summaryrefslogtreecommitdiffstats
path: root/sys/kern/sched_4bsd.c
diff options
context:
space:
mode:
authorjeff <jeff@FreeBSD.org>2002-10-12 05:32:24 +0000
committerjeff <jeff@FreeBSD.org>2002-10-12 05:32:24 +0000
commitef4d4e378e012b3efd909e2abc5c1ddcf38faee7 (patch)
tree69991942d3c51153d9210031e7380779edf05aaf /sys/kern/sched_4bsd.c
parentcf318b70e5aa88b25cdf3d47eacce75c5aa889db (diff)
downloadFreeBSD-src-ef4d4e378e012b3efd909e2abc5c1ddcf38faee7.zip
FreeBSD-src-ef4d4e378e012b3efd909e2abc5c1ddcf38faee7.tar.gz
- Create a new scheduler api that is defined in sys/sched.h
- Begin moving scheduler specific functionality into sched_4bsd.c - Replace direct manipulation of scheduler data with hooks provided by the new api. - Remove KSE specific state modifications and single runq assumptions from kern_switch.c Reviewed by: -arch
Diffstat (limited to 'sys/kern/sched_4bsd.c')
-rw-r--r--sys/kern/sched_4bsd.c635
1 files changed, 635 insertions, 0 deletions
diff --git a/sys/kern/sched_4bsd.c b/sys/kern/sched_4bsd.c
new file mode 100644
index 0000000..99d23aa
--- /dev/null
+++ b/sys/kern/sched_4bsd.c
@@ -0,0 +1,635 @@
+/*-
+ * Copyright (c) 1982, 1986, 1990, 1991, 1993
+ * The Regents of the University of California. All rights reserved.
+ * (c) UNIX System Laboratories, Inc.
+ * All or some portions of this file are derived from material licensed
+ * to the University of California by American Telephone and Telegraph
+ * Co. or Unix System Laboratories, Inc. and are reproduced herein with
+ * the permission of UNIX System Laboratories, Inc.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * $FreeBSD$
+ */
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/kernel.h>
+#include <sys/ktr.h>
+#include <sys/lock.h>
+#include <sys/mutex.h>
+#include <sys/proc.h>
+#include <sys/resourcevar.h>
+#include <sys/sched.h>
+#include <sys/smp.h>
+#include <sys/sysctl.h>
+#include <sys/sx.h>
+
+
+static int sched_quantum; /* Roundrobin scheduling quantum in ticks. */
+#define SCHED_QUANTUM (hz / 10); /* Default sched quantum */
+
+static struct callout schedcpu_callout;
+static struct callout roundrobin_callout;
+
+static void roundrobin(void *arg);
+static void schedcpu(void *arg);
+static void sched_setup(void *dummy);
+static void maybe_resched(struct thread *td);
+static void updatepri(struct ksegrp *kg);
+static void resetpriority(struct ksegrp *kg);
+
+SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
+
+/*
+ * Global run queue.
+ */
+static struct runq runq;
+SYSINIT(runq, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, runq_init, &runq)
+
+static int
+sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
+{
+ int error, new_val;
+
+ new_val = sched_quantum * tick;
+ error = sysctl_handle_int(oidp, &new_val, 0, req);
+ if (error != 0 || req->newptr == NULL)
+ return (error);
+ if (new_val < tick)
+ return (EINVAL);
+ sched_quantum = new_val / tick;
+ hogticks = 2 * sched_quantum;
+ return (0);
+}
+
+SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
+ 0, sizeof sched_quantum, sysctl_kern_quantum, "I",
+ "Roundrobin scheduling quantum in microseconds");
+
+/*
+ * Arrange to reschedule if necessary, taking the priorities and
+ * schedulers into account.
+ */
+static void
+maybe_resched(struct thread *td)
+{
+
+ mtx_assert(&sched_lock, MA_OWNED);
+ if (td->td_priority < curthread->td_priority)
+ curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
+}
+
+/*
+ * Force switch among equal priority processes every 100ms.
+ * We don't actually need to force a context switch of the current process.
+ * The act of firing the event triggers a context switch to softclock() and
+ * then switching back out again which is equivalent to a preemption, thus
+ * no further work is needed on the local CPU.
+ */
+/* ARGSUSED */
+static void
+roundrobin(void *arg)
+{
+
+#ifdef SMP
+ mtx_lock_spin(&sched_lock);
+ forward_roundrobin();
+ mtx_unlock_spin(&sched_lock);
+#endif
+
+ callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
+}
+
+/*
+ * Constants for digital decay and forget:
+ * 90% of (p_estcpu) usage in 5 * loadav time
+ * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
+ * Note that, as ps(1) mentions, this can let percentages
+ * total over 100% (I've seen 137.9% for 3 processes).
+ *
+ * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
+ *
+ * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
+ * That is, the system wants to compute a value of decay such
+ * that the following for loop:
+ * for (i = 0; i < (5 * loadavg); i++)
+ * p_estcpu *= decay;
+ * will compute
+ * p_estcpu *= 0.1;
+ * for all values of loadavg:
+ *
+ * Mathematically this loop can be expressed by saying:
+ * decay ** (5 * loadavg) ~= .1
+ *
+ * The system computes decay as:
+ * decay = (2 * loadavg) / (2 * loadavg + 1)
+ *
+ * We wish to prove that the system's computation of decay
+ * will always fulfill the equation:
+ * decay ** (5 * loadavg) ~= .1
+ *
+ * If we compute b as:
+ * b = 2 * loadavg
+ * then
+ * decay = b / (b + 1)
+ *
+ * We now need to prove two things:
+ * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
+ * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
+ *
+ * Facts:
+ * For x close to zero, exp(x) =~ 1 + x, since
+ * exp(x) = 0! + x**1/1! + x**2/2! + ... .
+ * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
+ * For x close to zero, ln(1+x) =~ x, since
+ * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
+ * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
+ * ln(.1) =~ -2.30
+ *
+ * Proof of (1):
+ * Solve (factor)**(power) =~ .1 given power (5*loadav):
+ * solving for factor,
+ * ln(factor) =~ (-2.30/5*loadav), or
+ * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
+ * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
+ *
+ * Proof of (2):
+ * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
+ * solving for power,
+ * power*ln(b/(b+1)) =~ -2.30, or
+ * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
+ *
+ * Actual power values for the implemented algorithm are as follows:
+ * loadav: 1 2 3 4
+ * power: 5.68 10.32 14.94 19.55
+ */
+
+/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
+#define loadfactor(loadav) (2 * (loadav))
+#define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
+
+/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
+static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
+SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
+
+/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
+static int fscale __unused = FSCALE;
+SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
+
+/*
+ * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
+ * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
+ * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
+ *
+ * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
+ * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
+ *
+ * If you don't want to bother with the faster/more-accurate formula, you
+ * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
+ * (more general) method of calculating the %age of CPU used by a process.
+ */
+#define CCPU_SHIFT 11
+
+/*
+ * Recompute process priorities, every hz ticks.
+ * MP-safe, called without the Giant mutex.
+ */
+/* ARGSUSED */
+static void
+schedcpu(void *arg)
+{
+ register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
+ struct thread *td;
+ struct proc *p;
+ struct kse *ke;
+ struct ksegrp *kg;
+ int realstathz;
+ int awake;
+
+ realstathz = stathz ? stathz : hz;
+ sx_slock(&allproc_lock);
+ FOREACH_PROC_IN_SYSTEM(p) {
+ mtx_lock_spin(&sched_lock);
+ p->p_swtime++;
+ FOREACH_KSEGRP_IN_PROC(p, kg) {
+ awake = 0;
+ FOREACH_KSE_IN_GROUP(kg, ke) {
+ /*
+ * Increment time in/out of memory and sleep
+ * time (if sleeping). We ignore overflow;
+ * with 16-bit int's (remember them?)
+ * overflow takes 45 days.
+ */
+ /*
+ * The kse slptimes are not touched in wakeup
+ * because the thread may not HAVE a KSE.
+ */
+ if (ke->ke_state == KES_ONRUNQ) {
+ awake = 1;
+ ke->ke_flags &= ~KEF_DIDRUN;
+ } else if ((ke->ke_state == KES_THREAD) &&
+ (TD_IS_RUNNING(ke->ke_thread))) {
+ awake = 1;
+ /* Do not clear KEF_DIDRUN */
+ } else if (ke->ke_flags & KEF_DIDRUN) {
+ awake = 1;
+ ke->ke_flags &= ~KEF_DIDRUN;
+ }
+
+ /*
+ * pctcpu is only for ps?
+ * Do it per kse.. and add them up at the end?
+ * XXXKSE
+ */
+ ke->ke_pctcpu
+ = (ke->ke_pctcpu * ccpu) >> FSHIFT;
+ /*
+ * If the kse has been idle the entire second,
+ * stop recalculating its priority until
+ * it wakes up.
+ */
+ if (ke->ke_cpticks == 0)
+ continue;
+#if (FSHIFT >= CCPU_SHIFT)
+ ke->ke_pctcpu += (realstathz == 100) ?
+ ((fixpt_t) ke->ke_cpticks) <<
+ (FSHIFT - CCPU_SHIFT) :
+ 100 * (((fixpt_t) ke->ke_cpticks) <<
+ (FSHIFT - CCPU_SHIFT)) / realstathz;
+#else
+ ke->ke_pctcpu += ((FSCALE - ccpu) *
+ (ke->ke_cpticks * FSCALE / realstathz)) >>
+ FSHIFT;
+#endif
+ ke->ke_cpticks = 0;
+ } /* end of kse loop */
+ /*
+ * If there are ANY running threads in this KSEGRP,
+ * then don't count it as sleeping.
+ */
+ if (awake) {
+ if (kg->kg_slptime > 1) {
+ /*
+ * In an ideal world, this should not
+ * happen, because whoever woke us
+ * up from the long sleep should have
+ * unwound the slptime and reset our
+ * priority before we run at the stale
+ * priority. Should KASSERT at some
+ * point when all the cases are fixed.
+ */
+ updatepri(kg);
+ }
+ kg->kg_slptime = 0;
+ } else {
+ kg->kg_slptime++;
+ }
+ if (kg->kg_slptime > 1)
+ continue;
+ kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
+ resetpriority(kg);
+ FOREACH_THREAD_IN_GROUP(kg, td) {
+ int changedqueue;
+ if (td->td_priority >= PUSER) {
+ /*
+ * Only change the priority
+ * of threads that are still at their
+ * user priority.
+ * XXXKSE This is problematic
+ * as we may need to re-order
+ * the threads on the KSEG list.
+ */
+ changedqueue =
+ ((td->td_priority / RQ_PPQ) !=
+ (kg->kg_user_pri / RQ_PPQ));
+
+ td->td_priority = kg->kg_user_pri;
+ if (changedqueue && TD_ON_RUNQ(td)) {
+ /* this could be optimised */
+ remrunqueue(td);
+ td->td_priority =
+ kg->kg_user_pri;
+ setrunqueue(td);
+ } else {
+ td->td_priority = kg->kg_user_pri;
+ }
+ }
+ }
+ } /* end of ksegrp loop */
+ mtx_unlock_spin(&sched_lock);
+ } /* end of process loop */
+ sx_sunlock(&allproc_lock);
+ wakeup(&lbolt);
+ callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
+}
+
+/*
+ * Recalculate the priority of a process after it has slept for a while.
+ * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
+ * least six times the loadfactor will decay p_estcpu to zero.
+ */
+static void
+updatepri(struct ksegrp *kg)
+{
+ register unsigned int newcpu;
+ register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
+
+ newcpu = kg->kg_estcpu;
+ if (kg->kg_slptime > 5 * loadfac)
+ kg->kg_estcpu = 0;
+ else {
+ kg->kg_slptime--; /* the first time was done in schedcpu */
+ while (newcpu && --kg->kg_slptime)
+ newcpu = decay_cpu(loadfac, newcpu);
+ kg->kg_estcpu = newcpu;
+ }
+ resetpriority(kg);
+}
+
+/*
+ * Compute the priority of a process when running in user mode.
+ * Arrange to reschedule if the resulting priority is better
+ * than that of the current process.
+ */
+static void
+resetpriority(struct ksegrp *kg)
+{
+ register unsigned int newpriority;
+ struct thread *td;
+
+ mtx_lock_spin(&sched_lock);
+ if (kg->kg_pri_class == PRI_TIMESHARE) {
+ newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
+ NICE_WEIGHT * (kg->kg_nice - PRIO_MIN);
+ newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
+ PRI_MAX_TIMESHARE);
+ kg->kg_user_pri = newpriority;
+ }
+ FOREACH_THREAD_IN_GROUP(kg, td) {
+ maybe_resched(td); /* XXXKSE silly */
+ }
+ mtx_unlock_spin(&sched_lock);
+}
+
+/* ARGSUSED */
+static void
+sched_setup(void *dummy)
+{
+ if (sched_quantum == 0)
+ sched_quantum = SCHED_QUANTUM;
+ hogticks = 2 * sched_quantum;
+
+ callout_init(&schedcpu_callout, 1);
+ callout_init(&roundrobin_callout, 0);
+
+ /* Kick off timeout driven events by calling first time. */
+ roundrobin(NULL);
+ schedcpu(NULL);
+}
+
+/* External interfaces start here */
+int
+sched_runnable(void)
+{
+ return runq_check(&runq);
+}
+
+int
+sched_rr_interval(void)
+{
+ if (sched_quantum == 0)
+ sched_quantum = SCHED_QUANTUM;
+ return (sched_quantum);
+}
+
+/*
+ * We adjust the priority of the current process. The priority of
+ * a process gets worse as it accumulates CPU time. The cpu usage
+ * estimator (p_estcpu) is increased here. resetpriority() will
+ * compute a different priority each time p_estcpu increases by
+ * INVERSE_ESTCPU_WEIGHT
+ * (until MAXPRI is reached). The cpu usage estimator ramps up
+ * quite quickly when the process is running (linearly), and decays
+ * away exponentially, at a rate which is proportionally slower when
+ * the system is busy. The basic principle is that the system will
+ * 90% forget that the process used a lot of CPU time in 5 * loadav
+ * seconds. This causes the system to favor processes which haven't
+ * run much recently, and to round-robin among other processes.
+ */
+void
+sched_clock(struct thread *td)
+{
+ struct kse *ke;
+ struct ksegrp *kg;
+
+ KASSERT((td != NULL), ("schedclock: null thread pointer"));
+ ke = td->td_kse;
+ kg = td->td_ksegrp;
+ ke->ke_cpticks++;
+ kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
+ if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
+ resetpriority(kg);
+ if (td->td_priority >= PUSER)
+ td->td_priority = kg->kg_user_pri;
+ }
+}
+/*
+ * charge childs scheduling cpu usage to parent.
+ *
+ * XXXKSE assume only one thread & kse & ksegrp keep estcpu in each ksegrp.
+ * Charge it to the ksegrp that did the wait since process estcpu is sum of
+ * all ksegrps, this is strictly as expected. Assume that the child process
+ * aggregated all the estcpu into the 'built-in' ksegrp.
+ */
+void
+sched_exit(struct ksegrp *kg, struct ksegrp *child)
+{
+ kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + child->kg_estcpu);
+}
+
+void
+sched_fork(struct ksegrp *kg, struct ksegrp *child)
+{
+ /*
+ * set priority of child to be that of parent.
+ * XXXKSE this needs redefining..
+ */
+ child->kg_estcpu = kg->kg_estcpu;
+}
+
+void
+sched_nice(struct ksegrp *kg, int nice)
+{
+ kg->kg_nice = nice;
+ resetpriority(kg);
+}
+
+void
+sched_prio(struct thread *td, u_char prio)
+{
+ td->td_priority = prio;
+
+ if (TD_ON_RUNQ(td)) {
+ remrunqueue(td);
+ setrunqueue(td);
+ }
+}
+
+void
+sched_sleep(struct thread *td, u_char prio)
+{
+ td->td_ksegrp->kg_slptime = 0;
+ td->td_priority = prio;
+}
+
+void
+sched_switchin(struct thread *td)
+{
+ td->td_kse->ke_oncpu = PCPU_GET(cpuid);
+}
+
+void
+sched_switchout(struct thread *td)
+{
+ struct kse *ke;
+ struct proc *p;
+
+ ke = td->td_kse;
+ p = td->td_proc;
+
+ KASSERT((ke->ke_state == KES_THREAD), ("mi_switch: kse state?"));
+
+ td->td_lastcpu = ke->ke_oncpu;
+ ke->ke_oncpu = NOCPU;
+ ke->ke_flags &= ~KEF_NEEDRESCHED;
+ /*
+ * At the last moment, if this thread is still marked RUNNING,
+ * then put it back on the run queue as it has not been suspended
+ * or stopped or any thing else similar.
+ */
+ if (TD_IS_RUNNING(td)) {
+ /* Put us back on the run queue (kse and all). */
+ setrunqueue(td);
+ } else if (p->p_flag & P_KSES) {
+ /*
+ * We will not be on the run queue. So we must be
+ * sleeping or similar. As it's available,
+ * someone else can use the KSE if they need it.
+ * (If bound LOANING can still occur).
+ */
+ kse_reassign(ke);
+ }
+}
+
+void
+sched_wakeup(struct thread *td)
+{
+ struct ksegrp *kg;
+
+ kg = td->td_ksegrp;
+ if (kg->kg_slptime > 1)
+ updatepri(kg);
+ kg->kg_slptime = 0;
+ setrunqueue(td);
+ maybe_resched(td);
+}
+
+void
+sched_add(struct kse *ke)
+{
+ mtx_assert(&sched_lock, MA_OWNED);
+ KASSERT((ke->ke_thread != NULL), ("runq_add: No thread on KSE"));
+ KASSERT((ke->ke_thread->td_kse != NULL),
+ ("runq_add: No KSE on thread"));
+ KASSERT(ke->ke_state != KES_ONRUNQ,
+ ("runq_add: kse %p (%s) already in run queue", ke,
+ ke->ke_proc->p_comm));
+ KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
+ ("runq_add: process swapped out"));
+ ke->ke_ksegrp->kg_runq_kses++;
+ ke->ke_state = KES_ONRUNQ;
+
+ runq_add(&runq, ke);
+}
+
+void
+sched_rem(struct kse *ke)
+{
+ KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
+ ("runq_remove: process swapped out"));
+ KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
+ mtx_assert(&sched_lock, MA_OWNED);
+
+ runq_remove(&runq, ke);
+ ke->ke_state = KES_THREAD;
+ ke->ke_ksegrp->kg_runq_kses--;
+}
+
+struct kse *
+sched_choose(void)
+{
+ struct kse *ke;
+
+ ke = runq_choose(&runq);
+
+ if (ke != NULL) {
+ runq_remove(&runq, ke);
+ ke->ke_state = KES_THREAD;
+
+ KASSERT((ke->ke_thread != NULL),
+ ("runq_choose: No thread on KSE"));
+ KASSERT((ke->ke_thread->td_kse != NULL),
+ ("runq_choose: No KSE on thread"));
+ KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
+ ("runq_choose: process swapped out"));
+ }
+ return (ke);
+}
+
+void
+sched_userret(struct thread *td)
+{
+ struct ksegrp *kg;
+ /*
+ * XXX we cheat slightly on the locking here to avoid locking in
+ * the usual case. Setting td_priority here is essentially an
+ * incomplete workaround for not setting it properly elsewhere.
+ * Now that some interrupt handlers are threads, not setting it
+ * properly elsewhere can clobber it in the window between setting
+ * it here and returning to user mode, so don't waste time setting
+ * it perfectly here.
+ */
+ kg = td->td_ksegrp;
+ if (td->td_priority != kg->kg_user_pri) {
+ mtx_lock_spin(&sched_lock);
+ td->td_priority = kg->kg_user_pri;
+ mtx_unlock_spin(&sched_lock);
+ }
+}
OpenPOWER on IntegriCloud