summaryrefslogtreecommitdiffstats
path: root/sys/kern/kern_kse.c
diff options
context:
space:
mode:
authorjulian <julian@FreeBSD.org>2004-06-07 07:25:03 +0000
committerjulian <julian@FreeBSD.org>2004-06-07 07:25:03 +0000
commit85b03d36416eb53521158497f18c8bfc876efea5 (patch)
tree1b9e7377bbd4883d437918c1912809246c1256f1 /sys/kern/kern_kse.c
parent6404643ce98574b9dc121c6d897c3d306bb5a3b2 (diff)
downloadFreeBSD-src-85b03d36416eb53521158497f18c8bfc876efea5.zip
FreeBSD-src-85b03d36416eb53521158497f18c8bfc876efea5.tar.gz
Move the KSE ABI specific code here and separate it from code that
is generic to any threading system. This commit does not link this file to the build yet, nor does it remove these functions from their current location in kern_thread.c. (that commit coming up after further review)
Diffstat (limited to 'sys/kern/kern_kse.c')
-rw-r--r--sys/kern/kern_kse.c996
1 files changed, 19 insertions, 977 deletions
diff --git a/sys/kern/kern_kse.c b/sys/kern/kern_kse.c
index fc6a77c..522ed76 100644
--- a/sys/kern/kern_kse.c
+++ b/sys/kern/kern_kse.c
@@ -33,76 +33,49 @@ __FBSDID("$FreeBSD$");
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
-#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
-#include <sys/filedesc.h>
#include <sys/sched.h>
#include <sys/signalvar.h>
#include <sys/sleepqueue.h>
-#include <sys/sx.h>
-#include <sys/tty.h>
-#include <sys/turnstile.h>
-#include <sys/user.h>
#include <sys/kse.h>
#include <sys/ktr.h>
-#include <sys/ucontext.h>
-
-#include <vm/vm.h>
-#include <vm/vm_extern.h>
-#include <vm/vm_object.h>
-#include <vm/pmap.h>
#include <vm/uma.h>
-#include <vm/vm_map.h>
-
-#include <machine/frame.h>
/*
* KSEGRP related storage.
*/
-static uma_zone_t ksegrp_zone;
-static uma_zone_t kse_zone;
-static uma_zone_t thread_zone;
static uma_zone_t upcall_zone;
/* DEBUG ONLY */
-SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
-static int thread_debug = 0;
-SYSCTL_INT(_kern_threads, OID_AUTO, debug, CTLFLAG_RW,
- &thread_debug, 0, "thread debug");
-
-static int max_threads_per_proc = 1500;
-SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
- &max_threads_per_proc, 0, "Limit on threads per proc");
+extern int virtual_cpu;
+extern int thread_debug;
+extern int max_threads_per_proc;
+extern int max_groups_per_proc;
+extern int max_threads_hits;
+extern struct mtx kse_zombie_lock;
-static int max_groups_per_proc = 500;
-SYSCTL_INT(_kern_threads, OID_AUTO, max_groups_per_proc, CTLFLAG_RW,
- &max_groups_per_proc, 0, "Limit on thread groups per proc");
-
-static int max_threads_hits;
-SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
- &max_threads_hits, 0, "");
-
-static int virtual_cpu;
#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
-TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
-TAILQ_HEAD(, kse) zombie_kses = TAILQ_HEAD_INITIALIZER(zombie_kses);
-TAILQ_HEAD(, ksegrp) zombie_ksegrps = TAILQ_HEAD_INITIALIZER(zombie_ksegrps);
TAILQ_HEAD(, kse_upcall) zombie_upcalls =
TAILQ_HEAD_INITIALIZER(zombie_upcalls);
-struct mtx kse_zombie_lock;
-MTX_SYSINIT(kse_zombie_lock, &kse_zombie_lock, "kse zombie lock", MTX_SPIN);
-static void kse_purge(struct proc *p, struct thread *td);
-static void kse_purge_group(struct thread *td);
static int thread_update_usr_ticks(struct thread *td, int user);
static void thread_alloc_spare(struct thread *td, struct thread *spare);
+/* move to proc.h */
+extern void kse_purge(struct proc *p, struct thread *td);
+extern void kse_purge_group(struct thread *td);
+void kseinit(void);
+void kse_GC(void);
+
+static int virtual_cpu;
+SYSCTL_DECL(_kern_threads);
+
static int
sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS)
{
@@ -132,232 +105,6 @@ SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I",
"debug virtual cpus");
-/*
- * Thread ID allocator. The allocator keeps track of assigned IDs by
- * using a bitmap. The bitmap is created in parts. The parts are linked
- * together.
- */
-typedef u_long tid_bitmap_word;
-
-#define TID_IDS_PER_PART 1024
-#define TID_IDS_PER_IDX (sizeof(tid_bitmap_word) << 3)
-#define TID_BITMAP_SIZE (TID_IDS_PER_PART / TID_IDS_PER_IDX)
-#define TID_MIN (PID_MAX + 1)
-
-struct tid_bitmap_part {
- STAILQ_ENTRY(tid_bitmap_part) bmp_next;
- tid_bitmap_word bmp_bitmap[TID_BITMAP_SIZE];
- int bmp_base;
- int bmp_free;
-};
-
-static STAILQ_HEAD(, tid_bitmap_part) tid_bitmap =
- STAILQ_HEAD_INITIALIZER(tid_bitmap);
-static uma_zone_t tid_zone;
-
-struct mtx tid_lock;
-MTX_SYSINIT(tid_lock, &tid_lock, "TID lock", MTX_DEF);
-
-/*
- * Prepare a thread for use.
- */
-static void
-thread_ctor(void *mem, int size, void *arg)
-{
- struct thread *td;
-
- td = (struct thread *)mem;
- td->td_tid = 0;
- td->td_state = TDS_INACTIVE;
- td->td_oncpu = NOCPU;
- td->td_critnest = 1;
-}
-
-/*
- * Reclaim a thread after use.
- */
-static void
-thread_dtor(void *mem, int size, void *arg)
-{
- struct thread *td;
- struct tid_bitmap_part *bmp;
- int bit, idx, tid;
-
- td = (struct thread *)mem;
-
- if (td->td_tid > PID_MAX) {
- STAILQ_FOREACH(bmp, &tid_bitmap, bmp_next) {
- if (td->td_tid >= bmp->bmp_base &&
- td->td_tid < bmp->bmp_base + TID_IDS_PER_PART)
- break;
- }
- KASSERT(bmp != NULL, ("No TID bitmap?"));
- mtx_lock(&tid_lock);
- tid = td->td_tid - bmp->bmp_base;
- idx = tid / TID_IDS_PER_IDX;
- bit = 1UL << (tid % TID_IDS_PER_IDX);
- bmp->bmp_bitmap[idx] |= bit;
- bmp->bmp_free++;
- mtx_unlock(&tid_lock);
- }
-
-#ifdef INVARIANTS
- /* Verify that this thread is in a safe state to free. */
- switch (td->td_state) {
- case TDS_INHIBITED:
- case TDS_RUNNING:
- case TDS_CAN_RUN:
- case TDS_RUNQ:
- /*
- * We must never unlink a thread that is in one of
- * these states, because it is currently active.
- */
- panic("bad state for thread unlinking");
- /* NOTREACHED */
- case TDS_INACTIVE:
- break;
- default:
- panic("bad thread state");
- /* NOTREACHED */
- }
-#endif
-}
-
-/*
- * Initialize type-stable parts of a thread (when newly created).
- */
-static void
-thread_init(void *mem, int size)
-{
- struct thread *td;
-
- td = (struct thread *)mem;
- vm_thread_new(td, 0);
- cpu_thread_setup(td);
- td->td_sleepqueue = sleepq_alloc();
- td->td_turnstile = turnstile_alloc();
- td->td_sched = (struct td_sched *)&td[1];
-}
-
-/*
- * Tear down type-stable parts of a thread (just before being discarded).
- */
-static void
-thread_fini(void *mem, int size)
-{
- struct thread *td;
-
- td = (struct thread *)mem;
- turnstile_free(td->td_turnstile);
- sleepq_free(td->td_sleepqueue);
- vm_thread_dispose(td);
-}
-
-/*
- * Initialize type-stable parts of a kse (when newly created).
- */
-static void
-kse_init(void *mem, int size)
-{
- struct kse *ke;
-
- ke = (struct kse *)mem;
- ke->ke_sched = (struct ke_sched *)&ke[1];
-}
-
-/*
- * Initialize type-stable parts of a ksegrp (when newly created).
- */
-static void
-ksegrp_init(void *mem, int size)
-{
- struct ksegrp *kg;
-
- kg = (struct ksegrp *)mem;
- kg->kg_sched = (struct kg_sched *)&kg[1];
-}
-
-/*
- * KSE is linked into kse group.
- */
-void
-kse_link(struct kse *ke, struct ksegrp *kg)
-{
- struct proc *p = kg->kg_proc;
-
- TAILQ_INSERT_HEAD(&kg->kg_kseq, ke, ke_kglist);
- kg->kg_kses++;
- ke->ke_state = KES_UNQUEUED;
- ke->ke_proc = p;
- ke->ke_ksegrp = kg;
- ke->ke_thread = NULL;
- ke->ke_oncpu = NOCPU;
- ke->ke_flags = 0;
-}
-
-void
-kse_unlink(struct kse *ke)
-{
- struct ksegrp *kg;
-
- mtx_assert(&sched_lock, MA_OWNED);
- kg = ke->ke_ksegrp;
- TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist);
- if (ke->ke_state == KES_IDLE) {
- TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
- kg->kg_idle_kses--;
- }
- --kg->kg_kses;
- /*
- * Aggregate stats from the KSE
- */
- kse_stash(ke);
-}
-
-void
-ksegrp_link(struct ksegrp *kg, struct proc *p)
-{
-
- TAILQ_INIT(&kg->kg_threads);
- TAILQ_INIT(&kg->kg_runq); /* links with td_runq */
- TAILQ_INIT(&kg->kg_slpq); /* links with td_runq */
- TAILQ_INIT(&kg->kg_kseq); /* all kses in ksegrp */
- TAILQ_INIT(&kg->kg_iq); /* all idle kses in ksegrp */
- TAILQ_INIT(&kg->kg_upcalls); /* all upcall structure in ksegrp */
- kg->kg_proc = p;
- /*
- * the following counters are in the -zero- section
- * and may not need clearing
- */
- kg->kg_numthreads = 0;
- kg->kg_runnable = 0;
- kg->kg_kses = 0;
- kg->kg_runq_kses = 0; /* XXXKSE change name */
- kg->kg_idle_kses = 0;
- kg->kg_numupcalls = 0;
- /* link it in now that it's consistent */
- p->p_numksegrps++;
- TAILQ_INSERT_HEAD(&p->p_ksegrps, kg, kg_ksegrp);
-}
-
-void
-ksegrp_unlink(struct ksegrp *kg)
-{
- struct proc *p;
-
- mtx_assert(&sched_lock, MA_OWNED);
- KASSERT((kg->kg_numthreads == 0), ("ksegrp_unlink: residual threads"));
- KASSERT((kg->kg_kses == 0), ("ksegrp_unlink: residual kses"));
- KASSERT((kg->kg_numupcalls == 0), ("ksegrp_unlink: residual upcalls"));
-
- p = kg->kg_proc;
- TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp);
- p->p_numksegrps--;
- /*
- * Aggregate stats from the KSE
- */
- ksegrp_stash(kg);
-}
struct kse_upcall *
upcall_alloc(void)
@@ -409,25 +156,6 @@ upcall_remove(struct thread *td)
}
}
-/*
- * For a newly created process,
- * link up all the structures and its initial threads etc.
- */
-void
-proc_linkup(struct proc *p, struct ksegrp *kg,
- struct kse *ke, struct thread *td)
-{
-
- TAILQ_INIT(&p->p_ksegrps); /* all ksegrps in proc */
- TAILQ_INIT(&p->p_threads); /* all threads in proc */
- TAILQ_INIT(&p->p_suspended); /* Threads suspended */
- p->p_numksegrps = 0;
- p->p_numthreads = 0;
-
- ksegrp_link(kg, p);
- kse_link(ke, kg);
- thread_link(td, kg);
-}
#ifndef _SYS_SYSPROTO_H_
struct kse_switchin_args {
@@ -907,50 +635,17 @@ kse_create(struct thread *td, struct kse_create_args *uap)
}
/*
- * Initialize global thread allocation resources.
+ * Initialize global kse related resources.
*/
void
-threadinit(void)
+kseinit(void)
{
- thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
- thread_ctor, thread_dtor, thread_init, thread_fini,
- UMA_ALIGN_CACHE, 0);
- tid_zone = uma_zcreate("TID", sizeof(struct tid_bitmap_part),
- NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
- ksegrp_zone = uma_zcreate("KSEGRP", sched_sizeof_ksegrp(),
- NULL, NULL, ksegrp_init, NULL,
- UMA_ALIGN_CACHE, 0);
- kse_zone = uma_zcreate("KSE", sched_sizeof_kse(),
- NULL, NULL, kse_init, NULL,
- UMA_ALIGN_CACHE, 0);
upcall_zone = uma_zcreate("UPCALL", sizeof(struct kse_upcall),
NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
}
/*
- * Stash an embarasingly extra thread into the zombie thread queue.
- */
-void
-thread_stash(struct thread *td)
-{
- mtx_lock_spin(&kse_zombie_lock);
- TAILQ_INSERT_HEAD(&zombie_threads, td, td_runq);
- mtx_unlock_spin(&kse_zombie_lock);
-}
-
-/*
- * Stash an embarasingly extra kse into the zombie kse queue.
- */
-void
-kse_stash(struct kse *ke)
-{
- mtx_lock_spin(&kse_zombie_lock);
- TAILQ_INSERT_HEAD(&zombie_kses, ke, ke_procq);
- mtx_unlock_spin(&kse_zombie_lock);
-}
-
-/*
* Stash an embarasingly extra upcall into the zombie upcall queue.
*/
@@ -963,66 +658,23 @@ upcall_stash(struct kse_upcall *ku)
}
/*
- * Stash an embarasingly extra ksegrp into the zombie ksegrp queue.
- */
-void
-ksegrp_stash(struct ksegrp *kg)
-{
- mtx_lock_spin(&kse_zombie_lock);
- TAILQ_INSERT_HEAD(&zombie_ksegrps, kg, kg_ksegrp);
- mtx_unlock_spin(&kse_zombie_lock);
-}
-
-/*
* Reap zombie kse resource.
*/
void
-thread_reap(void)
+kse_GC(void)
{
- struct thread *td_first, *td_next;
- struct kse *ke_first, *ke_next;
- struct ksegrp *kg_first, * kg_next;
struct kse_upcall *ku_first, *ku_next;
/*
* Don't even bother to lock if none at this instant,
* we really don't care about the next instant..
*/
- if ((!TAILQ_EMPTY(&zombie_threads))
- || (!TAILQ_EMPTY(&zombie_kses))
- || (!TAILQ_EMPTY(&zombie_ksegrps))
- || (!TAILQ_EMPTY(&zombie_upcalls))) {
+ if ((!TAILQ_EMPTY(&zombie_upcalls))) {
mtx_lock_spin(&kse_zombie_lock);
- td_first = TAILQ_FIRST(&zombie_threads);
- ke_first = TAILQ_FIRST(&zombie_kses);
- kg_first = TAILQ_FIRST(&zombie_ksegrps);
ku_first = TAILQ_FIRST(&zombie_upcalls);
- if (td_first)
- TAILQ_INIT(&zombie_threads);
- if (ke_first)
- TAILQ_INIT(&zombie_kses);
- if (kg_first)
- TAILQ_INIT(&zombie_ksegrps);
if (ku_first)
TAILQ_INIT(&zombie_upcalls);
mtx_unlock_spin(&kse_zombie_lock);
- while (td_first) {
- td_next = TAILQ_NEXT(td_first, td_runq);
- if (td_first->td_ucred)
- crfree(td_first->td_ucred);
- thread_free(td_first);
- td_first = td_next;
- }
- while (ke_first) {
- ke_next = TAILQ_NEXT(ke_first, ke_procq);
- kse_free(ke_first);
- ke_first = ke_next;
- }
- while (kg_first) {
- kg_next = TAILQ_NEXT(kg_first, kg_ksegrp);
- ksegrp_free(kg_first);
- kg_first = kg_next;
- }
while (ku_first) {
ku_next = TAILQ_NEXT(ku_first, ku_link);
upcall_free(ku_first);
@@ -1032,110 +684,6 @@ thread_reap(void)
}
/*
- * Allocate a ksegrp.
- */
-struct ksegrp *
-ksegrp_alloc(void)
-{
- return (uma_zalloc(ksegrp_zone, M_WAITOK));
-}
-
-/*
- * Allocate a kse.
- */
-struct kse *
-kse_alloc(void)
-{
- return (uma_zalloc(kse_zone, M_WAITOK));
-}
-
-/*
- * Allocate a thread.
- */
-struct thread *
-thread_alloc(void)
-{
- thread_reap(); /* check if any zombies to get */
- return (uma_zalloc(thread_zone, M_WAITOK));
-}
-
-/*
- * Deallocate a ksegrp.
- */
-void
-ksegrp_free(struct ksegrp *td)
-{
- uma_zfree(ksegrp_zone, td);
-}
-
-/*
- * Deallocate a kse.
- */
-void
-kse_free(struct kse *td)
-{
- uma_zfree(kse_zone, td);
-}
-
-/*
- * Deallocate a thread.
- */
-void
-thread_free(struct thread *td)
-{
-
- cpu_thread_clean(td);
- uma_zfree(thread_zone, td);
-}
-
-/*
- * Assign a thread ID.
- */
-int
-thread_new_tid(void)
-{
- struct tid_bitmap_part *bmp, *new;
- int bit, idx, tid;
-
- mtx_lock(&tid_lock);
- STAILQ_FOREACH(bmp, &tid_bitmap, bmp_next) {
- if (bmp->bmp_free)
- break;
- }
- /* Create a new bitmap if we run out of free bits. */
- if (bmp == NULL) {
- mtx_unlock(&tid_lock);
- new = uma_zalloc(tid_zone, M_WAITOK);
- mtx_lock(&tid_lock);
- bmp = STAILQ_LAST(&tid_bitmap, tid_bitmap_part, bmp_next);
- if (bmp == NULL || bmp->bmp_free < TID_IDS_PER_PART/2) {
- /* 1=free, 0=assigned. This way we can use ffsl(). */
- memset(new->bmp_bitmap, ~0U, sizeof(new->bmp_bitmap));
- new->bmp_base = (bmp == NULL) ? TID_MIN :
- bmp->bmp_base + TID_IDS_PER_PART;
- new->bmp_free = TID_IDS_PER_PART;
- STAILQ_INSERT_TAIL(&tid_bitmap, new, bmp_next);
- bmp = new;
- new = NULL;
- }
- } else
- new = NULL;
- /* We have a bitmap with available IDs. */
- idx = 0;
- while (idx < TID_BITMAP_SIZE && bmp->bmp_bitmap[idx] == 0UL)
- idx++;
- bit = ffsl(bmp->bmp_bitmap[idx]) - 1;
- tid = bmp->bmp_base + idx * TID_IDS_PER_IDX + bit;
- bmp->bmp_bitmap[idx] &= ~(1UL << bit);
- bmp->bmp_free--;
- mtx_unlock(&tid_lock);
-
- if (new != NULL)
- uma_zfree(tid_zone, new);
- return (tid);
-}
-
-/*
* Store the thread context in the UTS's mailbox.
* then add the mailbox at the head of a list we are building in user space.
* The list is anchored in the ksegrp structure.
@@ -1332,241 +880,6 @@ thread_update_usr_ticks(struct thread *td, int user)
}
/*
- * Discard the current thread and exit from its context.
- *
- * Because we can't free a thread while we're operating under its context,
- * push the current thread into our CPU's deadthread holder. This means
- * we needn't worry about someone else grabbing our context before we
- * do a cpu_throw().
- */
-void
-thread_exit(void)
-{
- struct thread *td;
- struct kse *ke;
- struct proc *p;
- struct ksegrp *kg;
-
- td = curthread;
- kg = td->td_ksegrp;
- p = td->td_proc;
- ke = td->td_kse;
-
- mtx_assert(&sched_lock, MA_OWNED);
- KASSERT(p != NULL, ("thread exiting without a process"));
- KASSERT(ke != NULL, ("thread exiting without a kse"));
- KASSERT(kg != NULL, ("thread exiting without a kse group"));
- PROC_LOCK_ASSERT(p, MA_OWNED);
- CTR1(KTR_PROC, "thread_exit: thread %p", td);
- mtx_assert(&Giant, MA_NOTOWNED);
-
- if (td->td_standin != NULL) {
- thread_stash(td->td_standin);
- td->td_standin = NULL;
- }
-
- cpu_thread_exit(td); /* XXXSMP */
-
- /*
- * The last thread is left attached to the process
- * So that the whole bundle gets recycled. Skip
- * all this stuff.
- */
- if (p->p_numthreads > 1) {
- thread_unlink(td);
- if (p->p_maxthrwaits)
- wakeup(&p->p_numthreads);
- /*
- * The test below is NOT true if we are the
- * sole exiting thread. P_STOPPED_SNGL is unset
- * in exit1() after it is the only survivor.
- */
- if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
- if (p->p_numthreads == p->p_suspcount) {
- thread_unsuspend_one(p->p_singlethread);
- }
- }
-
- /*
- * Because each upcall structure has an owner thread,
- * owner thread exits only when process is in exiting
- * state, so upcall to userland is no longer needed,
- * deleting upcall structure is safe here.
- * So when all threads in a group is exited, all upcalls
- * in the group should be automatically freed.
- */
- if (td->td_upcall)
- upcall_remove(td);
-
- sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
- sched_exit_kse(FIRST_KSE_IN_PROC(p), ke);
- ke->ke_state = KES_UNQUEUED;
- ke->ke_thread = NULL;
- /*
- * Decide what to do with the KSE attached to this thread.
- */
- if (ke->ke_flags & KEF_EXIT) {
- kse_unlink(ke);
- if (kg->kg_kses == 0) {
- sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), kg);
- ksegrp_unlink(kg);
- }
- }
- else
- kse_reassign(ke);
- PROC_UNLOCK(p);
- td->td_kse = NULL;
- td->td_state = TDS_INACTIVE;
-#if 0
- td->td_proc = NULL;
-#endif
- td->td_ksegrp = NULL;
- td->td_last_kse = NULL;
- PCPU_SET(deadthread, td);
- } else {
- PROC_UNLOCK(p);
- }
- /* XXX Shouldn't cpu_throw() here. */
- mtx_assert(&sched_lock, MA_OWNED);
- cpu_throw(td, choosethread());
- panic("I'm a teapot!");
- /* NOTREACHED */
-}
-
-/*
- * Do any thread specific cleanups that may be needed in wait()
- * called with Giant, proc and schedlock not held.
- */
-void
-thread_wait(struct proc *p)
-{
- struct thread *td;
-
- mtx_assert(&Giant, MA_NOTOWNED);
- KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
- KASSERT((p->p_numksegrps == 1), ("Multiple ksegrps in wait1()"));
- FOREACH_THREAD_IN_PROC(p, td) {
- if (td->td_standin != NULL) {
- thread_free(td->td_standin);
- td->td_standin = NULL;
- }
- cpu_thread_clean(td);
- }
- thread_reap(); /* check for zombie threads etc. */
-}
-
-/*
- * Link a thread to a process.
- * set up anything that needs to be initialized for it to
- * be used by the process.
- *
- * Note that we do not link to the proc's ucred here.
- * The thread is linked as if running but no KSE assigned.
- */
-void
-thread_link(struct thread *td, struct ksegrp *kg)
-{
- struct proc *p;
-
- p = kg->kg_proc;
- td->td_state = TDS_INACTIVE;
- td->td_proc = p;
- td->td_ksegrp = kg;
- td->td_last_kse = NULL;
- td->td_flags = 0;
- td->td_kflags = 0;
- td->td_kse = NULL;
-
- LIST_INIT(&td->td_contested);
- callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
- TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
- TAILQ_INSERT_HEAD(&kg->kg_threads, td, td_kglist);
- p->p_numthreads++;
- kg->kg_numthreads++;
-}
-
-void
-thread_unlink(struct thread *td)
-{
- struct proc *p = td->td_proc;
- struct ksegrp *kg = td->td_ksegrp;
-
- mtx_assert(&sched_lock, MA_OWNED);
- TAILQ_REMOVE(&p->p_threads, td, td_plist);
- p->p_numthreads--;
- TAILQ_REMOVE(&kg->kg_threads, td, td_kglist);
- kg->kg_numthreads--;
- /* could clear a few other things here */
-}
-
-/*
- * Purge a ksegrp resource. When a ksegrp is preparing to
- * exit, it calls this function.
- */
-static void
-kse_purge_group(struct thread *td)
-{
- struct ksegrp *kg;
- struct kse *ke;
-
- kg = td->td_ksegrp;
- KASSERT(kg->kg_numthreads == 1, ("%s: bad thread number", __func__));
- while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) {
- KASSERT(ke->ke_state == KES_IDLE,
- ("%s: wrong idle KSE state", __func__));
- kse_unlink(ke);
- }
- KASSERT((kg->kg_kses == 1),
- ("%s: ksegrp still has %d KSEs", __func__, kg->kg_kses));
- KASSERT((kg->kg_numupcalls == 0),
- ("%s: ksegrp still has %d upcall datas",
- __func__, kg->kg_numupcalls));
-}
-
-/*
- * Purge a process's KSE resource. When a process is preparing to
- * exit, it calls kse_purge to release any extra KSE resources in
- * the process.
- */
-static void
-kse_purge(struct proc *p, struct thread *td)
-{
- struct ksegrp *kg;
- struct kse *ke;
-
- KASSERT(p->p_numthreads == 1, ("bad thread number"));
- while ((kg = TAILQ_FIRST(&p->p_ksegrps)) != NULL) {
- TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp);
- p->p_numksegrps--;
- /*
- * There is no ownership for KSE, after all threads
- * in the group exited, it is possible that some KSEs
- * were left in idle queue, gc them now.
- */
- while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) {
- KASSERT(ke->ke_state == KES_IDLE,
- ("%s: wrong idle KSE state", __func__));
- TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
- kg->kg_idle_kses--;
- TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist);
- kg->kg_kses--;
- kse_stash(ke);
- }
- KASSERT(((kg->kg_kses == 0) && (kg != td->td_ksegrp)) ||
- ((kg->kg_kses == 1) && (kg == td->td_ksegrp)),
- ("ksegrp has wrong kg_kses: %d", kg->kg_kses));
- KASSERT((kg->kg_numupcalls == 0),
- ("%s: ksegrp still has %d upcall datas",
- __func__, kg->kg_numupcalls));
-
- if (kg != td->td_ksegrp)
- ksegrp_stash(kg);
- }
- TAILQ_INSERT_HEAD(&p->p_ksegrps, td->td_ksegrp, kg_ksegrp);
- p->p_numksegrps++;
-}
-
-/*
* This function is intended to be used to initialize a spare thread
* for upcall. Initialize thread's large data area outside sched_lock
* for thread_schedule_upcall().
@@ -1963,277 +1276,6 @@ out:
return (error); /* go sync */
}
-/*
- * Enforce single-threading.
- *
- * Returns 1 if the caller must abort (another thread is waiting to
- * exit the process or similar). Process is locked!
- * Returns 0 when you are successfully the only thread running.
- * A process has successfully single threaded in the suspend mode when
- * There are no threads in user mode. Threads in the kernel must be
- * allowed to continue until they get to the user boundary. They may even
- * copy out their return values and data before suspending. They may however be
- * accellerated in reaching the user boundary as we will wake up
- * any sleeping threads that are interruptable. (PCATCH).
- */
-int
-thread_single(int force_exit)
-{
- struct thread *td;
- struct thread *td2;
- struct proc *p;
-
- td = curthread;
- p = td->td_proc;
- mtx_assert(&Giant, MA_NOTOWNED);
- PROC_LOCK_ASSERT(p, MA_OWNED);
- KASSERT((td != NULL), ("curthread is NULL"));
-
- if ((p->p_flag & P_SA) == 0 && p->p_numthreads == 1)
- return (0);
-
- /* Is someone already single threading? */
- if (p->p_singlethread)
- return (1);
-
- if (force_exit == SINGLE_EXIT) {
- p->p_flag |= P_SINGLE_EXIT;
- } else
- p->p_flag &= ~P_SINGLE_EXIT;
- p->p_flag |= P_STOPPED_SINGLE;
- mtx_lock_spin(&sched_lock);
- p->p_singlethread = td;
- while ((p->p_numthreads - p->p_suspcount) != 1) {
- FOREACH_THREAD_IN_PROC(p, td2) {
- if (td2 == td)
- continue;
- td2->td_flags |= TDF_ASTPENDING;
- if (TD_IS_INHIBITED(td2)) {
- if (force_exit == SINGLE_EXIT) {
- if (TD_IS_SUSPENDED(td2)) {
- thread_unsuspend_one(td2);
- }
- if (TD_ON_SLEEPQ(td2) &&
- (td2->td_flags & TDF_SINTR)) {
- sleepq_abort(td2);
- }
- } else {
- if (TD_IS_SUSPENDED(td2))
- continue;
- /*
- * maybe other inhibitted states too?
- * XXXKSE Is it totally safe to
- * suspend a non-interruptable thread?
- */
- if (td2->td_inhibitors &
- (TDI_SLEEPING | TDI_SWAPPED))
- thread_suspend_one(td2);
- }
- }
- }
- /*
- * Maybe we suspended some threads.. was it enough?
- */
- if ((p->p_numthreads - p->p_suspcount) == 1)
- break;
-
- /*
- * Wake us up when everyone else has suspended.
- * In the mean time we suspend as well.
- */
- thread_suspend_one(td);
- PROC_UNLOCK(p);
- mi_switch(SW_VOL);
- mtx_unlock_spin(&sched_lock);
- PROC_LOCK(p);
- mtx_lock_spin(&sched_lock);
- }
- if (force_exit == SINGLE_EXIT) {
- if (td->td_upcall)
- upcall_remove(td);
- kse_purge(p, td);
- }
- mtx_unlock_spin(&sched_lock);
- return (0);
-}
-
-/*
- * Called in from locations that can safely check to see
- * whether we have to suspend or at least throttle for a
- * single-thread event (e.g. fork).
- *
- * Such locations include userret().
- * If the "return_instead" argument is non zero, the thread must be able to
- * accept 0 (caller may continue), or 1 (caller must abort) as a result.
- *
- * The 'return_instead' argument tells the function if it may do a
- * thread_exit() or suspend, or whether the caller must abort and back
- * out instead.
- *
- * If the thread that set the single_threading request has set the
- * P_SINGLE_EXIT bit in the process flags then this call will never return
- * if 'return_instead' is false, but will exit.
- *
- * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
- *---------------+--------------------+---------------------
- * 0 | returns 0 | returns 0 or 1
- * | when ST ends | immediatly
- *---------------+--------------------+---------------------
- * 1 | thread exits | returns 1
- * | | immediatly
- * 0 = thread_exit() or suspension ok,
- * other = return error instead of stopping the thread.
- *
- * While a full suspension is under effect, even a single threading
- * thread would be suspended if it made this call (but it shouldn't).
- * This call should only be made from places where
- * thread_exit() would be safe as that may be the outcome unless
- * return_instead is set.
- */
-int
-thread_suspend_check(int return_instead)
-{
- struct thread *td;
- struct proc *p;
-
- td = curthread;
- p = td->td_proc;
- mtx_assert(&Giant, MA_NOTOWNED);
- PROC_LOCK_ASSERT(p, MA_OWNED);
- while (P_SHOULDSTOP(p)) {
- if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
- KASSERT(p->p_singlethread != NULL,
- ("singlethread not set"));
- /*
- * The only suspension in action is a
- * single-threading. Single threader need not stop.
- * XXX Should be safe to access unlocked
- * as it can only be set to be true by us.
- */
- if (p->p_singlethread == td)
- return (0); /* Exempt from stopping. */
- }
- if (return_instead)
- return (1);
-
- mtx_lock_spin(&sched_lock);
- thread_stopped(p);
- /*
- * If the process is waiting for us to exit,
- * this thread should just suicide.
- * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
- */
- if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
- if (p->p_flag & P_SA)
- thread_exit();
- else
- thr_exit1();
- }
-
- /*
- * When a thread suspends, it just
- * moves to the processes's suspend queue
- * and stays there.
- */
- thread_suspend_one(td);
- if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
- if (p->p_numthreads == p->p_suspcount) {
- thread_unsuspend_one(p->p_singlethread);
- }
- }
- PROC_UNLOCK(p);
- mi_switch(SW_INVOL);
- mtx_unlock_spin(&sched_lock);
- PROC_LOCK(p);
- }
- return (0);
-}
-
-void
-thread_suspend_one(struct thread *td)
-{
- struct proc *p = td->td_proc;
-
- mtx_assert(&sched_lock, MA_OWNED);
- PROC_LOCK_ASSERT(p, MA_OWNED);
- KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
- p->p_suspcount++;
- TD_SET_SUSPENDED(td);
- TAILQ_INSERT_TAIL(&p->p_suspended, td, td_runq);
- /*
- * Hack: If we are suspending but are on the sleep queue
- * then we are in msleep or the cv equivalent. We
- * want to look like we have two Inhibitors.
- * May already be set.. doesn't matter.
- */
- if (TD_ON_SLEEPQ(td))
- TD_SET_SLEEPING(td);
-}
-
-void
-thread_unsuspend_one(struct thread *td)
-{
- struct proc *p = td->td_proc;
-
- mtx_assert(&sched_lock, MA_OWNED);
- PROC_LOCK_ASSERT(p, MA_OWNED);
- TAILQ_REMOVE(&p->p_suspended, td, td_runq);
- TD_CLR_SUSPENDED(td);
- p->p_suspcount--;
- setrunnable(td);
-}
-
-/*
- * Allow all threads blocked by single threading to continue running.
- */
-void
-thread_unsuspend(struct proc *p)
-{
- struct thread *td;
-
- mtx_assert(&sched_lock, MA_OWNED);
- PROC_LOCK_ASSERT(p, MA_OWNED);
- if (!P_SHOULDSTOP(p)) {
- while (( td = TAILQ_FIRST(&p->p_suspended))) {
- thread_unsuspend_one(td);
- }
- } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
- (p->p_numthreads == p->p_suspcount)) {
- /*
- * Stopping everything also did the job for the single
- * threading request. Now we've downgraded to single-threaded,
- * let it continue.
- */
- thread_unsuspend_one(p->p_singlethread);
- }
-}
-
-void
-thread_single_end(void)
-{
- struct thread *td;
- struct proc *p;
-
- td = curthread;
- p = td->td_proc;
- PROC_LOCK_ASSERT(p, MA_OWNED);
- p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
- mtx_lock_spin(&sched_lock);
- p->p_singlethread = NULL;
- /*
- * If there are other threads they mey now run,
- * unless of course there is a blanket 'stop order'
- * on the process. The single threader must be allowed
- * to continue however as this is a bad place to stop.
- */
- if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
- while (( td = TAILQ_FIRST(&p->p_suspended))) {
- thread_unsuspend_one(td);
- }
- }
- mtx_unlock_spin(&sched_lock);
-}
-
int
thread_upcall_check(struct thread *td)
{
OpenPOWER on IntegriCloud