summaryrefslogtreecommitdiffstats
path: root/sys/pc98
diff options
context:
space:
mode:
authornyan <nyan@FreeBSD.org>2014-12-23 12:13:31 +0000
committernyan <nyan@FreeBSD.org>2014-12-23 12:13:31 +0000
commitf42424055bf04cd63fa5d8967611d1952483f85b (patch)
tree667d7dcf82775262ec01ea944a2bb432f685d5a7 /sys/pc98
parentd2f5d57eaa22cbf92de3880cbe4408244cb36439 (diff)
downloadFreeBSD-src-f42424055bf04cd63fa5d8967611d1952483f85b.zip
FreeBSD-src-f42424055bf04cd63fa5d8967611d1952483f85b.tar.gz
MFC: r272492
Merge pc98's machdep.c into i386/i386/machdep.c.
Diffstat (limited to 'sys/pc98')
-rw-r--r--sys/pc98/pc98/machdep.c2999
1 files changed, 0 insertions, 2999 deletions
diff --git a/sys/pc98/pc98/machdep.c b/sys/pc98/pc98/machdep.c
deleted file mode 100644
index e046960..0000000
--- a/sys/pc98/pc98/machdep.c
+++ /dev/null
@@ -1,2999 +0,0 @@
-/*-
- * Copyright (c) 1992 Terrence R. Lambert.
- * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
- * All rights reserved.
- *
- * This code is derived from software contributed to Berkeley by
- * William Jolitz.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * This product includes software developed by the University of
- * California, Berkeley and its contributors.
- * 4. Neither the name of the University nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
- */
-
-#include <sys/cdefs.h>
-__FBSDID("$FreeBSD$");
-
-#include "opt_apic.h"
-#include "opt_atalk.h"
-#include "opt_atpic.h"
-#include "opt_compat.h"
-#include "opt_cpu.h"
-#include "opt_ddb.h"
-#include "opt_inet.h"
-#include "opt_ipx.h"
-#include "opt_isa.h"
-#include "opt_kstack_pages.h"
-#include "opt_maxmem.h"
-#include "opt_mp_watchdog.h"
-#include "opt_npx.h"
-#include "opt_perfmon.h"
-#include "opt_kdtrace.h"
-
-#include <sys/param.h>
-#include <sys/proc.h>
-#include <sys/systm.h>
-#include <sys/bio.h>
-#include <sys/buf.h>
-#include <sys/bus.h>
-#include <sys/callout.h>
-#include <sys/cons.h>
-#include <sys/cpu.h>
-#include <sys/eventhandler.h>
-#include <sys/exec.h>
-#include <sys/imgact.h>
-#include <sys/kdb.h>
-#include <sys/kernel.h>
-#include <sys/ktr.h>
-#include <sys/linker.h>
-#include <sys/lock.h>
-#include <sys/malloc.h>
-#include <sys/memrange.h>
-#include <sys/msgbuf.h>
-#include <sys/mutex.h>
-#include <sys/pcpu.h>
-#include <sys/ptrace.h>
-#include <sys/reboot.h>
-#include <sys/rwlock.h>
-#include <sys/sched.h>
-#include <sys/signalvar.h>
-#ifdef SMP
-#include <sys/smp.h>
-#endif
-#include <sys/syscallsubr.h>
-#include <sys/sysctl.h>
-#include <sys/sysent.h>
-#include <sys/sysproto.h>
-#include <sys/ucontext.h>
-#include <sys/vmmeter.h>
-
-#include <vm/vm.h>
-#include <vm/vm_extern.h>
-#include <vm/vm_kern.h>
-#include <vm/vm_page.h>
-#include <vm/vm_map.h>
-#include <vm/vm_object.h>
-#include <vm/vm_pager.h>
-#include <vm/vm_param.h>
-
-#ifdef DDB
-#ifndef KDB
-#error KDB must be enabled in order for DDB to work!
-#endif
-#include <ddb/ddb.h>
-#include <ddb/db_sym.h>
-#endif
-
-#include <pc98/pc98/pc98_machdep.h>
-
-#include <net/netisr.h>
-
-#include <machine/bootinfo.h>
-#include <machine/clock.h>
-#include <machine/cpu.h>
-#include <machine/cputypes.h>
-#include <machine/intr_machdep.h>
-#include <x86/mca.h>
-#include <machine/md_var.h>
-#include <machine/mp_watchdog.h>
-#include <machine/pc/bios.h>
-#include <machine/pcb.h>
-#include <machine/pcb_ext.h>
-#include <machine/proc.h>
-#include <machine/reg.h>
-#include <machine/sigframe.h>
-#include <machine/specialreg.h>
-#include <machine/vm86.h>
-#ifdef PERFMON
-#include <machine/perfmon.h>
-#endif
-#ifdef SMP
-#include <machine/smp.h>
-#endif
-
-#ifdef DEV_APIC
-#include <machine/apicvar.h>
-#endif
-
-#ifdef DEV_ISA
-#include <x86/isa/icu.h>
-#endif
-
-/* Sanity check for __curthread() */
-CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
-
-extern void init386(int first);
-extern void dblfault_handler(void);
-
-#define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
-#define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
-
-#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
-#define CPU_ENABLE_SSE
-#endif
-
-static void cpu_startup(void *);
-static void fpstate_drop(struct thread *td);
-static void get_fpcontext(struct thread *td, mcontext_t *mcp);
-static int set_fpcontext(struct thread *td, const mcontext_t *mcp);
-#ifdef CPU_ENABLE_SSE
-static void set_fpregs_xmm(struct save87 *, struct savexmm *);
-static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
-#endif /* CPU_ENABLE_SSE */
-SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
-
-int need_pre_dma_flush; /* If 1, use wbinvd befor DMA transfer. */
-int need_post_dma_flush; /* If 1, use invd after DMA transfer. */
-
-#ifdef DDB
-extern vm_offset_t ksym_start, ksym_end;
-#endif
-
-int _udatasel, _ucodesel;
-u_int basemem;
-
-static int ispc98 = 1;
-SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
-
-int cold = 1;
-
-#ifdef COMPAT_43
-static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
-#endif
-#ifdef COMPAT_FREEBSD4
-static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
-#endif
-
-long Maxmem = 0;
-long realmem = 0;
-
-/*
- * The number of PHYSMAP entries must be one less than the number of
- * PHYSSEG entries because the PHYSMAP entry that spans the largest
- * physical address that is accessible by ISA DMA is split into two
- * PHYSSEG entries.
- */
-#define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1))
-
-vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
-vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
-
-/* must be 2 less so 0 0 can signal end of chunks */
-#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
-#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
-
-struct kva_md_info kmi;
-
-static struct trapframe proc0_tf;
-struct pcpu __pcpu[MAXCPU];
-
-struct mtx icu_lock;
-
-struct mem_range_softc mem_range_softc;
-
-static void
-cpu_startup(dummy)
- void *dummy;
-{
- uintmax_t memsize;
-
- /*
- * Good {morning,afternoon,evening,night}.
- */
- startrtclock();
- printcpuinfo();
- panicifcpuunsupported();
-#ifdef PERFMON
- perfmon_init();
-#endif
- realmem = Maxmem;
-
- /*
- * Display physical memory.
- */
- memsize = ptoa((uintmax_t)Maxmem);
- printf("real memory = %ju (%ju MB)\n", memsize, memsize >> 20);
-
- /*
- * Display any holes after the first chunk of extended memory.
- */
- if (bootverbose) {
- int indx;
-
- printf("Physical memory chunk(s):\n");
- for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
- vm_paddr_t size;
-
- size = phys_avail[indx + 1] - phys_avail[indx];
- printf(
- "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
- (uintmax_t)phys_avail[indx],
- (uintmax_t)phys_avail[indx + 1] - 1,
- (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
- }
- }
-
- vm_ksubmap_init(&kmi);
-
- printf("avail memory = %ju (%ju MB)\n",
- ptoa((uintmax_t)cnt.v_free_count),
- ptoa((uintmax_t)cnt.v_free_count) / 1048576);
-
- /*
- * Set up buffers, so they can be used to read disk labels.
- */
- bufinit();
- vm_pager_bufferinit();
- cpu_setregs();
-}
-
-/*
- * Send an interrupt to process.
- *
- * Stack is set up to allow sigcode stored
- * at top to call routine, followed by kcall
- * to sigreturn routine below. After sigreturn
- * resets the signal mask, the stack, and the
- * frame pointer, it returns to the user
- * specified pc, psl.
- */
-#ifdef COMPAT_43
-static void
-osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
-{
- struct osigframe sf, *fp;
- struct proc *p;
- struct thread *td;
- struct sigacts *psp;
- struct trapframe *regs;
- int sig;
- int oonstack;
-
- td = curthread;
- p = td->td_proc;
- PROC_LOCK_ASSERT(p, MA_OWNED);
- sig = ksi->ksi_signo;
- psp = p->p_sigacts;
- mtx_assert(&psp->ps_mtx, MA_OWNED);
- regs = td->td_frame;
- oonstack = sigonstack(regs->tf_esp);
-
- /* Allocate space for the signal handler context. */
- if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
- SIGISMEMBER(psp->ps_sigonstack, sig)) {
- fp = (struct osigframe *)(td->td_sigstk.ss_sp +
- td->td_sigstk.ss_size - sizeof(struct osigframe));
-#if defined(COMPAT_43)
- td->td_sigstk.ss_flags |= SS_ONSTACK;
-#endif
- } else
- fp = (struct osigframe *)regs->tf_esp - 1;
-
- /* Translate the signal if appropriate. */
- if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
- sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
-
- /* Build the argument list for the signal handler. */
- sf.sf_signum = sig;
- sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
- bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo));
- if (SIGISMEMBER(psp->ps_siginfo, sig)) {
- /* Signal handler installed with SA_SIGINFO. */
- sf.sf_arg2 = (register_t)&fp->sf_siginfo;
- sf.sf_siginfo.si_signo = sig;
- sf.sf_siginfo.si_code = ksi->ksi_code;
- sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
- sf.sf_addr = 0;
- } else {
- /* Old FreeBSD-style arguments. */
- sf.sf_arg2 = ksi->ksi_code;
- sf.sf_addr = (register_t)ksi->ksi_addr;
- sf.sf_ahu.sf_handler = catcher;
- }
- mtx_unlock(&psp->ps_mtx);
- PROC_UNLOCK(p);
-
- /* Save most if not all of trap frame. */
- sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
- sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
- sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
- sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
- sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
- sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
- sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
- sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
- sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
- sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
- sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
- sf.sf_siginfo.si_sc.sc_gs = rgs();
- sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
-
- /* Build the signal context to be used by osigreturn(). */
- sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
- SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
- sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
- sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
- sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
- sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
- sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
- sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
-
- /*
- * If we're a vm86 process, we want to save the segment registers.
- * We also change eflags to be our emulated eflags, not the actual
- * eflags.
- */
- if (regs->tf_eflags & PSL_VM) {
- /* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
- struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
- struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
-
- sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
- sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
- sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
- sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
-
- if (vm86->vm86_has_vme == 0)
- sf.sf_siginfo.si_sc.sc_ps =
- (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
- (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
-
- /* See sendsig() for comments. */
- tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
- }
-
- /*
- * Copy the sigframe out to the user's stack.
- */
- if (copyout(&sf, fp, sizeof(*fp)) != 0) {
-#ifdef DEBUG
- printf("process %ld has trashed its stack\n", (long)p->p_pid);
-#endif
- PROC_LOCK(p);
- sigexit(td, SIGILL);
- }
-
- regs->tf_esp = (int)fp;
- if (p->p_sysent->sv_sigcode_base != 0) {
- regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
- szosigcode;
- } else {
- /* a.out sysentvec does not use shared page */
- regs->tf_eip = p->p_sysent->sv_psstrings - szosigcode;
- }
- regs->tf_eflags &= ~(PSL_T | PSL_D);
- regs->tf_cs = _ucodesel;
- regs->tf_ds = _udatasel;
- regs->tf_es = _udatasel;
- regs->tf_fs = _udatasel;
- load_gs(_udatasel);
- regs->tf_ss = _udatasel;
- PROC_LOCK(p);
- mtx_lock(&psp->ps_mtx);
-}
-#endif /* COMPAT_43 */
-
-#ifdef COMPAT_FREEBSD4
-static void
-freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
-{
- struct sigframe4 sf, *sfp;
- struct proc *p;
- struct thread *td;
- struct sigacts *psp;
- struct trapframe *regs;
- int sig;
- int oonstack;
-
- td = curthread;
- p = td->td_proc;
- PROC_LOCK_ASSERT(p, MA_OWNED);
- sig = ksi->ksi_signo;
- psp = p->p_sigacts;
- mtx_assert(&psp->ps_mtx, MA_OWNED);
- regs = td->td_frame;
- oonstack = sigonstack(regs->tf_esp);
-
- /* Save user context. */
- bzero(&sf, sizeof(sf));
- sf.sf_uc.uc_sigmask = *mask;
- sf.sf_uc.uc_stack = td->td_sigstk;
- sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
- ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
- sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
- sf.sf_uc.uc_mcontext.mc_gs = rgs();
- bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
- bzero(sf.sf_uc.uc_mcontext.mc_fpregs,
- sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
- bzero(sf.sf_uc.uc_mcontext.__spare__,
- sizeof(sf.sf_uc.uc_mcontext.__spare__));
- bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
-
- /* Allocate space for the signal handler context. */
- if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
- SIGISMEMBER(psp->ps_sigonstack, sig)) {
- sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp +
- td->td_sigstk.ss_size - sizeof(struct sigframe4));
-#if defined(COMPAT_43)
- td->td_sigstk.ss_flags |= SS_ONSTACK;
-#endif
- } else
- sfp = (struct sigframe4 *)regs->tf_esp - 1;
-
- /* Translate the signal if appropriate. */
- if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
- sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
-
- /* Build the argument list for the signal handler. */
- sf.sf_signum = sig;
- sf.sf_ucontext = (register_t)&sfp->sf_uc;
- bzero(&sf.sf_si, sizeof(sf.sf_si));
- if (SIGISMEMBER(psp->ps_siginfo, sig)) {
- /* Signal handler installed with SA_SIGINFO. */
- sf.sf_siginfo = (register_t)&sfp->sf_si;
- sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
-
- /* Fill in POSIX parts */
- sf.sf_si.si_signo = sig;
- sf.sf_si.si_code = ksi->ksi_code;
- sf.sf_si.si_addr = ksi->ksi_addr;
- } else {
- /* Old FreeBSD-style arguments. */
- sf.sf_siginfo = ksi->ksi_code;
- sf.sf_addr = (register_t)ksi->ksi_addr;
- sf.sf_ahu.sf_handler = catcher;
- }
- mtx_unlock(&psp->ps_mtx);
- PROC_UNLOCK(p);
-
- /*
- * If we're a vm86 process, we want to save the segment registers.
- * We also change eflags to be our emulated eflags, not the actual
- * eflags.
- */
- if (regs->tf_eflags & PSL_VM) {
- struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
- struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
-
- sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
- sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
- sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
- sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
-
- if (vm86->vm86_has_vme == 0)
- sf.sf_uc.uc_mcontext.mc_eflags =
- (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
- (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
-
- /*
- * Clear PSL_NT to inhibit T_TSSFLT faults on return from
- * syscalls made by the signal handler. This just avoids
- * wasting time for our lazy fixup of such faults. PSL_NT
- * does nothing in vm86 mode, but vm86 programs can set it
- * almost legitimately in probes for old cpu types.
- */
- tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
- }
-
- /*
- * Copy the sigframe out to the user's stack.
- */
- if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
-#ifdef DEBUG
- printf("process %ld has trashed its stack\n", (long)p->p_pid);
-#endif
- PROC_LOCK(p);
- sigexit(td, SIGILL);
- }
-
- regs->tf_esp = (int)sfp;
- regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
- szfreebsd4_sigcode;
- regs->tf_eflags &= ~(PSL_T | PSL_D);
- regs->tf_cs = _ucodesel;
- regs->tf_ds = _udatasel;
- regs->tf_es = _udatasel;
- regs->tf_fs = _udatasel;
- regs->tf_ss = _udatasel;
- PROC_LOCK(p);
- mtx_lock(&psp->ps_mtx);
-}
-#endif /* COMPAT_FREEBSD4 */
-
-void
-sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
-{
- struct sigframe sf, *sfp;
- struct proc *p;
- struct thread *td;
- struct sigacts *psp;
- char *sp;
- struct trapframe *regs;
- struct segment_descriptor *sdp;
- int sig;
- int oonstack;
-
- td = curthread;
- p = td->td_proc;
- PROC_LOCK_ASSERT(p, MA_OWNED);
- sig = ksi->ksi_signo;
- psp = p->p_sigacts;
- mtx_assert(&psp->ps_mtx, MA_OWNED);
-#ifdef COMPAT_FREEBSD4
- if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
- freebsd4_sendsig(catcher, ksi, mask);
- return;
- }
-#endif
-#ifdef COMPAT_43
- if (SIGISMEMBER(psp->ps_osigset, sig)) {
- osendsig(catcher, ksi, mask);
- return;
- }
-#endif
- regs = td->td_frame;
- oonstack = sigonstack(regs->tf_esp);
-
- /* Save user context. */
- bzero(&sf, sizeof(sf));
- sf.sf_uc.uc_sigmask = *mask;
- sf.sf_uc.uc_stack = td->td_sigstk;
- sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
- ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
- sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
- sf.sf_uc.uc_mcontext.mc_gs = rgs();
- bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
- sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
- get_fpcontext(td, &sf.sf_uc.uc_mcontext);
- fpstate_drop(td);
- /*
- * Unconditionally fill the fsbase and gsbase into the mcontext.
- */
- sdp = &td->td_pcb->pcb_fsd;
- sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
- sdp->sd_lobase;
- sdp = &td->td_pcb->pcb_gsd;
- sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
- sdp->sd_lobase;
- sf.sf_uc.uc_mcontext.mc_flags = 0;
- bzero(sf.sf_uc.uc_mcontext.mc_spare2,
- sizeof(sf.sf_uc.uc_mcontext.mc_spare2));
- bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
-
- /* Allocate space for the signal handler context. */
- if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
- SIGISMEMBER(psp->ps_sigonstack, sig)) {
- sp = td->td_sigstk.ss_sp +
- td->td_sigstk.ss_size - sizeof(struct sigframe);
-#if defined(COMPAT_43)
- td->td_sigstk.ss_flags |= SS_ONSTACK;
-#endif
- } else
- sp = (char *)regs->tf_esp - sizeof(struct sigframe);
- /* Align to 16 bytes. */
- sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
-
- /* Translate the signal if appropriate. */
- if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
- sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
-
- /* Build the argument list for the signal handler. */
- sf.sf_signum = sig;
- sf.sf_ucontext = (register_t)&sfp->sf_uc;
- bzero(&sf.sf_si, sizeof(sf.sf_si));
- if (SIGISMEMBER(psp->ps_siginfo, sig)) {
- /* Signal handler installed with SA_SIGINFO. */
- sf.sf_siginfo = (register_t)&sfp->sf_si;
- sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
-
- /* Fill in POSIX parts */
- sf.sf_si = ksi->ksi_info;
- sf.sf_si.si_signo = sig; /* maybe a translated signal */
- } else {
- /* Old FreeBSD-style arguments. */
- sf.sf_siginfo = ksi->ksi_code;
- sf.sf_addr = (register_t)ksi->ksi_addr;
- sf.sf_ahu.sf_handler = catcher;
- }
- mtx_unlock(&psp->ps_mtx);
- PROC_UNLOCK(p);
-
- /*
- * If we're a vm86 process, we want to save the segment registers.
- * We also change eflags to be our emulated eflags, not the actual
- * eflags.
- */
- if (regs->tf_eflags & PSL_VM) {
- struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
- struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
-
- sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
- sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
- sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
- sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
-
- if (vm86->vm86_has_vme == 0)
- sf.sf_uc.uc_mcontext.mc_eflags =
- (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
- (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
-
- /*
- * Clear PSL_NT to inhibit T_TSSFLT faults on return from
- * syscalls made by the signal handler. This just avoids
- * wasting time for our lazy fixup of such faults. PSL_NT
- * does nothing in vm86 mode, but vm86 programs can set it
- * almost legitimately in probes for old cpu types.
- */
- tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
- }
-
- /*
- * Copy the sigframe out to the user's stack.
- */
- if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
-#ifdef DEBUG
- printf("process %ld has trashed its stack\n", (long)p->p_pid);
-#endif
- PROC_LOCK(p);
- sigexit(td, SIGILL);
- }
-
- regs->tf_esp = (int)sfp;
- regs->tf_eip = p->p_sysent->sv_sigcode_base;
- regs->tf_eflags &= ~(PSL_T | PSL_D);
- regs->tf_cs = _ucodesel;
- regs->tf_ds = _udatasel;
- regs->tf_es = _udatasel;
- regs->tf_fs = _udatasel;
- regs->tf_ss = _udatasel;
- PROC_LOCK(p);
- mtx_lock(&psp->ps_mtx);
-}
-
-/*
- * System call to cleanup state after a signal
- * has been taken. Reset signal mask and
- * stack state from context left by sendsig (above).
- * Return to previous pc and psl as specified by
- * context left by sendsig. Check carefully to
- * make sure that the user has not modified the
- * state to gain improper privileges.
- *
- * MPSAFE
- */
-#ifdef COMPAT_43
-int
-osigreturn(td, uap)
- struct thread *td;
- struct osigreturn_args /* {
- struct osigcontext *sigcntxp;
- } */ *uap;
-{
- struct osigcontext sc;
- struct trapframe *regs;
- struct osigcontext *scp;
- int eflags, error;
- ksiginfo_t ksi;
-
- regs = td->td_frame;
- error = copyin(uap->sigcntxp, &sc, sizeof(sc));
- if (error != 0)
- return (error);
- scp = &sc;
- eflags = scp->sc_ps;
- if (eflags & PSL_VM) {
- struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
- struct vm86_kernel *vm86;
-
- /*
- * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
- * set up the vm86 area, and we can't enter vm86 mode.
- */
- if (td->td_pcb->pcb_ext == 0)
- return (EINVAL);
- vm86 = &td->td_pcb->pcb_ext->ext_vm86;
- if (vm86->vm86_inited == 0)
- return (EINVAL);
-
- /* Go back to user mode if both flags are set. */
- if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
- ksiginfo_init_trap(&ksi);
- ksi.ksi_signo = SIGBUS;
- ksi.ksi_code = BUS_OBJERR;
- ksi.ksi_addr = (void *)regs->tf_eip;
- trapsignal(td, &ksi);
- }
-
- if (vm86->vm86_has_vme) {
- eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
- (eflags & VME_USERCHANGE) | PSL_VM;
- } else {
- vm86->vm86_eflags = eflags; /* save VIF, VIP */
- eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
- (eflags & VM_USERCHANGE) | PSL_VM;
- }
- tf->tf_vm86_ds = scp->sc_ds;
- tf->tf_vm86_es = scp->sc_es;
- tf->tf_vm86_fs = scp->sc_fs;
- tf->tf_vm86_gs = scp->sc_gs;
- tf->tf_ds = _udatasel;
- tf->tf_es = _udatasel;
- tf->tf_fs = _udatasel;
- } else {
- /*
- * Don't allow users to change privileged or reserved flags.
- */
- if (!EFL_SECURE(eflags, regs->tf_eflags)) {
- return (EINVAL);
- }
-
- /*
- * Don't allow users to load a valid privileged %cs. Let the
- * hardware check for invalid selectors, excess privilege in
- * other selectors, invalid %eip's and invalid %esp's.
- */
- if (!CS_SECURE(scp->sc_cs)) {
- ksiginfo_init_trap(&ksi);
- ksi.ksi_signo = SIGBUS;
- ksi.ksi_code = BUS_OBJERR;
- ksi.ksi_trapno = T_PROTFLT;
- ksi.ksi_addr = (void *)regs->tf_eip;
- trapsignal(td, &ksi);
- return (EINVAL);
- }
- regs->tf_ds = scp->sc_ds;
- regs->tf_es = scp->sc_es;
- regs->tf_fs = scp->sc_fs;
- }
-
- /* Restore remaining registers. */
- regs->tf_eax = scp->sc_eax;
- regs->tf_ebx = scp->sc_ebx;
- regs->tf_ecx = scp->sc_ecx;
- regs->tf_edx = scp->sc_edx;
- regs->tf_esi = scp->sc_esi;
- regs->tf_edi = scp->sc_edi;
- regs->tf_cs = scp->sc_cs;
- regs->tf_ss = scp->sc_ss;
- regs->tf_isp = scp->sc_isp;
- regs->tf_ebp = scp->sc_fp;
- regs->tf_esp = scp->sc_sp;
- regs->tf_eip = scp->sc_pc;
- regs->tf_eflags = eflags;
-
-#if defined(COMPAT_43)
- if (scp->sc_onstack & 1)
- td->td_sigstk.ss_flags |= SS_ONSTACK;
- else
- td->td_sigstk.ss_flags &= ~SS_ONSTACK;
-#endif
- kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
- SIGPROCMASK_OLD);
- return (EJUSTRETURN);
-}
-#endif /* COMPAT_43 */
-
-#ifdef COMPAT_FREEBSD4
-/*
- * MPSAFE
- */
-int
-freebsd4_sigreturn(td, uap)
- struct thread *td;
- struct freebsd4_sigreturn_args /* {
- const ucontext4 *sigcntxp;
- } */ *uap;
-{
- struct ucontext4 uc;
- struct trapframe *regs;
- struct ucontext4 *ucp;
- int cs, eflags, error;
- ksiginfo_t ksi;
-
- error = copyin(uap->sigcntxp, &uc, sizeof(uc));
- if (error != 0)
- return (error);
- ucp = &uc;
- regs = td->td_frame;
- eflags = ucp->uc_mcontext.mc_eflags;
- if (eflags & PSL_VM) {
- struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
- struct vm86_kernel *vm86;
-
- /*
- * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
- * set up the vm86 area, and we can't enter vm86 mode.
- */
- if (td->td_pcb->pcb_ext == 0)
- return (EINVAL);
- vm86 = &td->td_pcb->pcb_ext->ext_vm86;
- if (vm86->vm86_inited == 0)
- return (EINVAL);
-
- /* Go back to user mode if both flags are set. */
- if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
- ksiginfo_init_trap(&ksi);
- ksi.ksi_signo = SIGBUS;
- ksi.ksi_code = BUS_OBJERR;
- ksi.ksi_addr = (void *)regs->tf_eip;
- trapsignal(td, &ksi);
- }
- if (vm86->vm86_has_vme) {
- eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
- (eflags & VME_USERCHANGE) | PSL_VM;
- } else {
- vm86->vm86_eflags = eflags; /* save VIF, VIP */
- eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
- (eflags & VM_USERCHANGE) | PSL_VM;
- }
- bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
- tf->tf_eflags = eflags;
- tf->tf_vm86_ds = tf->tf_ds;
- tf->tf_vm86_es = tf->tf_es;
- tf->tf_vm86_fs = tf->tf_fs;
- tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
- tf->tf_ds = _udatasel;
- tf->tf_es = _udatasel;
- tf->tf_fs = _udatasel;
- } else {
- /*
- * Don't allow users to change privileged or reserved flags.
- */
- if (!EFL_SECURE(eflags, regs->tf_eflags)) {
- uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
- td->td_proc->p_pid, td->td_name, eflags);
- return (EINVAL);
- }
-
- /*
- * Don't allow users to load a valid privileged %cs. Let the
- * hardware check for invalid selectors, excess privilege in
- * other selectors, invalid %eip's and invalid %esp's.
- */
- cs = ucp->uc_mcontext.mc_cs;
- if (!CS_SECURE(cs)) {
- uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
- td->td_proc->p_pid, td->td_name, cs);
- ksiginfo_init_trap(&ksi);
- ksi.ksi_signo = SIGBUS;
- ksi.ksi_code = BUS_OBJERR;
- ksi.ksi_trapno = T_PROTFLT;
- ksi.ksi_addr = (void *)regs->tf_eip;
- trapsignal(td, &ksi);
- return (EINVAL);
- }
-
- bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
- }
-
-#if defined(COMPAT_43)
- if (ucp->uc_mcontext.mc_onstack & 1)
- td->td_sigstk.ss_flags |= SS_ONSTACK;
- else
- td->td_sigstk.ss_flags &= ~SS_ONSTACK;
-#endif
- kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
- return (EJUSTRETURN);
-}
-#endif /* COMPAT_FREEBSD4 */
-
-/*
- * MPSAFE
- */
-int
-sys_sigreturn(td, uap)
- struct thread *td;
- struct sigreturn_args /* {
- const struct __ucontext *sigcntxp;
- } */ *uap;
-{
- ucontext_t uc;
- struct trapframe *regs;
- ucontext_t *ucp;
- int cs, eflags, error, ret;
- ksiginfo_t ksi;
-
- error = copyin(uap->sigcntxp, &uc, sizeof(uc));
- if (error != 0)
- return (error);
- ucp = &uc;
- regs = td->td_frame;
- eflags = ucp->uc_mcontext.mc_eflags;
- if (eflags & PSL_VM) {
- struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
- struct vm86_kernel *vm86;
-
- /*
- * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
- * set up the vm86 area, and we can't enter vm86 mode.
- */
- if (td->td_pcb->pcb_ext == 0)
- return (EINVAL);
- vm86 = &td->td_pcb->pcb_ext->ext_vm86;
- if (vm86->vm86_inited == 0)
- return (EINVAL);
-
- /* Go back to user mode if both flags are set. */
- if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
- ksiginfo_init_trap(&ksi);
- ksi.ksi_signo = SIGBUS;
- ksi.ksi_code = BUS_OBJERR;
- ksi.ksi_addr = (void *)regs->tf_eip;
- trapsignal(td, &ksi);
- }
-
- if (vm86->vm86_has_vme) {
- eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
- (eflags & VME_USERCHANGE) | PSL_VM;
- } else {
- vm86->vm86_eflags = eflags; /* save VIF, VIP */
- eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
- (eflags & VM_USERCHANGE) | PSL_VM;
- }
- bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
- tf->tf_eflags = eflags;
- tf->tf_vm86_ds = tf->tf_ds;
- tf->tf_vm86_es = tf->tf_es;
- tf->tf_vm86_fs = tf->tf_fs;
- tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
- tf->tf_ds = _udatasel;
- tf->tf_es = _udatasel;
- tf->tf_fs = _udatasel;
- } else {
- /*
- * Don't allow users to change privileged or reserved flags.
- */
- if (!EFL_SECURE(eflags, regs->tf_eflags)) {
- uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
- td->td_proc->p_pid, td->td_name, eflags);
- return (EINVAL);
- }
-
- /*
- * Don't allow users to load a valid privileged %cs. Let the
- * hardware check for invalid selectors, excess privilege in
- * other selectors, invalid %eip's and invalid %esp's.
- */
- cs = ucp->uc_mcontext.mc_cs;
- if (!CS_SECURE(cs)) {
- uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
- td->td_proc->p_pid, td->td_name, cs);
- ksiginfo_init_trap(&ksi);
- ksi.ksi_signo = SIGBUS;
- ksi.ksi_code = BUS_OBJERR;
- ksi.ksi_trapno = T_PROTFLT;
- ksi.ksi_addr = (void *)regs->tf_eip;
- trapsignal(td, &ksi);
- return (EINVAL);
- }
-
- ret = set_fpcontext(td, &ucp->uc_mcontext);
- if (ret != 0)
- return (ret);
- bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
- }
-
-#if defined(COMPAT_43)
- if (ucp->uc_mcontext.mc_onstack & 1)
- td->td_sigstk.ss_flags |= SS_ONSTACK;
- else
- td->td_sigstk.ss_flags &= ~SS_ONSTACK;
-#endif
-
- kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
- return (EJUSTRETURN);
-}
-
-/*
- * Machine dependent boot() routine
- *
- * I haven't seen anything to put here yet
- * Possibly some stuff might be grafted back here from boot()
- */
-void
-cpu_boot(int howto)
-{
-}
-
-/*
- * Flush the D-cache for non-DMA I/O so that the I-cache can
- * be made coherent later.
- */
-void
-cpu_flush_dcache(void *ptr, size_t len)
-{
- /* Not applicable */
-}
-
-/* Get current clock frequency for the given cpu id. */
-int
-cpu_est_clockrate(int cpu_id, uint64_t *rate)
-{
- uint64_t tsc1, tsc2;
- register_t reg;
-
- if (pcpu_find(cpu_id) == NULL || rate == NULL)
- return (EINVAL);
- if ((cpu_feature & CPUID_TSC) == 0)
- return (EOPNOTSUPP);
-
-#ifdef SMP
- if (smp_cpus > 1) {
- /* Schedule ourselves on the indicated cpu. */
- thread_lock(curthread);
- sched_bind(curthread, cpu_id);
- thread_unlock(curthread);
- }
-#endif
-
- /* Calibrate by measuring a short delay. */
- reg = intr_disable();
- tsc1 = rdtsc();
- DELAY(1000);
- tsc2 = rdtsc();
- intr_restore(reg);
- *rate = (tsc2 - tsc1) * 1000;
-
-#ifdef SMP
- if (smp_cpus > 1) {
- thread_lock(curthread);
- sched_unbind(curthread);
- thread_unlock(curthread);
- }
-#endif
-
- return (0);
-}
-
-
-/*
- * Shutdown the CPU as much as possible
- */
-void
-cpu_halt(void)
-{
- for (;;)
- halt();
-}
-
-static int idle_mwait = 1; /* Use MONITOR/MWAIT for short idle. */
-TUNABLE_INT("machdep.idle_mwait", &idle_mwait);
-SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RW, &idle_mwait,
- 0, "Use MONITOR/MWAIT for short idle");
-
-#define STATE_RUNNING 0x0
-#define STATE_MWAIT 0x1
-#define STATE_SLEEPING 0x2
-
-static void
-cpu_idle_hlt(sbintime_t sbt)
-{
- int *state;
-
- state = (int *)PCPU_PTR(monitorbuf);
- *state = STATE_SLEEPING;
-
- /*
- * Since we may be in a critical section from cpu_idle(), if
- * an interrupt fires during that critical section we may have
- * a pending preemption. If the CPU halts, then that thread
- * may not execute until a later interrupt awakens the CPU.
- * To handle this race, check for a runnable thread after
- * disabling interrupts and immediately return if one is
- * found. Also, we must absolutely guarentee that hlt is
- * the next instruction after sti. This ensures that any
- * interrupt that fires after the call to disable_intr() will
- * immediately awaken the CPU from hlt. Finally, please note
- * that on x86 this works fine because of interrupts enabled only
- * after the instruction following sti takes place, while IF is set
- * to 1 immediately, allowing hlt instruction to acknowledge the
- * interrupt.
- */
- disable_intr();
- if (sched_runnable())
- enable_intr();
- else
- __asm __volatile("sti; hlt");
- *state = STATE_RUNNING;
-}
-
-/*
- * MWAIT cpu power states. Lower 4 bits are sub-states.
- */
-#define MWAIT_C0 0xf0
-#define MWAIT_C1 0x00
-#define MWAIT_C2 0x10
-#define MWAIT_C3 0x20
-#define MWAIT_C4 0x30
-
-static void
-cpu_idle_mwait(sbintime_t sbt)
-{
- int *state;
-
- state = (int *)PCPU_PTR(monitorbuf);
- *state = STATE_MWAIT;
-
- /* See comments in cpu_idle_hlt(). */
- disable_intr();
- if (sched_runnable()) {
- enable_intr();
- *state = STATE_RUNNING;
- return;
- }
- cpu_monitor(state, 0, 0);
- if (*state == STATE_MWAIT)
- __asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
- else
- enable_intr();
- *state = STATE_RUNNING;
-}
-
-static void
-cpu_idle_spin(sbintime_t sbt)
-{
- int *state;
- int i;
-
- state = (int *)PCPU_PTR(monitorbuf);
- *state = STATE_RUNNING;
-
- /*
- * The sched_runnable() call is racy but as long as there is
- * a loop missing it one time will have just a little impact if any
- * (and it is much better than missing the check at all).
- */
- for (i = 0; i < 1000; i++) {
- if (sched_runnable())
- return;
- cpu_spinwait();
- }
-}
-
-void (*cpu_idle_fn)(sbintime_t) = cpu_idle_hlt;
-
-void
-cpu_idle(int busy)
-{
- sbintime_t sbt = -1;
-
- CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
- busy, curcpu);
-#if defined(MP_WATCHDOG)
- ap_watchdog(PCPU_GET(cpuid));
-#endif
- /* If we are busy - try to use fast methods. */
- if (busy) {
- if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
- cpu_idle_mwait(busy);
- goto out;
- }
- }
-
- /* If we have time - switch timers into idle mode. */
- if (!busy) {
- critical_enter();
- sbt = cpu_idleclock();
- }
-
- /* Call main idle method. */
- cpu_idle_fn(sbt);
-
- /* Switch timers mack into active mode. */
- if (!busy) {
- cpu_activeclock();
- critical_exit();
- }
-out:
- CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
- busy, curcpu);
-}
-
-int
-cpu_idle_wakeup(int cpu)
-{
- struct pcpu *pcpu;
- int *state;
-
- pcpu = pcpu_find(cpu);
- state = (int *)pcpu->pc_monitorbuf;
- /*
- * This doesn't need to be atomic since missing the race will
- * simply result in unnecessary IPIs.
- */
- if (*state == STATE_SLEEPING)
- return (0);
- if (*state == STATE_MWAIT)
- *state = STATE_RUNNING;
- return (1);
-}
-
-/*
- * Ordered by speed/power consumption.
- */
-struct {
- void *id_fn;
- char *id_name;
-} idle_tbl[] = {
- { cpu_idle_spin, "spin" },
- { cpu_idle_mwait, "mwait" },
- { cpu_idle_hlt, "hlt" },
- { NULL, NULL }
-};
-
-static int
-idle_sysctl_available(SYSCTL_HANDLER_ARGS)
-{
- char *avail, *p;
- int error;
- int i;
-
- avail = malloc(256, M_TEMP, M_WAITOK);
- p = avail;
- for (i = 0; idle_tbl[i].id_name != NULL; i++) {
- if (strstr(idle_tbl[i].id_name, "mwait") &&
- (cpu_feature2 & CPUID2_MON) == 0)
- continue;
- p += sprintf(p, "%s%s", p != avail ? ", " : "",
- idle_tbl[i].id_name);
- }
- error = sysctl_handle_string(oidp, avail, 0, req);
- free(avail, M_TEMP);
- return (error);
-}
-
-SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
- 0, 0, idle_sysctl_available, "A", "list of available idle functions");
-
-static int
-idle_sysctl(SYSCTL_HANDLER_ARGS)
-{
- char buf[16];
- int error;
- char *p;
- int i;
-
- p = "unknown";
- for (i = 0; idle_tbl[i].id_name != NULL; i++) {
- if (idle_tbl[i].id_fn == cpu_idle_fn) {
- p = idle_tbl[i].id_name;
- break;
- }
- }
- strncpy(buf, p, sizeof(buf));
- error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
- if (error != 0 || req->newptr == NULL)
- return (error);
- for (i = 0; idle_tbl[i].id_name != NULL; i++) {
- if (strstr(idle_tbl[i].id_name, "mwait") &&
- (cpu_feature2 & CPUID2_MON) == 0)
- continue;
- if (strcmp(idle_tbl[i].id_name, buf))
- continue;
- cpu_idle_fn = idle_tbl[i].id_fn;
- return (0);
- }
- return (EINVAL);
-}
-
-SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
- idle_sysctl, "A", "currently selected idle function");
-
-/*
- * Reset registers to default values on exec.
- */
-void
-exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
-{
- struct trapframe *regs = td->td_frame;
- struct pcb *pcb = td->td_pcb;
-
- /* Reset pc->pcb_gs and %gs before possibly invalidating it. */
- pcb->pcb_gs = _udatasel;
- load_gs(_udatasel);
-
- mtx_lock_spin(&dt_lock);
- if (td->td_proc->p_md.md_ldt)
- user_ldt_free(td);
- else
- mtx_unlock_spin(&dt_lock);
-
- bzero((char *)regs, sizeof(struct trapframe));
- regs->tf_eip = imgp->entry_addr;
- regs->tf_esp = stack;
- regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
- regs->tf_ss = _udatasel;
- regs->tf_ds = _udatasel;
- regs->tf_es = _udatasel;
- regs->tf_fs = _udatasel;
- regs->tf_cs = _ucodesel;
-
- /* PS_STRINGS value for BSD/OS binaries. It is 0 for non-BSD/OS. */
- regs->tf_ebx = imgp->ps_strings;
-
- /*
- * Reset the hardware debug registers if they were in use.
- * They won't have any meaning for the newly exec'd process.
- */
- if (pcb->pcb_flags & PCB_DBREGS) {
- pcb->pcb_dr0 = 0;
- pcb->pcb_dr1 = 0;
- pcb->pcb_dr2 = 0;
- pcb->pcb_dr3 = 0;
- pcb->pcb_dr6 = 0;
- pcb->pcb_dr7 = 0;
- if (pcb == curpcb) {
- /*
- * Clear the debug registers on the running
- * CPU, otherwise they will end up affecting
- * the next process we switch to.
- */
- reset_dbregs();
- }
- pcb->pcb_flags &= ~PCB_DBREGS;
- }
-
- /*
- * Initialize the math emulator (if any) for the current process.
- * Actually, just clear the bit that says that the emulator has
- * been initialized. Initialization is delayed until the process
- * traps to the emulator (if it is done at all) mainly because
- * emulators don't provide an entry point for initialization.
- */
- td->td_pcb->pcb_flags &= ~FP_SOFTFP;
- pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
-
- /*
- * Drop the FP state if we hold it, so that the process gets a
- * clean FP state if it uses the FPU again.
- */
- fpstate_drop(td);
-
- /*
- * XXX - Linux emulator
- * Make sure sure edx is 0x0 on entry. Linux binaries depend
- * on it.
- */
- td->td_retval[1] = 0;
-}
-
-void
-cpu_setregs(void)
-{
- unsigned int cr0;
-
- cr0 = rcr0();
-
- /*
- * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
- *
- * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
- * instructions. We must set the CR0_MP bit and use the CR0_TS
- * bit to control the trap, because setting the CR0_EM bit does
- * not cause WAIT instructions to trap. It's important to trap
- * WAIT instructions - otherwise the "wait" variants of no-wait
- * control instructions would degenerate to the "no-wait" variants
- * after FP context switches but work correctly otherwise. It's
- * particularly important to trap WAITs when there is no NPX -
- * otherwise the "wait" variants would always degenerate.
- *
- * Try setting CR0_NE to get correct error reporting on 486DX's.
- * Setting it should fail or do nothing on lesser processors.
- */
- cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
- load_cr0(cr0);
- load_gs(_udatasel);
-}
-
-u_long bootdev; /* not a struct cdev *- encoding is different */
-SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
- CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
-
-/*
- * Initialize 386 and configure to run kernel
- */
-
-/*
- * Initialize segments & interrupt table
- */
-
-int _default_ldt;
-
-union descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */
-union descriptor ldt[NLDT]; /* local descriptor table */
-static struct gate_descriptor idt0[NIDT];
-struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
-struct region_descriptor r_gdt, r_idt; /* table descriptors */
-struct mtx dt_lock; /* lock for GDT and LDT */
-
-#if defined(I586_CPU) && !defined(NO_F00F_HACK)
-extern int has_f00f_bug;
-#endif
-
-static struct i386tss dblfault_tss;
-static char dblfault_stack[PAGE_SIZE];
-
-extern vm_offset_t proc0kstack;
-
-
-/*
- * software prototypes -- in more palatable form.
- *
- * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
- * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
- */
-struct soft_segment_descriptor gdt_segs[] = {
-/* GNULL_SEL 0 Null Descriptor */
-{ .ssd_base = 0x0,
- .ssd_limit = 0x0,
- .ssd_type = 0,
- .ssd_dpl = SEL_KPL,
- .ssd_p = 0,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 0,
- .ssd_gran = 0 },
-/* GPRIV_SEL 1 SMP Per-Processor Private Data Descriptor */
-{ .ssd_base = 0x0,
- .ssd_limit = 0xfffff,
- .ssd_type = SDT_MEMRWA,
- .ssd_dpl = SEL_KPL,
- .ssd_p = 1,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 1,
- .ssd_gran = 1 },
-/* GUFS_SEL 2 %fs Descriptor for user */
-{ .ssd_base = 0x0,
- .ssd_limit = 0xfffff,
- .ssd_type = SDT_MEMRWA,
- .ssd_dpl = SEL_UPL,
- .ssd_p = 1,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 1,
- .ssd_gran = 1 },
-/* GUGS_SEL 3 %gs Descriptor for user */
-{ .ssd_base = 0x0,
- .ssd_limit = 0xfffff,
- .ssd_type = SDT_MEMRWA,
- .ssd_dpl = SEL_UPL,
- .ssd_p = 1,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 1,
- .ssd_gran = 1 },
-/* GCODE_SEL 4 Code Descriptor for kernel */
-{ .ssd_base = 0x0,
- .ssd_limit = 0xfffff,
- .ssd_type = SDT_MEMERA,
- .ssd_dpl = SEL_KPL,
- .ssd_p = 1,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 1,
- .ssd_gran = 1 },
-/* GDATA_SEL 5 Data Descriptor for kernel */
-{ .ssd_base = 0x0,
- .ssd_limit = 0xfffff,
- .ssd_type = SDT_MEMRWA,
- .ssd_dpl = SEL_KPL,
- .ssd_p = 1,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 1,
- .ssd_gran = 1 },
-/* GUCODE_SEL 6 Code Descriptor for user */
-{ .ssd_base = 0x0,
- .ssd_limit = 0xfffff,
- .ssd_type = SDT_MEMERA,
- .ssd_dpl = SEL_UPL,
- .ssd_p = 1,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 1,
- .ssd_gran = 1 },
-/* GUDATA_SEL 7 Data Descriptor for user */
-{ .ssd_base = 0x0,
- .ssd_limit = 0xfffff,
- .ssd_type = SDT_MEMRWA,
- .ssd_dpl = SEL_UPL,
- .ssd_p = 1,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 1,
- .ssd_gran = 1 },
-/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
-{ .ssd_base = 0x400,
- .ssd_limit = 0xfffff,
- .ssd_type = SDT_MEMRWA,
- .ssd_dpl = SEL_KPL,
- .ssd_p = 1,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 1,
- .ssd_gran = 1 },
-/* GPROC0_SEL 9 Proc 0 Tss Descriptor */
-{
- .ssd_base = 0x0,
- .ssd_limit = sizeof(struct i386tss)-1,
- .ssd_type = SDT_SYS386TSS,
- .ssd_dpl = 0,
- .ssd_p = 1,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 0,
- .ssd_gran = 0 },
-/* GLDT_SEL 10 LDT Descriptor */
-{ .ssd_base = (int) ldt,
- .ssd_limit = sizeof(ldt)-1,
- .ssd_type = SDT_SYSLDT,
- .ssd_dpl = SEL_UPL,
- .ssd_p = 1,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 0,
- .ssd_gran = 0 },
-/* GUSERLDT_SEL 11 User LDT Descriptor per process */
-{ .ssd_base = (int) ldt,
- .ssd_limit = (512 * sizeof(union descriptor)-1),
- .ssd_type = SDT_SYSLDT,
- .ssd_dpl = 0,
- .ssd_p = 1,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 0,
- .ssd_gran = 0 },
-/* GPANIC_SEL 12 Panic Tss Descriptor */
-{ .ssd_base = (int) &dblfault_tss,
- .ssd_limit = sizeof(struct i386tss)-1,
- .ssd_type = SDT_SYS386TSS,
- .ssd_dpl = 0,
- .ssd_p = 1,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 0,
- .ssd_gran = 0 },
-/* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
-{ .ssd_base = 0,
- .ssd_limit = 0xfffff,
- .ssd_type = SDT_MEMERA,
- .ssd_dpl = 0,
- .ssd_p = 1,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 0,
- .ssd_gran = 1 },
-/* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
-{ .ssd_base = 0,
- .ssd_limit = 0xfffff,
- .ssd_type = SDT_MEMERA,
- .ssd_dpl = 0,
- .ssd_p = 1,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 0,
- .ssd_gran = 1 },
-/* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
-{ .ssd_base = 0,
- .ssd_limit = 0xfffff,
- .ssd_type = SDT_MEMRWA,
- .ssd_dpl = 0,
- .ssd_p = 1,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 1,
- .ssd_gran = 1 },
-/* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
-{ .ssd_base = 0,
- .ssd_limit = 0xfffff,
- .ssd_type = SDT_MEMRWA,
- .ssd_dpl = 0,
- .ssd_p = 1,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 0,
- .ssd_gran = 1 },
-/* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
-{ .ssd_base = 0,
- .ssd_limit = 0xfffff,
- .ssd_type = SDT_MEMRWA,
- .ssd_dpl = 0,
- .ssd_p = 1,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 0,
- .ssd_gran = 1 },
-/* GNDIS_SEL 18 NDIS Descriptor */
-{ .ssd_base = 0x0,
- .ssd_limit = 0x0,
- .ssd_type = 0,
- .ssd_dpl = 0,
- .ssd_p = 0,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 0,
- .ssd_gran = 0 },
-};
-
-static struct soft_segment_descriptor ldt_segs[] = {
- /* Null Descriptor - overwritten by call gate */
-{ .ssd_base = 0x0,
- .ssd_limit = 0x0,
- .ssd_type = 0,
- .ssd_dpl = 0,
- .ssd_p = 0,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 0,
- .ssd_gran = 0 },
- /* Null Descriptor - overwritten by call gate */
-{ .ssd_base = 0x0,
- .ssd_limit = 0x0,
- .ssd_type = 0,
- .ssd_dpl = 0,
- .ssd_p = 0,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 0,
- .ssd_gran = 0 },
- /* Null Descriptor - overwritten by call gate */
-{ .ssd_base = 0x0,
- .ssd_limit = 0x0,
- .ssd_type = 0,
- .ssd_dpl = 0,
- .ssd_p = 0,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 0,
- .ssd_gran = 0 },
- /* Code Descriptor for user */
-{ .ssd_base = 0x0,
- .ssd_limit = 0xfffff,
- .ssd_type = SDT_MEMERA,
- .ssd_dpl = SEL_UPL,
- .ssd_p = 1,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 1,
- .ssd_gran = 1 },
- /* Null Descriptor - overwritten by call gate */
-{ .ssd_base = 0x0,
- .ssd_limit = 0x0,
- .ssd_type = 0,
- .ssd_dpl = 0,
- .ssd_p = 0,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 0,
- .ssd_gran = 0 },
- /* Data Descriptor for user */
-{ .ssd_base = 0x0,
- .ssd_limit = 0xfffff,
- .ssd_type = SDT_MEMRWA,
- .ssd_dpl = SEL_UPL,
- .ssd_p = 1,
- .ssd_xx = 0, .ssd_xx1 = 0,
- .ssd_def32 = 1,
- .ssd_gran = 1 },
-};
-
-void
-setidt(idx, func, typ, dpl, selec)
- int idx;
- inthand_t *func;
- int typ;
- int dpl;
- int selec;
-{
- struct gate_descriptor *ip;
-
- ip = idt + idx;
- ip->gd_looffset = (int)func;
- ip->gd_selector = selec;
- ip->gd_stkcpy = 0;
- ip->gd_xx = 0;
- ip->gd_type = typ;
- ip->gd_dpl = dpl;
- ip->gd_p = 1;
- ip->gd_hioffset = ((int)func)>>16 ;
-}
-
-extern inthand_t
- IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
- IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
- IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
- IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
- IDTVEC(xmm),
-#ifdef KDTRACE_HOOKS
- IDTVEC(dtrace_ret),
-#endif
- IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
-
-#ifdef DDB
-/*
- * Display the index and function name of any IDT entries that don't use
- * the default 'rsvd' entry point.
- */
-DB_SHOW_COMMAND(idt, db_show_idt)
-{
- struct gate_descriptor *ip;
- int idx;
- uintptr_t func;
-
- ip = idt;
- for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
- func = (ip->gd_hioffset << 16 | ip->gd_looffset);
- if (func != (uintptr_t)&IDTVEC(rsvd)) {
- db_printf("%3d\t", idx);
- db_printsym(func, DB_STGY_PROC);
- db_printf("\n");
- }
- ip++;
- }
-}
-
-/* Show privileged registers. */
-DB_SHOW_COMMAND(sysregs, db_show_sysregs)
-{
- uint64_t idtr, gdtr;
-
- idtr = ridt();
- db_printf("idtr\t0x%08x/%04x\n",
- (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
- gdtr = rgdt();
- db_printf("gdtr\t0x%08x/%04x\n",
- (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
- db_printf("ldtr\t0x%04x\n", rldt());
- db_printf("tr\t0x%04x\n", rtr());
- db_printf("cr0\t0x%08x\n", rcr0());
- db_printf("cr2\t0x%08x\n", rcr2());
- db_printf("cr3\t0x%08x\n", rcr3());
- db_printf("cr4\t0x%08x\n", rcr4());
-}
-#endif
-
-void
-sdtossd(sd, ssd)
- struct segment_descriptor *sd;
- struct soft_segment_descriptor *ssd;
-{
- ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
- ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
- ssd->ssd_type = sd->sd_type;
- ssd->ssd_dpl = sd->sd_dpl;
- ssd->ssd_p = sd->sd_p;
- ssd->ssd_def32 = sd->sd_def32;
- ssd->ssd_gran = sd->sd_gran;
-}
-
-static void
-basemem_setup(void)
-{
- vm_paddr_t pa;
- pt_entry_t *pte;
- int i;
-
- if (basemem > 640) {
- printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
- basemem);
- basemem = 640;
- }
-
- /*
- * XXX if biosbasemem is now < 640, there is a `hole'
- * between the end of base memory and the start of
- * ISA memory. The hole may be empty or it may
- * contain BIOS code or data. Map it read/write so
- * that the BIOS can write to it. (Memory from 0 to
- * the physical end of the kernel is mapped read-only
- * to begin with and then parts of it are remapped.
- * The parts that aren't remapped form holes that
- * remain read-only and are unused by the kernel.
- * The base memory area is below the physical end of
- * the kernel and right now forms a read-only hole.
- * The part of it from PAGE_SIZE to
- * (trunc_page(biosbasemem * 1024) - 1) will be
- * remapped and used by the kernel later.)
- *
- * This code is similar to the code used in
- * pmap_mapdev, but since no memory needs to be
- * allocated we simply change the mapping.
- */
- for (pa = trunc_page(basemem * 1024);
- pa < ISA_HOLE_START; pa += PAGE_SIZE)
- pmap_kenter(KERNBASE + pa, pa);
-
- /*
- * Map pages between basemem and ISA_HOLE_START, if any, r/w into
- * the vm86 page table so that vm86 can scribble on them using
- * the vm86 map too. XXX: why 2 ways for this and only 1 way for
- * page 0, at least as initialized here?
- */
- pte = (pt_entry_t *)vm86paddr;
- for (i = basemem / 4; i < 160; i++)
- pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
-}
-
-/*
- * Populate the (physmap) array with base/bound pairs describing the
- * available physical memory in the system, then test this memory and
- * build the phys_avail array describing the actually-available memory.
- *
- * If we cannot accurately determine the physical memory map, then use
- * value from the 0xE801 call, and failing that, the RTC.
- *
- * Total memory size may be set by the kernel environment variable
- * hw.physmem or the compile-time define MAXMEM.
- *
- * XXX first should be vm_paddr_t.
- */
-static void
-getmemsize(int first)
-{
- int off, physmap_idx, pa_indx, da_indx;
- u_long physmem_tunable, memtest;
- vm_paddr_t physmap[PHYSMAP_SIZE];
- pt_entry_t *pte;
- quad_t dcons_addr, dcons_size;
- int i;
- int pg_n;
- u_int extmem;
- u_int under16;
- vm_paddr_t pa;
-
- bzero(physmap, sizeof(physmap));
-
- /* XXX - some of EPSON machines can't use PG_N */
- pg_n = PG_N;
- if (pc98_machine_type & M_EPSON_PC98) {
- switch (epson_machine_id) {
-#ifdef WB_CACHE
- default:
-#endif
- case EPSON_PC486_HX:
- case EPSON_PC486_HG:
- case EPSON_PC486_HA:
- pg_n = 0;
- break;
- }
- }
-
- under16 = pc98_getmemsize(&basemem, &extmem);
- basemem_setup();
-
- physmap[0] = 0;
- physmap[1] = basemem * 1024;
- physmap_idx = 2;
- physmap[physmap_idx] = 0x100000;
- physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
-
- /*
- * Now, physmap contains a map of physical memory.
- */
-
-#ifdef SMP
- /* make hole for AP bootstrap code */
- physmap[1] = mp_bootaddress(physmap[1]);
-#endif
-
- /*
- * Maxmem isn't the "maximum memory", it's one larger than the
- * highest page of the physical address space. It should be
- * called something like "Maxphyspage". We may adjust this
- * based on ``hw.physmem'' and the results of the memory test.
- */
- Maxmem = atop(physmap[physmap_idx + 1]);
-
-#ifdef MAXMEM
- Maxmem = MAXMEM / 4;
-#endif
-
- if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
- Maxmem = atop(physmem_tunable);
-
- /*
- * By default keep the memtest enabled. Use a general name so that
- * one could eventually do more with the code than just disable it.
- */
- memtest = 1;
- TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
-
- if (atop(physmap[physmap_idx + 1]) != Maxmem &&
- (boothowto & RB_VERBOSE))
- printf("Physical memory use set to %ldK\n", Maxmem * 4);
-
- /*
- * If Maxmem has been increased beyond what the system has detected,
- * extend the last memory segment to the new limit.
- */
- if (atop(physmap[physmap_idx + 1]) < Maxmem)
- physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
-
- /*
- * We need to divide chunk if Maxmem is larger than 16MB and
- * under 16MB area is not full of memory.
- * (1) system area (15-16MB region) is cut off
- * (2) extended memory is only over 16MB area (ex. Melco "HYPERMEMORY")
- */
- if ((under16 != 16 * 1024) && (extmem > 15 * 1024)) {
- /* 15M - 16M region is cut off, so need to divide chunk */
- physmap[physmap_idx + 1] = under16 * 1024;
- physmap_idx += 2;
- physmap[physmap_idx] = 0x1000000;
- physmap[physmap_idx + 1] = physmap[2] + extmem * 1024;
- }
-
- /* call pmap initialization to make new kernel address space */
- pmap_bootstrap(first);
-
- /*
- * Size up each available chunk of physical memory.
- */
- physmap[0] = PAGE_SIZE; /* mask off page 0 */
- pa_indx = 0;
- da_indx = 1;
- phys_avail[pa_indx++] = physmap[0];
- phys_avail[pa_indx] = physmap[0];
- dump_avail[da_indx] = physmap[0];
- pte = CMAP3;
-
- /*
- * Get dcons buffer address
- */
- if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
- getenv_quad("dcons.size", &dcons_size) == 0)
- dcons_addr = 0;
-
- /*
- * physmap is in bytes, so when converting to page boundaries,
- * round up the start address and round down the end address.
- */
- for (i = 0; i <= physmap_idx; i += 2) {
- vm_paddr_t end;
-
- end = ptoa((vm_paddr_t)Maxmem);
- if (physmap[i + 1] < end)
- end = trunc_page(physmap[i + 1]);
- for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
- int tmp, page_bad, full;
- int *ptr = (int *)CADDR3;
-
- full = FALSE;
- /*
- * block out kernel memory as not available.
- */
- if (pa >= KERNLOAD && pa < first)
- goto do_dump_avail;
-
- /*
- * block out dcons buffer
- */
- if (dcons_addr > 0
- && pa >= trunc_page(dcons_addr)
- && pa < dcons_addr + dcons_size)
- goto do_dump_avail;
-
- page_bad = FALSE;
- if (memtest == 0)
- goto skip_memtest;
-
- /*
- * map page into kernel: valid, read/write,non-cacheable
- */
- *pte = pa | PG_V | PG_RW | pg_n;
- invltlb();
-
- tmp = *(int *)ptr;
- /*
- * Test for alternating 1's and 0's
- */
- *(volatile int *)ptr = 0xaaaaaaaa;
- if (*(volatile int *)ptr != 0xaaaaaaaa)
- page_bad = TRUE;
- /*
- * Test for alternating 0's and 1's
- */
- *(volatile int *)ptr = 0x55555555;
- if (*(volatile int *)ptr != 0x55555555)
- page_bad = TRUE;
- /*
- * Test for all 1's
- */
- *(volatile int *)ptr = 0xffffffff;
- if (*(volatile int *)ptr != 0xffffffff)
- page_bad = TRUE;
- /*
- * Test for all 0's
- */
- *(volatile int *)ptr = 0x0;
- if (*(volatile int *)ptr != 0x0)
- page_bad = TRUE;
- /*
- * Restore original value.
- */
- *(int *)ptr = tmp;
-
-skip_memtest:
- /*
- * Adjust array of valid/good pages.
- */
- if (page_bad == TRUE)
- continue;
- /*
- * If this good page is a continuation of the
- * previous set of good pages, then just increase
- * the end pointer. Otherwise start a new chunk.
- * Note that "end" points one higher than end,
- * making the range >= start and < end.
- * If we're also doing a speculative memory
- * test and we at or past the end, bump up Maxmem
- * so that we keep going. The first bad page
- * will terminate the loop.
- */
- if (phys_avail[pa_indx] == pa) {
- phys_avail[pa_indx] += PAGE_SIZE;
- } else {
- pa_indx++;
- if (pa_indx == PHYS_AVAIL_ARRAY_END) {
- printf(
- "Too many holes in the physical address space, giving up\n");
- pa_indx--;
- full = TRUE;
- goto do_dump_avail;
- }
- phys_avail[pa_indx++] = pa; /* start */
- phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
- }
- physmem++;
-do_dump_avail:
- if (dump_avail[da_indx] == pa) {
- dump_avail[da_indx] += PAGE_SIZE;
- } else {
- da_indx++;
- if (da_indx == DUMP_AVAIL_ARRAY_END) {
- da_indx--;
- goto do_next;
- }
- dump_avail[da_indx++] = pa; /* start */
- dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
- }
-do_next:
- if (full)
- break;
- }
- }
- *pte = 0;
- invltlb();
-
- /*
- * XXX
- * The last chunk must contain at least one page plus the message
- * buffer to avoid complicating other code (message buffer address
- * calculation, etc.).
- */
- while (phys_avail[pa_indx - 1] + PAGE_SIZE +
- round_page(msgbufsize) >= phys_avail[pa_indx]) {
- physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
- phys_avail[pa_indx--] = 0;
- phys_avail[pa_indx--] = 0;
- }
-
- Maxmem = atop(phys_avail[pa_indx]);
-
- /* Trim off space for the message buffer. */
- phys_avail[pa_indx] -= round_page(msgbufsize);
-
- /* Map the message buffer. */
- for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
- pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
- off);
-
- PT_UPDATES_FLUSH();
-}
-
-void
-init386(first)
- int first;
-{
- struct gate_descriptor *gdp;
- int gsel_tss, metadata_missing, x, pa;
- size_t kstack0_sz;
- struct pcpu *pc;
-
- thread0.td_kstack = proc0kstack;
- thread0.td_kstack_pages = KSTACK_PAGES;
- kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
- thread0.td_pcb = (struct pcb *)(thread0.td_kstack + kstack0_sz) - 1;
-
- /*
- * This may be done better later if it gets more high level
- * components in it. If so just link td->td_proc here.
- */
- proc_linkup0(&proc0, &thread0);
-
- /*
- * Initialize DMAC
- */
- pc98_init_dmac();
-
- metadata_missing = 0;
- if (bootinfo.bi_modulep) {
- preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
- preload_bootstrap_relocate(KERNBASE);
- } else {
- metadata_missing = 1;
- }
- if (envmode == 1)
- kern_envp = static_env;
- else if (bootinfo.bi_envp)
- kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
-
- /* Init basic tunables, hz etc */
- init_param1();
-
- /*
- * Make gdt memory segments. All segments cover the full 4GB
- * of address space and permissions are enforced at page level.
- */
- gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
- gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
- gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
- gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
- gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
- gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
-
- pc = &__pcpu[0];
- gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
- gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
- gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
-
- for (x = 0; x < NGDT; x++)
- ssdtosd(&gdt_segs[x], &gdt[x].sd);
-
- r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
- r_gdt.rd_base = (int) gdt;
- mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
- lgdt(&r_gdt);
-
- pcpu_init(pc, 0, sizeof(struct pcpu));
- for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
- pmap_kenter(pa + KERNBASE, pa);
- dpcpu_init((void *)(first + KERNBASE), 0);
- first += DPCPU_SIZE;
- PCPU_SET(prvspace, pc);
- PCPU_SET(curthread, &thread0);
- PCPU_SET(curpcb, thread0.td_pcb);
-
- /*
- * Initialize mutexes.
- *
- * icu_lock: in order to allow an interrupt to occur in a critical
- * section, to set pcpu->ipending (etc...) properly, we
- * must be able to get the icu lock, so it can't be
- * under witness.
- */
- mutex_init();
- mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
-
- /* make ldt memory segments */
- ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
- ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
- for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
- ssdtosd(&ldt_segs[x], &ldt[x].sd);
-
- _default_ldt = GSEL(GLDT_SEL, SEL_KPL);
- lldt(_default_ldt);
- PCPU_SET(currentldt, _default_ldt);
-
- /* exceptions */
- for (x = 0; x < NIDT; x++)
- setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
- GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_DE, &IDTVEC(div), SDT_SYS386TGT, SEL_KPL,
- GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_DB, &IDTVEC(dbg), SDT_SYS386IGT, SEL_KPL,
- GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_NMI, &IDTVEC(nmi), SDT_SYS386IGT, SEL_KPL,
- GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_BP, &IDTVEC(bpt), SDT_SYS386IGT, SEL_UPL,
- GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_OF, &IDTVEC(ofl), SDT_SYS386TGT, SEL_UPL,
- GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_BR, &IDTVEC(bnd), SDT_SYS386TGT, SEL_KPL,
- GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_UD, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL,
- GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_NM, &IDTVEC(dna), SDT_SYS386TGT, SEL_KPL
- , GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_DF, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
- setidt(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYS386TGT, SEL_KPL,
- GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_TS, &IDTVEC(tss), SDT_SYS386TGT, SEL_KPL,
- GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_NP, &IDTVEC(missing), SDT_SYS386TGT, SEL_KPL,
- GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_SS, &IDTVEC(stk), SDT_SYS386TGT, SEL_KPL,
- GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_GP, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL,
- GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_PF, &IDTVEC(page), SDT_SYS386IGT, SEL_KPL,
- GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_MF, &IDTVEC(fpu), SDT_SYS386TGT, SEL_KPL,
- GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
- GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_MC, &IDTVEC(mchk), SDT_SYS386TGT, SEL_KPL,
- GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
- GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
- GSEL(GCODE_SEL, SEL_KPL));
-#ifdef KDTRACE_HOOKS
- setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYS386TGT, SEL_UPL,
- GSEL(GCODE_SEL, SEL_KPL));
-#endif
-
- r_idt.rd_limit = sizeof(idt0) - 1;
- r_idt.rd_base = (int) idt;
- lidt(&r_idt);
-
- /*
- * Initialize the i8254 before the console so that console
- * initialization can use DELAY().
- */
- i8254_init();
-
- /*
- * Initialize the console before we print anything out.
- */
- cninit();
-
- if (metadata_missing)
- printf("WARNING: loader(8) metadata is missing!\n");
-
-#ifdef DEV_ISA
-#ifdef DEV_ATPIC
- atpic_startup();
-#else
- /* Reset and mask the atpics and leave them shut down. */
- atpic_reset();
-
- /*
- * Point the ICU spurious interrupt vectors at the APIC spurious
- * interrupt handler.
- */
- setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
- GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
- GSEL(GCODE_SEL, SEL_KPL));
-#endif
-#endif
-
-#ifdef DDB
- ksym_start = bootinfo.bi_symtab;
- ksym_end = bootinfo.bi_esymtab;
-#endif
-
- kdb_init();
-
-#ifdef KDB
- if (boothowto & RB_KDB)
- kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
-#endif
-
- finishidentcpu(); /* Final stage of CPU initialization */
- setidt(IDT_UD, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL,
- GSEL(GCODE_SEL, SEL_KPL));
- setidt(IDT_GP, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL,
- GSEL(GCODE_SEL, SEL_KPL));
- initializecpu(); /* Initialize CPU registers */
- initializecpucache();
-
- /* make an initial tss so cpu can get interrupt stack on syscall! */
- /* Note: -16 is so we can grow the trapframe if we came from vm86 */
- PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
- kstack0_sz - sizeof(struct pcb) - 16);
- PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
- gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
- PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
- PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
- PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
- ltr(gsel_tss);
-
- /* pointer to selector slot for %fs/%gs */
- PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
-
- dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
- dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
- dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
- dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
- dblfault_tss.tss_cr3 = (int)IdlePTD;
- dblfault_tss.tss_eip = (int)dblfault_handler;
- dblfault_tss.tss_eflags = PSL_KERNEL;
- dblfault_tss.tss_ds = dblfault_tss.tss_es =
- dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
- dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
- dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
- dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
-
- vm86_initialize();
- getmemsize(first);
- init_param2(physmem);
-
- /* now running on new page tables, configured,and u/iom is accessible */
-
- msgbufinit(msgbufp, msgbufsize);
-
- /* make a call gate to reenter kernel with */
- gdp = &ldt[LSYS5CALLS_SEL].gd;
-
- x = (int) &IDTVEC(lcall_syscall);
- gdp->gd_looffset = x;
- gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
- gdp->gd_stkcpy = 1;
- gdp->gd_type = SDT_SYS386CGT;
- gdp->gd_dpl = SEL_UPL;
- gdp->gd_p = 1;
- gdp->gd_hioffset = x >> 16;
-
- /* XXX does this work? */
- /* XXX yes! */
- ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
- ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
-
- /* transfer to user mode */
-
- _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
- _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
-
- /* setup proc 0's pcb */
- thread0.td_pcb->pcb_flags = 0;
- thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
- thread0.td_pcb->pcb_ext = 0;
- thread0.td_frame = &proc0_tf;
-}
-
-void
-cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
-{
-
-}
-
-void
-spinlock_enter(void)
-{
- struct thread *td;
- register_t flags;
-
- td = curthread;
- if (td->td_md.md_spinlock_count == 0) {
- flags = intr_disable();
- td->td_md.md_spinlock_count = 1;
- td->td_md.md_saved_flags = flags;
- } else
- td->td_md.md_spinlock_count++;
- critical_enter();
-}
-
-void
-spinlock_exit(void)
-{
- struct thread *td;
- register_t flags;
-
- td = curthread;
- critical_exit();
- flags = td->td_md.md_saved_flags;
- td->td_md.md_spinlock_count--;
- if (td->td_md.md_spinlock_count == 0)
- intr_restore(flags);
-}
-
-#if defined(I586_CPU) && !defined(NO_F00F_HACK)
-static void f00f_hack(void *unused);
-SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
-
-static void
-f00f_hack(void *unused)
-{
- struct gate_descriptor *new_idt;
- vm_offset_t tmp;
-
- if (!has_f00f_bug)
- return;
-
- GIANT_REQUIRED;
-
- printf("Intel Pentium detected, installing workaround for F00F bug\n");
-
- tmp = kmem_malloc(kernel_arena, PAGE_SIZE * 2, M_WAITOK | M_ZERO);
- if (tmp == 0)
- panic("kmem_alloc returned 0");
-
- /* Put the problematic entry (#6) at the end of the lower page. */
- new_idt = (struct gate_descriptor*)
- (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
- bcopy(idt, new_idt, sizeof(idt0));
- r_idt.rd_base = (u_int)new_idt;
- lidt(&r_idt);
- idt = new_idt;
- pmap_protect(kernel_pmap, tmp, tmp + PAGE_SIZE, VM_PROT_READ);
-}
-#endif /* defined(I586_CPU) && !NO_F00F_HACK */
-
-/*
- * Construct a PCB from a trapframe. This is called from kdb_trap() where
- * we want to start a backtrace from the function that caused us to enter
- * the debugger. We have the context in the trapframe, but base the trace
- * on the PCB. The PCB doesn't have to be perfect, as long as it contains
- * enough for a backtrace.
- */
-void
-makectx(struct trapframe *tf, struct pcb *pcb)
-{
-
- pcb->pcb_edi = tf->tf_edi;
- pcb->pcb_esi = tf->tf_esi;
- pcb->pcb_ebp = tf->tf_ebp;
- pcb->pcb_ebx = tf->tf_ebx;
- pcb->pcb_eip = tf->tf_eip;
- pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
-}
-
-int
-ptrace_set_pc(struct thread *td, u_long addr)
-{
-
- td->td_frame->tf_eip = addr;
- return (0);
-}
-
-int
-ptrace_single_step(struct thread *td)
-{
- td->td_frame->tf_eflags |= PSL_T;
- return (0);
-}
-
-int
-ptrace_clear_single_step(struct thread *td)
-{
- td->td_frame->tf_eflags &= ~PSL_T;
- return (0);
-}
-
-int
-fill_regs(struct thread *td, struct reg *regs)
-{
- struct pcb *pcb;
- struct trapframe *tp;
-
- tp = td->td_frame;
- pcb = td->td_pcb;
- regs->r_gs = pcb->pcb_gs;
- return (fill_frame_regs(tp, regs));
-}
-
-int
-fill_frame_regs(struct trapframe *tp, struct reg *regs)
-{
- regs->r_fs = tp->tf_fs;
- regs->r_es = tp->tf_es;
- regs->r_ds = tp->tf_ds;
- regs->r_edi = tp->tf_edi;
- regs->r_esi = tp->tf_esi;
- regs->r_ebp = tp->tf_ebp;
- regs->r_ebx = tp->tf_ebx;
- regs->r_edx = tp->tf_edx;
- regs->r_ecx = tp->tf_ecx;
- regs->r_eax = tp->tf_eax;
- regs->r_eip = tp->tf_eip;
- regs->r_cs = tp->tf_cs;
- regs->r_eflags = tp->tf_eflags;
- regs->r_esp = tp->tf_esp;
- regs->r_ss = tp->tf_ss;
- return (0);
-}
-
-int
-set_regs(struct thread *td, struct reg *regs)
-{
- struct pcb *pcb;
- struct trapframe *tp;
-
- tp = td->td_frame;
- if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
- !CS_SECURE(regs->r_cs))
- return (EINVAL);
- pcb = td->td_pcb;
- tp->tf_fs = regs->r_fs;
- tp->tf_es = regs->r_es;
- tp->tf_ds = regs->r_ds;
- tp->tf_edi = regs->r_edi;
- tp->tf_esi = regs->r_esi;
- tp->tf_ebp = regs->r_ebp;
- tp->tf_ebx = regs->r_ebx;
- tp->tf_edx = regs->r_edx;
- tp->tf_ecx = regs->r_ecx;
- tp->tf_eax = regs->r_eax;
- tp->tf_eip = regs->r_eip;
- tp->tf_cs = regs->r_cs;
- tp->tf_eflags = regs->r_eflags;
- tp->tf_esp = regs->r_esp;
- tp->tf_ss = regs->r_ss;
- pcb->pcb_gs = regs->r_gs;
- return (0);
-}
-
-#ifdef CPU_ENABLE_SSE
-static void
-fill_fpregs_xmm(sv_xmm, sv_87)
- struct savexmm *sv_xmm;
- struct save87 *sv_87;
-{
- register struct env87 *penv_87 = &sv_87->sv_env;
- register struct envxmm *penv_xmm = &sv_xmm->sv_env;
- int i;
-
- bzero(sv_87, sizeof(*sv_87));
-
- /* FPU control/status */
- penv_87->en_cw = penv_xmm->en_cw;
- penv_87->en_sw = penv_xmm->en_sw;
- penv_87->en_tw = penv_xmm->en_tw;
- penv_87->en_fip = penv_xmm->en_fip;
- penv_87->en_fcs = penv_xmm->en_fcs;
- penv_87->en_opcode = penv_xmm->en_opcode;
- penv_87->en_foo = penv_xmm->en_foo;
- penv_87->en_fos = penv_xmm->en_fos;
-
- /* FPU registers */
- for (i = 0; i < 8; ++i)
- sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
-}
-
-static void
-set_fpregs_xmm(sv_87, sv_xmm)
- struct save87 *sv_87;
- struct savexmm *sv_xmm;
-{
- register struct env87 *penv_87 = &sv_87->sv_env;
- register struct envxmm *penv_xmm = &sv_xmm->sv_env;
- int i;
-
- /* FPU control/status */
- penv_xmm->en_cw = penv_87->en_cw;
- penv_xmm->en_sw = penv_87->en_sw;
- penv_xmm->en_tw = penv_87->en_tw;
- penv_xmm->en_fip = penv_87->en_fip;
- penv_xmm->en_fcs = penv_87->en_fcs;
- penv_xmm->en_opcode = penv_87->en_opcode;
- penv_xmm->en_foo = penv_87->en_foo;
- penv_xmm->en_fos = penv_87->en_fos;
-
- /* FPU registers */
- for (i = 0; i < 8; ++i)
- sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
-}
-#endif /* CPU_ENABLE_SSE */
-
-int
-fill_fpregs(struct thread *td, struct fpreg *fpregs)
-{
-
- KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
- P_SHOULDSTOP(td->td_proc),
- ("not suspended thread %p", td));
-#ifdef DEV_NPX
- npxgetregs(td);
-#else
- bzero(fpregs, sizeof(*fpregs));
-#endif
-#ifdef CPU_ENABLE_SSE
- if (cpu_fxsr)
- fill_fpregs_xmm(&td->td_pcb->pcb_user_save.sv_xmm,
- (struct save87 *)fpregs);
- else
-#endif /* CPU_ENABLE_SSE */
- bcopy(&td->td_pcb->pcb_user_save.sv_87, fpregs,
- sizeof(*fpregs));
- return (0);
-}
-
-int
-set_fpregs(struct thread *td, struct fpreg *fpregs)
-{
-
-#ifdef CPU_ENABLE_SSE
- if (cpu_fxsr)
- set_fpregs_xmm((struct save87 *)fpregs,
- &td->td_pcb->pcb_user_save.sv_xmm);
- else
-#endif /* CPU_ENABLE_SSE */
- bcopy(fpregs, &td->td_pcb->pcb_user_save.sv_87,
- sizeof(*fpregs));
-#ifdef DEV_NPX
- npxuserinited(td);
-#endif
- return (0);
-}
-
-/*
- * Get machine context.
- */
-int
-get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
-{
- struct trapframe *tp;
- struct segment_descriptor *sdp;
-
- tp = td->td_frame;
-
- PROC_LOCK(curthread->td_proc);
- mcp->mc_onstack = sigonstack(tp->tf_esp);
- PROC_UNLOCK(curthread->td_proc);
- mcp->mc_gs = td->td_pcb->pcb_gs;
- mcp->mc_fs = tp->tf_fs;
- mcp->mc_es = tp->tf_es;
- mcp->mc_ds = tp->tf_ds;
- mcp->mc_edi = tp->tf_edi;
- mcp->mc_esi = tp->tf_esi;
- mcp->mc_ebp = tp->tf_ebp;
- mcp->mc_isp = tp->tf_isp;
- mcp->mc_eflags = tp->tf_eflags;
- if (flags & GET_MC_CLEAR_RET) {
- mcp->mc_eax = 0;
- mcp->mc_edx = 0;
- mcp->mc_eflags &= ~PSL_C;
- } else {
- mcp->mc_eax = tp->tf_eax;
- mcp->mc_edx = tp->tf_edx;
- }
- mcp->mc_ebx = tp->tf_ebx;
- mcp->mc_ecx = tp->tf_ecx;
- mcp->mc_eip = tp->tf_eip;
- mcp->mc_cs = tp->tf_cs;
- mcp->mc_esp = tp->tf_esp;
- mcp->mc_ss = tp->tf_ss;
- mcp->mc_len = sizeof(*mcp);
- get_fpcontext(td, mcp);
- sdp = &td->td_pcb->pcb_fsd;
- mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
- sdp = &td->td_pcb->pcb_gsd;
- mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
- mcp->mc_flags = 0;
- bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2));
- return (0);
-}
-
-/*
- * Set machine context.
- *
- * However, we don't set any but the user modifiable flags, and we won't
- * touch the cs selector.
- */
-int
-set_mcontext(struct thread *td, const mcontext_t *mcp)
-{
- struct trapframe *tp;
- int eflags, ret;
-
- tp = td->td_frame;
- if (mcp->mc_len != sizeof(*mcp))
- return (EINVAL);
- eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
- (tp->tf_eflags & ~PSL_USERCHANGE);
- if ((ret = set_fpcontext(td, mcp)) == 0) {
- tp->tf_fs = mcp->mc_fs;
- tp->tf_es = mcp->mc_es;
- tp->tf_ds = mcp->mc_ds;
- tp->tf_edi = mcp->mc_edi;
- tp->tf_esi = mcp->mc_esi;
- tp->tf_ebp = mcp->mc_ebp;
- tp->tf_ebx = mcp->mc_ebx;
- tp->tf_edx = mcp->mc_edx;
- tp->tf_ecx = mcp->mc_ecx;
- tp->tf_eax = mcp->mc_eax;
- tp->tf_eip = mcp->mc_eip;
- tp->tf_eflags = eflags;
- tp->tf_esp = mcp->mc_esp;
- tp->tf_ss = mcp->mc_ss;
- td->td_pcb->pcb_gs = mcp->mc_gs;
- ret = 0;
- }
- return (ret);
-}
-
-static void
-get_fpcontext(struct thread *td, mcontext_t *mcp)
-{
-
-#ifndef DEV_NPX
- mcp->mc_fpformat = _MC_FPFMT_NODEV;
- mcp->mc_ownedfp = _MC_FPOWNED_NONE;
- bzero(mcp->mc_fpstate, sizeof(mcp->mc_fpstate));
-#else
- mcp->mc_ownedfp = npxgetregs(td);
- bcopy(&td->td_pcb->pcb_user_save, &mcp->mc_fpstate[0],
- sizeof(mcp->mc_fpstate));
- mcp->mc_fpformat = npxformat();
-#endif
-}
-
-static int
-set_fpcontext(struct thread *td, const mcontext_t *mcp)
-{
-
- if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
- return (0);
- else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
- mcp->mc_fpformat != _MC_FPFMT_XMM)
- return (EINVAL);
- else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
- /* We don't care what state is left in the FPU or PCB. */
- fpstate_drop(td);
- else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
- mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
-#ifdef DEV_NPX
-#ifdef CPU_ENABLE_SSE
- if (cpu_fxsr)
- ((union savefpu *)&mcp->mc_fpstate)->sv_xmm.sv_env.
- en_mxcsr &= cpu_mxcsr_mask;
-#endif
- npxsetregs(td, (union savefpu *)&mcp->mc_fpstate);
-#endif
- } else
- return (EINVAL);
- return (0);
-}
-
-static void
-fpstate_drop(struct thread *td)
-{
-
- KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
- critical_enter();
-#ifdef DEV_NPX
- if (PCPU_GET(fpcurthread) == td)
- npxdrop();
-#endif
- /*
- * XXX force a full drop of the npx. The above only drops it if we
- * owned it. npxgetregs() has the same bug in the !cpu_fxsr case.
- *
- * XXX I don't much like npxgetregs()'s semantics of doing a full
- * drop. Dropping only to the pcb matches fnsave's behaviour.
- * We only need to drop to !PCB_INITDONE in sendsig(). But
- * sendsig() is the only caller of npxgetregs()... perhaps we just
- * have too many layers.
- */
- curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE |
- PCB_NPXUSERINITDONE);
- critical_exit();
-}
-
-int
-fill_dbregs(struct thread *td, struct dbreg *dbregs)
-{
- struct pcb *pcb;
-
- if (td == NULL) {
- dbregs->dr[0] = rdr0();
- dbregs->dr[1] = rdr1();
- dbregs->dr[2] = rdr2();
- dbregs->dr[3] = rdr3();
- dbregs->dr[4] = rdr4();
- dbregs->dr[5] = rdr5();
- dbregs->dr[6] = rdr6();
- dbregs->dr[7] = rdr7();
- } else {
- pcb = td->td_pcb;
- dbregs->dr[0] = pcb->pcb_dr0;
- dbregs->dr[1] = pcb->pcb_dr1;
- dbregs->dr[2] = pcb->pcb_dr2;
- dbregs->dr[3] = pcb->pcb_dr3;
- dbregs->dr[4] = 0;
- dbregs->dr[5] = 0;
- dbregs->dr[6] = pcb->pcb_dr6;
- dbregs->dr[7] = pcb->pcb_dr7;
- }
- return (0);
-}
-
-int
-set_dbregs(struct thread *td, struct dbreg *dbregs)
-{
- struct pcb *pcb;
- int i;
-
- if (td == NULL) {
- load_dr0(dbregs->dr[0]);
- load_dr1(dbregs->dr[1]);
- load_dr2(dbregs->dr[2]);
- load_dr3(dbregs->dr[3]);
- load_dr4(dbregs->dr[4]);
- load_dr5(dbregs->dr[5]);
- load_dr6(dbregs->dr[6]);
- load_dr7(dbregs->dr[7]);
- } else {
- /*
- * Don't let an illegal value for dr7 get set. Specifically,
- * check for undefined settings. Setting these bit patterns
- * result in undefined behaviour and can lead to an unexpected
- * TRCTRAP.
- */
- for (i = 0; i < 4; i++) {
- if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
- return (EINVAL);
- if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
- return (EINVAL);
- }
-
- pcb = td->td_pcb;
-
- /*
- * Don't let a process set a breakpoint that is not within the
- * process's address space. If a process could do this, it
- * could halt the system by setting a breakpoint in the kernel
- * (if ddb was enabled). Thus, we need to check to make sure
- * that no breakpoints are being enabled for addresses outside
- * process's address space.
- *
- * XXX - what about when the watched area of the user's
- * address space is written into from within the kernel
- * ... wouldn't that still cause a breakpoint to be generated
- * from within kernel mode?
- */
-
- if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
- /* dr0 is enabled */
- if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
- return (EINVAL);
- }
-
- if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
- /* dr1 is enabled */
- if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
- return (EINVAL);
- }
-
- if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
- /* dr2 is enabled */
- if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
- return (EINVAL);
- }
-
- if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
- /* dr3 is enabled */
- if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
- return (EINVAL);
- }
-
- pcb->pcb_dr0 = dbregs->dr[0];
- pcb->pcb_dr1 = dbregs->dr[1];
- pcb->pcb_dr2 = dbregs->dr[2];
- pcb->pcb_dr3 = dbregs->dr[3];
- pcb->pcb_dr6 = dbregs->dr[6];
- pcb->pcb_dr7 = dbregs->dr[7];
-
- pcb->pcb_flags |= PCB_DBREGS;
- }
-
- return (0);
-}
-
-/*
- * Return > 0 if a hardware breakpoint has been hit, and the
- * breakpoint was in user space. Return 0, otherwise.
- */
-int
-user_dbreg_trap(void)
-{
- u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
- u_int32_t bp; /* breakpoint bits extracted from dr6 */
- int nbp; /* number of breakpoints that triggered */
- caddr_t addr[4]; /* breakpoint addresses */
- int i;
-
- dr7 = rdr7();
- if ((dr7 & 0x000000ff) == 0) {
- /*
- * all GE and LE bits in the dr7 register are zero,
- * thus the trap couldn't have been caused by the
- * hardware debug registers
- */
- return 0;
- }
-
- nbp = 0;
- dr6 = rdr6();
- bp = dr6 & 0x0000000f;
-
- if (!bp) {
- /*
- * None of the breakpoint bits are set meaning this
- * trap was not caused by any of the debug registers
- */
- return 0;
- }
-
- /*
- * at least one of the breakpoints were hit, check to see
- * which ones and if any of them are user space addresses
- */
-
- if (bp & 0x01) {
- addr[nbp++] = (caddr_t)rdr0();
- }
- if (bp & 0x02) {
- addr[nbp++] = (caddr_t)rdr1();
- }
- if (bp & 0x04) {
- addr[nbp++] = (caddr_t)rdr2();
- }
- if (bp & 0x08) {
- addr[nbp++] = (caddr_t)rdr3();
- }
-
- for (i = 0; i < nbp; i++) {
- if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
- /*
- * addr[i] is in user space
- */
- return nbp;
- }
- }
-
- /*
- * None of the breakpoints are in user space.
- */
- return 0;
-}
-
-#ifdef KDB
-
-/*
- * Provide inb() and outb() as functions. They are normally only available as
- * inline functions, thus cannot be called from the debugger.
- */
-
-/* silence compiler warnings */
-u_char inb_(u_short);
-void outb_(u_short, u_char);
-
-u_char
-inb_(u_short port)
-{
- return inb(port);
-}
-
-void
-outb_(u_short port, u_char data)
-{
- outb(port, data);
-}
-
-#endif /* KDB */
OpenPOWER on IntegriCloud