summaryrefslogtreecommitdiffstats
path: root/sys/opencrypto/skipjack.c
diff options
context:
space:
mode:
authorsam <sam@FreeBSD.org>2002-10-04 20:31:23 +0000
committersam <sam@FreeBSD.org>2002-10-04 20:31:23 +0000
commit91416784e40204fddb837d3327a21b7fe803599b (patch)
tree031839b89be777f8989910a091b189457858c99d /sys/opencrypto/skipjack.c
parent16827939fabe12f22c5b06ee3fdf29f6c10b1de2 (diff)
downloadFreeBSD-src-91416784e40204fddb837d3327a21b7fe803599b.zip
FreeBSD-src-91416784e40204fddb837d3327a21b7fe803599b.tar.gz
In-kernel crypto framework derived from openbsd. This facility provides
a consistent interface to h/w and s/w crypto algorithms for use by the kernel and (for h/w at least) by user-mode apps. Access for user-level code is through a /dev/crypto device that'll eventually be used by openssl to (potentially) accelerate many applications. Coming soon is an IPsec that makes use of this service to accelerate ESP, AH, and IPCOMP protocols. Included here is the "core" crypto support, /dev/crypto driver, various crypto algorithms that are not already present in the KAME crypto area, and support routines used by crypto device drivers. Obtained from: openbsd
Diffstat (limited to 'sys/opencrypto/skipjack.c')
-rw-r--r--sys/opencrypto/skipjack.c258
1 files changed, 258 insertions, 0 deletions
diff --git a/sys/opencrypto/skipjack.c b/sys/opencrypto/skipjack.c
new file mode 100644
index 0000000..8ba0a42
--- /dev/null
+++ b/sys/opencrypto/skipjack.c
@@ -0,0 +1,258 @@
+/* $FreeBSD$ */
+/* $OpenBSD: skipjack.c,v 1.3 2001/05/05 00:31:34 angelos Exp $ */
+
+/*
+ * Further optimized test implementation of SKIPJACK algorithm
+ * Mark Tillotson <markt@chaos.org.uk>, 25 June 98
+ * Optimizations suit RISC (lots of registers) machine best.
+ *
+ * based on unoptimized implementation of
+ * Panu Rissanen <bande@lut.fi> 960624
+ *
+ * SKIPJACK and KEA Algorithm Specifications
+ * Version 2.0
+ * 29 May 1998
+*/
+
+#include <sys/param.h>
+
+#include <opencrypto/skipjack.h>
+
+static const u_int8_t ftable[0x100] =
+{
+ 0xa3, 0xd7, 0x09, 0x83, 0xf8, 0x48, 0xf6, 0xf4,
+ 0xb3, 0x21, 0x15, 0x78, 0x99, 0xb1, 0xaf, 0xf9,
+ 0xe7, 0x2d, 0x4d, 0x8a, 0xce, 0x4c, 0xca, 0x2e,
+ 0x52, 0x95, 0xd9, 0x1e, 0x4e, 0x38, 0x44, 0x28,
+ 0x0a, 0xdf, 0x02, 0xa0, 0x17, 0xf1, 0x60, 0x68,
+ 0x12, 0xb7, 0x7a, 0xc3, 0xe9, 0xfa, 0x3d, 0x53,
+ 0x96, 0x84, 0x6b, 0xba, 0xf2, 0x63, 0x9a, 0x19,
+ 0x7c, 0xae, 0xe5, 0xf5, 0xf7, 0x16, 0x6a, 0xa2,
+ 0x39, 0xb6, 0x7b, 0x0f, 0xc1, 0x93, 0x81, 0x1b,
+ 0xee, 0xb4, 0x1a, 0xea, 0xd0, 0x91, 0x2f, 0xb8,
+ 0x55, 0xb9, 0xda, 0x85, 0x3f, 0x41, 0xbf, 0xe0,
+ 0x5a, 0x58, 0x80, 0x5f, 0x66, 0x0b, 0xd8, 0x90,
+ 0x35, 0xd5, 0xc0, 0xa7, 0x33, 0x06, 0x65, 0x69,
+ 0x45, 0x00, 0x94, 0x56, 0x6d, 0x98, 0x9b, 0x76,
+ 0x97, 0xfc, 0xb2, 0xc2, 0xb0, 0xfe, 0xdb, 0x20,
+ 0xe1, 0xeb, 0xd6, 0xe4, 0xdd, 0x47, 0x4a, 0x1d,
+ 0x42, 0xed, 0x9e, 0x6e, 0x49, 0x3c, 0xcd, 0x43,
+ 0x27, 0xd2, 0x07, 0xd4, 0xde, 0xc7, 0x67, 0x18,
+ 0x89, 0xcb, 0x30, 0x1f, 0x8d, 0xc6, 0x8f, 0xaa,
+ 0xc8, 0x74, 0xdc, 0xc9, 0x5d, 0x5c, 0x31, 0xa4,
+ 0x70, 0x88, 0x61, 0x2c, 0x9f, 0x0d, 0x2b, 0x87,
+ 0x50, 0x82, 0x54, 0x64, 0x26, 0x7d, 0x03, 0x40,
+ 0x34, 0x4b, 0x1c, 0x73, 0xd1, 0xc4, 0xfd, 0x3b,
+ 0xcc, 0xfb, 0x7f, 0xab, 0xe6, 0x3e, 0x5b, 0xa5,
+ 0xad, 0x04, 0x23, 0x9c, 0x14, 0x51, 0x22, 0xf0,
+ 0x29, 0x79, 0x71, 0x7e, 0xff, 0x8c, 0x0e, 0xe2,
+ 0x0c, 0xef, 0xbc, 0x72, 0x75, 0x6f, 0x37, 0xa1,
+ 0xec, 0xd3, 0x8e, 0x62, 0x8b, 0x86, 0x10, 0xe8,
+ 0x08, 0x77, 0x11, 0xbe, 0x92, 0x4f, 0x24, 0xc5,
+ 0x32, 0x36, 0x9d, 0xcf, 0xf3, 0xa6, 0xbb, 0xac,
+ 0x5e, 0x6c, 0xa9, 0x13, 0x57, 0x25, 0xb5, 0xe3,
+ 0xbd, 0xa8, 0x3a, 0x01, 0x05, 0x59, 0x2a, 0x46
+};
+
+/*
+ * For each key byte generate a table to represent the function
+ * ftable [in ^ keybyte]
+ *
+ * These tables used to save an XOR in each stage of the G-function
+ * the tables are hopefully pointed to by register allocated variables
+ * k0, k1..k9
+ */
+void
+subkey_table_gen (u_int8_t *key, u_int8_t **key_tables)
+{
+ int i, k;
+
+ for (k = 0; k < 10; k++) {
+ u_int8_t key_byte = key [k];
+ u_int8_t * table = key_tables[k];
+ for (i = 0; i < 0x100; i++)
+ table [i] = ftable [i ^ key_byte];
+ }
+}
+
+
+#define g(k0, k1, k2, k3, ih, il, oh, ol) \
+{ \
+ oh = k##k0 [il] ^ ih; \
+ ol = k##k1 [oh] ^ il; \
+ oh = k##k2 [ol] ^ oh; \
+ ol = k##k3 [oh] ^ ol; \
+}
+
+#define g0(ih, il, oh, ol) g(0, 1, 2, 3, ih, il, oh, ol)
+#define g4(ih, il, oh, ol) g(4, 5, 6, 7, ih, il, oh, ol)
+#define g8(ih, il, oh, ol) g(8, 9, 0, 1, ih, il, oh, ol)
+#define g2(ih, il, oh, ol) g(2, 3, 4, 5, ih, il, oh, ol)
+#define g6(ih, il, oh, ol) g(6, 7, 8, 9, ih, il, oh, ol)
+
+
+#define g_inv(k0, k1, k2, k3, ih, il, oh, ol) \
+{ \
+ ol = k##k3 [ih] ^ il; \
+ oh = k##k2 [ol] ^ ih; \
+ ol = k##k1 [oh] ^ ol; \
+ oh = k##k0 [ol] ^ oh; \
+}
+
+
+#define g0_inv(ih, il, oh, ol) g_inv(0, 1, 2, 3, ih, il, oh, ol)
+#define g4_inv(ih, il, oh, ol) g_inv(4, 5, 6, 7, ih, il, oh, ol)
+#define g8_inv(ih, il, oh, ol) g_inv(8, 9, 0, 1, ih, il, oh, ol)
+#define g2_inv(ih, il, oh, ol) g_inv(2, 3, 4, 5, ih, il, oh, ol)
+#define g6_inv(ih, il, oh, ol) g_inv(6, 7, 8, 9, ih, il, oh, ol)
+
+/* optimized version of Skipjack algorithm
+ *
+ * the appropriate g-function is inlined for each round
+ *
+ * the data movement is minimized by rotating the names of the
+ * variables w1..w4, not their contents (saves 3 moves per round)
+ *
+ * the loops are completely unrolled (needed to staticize choice of g)
+ *
+ * compiles to about 470 instructions on a Sparc (gcc -O)
+ * which is about 58 instructions per byte, 14 per round.
+ * gcc seems to leave in some unnecessary and with 0xFF operations
+ * but only in the latter part of the functions. Perhaps it
+ * runs out of resources to properly optimize long inlined function?
+ * in theory should get about 11 instructions per round, not 14
+ */
+
+void
+skipjack_forwards(u_int8_t *plain, u_int8_t *cipher, u_int8_t **key_tables)
+{
+ u_int8_t wh1 = plain[0]; u_int8_t wl1 = plain[1];
+ u_int8_t wh2 = plain[2]; u_int8_t wl2 = plain[3];
+ u_int8_t wh3 = plain[4]; u_int8_t wl3 = plain[5];
+ u_int8_t wh4 = plain[6]; u_int8_t wl4 = plain[7];
+
+ u_int8_t * k0 = key_tables [0];
+ u_int8_t * k1 = key_tables [1];
+ u_int8_t * k2 = key_tables [2];
+ u_int8_t * k3 = key_tables [3];
+ u_int8_t * k4 = key_tables [4];
+ u_int8_t * k5 = key_tables [5];
+ u_int8_t * k6 = key_tables [6];
+ u_int8_t * k7 = key_tables [7];
+ u_int8_t * k8 = key_tables [8];
+ u_int8_t * k9 = key_tables [9];
+
+ /* first 8 rounds */
+ g0 (wh1,wl1, wh1,wl1); wl4 ^= wl1 ^ 1; wh4 ^= wh1;
+ g4 (wh4,wl4, wh4,wl4); wl3 ^= wl4 ^ 2; wh3 ^= wh4;
+ g8 (wh3,wl3, wh3,wl3); wl2 ^= wl3 ^ 3; wh2 ^= wh3;
+ g2 (wh2,wl2, wh2,wl2); wl1 ^= wl2 ^ 4; wh1 ^= wh2;
+ g6 (wh1,wl1, wh1,wl1); wl4 ^= wl1 ^ 5; wh4 ^= wh1;
+ g0 (wh4,wl4, wh4,wl4); wl3 ^= wl4 ^ 6; wh3 ^= wh4;
+ g4 (wh3,wl3, wh3,wl3); wl2 ^= wl3 ^ 7; wh2 ^= wh3;
+ g8 (wh2,wl2, wh2,wl2); wl1 ^= wl2 ^ 8; wh1 ^= wh2;
+
+ /* second 8 rounds */
+ wh2 ^= wh1; wl2 ^= wl1 ^ 9 ; g2 (wh1,wl1, wh1,wl1);
+ wh1 ^= wh4; wl1 ^= wl4 ^ 10; g6 (wh4,wl4, wh4,wl4);
+ wh4 ^= wh3; wl4 ^= wl3 ^ 11; g0 (wh3,wl3, wh3,wl3);
+ wh3 ^= wh2; wl3 ^= wl2 ^ 12; g4 (wh2,wl2, wh2,wl2);
+ wh2 ^= wh1; wl2 ^= wl1 ^ 13; g8 (wh1,wl1, wh1,wl1);
+ wh1 ^= wh4; wl1 ^= wl4 ^ 14; g2 (wh4,wl4, wh4,wl4);
+ wh4 ^= wh3; wl4 ^= wl3 ^ 15; g6 (wh3,wl3, wh3,wl3);
+ wh3 ^= wh2; wl3 ^= wl2 ^ 16; g0 (wh2,wl2, wh2,wl2);
+
+ /* third 8 rounds */
+ g4 (wh1,wl1, wh1,wl1); wl4 ^= wl1 ^ 17; wh4 ^= wh1;
+ g8 (wh4,wl4, wh4,wl4); wl3 ^= wl4 ^ 18; wh3 ^= wh4;
+ g2 (wh3,wl3, wh3,wl3); wl2 ^= wl3 ^ 19; wh2 ^= wh3;
+ g6 (wh2,wl2, wh2,wl2); wl1 ^= wl2 ^ 20; wh1 ^= wh2;
+ g0 (wh1,wl1, wh1,wl1); wl4 ^= wl1 ^ 21; wh4 ^= wh1;
+ g4 (wh4,wl4, wh4,wl4); wl3 ^= wl4 ^ 22; wh3 ^= wh4;
+ g8 (wh3,wl3, wh3,wl3); wl2 ^= wl3 ^ 23; wh2 ^= wh3;
+ g2 (wh2,wl2, wh2,wl2); wl1 ^= wl2 ^ 24; wh1 ^= wh2;
+
+ /* last 8 rounds */
+ wh2 ^= wh1; wl2 ^= wl1 ^ 25; g6 (wh1,wl1, wh1,wl1);
+ wh1 ^= wh4; wl1 ^= wl4 ^ 26; g0 (wh4,wl4, wh4,wl4);
+ wh4 ^= wh3; wl4 ^= wl3 ^ 27; g4 (wh3,wl3, wh3,wl3);
+ wh3 ^= wh2; wl3 ^= wl2 ^ 28; g8 (wh2,wl2, wh2,wl2);
+ wh2 ^= wh1; wl2 ^= wl1 ^ 29; g2 (wh1,wl1, wh1,wl1);
+ wh1 ^= wh4; wl1 ^= wl4 ^ 30; g6 (wh4,wl4, wh4,wl4);
+ wh4 ^= wh3; wl4 ^= wl3 ^ 31; g0 (wh3,wl3, wh3,wl3);
+ wh3 ^= wh2; wl3 ^= wl2 ^ 32; g4 (wh2,wl2, wh2,wl2);
+
+ /* pack into byte vector */
+ cipher [0] = wh1; cipher [1] = wl1;
+ cipher [2] = wh2; cipher [3] = wl2;
+ cipher [4] = wh3; cipher [5] = wl3;
+ cipher [6] = wh4; cipher [7] = wl4;
+}
+
+
+void
+skipjack_backwards (u_int8_t *cipher, u_int8_t *plain, u_int8_t **key_tables)
+{
+ /* setup 4 16-bit portions */
+ u_int8_t wh1 = cipher[0]; u_int8_t wl1 = cipher[1];
+ u_int8_t wh2 = cipher[2]; u_int8_t wl2 = cipher[3];
+ u_int8_t wh3 = cipher[4]; u_int8_t wl3 = cipher[5];
+ u_int8_t wh4 = cipher[6]; u_int8_t wl4 = cipher[7];
+
+ u_int8_t * k0 = key_tables [0];
+ u_int8_t * k1 = key_tables [1];
+ u_int8_t * k2 = key_tables [2];
+ u_int8_t * k3 = key_tables [3];
+ u_int8_t * k4 = key_tables [4];
+ u_int8_t * k5 = key_tables [5];
+ u_int8_t * k6 = key_tables [6];
+ u_int8_t * k7 = key_tables [7];
+ u_int8_t * k8 = key_tables [8];
+ u_int8_t * k9 = key_tables [9];
+
+ /* first 8 rounds */
+ g4_inv (wh2,wl2, wh2,wl2); wl3 ^= wl2 ^ 32; wh3 ^= wh2;
+ g0_inv (wh3,wl3, wh3,wl3); wl4 ^= wl3 ^ 31; wh4 ^= wh3;
+ g6_inv (wh4,wl4, wh4,wl4); wl1 ^= wl4 ^ 30; wh1 ^= wh4;
+ g2_inv (wh1,wl1, wh1,wl1); wl2 ^= wl1 ^ 29; wh2 ^= wh1;
+ g8_inv (wh2,wl2, wh2,wl2); wl3 ^= wl2 ^ 28; wh3 ^= wh2;
+ g4_inv (wh3,wl3, wh3,wl3); wl4 ^= wl3 ^ 27; wh4 ^= wh3;
+ g0_inv (wh4,wl4, wh4,wl4); wl1 ^= wl4 ^ 26; wh1 ^= wh4;
+ g6_inv (wh1,wl1, wh1,wl1); wl2 ^= wl1 ^ 25; wh2 ^= wh1;
+
+ /* second 8 rounds */
+ wh1 ^= wh2; wl1 ^= wl2 ^ 24; g2_inv (wh2,wl2, wh2,wl2);
+ wh2 ^= wh3; wl2 ^= wl3 ^ 23; g8_inv (wh3,wl3, wh3,wl3);
+ wh3 ^= wh4; wl3 ^= wl4 ^ 22; g4_inv (wh4,wl4, wh4,wl4);
+ wh4 ^= wh1; wl4 ^= wl1 ^ 21; g0_inv (wh1,wl1, wh1,wl1);
+ wh1 ^= wh2; wl1 ^= wl2 ^ 20; g6_inv (wh2,wl2, wh2,wl2);
+ wh2 ^= wh3; wl2 ^= wl3 ^ 19; g2_inv (wh3,wl3, wh3,wl3);
+ wh3 ^= wh4; wl3 ^= wl4 ^ 18; g8_inv (wh4,wl4, wh4,wl4);
+ wh4 ^= wh1; wl4 ^= wl1 ^ 17; g4_inv (wh1,wl1, wh1,wl1);
+
+ /* third 8 rounds */
+ g0_inv (wh2,wl2, wh2,wl2); wl3 ^= wl2 ^ 16; wh3 ^= wh2;
+ g6_inv (wh3,wl3, wh3,wl3); wl4 ^= wl3 ^ 15; wh4 ^= wh3;
+ g2_inv (wh4,wl4, wh4,wl4); wl1 ^= wl4 ^ 14; wh1 ^= wh4;
+ g8_inv (wh1,wl1, wh1,wl1); wl2 ^= wl1 ^ 13; wh2 ^= wh1;
+ g4_inv (wh2,wl2, wh2,wl2); wl3 ^= wl2 ^ 12; wh3 ^= wh2;
+ g0_inv (wh3,wl3, wh3,wl3); wl4 ^= wl3 ^ 11; wh4 ^= wh3;
+ g6_inv (wh4,wl4, wh4,wl4); wl1 ^= wl4 ^ 10; wh1 ^= wh4;
+ g2_inv (wh1,wl1, wh1,wl1); wl2 ^= wl1 ^ 9; wh2 ^= wh1;
+
+ /* last 8 rounds */
+ wh1 ^= wh2; wl1 ^= wl2 ^ 8; g8_inv (wh2,wl2, wh2,wl2);
+ wh2 ^= wh3; wl2 ^= wl3 ^ 7; g4_inv (wh3,wl3, wh3,wl3);
+ wh3 ^= wh4; wl3 ^= wl4 ^ 6; g0_inv (wh4,wl4, wh4,wl4);
+ wh4 ^= wh1; wl4 ^= wl1 ^ 5; g6_inv (wh1,wl1, wh1,wl1);
+ wh1 ^= wh2; wl1 ^= wl2 ^ 4; g2_inv (wh2,wl2, wh2,wl2);
+ wh2 ^= wh3; wl2 ^= wl3 ^ 3; g8_inv (wh3,wl3, wh3,wl3);
+ wh3 ^= wh4; wl3 ^= wl4 ^ 2; g4_inv (wh4,wl4, wh4,wl4);
+ wh4 ^= wh1; wl4 ^= wl1 ^ 1; g0_inv (wh1,wl1, wh1,wl1);
+
+ /* pack into byte vector */
+ plain [0] = wh1; plain [1] = wl1;
+ plain [2] = wh2; plain [3] = wl2;
+ plain [4] = wh3; plain [5] = wl3;
+ plain [6] = wh4; plain [7] = wl4;
+}
OpenPOWER on IntegriCloud