summaryrefslogtreecommitdiffstats
path: root/sys/netinet/ip_dummynet.c
diff options
context:
space:
mode:
authorluigi <luigi@FreeBSD.org>2000-06-08 09:45:23 +0000
committerluigi <luigi@FreeBSD.org>2000-06-08 09:45:23 +0000
commite2bccbe2b7b6f0e949728f301f8089191af5a485 (patch)
tree78dc33f5adcc1fdffb2ed71bbcc6f66f637c8218 /sys/netinet/ip_dummynet.c
parent4b3d813e0a772f64b470e20777a14ff8e764083c (diff)
downloadFreeBSD-src-e2bccbe2b7b6f0e949728f301f8089191af5a485.zip
FreeBSD-src-e2bccbe2b7b6f0e949728f301f8089191af5a485.tar.gz
Implement WF2Q+ in dummynet.
Diffstat (limited to 'sys/netinet/ip_dummynet.c')
-rw-r--r--sys/netinet/ip_dummynet.c1451
1 files changed, 1135 insertions, 316 deletions
diff --git a/sys/netinet/ip_dummynet.c b/sys/netinet/ip_dummynet.c
index 5f8c091..830d9bf 100644
--- a/sys/netinet/ip_dummynet.c
+++ b/sys/netinet/ip_dummynet.c
@@ -36,6 +36,7 @@
*
* Most important Changes:
*
+ * 000601: WF2Q+ support
* 000106: large rewrite, use heaps to handle very many pipes.
* 980513: initial release
*
@@ -70,9 +71,8 @@
#endif
/*
- * we keep a private variable for the simulation time, but probably
- * it would be better to use the already existing one "softticks"
- * (in sys/kern/kern_timer.c)
+ * We keep a private variable for the simulation time, but we could
+ * probably use an existing one ("softticks" in sys/kern/kern_timer.c)
*/
static dn_key curr_time = 0 ; /* current simulation time */
@@ -80,16 +80,29 @@ static int dn_hash_size = 64 ; /* default hash size */
/* statistics on number of queue searches and search steps */
static int searches, search_steps ;
-static int pipe_expire = 1 ; /* expire queue if empty */
+static int pipe_expire = 0 ; /* expire queue if empty */
+static int dn_max_ratio = 16 ; /* max queues/buckets ratio */
-static struct dn_heap ready_heap, extract_heap ;
+static int red_lookup_depth = 256; /* RED - default lookup table depth */
+static int red_avg_pkt_size = 512; /* RED - default medium packet size */
+static int red_max_pkt_size = 1500; /* RED - default max packet size */
+
+/*
+ * ready_heap contains all dn_flow_queue's scheduled for action
+ * at a given time.
+ * wfq_ready_heap contains the schedulable pipe.
+ * Extract_heap contains pipes because it is there that packets
+ * in the delay line are held.
+ */
+static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ;
static int heap_init(struct dn_heap *h, int size) ;
static int heap_insert (struct dn_heap *h, dn_key key1, void *p);
-static void heap_extract(struct dn_heap *h);
+static void heap_extract(struct dn_heap *h, void *obj);
static void transmit_event(struct dn_pipe *pipe);
static void ready_event(struct dn_flow_queue *q);
static struct dn_pipe *all_pipes = NULL ; /* list of all pipes */
+static struct dn_flow_set *all_flow_sets = NULL ;/* list of all flow_sets */
#ifdef SYSCTL_NODE
SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
@@ -108,13 +121,24 @@ SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps,
CTLFLAG_RD, &search_steps, 0, "Number of queue search steps");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
CTLFLAG_RW, &pipe_expire, 0, "Expire queue if empty");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
+ CTLFLAG_RW, &dn_max_ratio, 0,
+ "Max ratio between dynamic queues and buckets");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
+ CTLFLAG_RD, &red_lookup_depth, 0, "Depth of RED lookup table");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
+ CTLFLAG_RD, &red_avg_pkt_size, 0, "RED Medium packet size");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
+ CTLFLAG_RD, &red_max_pkt_size, 0, "RED Max packet size");
#endif
+static int config_pipe(struct dn_pipe *p);
static int ip_dn_ctl(struct sockopt *sopt);
static void rt_unref(struct rtentry *);
static void dummynet(void *);
static void dummynet_flush(void);
+void dummynet_drain(void);
/*
* ip_fw_chain is used when deleting a pipe, because ipfw rules can
@@ -139,7 +163,7 @@ rt_unref(struct rtentry *rt)
* Some macros help finding parent/children so we can optimize them.
*
* heap_init() is called to expand the heap when needed.
- * Increment size in blocks of 256 entries (which make one 4KB page)
+ * Increment size in blocks of 16 entries.
* XXX failure to allocate a new element is a pretty bad failure
* as we basically stall a whole queue forever!!
* Returns 1 on error, 0 on success
@@ -147,9 +171,9 @@ rt_unref(struct rtentry *rt)
#define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
#define HEAP_LEFT(x) ( 2*(x) + 1 )
#define HEAP_IS_LEFT(x) ( (x) & 1 )
-#define HEAP_RIGHT(x) ( 2*(x) + 1 )
+#define HEAP_RIGHT(x) ( 2*(x) + 2 )
#define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
-#define HEAP_INCREMENT 255
+#define HEAP_INCREMENT 15
static int
heap_init(struct dn_heap *h, int new_size)
@@ -182,7 +206,13 @@ heap_init(struct dn_heap *h, int new_size)
* already in place, and key is the position where to start the
* bubble-up.
* Returns 1 on failure (cannot allocate new heap entry)
+ *
+ * If offset > 0 the position (index, int) of the element in the heap is
+ * also stored in the element itself at the given offset in bytes.
*/
+#define SET_OFFSET(heap, node) \
+ if (heap->offset > 0) \
+ *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
static int
heap_insert(struct dn_heap *h, dn_key key1, void *p)
{
@@ -205,30 +235,39 @@ heap_insert(struct dn_heap *h, dn_key key1, void *p)
if (DN_KEY_LT( h->p[father].key, h->p[son].key ) )
break ; /* found right position */
- /* son smaller than father, swap and try again */
+ /* son smaller than father, swap and repeat */
HEAP_SWAP(h->p[son], h->p[father], tmp) ;
+ SET_OFFSET(h, son);
son = father ;
}
+ SET_OFFSET(h, son);
return 0 ;
}
/*
- * remove top element from heap
+ * remove top element from heap, or obj if obj != NULL
*/
static void
-heap_extract(struct dn_heap *h)
+heap_extract(struct dn_heap *h, void *obj)
{
int child, father, max = h->elements - 1 ;
+
if (max < 0)
return ;
-
- /* move up smallest child */
- father = 0 ;
+ father = 0 ; /* default: move up smallest child */
+ if (obj != NULL) { /* extract specific element, index is at offset */
+ if (h->offset <= 0) {
+ printf("*** extract from middle not supported!!!\n");
+ return ; /* or maybe panic... */
+ }
+ father = *((int *)((char *)obj + h->offset)) ;
+ }
child = HEAP_LEFT(father) ; /* left child */
while (child <= max) { /* valid entry */
if (child != max && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
child = child+1 ; /* take right child, otherwise left */
h->p[father] = h->p[child] ;
+ SET_OFFSET(h, father);
father = child ;
child = HEAP_LEFT(child) ; /* left child for next loop */
}
@@ -243,37 +282,88 @@ heap_extract(struct dn_heap *h)
}
/*
+ * change object position and update references
+ */
+static void
+heap_move(struct dn_heap *h, dn_key new_key, void *object)
+{
+ int temp;
+ int i ;
+ int max = h->elements-1 ;
+ struct dn_heap_entry buf ;
+
+ if (h->offset <= 0)
+ panic("cannot move items on this heap");
+
+ i = *((int *)((char *)object + h->offset));
+ if (DN_KEY_LT(new_key, h->p[i].key) ) { /* must move up */
+ h->p[i].key = new_key ;
+ for (; i>0 && DN_KEY_LT(new_key, h->p[(temp = HEAP_FATHER(i))].key) ;
+ i = temp ) { /* bubble up */
+ HEAP_SWAP(h->p[i], h->p[temp], buf) ;
+ SET_OFFSET(h, i);
+ }
+ } else { /* must move down */
+ h->p[i].key = new_key ;
+ while ( (temp = HEAP_LEFT(i)) <= max ) { /* found left child */
+ if ((temp != max) && DN_KEY_GT(h->p[temp].key, h->p[temp+1].key))
+ temp++ ; /* select child with min key */
+ if (DN_KEY_GT(new_key, h->p[temp].key)) { /* go down */
+ HEAP_SWAP(h->p[i], h->p[temp], buf) ;
+ SET_OFFSET(h, i);
+ } else
+ break ;
+ i = temp ;
+ }
+ }
+ SET_OFFSET(h, i);
+}
+
+
+
+/*
* heapify() will reorganize data inside an array to maintain the
* heap property. It is needed when we delete a bunch of entries.
*/
static void
heapify(struct dn_heap *h)
{
- int father, i ;
- struct dn_heap_entry tmp ;
+ int i ;
- for (i = h->elements - 1 ; i > 0 ; i-- ) {
- father = HEAP_FATHER(i) ;
- if ( DN_KEY_LT(h->p[i].key, h->p[father].key) )
- HEAP_SWAP(h->p[father], h->p[i], tmp) ;
+ for (i = 0 ; i < h->elements ; i++ )
+ heap_insert(h, i , NULL) ;
}
+
+/*
+ * cleanup the heap and free data structure
+ */
+static void
+heap_free(struct dn_heap *h)
+{
+ if (h->size >0 )
+ free(h->p, M_IPFW);
+ h->elements = h->size = 0 ;
}
+
/*
* --- end of heap management functions ---
*/
/*
- * Scheduler functions -- transmit_event(), ready_event()
+ * Scheduler functions:
*
* transmit_event() is called when the delay-line needs to enter
* the scheduler, either because of existing pkts getting ready,
* or new packets entering the queue. The event handled is the delivery
* time of the packet.
*
- * ready_event() does something similar with flow queues, and the
+ * ready_event() does something similar with fixed-rate queues, and the
* event handled is the finish time of the head pkt.
*
- * In both cases, we make sure that the data structures are consistent
+ * wfq_ready_event() does something similar with WFQ queues, and the
+ * event handled is the start time of the head pkt.
+ *
+ * In all cases, we make sure that the data structures are consistent
* before passing pkts out, because this might trigger recursive
* invocations of the procedures.
*/
@@ -282,12 +372,12 @@ transmit_event(struct dn_pipe *pipe)
{
struct dn_pkt *pkt ;
- while ( (pkt = pipe->p.head) && DN_KEY_LEQ(pkt->output_time, curr_time) ) {
+ while ( (pkt = pipe->head) && DN_KEY_LEQ(pkt->output_time, curr_time) ) {
/*
* first unlink, then call procedures, since ip_input() can invoke
* ip_output() and viceversa, thus causing nested calls
*/
- pipe->p.head = DN_NEXT(pkt) ;
+ pipe->head = DN_NEXT(pkt) ;
/*
* The actual mbuf is preceded by a struct dn_pkt, resembling an mbuf
@@ -336,7 +426,7 @@ transmit_event(struct dn_pipe *pipe)
FREE(pkt, M_IPFW);
}
/* if there are leftover packets, put into the heap for next event */
- if ( (pkt = pipe->p.head) )
+ if ( (pkt = pipe->head) )
heap_insert(&extract_heap, pkt->output_time, pipe ) ;
/* XXX should check errors on heap_insert, by draining the
* whole pipe p and hoping in the future we are more successful
@@ -344,6 +434,37 @@ transmit_event(struct dn_pipe *pipe)
}
/*
+ * the following macro computes how many ticks we have to wait
+ * before being able to transmit a packet. The credit is taken from
+ * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
+ */
+#define SET_TICKS(pkt, q, p) \
+ (pkt->dn_m->m_pkthdr.len*8*hz - (q)->numbytes + p->bandwidth - 1 ) / \
+ p->bandwidth ;
+
+/*
+ * extract pkt from queue, compute output time (could be now)
+ * and put into delay line (p_queue)
+ */
+static void
+move_pkt(struct dn_pkt *pkt, struct dn_flow_queue *q,
+ struct dn_pipe *p, int len)
+{
+ q->head = DN_NEXT(pkt) ;
+ q->len-- ;
+ q->len_bytes -= len ;
+
+ pkt->output_time = curr_time + p->delay ;
+
+ if (p->head == NULL)
+ p->head = pkt;
+ else
+ DN_NEXT(p->tail) = pkt;
+ p->tail = pkt;
+ DN_NEXT(p->tail) = NULL;
+}
+
+/*
* ready_event() is invoked every time the queue must enter the
* scheduler, either because the first packet arrives, or because
* a previously scheduled event fired.
@@ -354,53 +475,152 @@ static void
ready_event(struct dn_flow_queue *q)
{
struct dn_pkt *pkt;
- struct dn_pipe *p = q->p ;
- int p_was_empty = (p->p.head == NULL) ;
+ struct dn_pipe *p = q->fs->pipe ;
+ int p_was_empty ;
+
+ if (p == NULL) {
+ printf("ready_event- pipe is gone\n");
+ return ;
+ }
+ p_was_empty = (p->head == NULL) ;
- while ( (pkt = q->r.head) != NULL ) {
- int len = pkt->dn_m->m_pkthdr.len;
- int len_scaled = p->bandwidth ? len*8*hz : 0 ;
/*
- * bandwidth==0 (no limit) means we can drain as many pkts as
- * needed from the queue. Setting len_scaled = 0 does the job.
+ * schedule fixed-rate queues linked to this pipe:
+ * Account for the bw accumulated since last scheduling, then
+ * drain as many pkts as allowed by q->numbytes and move to
+ * the delay line (in p) computing output time.
+ * bandwidth==0 (no limit) means we can drain the whole queue,
+ * setting len_scaled = 0 does the job.
*/
+ q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth;
+ while ( (pkt = q->head) != NULL ) {
+ int len = pkt->dn_m->m_pkthdr.len;
+ int len_scaled = p->bandwidth ? len*8*hz : 0 ;
if (len_scaled > q->numbytes )
break ;
- /*
- * extract pkt from queue, compute output time (could be now)
- * and put into delay line (p_queue)
- */
q->numbytes -= len_scaled ;
- q->r.head = DN_NEXT(pkt) ;
- q->len-- ;
- q->len_bytes -= len ;
-
- pkt->output_time = curr_time + p->delay ;
-
- if (p->p.head == NULL)
- p->p.head = pkt;
- else
- DN_NEXT(p->p.tail) = pkt;
- p->p.tail = pkt;
- DN_NEXT(p->p.tail) = NULL;
+ move_pkt(pkt, q, p, len);
}
/*
* If we have more packets queued, schedule next ready event
* (can only occur when bandwidth != 0, otherwise we would have
* flushed the whole queue in the previous loop).
- * To this purpose compute how many ticks to go for the next
- * event, accounting for packet size and residual credit. This means
- * we compute the finish time of the packet.
+ * To this purpose we record the current time and compute how many
+ * ticks to go for the finish time of the packet.
*/
- if ( (pkt = q->r.head) != NULL ) { /* this implies bandwidth != 0 */
- dn_key t ;
- t = (pkt->dn_m->m_pkthdr.len*8*hz - q->numbytes + p->bandwidth - 1 ) /
- p->bandwidth ;
- q->numbytes += t * p->bandwidth ;
+ if ( (pkt = q->head) != NULL ) { /* this implies bandwidth != 0 */
+ dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
+ q->sched_time = curr_time ;
heap_insert(&ready_heap, curr_time + t, (void *)q );
/* XXX should check errors on heap_insert, and drain the whole
* queue on error hoping next time we are luckier.
*/
+ } else /* RED needs to know when the queue becomes empty */
+ q->q_time = curr_time;
+ /*
+ * If the delay line was empty call transmit_event(p) now.
+ * Otherwise, the scheduler will take care of it.
+ */
+ if (p_was_empty)
+ transmit_event(p);
+}
+
+/*
+ * Called when we can transmit packets on WF2Q queues. Take pkts out of
+ * the queues at their start time, and enqueue into the delay line.
+ * Packets are drained until p->numbytes < 0. As long as
+ * len_scaled >= p->numbytes, the packet goes into the delay line
+ * with a deadline p->delay. For the last packet, if p->numbytes<0,
+ * there is an additional delay.
+ */
+static void
+ready_event_wfq(struct dn_pipe *p)
+{
+ int p_was_empty = (p->head == NULL) ;
+ struct dn_heap *sch = &(p->scheduler_heap);
+ struct dn_heap *blh = &(p->backlogged_heap);
+
+ if (p->if_name[0] == 0) /* tx clock is simulated */
+ p->numbytes += ( curr_time - p->sched_time ) * p->bandwidth;
+ else { /* tx clock is for real, the ifq must be empty or this is a NOP */
+ if (p->ifp && p->ifp->if_snd.ifq_head != NULL)
+ return ;
+ else {
+ DEB(printf("pipe %d ready from %s --\n",
+ p->pipe_nr, p->if_name);)
+ }
+ }
+
+
+ while ( sch->elements && p->numbytes >= 0 ) {
+ struct dn_heap *neh ;
+ u_int64_t normalized_service ;
+ struct dn_flow_queue *q = sch->p[0].object ;
+ struct dn_pkt *pkt = q->head;
+ struct dn_flow_set *fs = q->fs;
+ u_int64_t len = pkt->dn_m->m_pkthdr.len;
+ int len_scaled = p->bandwidth ? len*8*hz : 0 ;
+
+ heap_extract(sch, NULL); /* remove queue from heap */
+ p->numbytes -= len_scaled ;
+ move_pkt(pkt, q, p, len);
+
+ /* XXX should we do this at the end of the service ? */
+ /* evaluate normalized service */
+ normalized_service = (len<<MY_M)/p->sum ;
+ if (q->len == 0) { /* session not backlogged any more*/
+ heap_extract(blh, q); /* remove queue from backlogged heap */
+ p->sum -= fs->weight;
+ fs->backlogged-- ;
+ } else { /* session backlogged again: update values */
+ q->S = q->F ; /* update start time */
+ len = (q->head)->dn_m->m_pkthdr.len;
+ q->F += (len<<MY_M)/(u_int64_t) fs->weight ;
+ /* update queue position in backlogged_heap */
+ heap_move(blh, q->S, q);
+ }
+ /* update virtual time */
+ p->V += normalized_service ;
+ if (blh->elements > 0)
+ p->V = MAX64 ( p->V, blh->p[0].key );
+ DEB(printf("-- %d backlogged, V is %d\n",
+ blh->elements, (int)(p->V >> MY_M) ); )
+
+ /* move from not_eligible_heap to scheduler_heap */
+ neh = &(p->not_eligible_heap) ;
+ while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V) ) {
+ struct dn_flow_queue *temp = neh->p[0].object ;
+ heap_extract(neh, NULL);
+ heap_insert(sch, temp->F, temp);
+ }
+
+ if (q->len) {/* need to reschedule queue */
+ if ( DN_KEY_LEQ(q->S, p->V) )
+ heap_insert(sch, q->F, q); /* schedule following packet */
+ else
+ heap_insert(neh, q->S, q); /* queue in not_eligible_heap */
+ }
+ if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
+ p->numbytes = -1 ; /* mark not ready for I/O */
+ break ;
+ }
+ }
+ /*
+ * If we are getting clocks from dummynet (not a real interface) and
+ * If we are under credit, schedule the next ready event.
+ * Also fix the delivery time of the last packet.
+ */
+ if (p->if_name[0]==0 && p->numbytes < 0) { /* this implies bandwidth >0 */
+ dn_key t=0 ; /* number of ticks i have to wait */
+
+ if (p->bandwidth > 0)
+ t = ( p->bandwidth -1 - p->numbytes) / p->bandwidth ;
+ p->tail->output_time += t ;
+ p->sched_time = curr_time ;
+ heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
+ /* XXX should check errors on heap_insert, and drain the whole
+ * queue on error hoping next time we are luckier.
+ */
}
/*
* If the delay line was empty call transmit_event(p) now.
@@ -411,7 +631,7 @@ ready_event(struct dn_flow_queue *q)
}
/*
- * this is called once per tick, or HZ times per second. It is used to
+ * This is called once per tick, or HZ times per second. It is used to
* increment the current tick counter and schedule expired events.
*/
static void
@@ -420,62 +640,152 @@ dummynet(void * __unused unused)
void *p ; /* generic parameter to handler */
struct dn_heap *h ;
int s ;
+ struct dn_heap *heaps[3];
+ int i;
+ heaps[0] = &ready_heap ; /* fixed-rate queues */
+ heaps[1] = &wfq_ready_heap ; /* wfq queues */
+ heaps[2] = &extract_heap ; /* delay line */
s = splnet(); /* avoid network interrupts... */
curr_time++ ;
- h = &ready_heap ;
+ for (i=0; i < 3 ; i++) {
+ h = heaps[i];
while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) {
- /*
- * XXX if the event is late, we should probably credit the queue
- * by q->p->bandwidth * (delta_ticks). On the other hand, i dont
- * think this can ever occur with this code (i.e. curr_time will
- * still be incremented by one at each tick. Things might be
- * different if we were using the counter from the high priority
- * timer.
- */
- if (h->p[0].key != curr_time)
- printf("-- dummynet: warning, event is %d ticks late\n",
- curr_time - h->p[0].key);
- p = h->p[0].object ;
- heap_extract(h); /* need to extract before processing */
+ DDB(if (h->p[0].key > curr_time)
+ printf("-- dummynet: warning, heap %d is %d ticks late\n",
+ i, (int)(curr_time - h->p[0].key));)
+ p = h->p[0].object ; /* store a copy before heap_extract */
+ heap_extract(h, NULL); /* need to extract before processing */
+ if (i == 0)
ready_event(p) ;
- }
- h = &extract_heap ;
- while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) {
- if (h->p[0].key != curr_time) /* XXX same as above */
- printf("-- dummynet: warning, event is %d ticks late\n",
- curr_time - h->p[0].key);
- p = h->p[0].object ;
- heap_extract(&extract_heap);
+ else if (i == 1) {
+ struct dn_pipe *pipe = p;
+ if (pipe->if_name[0] != '\0')
+ printf("*** bad ready_event_wfq for pipe %s\n",
+ pipe->if_name);
+ else
+ ready_event_wfq(p) ;
+ } else
transmit_event(p);
}
+ }
splx(s);
timeout(dummynet, NULL, 1);
}
/*
- * Given a pipe and a pkt in last_pkt, find a matching queue
+ * called by an interface when tx_rdy occurs.
+ */
+int
+if_tx_rdy(struct ifnet *ifp)
+{
+ struct dn_pipe *p;
+
+ for (p = all_pipes; p ; p = p->next )
+ if (p->ifp == ifp)
+ break ;
+ if (p == NULL) {
+ char buf[32];
+ sprintf(buf, "%s%d",ifp->if_name, ifp->if_unit);
+ for (p = all_pipes; p ; p = p->next )
+ if (!strcmp(p->if_name, buf) ) {
+ p->ifp = ifp ;
+ DEB(printf("++ tx rdy from %s (now found)\n", buf);)
+ break ;
+ }
+ }
+ if (p != NULL) {
+ DEB(printf("++ tx rdy from %s%d - qlen %d\n", ifp->if_name,
+ ifp->if_unit, ifp->if_snd.ifq_len);)
+ p->numbytes = 0 ; /* mark ready for I/O */
+ ready_event_wfq(p);
+ }
+}
+
+/*
+ * Unconditionally expire empty queues in case of shortage.
+ * Returns the number of queues freed.
+ */
+static int
+expire_queues(struct dn_flow_set *fs)
+{
+ struct dn_flow_queue *q, *prev ;
+ int i, initial_elements = fs->rq_elements ;
+
+ if (fs->last_expired == time_second)
+ return 0 ;
+ fs->last_expired = time_second ;
+ for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */
+ for (prev=NULL, q = fs->rq[i] ; q != NULL ; )
+ if (q->head != NULL) {
+ prev = q ;
+ q = q->next ;
+ } else { /* entry is idle, expire it */
+ struct dn_flow_queue *old_q = q ;
+
+ if (prev != NULL)
+ prev->next = q = q->next ;
+ else
+ fs->rq[i] = q = q->next ;
+ fs->rq_elements-- ;
+ free(old_q, M_IPFW);
+ }
+ return initial_elements - fs->rq_elements ;
+}
+
+/*
+ * If room, create a new queue and put at head of slot i;
+ * otherwise, create or use the default queue.
+ */
+static struct dn_flow_queue *
+create_queue(struct dn_flow_set *fs, int i)
+{
+ struct dn_flow_queue *q ;
+
+ if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
+ expire_queues(fs) == 0) {
+ /*
+ * No way to get room, use or create overflow queue.
+ */
+ i = fs->rq_size ;
+ if ( fs->rq[i] != NULL )
+ return fs->rq[i] ;
+ }
+ q = malloc(sizeof(*q), M_IPFW, M_DONTWAIT) ;
+ if (q == NULL) {
+ printf("sorry, cannot allocate queue for new flow\n");
+ return NULL ;
+ }
+ bzero(q, sizeof(*q) ); /* needed */
+ q->fs = fs ;
+ q->hash_slot = i ;
+ q->next = fs->rq[i] ;
+ q->S = q->F = fs->pipe->V ; /* set virtual times */
+ fs->rq[i] = q ;
+ fs->rq_elements++ ;
+ return q ;
+}
+
+/*
+ * Given a flow_set and a pkt in last_pkt, find a matching queue
* after appropriate masking. The queue is moved to front
* so that further searches take less time.
- * XXX if the queue is longer than some threshold should consider
- * purging old unused entries. They will get in the way every time
- * we have a new flow.
*/
static struct dn_flow_queue *
-find_queue(struct dn_pipe *pipe)
+find_queue(struct dn_flow_set *fs)
{
int i = 0 ; /* we need i and q for new allocations */
struct dn_flow_queue *q, *prev;
- if ( !(pipe->flags & DN_HAVE_FLOW_MASK) )
- q = pipe->rq[0] ;
+ if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) )
+ q = fs->rq[0] ;
else {
/* first, do the masking */
- last_pkt.dst_ip &= pipe->flow_mask.dst_ip ;
- last_pkt.src_ip &= pipe->flow_mask.src_ip ;
- last_pkt.dst_port &= pipe->flow_mask.dst_port ;
- last_pkt.src_port &= pipe->flow_mask.src_port ;
- last_pkt.proto &= pipe->flow_mask.proto ;
+ last_pkt.dst_ip &= fs->flow_mask.dst_ip ;
+ last_pkt.src_ip &= fs->flow_mask.src_ip ;
+ last_pkt.dst_port &= fs->flow_mask.dst_port ;
+ last_pkt.src_port &= fs->flow_mask.src_port ;
+ last_pkt.proto &= fs->flow_mask.proto ;
last_pkt.flags = 0 ; /* we don't care about this one */
/* then, hash function */
i = ( (last_pkt.dst_ip) & 0xffff ) ^
@@ -484,22 +794,22 @@ find_queue(struct dn_pipe *pipe)
( (last_pkt.src_ip >> 16 ) & 0xffff ) ^
(last_pkt.dst_port << 1) ^ (last_pkt.src_port) ^
(last_pkt.proto );
- i = i % pipe->rq_size ;
+ i = i % fs->rq_size ;
/* finally, scan the current list for a match */
searches++ ;
- for (prev=NULL, q = pipe->rq[i] ; q ; ) {
+ for (prev=NULL, q = fs->rq[i] ; q ; ) {
search_steps++;
if (bcmp(&last_pkt, &(q->id), sizeof(q->id) ) == 0)
break ; /* found */
- else if (pipe_expire && q->r.head == NULL) {
+ else if (pipe_expire && q->head == NULL) {
/* entry is idle, expire it */
struct dn_flow_queue *old_q = q ;
if (prev != NULL)
prev->next = q = q->next ;
else
- pipe->rq[i] = q = q->next ;
- pipe->rq_elements-- ;
+ fs->rq[i] = q = q->next ;
+ fs->rq_elements-- ;
free(old_q, M_IPFW);
continue ;
}
@@ -508,83 +818,198 @@ find_queue(struct dn_pipe *pipe)
}
if (q && prev != NULL) { /* found and not in front */
prev->next = q->next ;
- q->next = pipe->rq[i] ;
- pipe->rq[i] = q ;
+ q->next = fs->rq[i] ;
+ fs->rq[i] = q ;
}
}
if (q == NULL) { /* no match, need to allocate a new entry */
- q = malloc(sizeof(*q), M_IPFW, M_DONTWAIT) ;
- if (q == NULL) {
- printf("sorry, cannot allocate new flow\n");
- return NULL ;
- }
- bzero(q, sizeof(*q) ); /* needed */
+ q = create_queue(fs, i);
+ if (q != NULL)
q->id = last_pkt ;
- q->p = pipe ;
- q->hash_slot = i ;
- q->next = pipe->rq[i] ;
- pipe->rq[i] = q ;
- pipe->rq_elements++ ;
- DEB(printf("++ new queue (%d) for 0x%08x/0x%04x -> 0x%08x/0x%04x\n",
- pipe->rq_elements,
- last_pkt.src_ip, last_pkt.src_port,
- last_pkt.dst_ip, last_pkt.dst_port); )
}
return q ;
}
+static int
+red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
+{
+ /*
+ * RED algorithm
+ *
+ * RED calculates the average queue size (avg) using a low-pass filter
+ * with an exponential weighted (w_q) moving average:
+ * avg <- (1-w_q) * avg + w_q * q_size
+ * where q_size is the queue length (measured in bytes or * packets).
+ *
+ * If q_size == 0, we compute the idle time for the link, and set
+ * avg = (1 - w_q)^(idle/s)
+ * where s is the time needed for transmitting a medium-sized packet.
+ *
+ * Now, if avg < min_th the packet is enqueued.
+ * If avg > max_th the packet is dropped. Otherwise, the packet is
+ * dropped with probability P function of avg.
+ *
+ */
+
+ int64_t p_b = 0;
+ /* queue in bytes or packets ? */
+ u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
+
+ DEB(printf("\n%d q: %2u ", (int) curr_time, q_size);)
+
+ /* average queue size estimation */
+ if (q_size != 0) {
+ /*
+ * queue is not empty, avg <- avg + (q_size - avg) * w_q
+ */
+ int diff = SCALE(q_size) - q->avg;
+ int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q);
+
+ q->avg += (int) v;
+ } else {
+ /*
+ * queue is empty, find for how long the queue has been
+ * empty and use a lookup table for computing
+ * (1 - * w_q)^(idle_time/s) where s is the time to send a
+ * (small) packet.
+ * XXX check wraps...
+ */
+ if (q->avg) {
+ u_int t = (curr_time - q->q_time) / fs->lookup_step;
+
+ q->avg = (t < fs->lookup_depth) ?
+ SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
+ }
+ }
+ DEB(printf("avg: %u ", SCALE_VAL(q->avg));)
+
+ /* should i drop ? */
+
+ if (q->avg < fs->min_th) {
+ q->count = -1;
+ return 0; /* accept packet ; */
+ }
+ if (q->avg >= fs->max_th) { /* average queue >= max threshold */
+ if (fs->flags_fs & DN_IS_GENTLE_RED) {
+ /*
+ * According to Gentle-RED, if avg is greater than max_th the
+ * packet is dropped with a probability
+ * p_b = c_3 * avg - c_4
+ * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
+ */
+ p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4;
+ } else {
+ q->count = -1;
+ printf("- drop");
+ return 1 ;
+ }
+ } else if (q->avg > fs->min_th) {
+ /*
+ * we compute p_b using the linear dropping function p_b = c_1 *
+ * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
+ * max_p * min_th / (max_th - min_th)
+ */
+ p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2;
+ }
+ if (fs->flags_fs & DN_QSIZE_IS_BYTES)
+ p_b = (p_b * len) / fs->max_pkt_size;
+ if (++q->count == 0)
+ q->random = random() & 0xffff;
+ else {
+ /*
+ * q->count counts packets arrived since last drop, so a greater
+ * value of q->count means a greater packet drop probability.
+ */
+ if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) {
+ q->count = 0;
+ DEB(printf("- red drop");)
+ /* after a drop we calculate a new random value */
+ q->random = random() & 0xffff;
+ return 1; /* drop */
+ }
+ }
+ /* end of RED algorithm */
+ return 0 ; /* accept */
+}
+
+static __inline
+struct dn_flow_set *
+locate_flowset(int pipe_nr, struct ip_fw_chain *rule)
+{
+ struct dn_flow_set *fs = NULL ;
+
+ if ( (rule->rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_QUEUE )
+ for (fs=all_flow_sets; fs && fs->fs_nr != pipe_nr; fs=fs->next)
+ ;
+ else {
+ struct dn_pipe *p1;
+ for (p1 = all_pipes; p1 && p1->pipe_nr != pipe_nr; p1 = p1->next)
+ ;
+ if (p1 != NULL)
+ fs = &(p1->fs) ;
+ }
+ if (fs != NULL)
+ rule->rule->pipe_ptr = fs ; /* record for the future */
+ return fs ;
+}
+
/*
- * dummynet hook for packets.
+ * dummynet hook for packets. Below 'pipe' is a pipe or a queue
+ * depending on whether WF2Q or fixed bw is used.
*/
int
-dummynet_io(int pipe_nr, int dir,
+dummynet_io(int pipe_nr, int dir, /* pipe_nr can also be a fs_nr */
struct mbuf *m, struct ifnet *ifp, struct route *ro,
struct sockaddr_in *dst,
struct ip_fw_chain *rule, int flags)
{
struct dn_pkt *pkt;
- struct dn_pipe *p;
- int len = m->m_pkthdr.len ;
+ struct dn_flow_set *fs;
+ struct dn_pipe *pipe ;
+ u_int64_t len = m->m_pkthdr.len ;
struct dn_flow_queue *q = NULL ;
int s ;
- s = splimp();
- /* XXX check the spl protection. It might be unnecessary since we
- * run this at splnet() already.
- */
-
- DEB(printf("-- last_pkt dst 0x%08x/0x%04x src 0x%08x/0x%04x\n",
- last_pkt.dst_ip, last_pkt.dst_port,
- last_pkt.src_ip, last_pkt.src_port);)
+ s = splimp(); /* XXX might be unnecessary, we are already at splnet() */
pipe_nr &= 0xffff ;
- /*
- * locate pipe. First time is expensive, next have direct access.
- */
- if ( (p = rule->rule->pipe_ptr) == NULL ) {
- for (p = all_pipes; p && p->pipe_nr != pipe_nr; p = p->next)
+ if ( (fs = rule->rule->pipe_ptr) == NULL ) {
+ fs = locate_flowset(pipe_nr, rule);
+ if (fs == NULL)
+ goto dropit ; /* this queue/pipe does not exist! */
+ }
+ pipe = fs->pipe ;
+ if (pipe == NULL) { /* must be a queue, try find a matching pipe */
+ for (pipe = all_pipes; pipe && pipe->pipe_nr != fs->parent_nr;
+ pipe = pipe->next)
;
- if (p == NULL)
- goto dropit ; /* this pipe does not exist! */
- rule->rule->pipe_ptr = p ; /* record pipe ptr for the future */
+ if (pipe != NULL)
+ fs->pipe = pipe ;
+ else {
+ printf("No pipe %d for queue %d, drop pkt\n",
+ fs->parent_nr, fs->fs_nr);
+ goto dropit ;
}
- q = find_queue(p);
- /*
- * update statistics, then do various check on reasons to drop pkt
- */
+ }
+ q = find_queue(fs);
if ( q == NULL )
goto dropit ; /* cannot allocate queue */
+ /*
+ * update statistics, then check reasons to drop pkt
+ */
q->tot_bytes += len ;
q->tot_pkts++ ;
- if ( p->plr && random() < p->plr )
+ if ( fs->plr && random() < fs->plr )
goto dropit ; /* random pkt drop */
- if ( p->queue_size && q->len >= p->queue_size)
- goto dropit ; /* queue count overflow */
- if ( p->queue_size_bytes && len + q->len_bytes > p->queue_size_bytes)
+ if ( fs->flags_fs & DN_QSIZE_IS_BYTES) {
+ if (q->len_bytes > fs->qsize)
goto dropit ; /* queue size overflow */
- /*
- * can implement RED drops here if needed.
- */
+ } else {
+ if (q->len >= fs->qsize)
+ goto dropit ; /* queue count overflow */
+ }
+ if ( fs->flags_fs & DN_IS_RED && red_drops(fs, q, len) )
+ goto dropit ;
pkt = (struct dn_pkt *)malloc(sizeof (*pkt), M_IPFW, M_NOWAIT) ;
if ( pkt == NULL )
@@ -602,33 +1027,70 @@ dummynet_io(int pipe_nr, int dir,
if (dir == DN_TO_IP_OUT) {
/*
* We need to copy *ro because for ICMP pkts (and maybe others)
- * the caller passed a pointer into the stack; and, dst might
- * also be a pointer into *ro so it needs to be updated.
+ * the caller passed a pointer into the stack; dst might also be
+ * a pointer into *ro so it needs to be updated.
*/
pkt->ro = *ro;
if (ro->ro_rt)
- ro->ro_rt->rt_refcnt++ ; /* XXX */
+ ro->ro_rt->rt_refcnt++ ;
if (dst == (struct sockaddr_in *)&ro->ro_dst) /* dst points into ro */
dst = (struct sockaddr_in *)&(pkt->ro.ro_dst) ;
pkt->dn_dst = dst;
pkt->flags = flags ;
}
- if (q->r.head == NULL)
- q->r.head = pkt;
+ if (q->head == NULL)
+ q->head = pkt;
else
- DN_NEXT(q->r.tail) = pkt;
- q->r.tail = pkt;
+ DN_NEXT(q->tail) = pkt;
+ q->tail = pkt;
q->len++;
q->len_bytes += len ;
+ if ( q->head != pkt ) /* flow was not idle, we are done */
+ goto done;
/*
- * If queue was empty (this is first pkt) then call ready_event()
- * now to make the pkt go out at the right time. Otherwise we are done,
- * as there must be a ready event already scheduled.
+ * The flow was previously idle, so we need to schedule it.
*/
- if (q->r.head == pkt) /* r_queue was empty */
+ if ( (rule->rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE ) {
+ /* fixed-rate queue: just insert into the ready_heap. */
+ dn_key t = 0 ;
+ if (pipe->bandwidth)
+ t = SET_TICKS(pkt, q, pipe);
+ q->sched_time = curr_time ;
+ if (t == 0) /* must process it now */
ready_event( q );
+ else
+ heap_insert(&ready_heap, curr_time + t , q );
+ } else {
+ /*
+ * WF2Q: compute start time and put into backlogged list. Then
+ * look at eligibility -- if not eligibile, it means that
+ * there is some other flow already scheduled for the same pipe.
+ * If eligible, AND the pipe is idle, then call ready_event_wfq().
+ */
+ q->S = MAX64(q->F, pipe->V ) ;
+ q->F = q->S + ( len<<MY_M )/(u_int64_t) fs->weight;
+
+ heap_insert(&(pipe->backlogged_heap), q->S, q);
+ pipe->sum += fs->weight ; /* new session backlogged */
+ fs->backlogged++ ;
+ if (DN_KEY_GT(q->S, pipe->V) ) { /* not eligible */
+ DDB(printf("== not eligible, size %d\n", (int)len);)
+ heap_insert(&(pipe->not_eligible_heap), q->S, q);
+ } else {
+ heap_insert(&(pipe->scheduler_heap), q->F, q);
+ if (pipe->numbytes >= 0) { /* pipe is idle */
+ if (pipe->scheduler_heap.elements != 1)
+ printf("*** OUCH! pipe should have been idle!\n");
+ DEB(printf("Waking up pipe %d at %d\n",
+ pipe->pipe_nr, (int)(q->F >> MY_M)); )
+ pipe->sched_time = curr_time ;
+ ready_event_wfq(pipe);
+ }
+ }
+ }
+done:
splx(s);
return 0;
@@ -641,7 +1103,7 @@ dropit:
}
/*
- * below, the rt_unref is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
+ * Below, the rt_unref is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
* Doing this would probably save us the initial bzero of dn_pkt
*/
#define DN_FREE_PKT(pkt) { \
@@ -650,25 +1112,60 @@ dropit:
m_freem(n->dn_m); \
pkt = DN_NEXT(n) ; \
free(n, M_IPFW) ; }
+
/*
- * dispose all packets queued on a pipe
+ * Dispose all packets and flow_queues on a flow_set.
+ * If all=1, also remove red lookup table and other storage,
+ * including the descriptor itself.
+ * For the one in dn_pipe MUST also cleanup ready_heap...
*/
static void
-purge_pipe(struct dn_pipe *pipe)
+purge_flow_set(struct dn_flow_set *fs, int all)
{
struct dn_pkt *pkt ;
struct dn_flow_queue *q, *qn ;
int i ;
- for (i = 0 ; i < pipe->rq_size ; i++ )
- for (q = pipe->rq[i] ; q ; q = qn ) {
- for (pkt = q->r.head ; pkt ; )
+ for (i = 0 ; i <= fs->rq_size ; i++ ) {
+ for (q = fs->rq[i] ; q ; q = qn ) {
+ for (pkt = q->head ; pkt ; )
DN_FREE_PKT(pkt) ;
qn = q->next ;
free(q, M_IPFW);
}
- for (pkt = pipe->p.head ; pkt ; )
+ fs->rq[i] = NULL ;
+ }
+ fs->rq_elements = 0 ;
+ if (all) {
+ /* RED - free lookup table */
+ if (fs->w_q_lookup)
+ free(fs->w_q_lookup, M_IPFW);
+ if (fs->rq)
+ free(fs->rq, M_IPFW);
+ /* if this fs is not part of a pipe, free it */
+ if (fs->pipe && fs != &(fs->pipe->fs) )
+ free(fs, M_IPFW);
+ }
+}
+
+/*
+ * Dispose all packets queued on a pipe (not a flow_set).
+ * Also free all resources associated to a pipe, which is about
+ * to be deleted.
+ */
+static void
+purge_pipe(struct dn_pipe *pipe)
+{
+ struct dn_pkt *pkt ;
+
+ purge_flow_set( &(pipe->fs), 1 );
+
+ for (pkt = pipe->head ; pkt ; )
DN_FREE_PKT(pkt) ;
+
+ heap_free( &(pipe->scheduler_heap) );
+ heap_free( &(pipe->not_eligible_heap) );
+ heap_free( &(pipe->backlogged_heap) );
}
/*
@@ -680,6 +1177,7 @@ dummynet_flush()
{
struct dn_pipe *curr_p, *p ;
struct ip_fw_chain *chain ;
+ struct dn_flow_set *fs, *curr_fs;
int s ;
s = splnet() ;
@@ -690,27 +1188,45 @@ dummynet_flush()
/* prevent future matches... */
p = all_pipes ;
all_pipes = NULL ;
+ fs = all_flow_sets ;
+ all_flow_sets = NULL ;
/* and free heaps so we don't have unwanted events */
- if (ready_heap.size >0 )
- free(ready_heap.p, M_IPFW);
- ready_heap.elements = ready_heap.size = 0 ;
- if (extract_heap.size >0 )
- free(extract_heap.p, M_IPFW);
- extract_heap.elements = extract_heap.size = 0 ;
+ heap_free(&ready_heap);
+ heap_free(&wfq_ready_heap);
+ heap_free(&extract_heap);
splx(s) ;
/*
* Now purge all queued pkts and delete all pipes
*/
+ /* scan and purge all flow_sets. */
+ for ( ; fs ; ) {
+ curr_fs = fs ;
+ fs = fs->next ;
+ purge_flow_set(curr_fs, 1);
+ }
for ( ; p ; ) {
purge_pipe(p);
curr_p = p ;
p = p->next ;
- free(curr_p->rq, M_IPFW);
free(curr_p, M_IPFW);
}
}
+
extern struct ip_fw_chain *ip_fw_default_rule ;
+static void
+dn_rule_delete_fs(struct dn_flow_set *fs, void *r)
+{
+ int i ;
+ struct dn_flow_queue *q ;
+ struct dn_pkt *pkt ;
+
+ for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */
+ for (q = fs->rq[i] ; q ; q = q->next )
+ for (pkt = q->head ; pkt ; pkt = DN_NEXT(pkt) )
+ if (pkt->hdr.mh_data == r)
+ pkt->hdr.mh_data = (void *)ip_fw_default_rule ;
+}
/*
* when a firewall rule is deleted, scan all queues and remove the flow-id
* from packets matching this rule.
@@ -719,148 +1235,180 @@ void
dn_rule_delete(void *r)
{
struct dn_pipe *p ;
- struct dn_flow_queue *q ;
struct dn_pkt *pkt ;
- int i ;
+ struct dn_flow_set *fs ;
+ /*
+ * If the rule references a queue (dn_flow_set), then scan
+ * the flow set, otherwise scan pipes. Should do either, but doing
+ * both does not harm.
+ */
+ for ( fs = all_flow_sets ; fs ; fs = fs->next )
+ dn_rule_delete_fs(fs, r);
for ( p = all_pipes ; p ; p = p->next ) {
- for (i = 0 ; i < p->rq_size ; i++)
- for (q = p->rq[i] ; q ; q = q->next )
- for (pkt = q->r.head ; pkt ; pkt = DN_NEXT(pkt) )
- if (pkt->hdr.mh_data == r)
- pkt->hdr.mh_data = (void *)ip_fw_default_rule ;
- for (pkt = p->p.head ; pkt ; pkt = DN_NEXT(pkt) )
+ fs = &(p->fs) ;
+ dn_rule_delete_fs(fs, r);
+ for (pkt = p->head ; pkt ; pkt = DN_NEXT(pkt) )
if (pkt->hdr.mh_data == r)
pkt->hdr.mh_data = (void *)ip_fw_default_rule ;
}
}
/*
- * handler for the various dummynet socket options
- * (get, flush, config, del)
+ * setup RED parameters
*/
static int
-ip_dn_ctl(struct sockopt *sopt)
+config_red(struct dn_flow_set *p, struct dn_flow_set * x)
{
- int error = 0 ;
- size_t size ;
- char *buf, *bp ; /* bp is the "copy-pointer" */
- struct dn_pipe *p, tmp_pipe ;
+ int i;
+
+ x->w_q = p->w_q;
+ x->min_th = SCALE(p->min_th);
+ x->max_th = SCALE(p->max_th);
+ x->max_p = p->max_p;
+
+ x->c_1 = p->max_p / (p->max_th - p->min_th);
+ x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
+ if (x->flags_fs & DN_IS_GENTLE_RED) {
+ x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
+ x->c_4 = (SCALE(1) - 2 * p->max_p);
+ }
- struct dn_pipe *x, *a, *b ;
+ /* if the lookup table already exist, free and create it again */
+ if (x->w_q_lookup)
+ free(x->w_q_lookup, M_IPFW);
+ if (red_lookup_depth == 0) {
+ printf("\nnet.inet.ip.dummynet.red_lookup_depth must be > 0");
+ free(x, M_IPFW);
+ return EINVAL;
+ }
+ x->lookup_depth = red_lookup_depth;
+ x->w_q_lookup = (u_int *) malloc(x->lookup_depth * sizeof(int),
+ M_IPFW, M_DONTWAIT);
+ if (x->w_q_lookup == NULL) {
+ printf("sorry, cannot allocate red lookup table\n");
+ free(x, M_IPFW);
+ return ENOSPC;
+ }
- /* Disallow sets in really-really secure mode. */
- if (sopt->sopt_dir == SOPT_SET && securelevel >= 3)
- return (EPERM);
+ /* fill the lookup table with (1 - w_q)^x */
+ x->lookup_step = p->lookup_step ;
+ x->lookup_weight = p->lookup_weight ;
+ x->w_q_lookup[0] = SCALE(1) - x->w_q;
+ for (i = 1; i < x->lookup_depth; i++)
+ x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
+ if (red_avg_pkt_size < 1)
+ red_avg_pkt_size = 512 ;
+ x->avg_pkt_size = red_avg_pkt_size ;
+ if (red_max_pkt_size < 1)
+ red_max_pkt_size = 1500 ;
+ x->max_pkt_size = red_max_pkt_size ;
+ return 0 ;
+}
- switch (sopt->sopt_name) {
- default :
- panic("ip_dn_ctl -- unknown option");
+static int
+alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs)
+{
+ if (x->flags_fs & DN_HAVE_FLOW_MASK) { /* allocate some slots */
+ int l = pfs->rq_size;
+
+ if (l == 0)
+ l = dn_hash_size;
+ if (l < 4)
+ l = 4;
+ else if (l > 1024)
+ l = 1024;
+ x->rq_size = l;
+ } else /* one is enough for null mask */
+ x->rq_size = 1;
+ x->rq = malloc((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
+ M_IPFW, M_DONTWAIT);
+ if (x->rq == NULL) {
+ printf("sorry, cannot allocate queue\n");
+ return ENOSPC;
+ }
+ bzero(x->rq, (1+x->rq_size) * sizeof(struct dn_flow_queue *));
+ x->rq_elements = 0;
+ return 0 ;
+}
- case IP_DUMMYNET_GET :
- for (p = all_pipes, size = 0 ; p ; p = p->next )
- size += sizeof( *p ) +
- p->rq_elements * sizeof(struct dn_flow_queue);
- buf = malloc(size, M_TEMP, M_WAITOK);
- if (buf == 0) {
- error = ENOBUFS ;
- break ;
+static void
+set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src)
+{
+ x->flags_fs = src->flags_fs;
+ x->qsize = src->qsize;
+ x->plr = src->plr;
+ x->flow_mask = src->flow_mask;
+ if (x->flags_fs & DN_QSIZE_IS_BYTES) {
+ if (x->qsize > 1024*1024)
+ x->qsize = 1024*1024 ;
+ } else {
+ if (x->qsize == 0)
+ x->qsize = 50 ;
+ if (x->qsize > 100)
+ x->qsize = 50 ;
+ }
+ /* configuring RED */
+ if ( x->flags_fs & DN_IS_RED )
+ config_red(src, x) ; /* XXX should check errors */
}
- for (p = all_pipes, bp = buf ; p ; p = p->next ) {
- int i ;
- struct dn_pipe *pipe_bp = (struct dn_pipe *)bp ;
- struct dn_flow_queue *q;
/*
- * copy the pipe descriptor into *bp, convert delay back to ms,
- * then copy the queue descriptor(s) one at a time.
+ * setup pipe or queue parameters.
*/
- bcopy(p, bp, sizeof( *p ) );
- pipe_bp->delay = (pipe_bp->delay * 1000) / hz ;
- bp += sizeof( *p ) ;
- for (i = 0 ; i < p->rq_size ; i++)
- for (q = p->rq[i] ; q ; q = q->next, bp += sizeof(*q) )
- bcopy(q, bp, sizeof( *q ) );
- }
- error = sooptcopyout(sopt, buf, size);
- FREE(buf, M_TEMP);
- break ;
- case IP_DUMMYNET_FLUSH :
- dummynet_flush() ;
- break ;
+static int
+config_pipe(struct dn_pipe *p)
+{
+ int s ;
+ struct dn_flow_set *pfs = &(p->fs);
- case IP_DUMMYNET_CONFIGURE :
- p = &tmp_pipe ;
- error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
- if (error)
- break ;
/*
* The config program passes parameters as follows:
- * bandwidth = bits/second (0 means no limits);
- * delay = millisec., must be translated into ticks.
- * queue_size = slots (0 means no limit)
- * queue_size_bytes = bytes (0 means no limit)
- * only one can be set, must be bound-checked
+ * bw = bits/second (0 means no limits),
+ * delay = ms, must be translated into ticks.
+ * qsize = slots/bytes
*/
p->delay = ( p->delay * hz ) / 1000 ;
- if (p->queue_size == 0 && p->queue_size_bytes == 0)
- p->queue_size = 50 ;
- if (p->queue_size != 0 ) /* buffers are prevailing */
- p->queue_size_bytes = 0 ;
- if (p->queue_size > 100)
- p->queue_size = 50 ;
- if (p->queue_size_bytes > 1024*1024)
- p->queue_size_bytes = 1024*1024 ;
+ /* We need either a pipe number or a flow_set number */
+ if (p->pipe_nr == 0 && pfs->fs_nr == 0)
+ return EINVAL ;
+ if (p->pipe_nr != 0 && pfs->fs_nr != 0)
+ return EINVAL ;
+ if (p->pipe_nr != 0) { /* this is a pipe */
+ struct dn_pipe *x, *a, *b;
+ /* locate pipe */
for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
a = b , b = b->next) ;
- if (b && b->pipe_nr == p->pipe_nr) {
- b->bandwidth = p->bandwidth ;
- b->delay = p->delay ;
- b->queue_size = p->queue_size ;
- b->queue_size_bytes = p->queue_size_bytes ;
- b->plr = p->plr ;
- b->flow_mask = p->flow_mask ;
- b->flags = p->flags ;
- } else { /* completely new pipe */
- int s ;
+
+ if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
x = malloc(sizeof(struct dn_pipe), M_IPFW, M_DONTWAIT) ;
if (x == NULL) {
printf("ip_dummynet.c: no memory for new pipe\n");
- error = ENOSPC ;
- break ;
+ return ENOSPC;
}
- bzero(x, sizeof(*x) );
+ bzero(x, sizeof(struct dn_pipe));
+ x->pipe_nr = p->pipe_nr;
+ x->fs.pipe = x ;
+ x->backlogged_heap.size = x->backlogged_heap.elements = 0 ;
+ x->backlogged_heap.offset=OFFSET_OF(struct dn_flow_queue, blh_pos);
+ } else
+ x = b;
+
x->bandwidth = p->bandwidth ;
+ x->numbytes = 0; /* just in case... */
+ bcopy(p->if_name, x->if_name, sizeof(p->if_name) );
+ x->ifp = NULL ; /* reset interface ptr */
x->delay = p->delay ;
- x->pipe_nr = p->pipe_nr ;
- x->queue_size = p->queue_size ;
- x->queue_size_bytes = p->queue_size_bytes ;
- x->plr = p->plr ;
- x->flow_mask = p->flow_mask ;
- x->flags = p->flags ;
- if (x->flags & DN_HAVE_FLOW_MASK) {/* allocate some slots */
- int l = p->rq_size ;
- if (l == 0)
- l = dn_hash_size ;
- if (l < 4)
- l = 4 ;
- else if (l > 1024)
- l = 1024 ;
- x->rq_size = l ;
- } else /* one is enough for null mask */
- x->rq_size = 1 ;
- x->rq = malloc(x->rq_size * sizeof(struct dn_flow_queue *),
- M_IPFW, M_DONTWAIT) ;
- if (x->rq == NULL ) {
- printf("sorry, cannot allocate queue\n");
+ set_fs_parms(&(x->fs), pfs);
+
+
+ if ( x->fs.rq == NULL ) { /* a new pipe */
+ s = alloc_hash(&(x->fs), pfs) ;
+ if (s) {
free(x, M_IPFW);
- error = ENOSPC ;
- break ;
+ return s ;
}
- bzero(x->rq, x->rq_size * sizeof(struct dn_flow_queue *) );
- x->rq_elements = 0 ;
-
s = splnet() ;
x->next = b ;
if (a == NULL)
@@ -869,68 +1417,332 @@ ip_dn_ctl(struct sockopt *sopt)
a->next = x ;
splx(s);
}
- break ;
+ } else { /* config queue */
+ struct dn_flow_set *x, *a, *b ;
- case IP_DUMMYNET_DEL :
- p = &tmp_pipe ;
- error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
- if (error)
- break ;
-
- for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
+ /* locate flow_set */
+ for (a=NULL, b=all_flow_sets ; b && b->fs_nr < pfs->fs_nr ;
a = b , b = b->next) ;
- if (b && b->pipe_nr == p->pipe_nr) { /* found pipe */
- int s ;
- struct ip_fw_chain *chain ;
- s = splnet() ;
- chain = ip_fw_chain.lh_first;
+ if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new */
+ if (pfs->parent_nr == 0) /* need link to a pipe */
+ return EINVAL ;
+ x = malloc(sizeof(struct dn_flow_set), M_IPFW, M_DONTWAIT);
+ if (x == NULL) {
+ printf("ip_dummynet.c: no memory for new flow_set\n");
+ return ENOSPC;
+ }
+ bzero(x, sizeof(struct dn_flow_set));
+ x->fs_nr = pfs->fs_nr;
+ x->parent_nr = pfs->parent_nr;
+ x->weight = pfs->weight ;
+ if (x->weight == 0)
+ x->weight = 1 ;
+ else if (x->weight > 100)
+ x->weight = 100 ;
+ } else {
+ /* Change parent pipe not allowed; must delete and recreate */
+ if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr)
+ return EINVAL ;
+ x = b;
+ }
+ set_fs_parms(x, pfs);
+ if ( x->rq == NULL ) { /* a new flow_set */
+ s = alloc_hash(x, pfs) ;
+ if (s) {
+ free(x, M_IPFW);
+ return s ;
+ }
+ s = splnet() ;
+ x->next = b;
if (a == NULL)
- all_pipes = b->next ;
+ all_flow_sets = x;
else
- a->next = b->next ;
+ a->next = x;
+ splx(s);
+ }
+ }
+ return 0 ;
+}
+
/*
- * remove references to this pipe from the ip_fw rules.
+ * Helper function to remove from a heap queues which are linked to
+ * a flow_set about to be deleted.
*/
- for (; chain; chain = chain->chain.le_next)
- if (chain->rule->pipe_ptr == b)
- chain->rule->pipe_ptr = NULL ;
- /* remove all references to b from heaps */
- if (ready_heap.elements > 0) {
- struct dn_heap *h = &ready_heap ;
+static void
+fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
+{
int i = 0, found = 0 ;
- while ( i < h->elements ) {
- if (((struct dn_flow_queue *)(h->p[i].object))->p == b) {
- /* found one */
+ for (; i < h->elements ;)
+ if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
h->elements-- ;
h->p[i] = h->p[h->elements] ;
found++ ;
} else
i++ ;
- }
if (found)
heapify(h);
}
- if (extract_heap.elements > 0) {
- struct dn_heap *h = &extract_heap ;
- int i = 0, found = 0 ;
- while ( i < h->elements ) {
- if (h->p[i].object == b) { /* found one */
+
+/*
+ * helper function to remove a pipe from a heap (can be there at most once)
+ */
+static void
+pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
+{
+ if (h->elements > 0) {
+ int i = 0 ;
+ for (i=0; i < h->elements ; i++ ) {
+ if (h->p[i].object == p) { /* found it */
h->elements-- ;
h->p[i] = h->p[h->elements] ;
- found++ ;
- } else
- i++ ;
- }
- if (found)
heapify(h);
+ break ;
+ }
+ }
+ }
}
+
+/*
+ * drain all queues. Called in case of severe mbuf shortage.
+ */
+void
+dummynet_drain()
+{
+ struct dn_flow_set *fs;
+ struct dn_pipe *p;
+ struct dn_pkt *pkt;
+
+ heap_free(&ready_heap);
+ heap_free(&wfq_ready_heap);
+ heap_free(&extract_heap);
+ /* remove all references to this pipe from flow_sets */
+ for (fs = all_flow_sets; fs; fs= fs->next )
+ purge_flow_set(fs, 0);
+
+ for (p = all_pipes; p; p= p->next ) {
+ purge_flow_set(&(p->fs), 0);
+ for (pkt = p->head ; pkt ; )
+ DN_FREE_PKT(pkt) ;
+ p->head = p->tail = NULL ;
+ }
+}
+
+/*
+ * Fully delete a pipe or a queue, cleaning up associated info.
+ */
+static int
+delete_pipe(struct dn_pipe *p)
+{
+ int s ;
+ struct ip_fw_chain *chain ;
+
+ if (p->pipe_nr == 0 && p->fs.fs_nr == 0)
+ return EINVAL ;
+ if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
+ return EINVAL ;
+ if (p->pipe_nr != 0) { /* this is an old-style pipe */
+ struct dn_pipe *a, *b;
+ struct dn_flow_set *fs;
+
+ /* locate pipe */
+ for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
+ a = b , b = b->next) ;
+ if (b && b->pipe_nr != p->pipe_nr)
+ return EINVAL ; /* not found */
+
+ s = splnet() ;
+
+ /* unlink from list of pipes */
+ if (a == NULL)
+ all_pipes = b->next ;
+ else
+ a->next = b->next ;
+ /* remove references to this pipe from the ip_fw rules. */
+ for (chain = ip_fw_chain.lh_first ; chain; chain = chain->chain.le_next)
+ if (chain->rule->pipe_ptr == &(b->fs))
+ chain->rule->pipe_ptr = NULL ;
+
+ /* remove all references to this pipe from flow_sets */
+ for (fs = all_flow_sets; fs; fs= fs->next )
+ if (fs->pipe == b) {
+ printf("++ ref to pipe %d from fs %d\n",
+ p->pipe_nr, fs->fs_nr);
+ fs->pipe = NULL ;
+ purge_flow_set(fs, 0);
+ }
+ fs_remove_from_heap(&ready_heap, &(b->fs));
+ purge_pipe(b); /* remove all data associated to this pipe */
+ /* remove reference to here from extract_heap and wfq_ready_heap */
+ pipe_remove_from_heap(&extract_heap, b);
+ pipe_remove_from_heap(&wfq_ready_heap, b);
splx(s);
- purge_pipe(b); /* remove pkts from here */
- free(b->rq, M_IPFW);
free(b, M_IPFW);
+ } else { /* this is a dummynet queue (dn_flow_set) */
+ struct dn_flow_set *a, *b;
+
+ /* locate set */
+ for (a = NULL, b = all_flow_sets ; b && b->fs_nr < p->fs.fs_nr ;
+ a = b , b = b->next) ;
+ if (b && b->fs_nr != p->fs.fs_nr)
+ return EINVAL ; /* not found */
+
+ s = splnet() ;
+ if (a == NULL)
+ all_flow_sets = b->next ;
+ else
+ a->next = b->next ;
+ /* remove references to this flow_set from the ip_fw rules. */
+ for (chain = ip_fw_chain.lh_first; chain; chain = chain->chain.le_next)
+ if (chain->rule->pipe_ptr == b)
+ chain->rule->pipe_ptr = NULL ;
+
+ if (b->pipe != NULL) {
+ /* Update total weight on parent pipe and cleanup parent heaps */
+ b->pipe->sum -= b->weight * b->backlogged ;
+ fs_remove_from_heap(&(b->pipe->backlogged_heap), b);
+ fs_remove_from_heap(&(b->pipe->not_eligible_heap), b);
+ fs_remove_from_heap(&(b->pipe->scheduler_heap), b);
+ }
+ purge_flow_set(b, 1);
+ splx(s);
+ }
+ return 0 ;
+ }
+
+/*
+ * helper function used to copy data from kernel in DUMMYNET_GET
+ */
+static char *
+dn_copy_set(struct dn_flow_set *set, char *bp)
+{
+ int i, copied = 0 ;
+ struct dn_flow_queue *q, *qp = (struct dn_flow_queue *)bp;
+
+ for (i = 0 ; i <= set->rq_size ; i++)
+ for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
+ if (q->hash_slot != i)
+ printf("++ at %d: wrong slot (have %d, "
+ "should be %d)\n", copied, q->hash_slot, i);
+ if (q->fs != set)
+ printf("++ at %d: wrong fs ptr (have %p, should be %p)\n",
+ i, q->fs, set);
+ copied++ ;
+ bcopy(q, qp, sizeof( *q ) );
+ /* cleanup pointers */
+ qp->next = NULL ;
+ qp->head = qp->tail = NULL ;
+ qp->fs = NULL ;
}
+ if (copied != set->rq_elements)
+ printf("++ wrong count, have %d should be %d\n",
+ copied, set->rq_elements);
+ return (char *)qp ;
+}
+
+static int
+dummynet_get(struct sockopt *sopt)
+{
+ char *buf, *bp ; /* bp is the "copy-pointer" */
+ size_t size ;
+ struct dn_flow_set *set ;
+ struct dn_pipe *p ;
+ int s, error=0 ;
+
+ s = splnet() ; /* to avoid thing change while we work! */
+ /*
+ * compute size of data structures: list of pipes and flow_sets.
+ */
+ for (p = all_pipes, size = 0 ; p ; p = p->next )
+ size += sizeof( *p ) +
+ p->fs.rq_elements * sizeof(struct dn_flow_queue);
+ for (set = all_flow_sets ; set ; set = set->next )
+ size += sizeof ( *set ) +
+ set->rq_elements * sizeof(struct dn_flow_queue);
+ buf = malloc(size, M_TEMP, M_DONTWAIT);
+ if (buf == 0) {
+ splx(s);
+ return ENOBUFS ;
+ }
+ for (p = all_pipes, bp = buf ; p ; p = p->next ) {
+ struct dn_pipe *pipe_bp = (struct dn_pipe *)bp ;
+
+ /*
+ * copy pipe descriptor into *bp, convert delay back to ms,
+ * then copy the flow_set descriptor(s) one at a time.
+ * After each flow_set, copy the queue descriptor it owns.
+ */
+ bcopy(p, bp, sizeof( *p ) );
+ pipe_bp->delay = (pipe_bp->delay * 1000) / hz ;
+ pipe_bp->fs.flags_fs |= DN_IS_PIPE ;
+ /* cleanup pointers */
+ pipe_bp->next = NULL ;
+ pipe_bp->head = pipe_bp->tail = NULL ;
+ pipe_bp->fs.next = NULL ;
+ pipe_bp->fs.pipe = NULL ;
+ pipe_bp->fs.rq = NULL ;
+
+ bp += sizeof( *p ) ;
+ bp = dn_copy_set( &(p->fs), bp );
+ }
+ for (set = all_flow_sets ; set ; set = set->next ) {
+ struct dn_flow_set *fs_bp = (struct dn_flow_set *)bp ;
+ bcopy(set, bp, sizeof( *set ) );
+ fs_bp->flags_fs |= DN_IS_QUEUE ;
+ fs_bp->next = NULL ;
+ fs_bp->pipe = NULL ;
+ fs_bp->rq = NULL ;
+ bp += sizeof( *set ) ;
+ bp = dn_copy_set( set, bp );
+ }
+ splx(s);
+ error = sooptcopyout(sopt, buf, size);
+ FREE(buf, M_TEMP);
+ return error ;
+}
+
+/*
+ * Handler for the various dummynet socket options (get, flush, config, del)
+ */
+static int
+ip_dn_ctl(struct sockopt *sopt)
+{
+ int error = 0 ;
+ struct dn_pipe *p, tmp_pipe;
+
+ /* Disallow sets in really-really secure mode. */
+ if (sopt->sopt_dir == SOPT_SET && securelevel >= 3)
+ return (EPERM);
+
+ switch (sopt->sopt_name) {
+ default :
+ printf("ip_dn_ctl -- unknown option %d", sopt->sopt_name);
+ return EINVAL ;
+
+ case IP_DUMMYNET_GET :
+ error = dummynet_get(sopt);
+ break ;
+
+ case IP_DUMMYNET_FLUSH :
+ dummynet_flush() ;
+ break ;
+
+ case IP_DUMMYNET_CONFIGURE :
+ p = &tmp_pipe ;
+ error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
+ if (error)
+ break ;
+ error = config_pipe(p);
+ break ;
+
+ case IP_DUMMYNET_DEL : /* remove a pipe or queue */
+ p = &tmp_pipe ;
+ error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
+ if (error)
+ break ;
+
+ error = delete_pipe(p);
break ;
}
return error ;
@@ -939,10 +1751,17 @@ ip_dn_ctl(struct sockopt *sopt)
static void
ip_dn_init(void)
{
- printf("DUMMYNET initialized (000106)\n");
+ printf("DUMMYNET initialized (000608)\n");
all_pipes = NULL ;
+ all_flow_sets = NULL ;
ready_heap.size = ready_heap.elements = 0 ;
+ ready_heap.offset = 0 ;
+
+ wfq_ready_heap.size = wfq_ready_heap.elements = 0 ;
+ wfq_ready_heap.offset = 0 ;
+
extract_heap.size = extract_heap.elements = 0 ;
+ extract_heap.offset = 0 ;
ip_dn_ctl_ptr = ip_dn_ctl;
timeout(dummynet, NULL, 1);
}
OpenPOWER on IntegriCloud