summaryrefslogtreecommitdiffstats
path: root/sys/fs/nfsclient/nfs_clbio.c
diff options
context:
space:
mode:
authorrmacklem <rmacklem@FreeBSD.org>2009-05-04 15:23:58 +0000
committerrmacklem <rmacklem@FreeBSD.org>2009-05-04 15:23:58 +0000
commite3d34903b6fb9cb09f7e616bde59d97341958fa2 (patch)
tree0246ff14527b554e60f1c9212be00ee8c1128197 /sys/fs/nfsclient/nfs_clbio.c
parentfb2908c8ff440e0985013b83071bd8dfecb11371 (diff)
downloadFreeBSD-src-e3d34903b6fb9cb09f7e616bde59d97341958fa2.zip
FreeBSD-src-e3d34903b6fb9cb09f7e616bde59d97341958fa2.tar.gz
Add the experimental nfs subtree to the kernel, that includes
support for NFSv4 as well as NFSv2 and 3. It lives in 3 subdirs under sys/fs: nfs - functions that are common to the client and server nfsclient - a mutation of sys/nfsclient that call generic functions to do RPCs and handle state. As such, it retains the buffer cache handling characteristics and vnode semantics that are found in sys/nfsclient, for the most part. nfsserver - the server. It includes a DRC designed specifically for NFSv4, that is used instead of the generic DRC in sys/rpc. The build glue will be checked in later, so at this point, it consists of 3 new subdirs that should not affect kernel building. Approved by: kib (mentor)
Diffstat (limited to 'sys/fs/nfsclient/nfs_clbio.c')
-rw-r--r--sys/fs/nfsclient/nfs_clbio.c1934
1 files changed, 1934 insertions, 0 deletions
diff --git a/sys/fs/nfsclient/nfs_clbio.c b/sys/fs/nfsclient/nfs_clbio.c
new file mode 100644
index 0000000..bae44ed
--- /dev/null
+++ b/sys/fs/nfsclient/nfs_clbio.c
@@ -0,0 +1,1934 @@
+/*-
+ * Copyright (c) 1989, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This code is derived from software contributed to Berkeley by
+ * Rick Macklem at The University of Guelph.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/bio.h>
+#include <sys/buf.h>
+#include <sys/kernel.h>
+#include <sys/mount.h>
+#include <sys/proc.h>
+#include <sys/resourcevar.h>
+#include <sys/signalvar.h>
+#include <sys/vmmeter.h>
+#include <sys/vnode.h>
+
+#include <vm/vm.h>
+#include <vm/vm_extern.h>
+#include <vm/vm_page.h>
+#include <vm/vm_object.h>
+#include <vm/vm_pager.h>
+#include <vm/vnode_pager.h>
+
+#include <fs/nfs/nfsport.h>
+#include <fs/nfsclient/nfsmount.h>
+#include <fs/nfsclient/nfs.h>
+#include <fs/nfsclient/nfsnode.h>
+
+extern int newnfs_directio_allow_mmap;
+extern struct nfsstats newnfsstats;
+extern struct mtx ncl_iod_mutex;
+extern int ncl_numasync;
+extern struct proc *ncl_iodwant[NFS_MAXRAHEAD];
+extern struct nfsmount *ncl_iodmount[NFS_MAXRAHEAD];
+extern int newnfs_directio_enable;
+
+int ncl_pbuf_freecnt = -1; /* start out unlimited */
+
+static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
+ struct thread *td);
+static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
+ struct ucred *cred, int ioflag);
+
+/*
+ * Any signal that can interrupt an NFS operation in an intr mount
+ * should be added to this set. SIGSTOP and SIGKILL cannot be masked.
+ */
+static int nfs_sig_set[] = {
+ SIGINT,
+ SIGTERM,
+ SIGHUP,
+ SIGKILL,
+ SIGSTOP,
+ SIGQUIT
+};
+
+#ifdef notnow
+/*
+ * Check to see if one of the signals in our subset is pending on
+ * the process (in an intr mount).
+ */
+int
+ncl_sig_pending(sigset_t set)
+{
+ int i;
+
+ for (i = 0 ; i < sizeof(nfs_sig_set)/sizeof(int) ; i++)
+ if (SIGISMEMBER(set, nfs_sig_set[i]))
+ return (1);
+ return (0);
+}
+#endif
+
+/*
+ * The set/restore sigmask functions are used to (temporarily) overwrite
+ * the process p_sigmask during an RPC call (for example). These are also
+ * used in other places in the NFS client that might tsleep().
+ */
+static void
+ncl_set_sigmask(struct thread *td, sigset_t *oldset)
+{
+ sigset_t newset;
+ int i;
+ struct proc *p;
+
+ SIGFILLSET(newset);
+ if (td == NULL)
+ td = curthread; /* XXX */
+ p = td->td_proc;
+ /* Remove the NFS set of signals from newset */
+ PROC_LOCK(p);
+ mtx_lock(&p->p_sigacts->ps_mtx);
+ for (i = 0 ; i < sizeof(nfs_sig_set)/sizeof(int) ; i++) {
+ /*
+ * But make sure we leave the ones already masked
+ * by the process, ie. remove the signal from the
+ * temporary signalmask only if it wasn't already
+ * in p_sigmask.
+ */
+ if (!SIGISMEMBER(td->td_sigmask, nfs_sig_set[i]) &&
+ !SIGISMEMBER(p->p_sigacts->ps_sigignore, nfs_sig_set[i]))
+ SIGDELSET(newset, nfs_sig_set[i]);
+ }
+ mtx_unlock(&p->p_sigacts->ps_mtx);
+ PROC_UNLOCK(p);
+ kern_sigprocmask(td, SIG_SETMASK, &newset, oldset, 0);
+}
+
+static void
+ncl_restore_sigmask(struct thread *td, sigset_t *set)
+{
+ if (td == NULL)
+ td = curthread; /* XXX */
+ kern_sigprocmask(td, SIG_SETMASK, set, NULL, 0);
+}
+
+/*
+ * NFS wrapper to msleep(), that shoves a new p_sigmask and restores the
+ * old one after msleep() returns.
+ */
+int
+ncl_msleep(struct thread *td, void *ident, struct mtx *mtx, int priority, char *wmesg, int timo)
+{
+ sigset_t oldset;
+ int error;
+ struct proc *p;
+
+ if ((priority & PCATCH) == 0)
+ return msleep(ident, mtx, priority, wmesg, timo);
+ if (td == NULL)
+ td = curthread; /* XXX */
+ ncl_set_sigmask(td, &oldset);
+ error = msleep(ident, mtx, priority, wmesg, timo);
+ ncl_restore_sigmask(td, &oldset);
+ p = td->td_proc;
+ return (error);
+}
+
+/*
+ * Vnode op for VM getpages.
+ */
+int
+ncl_getpages(struct vop_getpages_args *ap)
+{
+ int i, error, nextoff, size, toff, count, npages;
+ struct uio uio;
+ struct iovec iov;
+ vm_offset_t kva;
+ struct buf *bp;
+ struct vnode *vp;
+ struct thread *td;
+ struct ucred *cred;
+ struct nfsmount *nmp;
+ vm_object_t object;
+ vm_page_t *pages;
+ struct nfsnode *np;
+
+ vp = ap->a_vp;
+ np = VTONFS(vp);
+ td = curthread; /* XXX */
+ cred = curthread->td_ucred; /* XXX */
+ nmp = VFSTONFS(vp->v_mount);
+ pages = ap->a_m;
+ count = ap->a_count;
+
+ if ((object = vp->v_object) == NULL) {
+ ncl_printf("nfs_getpages: called with non-merged cache vnode??\n");
+ return VM_PAGER_ERROR;
+ }
+
+ if (newnfs_directio_enable && !newnfs_directio_allow_mmap) {
+ mtx_lock(&np->n_mtx);
+ if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
+ mtx_unlock(&np->n_mtx);
+ ncl_printf("nfs_getpages: called on non-cacheable vnode??\n");
+ return VM_PAGER_ERROR;
+ } else
+ mtx_unlock(&np->n_mtx);
+ }
+
+ mtx_lock(&nmp->nm_mtx);
+ if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
+ (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
+ mtx_unlock(&nmp->nm_mtx);
+ /* We'll never get here for v4, because we always have fsinfo */
+ (void)ncl_fsinfo(nmp, vp, cred, td);
+ } else
+ mtx_unlock(&nmp->nm_mtx);
+
+ npages = btoc(count);
+
+ /*
+ * If the requested page is partially valid, just return it and
+ * allow the pager to zero-out the blanks. Partially valid pages
+ * can only occur at the file EOF.
+ */
+
+ {
+ vm_page_t m = pages[ap->a_reqpage];
+
+ VM_OBJECT_LOCK(object);
+ vm_page_lock_queues();
+ if (m->valid != 0) {
+ /* handled by vm_fault now */
+ /* vm_page_zero_invalid(m, TRUE); */
+ for (i = 0; i < npages; ++i) {
+ if (i != ap->a_reqpage)
+ vm_page_free(pages[i]);
+ }
+ vm_page_unlock_queues();
+ VM_OBJECT_UNLOCK(object);
+ return(0);
+ }
+ vm_page_unlock_queues();
+ VM_OBJECT_UNLOCK(object);
+ }
+
+ /*
+ * We use only the kva address for the buffer, but this is extremely
+ * convienient and fast.
+ */
+ bp = getpbuf(&ncl_pbuf_freecnt);
+
+ kva = (vm_offset_t) bp->b_data;
+ pmap_qenter(kva, pages, npages);
+ PCPU_INC(cnt.v_vnodein);
+ PCPU_ADD(cnt.v_vnodepgsin, npages);
+
+ iov.iov_base = (caddr_t) kva;
+ iov.iov_len = count;
+ uio.uio_iov = &iov;
+ uio.uio_iovcnt = 1;
+ uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
+ uio.uio_resid = count;
+ uio.uio_segflg = UIO_SYSSPACE;
+ uio.uio_rw = UIO_READ;
+ uio.uio_td = td;
+
+ error = ncl_readrpc(vp, &uio, cred);
+ pmap_qremove(kva, npages);
+
+ relpbuf(bp, &ncl_pbuf_freecnt);
+
+ if (error && (uio.uio_resid == count)) {
+ ncl_printf("nfs_getpages: error %d\n", error);
+ VM_OBJECT_LOCK(object);
+ vm_page_lock_queues();
+ for (i = 0; i < npages; ++i) {
+ if (i != ap->a_reqpage)
+ vm_page_free(pages[i]);
+ }
+ vm_page_unlock_queues();
+ VM_OBJECT_UNLOCK(object);
+ return VM_PAGER_ERROR;
+ }
+
+ /*
+ * Calculate the number of bytes read and validate only that number
+ * of bytes. Note that due to pending writes, size may be 0. This
+ * does not mean that the remaining data is invalid!
+ */
+
+ size = count - uio.uio_resid;
+ VM_OBJECT_LOCK(object);
+ vm_page_lock_queues();
+ for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
+ vm_page_t m;
+ nextoff = toff + PAGE_SIZE;
+ m = pages[i];
+
+ if (nextoff <= size) {
+ /*
+ * Read operation filled an entire page
+ */
+ m->valid = VM_PAGE_BITS_ALL;
+ vm_page_undirty(m);
+ } else if (size > toff) {
+ /*
+ * Read operation filled a partial page.
+ */
+ m->valid = 0;
+ vm_page_set_validclean(m, 0, size - toff);
+ /* handled by vm_fault now */
+ /* vm_page_zero_invalid(m, TRUE); */
+ } else {
+ /*
+ * Read operation was short. If no error occured
+ * we may have hit a zero-fill section. We simply
+ * leave valid set to 0.
+ */
+ ;
+ }
+ if (i != ap->a_reqpage) {
+ /*
+ * Whether or not to leave the page activated is up in
+ * the air, but we should put the page on a page queue
+ * somewhere (it already is in the object). Result:
+ * It appears that emperical results show that
+ * deactivating pages is best.
+ */
+
+ /*
+ * Just in case someone was asking for this page we
+ * now tell them that it is ok to use.
+ */
+ if (!error) {
+ if (m->oflags & VPO_WANTED)
+ vm_page_activate(m);
+ else
+ vm_page_deactivate(m);
+ vm_page_wakeup(m);
+ } else {
+ vm_page_free(m);
+ }
+ }
+ }
+ vm_page_unlock_queues();
+ VM_OBJECT_UNLOCK(object);
+ return 0;
+}
+
+/*
+ * Vnode op for VM putpages.
+ */
+int
+ncl_putpages(struct vop_putpages_args *ap)
+{
+ struct uio uio;
+ struct iovec iov;
+ vm_offset_t kva;
+ struct buf *bp;
+ int iomode, must_commit, i, error, npages, count;
+ off_t offset;
+ int *rtvals;
+ struct vnode *vp;
+ struct thread *td;
+ struct ucred *cred;
+ struct nfsmount *nmp;
+ struct nfsnode *np;
+ vm_page_t *pages;
+
+ vp = ap->a_vp;
+ np = VTONFS(vp);
+ td = curthread; /* XXX */
+ cred = curthread->td_ucred; /* XXX */
+ nmp = VFSTONFS(vp->v_mount);
+ pages = ap->a_m;
+ count = ap->a_count;
+ rtvals = ap->a_rtvals;
+ npages = btoc(count);
+ offset = IDX_TO_OFF(pages[0]->pindex);
+
+ mtx_lock(&nmp->nm_mtx);
+ if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
+ (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
+ mtx_unlock(&nmp->nm_mtx);
+ (void)ncl_fsinfo(nmp, vp, cred, td);
+ } else
+ mtx_unlock(&nmp->nm_mtx);
+
+ mtx_lock(&np->n_mtx);
+ if (newnfs_directio_enable && !newnfs_directio_allow_mmap &&
+ (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
+ mtx_unlock(&np->n_mtx);
+ ncl_printf("ncl_putpages: called on noncache-able vnode??\n");
+ mtx_lock(&np->n_mtx);
+ }
+
+ for (i = 0; i < npages; i++)
+ rtvals[i] = VM_PAGER_AGAIN;
+
+ /*
+ * When putting pages, do not extend file past EOF.
+ */
+ if (offset + count > np->n_size) {
+ count = np->n_size - offset;
+ if (count < 0)
+ count = 0;
+ }
+ mtx_unlock(&np->n_mtx);
+
+ /*
+ * We use only the kva address for the buffer, but this is extremely
+ * convienient and fast.
+ */
+ bp = getpbuf(&ncl_pbuf_freecnt);
+
+ kva = (vm_offset_t) bp->b_data;
+ pmap_qenter(kva, pages, npages);
+ PCPU_INC(cnt.v_vnodeout);
+ PCPU_ADD(cnt.v_vnodepgsout, count);
+
+ iov.iov_base = (caddr_t) kva;
+ iov.iov_len = count;
+ uio.uio_iov = &iov;
+ uio.uio_iovcnt = 1;
+ uio.uio_offset = offset;
+ uio.uio_resid = count;
+ uio.uio_segflg = UIO_SYSSPACE;
+ uio.uio_rw = UIO_WRITE;
+ uio.uio_td = td;
+
+ if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
+ iomode = NFSWRITE_UNSTABLE;
+ else
+ iomode = NFSWRITE_FILESYNC;
+
+ error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit);
+
+ pmap_qremove(kva, npages);
+ relpbuf(bp, &ncl_pbuf_freecnt);
+
+ if (!error) {
+ int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
+ for (i = 0; i < nwritten; i++) {
+ rtvals[i] = VM_PAGER_OK;
+ vm_page_undirty(pages[i]);
+ }
+ if (must_commit) {
+ ncl_clearcommit(vp->v_mount);
+ }
+ }
+ return rtvals[0];
+}
+
+/*
+ * For nfs, cache consistency can only be maintained approximately.
+ * Although RFC1094 does not specify the criteria, the following is
+ * believed to be compatible with the reference port.
+ * For nfs:
+ * If the file's modify time on the server has changed since the
+ * last read rpc or you have written to the file,
+ * you may have lost data cache consistency with the
+ * server, so flush all of the file's data out of the cache.
+ * Then force a getattr rpc to ensure that you have up to date
+ * attributes.
+ * NB: This implies that cache data can be read when up to
+ * NFS_ATTRTIMEO seconds out of date. If you find that you need current
+ * attributes this could be forced by setting n_attrstamp to 0 before
+ * the VOP_GETATTR() call.
+ */
+static inline int
+nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
+{
+ int error = 0;
+ struct vattr vattr;
+ struct nfsnode *np = VTONFS(vp);
+ int old_lock;
+
+ /*
+ * Grab the exclusive lock before checking whether the cache is
+ * consistent.
+ * XXX - We can make this cheaper later (by acquiring cheaper locks).
+ * But for now, this suffices.
+ */
+ old_lock = ncl_upgrade_vnlock(vp);
+ mtx_lock(&np->n_mtx);
+ if (np->n_flag & NMODIFIED) {
+ mtx_unlock(&np->n_mtx);
+ if (vp->v_type != VREG) {
+ if (vp->v_type != VDIR)
+ panic("nfs: bioread, not dir");
+ ncl_invaldir(vp);
+ error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
+ if (error)
+ goto out;
+ }
+ np->n_attrstamp = 0;
+ error = VOP_GETATTR(vp, &vattr, cred);
+ if (error)
+ goto out;
+ mtx_lock(&np->n_mtx);
+ np->n_mtime = vattr.va_mtime;
+ mtx_unlock(&np->n_mtx);
+ } else {
+ mtx_unlock(&np->n_mtx);
+ error = VOP_GETATTR(vp, &vattr, cred);
+ if (error)
+ return (error);
+ mtx_lock(&np->n_mtx);
+ if ((np->n_flag & NSIZECHANGED)
+ || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
+ mtx_unlock(&np->n_mtx);
+ if (vp->v_type == VDIR)
+ ncl_invaldir(vp);
+ error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
+ if (error)
+ goto out;
+ mtx_lock(&np->n_mtx);
+ np->n_mtime = vattr.va_mtime;
+ np->n_flag &= ~NSIZECHANGED;
+ }
+ mtx_unlock(&np->n_mtx);
+ }
+out:
+ ncl_downgrade_vnlock(vp, old_lock);
+ return error;
+}
+
+/*
+ * Vnode op for read using bio
+ */
+int
+ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
+{
+ struct nfsnode *np = VTONFS(vp);
+ int biosize, i;
+ struct buf *bp, *rabp;
+ struct thread *td;
+ struct nfsmount *nmp = VFSTONFS(vp->v_mount);
+ daddr_t lbn, rabn;
+ int bcount;
+ int seqcount;
+ int nra, error = 0, n = 0, on = 0;
+
+#ifdef DIAGNOSTIC
+ if (uio->uio_rw != UIO_READ)
+ panic("ncl_read mode");
+#endif
+ if (uio->uio_resid == 0)
+ return (0);
+ if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */
+ return (EINVAL);
+ td = uio->uio_td;
+
+ mtx_lock(&nmp->nm_mtx);
+ if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
+ (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
+ mtx_unlock(&nmp->nm_mtx);
+ (void)ncl_fsinfo(nmp, vp, cred, td);
+ mtx_lock(&nmp->nm_mtx);
+ }
+ if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0)
+ (void) newnfs_iosize(nmp);
+ mtx_unlock(&nmp->nm_mtx);
+
+ if (vp->v_type != VDIR &&
+ (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
+ return (EFBIG);
+
+ if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
+ /* No caching/ no readaheads. Just read data into the user buffer */
+ return ncl_readrpc(vp, uio, cred);
+
+ biosize = vp->v_mount->mnt_stat.f_iosize;
+ seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
+
+ error = nfs_bioread_check_cons(vp, td, cred);
+ if (error)
+ return error;
+
+ do {
+ u_quad_t nsize;
+
+ mtx_lock(&np->n_mtx);
+ nsize = np->n_size;
+ mtx_unlock(&np->n_mtx);
+
+ switch (vp->v_type) {
+ case VREG:
+ NFSINCRGLOBAL(newnfsstats.biocache_reads);
+ lbn = uio->uio_offset / biosize;
+ on = uio->uio_offset & (biosize - 1);
+
+ /*
+ * Start the read ahead(s), as required.
+ */
+ if (nmp->nm_readahead > 0) {
+ for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
+ (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
+ rabn = lbn + 1 + nra;
+ if (incore(&vp->v_bufobj, rabn) == NULL) {
+ rabp = nfs_getcacheblk(vp, rabn, biosize, td);
+ if (!rabp) {
+ error = newnfs_sigintr(nmp, td);
+ if (error)
+ return (error);
+ else
+ break;
+ }
+ if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
+ rabp->b_flags |= B_ASYNC;
+ rabp->b_iocmd = BIO_READ;
+ vfs_busy_pages(rabp, 0);
+ if (ncl_asyncio(nmp, rabp, cred, td)) {
+ rabp->b_flags |= B_INVAL;
+ rabp->b_ioflags |= BIO_ERROR;
+ vfs_unbusy_pages(rabp);
+ brelse(rabp);
+ break;
+ }
+ } else {
+ brelse(rabp);
+ }
+ }
+ }
+ }
+
+ /* Note that bcount is *not* DEV_BSIZE aligned. */
+ bcount = biosize;
+ if ((off_t)lbn * biosize >= nsize) {
+ bcount = 0;
+ } else if ((off_t)(lbn + 1) * biosize > nsize) {
+ bcount = nsize - (off_t)lbn * biosize;
+ }
+ bp = nfs_getcacheblk(vp, lbn, bcount, td);
+
+ if (!bp) {
+ error = newnfs_sigintr(nmp, td);
+ return (error ? error : EINTR);
+ }
+
+ /*
+ * If B_CACHE is not set, we must issue the read. If this
+ * fails, we return an error.
+ */
+
+ if ((bp->b_flags & B_CACHE) == 0) {
+ bp->b_iocmd = BIO_READ;
+ vfs_busy_pages(bp, 0);
+ error = ncl_doio(vp, bp, cred, td);
+ if (error) {
+ brelse(bp);
+ return (error);
+ }
+ }
+
+ /*
+ * on is the offset into the current bp. Figure out how many
+ * bytes we can copy out of the bp. Note that bcount is
+ * NOT DEV_BSIZE aligned.
+ *
+ * Then figure out how many bytes we can copy into the uio.
+ */
+
+ n = 0;
+ if (on < bcount)
+ n = min((unsigned)(bcount - on), uio->uio_resid);
+ break;
+ case VLNK:
+ NFSINCRGLOBAL(newnfsstats.biocache_readlinks);
+ bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
+ if (!bp) {
+ error = newnfs_sigintr(nmp, td);
+ return (error ? error : EINTR);
+ }
+ if ((bp->b_flags & B_CACHE) == 0) {
+ bp->b_iocmd = BIO_READ;
+ vfs_busy_pages(bp, 0);
+ error = ncl_doio(vp, bp, cred, td);
+ if (error) {
+ bp->b_ioflags |= BIO_ERROR;
+ brelse(bp);
+ return (error);
+ }
+ }
+ n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
+ on = 0;
+ break;
+ case VDIR:
+ NFSINCRGLOBAL(newnfsstats.biocache_readdirs);
+ if (np->n_direofoffset
+ && uio->uio_offset >= np->n_direofoffset) {
+ return (0);
+ }
+ lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
+ on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
+ bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
+ if (!bp) {
+ error = newnfs_sigintr(nmp, td);
+ return (error ? error : EINTR);
+ }
+ if ((bp->b_flags & B_CACHE) == 0) {
+ bp->b_iocmd = BIO_READ;
+ vfs_busy_pages(bp, 0);
+ error = ncl_doio(vp, bp, cred, td);
+ if (error) {
+ brelse(bp);
+ }
+ while (error == NFSERR_BAD_COOKIE) {
+ ncl_invaldir(vp);
+ error = ncl_vinvalbuf(vp, 0, td, 1);
+ /*
+ * Yuck! The directory has been modified on the
+ * server. The only way to get the block is by
+ * reading from the beginning to get all the
+ * offset cookies.
+ *
+ * Leave the last bp intact unless there is an error.
+ * Loop back up to the while if the error is another
+ * NFSERR_BAD_COOKIE (double yuch!).
+ */
+ for (i = 0; i <= lbn && !error; i++) {
+ if (np->n_direofoffset
+ && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
+ return (0);
+ bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
+ if (!bp) {
+ error = newnfs_sigintr(nmp, td);
+ return (error ? error : EINTR);
+ }
+ if ((bp->b_flags & B_CACHE) == 0) {
+ bp->b_iocmd = BIO_READ;
+ vfs_busy_pages(bp, 0);
+ error = ncl_doio(vp, bp, cred, td);
+ /*
+ * no error + B_INVAL == directory EOF,
+ * use the block.
+ */
+ if (error == 0 && (bp->b_flags & B_INVAL))
+ break;
+ }
+ /*
+ * An error will throw away the block and the
+ * for loop will break out. If no error and this
+ * is not the block we want, we throw away the
+ * block and go for the next one via the for loop.
+ */
+ if (error || i < lbn)
+ brelse(bp);
+ }
+ }
+ /*
+ * The above while is repeated if we hit another cookie
+ * error. If we hit an error and it wasn't a cookie error,
+ * we give up.
+ */
+ if (error)
+ return (error);
+ }
+
+ /*
+ * If not eof and read aheads are enabled, start one.
+ * (You need the current block first, so that you have the
+ * directory offset cookie of the next block.)
+ */
+ if (nmp->nm_readahead > 0 &&
+ (bp->b_flags & B_INVAL) == 0 &&
+ (np->n_direofoffset == 0 ||
+ (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
+ incore(&vp->v_bufobj, lbn + 1) == NULL) {
+ rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
+ if (rabp) {
+ if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
+ rabp->b_flags |= B_ASYNC;
+ rabp->b_iocmd = BIO_READ;
+ vfs_busy_pages(rabp, 0);
+ if (ncl_asyncio(nmp, rabp, cred, td)) {
+ rabp->b_flags |= B_INVAL;
+ rabp->b_ioflags |= BIO_ERROR;
+ vfs_unbusy_pages(rabp);
+ brelse(rabp);
+ }
+ } else {
+ brelse(rabp);
+ }
+ }
+ }
+ /*
+ * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
+ * chopped for the EOF condition, we cannot tell how large
+ * NFS directories are going to be until we hit EOF. So
+ * an NFS directory buffer is *not* chopped to its EOF. Now,
+ * it just so happens that b_resid will effectively chop it
+ * to EOF. *BUT* this information is lost if the buffer goes
+ * away and is reconstituted into a B_CACHE state ( due to
+ * being VMIO ) later. So we keep track of the directory eof
+ * in np->n_direofoffset and chop it off as an extra step
+ * right here.
+ */
+ n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
+ if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
+ n = np->n_direofoffset - uio->uio_offset;
+ break;
+ default:
+ ncl_printf(" ncl_bioread: type %x unexpected\n", vp->v_type);
+ bp = NULL;
+ break;
+ };
+
+ if (n > 0) {
+ error = uiomove(bp->b_data + on, (int)n, uio);
+ }
+ if (vp->v_type == VLNK)
+ n = 0;
+ if (bp != NULL)
+ brelse(bp);
+ } while (error == 0 && uio->uio_resid > 0 && n > 0);
+ return (error);
+}
+
+/*
+ * The NFS write path cannot handle iovecs with len > 1. So we need to
+ * break up iovecs accordingly (restricting them to wsize).
+ * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
+ * For the ASYNC case, 2 copies are needed. The first a copy from the
+ * user buffer to a staging buffer and then a second copy from the staging
+ * buffer to mbufs. This can be optimized by copying from the user buffer
+ * directly into mbufs and passing the chain down, but that requires a
+ * fair amount of re-working of the relevant codepaths (and can be done
+ * later).
+ */
+static int
+nfs_directio_write(vp, uiop, cred, ioflag)
+ struct vnode *vp;
+ struct uio *uiop;
+ struct ucred *cred;
+ int ioflag;
+{
+ int error;
+ struct nfsmount *nmp = VFSTONFS(vp->v_mount);
+ struct thread *td = uiop->uio_td;
+ int size;
+ int wsize;
+
+ mtx_lock(&nmp->nm_mtx);
+ wsize = nmp->nm_wsize;
+ mtx_unlock(&nmp->nm_mtx);
+ if (ioflag & IO_SYNC) {
+ int iomode, must_commit;
+ struct uio uio;
+ struct iovec iov;
+do_sync:
+ while (uiop->uio_resid > 0) {
+ size = min(uiop->uio_resid, wsize);
+ size = min(uiop->uio_iov->iov_len, size);
+ iov.iov_base = uiop->uio_iov->iov_base;
+ iov.iov_len = size;
+ uio.uio_iov = &iov;
+ uio.uio_iovcnt = 1;
+ uio.uio_offset = uiop->uio_offset;
+ uio.uio_resid = size;
+ uio.uio_segflg = UIO_USERSPACE;
+ uio.uio_rw = UIO_WRITE;
+ uio.uio_td = td;
+ iomode = NFSWRITE_FILESYNC;
+ error = ncl_writerpc(vp, &uio, cred, &iomode,
+ &must_commit);
+ KASSERT((must_commit == 0),
+ ("ncl_directio_write: Did not commit write"));
+ if (error)
+ return (error);
+ uiop->uio_offset += size;
+ uiop->uio_resid -= size;
+ if (uiop->uio_iov->iov_len <= size) {
+ uiop->uio_iovcnt--;
+ uiop->uio_iov++;
+ } else {
+ uiop->uio_iov->iov_base =
+ (char *)uiop->uio_iov->iov_base + size;
+ uiop->uio_iov->iov_len -= size;
+ }
+ }
+ } else {
+ struct uio *t_uio;
+ struct iovec *t_iov;
+ struct buf *bp;
+
+ /*
+ * Break up the write into blocksize chunks and hand these
+ * over to nfsiod's for write back.
+ * Unfortunately, this incurs a copy of the data. Since
+ * the user could modify the buffer before the write is
+ * initiated.
+ *
+ * The obvious optimization here is that one of the 2 copies
+ * in the async write path can be eliminated by copying the
+ * data here directly into mbufs and passing the mbuf chain
+ * down. But that will require a fair amount of re-working
+ * of the code and can be done if there's enough interest
+ * in NFS directio access.
+ */
+ while (uiop->uio_resid > 0) {
+ size = min(uiop->uio_resid, wsize);
+ size = min(uiop->uio_iov->iov_len, size);
+ bp = getpbuf(&ncl_pbuf_freecnt);
+ t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
+ t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
+ t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
+ t_iov->iov_len = size;
+ t_uio->uio_iov = t_iov;
+ t_uio->uio_iovcnt = 1;
+ t_uio->uio_offset = uiop->uio_offset;
+ t_uio->uio_resid = size;
+ t_uio->uio_segflg = UIO_SYSSPACE;
+ t_uio->uio_rw = UIO_WRITE;
+ t_uio->uio_td = td;
+ bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, size);
+ bp->b_flags |= B_DIRECT;
+ bp->b_iocmd = BIO_WRITE;
+ if (cred != NOCRED) {
+ crhold(cred);
+ bp->b_wcred = cred;
+ } else
+ bp->b_wcred = NOCRED;
+ bp->b_caller1 = (void *)t_uio;
+ bp->b_vp = vp;
+ error = ncl_asyncio(nmp, bp, NOCRED, td);
+ if (error) {
+ free(t_iov->iov_base, M_NFSDIRECTIO);
+ free(t_iov, M_NFSDIRECTIO);
+ free(t_uio, M_NFSDIRECTIO);
+ bp->b_vp = NULL;
+ relpbuf(bp, &ncl_pbuf_freecnt);
+ if (error == EINTR)
+ return (error);
+ goto do_sync;
+ }
+ uiop->uio_offset += size;
+ uiop->uio_resid -= size;
+ if (uiop->uio_iov->iov_len <= size) {
+ uiop->uio_iovcnt--;
+ uiop->uio_iov++;
+ } else {
+ uiop->uio_iov->iov_base =
+ (char *)uiop->uio_iov->iov_base + size;
+ uiop->uio_iov->iov_len -= size;
+ }
+ }
+ }
+ return (0);
+}
+
+/*
+ * Vnode op for write using bio
+ */
+int
+ncl_write(struct vop_write_args *ap)
+{
+ int biosize;
+ struct uio *uio = ap->a_uio;
+ struct thread *td = uio->uio_td;
+ struct vnode *vp = ap->a_vp;
+ struct nfsnode *np = VTONFS(vp);
+ struct ucred *cred = ap->a_cred;
+ int ioflag = ap->a_ioflag;
+ struct buf *bp;
+ struct vattr vattr;
+ struct nfsmount *nmp = VFSTONFS(vp->v_mount);
+ daddr_t lbn;
+ int bcount;
+ int n, on, error = 0;
+ struct proc *p = td?td->td_proc:NULL;
+
+#ifdef DIAGNOSTIC
+ if (uio->uio_rw != UIO_WRITE)
+ panic("ncl_write mode");
+ if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
+ panic("ncl_write proc");
+#endif
+ if (vp->v_type != VREG)
+ return (EIO);
+ mtx_lock(&np->n_mtx);
+ if (np->n_flag & NWRITEERR) {
+ np->n_flag &= ~NWRITEERR;
+ mtx_unlock(&np->n_mtx);
+ return (np->n_error);
+ } else
+ mtx_unlock(&np->n_mtx);
+ mtx_lock(&nmp->nm_mtx);
+ if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
+ (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
+ mtx_unlock(&nmp->nm_mtx);
+ (void)ncl_fsinfo(nmp, vp, cred, td);
+ mtx_lock(&nmp->nm_mtx);
+ }
+ if (nmp->nm_wsize == 0)
+ (void) newnfs_iosize(nmp);
+ mtx_unlock(&nmp->nm_mtx);
+
+ /*
+ * Synchronously flush pending buffers if we are in synchronous
+ * mode or if we are appending.
+ */
+ if (ioflag & (IO_APPEND | IO_SYNC)) {
+ mtx_lock(&np->n_mtx);
+ if (np->n_flag & NMODIFIED) {
+ mtx_unlock(&np->n_mtx);
+#ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
+ /*
+ * Require non-blocking, synchronous writes to
+ * dirty files to inform the program it needs
+ * to fsync(2) explicitly.
+ */
+ if (ioflag & IO_NDELAY)
+ return (EAGAIN);
+#endif
+flush_and_restart:
+ np->n_attrstamp = 0;
+ error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
+ if (error)
+ return (error);
+ } else
+ mtx_unlock(&np->n_mtx);
+ }
+
+ /*
+ * If IO_APPEND then load uio_offset. We restart here if we cannot
+ * get the append lock.
+ */
+ if (ioflag & IO_APPEND) {
+ np->n_attrstamp = 0;
+ error = VOP_GETATTR(vp, &vattr, cred);
+ if (error)
+ return (error);
+ mtx_lock(&np->n_mtx);
+ uio->uio_offset = np->n_size;
+ mtx_unlock(&np->n_mtx);
+ }
+
+ if (uio->uio_offset < 0)
+ return (EINVAL);
+ if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
+ return (EFBIG);
+ if (uio->uio_resid == 0)
+ return (0);
+
+ if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
+ return nfs_directio_write(vp, uio, cred, ioflag);
+
+ /*
+ * Maybe this should be above the vnode op call, but so long as
+ * file servers have no limits, i don't think it matters
+ */
+ if (p != NULL) {
+ PROC_LOCK(p);
+ if (uio->uio_offset + uio->uio_resid >
+ lim_cur(p, RLIMIT_FSIZE)) {
+ psignal(p, SIGXFSZ);
+ PROC_UNLOCK(p);
+ return (EFBIG);
+ }
+ PROC_UNLOCK(p);
+ }
+
+ biosize = vp->v_mount->mnt_stat.f_iosize;
+ /*
+ * Find all of this file's B_NEEDCOMMIT buffers. If our writes
+ * would exceed the local maximum per-file write commit size when
+ * combined with those, we must decide whether to flush,
+ * go synchronous, or return error. We don't bother checking
+ * IO_UNIT -- we just make all writes atomic anyway, as there's
+ * no point optimizing for something that really won't ever happen.
+ */
+ if (!(ioflag & IO_SYNC)) {
+ int nflag;
+
+ mtx_lock(&np->n_mtx);
+ nflag = np->n_flag;
+ mtx_unlock(&np->n_mtx);
+ int needrestart = 0;
+ if (nmp->nm_wcommitsize < uio->uio_resid) {
+ /*
+ * If this request could not possibly be completed
+ * without exceeding the maximum outstanding write
+ * commit size, see if we can convert it into a
+ * synchronous write operation.
+ */
+ if (ioflag & IO_NDELAY)
+ return (EAGAIN);
+ ioflag |= IO_SYNC;
+ if (nflag & NMODIFIED)
+ needrestart = 1;
+ } else if (nflag & NMODIFIED) {
+ int wouldcommit = 0;
+ BO_LOCK(&vp->v_bufobj);
+ if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
+ TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
+ b_bobufs) {
+ if (bp->b_flags & B_NEEDCOMMIT)
+ wouldcommit += bp->b_bcount;
+ }
+ }
+ BO_UNLOCK(&vp->v_bufobj);
+ /*
+ * Since we're not operating synchronously and
+ * bypassing the buffer cache, we are in a commit
+ * and holding all of these buffers whether
+ * transmitted or not. If not limited, this
+ * will lead to the buffer cache deadlocking,
+ * as no one else can flush our uncommitted buffers.
+ */
+ wouldcommit += uio->uio_resid;
+ /*
+ * If we would initially exceed the maximum
+ * outstanding write commit size, flush and restart.
+ */
+ if (wouldcommit > nmp->nm_wcommitsize)
+ needrestart = 1;
+ }
+ if (needrestart)
+ goto flush_and_restart;
+ }
+
+ do {
+ NFSINCRGLOBAL(newnfsstats.biocache_writes);
+ lbn = uio->uio_offset / biosize;
+ on = uio->uio_offset & (biosize-1);
+ n = min((unsigned)(biosize - on), uio->uio_resid);
+again:
+ /*
+ * Handle direct append and file extension cases, calculate
+ * unaligned buffer size.
+ */
+ mtx_lock(&np->n_mtx);
+ if (uio->uio_offset == np->n_size && n) {
+ mtx_unlock(&np->n_mtx);
+ /*
+ * Get the buffer (in its pre-append state to maintain
+ * B_CACHE if it was previously set). Resize the
+ * nfsnode after we have locked the buffer to prevent
+ * readers from reading garbage.
+ */
+ bcount = on;
+ bp = nfs_getcacheblk(vp, lbn, bcount, td);
+
+ if (bp != NULL) {
+ long save;
+
+ mtx_lock(&np->n_mtx);
+ np->n_size = uio->uio_offset + n;
+ np->n_flag |= NMODIFIED;
+ vnode_pager_setsize(vp, np->n_size);
+ mtx_unlock(&np->n_mtx);
+
+ save = bp->b_flags & B_CACHE;
+ bcount += n;
+ allocbuf(bp, bcount);
+ bp->b_flags |= save;
+ }
+ } else {
+ /*
+ * Obtain the locked cache block first, and then
+ * adjust the file's size as appropriate.
+ */
+ bcount = on + n;
+ if ((off_t)lbn * biosize + bcount < np->n_size) {
+ if ((off_t)(lbn + 1) * biosize < np->n_size)
+ bcount = biosize;
+ else
+ bcount = np->n_size - (off_t)lbn * biosize;
+ }
+ mtx_unlock(&np->n_mtx);
+ bp = nfs_getcacheblk(vp, lbn, bcount, td);
+ mtx_lock(&np->n_mtx);
+ if (uio->uio_offset + n > np->n_size) {
+ np->n_size = uio->uio_offset + n;
+ np->n_flag |= NMODIFIED;
+ vnode_pager_setsize(vp, np->n_size);
+ }
+ mtx_unlock(&np->n_mtx);
+ }
+
+ if (!bp) {
+ error = newnfs_sigintr(nmp, td);
+ if (!error)
+ error = EINTR;
+ break;
+ }
+
+ /*
+ * Issue a READ if B_CACHE is not set. In special-append
+ * mode, B_CACHE is based on the buffer prior to the write
+ * op and is typically set, avoiding the read. If a read
+ * is required in special append mode, the server will
+ * probably send us a short-read since we extended the file
+ * on our end, resulting in b_resid == 0 and, thusly,
+ * B_CACHE getting set.
+ *
+ * We can also avoid issuing the read if the write covers
+ * the entire buffer. We have to make sure the buffer state
+ * is reasonable in this case since we will not be initiating
+ * I/O. See the comments in kern/vfs_bio.c's getblk() for
+ * more information.
+ *
+ * B_CACHE may also be set due to the buffer being cached
+ * normally.
+ */
+
+ if (on == 0 && n == bcount) {
+ bp->b_flags |= B_CACHE;
+ bp->b_flags &= ~B_INVAL;
+ bp->b_ioflags &= ~BIO_ERROR;
+ }
+
+ if ((bp->b_flags & B_CACHE) == 0) {
+ bp->b_iocmd = BIO_READ;
+ vfs_busy_pages(bp, 0);
+ error = ncl_doio(vp, bp, cred, td);
+ if (error) {
+ brelse(bp);
+ break;
+ }
+ }
+ if (bp->b_wcred == NOCRED)
+ bp->b_wcred = crhold(cred);
+ mtx_lock(&np->n_mtx);
+ np->n_flag |= NMODIFIED;
+ mtx_unlock(&np->n_mtx);
+
+ /*
+ * If dirtyend exceeds file size, chop it down. This should
+ * not normally occur but there is an append race where it
+ * might occur XXX, so we log it.
+ *
+ * If the chopping creates a reverse-indexed or degenerate
+ * situation with dirtyoff/end, we 0 both of them.
+ */
+
+ if (bp->b_dirtyend > bcount) {
+ ncl_printf("NFS append race @%lx:%d\n",
+ (long)bp->b_blkno * DEV_BSIZE,
+ bp->b_dirtyend - bcount);
+ bp->b_dirtyend = bcount;
+ }
+
+ if (bp->b_dirtyoff >= bp->b_dirtyend)
+ bp->b_dirtyoff = bp->b_dirtyend = 0;
+
+ /*
+ * If the new write will leave a contiguous dirty
+ * area, just update the b_dirtyoff and b_dirtyend,
+ * otherwise force a write rpc of the old dirty area.
+ *
+ * While it is possible to merge discontiguous writes due to
+ * our having a B_CACHE buffer ( and thus valid read data
+ * for the hole), we don't because it could lead to
+ * significant cache coherency problems with multiple clients,
+ * especially if locking is implemented later on.
+ *
+ * as an optimization we could theoretically maintain
+ * a linked list of discontinuous areas, but we would still
+ * have to commit them separately so there isn't much
+ * advantage to it except perhaps a bit of asynchronization.
+ */
+
+ if (bp->b_dirtyend > 0 &&
+ (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
+ if (bwrite(bp) == EINTR) {
+ error = EINTR;
+ break;
+ }
+ goto again;
+ }
+
+ error = uiomove((char *)bp->b_data + on, n, uio);
+
+ /*
+ * Since this block is being modified, it must be written
+ * again and not just committed. Since write clustering does
+ * not work for the stage 1 data write, only the stage 2
+ * commit rpc, we have to clear B_CLUSTEROK as well.
+ */
+ bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
+
+ if (error) {
+ bp->b_ioflags |= BIO_ERROR;
+ brelse(bp);
+ break;
+ }
+
+ /*
+ * Only update dirtyoff/dirtyend if not a degenerate
+ * condition.
+ */
+ if (n) {
+ if (bp->b_dirtyend > 0) {
+ bp->b_dirtyoff = min(on, bp->b_dirtyoff);
+ bp->b_dirtyend = max((on + n), bp->b_dirtyend);
+ } else {
+ bp->b_dirtyoff = on;
+ bp->b_dirtyend = on + n;
+ }
+ vfs_bio_set_validclean(bp, on, n);
+ }
+
+ /*
+ * If IO_SYNC do bwrite().
+ *
+ * IO_INVAL appears to be unused. The idea appears to be
+ * to turn off caching in this case. Very odd. XXX
+ */
+ if ((ioflag & IO_SYNC)) {
+ if (ioflag & IO_INVAL)
+ bp->b_flags |= B_NOCACHE;
+ error = bwrite(bp);
+ if (error)
+ break;
+ } else if ((n + on) == biosize) {
+ bp->b_flags |= B_ASYNC;
+ (void) ncl_writebp(bp, 0, NULL);
+ } else {
+ bdwrite(bp);
+ }
+ } while (uio->uio_resid > 0 && n > 0);
+
+ return (error);
+}
+
+/*
+ * Get an nfs cache block.
+ *
+ * Allocate a new one if the block isn't currently in the cache
+ * and return the block marked busy. If the calling process is
+ * interrupted by a signal for an interruptible mount point, return
+ * NULL.
+ *
+ * The caller must carefully deal with the possible B_INVAL state of
+ * the buffer. ncl_doio() clears B_INVAL (and ncl_asyncio() clears it
+ * indirectly), so synchronous reads can be issued without worrying about
+ * the B_INVAL state. We have to be a little more careful when dealing
+ * with writes (see comments in nfs_write()) when extending a file past
+ * its EOF.
+ */
+static struct buf *
+nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
+{
+ struct buf *bp;
+ struct mount *mp;
+ struct nfsmount *nmp;
+
+ mp = vp->v_mount;
+ nmp = VFSTONFS(mp);
+
+ if (nmp->nm_flag & NFSMNT_INT) {
+ sigset_t oldset;
+
+ ncl_set_sigmask(td, &oldset);
+ bp = getblk(vp, bn, size, PCATCH, 0, 0);
+ ncl_restore_sigmask(td, &oldset);
+ while (bp == NULL) {
+ if (newnfs_sigintr(nmp, td))
+ return (NULL);
+ bp = getblk(vp, bn, size, 0, 2 * hz, 0);
+ }
+ } else {
+ bp = getblk(vp, bn, size, 0, 0, 0);
+ }
+
+ if (vp->v_type == VREG) {
+ int biosize;
+
+ biosize = mp->mnt_stat.f_iosize;
+ bp->b_blkno = bn * (biosize / DEV_BSIZE);
+ }
+ return (bp);
+}
+
+/*
+ * Flush and invalidate all dirty buffers. If another process is already
+ * doing the flush, just wait for completion.
+ */
+int
+ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
+{
+ struct nfsnode *np = VTONFS(vp);
+ struct nfsmount *nmp = VFSTONFS(vp->v_mount);
+ int error = 0, slpflag, slptimeo;
+ int old_lock = 0;
+
+ ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf");
+
+ /*
+ * XXX This check stops us from needlessly doing a vinvalbuf when
+ * being called through vclean(). It is not clear that this is
+ * unsafe.
+ */
+ if (vp->v_iflag & VI_DOOMED)
+ return (0);
+
+ if ((nmp->nm_flag & NFSMNT_INT) == 0)
+ intrflg = 0;
+ if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF))
+ intrflg = 1;
+ if (intrflg) {
+ slpflag = PCATCH;
+ slptimeo = 2 * hz;
+ } else {
+ slpflag = 0;
+ slptimeo = 0;
+ }
+
+ old_lock = ncl_upgrade_vnlock(vp);
+ /*
+ * Now, flush as required.
+ */
+ if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
+ VM_OBJECT_LOCK(vp->v_bufobj.bo_object);
+ vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
+ VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object);
+ /*
+ * If the page clean was interrupted, fail the invalidation.
+ * Not doing so, we run the risk of losing dirty pages in the
+ * vinvalbuf() call below.
+ */
+ if (intrflg && (error = newnfs_sigintr(nmp, td)))
+ goto out;
+ }
+
+ error = vinvalbuf(vp, flags, slpflag, 0);
+ while (error) {
+ if (intrflg && (error = newnfs_sigintr(nmp, td)))
+ goto out;
+ error = vinvalbuf(vp, flags, 0, slptimeo);
+ }
+ mtx_lock(&np->n_mtx);
+ if (np->n_directio_asyncwr == 0)
+ np->n_flag &= ~NMODIFIED;
+ mtx_unlock(&np->n_mtx);
+out:
+ ncl_downgrade_vnlock(vp, old_lock);
+ return error;
+}
+
+/*
+ * Initiate asynchronous I/O. Return an error if no nfsiods are available.
+ * This is mainly to avoid queueing async I/O requests when the nfsiods
+ * are all hung on a dead server.
+ *
+ * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
+ * is eventually dequeued by the async daemon, ncl_doio() *will*.
+ */
+int
+ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
+{
+ int iod;
+ int gotiod;
+ int slpflag = 0;
+ int slptimeo = 0;
+ int error, error2;
+
+ /*
+ * Unless iothreadcnt is set > 0, don't bother with async I/O
+ * threads. For LAN environments, they don't buy any significant
+ * performance improvement that you can't get with large block
+ * sizes.
+ */
+ if (nmp->nm_readahead == 0)
+ return (EPERM);
+
+ /*
+ * Commits are usually short and sweet so lets save some cpu and
+ * leave the async daemons for more important rpc's (such as reads
+ * and writes).
+ */
+ mtx_lock(&ncl_iod_mutex);
+ if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
+ (nmp->nm_bufqiods > ncl_numasync / 2)) {
+ mtx_unlock(&ncl_iod_mutex);
+ return(EIO);
+ }
+again:
+ if (nmp->nm_flag & NFSMNT_INT)
+ slpflag = PCATCH;
+ gotiod = FALSE;
+
+ /*
+ * Find a free iod to process this request.
+ */
+ for (iod = 0; iod < ncl_numasync; iod++)
+ if (ncl_iodwant[iod]) {
+ gotiod = TRUE;
+ break;
+ }
+
+ /*
+ * Try to create one if none are free.
+ */
+ if (!gotiod) {
+ iod = ncl_nfsiodnew();
+ if (iod != -1)
+ gotiod = TRUE;
+ }
+
+ if (gotiod) {
+ /*
+ * Found one, so wake it up and tell it which
+ * mount to process.
+ */
+ NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n",
+ iod, nmp));
+ ncl_iodwant[iod] = NULL;
+ ncl_iodmount[iod] = nmp;
+ nmp->nm_bufqiods++;
+ wakeup(&ncl_iodwant[iod]);
+ }
+
+ /*
+ * If none are free, we may already have an iod working on this mount
+ * point. If so, it will process our request.
+ */
+ if (!gotiod) {
+ if (nmp->nm_bufqiods > 0) {
+ NFS_DPF(ASYNCIO,
+ ("ncl_asyncio: %d iods are already processing mount %p\n",
+ nmp->nm_bufqiods, nmp));
+ gotiod = TRUE;
+ }
+ }
+
+ /*
+ * If we have an iod which can process the request, then queue
+ * the buffer.
+ */
+ if (gotiod) {
+ /*
+ * Ensure that the queue never grows too large. We still want
+ * to asynchronize so we block rather then return EIO.
+ */
+ while (nmp->nm_bufqlen >= 2*ncl_numasync) {
+ NFS_DPF(ASYNCIO,
+ ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp));
+ nmp->nm_bufqwant = TRUE;
+ error = ncl_msleep(td, &nmp->nm_bufq, &ncl_iod_mutex,
+ slpflag | PRIBIO,
+ "nfsaio", slptimeo);
+ if (error) {
+ error2 = newnfs_sigintr(nmp, td);
+ if (error2) {
+ mtx_unlock(&ncl_iod_mutex);
+ return (error2);
+ }
+ if (slpflag == PCATCH) {
+ slpflag = 0;
+ slptimeo = 2 * hz;
+ }
+ }
+ /*
+ * We might have lost our iod while sleeping,
+ * so check and loop if nescessary.
+ */
+ if (nmp->nm_bufqiods == 0) {
+ NFS_DPF(ASYNCIO,
+ ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
+ goto again;
+ }
+ }
+
+ /* We might have lost our nfsiod */
+ if (nmp->nm_bufqiods == 0) {
+ NFS_DPF(ASYNCIO,
+ ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
+ goto again;
+ }
+
+ if (bp->b_iocmd == BIO_READ) {
+ if (bp->b_rcred == NOCRED && cred != NOCRED)
+ bp->b_rcred = crhold(cred);
+ } else {
+ if (bp->b_wcred == NOCRED && cred != NOCRED)
+ bp->b_wcred = crhold(cred);
+ }
+
+ if (bp->b_flags & B_REMFREE)
+ bremfreef(bp);
+ BUF_KERNPROC(bp);
+ TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
+ nmp->nm_bufqlen++;
+ if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
+ mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
+ VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
+ VTONFS(bp->b_vp)->n_directio_asyncwr++;
+ mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
+ }
+ mtx_unlock(&ncl_iod_mutex);
+ return (0);
+ }
+
+ mtx_unlock(&ncl_iod_mutex);
+
+ /*
+ * All the iods are busy on other mounts, so return EIO to
+ * force the caller to process the i/o synchronously.
+ */
+ NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n"));
+ return (EIO);
+}
+
+void
+ncl_doio_directwrite(struct buf *bp)
+{
+ int iomode, must_commit;
+ struct uio *uiop = (struct uio *)bp->b_caller1;
+ char *iov_base = uiop->uio_iov->iov_base;
+
+ iomode = NFSWRITE_FILESYNC;
+ uiop->uio_td = NULL; /* NULL since we're in nfsiod */
+ ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit);
+ KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write"));
+ free(iov_base, M_NFSDIRECTIO);
+ free(uiop->uio_iov, M_NFSDIRECTIO);
+ free(uiop, M_NFSDIRECTIO);
+ if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
+ struct nfsnode *np = VTONFS(bp->b_vp);
+ mtx_lock(&np->n_mtx);
+ np->n_directio_asyncwr--;
+ if (np->n_directio_asyncwr == 0) {
+ np->n_flag &= ~NMODIFIED;
+ if ((np->n_flag & NFSYNCWAIT)) {
+ np->n_flag &= ~NFSYNCWAIT;
+ wakeup((caddr_t)&np->n_directio_asyncwr);
+ }
+ }
+ mtx_unlock(&np->n_mtx);
+ }
+ bp->b_vp = NULL;
+ relpbuf(bp, &ncl_pbuf_freecnt);
+}
+
+/*
+ * Do an I/O operation to/from a cache block. This may be called
+ * synchronously or from an nfsiod.
+ */
+int
+ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td)
+{
+ struct uio *uiop;
+ struct nfsnode *np;
+ struct nfsmount *nmp;
+ int error = 0, iomode, must_commit = 0;
+ struct uio uio;
+ struct iovec io;
+ struct proc *p = td ? td->td_proc : NULL;
+ uint8_t iocmd;
+
+ np = VTONFS(vp);
+ nmp = VFSTONFS(vp->v_mount);
+ uiop = &uio;
+ uiop->uio_iov = &io;
+ uiop->uio_iovcnt = 1;
+ uiop->uio_segflg = UIO_SYSSPACE;
+ uiop->uio_td = td;
+
+ /*
+ * clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We
+ * do this here so we do not have to do it in all the code that
+ * calls us.
+ */
+ bp->b_flags &= ~B_INVAL;
+ bp->b_ioflags &= ~BIO_ERROR;
+
+ KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp));
+ iocmd = bp->b_iocmd;
+ if (iocmd == BIO_READ) {
+ io.iov_len = uiop->uio_resid = bp->b_bcount;
+ io.iov_base = bp->b_data;
+ uiop->uio_rw = UIO_READ;
+
+ switch (vp->v_type) {
+ case VREG:
+ uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
+ NFSINCRGLOBAL(newnfsstats.read_bios);
+ error = ncl_readrpc(vp, uiop, cr);
+
+ if (!error) {
+ if (uiop->uio_resid) {
+ /*
+ * If we had a short read with no error, we must have
+ * hit a file hole. We should zero-fill the remainder.
+ * This can also occur if the server hits the file EOF.
+ *
+ * Holes used to be able to occur due to pending
+ * writes, but that is not possible any longer.
+ */
+ int nread = bp->b_bcount - uiop->uio_resid;
+ int left = uiop->uio_resid;
+
+ if (left > 0)
+ bzero((char *)bp->b_data + nread, left);
+ uiop->uio_resid = 0;
+ }
+ }
+ /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */
+ if (p && (vp->v_vflag & VV_TEXT)) {
+ mtx_lock(&np->n_mtx);
+ if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) {
+ mtx_unlock(&np->n_mtx);
+ PROC_LOCK(p);
+ killproc(p, "text file modification");
+ PROC_UNLOCK(p);
+ } else
+ mtx_unlock(&np->n_mtx);
+ }
+ break;
+ case VLNK:
+ uiop->uio_offset = (off_t)0;
+ NFSINCRGLOBAL(newnfsstats.readlink_bios);
+ error = ncl_readlinkrpc(vp, uiop, cr);
+ break;
+ case VDIR:
+ NFSINCRGLOBAL(newnfsstats.readdir_bios);
+ uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
+ if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
+ error = ncl_readdirplusrpc(vp, uiop, cr, td);
+ if (error == NFSERR_NOTSUPP)
+ nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
+ }
+ if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
+ error = ncl_readdirrpc(vp, uiop, cr, td);
+ /*
+ * end-of-directory sets B_INVAL but does not generate an
+ * error.
+ */
+ if (error == 0 && uiop->uio_resid == bp->b_bcount)
+ bp->b_flags |= B_INVAL;
+ break;
+ default:
+ ncl_printf("ncl_doio: type %x unexpected\n", vp->v_type);
+ break;
+ };
+ if (error) {
+ bp->b_ioflags |= BIO_ERROR;
+ bp->b_error = error;
+ }
+ } else {
+ /*
+ * If we only need to commit, try to commit
+ */
+ if (bp->b_flags & B_NEEDCOMMIT) {
+ int retv;
+ off_t off;
+
+ off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
+ retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff,
+ bp->b_wcred, td);
+ if (retv == 0) {
+ bp->b_dirtyoff = bp->b_dirtyend = 0;
+ bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
+ bp->b_resid = 0;
+ bufdone(bp);
+ return (0);
+ }
+ if (retv == NFSERR_STALEWRITEVERF) {
+ ncl_clearcommit(vp->v_mount);
+ }
+ }
+
+ /*
+ * Setup for actual write
+ */
+ mtx_lock(&np->n_mtx);
+ if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
+ bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
+ mtx_unlock(&np->n_mtx);
+
+ if (bp->b_dirtyend > bp->b_dirtyoff) {
+ io.iov_len = uiop->uio_resid = bp->b_dirtyend
+ - bp->b_dirtyoff;
+ uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
+ + bp->b_dirtyoff;
+ io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
+ uiop->uio_rw = UIO_WRITE;
+ NFSINCRGLOBAL(newnfsstats.write_bios);
+
+ if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
+ iomode = NFSWRITE_UNSTABLE;
+ else
+ iomode = NFSWRITE_FILESYNC;
+
+ error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit);
+
+ /*
+ * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
+ * to cluster the buffers needing commit. This will allow
+ * the system to submit a single commit rpc for the whole
+ * cluster. We can do this even if the buffer is not 100%
+ * dirty (relative to the NFS blocksize), so we optimize the
+ * append-to-file-case.
+ *
+ * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
+ * cleared because write clustering only works for commit
+ * rpc's, not for the data portion of the write).
+ */
+
+ if (!error && iomode == NFSWRITE_UNSTABLE) {
+ bp->b_flags |= B_NEEDCOMMIT;
+ if (bp->b_dirtyoff == 0
+ && bp->b_dirtyend == bp->b_bcount)
+ bp->b_flags |= B_CLUSTEROK;
+ } else {
+ bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
+ }
+
+ /*
+ * For an interrupted write, the buffer is still valid
+ * and the write hasn't been pushed to the server yet,
+ * so we can't set BIO_ERROR and report the interruption
+ * by setting B_EINTR. For the B_ASYNC case, B_EINTR
+ * is not relevant, so the rpc attempt is essentially
+ * a noop. For the case of a V3 write rpc not being
+ * committed to stable storage, the block is still
+ * dirty and requires either a commit rpc or another
+ * write rpc with iomode == NFSV3WRITE_FILESYNC before
+ * the block is reused. This is indicated by setting
+ * the B_DELWRI and B_NEEDCOMMIT flags.
+ *
+ * If the buffer is marked B_PAGING, it does not reside on
+ * the vp's paging queues so we cannot call bdirty(). The
+ * bp in this case is not an NFS cache block so we should
+ * be safe. XXX
+ *
+ * The logic below breaks up errors into recoverable and
+ * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
+ * and keep the buffer around for potential write retries.
+ * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
+ * and save the error in the nfsnode. This is less than ideal
+ * but necessary. Keeping such buffers around could potentially
+ * cause buffer exhaustion eventually (they can never be written
+ * out, so will get constantly be re-dirtied). It also causes
+ * all sorts of vfs panics. For non-recoverable write errors,
+ * also invalidate the attrcache, so we'll be forced to go over
+ * the wire for this object, returning an error to user on next
+ * call (most of the time).
+ */
+ if (error == EINTR || error == EIO || error == ETIMEDOUT
+ || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
+ int s;
+
+ s = splbio();
+ bp->b_flags &= ~(B_INVAL|B_NOCACHE);
+ if ((bp->b_flags & B_PAGING) == 0) {
+ bdirty(bp);
+ bp->b_flags &= ~B_DONE;
+ }
+ if (error && (bp->b_flags & B_ASYNC) == 0)
+ bp->b_flags |= B_EINTR;
+ splx(s);
+ } else {
+ if (error) {
+ bp->b_ioflags |= BIO_ERROR;
+ bp->b_flags |= B_INVAL;
+ bp->b_error = np->n_error = error;
+ mtx_lock(&np->n_mtx);
+ np->n_flag |= NWRITEERR;
+ np->n_attrstamp = 0;
+ mtx_unlock(&np->n_mtx);
+ }
+ bp->b_dirtyoff = bp->b_dirtyend = 0;
+ }
+ } else {
+ bp->b_resid = 0;
+ bufdone(bp);
+ return (0);
+ }
+ }
+ bp->b_resid = uiop->uio_resid;
+ if (must_commit)
+ ncl_clearcommit(vp->v_mount);
+ bufdone(bp);
+ return (error);
+}
+
+/*
+ * Used to aid in handling ftruncate() operations on the NFS client side.
+ * Truncation creates a number of special problems for NFS. We have to
+ * throw away VM pages and buffer cache buffers that are beyond EOF, and
+ * we have to properly handle VM pages or (potentially dirty) buffers
+ * that straddle the truncation point.
+ */
+
+int
+ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
+{
+ struct nfsnode *np = VTONFS(vp);
+ u_quad_t tsize;
+ int biosize = vp->v_mount->mnt_stat.f_iosize;
+ int error = 0;
+
+ mtx_lock(&np->n_mtx);
+ tsize = np->n_size;
+ np->n_size = nsize;
+ mtx_unlock(&np->n_mtx);
+
+ if (nsize < tsize) {
+ struct buf *bp;
+ daddr_t lbn;
+ int bufsize;
+
+ /*
+ * vtruncbuf() doesn't get the buffer overlapping the
+ * truncation point. We may have a B_DELWRI and/or B_CACHE
+ * buffer that now needs to be truncated.
+ */
+ error = vtruncbuf(vp, cred, td, nsize, biosize);
+ lbn = nsize / biosize;
+ bufsize = nsize & (biosize - 1);
+ bp = nfs_getcacheblk(vp, lbn, bufsize, td);
+ if (!bp)
+ return EINTR;
+ if (bp->b_dirtyoff > bp->b_bcount)
+ bp->b_dirtyoff = bp->b_bcount;
+ if (bp->b_dirtyend > bp->b_bcount)
+ bp->b_dirtyend = bp->b_bcount;
+ bp->b_flags |= B_RELBUF; /* don't leave garbage around */
+ brelse(bp);
+ } else {
+ vnode_pager_setsize(vp, nsize);
+ }
+ return(error);
+}
+
OpenPOWER on IntegriCloud