summaryrefslogtreecommitdiffstats
path: root/sys/kern/kern_kse.c
diff options
context:
space:
mode:
authormarcel <marcel@FreeBSD.org>2004-04-03 15:59:13 +0000
committermarcel <marcel@FreeBSD.org>2004-04-03 15:59:13 +0000
commit1d37410c51d4ea614965891eab4e733f3c683f23 (patch)
treece24c4f56582c8285ccc25138fe4c0fe2f2839a9 /sys/kern/kern_kse.c
parentcfa2fd0d84e287de795a3e2ab5bef4009c57e83a (diff)
downloadFreeBSD-src-1d37410c51d4ea614965891eab4e733f3c683f23.zip
FreeBSD-src-1d37410c51d4ea614965891eab4e733f3c683f23.tar.gz
Assign thread IDs to kernel threads. The purpose of the thread ID (tid)
is twofold: 1. When a 1:1 or M:N threaded process dumps core, we need to put the register state of each of its kernel threads in the core file. This can only be done by differentiating the pid field in the respective note. For this we need the tid. 2. When thread support is present for remote debugging the kernel with gdb(1), threads need to be identified by an integer due to limitations in the remote protocol. This requires having a tid. To minimize the impact of having thread IDs, threads that are created as part of a fork (i.e. the initial thread in a process) will inherit the process ID (i.e. tid=pid). Subsequent threads will have IDs larger than PID_MAX to avoid interference with the pid allocation algorithm. The assignment of tids is handled by thread_new_tid(). The thread ID allocation algorithm has been written with 3 assumptions in mind: 1. IDs need to be created as fast a possible, 2. Reuse of IDs may happen instantaneously, 3. Someone else will write a better algorithm.
Diffstat (limited to 'sys/kern/kern_kse.c')
-rw-r--r--sys/kern/kern_kse.c100
1 files changed, 98 insertions, 2 deletions
diff --git a/sys/kern/kern_kse.c b/sys/kern/kern_kse.c
index 2c7ddfe..cf2557e 100644
--- a/sys/kern/kern_kse.c
+++ b/sys/kern/kern_kse.c
@@ -133,6 +133,32 @@ SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
"debug virtual cpus");
/*
+ * Thread ID allocator. The allocator keeps track of assigned IDs by
+ * using a bitmap. The bitmap is created in parts. The parts are linked
+ * together.
+ */
+typedef u_long tid_bitmap_word;
+
+#define TID_IDS_PER_PART 1024
+#define TID_IDS_PER_IDX (sizeof(tid_bitmap_word) << 3)
+#define TID_BITMAP_SIZE (TID_IDS_PER_PART / TID_IDS_PER_IDX)
+#define TID_MIN (PID_MAX + 1)
+
+struct tid_bitmap_part {
+ STAILQ_ENTRY(tid_bitmap_part) bmp_next;
+ tid_bitmap_word bmp_bitmap[TID_BITMAP_SIZE];
+ int bmp_base;
+ int bmp_free;
+};
+
+static STAILQ_HEAD(, tid_bitmap_part) tid_bitmap =
+ STAILQ_HEAD_INITIALIZER(tid_bitmap);
+static uma_zone_t tid_zone;
+
+struct mtx tid_lock;
+MTX_SYSINIT(tid_lock, &tid_lock, "TID lock", MTX_DEF);
+
+/*
* Prepare a thread for use.
*/
static void
@@ -141,6 +167,7 @@ thread_ctor(void *mem, int size, void *arg)
struct thread *td;
td = (struct thread *)mem;
+ td->td_tid = 0;
td->td_state = TDS_INACTIVE;
td->td_oncpu = NOCPU;
td->td_critnest = 1;
@@ -152,10 +179,28 @@ thread_ctor(void *mem, int size, void *arg)
static void
thread_dtor(void *mem, int size, void *arg)
{
- struct thread *td;
+ struct thread *td;
+ struct tid_bitmap_part *bmp;
+ int bit, idx, tid;
td = (struct thread *)mem;
+ if (td->td_tid > PID_MAX) {
+ STAILQ_FOREACH(bmp, &tid_bitmap, bmp_next) {
+ if (td->td_tid >= bmp->bmp_base &&
+ td->td_tid < bmp->bmp_base + TID_IDS_PER_PART)
+ break;
+ }
+ KASSERT(bmp != NULL, ("No TID bitmap?"));
+ mtx_lock(&tid_lock);
+ tid = td->td_tid - bmp->bmp_base;
+ idx = tid / TID_IDS_PER_IDX;
+ bit = 1UL << (tid % TID_IDS_PER_IDX);
+ bmp->bmp_bitmap[idx] |= bit;
+ bmp->bmp_free++;
+ mtx_unlock(&tid_lock);
+ }
+
#ifdef INVARIANTS
/* Verify that this thread is in a safe state to free. */
switch (td->td_state) {
@@ -861,6 +906,8 @@ threadinit(void)
thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
thread_ctor, thread_dtor, thread_init, thread_fini,
UMA_ALIGN_CACHE, 0);
+ tid_zone = uma_zcreate("TID", sizeof(struct tid_bitmap_part),
+ NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
ksegrp_zone = uma_zcreate("KSEGRP", sched_sizeof_ksegrp(),
NULL, NULL, ksegrp_init, NULL,
UMA_ALIGN_CACHE, 0);
@@ -1032,6 +1079,53 @@ thread_free(struct thread *td)
}
/*
+ * Assign a thread ID.
+ */
+int
+thread_new_tid(void)
+{
+ struct tid_bitmap_part *bmp, *new;
+ int bit, idx, tid;
+
+ mtx_lock(&tid_lock);
+ STAILQ_FOREACH(bmp, &tid_bitmap, bmp_next) {
+ if (bmp->bmp_free)
+ break;
+ }
+ /* Create a new bitmap if we run out of free bits. */
+ if (bmp == NULL) {
+ mtx_unlock(&tid_lock);
+ new = uma_zalloc(tid_zone, M_WAITOK);
+ mtx_lock(&tid_lock);
+ bmp = STAILQ_LAST(&tid_bitmap, tid_bitmap_part, bmp_next);
+ if (bmp == NULL || bmp->bmp_free < TID_IDS_PER_PART/2) {
+ /* 1=free, 0=assigned. This way we can use ffsl(). */
+ memset(new->bmp_bitmap, ~0U, sizeof(new->bmp_bitmap));
+ new->bmp_base = (bmp == NULL) ? TID_MIN :
+ bmp->bmp_base + TID_IDS_PER_PART;
+ new->bmp_free = TID_IDS_PER_PART;
+ STAILQ_INSERT_TAIL(&tid_bitmap, new, bmp_next);
+ bmp = new;
+ new = NULL;
+ }
+ } else
+ new = NULL;
+ /* We have a bitmap with available IDs. */
+ idx = 0;
+ while (idx < TID_BITMAP_SIZE && bmp->bmp_bitmap[idx] == 0UL)
+ idx++;
+ bit = ffsl(bmp->bmp_bitmap[idx]) - 1;
+ tid = bmp->bmp_base + idx * TID_IDS_PER_IDX + bit;
+ bmp->bmp_bitmap[idx] &= ~(1UL << bit);
+ bmp->bmp_free--;
+ mtx_unlock(&tid_lock);
+
+ if (new != NULL)
+ uma_zfree(tid_zone, new);
+ return (tid);
+}
+
+/*
* Store the thread context in the UTS's mailbox.
* then add the mailbox at the head of a list we are building in user space.
* The list is anchored in the ksegrp structure.
@@ -1472,8 +1566,10 @@ thread_alloc_spare(struct thread *td, struct thread *spare)
if (td->td_standin)
return;
- if (spare == NULL)
+ if (spare == NULL) {
spare = thread_alloc();
+ spare->td_tid = thread_new_tid();
+ }
td->td_standin = spare;
bzero(&spare->td_startzero,
(unsigned)RANGEOF(struct thread, td_startzero, td_endzero));
OpenPOWER on IntegriCloud