframes(tl_stats);
- ifp->if_collisions += tl_stats.tl_tx_single_collision +
- tl_stats.tl_tx_multi_collision;
- ifp->if_ipackets += tl_rx_goodframes(tl_stats);
- ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
- tl_rx_overrun(tl_stats);
- ifp->if_oerrors += tl_tx_underrun(tl_stats);
-
- if (tl_tx_underrun(tl_stats)) {
- u_int8_t tx_thresh;
- tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
- if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
- tx_thresh >>= 4;
- tx_thresh++;
- device_printf(sc->tl_dev, "tx underrun -- increasing "
- "tx threshold to %d bytes\n",
- (64 * (tx_thresh * 4)));
- tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
- tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
- }
- }
-
- callout_reset(&sc->tl_stat_callout, hz, tl_stats_update, sc);
-
- if (!sc->tl_bitrate) {
- mii = device_get_softc(sc->tl_miibus);
- mii_tick(mii);
- }
-
- return;
-}
-
-/*
- * Encapsulate an mbuf chain in a list by coupling the mbuf data
- * pointers to the fragment pointers.
- */
-static int
-tl_encap(sc, c, m_head)
- struct tl_softc *sc;
- struct tl_chain *c;
- struct mbuf *m_head;
-{
- int frag = 0;
- struct tl_frag *f = NULL;
- int total_len;
- struct mbuf *m;
- struct ifnet *ifp = sc->tl_ifp;
-
- /*
- * Start packing the mbufs in this chain into
- * the fragment pointers. Stop when we run out
- * of fragments or hit the end of the mbuf chain.
- */
- m = m_head;
- total_len = 0;
-
- for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
- if (m->m_len != 0) {
- if (frag == TL_MAXFRAGS)
- break;
- total_len+= m->m_len;
- c->tl_ptr->tl_frag[frag].tlist_dadr =
- vtophys(mtod(m, vm_offset_t));
- c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
- frag++;
- }
- }
-
- /*
- * Handle special cases.
- * Special case #1: we used up all 10 fragments, but
- * we have more mbufs left in the chain. Copy the
- * data into an mbuf cluster. Note that we don't
- * bother clearing the values in the other fragment
- * pointers/counters; it wouldn't gain us anything,
- * and would waste cycles.
- */
- if (m != NULL) {
- struct mbuf *m_new = NULL;
-
- MGETHDR(m_new, M_DONTWAIT, MT_DATA);
- if (m_new == NULL) {
- if_printf(ifp, "no memory for tx list\n");
- return(1);
- }
- if (m_head->m_pkthdr.len > MHLEN) {
- MCLGET(m_new, M_DONTWAIT);
- if (!(m_new->m_flags & M_EXT)) {
- m_freem(m_new);
- if_printf(ifp, "no memory for tx list\n");
- return(1);
- }
- }
- m_copydata(m_head, 0, m_head->m_pkthdr.len,
- mtod(m_new, caddr_t));
- m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
- m_freem(m_head);
- m_head = m_new;
- f = &c->tl_ptr->tl_frag[0];
- f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
- f->tlist_dcnt = total_len = m_new->m_len;
- frag = 1;
- }
-
- /*
- * Special case #2: the frame is smaller than the minimum
- * frame size. We have to pad it to make the chip happy.
- */
- if (total_len < TL_MIN_FRAMELEN) {
- if (frag == TL_MAXFRAGS)
- if_printf(ifp,
- "all frags filled but frame still to small!\n");
- f = &c->tl_ptr->tl_frag[frag];
- f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
- f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
- total_len += f->tlist_dcnt;
- frag++;
- }
-
- c->tl_mbuf = m_head;
- c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
- c->tl_ptr->tlist_frsize = total_len;
- c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
- c->tl_ptr->tlist_fptr = 0;
-
- return(0);
-}
-
-/*
- * Main transmit routine. To avoid having to do mbuf copies, we put pointers
- * to the mbuf data regions directly in the transmit lists. We also save a
- * copy of the pointers since the transmit list fragment pointers are
- * physical addresses.
- */
-static void
-tl_start(ifp)
- struct ifnet *ifp;
-{
- struct tl_softc *sc;
-
- sc = ifp->if_softc;
- TL_LOCK(sc);
- tl_start_locked(ifp);
- TL_UNLOCK(sc);
-}
-
-static void
-tl_start_locked(ifp)
- struct ifnet *ifp;
-{
- struct tl_softc *sc;
- struct mbuf *m_head = NULL;
- u_int32_t cmd;
- struct tl_chain *prev = NULL, *cur_tx = NULL, *start_tx;
-
- sc = ifp->if_softc;
- TL_LOCK_ASSERT(sc);
-
- /*
- * Check for an available queue slot. If there are none,
- * punt.
- */
- if (sc->tl_cdata.tl_tx_free == NULL) {
- ifp->if_drv_flags |= IFF_DRV_OACTIVE;
- return;
- }
-
- start_tx = sc->tl_cdata.tl_tx_free;
-
- while(sc->tl_cdata.tl_tx_free != NULL) {
- IF_DEQUEUE(&ifp->if_snd, m_head);
- if (m_head == NULL)
- break;
-
- /* Pick a chain member off the free list. */
- cur_tx = sc->tl_cdata.tl_tx_free;
- sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
-
- cur_tx->tl_next = NULL;
-
- /* Pack the data into the list. */
- tl_encap(sc, cur_tx, m_head);
-
- /* Chain it together */
- if (prev != NULL) {
- prev->tl_next = cur_tx;
- prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
- }
- prev = cur_tx;
-
- /*
- * If there's a BPF listener, bounce a copy of this frame
- * to him.
- */
- BPF_MTAP(ifp, cur_tx->tl_mbuf);
- }
-
- /*
- * If there are no packets queued, bail.
- */
- if (cur_tx == NULL)
- return;
-
- /*
- * That's all we can stands, we can't stands no more.
- * If there are no other transfers pending, then issue the
- * TX GO command to the adapter to start things moving.
- * Otherwise, just leave the data in the queue and let
- * the EOF/EOC interrupt handler send.
- */
- if (sc->tl_cdata.tl_tx_head == NULL) {
- sc->tl_cdata.tl_tx_head = start_tx;
- sc->tl_cdata.tl_tx_tail = cur_tx;
-
- if (sc->tl_txeoc) {
- sc->tl_txeoc = 0;
- CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
- cmd = CSR_READ_4(sc, TL_HOSTCMD);
- cmd &= ~TL_CMD_RT;
- cmd |= TL_CMD_GO|TL_CMD_INTSON;
- CMD_PUT(sc, cmd);
- }
- } else {
- sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
- sc->tl_cdata.tl_tx_tail = cur_tx;
- }
-
- /*
- * Set a timeout in case the chip goes out to lunch.
- */
- ifp->if_timer = 5;
-
- return;
-}
-
-static void
-tl_init(xsc)
- void *xsc;
-{
- struct tl_softc *sc = xsc;
-
- TL_LOCK(sc);
- tl_init_locked(sc);
- TL_UNLOCK(sc);
-}
-
-static void
-tl_init_locked(sc)
- struct tl_softc *sc;
-{
- struct ifnet *ifp = sc->tl_ifp;
- struct mii_data *mii;
-
- TL_LOCK_ASSERT(sc);
-
- ifp = sc->tl_ifp;
-
- /*
- * Cancel pending I/O.
- */
- tl_stop(sc);
-
- /* Initialize TX FIFO threshold */
- tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
- tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
-
- /* Set PCI burst size */
- tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
-
- /*
- * Set 'capture all frames' bit for promiscuous mode.
- */
- if (ifp->if_flags & IFF_PROMISC)
- tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
- else
- tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
-
- /*
- * Set capture broadcast bit to capture broadcast frames.
- */
- if (ifp->if_flags & IFF_BROADCAST)
- tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
- else
- tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
-
- tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
-
- /* Init our MAC address */
- tl_setfilt(sc, IF_LLADDR(sc->tl_ifp), 0);
-
- /* Init multicast filter, if needed. */
- tl_setmulti(sc);
-
- /* Init circular RX list. */
- if (tl_list_rx_init(sc) == ENOBUFS) {
- device_printf(sc->tl_dev,
- "initialization failed: no memory for rx buffers\n");
- tl_stop(sc);
- return;
- }
-
- /* Init TX pointers. */
- tl_list_tx_init(sc);
-
- /* Enable PCI interrupts. */
- CMD_SET(sc, TL_CMD_INTSON);
-
- /* Load the address of the rx list */
- CMD_SET(sc, TL_CMD_RT);
- CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
-
- if (!sc->tl_bitrate) {
- if (sc->tl_miibus != NULL) {
- mii = device_get_softc(sc->tl_miibus);
- mii_mediachg(mii);
- }
- } else {
- tl_ifmedia_upd(ifp);
- }
-
- /* Send the RX go command */
- CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
-
- ifp->if_drv_flags |= IFF_DRV_RUNNING;
- ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
-
- /* Start the stats update counter */
- callout_reset(&sc->tl_stat_callout, hz, tl_stats_update, sc);
-
- return;
-}
-
-/*
- * Set media options.
- */
-static int
-tl_ifmedia_upd(ifp)
- struct ifnet *ifp;
-{
- struct tl_softc *sc;
- struct mii_data *mii = NULL;
-
- sc = ifp->if_softc;
-
- TL_LOCK(sc);
- if (sc->tl_bitrate)
- tl_setmode(sc, sc->ifmedia.ifm_media);
- else {
- mii = device_get_softc(sc->tl_miibus);
- mii_mediachg(mii);
- }
- TL_UNLOCK(sc);
-
- return(0);
-}
-
-/*
- * Report current media status.
- */
-static void
-tl_ifmedia_sts(ifp, ifmr)
- struct ifnet *ifp;
- struct ifmediareq *ifmr;
-{
- struct tl_softc *sc;
- struct mii_data *mii;
-
- sc = ifp->if_softc;
-
- TL_LOCK(sc);
- ifmr->ifm_active = IFM_ETHER;
-
- if (sc->tl_bitrate) {
- if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
- ifmr->ifm_active = IFM_ETHER|IFM_10_5;
- else
- ifmr->ifm_active = IFM_ETHER|IFM_10_T;
- if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
- ifmr->ifm_active |= IFM_HDX;
- else
- ifmr->ifm_active |= IFM_FDX;
- return;
- } else {
- mii = device_get_softc(sc->tl_miibus);
- mii_pollstat(mii);
- ifmr->ifm_active = mii->mii_media_active;
- ifmr->ifm_status = mii->mii_media_status;
- }
- TL_UNLOCK(sc);
-
- return;
-}
-
-static int
-tl_ioctl(ifp, command, data)
- struct ifnet *ifp;
- u_long command;
- caddr_t data;
-{
- struct tl_softc *sc = ifp->if_softc;
- struct ifreq *ifr = (struct ifreq *) data;
- int error = 0;
-
- switch(command) {
- case SIOCSIFFLAGS:
- TL_LOCK(sc);
- if (ifp->if_flags & IFF_UP) {
- if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
- ifp->if_flags & IFF_PROMISC &&
- !(sc->tl_if_flags & IFF_PROMISC)) {
- tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
- tl_setmulti(sc);
- } else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
- !(ifp->if_flags & IFF_PROMISC) &&
- sc->tl_if_flags & IFF_PROMISC) {
- tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
- tl_setmulti(sc);
- } else
- tl_init_locked(sc);
- } else {
- if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
- tl_stop(sc);
- }
- }
- sc->tl_if_flags = ifp->if_flags;
- TL_UNLOCK(sc);
- error = 0;
- break;
- case SIOCADDMULTI:
- case SIOCDELMULTI:
- TL_LOCK(sc);
- tl_setmulti(sc);
- TL_UNLOCK(sc);
- error = 0;
- break;
- case SIOCSIFMEDIA:
- case SIOCGIFMEDIA:
- if (sc->tl_bitrate)
- error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
- else {
- struct mii_data *mii;
- mii = device_get_softc(sc->tl_miibus);
- error = ifmedia_ioctl(ifp, ifr,
- &mii->mii_media, command);
- }
- break;
- default:
- error = ether_ioctl(ifp, command, data);
- break;
- }
-
- return(error);
-}
-
-static void
-tl_watchdog(ifp)
- struct ifnet *ifp;
-{
- struct tl_softc *sc;
-
- sc = ifp->if_softc;
-
- if_printf(ifp, "device timeout\n");
-
- TL_LOCK(sc);
- ifp->if_oerrors++;
-
- tl_softreset(sc, 1);
- tl_init_locked(sc);
- TL_UNLOCK(sc);
-
- return;
-}
-
-/*
- * Stop the adapter and free any mbufs allocated to the
- * RX and TX lists.
- */
-static void
-tl_stop(sc)
- struct tl_softc *sc;
-{
- register int i;
- struct ifnet *ifp;
-
- TL_LOCK_ASSERT(sc);
-
- ifp = sc->tl_ifp;
-
- /* Stop the stats updater. */
- callout_stop(&sc->tl_stat_callout);
-
- /* Stop the transmitter */
- CMD_CLR(sc, TL_CMD_RT);
- CMD_SET(sc, TL_CMD_STOP);
- CSR_WRITE_4(sc, TL_CH_PARM, 0);
-
- /* Stop the receiver */
- CMD_SET(sc, TL_CMD_RT);
- CMD_SET(sc, TL_CMD_STOP);
- CSR_WRITE_4(sc, TL_CH_PARM, 0);
-
- /*
- * Disable host interrupts.
- */
- CMD_SET(sc, TL_CMD_INTSOFF);
-
- /*
- * Clear list pointer.
- */
- CSR_WRITE_4(sc, TL_CH_PARM, 0);
-
- /*
- * Free the RX lists.
- */
- for (i = 0; i < TL_RX_LIST_CNT; i++) {
- if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
- m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
- sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
- }
- }
- bzero((char *)&sc->tl_ldata->tl_rx_list,
- sizeof(sc->tl_ldata->tl_rx_list));
-
- /*
- * Free the TX list buffers.
- */
- for (i = 0; i < TL_TX_LIST_CNT; i++) {
- if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
- m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
- sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
- }
- }
- bzero((char *)&sc->tl_ldata->tl_tx_list,
- sizeof(sc->tl_ldata->tl_tx_list));
-
- ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
-
- return;
-}
-
-/*
- * Stop all chip I/O so that the kernel's probe routines don't
- * get confused by errant DMAs when rebooting.
- */
-static void
-tl_shutdown(dev)
- device_t dev;
-{
- struct tl_softc *sc;
-
- sc = device_get_softc(dev);
-
- TL_LOCK(sc);
- tl_stop(sc);
- TL_UNLOCK(sc);
-
- return;
-}
diff --git a/sys/pci/if_tlreg.h b/sys/pci/if_tlreg.h
deleted file mode 100644
index f04b52b..0000000
--- a/sys/pci/if_tlreg.h
+++ /dev/null
@@ -1,592 +0,0 @@
-/*-
- * Copyright (c) 1997, 1998
- * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * This product includes software developed by Bill Paul.
- * 4. Neither the name of the author nor the names of any co-contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
- * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
- * THE POSSIBILITY OF SUCH DAMAGE.
- *
- * $FreeBSD$
- */
-
-
-struct tl_type {
- u_int16_t tl_vid;
- u_int16_t tl_did;
- char *tl_name;
-};
-
-/*
- * ThunderLAN TX/RX list format. The TX and RX lists are pretty much
- * identical: the list begins with a 32-bit forward pointer which points
- * at the next list in the chain, followed by 16 bits for the total
- * frame size, and a 16 bit status field. This is followed by a series
- * of 10 32-bit data count/data address pairs that point to the fragments
- * that make up the complete frame.
- */
-
-#define TL_MAXFRAGS 10
-#define TL_RX_LIST_CNT 64
-#define TL_TX_LIST_CNT 128
-#define TL_MIN_FRAMELEN 64
-
-struct tl_frag {
- u_int32_t tlist_dcnt;
- u_int32_t tlist_dadr;
-};
-
-struct tl_list {
- u_int32_t tlist_fptr; /* phys address of next list */
- u_int16_t tlist_cstat; /* status word */
- u_int16_t tlist_frsize; /* size of data in frame */
- struct tl_frag tl_frag[TL_MAXFRAGS];
-};
-
-/*
- * This is a special case of an RX list. By setting the One_Frag
- * bit in the NETCONFIG register, the driver can force the ThunderLAN
- * chip to use only one fragment when DMAing RX frames.
- */
-
-struct tl_list_onefrag {
- u_int32_t tlist_fptr;
- u_int16_t tlist_cstat;
- u_int16_t tlist_frsize;
- struct tl_frag tl_frag;
-};
-
-struct tl_list_data {
- struct tl_list_onefrag tl_rx_list[TL_RX_LIST_CNT];
- struct tl_list tl_tx_list[TL_TX_LIST_CNT];
- unsigned char tl_pad[TL_MIN_FRAMELEN];
-};
-
-struct tl_chain {
- struct tl_list *tl_ptr;
- struct mbuf *tl_mbuf;
- struct tl_chain *tl_next;
-};
-
-struct tl_chain_onefrag {
- struct tl_list_onefrag *tl_ptr;
- struct mbuf *tl_mbuf;
- struct tl_chain_onefrag *tl_next;
-};
-
-struct tl_chain_data {
- struct tl_chain_onefrag tl_rx_chain[TL_RX_LIST_CNT];
- struct tl_chain tl_tx_chain[TL_TX_LIST_CNT];
-
- struct tl_chain_onefrag *tl_rx_head;
- struct tl_chain_onefrag *tl_rx_tail;
-
- struct tl_chain *tl_tx_head;
- struct tl_chain *tl_tx_tail;
- struct tl_chain *tl_tx_free;
-};
-
-struct tl_softc {
- struct ifnet *tl_ifp;
- device_t tl_dev;
- struct ifmedia ifmedia; /* media info */
- bus_space_handle_t tl_bhandle;
- bus_space_tag_t tl_btag;
- void *tl_intrhand;
- struct resource *tl_irq;
- struct resource *tl_res;
- device_t tl_miibus;
- struct tl_type *tl_dinfo; /* ThunderLAN adapter info */
- u_int8_t tl_eeaddr;
- struct tl_list_data *tl_ldata; /* TX/RX lists and mbufs */
- struct tl_chain_data tl_cdata;
- u_int8_t tl_txeoc;
- u_int8_t tl_bitrate;
- int tl_if_flags;
- struct callout tl_stat_callout;
- struct mtx tl_mtx;
-};
-
-#define TL_LOCK(_sc) mtx_lock(&(_sc)->tl_mtx)
-#define TL_UNLOCK(_sc) mtx_unlock(&(_sc)->tl_mtx)
-#define TL_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->tl_mtx, MA_OWNED)
-
-/*
- * Transmit interrupt threshold.
- */
-#define TX_THR 0x00000004
-
-/*
- * General constants that are fun to know.
- *
- * The ThunderLAN controller is made by Texas Instruments. The
- * manual indicates that if the EEPROM checksum fails, the PCI
- * vendor and device ID registers will be loaded with TI-specific
- * values.
- */
-#define TI_VENDORID 0x104C
-#define TI_DEVICEID_THUNDERLAN 0x0500
-
-/*
- * These are the PCI vendor and device IDs for Compaq ethernet
- * adapters based on the ThunderLAN controller.
- */
-#define COMPAQ_VENDORID 0x0E11
-#define COMPAQ_DEVICEID_NETEL_10_100 0xAE32
-#define COMPAQ_DEVICEID_NETEL_UNKNOWN 0xAE33
-#define COMPAQ_DEVICEID_NETEL_10 0xAE34
-#define COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED 0xAE35
-#define COMPAQ_DEVICEID_NETEL_10_100_DUAL 0xAE40
-#define COMPAQ_DEVICEID_NETEL_10_100_PROLIANT 0xAE43
-#define COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED 0xB011
-#define COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX 0xB012
-#define COMPAQ_DEVICEID_NETEL_10_100_TX_UTP 0xB030
-#define COMPAQ_DEVICEID_NETFLEX_3P 0xF130
-#define COMPAQ_DEVICEID_NETFLEX_3P_BNC 0xF150
-
-/*
- * These are the PCI vendor and device IDs for Olicom
- * adapters based on the ThunderLAN controller.
- */
-#define OLICOM_VENDORID 0x108D
-#define OLICOM_DEVICEID_OC2183 0x0013
-#define OLICOM_DEVICEID_OC2325 0x0012
-#define OLICOM_DEVICEID_OC2326 0x0014
-
-/*
- * PCI low memory base and low I/O base
- */
-#define TL_PCI_LOIO 0x10
-#define TL_PCI_LOMEM 0x14
-
-/*
- * PCI latency timer (it's actually 0x0D, but we want a value
- * that's longword aligned).
- */
-#define TL_PCI_LATENCY_TIMER 0x0C
-
-#define TL_DIO_ADDR_INC 0x8000 /* Increment addr on each read */
-#define TL_DIO_RAM_SEL 0x4000 /* RAM address select */
-#define TL_DIO_ADDR_MASK 0x3FFF /* address bits mask */
-
-/*
- * Interrupt types
- */
-#define TL_INTR_INVALID 0x0
-#define TL_INTR_TXEOF 0x1
-#define TL_INTR_STATOFLOW 0x2
-#define TL_INTR_RXEOF 0x3
-#define TL_INTR_DUMMY 0x4
-#define TL_INTR_TXEOC 0x5
-#define TL_INTR_ADCHK 0x6
-#define TL_INTR_RXEOC 0x7
-
-#define TL_INT_MASK 0x001C
-#define TL_VEC_MASK 0x1FE0
-/*
- * Host command register bits
- */
-#define TL_CMD_GO 0x80000000
-#define TL_CMD_STOP 0x40000000
-#define TL_CMD_ACK 0x20000000
-#define TL_CMD_CHSEL7 0x10000000
-#define TL_CMD_CHSEL6 0x08000000
-#define TL_CMD_CHSEL5 0x04000000
-#define TL_CMD_CHSEL4 0x02000000
-#define TL_CMD_CHSEL3 0x01000000
-#define TL_CMD_CHSEL2 0x00800000
-#define TL_CMD_CHSEL1 0x00400000
-#define TL_CMD_CHSEL0 0x00200000
-#define TL_CMD_EOC 0x00100000
-#define TL_CMD_RT 0x00080000
-#define TL_CMD_NES 0x00040000
-#define TL_CMD_ZERO0 0x00020000
-#define TL_CMD_ZERO1 0x00010000
-#define TL_CMD_ADRST 0x00008000
-#define TL_CMD_LDTMR 0x00004000
-#define TL_CMD_LDTHR 0x00002000
-#define TL_CMD_REQINT 0x00001000
-#define TL_CMD_INTSOFF 0x00000800
-#define TL_CMD_INTSON 0x00000400
-#define TL_CMD_RSVD0 0x00000200
-#define TL_CMD_RSVD1 0x00000100
-#define TL_CMD_ACK7 0x00000080
-#define TL_CMD_ACK6 0x00000040
-#define TL_CMD_ACK5 0x00000020
-#define TL_CMD_ACK4 0x00000010
-#define TL_CMD_ACK3 0x00000008
-#define TL_CMD_ACK2 0x00000004
-#define TL_CMD_ACK1 0x00000002
-#define TL_CMD_ACK0 0x00000001
-
-#define TL_CMD_CHSEL_MASK 0x01FE0000
-#define TL_CMD_ACK_MASK 0xFF
-
-/*
- * EEPROM address where station address resides.
- */
-#define TL_EEPROM_EADDR 0x83
-#define TL_EEPROM_EADDR2 0x99
-#define TL_EEPROM_EADDR3 0xAF
-#define TL_EEPROM_EADDR_OC 0xF8 /* Olicom cards use a different
- address than Compaqs. */
-/*
- * ThunderLAN host command register offsets.
- * (Can be accessed either by IO ports or memory map.)
- */
-#define TL_HOSTCMD 0x00
-#define TL_CH_PARM 0x04
-#define TL_DIO_ADDR 0x08
-#define TL_HOST_INT 0x0A
-#define TL_DIO_DATA 0x0C
-
-/*
- * ThunderLAN internal registers
- */
-#define TL_NETCMD 0x00
-#define TL_NETSIO 0x01
-#define TL_NETSTS 0x02
-#define TL_NETMASK 0x03
-
-#define TL_NETCONFIG 0x04
-#define TL_MANTEST 0x06
-
-#define TL_VENID_LSB 0x08
-#define TL_VENID_MSB 0x09
-#define TL_DEVID_LSB 0x0A
-#define TL_DEVID_MSB 0x0B
-
-#define TL_REVISION 0x0C
-#define TL_SUBCLASS 0x0D
-#define TL_MINLAT 0x0E
-#define TL_MAXLAT 0x0F
-
-#define TL_AREG0_B5 0x10
-#define TL_AREG0_B4 0x11
-#define TL_AREG0_B3 0x12
-#define TL_AREG0_B2 0x13
-
-#define TL_AREG0_B1 0x14
-#define TL_AREG0_B0 0x15
-#define TL_AREG1_B5 0x16
-#define TL_AREG1_B4 0x17
-
-#define TL_AREG1_B3 0x18
-#define TL_AREG1_B2 0x19
-#define TL_AREG1_B1 0x1A
-#define TL_AREG1_B0 0x1B
-
-#define TL_AREG2_B5 0x1C
-#define TL_AREG2_B4 0x1D
-#define TL_AREG2_B3 0x1E
-#define TL_AREG2_B2 0x1F
-
-#define TL_AREG2_B1 0x20
-#define TL_AREG2_B0 0x21
-#define TL_AREG3_B5 0x22
-#define TL_AREG3_B4 0x23
-
-#define TL_AREG3_B3 0x24
-#define TL_AREG3_B2 0x25
-#define TL_AREG3_B1 0x26
-#define TL_AREG3_B0 0x27
-
-#define TL_HASH1 0x28
-#define TL_HASH2 0x2C
-#define TL_TXGOODFRAMES 0x30
-#define TL_TXUNDERRUN 0x33
-#define TL_RXGOODFRAMES 0x34
-#define TL_RXOVERRUN 0x37
-#define TL_DEFEREDTX 0x38
-#define TL_CRCERROR 0x3A
-#define TL_CODEERROR 0x3B
-#define TL_MULTICOLTX 0x3C
-#define TL_SINGLECOLTX 0x3E
-#define TL_EXCESSIVECOL 0x40
-#define TL_LATECOL 0x41
-#define TL_CARRIERLOSS 0x42
-#define TL_ACOMMIT 0x43
-#define TL_LDREG 0x44
-#define TL_BSIZEREG 0x45
-#define TL_MAXRX 0x46
-
-/*
- * ThunderLAN SIO register bits
- */
-#define TL_SIO_MINTEN 0x80
-#define TL_SIO_ECLOK 0x40
-#define TL_SIO_ETXEN 0x20
-#define TL_SIO_EDATA 0x10
-#define TL_SIO_NMRST 0x08
-#define TL_SIO_MCLK 0x04
-#define TL_SIO_MTXEN 0x02
-#define TL_SIO_MDATA 0x01
-
-/*
- * Thunderlan NETCONFIG bits
- */
-#define TL_CFG_RCLKTEST 0x8000
-#define TL_CFG_TCLKTEST 0x4000
-#define TL_CFG_BITRATE 0x2000
-#define TL_CFG_RXCRC 0x1000
-#define TL_CFG_PEF 0x0800
-#define TL_CFG_ONEFRAG 0x0400
-#define TL_CFG_ONECHAN 0x0200
-#define TL_CFG_MTEST 0x0100
-#define TL_CFG_PHYEN 0x0080
-#define TL_CFG_MACSEL6 0x0040
-#define TL_CFG_MACSEL5 0x0020
-#define TL_CFG_MACSEL4 0x0010
-#define TL_CFG_MACSEL3 0x0008
-#define TL_CFG_MACSEL2 0x0004
-#define TL_CFG_MACSEL1 0x0002
-#define TL_CFG_MACSEL0 0x0001
-
-/*
- * ThunderLAN NETSTS bits
- */
-#define TL_STS_MIRQ 0x80
-#define TL_STS_HBEAT 0x40
-#define TL_STS_TXSTOP 0x20
-#define TL_STS_RXSTOP 0x10
-
-/*
- * ThunderLAN NETCMD bits
- */
-#define TL_CMD_NRESET 0x80
-#define TL_CMD_NWRAP 0x40
-#define TL_CMD_CSF 0x20
-#define TL_CMD_CAF 0x10
-#define TL_CMD_NOBRX 0x08
-#define TL_CMD_DUPLEX 0x04
-#define TL_CMD_TRFRAM 0x02
-#define TL_CMD_TXPACE 0x01
-
-/*
- * ThunderLAN NETMASK bits
- */
-#define TL_MASK_MASK7 0x80
-#define TL_MASK_MASK6 0x40
-#define TL_MASK_MASK5 0x20
-#define TL_MASK_MASK4 0x10
-
-/*
- * MII frame format
- */
-#ifdef ANSI_DOESNT_ALLOW_BITFIELDS
-struct tl_mii_frame {
- u_int16_t mii_stdelim:2,
- mii_opcode:2,
- mii_phyaddr:5,
- mii_regaddr:5,
- mii_turnaround:2;
- u_int16_t mii_data;
-};
-#else
-struct tl_mii_frame {
- u_int8_t mii_stdelim;
- u_int8_t mii_opcode;
- u_int8_t mii_phyaddr;
- u_int8_t mii_regaddr;
- u_int8_t mii_turnaround;
- u_int16_t mii_data;
-};
-#endif
-/*
- * MII constants
- */
-#define TL_MII_STARTDELIM 0x01
-#define TL_MII_READOP 0x02
-#define TL_MII_WRITEOP 0x01
-#define TL_MII_TURNAROUND 0x02
-
-#define TL_LAST_FRAG 0x80000000
-#define TL_CSTAT_UNUSED 0x8000
-#define TL_CSTAT_FRAMECMP 0x4000
-#define TL_CSTAT_READY 0x3000
-#define TL_CSTAT_UNUSED13 0x2000
-#define TL_CSTAT_UNUSED12 0x1000
-#define TL_CSTAT_EOC 0x0800
-#define TL_CSTAT_RXERROR 0x0400
-#define TL_CSTAT_PASSCRC 0x0200
-#define TL_CSTAT_DPRIO 0x0100
-
-#define TL_FRAME_MASK 0x00FFFFFF
-#define tl_tx_goodframes(x) (x.tl_txstat & TL_FRAME_MASK)
-#define tl_tx_underrun(x) ((x.tl_txstat & ~TL_FRAME_MASK) >> 24)
-#define tl_rx_goodframes(x) (x.tl_rxstat & TL_FRAME_MASK)
-#define tl_rx_overrun(x) ((x.tl_rxstat & ~TL_FRAME_MASK) >> 24)
-
-struct tl_stats {
- u_int32_t tl_txstat;
- u_int32_t tl_rxstat;
- u_int16_t tl_deferred;
- u_int8_t tl_crc_errors;
- u_int8_t tl_code_errors;
- u_int16_t tl_tx_multi_collision;
- u_int16_t tl_tx_single_collision;
- u_int8_t tl_excessive_collision;
- u_int8_t tl_late_collision;
- u_int8_t tl_carrier_loss;
- u_int8_t acommit;
-};
-
-/*
- * ACOMMIT register bits. These are used only when a bitrate
- * PHY is selected ('bitrate' bit in netconfig register is set).
- */
-#define TL_AC_MTXER 0x01 /* reserved */
-#define TL_AC_MTXD1 0x02 /* 0 == 10baseT 1 == AUI */
-#define TL_AC_MTXD2 0x04 /* loopback disable */
-#define TL_AC_MTXD3 0x08 /* full duplex disable */
-
-#define TL_AC_TXTHRESH 0xF0
-#define TL_AC_TXTHRESH_16LONG 0x00
-#define TL_AC_TXTHRESH_32LONG 0x10
-#define TL_AC_TXTHRESH_64LONG 0x20
-#define TL_AC_TXTHRESH_128LONG 0x30
-#define TL_AC_TXTHRESH_256LONG 0x40
-#define TL_AC_TXTHRESH_WHOLEPKT 0x50
-
-/*
- * PCI burst size register (TL_BSIZEREG).
- */
-#define TL_RXBURST 0x0F
-#define TL_TXBURST 0xF0
-
-#define TL_RXBURST_4LONG 0x00
-#define TL_RXBURST_8LONG 0x01
-#define TL_RXBURST_16LONG 0x02
-#define TL_RXBURST_32LONG 0x03
-#define TL_RXBURST_64LONG 0x04
-#define TL_RXBURST_128LONG 0x05
-
-#define TL_TXBURST_4LONG 0x00
-#define TL_TXBURST_8LONG 0x10
-#define TL_TXBURST_16LONG 0x20
-#define TL_TXBURST_32LONG 0x30
-#define TL_TXBURST_64LONG 0x40
-#define TL_TXBURST_128LONG 0x50
-
-/*
- * register space access macros
- */
-#define CSR_WRITE_4(sc, reg, val) \
- bus_space_write_4(sc->tl_btag, sc->tl_bhandle, reg, val)
-#define CSR_WRITE_2(sc, reg, val) \
- bus_space_write_2(sc->tl_btag, sc->tl_bhandle, reg, val)
-#define CSR_WRITE_1(sc, reg, val) \
- bus_space_write_1(sc->tl_btag, sc->tl_bhandle, reg, val)
-
-#define CSR_READ_4(sc, reg) \
- bus_space_read_4(sc->tl_btag, sc->tl_bhandle, reg)
-#define CSR_READ_2(sc, reg) \
- bus_space_read_2(sc->tl_btag, sc->tl_bhandle, reg)
-#define CSR_READ_1(sc, reg) \
- bus_space_read_1(sc->tl_btag, sc->tl_bhandle, reg)
-
-#define CMD_PUT(sc, x) CSR_WRITE_4(sc, TL_HOSTCMD, x)
-#define CMD_SET(sc, x) \
- CSR_WRITE_4(sc, TL_HOSTCMD, CSR_READ_4(sc, TL_HOSTCMD) | (x))
-#define CMD_CLR(sc, x) \
- CSR_WRITE_4(sc, TL_HOSTCMD, CSR_READ_4(sc, TL_HOSTCMD) & ~(x))
-
-/*
- * ThunderLAN adapters typically have a serial EEPROM containing
- * configuration information. The main reason we're interested in
- * it is because it also contains the adapters's station address.
- *
- * Access to the EEPROM is a bit goofy since it is a serial device:
- * you have to do reads and writes one bit at a time. The state of
- * the DATA bit can only change while the CLOCK line is held low.
- * Transactions work basically like this:
- *
- * 1) Send the EEPROM_START sequence to prepare the EEPROM for
- * accepting commands. This pulls the clock high, sets
- * the data bit to 0, enables transmission to the EEPROM,
- * pulls the data bit up to 1, then pulls the clock low.
- * The idea is to do a 0 to 1 transition of the data bit
- * while the clock pin is held high.
- *
- * 2) To write a bit to the EEPROM, set the TXENABLE bit, then
- * set the EDATA bit to send a 1 or clear it to send a 0.
- * Finally, set and then clear ECLOK. Strobing the clock
- * transmits the bit. After 8 bits have been written, the
- * EEPROM should respond with an ACK, which should be read.
- *
- * 3) To read a bit from the EEPROM, clear the TXENABLE bit,
- * then set ECLOK. The bit can then be read by reading EDATA.
- * ECLOCK should then be cleared again. This can be repeated
- * 8 times to read a whole byte, after which the
- *
- * 4) We need to send the address byte to the EEPROM. For this
- * we have to send the write control byte to the EEPROM to
- * tell it to accept data. The byte is 0xA0. The EEPROM should
- * ack this. The address byte can be send after that.
- *
- * 5) Now we have to tell the EEPROM to send us data. For that we
- * have to transmit the read control byte, which is 0xA1. This
- * byte should also be acked. We can then read the data bits
- * from the EEPROM.
- *
- * 6) When we're all finished, send the EEPROM_STOP sequence.
- *
- * Note that we use the ThunderLAN's NetSio register to access the
- * EEPROM, however there is an alternate method. There is a PCI NVRAM
- * register at PCI offset 0xB4 which can also be used with minor changes.
- * The difference is that access to PCI registers via pci_conf_read()
- * and pci_conf_write() is done using programmed I/O, which we want to
- * avoid.
- */
-
-/*
- * Note that EEPROM_START leaves transmission enabled.
- */
-#define EEPROM_START \
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); /* Pull clock pin high */\
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA); /* Set DATA bit to 1 */ \
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN); /* Enable xmit to write bit */\
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA); /* Pull DATA bit to 0 again */\
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); /* Pull clock low again */
-
-/*
- * EEPROM_STOP ends access to the EEPROM and clears the ETXEN bit so
- * that no further data can be written to the EEPROM I/O pin.
- */
-#define EEPROM_STOP \
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN); /* Disable xmit */ \
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA); /* Pull DATA to 0 */ \
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); /* Pull clock high */ \
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN); /* Enable xmit */ \
- tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA); /* Toggle DATA to 1 */ \
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN); /* Disable xmit. */ \
- tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); /* Pull clock low again */
-
-
-/*
- * Microchip Technology 24Cxx EEPROM control bytes
- */
-#define EEPROM_CTL_READ 0xA1 /* 0101 0001 */
-#define EEPROM_CTL_WRITE 0xA0 /* 0101 0000 */
OpenPOWER on IntegriCloud