summaryrefslogtreecommitdiffstats
path: root/sys/kern
diff options
context:
space:
mode:
authorjeff <jeff@FreeBSD.org>2002-10-12 05:32:24 +0000
committerjeff <jeff@FreeBSD.org>2002-10-12 05:32:24 +0000
commitef4d4e378e012b3efd909e2abc5c1ddcf38faee7 (patch)
tree69991942d3c51153d9210031e7380779edf05aaf /sys/kern
parentcf318b70e5aa88b25cdf3d47eacce75c5aa889db (diff)
downloadFreeBSD-src-ef4d4e378e012b3efd909e2abc5c1ddcf38faee7.zip
FreeBSD-src-ef4d4e378e012b3efd909e2abc5c1ddcf38faee7.tar.gz
- Create a new scheduler api that is defined in sys/sched.h
- Begin moving scheduler specific functionality into sched_4bsd.c - Replace direct manipulation of scheduler data with hooks provided by the new api. - Remove KSE specific state modifications and single runq assumptions from kern_switch.c Reviewed by: -arch
Diffstat (limited to 'sys/kern')
-rw-r--r--sys/kern/kern_clock.c3
-rw-r--r--sys/kern/kern_exit.c17
-rw-r--r--sys/kern/kern_fork.c13
-rw-r--r--sys/kern/kern_idle.c5
-rw-r--r--sys/kern/kern_mutex.c6
-rw-r--r--sys/kern/kern_resource.c4
-rw-r--r--sys/kern/kern_subr.c3
-rw-r--r--sys/kern/kern_switch.c60
-rw-r--r--sys/kern/kern_synch.c436
-rw-r--r--sys/kern/ksched.c3
-rw-r--r--sys/kern/sched_4bsd.c635
-rw-r--r--sys/kern/subr_trap.c18
-rw-r--r--sys/kern/subr_turnstile.c6
13 files changed, 696 insertions, 513 deletions
diff --git a/sys/kern/kern_clock.c b/sys/kern/kern_clock.c
index e50b731..d918728 100644
--- a/sys/kern/kern_clock.c
+++ b/sys/kern/kern_clock.c
@@ -51,6 +51,7 @@
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
+#include <sys/sched.h>
#include <sys/signalvar.h>
#include <sys/smp.h>
#include <vm/vm.h>
@@ -437,7 +438,7 @@ statclock_process(ke, pc, user)
}
}
- schedclock(ke->ke_thread);
+ sched_clock(ke->ke_thread);
/* Update resource usage integrals and maximums. */
if ((pstats = p->p_stats) != NULL &&
diff --git a/sys/kern/kern_exit.c b/sys/kern/kern_exit.c
index a586bef..6c83432 100644
--- a/sys/kern/kern_exit.c
+++ b/sys/kern/kern_exit.c
@@ -57,6 +57,7 @@
#include <sys/vnode.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
+#include <sys/sched.h>
#include <sys/sx.h>
#include <sys/ptrace.h>
#include <sys/acct.h> /* for acct_process() function prototype */
@@ -605,21 +606,13 @@ loop:
nfound++;
if (p->p_state == PRS_ZOMBIE) {
/*
- * charge childs scheduling cpu usage to parent
- * XXXKSE assume only one thread & kse & ksegrp
- * keep estcpu in each ksegrp
- * so charge it to the ksegrp that did the wait
- * since process estcpu is sum of all ksegrps,
- * this is strictly as expected.
- * Assume that the child process aggregated all
- * tke estcpu into the 'build-in' ksegrp.
- * XXXKSE
+ * Allow the scheduler to adjust the priority of the
+ * parent when a kseg is exiting.
*/
if (curthread->td_proc->p_pid != 1) {
mtx_lock_spin(&sched_lock);
- curthread->td_ksegrp->kg_estcpu =
- ESTCPULIM(curthread->td_ksegrp->kg_estcpu +
- FIRST_KSEGRP_IN_PROC(p)->kg_estcpu);
+ sched_exit(curthread->td_ksegrp,
+ FIRST_KSEGRP_IN_PROC(p));
mtx_unlock_spin(&sched_lock);
}
diff --git a/sys/kern/kern_fork.c b/sys/kern/kern_fork.c
index 0af883b..9c2169a 100644
--- a/sys/kern/kern_fork.c
+++ b/sys/kern/kern_fork.c
@@ -53,6 +53,7 @@
#include <sys/proc.h>
#include <sys/pioctl.h>
#include <sys/resourcevar.h>
+#include <sys/sched.h>
#include <sys/syscall.h>
#include <sys/vnode.h>
#include <sys/acct.h>
@@ -515,6 +516,12 @@ again:
p2->p_sflag = PS_INMEM;
if (p1->p_sflag & PS_PROFIL)
startprofclock(p2);
+ /*
+ * Allow the scheduler to adjust the priority of the child and
+ * parent while we hold the sched_lock.
+ */
+ sched_fork(td->td_ksegrp, kg2);
+
mtx_unlock_spin(&sched_lock);
p2->p_ucred = crhold(td->td_ucred);
td2->td_ucred = crhold(p2->p_ucred); /* XXXKSE */
@@ -635,12 +642,6 @@ again:
}
/*
- * set priority of child to be that of parent.
- * XXXKSE this needs redefining..
- */
- kg2->kg_estcpu = td->td_ksegrp->kg_estcpu;
-
- /*
* This begins the section where we must prevent the parent
* from being swapped.
*/
diff --git a/sys/kern/kern_idle.c b/sys/kern/kern_idle.c
index bf8e922..4d57749 100644
--- a/sys/kern/kern_idle.c
+++ b/sys/kern/kern_idle.c
@@ -16,6 +16,7 @@
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
+#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/unistd.h>
#ifdef KTRACE
@@ -90,9 +91,9 @@ idle_proc(void *dummy)
#ifdef DIAGNOSTIC
count = 0;
- while (count >= 0 && kserunnable() == 0) {
+ while (count >= 0 && sched_runnable() == 0) {
#else
- while (kserunnable() == 0) {
+ while (sched_runnable() == 0) {
#endif
/*
* This is a good place to put things to be done in
diff --git a/sys/kern/kern_mutex.c b/sys/kern/kern_mutex.c
index e60d805..16f598a 100644
--- a/sys/kern/kern_mutex.c
+++ b/sys/kern/kern_mutex.c
@@ -47,6 +47,7 @@
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
+#include <sys/sched.h>
#include <sys/sbuf.h>
#include <sys/stdint.h>
#include <sys/sysctl.h>
@@ -146,13 +147,10 @@ propagate_priority(struct thread *td)
* If on run queue move to new run queue, and quit.
* XXXKSE this gets a lot more complicated under threads
* but try anyhow.
- * We should have a special call to do this more efficiently.
*/
if (TD_ON_RUNQ(td)) {
MPASS(td->td_blocked == NULL);
- remrunqueue(td);
- td->td_priority = pri;
- setrunqueue(td);
+ sched_prio(td, pri);
return;
}
/*
diff --git a/sys/kern/kern_resource.c b/sys/kern/kern_resource.c
index 668a8a2..a0f263d 100644
--- a/sys/kern/kern_resource.c
+++ b/sys/kern/kern_resource.c
@@ -51,6 +51,7 @@
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
+#include <sys/sched.h>
#include <sys/sx.h>
#include <sys/sysent.h>
#include <sys/time.h>
@@ -295,8 +296,7 @@ donice(struct thread *td, struct proc *p, int n)
if (n < low && suser(td))
return (EACCES);
FOREACH_KSEGRP_IN_PROC(p, kg) {
- kg->kg_nice = n;
- (void)resetpriority(kg);
+ sched_nice(kg, n);
}
return (0);
}
diff --git a/sys/kern/kern_subr.c b/sys/kern/kern_subr.c
index 1a44b85..0656598 100644
--- a/sys/kern/kern_subr.c
+++ b/sys/kern/kern_subr.c
@@ -50,6 +50,7 @@
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/resourcevar.h>
+#include <sys/sched.h>
#include <sys/sysctl.h>
#include <sys/vnode.h>
@@ -554,7 +555,7 @@ uio_yield()
td = curthread;
mtx_lock_spin(&sched_lock);
DROP_GIANT();
- td->td_priority = td->td_ksegrp->kg_user_pri; /* XXXKSE */
+ sched_prio(td, td->td_ksegrp->kg_user_pri); /* XXXKSE */
td->td_proc->p_stats->p_ru.ru_nivcsw++;
mi_switch();
mtx_unlock_spin(&sched_lock);
diff --git a/sys/kern/kern_switch.c b/sys/kern/kern_switch.c
index 37500a1..14d6b2f 100644
--- a/sys/kern/kern_switch.c
+++ b/sys/kern/kern_switch.c
@@ -97,16 +97,11 @@ reassigned to keep this true.
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/queue.h>
+#include <sys/sched.h>
#include <machine/critical.h>
CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
-/*
- * Global run queue.
- */
-static struct runq runq;
-SYSINIT(runq, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, runq_init, &runq)
-
void panc(char *string1, char *string2);
#if 0
@@ -129,7 +124,7 @@ choosethread(void)
struct ksegrp *kg;
retry:
- if ((ke = runq_choose(&runq))) {
+ if ((ke = sched_choose())) {
td = ke->ke_thread;
KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
kg = ke->ke_ksegrp;
@@ -228,7 +223,7 @@ kse_reassign(struct kse *ke)
kg->kg_last_assigned = td;
td->td_kse = ke;
ke->ke_thread = td;
- runq_add(&runq, ke);
+ sched_add(ke);
/*
* if we have already borrowed this,
* just pass it to the new thread,
@@ -282,12 +277,6 @@ kse_reassign(struct kse *ke)
CTR1(KTR_RUNQ, "kse_reassign: ke%p idled", ke);
}
-int
-kserunnable(void)
-{
- return runq_check(&runq);
-}
-
/*
* Remove a thread from its KSEGRP's run queue.
* This in turn may remove it from a KSE if it was already assigned
@@ -314,7 +303,7 @@ remrunqueue(struct thread *td)
TD_SET_CAN_RUN(td);
if ((td->td_flags & TDF_UNBOUND) == 0) {
/* Bring its kse with it, leave the thread attached */
- runq_remove(&runq, ke);
+ sched_rem(ke);
ke->ke_state = KES_THREAD;
return;
}
@@ -358,7 +347,7 @@ setrunqueue(struct thread *td)
* and the KSE is always already attached.
* Totally ignore the ksegrp run queue.
*/
- runq_add(&runq, td->td_kse);
+ sched_add(td->td_kse);
return;
}
if ((td->td_flags & TDF_UNBOUND) == 0) {
@@ -371,7 +360,7 @@ setrunqueue(struct thread *td)
TAILQ_REMOVE(&kg->kg_lq, ke, ke_kgrlist);
kg->kg_loan_kses--;
}
- runq_add(&runq, td->td_kse);
+ sched_add(td->td_kse);
return;
}
@@ -416,7 +405,7 @@ setrunqueue(struct thread *td)
ke->ke_thread = NULL;
tda = kg->kg_last_assigned =
TAILQ_PREV(tda, threadqueue, td_runq);
- runq_remove(&runq, ke);
+ sched_rem(ke);
}
} else {
/*
@@ -475,7 +464,7 @@ setrunqueue(struct thread *td)
td2->td_kse = ke;
ke->ke_thread = td2;
}
- runq_add(&runq, ke);
+ sched_add(ke);
}
}
@@ -592,15 +581,6 @@ runq_add(struct runq *rq, struct kse *ke)
struct rqhead *rqh;
int pri;
- mtx_assert(&sched_lock, MA_OWNED);
- KASSERT((ke->ke_thread != NULL), ("runq_add: No thread on KSE"));
- KASSERT((ke->ke_thread->td_kse != NULL),
- ("runq_add: No KSE on thread"));
- KASSERT(ke->ke_state != KES_ONRUNQ,
- ("runq_add: kse %p (%s) already in run queue", ke,
- ke->ke_proc->p_comm));
- KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
- ("runq_add: process swapped out"));
pri = ke->ke_thread->td_priority / RQ_PPQ;
ke->ke_rqindex = pri;
runq_setbit(rq, pri);
@@ -608,8 +588,6 @@ runq_add(struct runq *rq, struct kse *ke)
CTR4(KTR_RUNQ, "runq_add: p=%p pri=%d %d rqh=%p",
ke->ke_proc, ke->ke_thread->td_priority, pri, rqh);
TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
- ke->ke_ksegrp->kg_runq_kses++;
- ke->ke_state = KES_ONRUNQ;
}
/*
@@ -636,9 +614,7 @@ runq_check(struct runq *rq)
}
/*
- * Find and remove the highest priority process from the run queue.
- * If there are no runnable processes, the per-cpu idle process is
- * returned. Will not return NULL under any circumstances.
+ * Find the highest priority process on the run queue.
*/
struct kse *
runq_choose(struct runq *rq)
@@ -654,20 +630,6 @@ runq_choose(struct runq *rq)
KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
CTR3(KTR_RUNQ,
"runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
- TAILQ_REMOVE(rqh, ke, ke_procq);
- ke->ke_ksegrp->kg_runq_kses--;
- if (TAILQ_EMPTY(rqh)) {
- CTR0(KTR_RUNQ, "runq_choose: empty");
- runq_clrbit(rq, pri);
- }
-
- ke->ke_state = KES_THREAD;
- KASSERT((ke->ke_thread != NULL),
- ("runq_choose: No thread on KSE"));
- KASSERT((ke->ke_thread->td_kse != NULL),
- ("runq_choose: No KSE on thread"));
- KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
- ("runq_choose: process swapped out"));
return (ke);
}
CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
@@ -686,8 +648,6 @@ runq_remove(struct runq *rq, struct kse *ke)
struct rqhead *rqh;
int pri;
- KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
- mtx_assert(&sched_lock, MA_OWNED);
KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
("runq_remove: process swapped out"));
pri = ke->ke_rqindex;
@@ -700,8 +660,6 @@ runq_remove(struct runq *rq, struct kse *ke)
CTR0(KTR_RUNQ, "runq_remove: empty");
runq_clrbit(rq, pri);
}
- ke->ke_state = KES_THREAD;
- ke->ke_ksegrp->kg_runq_kses--;
}
#if 0
diff --git a/sys/kern/kern_synch.c b/sys/kern/kern_synch.c
index 29c3838..b758c96 100644
--- a/sys/kern/kern_synch.c
+++ b/sys/kern/kern_synch.c
@@ -51,6 +51,7 @@
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
+#include <sys/sched.h>
#include <sys/signalvar.h>
#include <sys/smp.h>
#include <sys/sx.h>
@@ -72,11 +73,8 @@ SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
int hogticks;
int lbolt;
-int sched_quantum; /* Roundrobin scheduling quantum in ticks. */
static struct callout loadav_callout;
-static struct callout schedcpu_callout;
-static struct callout roundrobin_callout;
struct loadavg averunnable =
{ {0, 0, 0}, FSCALE }; /* load average, of runnable procs */
@@ -92,316 +90,6 @@ static fixpt_t cexp[3] = {
static void endtsleep(void *);
static void loadav(void *arg);
-static void roundrobin(void *arg);
-static void schedcpu(void *arg);
-
-static int
-sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
-{
- int error, new_val;
-
- new_val = sched_quantum * tick;
- error = sysctl_handle_int(oidp, &new_val, 0, req);
- if (error != 0 || req->newptr == NULL)
- return (error);
- if (new_val < tick)
- return (EINVAL);
- sched_quantum = new_val / tick;
- hogticks = 2 * sched_quantum;
- return (0);
-}
-
-SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
- 0, sizeof sched_quantum, sysctl_kern_quantum, "I",
- "Roundrobin scheduling quantum in microseconds");
-
-/*
- * Arrange to reschedule if necessary, taking the priorities and
- * schedulers into account.
- */
-void
-maybe_resched(struct thread *td)
-{
-
- mtx_assert(&sched_lock, MA_OWNED);
- if (td->td_priority < curthread->td_priority)
- curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
-}
-
-int
-roundrobin_interval(void)
-{
- return (sched_quantum);
-}
-
-/*
- * Force switch among equal priority processes every 100ms.
- * We don't actually need to force a context switch of the current process.
- * The act of firing the event triggers a context switch to softclock() and
- * then switching back out again which is equivalent to a preemption, thus
- * no further work is needed on the local CPU.
- */
-/* ARGSUSED */
-static void
-roundrobin(arg)
- void *arg;
-{
-
-#ifdef SMP
- mtx_lock_spin(&sched_lock);
- forward_roundrobin();
- mtx_unlock_spin(&sched_lock);
-#endif
-
- callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
-}
-
-/*
- * Constants for digital decay and forget:
- * 90% of (p_estcpu) usage in 5 * loadav time
- * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
- * Note that, as ps(1) mentions, this can let percentages
- * total over 100% (I've seen 137.9% for 3 processes).
- *
- * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
- *
- * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
- * That is, the system wants to compute a value of decay such
- * that the following for loop:
- * for (i = 0; i < (5 * loadavg); i++)
- * p_estcpu *= decay;
- * will compute
- * p_estcpu *= 0.1;
- * for all values of loadavg:
- *
- * Mathematically this loop can be expressed by saying:
- * decay ** (5 * loadavg) ~= .1
- *
- * The system computes decay as:
- * decay = (2 * loadavg) / (2 * loadavg + 1)
- *
- * We wish to prove that the system's computation of decay
- * will always fulfill the equation:
- * decay ** (5 * loadavg) ~= .1
- *
- * If we compute b as:
- * b = 2 * loadavg
- * then
- * decay = b / (b + 1)
- *
- * We now need to prove two things:
- * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
- * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
- *
- * Facts:
- * For x close to zero, exp(x) =~ 1 + x, since
- * exp(x) = 0! + x**1/1! + x**2/2! + ... .
- * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
- * For x close to zero, ln(1+x) =~ x, since
- * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
- * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
- * ln(.1) =~ -2.30
- *
- * Proof of (1):
- * Solve (factor)**(power) =~ .1 given power (5*loadav):
- * solving for factor,
- * ln(factor) =~ (-2.30/5*loadav), or
- * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
- * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
- *
- * Proof of (2):
- * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
- * solving for power,
- * power*ln(b/(b+1)) =~ -2.30, or
- * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
- *
- * Actual power values for the implemented algorithm are as follows:
- * loadav: 1 2 3 4
- * power: 5.68 10.32 14.94 19.55
- */
-
-/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
-#define loadfactor(loadav) (2 * (loadav))
-#define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
-
-/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
-static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
-SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
-
-/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
-static int fscale __unused = FSCALE;
-SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
-
-/*
- * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
- * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
- * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
- *
- * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
- * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
- *
- * If you don't want to bother with the faster/more-accurate formula, you
- * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
- * (more general) method of calculating the %age of CPU used by a process.
- */
-#define CCPU_SHIFT 11
-
-/*
- * Recompute process priorities, every hz ticks.
- * MP-safe, called without the Giant mutex.
- */
-/* ARGSUSED */
-static void
-schedcpu(arg)
- void *arg;
-{
- register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
- struct thread *td;
- struct proc *p;
- struct kse *ke;
- struct ksegrp *kg;
- int realstathz;
- int awake;
-
- realstathz = stathz ? stathz : hz;
- sx_slock(&allproc_lock);
- FOREACH_PROC_IN_SYSTEM(p) {
- mtx_lock_spin(&sched_lock);
- p->p_swtime++;
- FOREACH_KSEGRP_IN_PROC(p, kg) {
- awake = 0;
- FOREACH_KSE_IN_GROUP(kg, ke) {
- /*
- * Increment time in/out of memory and sleep
- * time (if sleeping). We ignore overflow;
- * with 16-bit int's (remember them?)
- * overflow takes 45 days.
- */
- /*
- * The kse slptimes are not touched in wakeup
- * because the thread may not HAVE a KSE.
- */
- if (ke->ke_state == KES_ONRUNQ) {
- awake = 1;
- ke->ke_flags &= ~KEF_DIDRUN;
- } else if ((ke->ke_state == KES_THREAD) &&
- (TD_IS_RUNNING(ke->ke_thread))) {
- awake = 1;
- /* Do not clear KEF_DIDRUN */
- } else if (ke->ke_flags & KEF_DIDRUN) {
- awake = 1;
- ke->ke_flags &= ~KEF_DIDRUN;
- }
-
- /*
- * pctcpu is only for ps?
- * Do it per kse.. and add them up at the end?
- * XXXKSE
- */
- ke->ke_pctcpu
- = (ke->ke_pctcpu * ccpu) >> FSHIFT;
- /*
- * If the kse has been idle the entire second,
- * stop recalculating its priority until
- * it wakes up.
- */
- if (ke->ke_cpticks == 0)
- continue;
-#if (FSHIFT >= CCPU_SHIFT)
- ke->ke_pctcpu += (realstathz == 100) ?
- ((fixpt_t) ke->ke_cpticks) <<
- (FSHIFT - CCPU_SHIFT) :
- 100 * (((fixpt_t) ke->ke_cpticks) <<
- (FSHIFT - CCPU_SHIFT)) / realstathz;
-#else
- ke->ke_pctcpu += ((FSCALE - ccpu) *
- (ke->ke_cpticks * FSCALE / realstathz)) >>
- FSHIFT;
-#endif
- ke->ke_cpticks = 0;
- } /* end of kse loop */
- /*
- * If there are ANY running threads in this KSEGRP,
- * then don't count it as sleeping.
- */
- if (awake) {
- if (kg->kg_slptime > 1) {
- /*
- * In an ideal world, this should not
- * happen, because whoever woke us
- * up from the long sleep should have
- * unwound the slptime and reset our
- * priority before we run at the stale
- * priority. Should KASSERT at some
- * point when all the cases are fixed.
- */
- updatepri(kg);
- }
- kg->kg_slptime = 0;
- } else {
- kg->kg_slptime++;
- }
- if (kg->kg_slptime > 1)
- continue;
- kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
- resetpriority(kg);
- FOREACH_THREAD_IN_GROUP(kg, td) {
- int changedqueue;
- if (td->td_priority >= PUSER) {
- /*
- * Only change the priority
- * of threads that are still at their
- * user priority.
- * XXXKSE This is problematic
- * as we may need to re-order
- * the threads on the KSEG list.
- */
- changedqueue =
- ((td->td_priority / RQ_PPQ) !=
- (kg->kg_user_pri / RQ_PPQ));
-
- td->td_priority = kg->kg_user_pri;
- if (changedqueue && TD_ON_RUNQ(td)) {
- /* this could be optimised */
- remrunqueue(td);
- td->td_priority =
- kg->kg_user_pri;
- setrunqueue(td);
- } else {
- td->td_priority = kg->kg_user_pri;
- }
- }
- }
- } /* end of ksegrp loop */
- mtx_unlock_spin(&sched_lock);
- } /* end of process loop */
- sx_sunlock(&allproc_lock);
- wakeup(&lbolt);
- callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
-}
-
-/*
- * Recalculate the priority of a process after it has slept for a while.
- * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
- * least six times the loadfactor will decay p_estcpu to zero.
- */
-void
-updatepri(struct ksegrp *kg)
-{
- register unsigned int newcpu;
- register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
-
- newcpu = kg->kg_estcpu;
- if (kg->kg_slptime > 5 * loadfac)
- kg->kg_estcpu = 0;
- else {
- kg->kg_slptime--; /* the first time was done in schedcpu */
- while (newcpu && --kg->kg_slptime)
- newcpu = decay_cpu(loadfac, newcpu);
- kg->kg_estcpu = newcpu;
- }
- resetpriority(kg);
-}
/*
* We're only looking at 7 bits of the address; everything is
@@ -417,8 +105,7 @@ sleepinit(void)
{
int i;
- sched_quantum = hz/10;
- hogticks = 2 * sched_quantum;
+ hogticks = (hz / 10) * 2; /* Default only. */
for (i = 0; i < TABLESIZE; i++)
TAILQ_INIT(&slpque[i]);
}
@@ -519,8 +206,6 @@ msleep(ident, mtx, priority, wmesg, timo)
td->td_wchan = ident;
td->td_wmesg = wmesg;
- td->td_ksegrp->kg_slptime = 0;
- td->td_priority = priority & PRIMASK;
TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
TD_SET_ON_SLEEPQ(td);
if (timo)
@@ -551,11 +236,20 @@ msleep(ident, mtx, priority, wmesg, timo)
catch = 0;
} else
sig = 0;
+
+ /*
+ * Let the scheduler know we're about to voluntarily go to sleep.
+ */
+ sched_sleep(td, priority & PRIMASK);
+
if (TD_ON_SLEEPQ(td)) {
p->p_stats->p_ru.ru_nvcsw++;
TD_SET_SLEEPING(td);
mi_switch();
}
+ /*
+ * We're awake from voluntary sleep.
+ */
CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
p->p_comm);
KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
@@ -754,7 +448,7 @@ mi_switch(void)
u_int sched_nest;
mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
- KASSERT((ke->ke_state == KES_THREAD), ("mi_switch: kse state?"));
+
KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
#ifdef INVARIANTS
if (!TD_ON_LOCK(td) &&
@@ -800,38 +494,21 @@ mi_switch(void)
PCPU_SET(switchtime, new_switchtime);
CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
p->p_comm);
+
sched_nest = sched_lock.mtx_recurse;
- td->td_lastcpu = ke->ke_oncpu;
- ke->ke_oncpu = NOCPU;
- ke->ke_flags &= ~KEF_NEEDRESCHED;
- /*
- * At the last moment, if this thread is still marked RUNNING,
- * then put it back on the run queue as it has not been suspended
- * or stopped or any thing else similar.
- */
- if (TD_IS_RUNNING(td)) {
- /* Put us back on the run queue (kse and all). */
- setrunqueue(td);
- } else if (p->p_flag & P_KSES) {
- /*
- * We will not be on the run queue. So we must be
- * sleeping or similar. As it's available,
- * someone else can use the KSE if they need it.
- * (If bound LOANING can still occur).
- */
- kse_reassign(ke);
- }
+ sched_switchout(td);
cpu_switch(); /* SHAZAM!!*/
+ sched_lock.mtx_recurse = sched_nest;
+ sched_lock.mtx_lock = (uintptr_t)td;
+ sched_switchin(td);
+
/*
* Start setting up stats etc. for the incoming thread.
* Similar code in fork_exit() is returned to by cpu_switch()
* in the case of a new thread/process.
*/
- td->td_kse->ke_oncpu = PCPU_GET(cpuid);
- sched_lock.mtx_recurse = sched_nest;
- sched_lock.mtx_lock = (uintptr_t)td;
CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
p->p_comm);
if (PCPU_GET(switchtime.sec) == 0)
@@ -855,7 +532,6 @@ void
setrunnable(struct thread *td)
{
struct proc *p = td->td_proc;
- struct ksegrp *kg;
mtx_assert(&sched_lock, MA_OWNED);
switch (p->p_state) {
@@ -886,40 +562,8 @@ setrunnable(struct thread *td)
p->p_sflag |= PS_SWAPINREQ;
wakeup(&proc0);
}
- } else {
- kg = td->td_ksegrp;
- if (kg->kg_slptime > 1)
- updatepri(kg);
- kg->kg_slptime = 0;
- setrunqueue(td);
- maybe_resched(td);
- }
-}
-
-/*
- * Compute the priority of a process when running in user mode.
- * Arrange to reschedule if the resulting priority is better
- * than that of the current process.
- */
-void
-resetpriority(kg)
- register struct ksegrp *kg;
-{
- register unsigned int newpriority;
- struct thread *td;
-
- mtx_lock_spin(&sched_lock);
- if (kg->kg_pri_class == PRI_TIMESHARE) {
- newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
- NICE_WEIGHT * (kg->kg_nice - PRIO_MIN);
- newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
- PRI_MAX_TIMESHARE);
- kg->kg_user_pri = newpriority;
- }
- FOREACH_THREAD_IN_GROUP(kg, td) {
- maybe_resched(td); /* XXXKSE silly */
- }
- mtx_unlock_spin(&sched_lock);
+ } else
+ sched_wakeup(td);
}
/*
@@ -973,51 +617,13 @@ static void
sched_setup(dummy)
void *dummy;
{
-
- callout_init(&schedcpu_callout, 1);
- callout_init(&roundrobin_callout, 0);
callout_init(&loadav_callout, 0);
/* Kick off timeout driven events by calling first time. */
- roundrobin(NULL);
- schedcpu(NULL);
loadav(NULL);
}
/*
- * We adjust the priority of the current process. The priority of
- * a process gets worse as it accumulates CPU time. The cpu usage
- * estimator (p_estcpu) is increased here. resetpriority() will
- * compute a different priority each time p_estcpu increases by
- * INVERSE_ESTCPU_WEIGHT
- * (until MAXPRI is reached). The cpu usage estimator ramps up
- * quite quickly when the process is running (linearly), and decays
- * away exponentially, at a rate which is proportionally slower when
- * the system is busy. The basic principle is that the system will
- * 90% forget that the process used a lot of CPU time in 5 * loadav
- * seconds. This causes the system to favor processes which haven't
- * run much recently, and to round-robin among other processes.
- */
-void
-schedclock(td)
- struct thread *td;
-{
- struct kse *ke;
- struct ksegrp *kg;
-
- KASSERT((td != NULL), ("schedclock: null thread pointer"));
- ke = td->td_kse;
- kg = td->td_ksegrp;
- ke->ke_cpticks++;
- kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
- if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
- resetpriority(kg);
- if (td->td_priority >= PUSER)
- td->td_priority = kg->kg_user_pri;
- }
-}
-
-/*
* General purpose yield system call
*/
int
@@ -1027,8 +633,8 @@ yield(struct thread *td, struct yield_args *uap)
mtx_assert(&Giant, MA_NOTOWNED);
mtx_lock_spin(&sched_lock);
- td->td_priority = PRI_MAX_TIMESHARE;
kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
+ sched_prio(td, PRI_MAX_TIMESHARE);
mi_switch();
mtx_unlock_spin(&sched_lock);
td->td_retval[0] = 0;
diff --git a/sys/kern/ksched.c b/sys/kern/ksched.c
index 881d4a3..62ab684 100644
--- a/sys/kern/ksched.c
+++ b/sys/kern/ksched.c
@@ -41,6 +41,7 @@
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resource.h>
+#include <sys/sched.h>
#include <posix4/posix4.h>
@@ -56,7 +57,7 @@ int ksched_attach(struct ksched **p)
struct ksched *ksched= p31b_malloc(sizeof(*ksched));
ksched->rr_interval.tv_sec = 0;
- ksched->rr_interval.tv_nsec = 1000000000L / roundrobin_interval();
+ ksched->rr_interval.tv_nsec = 1000000000L / sched_rr_interval();
*p = ksched;
return 0;
diff --git a/sys/kern/sched_4bsd.c b/sys/kern/sched_4bsd.c
new file mode 100644
index 0000000..99d23aa
--- /dev/null
+++ b/sys/kern/sched_4bsd.c
@@ -0,0 +1,635 @@
+/*-
+ * Copyright (c) 1982, 1986, 1990, 1991, 1993
+ * The Regents of the University of California. All rights reserved.
+ * (c) UNIX System Laboratories, Inc.
+ * All or some portions of this file are derived from material licensed
+ * to the University of California by American Telephone and Telegraph
+ * Co. or Unix System Laboratories, Inc. and are reproduced herein with
+ * the permission of UNIX System Laboratories, Inc.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * $FreeBSD$
+ */
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/kernel.h>
+#include <sys/ktr.h>
+#include <sys/lock.h>
+#include <sys/mutex.h>
+#include <sys/proc.h>
+#include <sys/resourcevar.h>
+#include <sys/sched.h>
+#include <sys/smp.h>
+#include <sys/sysctl.h>
+#include <sys/sx.h>
+
+
+static int sched_quantum; /* Roundrobin scheduling quantum in ticks. */
+#define SCHED_QUANTUM (hz / 10); /* Default sched quantum */
+
+static struct callout schedcpu_callout;
+static struct callout roundrobin_callout;
+
+static void roundrobin(void *arg);
+static void schedcpu(void *arg);
+static void sched_setup(void *dummy);
+static void maybe_resched(struct thread *td);
+static void updatepri(struct ksegrp *kg);
+static void resetpriority(struct ksegrp *kg);
+
+SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
+
+/*
+ * Global run queue.
+ */
+static struct runq runq;
+SYSINIT(runq, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, runq_init, &runq)
+
+static int
+sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
+{
+ int error, new_val;
+
+ new_val = sched_quantum * tick;
+ error = sysctl_handle_int(oidp, &new_val, 0, req);
+ if (error != 0 || req->newptr == NULL)
+ return (error);
+ if (new_val < tick)
+ return (EINVAL);
+ sched_quantum = new_val / tick;
+ hogticks = 2 * sched_quantum;
+ return (0);
+}
+
+SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
+ 0, sizeof sched_quantum, sysctl_kern_quantum, "I",
+ "Roundrobin scheduling quantum in microseconds");
+
+/*
+ * Arrange to reschedule if necessary, taking the priorities and
+ * schedulers into account.
+ */
+static void
+maybe_resched(struct thread *td)
+{
+
+ mtx_assert(&sched_lock, MA_OWNED);
+ if (td->td_priority < curthread->td_priority)
+ curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
+}
+
+/*
+ * Force switch among equal priority processes every 100ms.
+ * We don't actually need to force a context switch of the current process.
+ * The act of firing the event triggers a context switch to softclock() and
+ * then switching back out again which is equivalent to a preemption, thus
+ * no further work is needed on the local CPU.
+ */
+/* ARGSUSED */
+static void
+roundrobin(void *arg)
+{
+
+#ifdef SMP
+ mtx_lock_spin(&sched_lock);
+ forward_roundrobin();
+ mtx_unlock_spin(&sched_lock);
+#endif
+
+ callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
+}
+
+/*
+ * Constants for digital decay and forget:
+ * 90% of (p_estcpu) usage in 5 * loadav time
+ * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
+ * Note that, as ps(1) mentions, this can let percentages
+ * total over 100% (I've seen 137.9% for 3 processes).
+ *
+ * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
+ *
+ * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
+ * That is, the system wants to compute a value of decay such
+ * that the following for loop:
+ * for (i = 0; i < (5 * loadavg); i++)
+ * p_estcpu *= decay;
+ * will compute
+ * p_estcpu *= 0.1;
+ * for all values of loadavg:
+ *
+ * Mathematically this loop can be expressed by saying:
+ * decay ** (5 * loadavg) ~= .1
+ *
+ * The system computes decay as:
+ * decay = (2 * loadavg) / (2 * loadavg + 1)
+ *
+ * We wish to prove that the system's computation of decay
+ * will always fulfill the equation:
+ * decay ** (5 * loadavg) ~= .1
+ *
+ * If we compute b as:
+ * b = 2 * loadavg
+ * then
+ * decay = b / (b + 1)
+ *
+ * We now need to prove two things:
+ * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
+ * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
+ *
+ * Facts:
+ * For x close to zero, exp(x) =~ 1 + x, since
+ * exp(x) = 0! + x**1/1! + x**2/2! + ... .
+ * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
+ * For x close to zero, ln(1+x) =~ x, since
+ * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
+ * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
+ * ln(.1) =~ -2.30
+ *
+ * Proof of (1):
+ * Solve (factor)**(power) =~ .1 given power (5*loadav):
+ * solving for factor,
+ * ln(factor) =~ (-2.30/5*loadav), or
+ * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
+ * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
+ *
+ * Proof of (2):
+ * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
+ * solving for power,
+ * power*ln(b/(b+1)) =~ -2.30, or
+ * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
+ *
+ * Actual power values for the implemented algorithm are as follows:
+ * loadav: 1 2 3 4
+ * power: 5.68 10.32 14.94 19.55
+ */
+
+/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
+#define loadfactor(loadav) (2 * (loadav))
+#define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
+
+/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
+static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
+SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
+
+/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
+static int fscale __unused = FSCALE;
+SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
+
+/*
+ * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
+ * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
+ * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
+ *
+ * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
+ * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
+ *
+ * If you don't want to bother with the faster/more-accurate formula, you
+ * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
+ * (more general) method of calculating the %age of CPU used by a process.
+ */
+#define CCPU_SHIFT 11
+
+/*
+ * Recompute process priorities, every hz ticks.
+ * MP-safe, called without the Giant mutex.
+ */
+/* ARGSUSED */
+static void
+schedcpu(void *arg)
+{
+ register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
+ struct thread *td;
+ struct proc *p;
+ struct kse *ke;
+ struct ksegrp *kg;
+ int realstathz;
+ int awake;
+
+ realstathz = stathz ? stathz : hz;
+ sx_slock(&allproc_lock);
+ FOREACH_PROC_IN_SYSTEM(p) {
+ mtx_lock_spin(&sched_lock);
+ p->p_swtime++;
+ FOREACH_KSEGRP_IN_PROC(p, kg) {
+ awake = 0;
+ FOREACH_KSE_IN_GROUP(kg, ke) {
+ /*
+ * Increment time in/out of memory and sleep
+ * time (if sleeping). We ignore overflow;
+ * with 16-bit int's (remember them?)
+ * overflow takes 45 days.
+ */
+ /*
+ * The kse slptimes are not touched in wakeup
+ * because the thread may not HAVE a KSE.
+ */
+ if (ke->ke_state == KES_ONRUNQ) {
+ awake = 1;
+ ke->ke_flags &= ~KEF_DIDRUN;
+ } else if ((ke->ke_state == KES_THREAD) &&
+ (TD_IS_RUNNING(ke->ke_thread))) {
+ awake = 1;
+ /* Do not clear KEF_DIDRUN */
+ } else if (ke->ke_flags & KEF_DIDRUN) {
+ awake = 1;
+ ke->ke_flags &= ~KEF_DIDRUN;
+ }
+
+ /*
+ * pctcpu is only for ps?
+ * Do it per kse.. and add them up at the end?
+ * XXXKSE
+ */
+ ke->ke_pctcpu
+ = (ke->ke_pctcpu * ccpu) >> FSHIFT;
+ /*
+ * If the kse has been idle the entire second,
+ * stop recalculating its priority until
+ * it wakes up.
+ */
+ if (ke->ke_cpticks == 0)
+ continue;
+#if (FSHIFT >= CCPU_SHIFT)
+ ke->ke_pctcpu += (realstathz == 100) ?
+ ((fixpt_t) ke->ke_cpticks) <<
+ (FSHIFT - CCPU_SHIFT) :
+ 100 * (((fixpt_t) ke->ke_cpticks) <<
+ (FSHIFT - CCPU_SHIFT)) / realstathz;
+#else
+ ke->ke_pctcpu += ((FSCALE - ccpu) *
+ (ke->ke_cpticks * FSCALE / realstathz)) >>
+ FSHIFT;
+#endif
+ ke->ke_cpticks = 0;
+ } /* end of kse loop */
+ /*
+ * If there are ANY running threads in this KSEGRP,
+ * then don't count it as sleeping.
+ */
+ if (awake) {
+ if (kg->kg_slptime > 1) {
+ /*
+ * In an ideal world, this should not
+ * happen, because whoever woke us
+ * up from the long sleep should have
+ * unwound the slptime and reset our
+ * priority before we run at the stale
+ * priority. Should KASSERT at some
+ * point when all the cases are fixed.
+ */
+ updatepri(kg);
+ }
+ kg->kg_slptime = 0;
+ } else {
+ kg->kg_slptime++;
+ }
+ if (kg->kg_slptime > 1)
+ continue;
+ kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
+ resetpriority(kg);
+ FOREACH_THREAD_IN_GROUP(kg, td) {
+ int changedqueue;
+ if (td->td_priority >= PUSER) {
+ /*
+ * Only change the priority
+ * of threads that are still at their
+ * user priority.
+ * XXXKSE This is problematic
+ * as we may need to re-order
+ * the threads on the KSEG list.
+ */
+ changedqueue =
+ ((td->td_priority / RQ_PPQ) !=
+ (kg->kg_user_pri / RQ_PPQ));
+
+ td->td_priority = kg->kg_user_pri;
+ if (changedqueue && TD_ON_RUNQ(td)) {
+ /* this could be optimised */
+ remrunqueue(td);
+ td->td_priority =
+ kg->kg_user_pri;
+ setrunqueue(td);
+ } else {
+ td->td_priority = kg->kg_user_pri;
+ }
+ }
+ }
+ } /* end of ksegrp loop */
+ mtx_unlock_spin(&sched_lock);
+ } /* end of process loop */
+ sx_sunlock(&allproc_lock);
+ wakeup(&lbolt);
+ callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
+}
+
+/*
+ * Recalculate the priority of a process after it has slept for a while.
+ * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
+ * least six times the loadfactor will decay p_estcpu to zero.
+ */
+static void
+updatepri(struct ksegrp *kg)
+{
+ register unsigned int newcpu;
+ register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
+
+ newcpu = kg->kg_estcpu;
+ if (kg->kg_slptime > 5 * loadfac)
+ kg->kg_estcpu = 0;
+ else {
+ kg->kg_slptime--; /* the first time was done in schedcpu */
+ while (newcpu && --kg->kg_slptime)
+ newcpu = decay_cpu(loadfac, newcpu);
+ kg->kg_estcpu = newcpu;
+ }
+ resetpriority(kg);
+}
+
+/*
+ * Compute the priority of a process when running in user mode.
+ * Arrange to reschedule if the resulting priority is better
+ * than that of the current process.
+ */
+static void
+resetpriority(struct ksegrp *kg)
+{
+ register unsigned int newpriority;
+ struct thread *td;
+
+ mtx_lock_spin(&sched_lock);
+ if (kg->kg_pri_class == PRI_TIMESHARE) {
+ newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
+ NICE_WEIGHT * (kg->kg_nice - PRIO_MIN);
+ newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
+ PRI_MAX_TIMESHARE);
+ kg->kg_user_pri = newpriority;
+ }
+ FOREACH_THREAD_IN_GROUP(kg, td) {
+ maybe_resched(td); /* XXXKSE silly */
+ }
+ mtx_unlock_spin(&sched_lock);
+}
+
+/* ARGSUSED */
+static void
+sched_setup(void *dummy)
+{
+ if (sched_quantum == 0)
+ sched_quantum = SCHED_QUANTUM;
+ hogticks = 2 * sched_quantum;
+
+ callout_init(&schedcpu_callout, 1);
+ callout_init(&roundrobin_callout, 0);
+
+ /* Kick off timeout driven events by calling first time. */
+ roundrobin(NULL);
+ schedcpu(NULL);
+}
+
+/* External interfaces start here */
+int
+sched_runnable(void)
+{
+ return runq_check(&runq);
+}
+
+int
+sched_rr_interval(void)
+{
+ if (sched_quantum == 0)
+ sched_quantum = SCHED_QUANTUM;
+ return (sched_quantum);
+}
+
+/*
+ * We adjust the priority of the current process. The priority of
+ * a process gets worse as it accumulates CPU time. The cpu usage
+ * estimator (p_estcpu) is increased here. resetpriority() will
+ * compute a different priority each time p_estcpu increases by
+ * INVERSE_ESTCPU_WEIGHT
+ * (until MAXPRI is reached). The cpu usage estimator ramps up
+ * quite quickly when the process is running (linearly), and decays
+ * away exponentially, at a rate which is proportionally slower when
+ * the system is busy. The basic principle is that the system will
+ * 90% forget that the process used a lot of CPU time in 5 * loadav
+ * seconds. This causes the system to favor processes which haven't
+ * run much recently, and to round-robin among other processes.
+ */
+void
+sched_clock(struct thread *td)
+{
+ struct kse *ke;
+ struct ksegrp *kg;
+
+ KASSERT((td != NULL), ("schedclock: null thread pointer"));
+ ke = td->td_kse;
+ kg = td->td_ksegrp;
+ ke->ke_cpticks++;
+ kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
+ if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
+ resetpriority(kg);
+ if (td->td_priority >= PUSER)
+ td->td_priority = kg->kg_user_pri;
+ }
+}
+/*
+ * charge childs scheduling cpu usage to parent.
+ *
+ * XXXKSE assume only one thread & kse & ksegrp keep estcpu in each ksegrp.
+ * Charge it to the ksegrp that did the wait since process estcpu is sum of
+ * all ksegrps, this is strictly as expected. Assume that the child process
+ * aggregated all the estcpu into the 'built-in' ksegrp.
+ */
+void
+sched_exit(struct ksegrp *kg, struct ksegrp *child)
+{
+ kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + child->kg_estcpu);
+}
+
+void
+sched_fork(struct ksegrp *kg, struct ksegrp *child)
+{
+ /*
+ * set priority of child to be that of parent.
+ * XXXKSE this needs redefining..
+ */
+ child->kg_estcpu = kg->kg_estcpu;
+}
+
+void
+sched_nice(struct ksegrp *kg, int nice)
+{
+ kg->kg_nice = nice;
+ resetpriority(kg);
+}
+
+void
+sched_prio(struct thread *td, u_char prio)
+{
+ td->td_priority = prio;
+
+ if (TD_ON_RUNQ(td)) {
+ remrunqueue(td);
+ setrunqueue(td);
+ }
+}
+
+void
+sched_sleep(struct thread *td, u_char prio)
+{
+ td->td_ksegrp->kg_slptime = 0;
+ td->td_priority = prio;
+}
+
+void
+sched_switchin(struct thread *td)
+{
+ td->td_kse->ke_oncpu = PCPU_GET(cpuid);
+}
+
+void
+sched_switchout(struct thread *td)
+{
+ struct kse *ke;
+ struct proc *p;
+
+ ke = td->td_kse;
+ p = td->td_proc;
+
+ KASSERT((ke->ke_state == KES_THREAD), ("mi_switch: kse state?"));
+
+ td->td_lastcpu = ke->ke_oncpu;
+ ke->ke_oncpu = NOCPU;
+ ke->ke_flags &= ~KEF_NEEDRESCHED;
+ /*
+ * At the last moment, if this thread is still marked RUNNING,
+ * then put it back on the run queue as it has not been suspended
+ * or stopped or any thing else similar.
+ */
+ if (TD_IS_RUNNING(td)) {
+ /* Put us back on the run queue (kse and all). */
+ setrunqueue(td);
+ } else if (p->p_flag & P_KSES) {
+ /*
+ * We will not be on the run queue. So we must be
+ * sleeping or similar. As it's available,
+ * someone else can use the KSE if they need it.
+ * (If bound LOANING can still occur).
+ */
+ kse_reassign(ke);
+ }
+}
+
+void
+sched_wakeup(struct thread *td)
+{
+ struct ksegrp *kg;
+
+ kg = td->td_ksegrp;
+ if (kg->kg_slptime > 1)
+ updatepri(kg);
+ kg->kg_slptime = 0;
+ setrunqueue(td);
+ maybe_resched(td);
+}
+
+void
+sched_add(struct kse *ke)
+{
+ mtx_assert(&sched_lock, MA_OWNED);
+ KASSERT((ke->ke_thread != NULL), ("runq_add: No thread on KSE"));
+ KASSERT((ke->ke_thread->td_kse != NULL),
+ ("runq_add: No KSE on thread"));
+ KASSERT(ke->ke_state != KES_ONRUNQ,
+ ("runq_add: kse %p (%s) already in run queue", ke,
+ ke->ke_proc->p_comm));
+ KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
+ ("runq_add: process swapped out"));
+ ke->ke_ksegrp->kg_runq_kses++;
+ ke->ke_state = KES_ONRUNQ;
+
+ runq_add(&runq, ke);
+}
+
+void
+sched_rem(struct kse *ke)
+{
+ KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
+ ("runq_remove: process swapped out"));
+ KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
+ mtx_assert(&sched_lock, MA_OWNED);
+
+ runq_remove(&runq, ke);
+ ke->ke_state = KES_THREAD;
+ ke->ke_ksegrp->kg_runq_kses--;
+}
+
+struct kse *
+sched_choose(void)
+{
+ struct kse *ke;
+
+ ke = runq_choose(&runq);
+
+ if (ke != NULL) {
+ runq_remove(&runq, ke);
+ ke->ke_state = KES_THREAD;
+
+ KASSERT((ke->ke_thread != NULL),
+ ("runq_choose: No thread on KSE"));
+ KASSERT((ke->ke_thread->td_kse != NULL),
+ ("runq_choose: No KSE on thread"));
+ KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
+ ("runq_choose: process swapped out"));
+ }
+ return (ke);
+}
+
+void
+sched_userret(struct thread *td)
+{
+ struct ksegrp *kg;
+ /*
+ * XXX we cheat slightly on the locking here to avoid locking in
+ * the usual case. Setting td_priority here is essentially an
+ * incomplete workaround for not setting it properly elsewhere.
+ * Now that some interrupt handlers are threads, not setting it
+ * properly elsewhere can clobber it in the window between setting
+ * it here and returning to user mode, so don't waste time setting
+ * it perfectly here.
+ */
+ kg = td->td_ksegrp;
+ if (td->td_priority != kg->kg_user_pri) {
+ mtx_lock_spin(&sched_lock);
+ td->td_priority = kg->kg_user_pri;
+ mtx_unlock_spin(&sched_lock);
+ }
+}
diff --git a/sys/kern/subr_trap.c b/sys/kern/subr_trap.c
index c53edc3..9f8bed0 100644
--- a/sys/kern/subr_trap.c
+++ b/sys/kern/subr_trap.c
@@ -53,6 +53,7 @@
#include <sys/kse.h>
#include <sys/ktr.h>
#include <sys/resourcevar.h>
+#include <sys/sched.h>
#include <sys/signalvar.h>
#include <sys/systm.h>
#include <sys/vmmeter.h>
@@ -73,7 +74,6 @@ userret(td, frame, oticks)
{
struct proc *p = td->td_proc;
struct kse *ke = td->td_kse;
- struct ksegrp *kg = td->td_ksegrp;
CTR3(KTR_SYSC, "userret: thread %p (pid %d, %s)", td, p->p_pid,
p->p_comm);
@@ -95,19 +95,9 @@ userret(td, frame, oticks)
#endif
/*
- * XXX we cheat slightly on the locking here to avoid locking in
- * the usual case. Setting td_priority here is essentially an
- * incomplete workaround for not setting it properly elsewhere.
- * Now that some interrupt handlers are threads, not setting it
- * properly elsewhere can clobber it in the window between setting
- * it here and returning to user mode, so don't waste time setting
- * it perfectly here.
+ * Let the scheduler adjust our priority etc.
*/
- if (td->td_priority != kg->kg_user_pri) {
- mtx_lock_spin(&sched_lock);
- td->td_priority = kg->kg_user_pri;
- mtx_unlock_spin(&sched_lock);
- }
+ sched_userret(td);
/*
* We need to check to see if we have to exit or wait due to a
@@ -250,7 +240,7 @@ ast(struct trapframe *framep)
}
if (flags & KEF_NEEDRESCHED) {
mtx_lock_spin(&sched_lock);
- td->td_priority = kg->kg_user_pri;
+ sched_prio(td, kg->kg_user_pri);
p->p_stats->p_ru.ru_nivcsw++;
mi_switch();
mtx_unlock_spin(&sched_lock);
diff --git a/sys/kern/subr_turnstile.c b/sys/kern/subr_turnstile.c
index e60d805..16f598a 100644
--- a/sys/kern/subr_turnstile.c
+++ b/sys/kern/subr_turnstile.c
@@ -47,6 +47,7 @@
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
+#include <sys/sched.h>
#include <sys/sbuf.h>
#include <sys/stdint.h>
#include <sys/sysctl.h>
@@ -146,13 +147,10 @@ propagate_priority(struct thread *td)
* If on run queue move to new run queue, and quit.
* XXXKSE this gets a lot more complicated under threads
* but try anyhow.
- * We should have a special call to do this more efficiently.
*/
if (TD_ON_RUNQ(td)) {
MPASS(td->td_blocked == NULL);
- remrunqueue(td);
- td->td_priority = pri;
- setrunqueue(td);
+ sched_prio(td, pri);
return;
}
/*
OpenPOWER on IntegriCloud