diff options
author | rmacklem <rmacklem@FreeBSD.org> | 2009-05-04 15:23:58 +0000 |
---|---|---|
committer | rmacklem <rmacklem@FreeBSD.org> | 2009-05-04 15:23:58 +0000 |
commit | e3d34903b6fb9cb09f7e616bde59d97341958fa2 (patch) | |
tree | 0246ff14527b554e60f1c9212be00ee8c1128197 /sys/fs/nfsclient/nfs_clbio.c | |
parent | fb2908c8ff440e0985013b83071bd8dfecb11371 (diff) | |
download | FreeBSD-src-e3d34903b6fb9cb09f7e616bde59d97341958fa2.zip FreeBSD-src-e3d34903b6fb9cb09f7e616bde59d97341958fa2.tar.gz |
Add the experimental nfs subtree to the kernel, that includes
support for NFSv4 as well as NFSv2 and 3.
It lives in 3 subdirs under sys/fs:
nfs - functions that are common to the client and server
nfsclient - a mutation of sys/nfsclient that call generic functions
to do RPCs and handle state. As such, it retains the
buffer cache handling characteristics and vnode semantics that
are found in sys/nfsclient, for the most part.
nfsserver - the server. It includes a DRC designed specifically for
NFSv4, that is used instead of the generic DRC in sys/rpc.
The build glue will be checked in later, so at this point, it
consists of 3 new subdirs that should not affect kernel building.
Approved by: kib (mentor)
Diffstat (limited to 'sys/fs/nfsclient/nfs_clbio.c')
-rw-r--r-- | sys/fs/nfsclient/nfs_clbio.c | 1934 |
1 files changed, 1934 insertions, 0 deletions
diff --git a/sys/fs/nfsclient/nfs_clbio.c b/sys/fs/nfsclient/nfs_clbio.c new file mode 100644 index 0000000..bae44ed --- /dev/null +++ b/sys/fs/nfsclient/nfs_clbio.c @@ -0,0 +1,1934 @@ +/*- + * Copyright (c) 1989, 1993 + * The Regents of the University of California. All rights reserved. + * + * This code is derived from software contributed to Berkeley by + * Rick Macklem at The University of Guelph. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 4. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95 + */ + +#include <sys/cdefs.h> +__FBSDID("$FreeBSD$"); + +#include <sys/param.h> +#include <sys/systm.h> +#include <sys/bio.h> +#include <sys/buf.h> +#include <sys/kernel.h> +#include <sys/mount.h> +#include <sys/proc.h> +#include <sys/resourcevar.h> +#include <sys/signalvar.h> +#include <sys/vmmeter.h> +#include <sys/vnode.h> + +#include <vm/vm.h> +#include <vm/vm_extern.h> +#include <vm/vm_page.h> +#include <vm/vm_object.h> +#include <vm/vm_pager.h> +#include <vm/vnode_pager.h> + +#include <fs/nfs/nfsport.h> +#include <fs/nfsclient/nfsmount.h> +#include <fs/nfsclient/nfs.h> +#include <fs/nfsclient/nfsnode.h> + +extern int newnfs_directio_allow_mmap; +extern struct nfsstats newnfsstats; +extern struct mtx ncl_iod_mutex; +extern int ncl_numasync; +extern struct proc *ncl_iodwant[NFS_MAXRAHEAD]; +extern struct nfsmount *ncl_iodmount[NFS_MAXRAHEAD]; +extern int newnfs_directio_enable; + +int ncl_pbuf_freecnt = -1; /* start out unlimited */ + +static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, + struct thread *td); +static int nfs_directio_write(struct vnode *vp, struct uio *uiop, + struct ucred *cred, int ioflag); + +/* + * Any signal that can interrupt an NFS operation in an intr mount + * should be added to this set. SIGSTOP and SIGKILL cannot be masked. + */ +static int nfs_sig_set[] = { + SIGINT, + SIGTERM, + SIGHUP, + SIGKILL, + SIGSTOP, + SIGQUIT +}; + +#ifdef notnow +/* + * Check to see if one of the signals in our subset is pending on + * the process (in an intr mount). + */ +int +ncl_sig_pending(sigset_t set) +{ + int i; + + for (i = 0 ; i < sizeof(nfs_sig_set)/sizeof(int) ; i++) + if (SIGISMEMBER(set, nfs_sig_set[i])) + return (1); + return (0); +} +#endif + +/* + * The set/restore sigmask functions are used to (temporarily) overwrite + * the process p_sigmask during an RPC call (for example). These are also + * used in other places in the NFS client that might tsleep(). + */ +static void +ncl_set_sigmask(struct thread *td, sigset_t *oldset) +{ + sigset_t newset; + int i; + struct proc *p; + + SIGFILLSET(newset); + if (td == NULL) + td = curthread; /* XXX */ + p = td->td_proc; + /* Remove the NFS set of signals from newset */ + PROC_LOCK(p); + mtx_lock(&p->p_sigacts->ps_mtx); + for (i = 0 ; i < sizeof(nfs_sig_set)/sizeof(int) ; i++) { + /* + * But make sure we leave the ones already masked + * by the process, ie. remove the signal from the + * temporary signalmask only if it wasn't already + * in p_sigmask. + */ + if (!SIGISMEMBER(td->td_sigmask, nfs_sig_set[i]) && + !SIGISMEMBER(p->p_sigacts->ps_sigignore, nfs_sig_set[i])) + SIGDELSET(newset, nfs_sig_set[i]); + } + mtx_unlock(&p->p_sigacts->ps_mtx); + PROC_UNLOCK(p); + kern_sigprocmask(td, SIG_SETMASK, &newset, oldset, 0); +} + +static void +ncl_restore_sigmask(struct thread *td, sigset_t *set) +{ + if (td == NULL) + td = curthread; /* XXX */ + kern_sigprocmask(td, SIG_SETMASK, set, NULL, 0); +} + +/* + * NFS wrapper to msleep(), that shoves a new p_sigmask and restores the + * old one after msleep() returns. + */ +int +ncl_msleep(struct thread *td, void *ident, struct mtx *mtx, int priority, char *wmesg, int timo) +{ + sigset_t oldset; + int error; + struct proc *p; + + if ((priority & PCATCH) == 0) + return msleep(ident, mtx, priority, wmesg, timo); + if (td == NULL) + td = curthread; /* XXX */ + ncl_set_sigmask(td, &oldset); + error = msleep(ident, mtx, priority, wmesg, timo); + ncl_restore_sigmask(td, &oldset); + p = td->td_proc; + return (error); +} + +/* + * Vnode op for VM getpages. + */ +int +ncl_getpages(struct vop_getpages_args *ap) +{ + int i, error, nextoff, size, toff, count, npages; + struct uio uio; + struct iovec iov; + vm_offset_t kva; + struct buf *bp; + struct vnode *vp; + struct thread *td; + struct ucred *cred; + struct nfsmount *nmp; + vm_object_t object; + vm_page_t *pages; + struct nfsnode *np; + + vp = ap->a_vp; + np = VTONFS(vp); + td = curthread; /* XXX */ + cred = curthread->td_ucred; /* XXX */ + nmp = VFSTONFS(vp->v_mount); + pages = ap->a_m; + count = ap->a_count; + + if ((object = vp->v_object) == NULL) { + ncl_printf("nfs_getpages: called with non-merged cache vnode??\n"); + return VM_PAGER_ERROR; + } + + if (newnfs_directio_enable && !newnfs_directio_allow_mmap) { + mtx_lock(&np->n_mtx); + if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { + mtx_unlock(&np->n_mtx); + ncl_printf("nfs_getpages: called on non-cacheable vnode??\n"); + return VM_PAGER_ERROR; + } else + mtx_unlock(&np->n_mtx); + } + + mtx_lock(&nmp->nm_mtx); + if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && + (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { + mtx_unlock(&nmp->nm_mtx); + /* We'll never get here for v4, because we always have fsinfo */ + (void)ncl_fsinfo(nmp, vp, cred, td); + } else + mtx_unlock(&nmp->nm_mtx); + + npages = btoc(count); + + /* + * If the requested page is partially valid, just return it and + * allow the pager to zero-out the blanks. Partially valid pages + * can only occur at the file EOF. + */ + + { + vm_page_t m = pages[ap->a_reqpage]; + + VM_OBJECT_LOCK(object); + vm_page_lock_queues(); + if (m->valid != 0) { + /* handled by vm_fault now */ + /* vm_page_zero_invalid(m, TRUE); */ + for (i = 0; i < npages; ++i) { + if (i != ap->a_reqpage) + vm_page_free(pages[i]); + } + vm_page_unlock_queues(); + VM_OBJECT_UNLOCK(object); + return(0); + } + vm_page_unlock_queues(); + VM_OBJECT_UNLOCK(object); + } + + /* + * We use only the kva address for the buffer, but this is extremely + * convienient and fast. + */ + bp = getpbuf(&ncl_pbuf_freecnt); + + kva = (vm_offset_t) bp->b_data; + pmap_qenter(kva, pages, npages); + PCPU_INC(cnt.v_vnodein); + PCPU_ADD(cnt.v_vnodepgsin, npages); + + iov.iov_base = (caddr_t) kva; + iov.iov_len = count; + uio.uio_iov = &iov; + uio.uio_iovcnt = 1; + uio.uio_offset = IDX_TO_OFF(pages[0]->pindex); + uio.uio_resid = count; + uio.uio_segflg = UIO_SYSSPACE; + uio.uio_rw = UIO_READ; + uio.uio_td = td; + + error = ncl_readrpc(vp, &uio, cred); + pmap_qremove(kva, npages); + + relpbuf(bp, &ncl_pbuf_freecnt); + + if (error && (uio.uio_resid == count)) { + ncl_printf("nfs_getpages: error %d\n", error); + VM_OBJECT_LOCK(object); + vm_page_lock_queues(); + for (i = 0; i < npages; ++i) { + if (i != ap->a_reqpage) + vm_page_free(pages[i]); + } + vm_page_unlock_queues(); + VM_OBJECT_UNLOCK(object); + return VM_PAGER_ERROR; + } + + /* + * Calculate the number of bytes read and validate only that number + * of bytes. Note that due to pending writes, size may be 0. This + * does not mean that the remaining data is invalid! + */ + + size = count - uio.uio_resid; + VM_OBJECT_LOCK(object); + vm_page_lock_queues(); + for (i = 0, toff = 0; i < npages; i++, toff = nextoff) { + vm_page_t m; + nextoff = toff + PAGE_SIZE; + m = pages[i]; + + if (nextoff <= size) { + /* + * Read operation filled an entire page + */ + m->valid = VM_PAGE_BITS_ALL; + vm_page_undirty(m); + } else if (size > toff) { + /* + * Read operation filled a partial page. + */ + m->valid = 0; + vm_page_set_validclean(m, 0, size - toff); + /* handled by vm_fault now */ + /* vm_page_zero_invalid(m, TRUE); */ + } else { + /* + * Read operation was short. If no error occured + * we may have hit a zero-fill section. We simply + * leave valid set to 0. + */ + ; + } + if (i != ap->a_reqpage) { + /* + * Whether or not to leave the page activated is up in + * the air, but we should put the page on a page queue + * somewhere (it already is in the object). Result: + * It appears that emperical results show that + * deactivating pages is best. + */ + + /* + * Just in case someone was asking for this page we + * now tell them that it is ok to use. + */ + if (!error) { + if (m->oflags & VPO_WANTED) + vm_page_activate(m); + else + vm_page_deactivate(m); + vm_page_wakeup(m); + } else { + vm_page_free(m); + } + } + } + vm_page_unlock_queues(); + VM_OBJECT_UNLOCK(object); + return 0; +} + +/* + * Vnode op for VM putpages. + */ +int +ncl_putpages(struct vop_putpages_args *ap) +{ + struct uio uio; + struct iovec iov; + vm_offset_t kva; + struct buf *bp; + int iomode, must_commit, i, error, npages, count; + off_t offset; + int *rtvals; + struct vnode *vp; + struct thread *td; + struct ucred *cred; + struct nfsmount *nmp; + struct nfsnode *np; + vm_page_t *pages; + + vp = ap->a_vp; + np = VTONFS(vp); + td = curthread; /* XXX */ + cred = curthread->td_ucred; /* XXX */ + nmp = VFSTONFS(vp->v_mount); + pages = ap->a_m; + count = ap->a_count; + rtvals = ap->a_rtvals; + npages = btoc(count); + offset = IDX_TO_OFF(pages[0]->pindex); + + mtx_lock(&nmp->nm_mtx); + if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && + (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { + mtx_unlock(&nmp->nm_mtx); + (void)ncl_fsinfo(nmp, vp, cred, td); + } else + mtx_unlock(&nmp->nm_mtx); + + mtx_lock(&np->n_mtx); + if (newnfs_directio_enable && !newnfs_directio_allow_mmap && + (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { + mtx_unlock(&np->n_mtx); + ncl_printf("ncl_putpages: called on noncache-able vnode??\n"); + mtx_lock(&np->n_mtx); + } + + for (i = 0; i < npages; i++) + rtvals[i] = VM_PAGER_AGAIN; + + /* + * When putting pages, do not extend file past EOF. + */ + if (offset + count > np->n_size) { + count = np->n_size - offset; + if (count < 0) + count = 0; + } + mtx_unlock(&np->n_mtx); + + /* + * We use only the kva address for the buffer, but this is extremely + * convienient and fast. + */ + bp = getpbuf(&ncl_pbuf_freecnt); + + kva = (vm_offset_t) bp->b_data; + pmap_qenter(kva, pages, npages); + PCPU_INC(cnt.v_vnodeout); + PCPU_ADD(cnt.v_vnodepgsout, count); + + iov.iov_base = (caddr_t) kva; + iov.iov_len = count; + uio.uio_iov = &iov; + uio.uio_iovcnt = 1; + uio.uio_offset = offset; + uio.uio_resid = count; + uio.uio_segflg = UIO_SYSSPACE; + uio.uio_rw = UIO_WRITE; + uio.uio_td = td; + + if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0) + iomode = NFSWRITE_UNSTABLE; + else + iomode = NFSWRITE_FILESYNC; + + error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit); + + pmap_qremove(kva, npages); + relpbuf(bp, &ncl_pbuf_freecnt); + + if (!error) { + int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE; + for (i = 0; i < nwritten; i++) { + rtvals[i] = VM_PAGER_OK; + vm_page_undirty(pages[i]); + } + if (must_commit) { + ncl_clearcommit(vp->v_mount); + } + } + return rtvals[0]; +} + +/* + * For nfs, cache consistency can only be maintained approximately. + * Although RFC1094 does not specify the criteria, the following is + * believed to be compatible with the reference port. + * For nfs: + * If the file's modify time on the server has changed since the + * last read rpc or you have written to the file, + * you may have lost data cache consistency with the + * server, so flush all of the file's data out of the cache. + * Then force a getattr rpc to ensure that you have up to date + * attributes. + * NB: This implies that cache data can be read when up to + * NFS_ATTRTIMEO seconds out of date. If you find that you need current + * attributes this could be forced by setting n_attrstamp to 0 before + * the VOP_GETATTR() call. + */ +static inline int +nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred) +{ + int error = 0; + struct vattr vattr; + struct nfsnode *np = VTONFS(vp); + int old_lock; + + /* + * Grab the exclusive lock before checking whether the cache is + * consistent. + * XXX - We can make this cheaper later (by acquiring cheaper locks). + * But for now, this suffices. + */ + old_lock = ncl_upgrade_vnlock(vp); + mtx_lock(&np->n_mtx); + if (np->n_flag & NMODIFIED) { + mtx_unlock(&np->n_mtx); + if (vp->v_type != VREG) { + if (vp->v_type != VDIR) + panic("nfs: bioread, not dir"); + ncl_invaldir(vp); + error = ncl_vinvalbuf(vp, V_SAVE, td, 1); + if (error) + goto out; + } + np->n_attrstamp = 0; + error = VOP_GETATTR(vp, &vattr, cred); + if (error) + goto out; + mtx_lock(&np->n_mtx); + np->n_mtime = vattr.va_mtime; + mtx_unlock(&np->n_mtx); + } else { + mtx_unlock(&np->n_mtx); + error = VOP_GETATTR(vp, &vattr, cred); + if (error) + return (error); + mtx_lock(&np->n_mtx); + if ((np->n_flag & NSIZECHANGED) + || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) { + mtx_unlock(&np->n_mtx); + if (vp->v_type == VDIR) + ncl_invaldir(vp); + error = ncl_vinvalbuf(vp, V_SAVE, td, 1); + if (error) + goto out; + mtx_lock(&np->n_mtx); + np->n_mtime = vattr.va_mtime; + np->n_flag &= ~NSIZECHANGED; + } + mtx_unlock(&np->n_mtx); + } +out: + ncl_downgrade_vnlock(vp, old_lock); + return error; +} + +/* + * Vnode op for read using bio + */ +int +ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred) +{ + struct nfsnode *np = VTONFS(vp); + int biosize, i; + struct buf *bp, *rabp; + struct thread *td; + struct nfsmount *nmp = VFSTONFS(vp->v_mount); + daddr_t lbn, rabn; + int bcount; + int seqcount; + int nra, error = 0, n = 0, on = 0; + +#ifdef DIAGNOSTIC + if (uio->uio_rw != UIO_READ) + panic("ncl_read mode"); +#endif + if (uio->uio_resid == 0) + return (0); + if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */ + return (EINVAL); + td = uio->uio_td; + + mtx_lock(&nmp->nm_mtx); + if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && + (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { + mtx_unlock(&nmp->nm_mtx); + (void)ncl_fsinfo(nmp, vp, cred, td); + mtx_lock(&nmp->nm_mtx); + } + if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0) + (void) newnfs_iosize(nmp); + mtx_unlock(&nmp->nm_mtx); + + if (vp->v_type != VDIR && + (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) + return (EFBIG); + + if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG)) + /* No caching/ no readaheads. Just read data into the user buffer */ + return ncl_readrpc(vp, uio, cred); + + biosize = vp->v_mount->mnt_stat.f_iosize; + seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE); + + error = nfs_bioread_check_cons(vp, td, cred); + if (error) + return error; + + do { + u_quad_t nsize; + + mtx_lock(&np->n_mtx); + nsize = np->n_size; + mtx_unlock(&np->n_mtx); + + switch (vp->v_type) { + case VREG: + NFSINCRGLOBAL(newnfsstats.biocache_reads); + lbn = uio->uio_offset / biosize; + on = uio->uio_offset & (biosize - 1); + + /* + * Start the read ahead(s), as required. + */ + if (nmp->nm_readahead > 0) { + for (nra = 0; nra < nmp->nm_readahead && nra < seqcount && + (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) { + rabn = lbn + 1 + nra; + if (incore(&vp->v_bufobj, rabn) == NULL) { + rabp = nfs_getcacheblk(vp, rabn, biosize, td); + if (!rabp) { + error = newnfs_sigintr(nmp, td); + if (error) + return (error); + else + break; + } + if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { + rabp->b_flags |= B_ASYNC; + rabp->b_iocmd = BIO_READ; + vfs_busy_pages(rabp, 0); + if (ncl_asyncio(nmp, rabp, cred, td)) { + rabp->b_flags |= B_INVAL; + rabp->b_ioflags |= BIO_ERROR; + vfs_unbusy_pages(rabp); + brelse(rabp); + break; + } + } else { + brelse(rabp); + } + } + } + } + + /* Note that bcount is *not* DEV_BSIZE aligned. */ + bcount = biosize; + if ((off_t)lbn * biosize >= nsize) { + bcount = 0; + } else if ((off_t)(lbn + 1) * biosize > nsize) { + bcount = nsize - (off_t)lbn * biosize; + } + bp = nfs_getcacheblk(vp, lbn, bcount, td); + + if (!bp) { + error = newnfs_sigintr(nmp, td); + return (error ? error : EINTR); + } + + /* + * If B_CACHE is not set, we must issue the read. If this + * fails, we return an error. + */ + + if ((bp->b_flags & B_CACHE) == 0) { + bp->b_iocmd = BIO_READ; + vfs_busy_pages(bp, 0); + error = ncl_doio(vp, bp, cred, td); + if (error) { + brelse(bp); + return (error); + } + } + + /* + * on is the offset into the current bp. Figure out how many + * bytes we can copy out of the bp. Note that bcount is + * NOT DEV_BSIZE aligned. + * + * Then figure out how many bytes we can copy into the uio. + */ + + n = 0; + if (on < bcount) + n = min((unsigned)(bcount - on), uio->uio_resid); + break; + case VLNK: + NFSINCRGLOBAL(newnfsstats.biocache_readlinks); + bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td); + if (!bp) { + error = newnfs_sigintr(nmp, td); + return (error ? error : EINTR); + } + if ((bp->b_flags & B_CACHE) == 0) { + bp->b_iocmd = BIO_READ; + vfs_busy_pages(bp, 0); + error = ncl_doio(vp, bp, cred, td); + if (error) { + bp->b_ioflags |= BIO_ERROR; + brelse(bp); + return (error); + } + } + n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid); + on = 0; + break; + case VDIR: + NFSINCRGLOBAL(newnfsstats.biocache_readdirs); + if (np->n_direofoffset + && uio->uio_offset >= np->n_direofoffset) { + return (0); + } + lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ; + on = uio->uio_offset & (NFS_DIRBLKSIZ - 1); + bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td); + if (!bp) { + error = newnfs_sigintr(nmp, td); + return (error ? error : EINTR); + } + if ((bp->b_flags & B_CACHE) == 0) { + bp->b_iocmd = BIO_READ; + vfs_busy_pages(bp, 0); + error = ncl_doio(vp, bp, cred, td); + if (error) { + brelse(bp); + } + while (error == NFSERR_BAD_COOKIE) { + ncl_invaldir(vp); + error = ncl_vinvalbuf(vp, 0, td, 1); + /* + * Yuck! The directory has been modified on the + * server. The only way to get the block is by + * reading from the beginning to get all the + * offset cookies. + * + * Leave the last bp intact unless there is an error. + * Loop back up to the while if the error is another + * NFSERR_BAD_COOKIE (double yuch!). + */ + for (i = 0; i <= lbn && !error; i++) { + if (np->n_direofoffset + && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset) + return (0); + bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td); + if (!bp) { + error = newnfs_sigintr(nmp, td); + return (error ? error : EINTR); + } + if ((bp->b_flags & B_CACHE) == 0) { + bp->b_iocmd = BIO_READ; + vfs_busy_pages(bp, 0); + error = ncl_doio(vp, bp, cred, td); + /* + * no error + B_INVAL == directory EOF, + * use the block. + */ + if (error == 0 && (bp->b_flags & B_INVAL)) + break; + } + /* + * An error will throw away the block and the + * for loop will break out. If no error and this + * is not the block we want, we throw away the + * block and go for the next one via the for loop. + */ + if (error || i < lbn) + brelse(bp); + } + } + /* + * The above while is repeated if we hit another cookie + * error. If we hit an error and it wasn't a cookie error, + * we give up. + */ + if (error) + return (error); + } + + /* + * If not eof and read aheads are enabled, start one. + * (You need the current block first, so that you have the + * directory offset cookie of the next block.) + */ + if (nmp->nm_readahead > 0 && + (bp->b_flags & B_INVAL) == 0 && + (np->n_direofoffset == 0 || + (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) && + incore(&vp->v_bufobj, lbn + 1) == NULL) { + rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td); + if (rabp) { + if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { + rabp->b_flags |= B_ASYNC; + rabp->b_iocmd = BIO_READ; + vfs_busy_pages(rabp, 0); + if (ncl_asyncio(nmp, rabp, cred, td)) { + rabp->b_flags |= B_INVAL; + rabp->b_ioflags |= BIO_ERROR; + vfs_unbusy_pages(rabp); + brelse(rabp); + } + } else { + brelse(rabp); + } + } + } + /* + * Unlike VREG files, whos buffer size ( bp->b_bcount ) is + * chopped for the EOF condition, we cannot tell how large + * NFS directories are going to be until we hit EOF. So + * an NFS directory buffer is *not* chopped to its EOF. Now, + * it just so happens that b_resid will effectively chop it + * to EOF. *BUT* this information is lost if the buffer goes + * away and is reconstituted into a B_CACHE state ( due to + * being VMIO ) later. So we keep track of the directory eof + * in np->n_direofoffset and chop it off as an extra step + * right here. + */ + n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on); + if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset) + n = np->n_direofoffset - uio->uio_offset; + break; + default: + ncl_printf(" ncl_bioread: type %x unexpected\n", vp->v_type); + bp = NULL; + break; + }; + + if (n > 0) { + error = uiomove(bp->b_data + on, (int)n, uio); + } + if (vp->v_type == VLNK) + n = 0; + if (bp != NULL) + brelse(bp); + } while (error == 0 && uio->uio_resid > 0 && n > 0); + return (error); +} + +/* + * The NFS write path cannot handle iovecs with len > 1. So we need to + * break up iovecs accordingly (restricting them to wsize). + * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf). + * For the ASYNC case, 2 copies are needed. The first a copy from the + * user buffer to a staging buffer and then a second copy from the staging + * buffer to mbufs. This can be optimized by copying from the user buffer + * directly into mbufs and passing the chain down, but that requires a + * fair amount of re-working of the relevant codepaths (and can be done + * later). + */ +static int +nfs_directio_write(vp, uiop, cred, ioflag) + struct vnode *vp; + struct uio *uiop; + struct ucred *cred; + int ioflag; +{ + int error; + struct nfsmount *nmp = VFSTONFS(vp->v_mount); + struct thread *td = uiop->uio_td; + int size; + int wsize; + + mtx_lock(&nmp->nm_mtx); + wsize = nmp->nm_wsize; + mtx_unlock(&nmp->nm_mtx); + if (ioflag & IO_SYNC) { + int iomode, must_commit; + struct uio uio; + struct iovec iov; +do_sync: + while (uiop->uio_resid > 0) { + size = min(uiop->uio_resid, wsize); + size = min(uiop->uio_iov->iov_len, size); + iov.iov_base = uiop->uio_iov->iov_base; + iov.iov_len = size; + uio.uio_iov = &iov; + uio.uio_iovcnt = 1; + uio.uio_offset = uiop->uio_offset; + uio.uio_resid = size; + uio.uio_segflg = UIO_USERSPACE; + uio.uio_rw = UIO_WRITE; + uio.uio_td = td; + iomode = NFSWRITE_FILESYNC; + error = ncl_writerpc(vp, &uio, cred, &iomode, + &must_commit); + KASSERT((must_commit == 0), + ("ncl_directio_write: Did not commit write")); + if (error) + return (error); + uiop->uio_offset += size; + uiop->uio_resid -= size; + if (uiop->uio_iov->iov_len <= size) { + uiop->uio_iovcnt--; + uiop->uio_iov++; + } else { + uiop->uio_iov->iov_base = + (char *)uiop->uio_iov->iov_base + size; + uiop->uio_iov->iov_len -= size; + } + } + } else { + struct uio *t_uio; + struct iovec *t_iov; + struct buf *bp; + + /* + * Break up the write into blocksize chunks and hand these + * over to nfsiod's for write back. + * Unfortunately, this incurs a copy of the data. Since + * the user could modify the buffer before the write is + * initiated. + * + * The obvious optimization here is that one of the 2 copies + * in the async write path can be eliminated by copying the + * data here directly into mbufs and passing the mbuf chain + * down. But that will require a fair amount of re-working + * of the code and can be done if there's enough interest + * in NFS directio access. + */ + while (uiop->uio_resid > 0) { + size = min(uiop->uio_resid, wsize); + size = min(uiop->uio_iov->iov_len, size); + bp = getpbuf(&ncl_pbuf_freecnt); + t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK); + t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK); + t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK); + t_iov->iov_len = size; + t_uio->uio_iov = t_iov; + t_uio->uio_iovcnt = 1; + t_uio->uio_offset = uiop->uio_offset; + t_uio->uio_resid = size; + t_uio->uio_segflg = UIO_SYSSPACE; + t_uio->uio_rw = UIO_WRITE; + t_uio->uio_td = td; + bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, size); + bp->b_flags |= B_DIRECT; + bp->b_iocmd = BIO_WRITE; + if (cred != NOCRED) { + crhold(cred); + bp->b_wcred = cred; + } else + bp->b_wcred = NOCRED; + bp->b_caller1 = (void *)t_uio; + bp->b_vp = vp; + error = ncl_asyncio(nmp, bp, NOCRED, td); + if (error) { + free(t_iov->iov_base, M_NFSDIRECTIO); + free(t_iov, M_NFSDIRECTIO); + free(t_uio, M_NFSDIRECTIO); + bp->b_vp = NULL; + relpbuf(bp, &ncl_pbuf_freecnt); + if (error == EINTR) + return (error); + goto do_sync; + } + uiop->uio_offset += size; + uiop->uio_resid -= size; + if (uiop->uio_iov->iov_len <= size) { + uiop->uio_iovcnt--; + uiop->uio_iov++; + } else { + uiop->uio_iov->iov_base = + (char *)uiop->uio_iov->iov_base + size; + uiop->uio_iov->iov_len -= size; + } + } + } + return (0); +} + +/* + * Vnode op for write using bio + */ +int +ncl_write(struct vop_write_args *ap) +{ + int biosize; + struct uio *uio = ap->a_uio; + struct thread *td = uio->uio_td; + struct vnode *vp = ap->a_vp; + struct nfsnode *np = VTONFS(vp); + struct ucred *cred = ap->a_cred; + int ioflag = ap->a_ioflag; + struct buf *bp; + struct vattr vattr; + struct nfsmount *nmp = VFSTONFS(vp->v_mount); + daddr_t lbn; + int bcount; + int n, on, error = 0; + struct proc *p = td?td->td_proc:NULL; + +#ifdef DIAGNOSTIC + if (uio->uio_rw != UIO_WRITE) + panic("ncl_write mode"); + if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread) + panic("ncl_write proc"); +#endif + if (vp->v_type != VREG) + return (EIO); + mtx_lock(&np->n_mtx); + if (np->n_flag & NWRITEERR) { + np->n_flag &= ~NWRITEERR; + mtx_unlock(&np->n_mtx); + return (np->n_error); + } else + mtx_unlock(&np->n_mtx); + mtx_lock(&nmp->nm_mtx); + if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && + (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { + mtx_unlock(&nmp->nm_mtx); + (void)ncl_fsinfo(nmp, vp, cred, td); + mtx_lock(&nmp->nm_mtx); + } + if (nmp->nm_wsize == 0) + (void) newnfs_iosize(nmp); + mtx_unlock(&nmp->nm_mtx); + + /* + * Synchronously flush pending buffers if we are in synchronous + * mode or if we are appending. + */ + if (ioflag & (IO_APPEND | IO_SYNC)) { + mtx_lock(&np->n_mtx); + if (np->n_flag & NMODIFIED) { + mtx_unlock(&np->n_mtx); +#ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */ + /* + * Require non-blocking, synchronous writes to + * dirty files to inform the program it needs + * to fsync(2) explicitly. + */ + if (ioflag & IO_NDELAY) + return (EAGAIN); +#endif +flush_and_restart: + np->n_attrstamp = 0; + error = ncl_vinvalbuf(vp, V_SAVE, td, 1); + if (error) + return (error); + } else + mtx_unlock(&np->n_mtx); + } + + /* + * If IO_APPEND then load uio_offset. We restart here if we cannot + * get the append lock. + */ + if (ioflag & IO_APPEND) { + np->n_attrstamp = 0; + error = VOP_GETATTR(vp, &vattr, cred); + if (error) + return (error); + mtx_lock(&np->n_mtx); + uio->uio_offset = np->n_size; + mtx_unlock(&np->n_mtx); + } + + if (uio->uio_offset < 0) + return (EINVAL); + if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) + return (EFBIG); + if (uio->uio_resid == 0) + return (0); + + if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG) + return nfs_directio_write(vp, uio, cred, ioflag); + + /* + * Maybe this should be above the vnode op call, but so long as + * file servers have no limits, i don't think it matters + */ + if (p != NULL) { + PROC_LOCK(p); + if (uio->uio_offset + uio->uio_resid > + lim_cur(p, RLIMIT_FSIZE)) { + psignal(p, SIGXFSZ); + PROC_UNLOCK(p); + return (EFBIG); + } + PROC_UNLOCK(p); + } + + biosize = vp->v_mount->mnt_stat.f_iosize; + /* + * Find all of this file's B_NEEDCOMMIT buffers. If our writes + * would exceed the local maximum per-file write commit size when + * combined with those, we must decide whether to flush, + * go synchronous, or return error. We don't bother checking + * IO_UNIT -- we just make all writes atomic anyway, as there's + * no point optimizing for something that really won't ever happen. + */ + if (!(ioflag & IO_SYNC)) { + int nflag; + + mtx_lock(&np->n_mtx); + nflag = np->n_flag; + mtx_unlock(&np->n_mtx); + int needrestart = 0; + if (nmp->nm_wcommitsize < uio->uio_resid) { + /* + * If this request could not possibly be completed + * without exceeding the maximum outstanding write + * commit size, see if we can convert it into a + * synchronous write operation. + */ + if (ioflag & IO_NDELAY) + return (EAGAIN); + ioflag |= IO_SYNC; + if (nflag & NMODIFIED) + needrestart = 1; + } else if (nflag & NMODIFIED) { + int wouldcommit = 0; + BO_LOCK(&vp->v_bufobj); + if (vp->v_bufobj.bo_dirty.bv_cnt != 0) { + TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, + b_bobufs) { + if (bp->b_flags & B_NEEDCOMMIT) + wouldcommit += bp->b_bcount; + } + } + BO_UNLOCK(&vp->v_bufobj); + /* + * Since we're not operating synchronously and + * bypassing the buffer cache, we are in a commit + * and holding all of these buffers whether + * transmitted or not. If not limited, this + * will lead to the buffer cache deadlocking, + * as no one else can flush our uncommitted buffers. + */ + wouldcommit += uio->uio_resid; + /* + * If we would initially exceed the maximum + * outstanding write commit size, flush and restart. + */ + if (wouldcommit > nmp->nm_wcommitsize) + needrestart = 1; + } + if (needrestart) + goto flush_and_restart; + } + + do { + NFSINCRGLOBAL(newnfsstats.biocache_writes); + lbn = uio->uio_offset / biosize; + on = uio->uio_offset & (biosize-1); + n = min((unsigned)(biosize - on), uio->uio_resid); +again: + /* + * Handle direct append and file extension cases, calculate + * unaligned buffer size. + */ + mtx_lock(&np->n_mtx); + if (uio->uio_offset == np->n_size && n) { + mtx_unlock(&np->n_mtx); + /* + * Get the buffer (in its pre-append state to maintain + * B_CACHE if it was previously set). Resize the + * nfsnode after we have locked the buffer to prevent + * readers from reading garbage. + */ + bcount = on; + bp = nfs_getcacheblk(vp, lbn, bcount, td); + + if (bp != NULL) { + long save; + + mtx_lock(&np->n_mtx); + np->n_size = uio->uio_offset + n; + np->n_flag |= NMODIFIED; + vnode_pager_setsize(vp, np->n_size); + mtx_unlock(&np->n_mtx); + + save = bp->b_flags & B_CACHE; + bcount += n; + allocbuf(bp, bcount); + bp->b_flags |= save; + } + } else { + /* + * Obtain the locked cache block first, and then + * adjust the file's size as appropriate. + */ + bcount = on + n; + if ((off_t)lbn * biosize + bcount < np->n_size) { + if ((off_t)(lbn + 1) * biosize < np->n_size) + bcount = biosize; + else + bcount = np->n_size - (off_t)lbn * biosize; + } + mtx_unlock(&np->n_mtx); + bp = nfs_getcacheblk(vp, lbn, bcount, td); + mtx_lock(&np->n_mtx); + if (uio->uio_offset + n > np->n_size) { + np->n_size = uio->uio_offset + n; + np->n_flag |= NMODIFIED; + vnode_pager_setsize(vp, np->n_size); + } + mtx_unlock(&np->n_mtx); + } + + if (!bp) { + error = newnfs_sigintr(nmp, td); + if (!error) + error = EINTR; + break; + } + + /* + * Issue a READ if B_CACHE is not set. In special-append + * mode, B_CACHE is based on the buffer prior to the write + * op and is typically set, avoiding the read. If a read + * is required in special append mode, the server will + * probably send us a short-read since we extended the file + * on our end, resulting in b_resid == 0 and, thusly, + * B_CACHE getting set. + * + * We can also avoid issuing the read if the write covers + * the entire buffer. We have to make sure the buffer state + * is reasonable in this case since we will not be initiating + * I/O. See the comments in kern/vfs_bio.c's getblk() for + * more information. + * + * B_CACHE may also be set due to the buffer being cached + * normally. + */ + + if (on == 0 && n == bcount) { + bp->b_flags |= B_CACHE; + bp->b_flags &= ~B_INVAL; + bp->b_ioflags &= ~BIO_ERROR; + } + + if ((bp->b_flags & B_CACHE) == 0) { + bp->b_iocmd = BIO_READ; + vfs_busy_pages(bp, 0); + error = ncl_doio(vp, bp, cred, td); + if (error) { + brelse(bp); + break; + } + } + if (bp->b_wcred == NOCRED) + bp->b_wcred = crhold(cred); + mtx_lock(&np->n_mtx); + np->n_flag |= NMODIFIED; + mtx_unlock(&np->n_mtx); + + /* + * If dirtyend exceeds file size, chop it down. This should + * not normally occur but there is an append race where it + * might occur XXX, so we log it. + * + * If the chopping creates a reverse-indexed or degenerate + * situation with dirtyoff/end, we 0 both of them. + */ + + if (bp->b_dirtyend > bcount) { + ncl_printf("NFS append race @%lx:%d\n", + (long)bp->b_blkno * DEV_BSIZE, + bp->b_dirtyend - bcount); + bp->b_dirtyend = bcount; + } + + if (bp->b_dirtyoff >= bp->b_dirtyend) + bp->b_dirtyoff = bp->b_dirtyend = 0; + + /* + * If the new write will leave a contiguous dirty + * area, just update the b_dirtyoff and b_dirtyend, + * otherwise force a write rpc of the old dirty area. + * + * While it is possible to merge discontiguous writes due to + * our having a B_CACHE buffer ( and thus valid read data + * for the hole), we don't because it could lead to + * significant cache coherency problems with multiple clients, + * especially if locking is implemented later on. + * + * as an optimization we could theoretically maintain + * a linked list of discontinuous areas, but we would still + * have to commit them separately so there isn't much + * advantage to it except perhaps a bit of asynchronization. + */ + + if (bp->b_dirtyend > 0 && + (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) { + if (bwrite(bp) == EINTR) { + error = EINTR; + break; + } + goto again; + } + + error = uiomove((char *)bp->b_data + on, n, uio); + + /* + * Since this block is being modified, it must be written + * again and not just committed. Since write clustering does + * not work for the stage 1 data write, only the stage 2 + * commit rpc, we have to clear B_CLUSTEROK as well. + */ + bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); + + if (error) { + bp->b_ioflags |= BIO_ERROR; + brelse(bp); + break; + } + + /* + * Only update dirtyoff/dirtyend if not a degenerate + * condition. + */ + if (n) { + if (bp->b_dirtyend > 0) { + bp->b_dirtyoff = min(on, bp->b_dirtyoff); + bp->b_dirtyend = max((on + n), bp->b_dirtyend); + } else { + bp->b_dirtyoff = on; + bp->b_dirtyend = on + n; + } + vfs_bio_set_validclean(bp, on, n); + } + + /* + * If IO_SYNC do bwrite(). + * + * IO_INVAL appears to be unused. The idea appears to be + * to turn off caching in this case. Very odd. XXX + */ + if ((ioflag & IO_SYNC)) { + if (ioflag & IO_INVAL) + bp->b_flags |= B_NOCACHE; + error = bwrite(bp); + if (error) + break; + } else if ((n + on) == biosize) { + bp->b_flags |= B_ASYNC; + (void) ncl_writebp(bp, 0, NULL); + } else { + bdwrite(bp); + } + } while (uio->uio_resid > 0 && n > 0); + + return (error); +} + +/* + * Get an nfs cache block. + * + * Allocate a new one if the block isn't currently in the cache + * and return the block marked busy. If the calling process is + * interrupted by a signal for an interruptible mount point, return + * NULL. + * + * The caller must carefully deal with the possible B_INVAL state of + * the buffer. ncl_doio() clears B_INVAL (and ncl_asyncio() clears it + * indirectly), so synchronous reads can be issued without worrying about + * the B_INVAL state. We have to be a little more careful when dealing + * with writes (see comments in nfs_write()) when extending a file past + * its EOF. + */ +static struct buf * +nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td) +{ + struct buf *bp; + struct mount *mp; + struct nfsmount *nmp; + + mp = vp->v_mount; + nmp = VFSTONFS(mp); + + if (nmp->nm_flag & NFSMNT_INT) { + sigset_t oldset; + + ncl_set_sigmask(td, &oldset); + bp = getblk(vp, bn, size, PCATCH, 0, 0); + ncl_restore_sigmask(td, &oldset); + while (bp == NULL) { + if (newnfs_sigintr(nmp, td)) + return (NULL); + bp = getblk(vp, bn, size, 0, 2 * hz, 0); + } + } else { + bp = getblk(vp, bn, size, 0, 0, 0); + } + + if (vp->v_type == VREG) { + int biosize; + + biosize = mp->mnt_stat.f_iosize; + bp->b_blkno = bn * (biosize / DEV_BSIZE); + } + return (bp); +} + +/* + * Flush and invalidate all dirty buffers. If another process is already + * doing the flush, just wait for completion. + */ +int +ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg) +{ + struct nfsnode *np = VTONFS(vp); + struct nfsmount *nmp = VFSTONFS(vp->v_mount); + int error = 0, slpflag, slptimeo; + int old_lock = 0; + + ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf"); + + /* + * XXX This check stops us from needlessly doing a vinvalbuf when + * being called through vclean(). It is not clear that this is + * unsafe. + */ + if (vp->v_iflag & VI_DOOMED) + return (0); + + if ((nmp->nm_flag & NFSMNT_INT) == 0) + intrflg = 0; + if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)) + intrflg = 1; + if (intrflg) { + slpflag = PCATCH; + slptimeo = 2 * hz; + } else { + slpflag = 0; + slptimeo = 0; + } + + old_lock = ncl_upgrade_vnlock(vp); + /* + * Now, flush as required. + */ + if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) { + VM_OBJECT_LOCK(vp->v_bufobj.bo_object); + vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC); + VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object); + /* + * If the page clean was interrupted, fail the invalidation. + * Not doing so, we run the risk of losing dirty pages in the + * vinvalbuf() call below. + */ + if (intrflg && (error = newnfs_sigintr(nmp, td))) + goto out; + } + + error = vinvalbuf(vp, flags, slpflag, 0); + while (error) { + if (intrflg && (error = newnfs_sigintr(nmp, td))) + goto out; + error = vinvalbuf(vp, flags, 0, slptimeo); + } + mtx_lock(&np->n_mtx); + if (np->n_directio_asyncwr == 0) + np->n_flag &= ~NMODIFIED; + mtx_unlock(&np->n_mtx); +out: + ncl_downgrade_vnlock(vp, old_lock); + return error; +} + +/* + * Initiate asynchronous I/O. Return an error if no nfsiods are available. + * This is mainly to avoid queueing async I/O requests when the nfsiods + * are all hung on a dead server. + * + * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp + * is eventually dequeued by the async daemon, ncl_doio() *will*. + */ +int +ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td) +{ + int iod; + int gotiod; + int slpflag = 0; + int slptimeo = 0; + int error, error2; + + /* + * Unless iothreadcnt is set > 0, don't bother with async I/O + * threads. For LAN environments, they don't buy any significant + * performance improvement that you can't get with large block + * sizes. + */ + if (nmp->nm_readahead == 0) + return (EPERM); + + /* + * Commits are usually short and sweet so lets save some cpu and + * leave the async daemons for more important rpc's (such as reads + * and writes). + */ + mtx_lock(&ncl_iod_mutex); + if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) && + (nmp->nm_bufqiods > ncl_numasync / 2)) { + mtx_unlock(&ncl_iod_mutex); + return(EIO); + } +again: + if (nmp->nm_flag & NFSMNT_INT) + slpflag = PCATCH; + gotiod = FALSE; + + /* + * Find a free iod to process this request. + */ + for (iod = 0; iod < ncl_numasync; iod++) + if (ncl_iodwant[iod]) { + gotiod = TRUE; + break; + } + + /* + * Try to create one if none are free. + */ + if (!gotiod) { + iod = ncl_nfsiodnew(); + if (iod != -1) + gotiod = TRUE; + } + + if (gotiod) { + /* + * Found one, so wake it up and tell it which + * mount to process. + */ + NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n", + iod, nmp)); + ncl_iodwant[iod] = NULL; + ncl_iodmount[iod] = nmp; + nmp->nm_bufqiods++; + wakeup(&ncl_iodwant[iod]); + } + + /* + * If none are free, we may already have an iod working on this mount + * point. If so, it will process our request. + */ + if (!gotiod) { + if (nmp->nm_bufqiods > 0) { + NFS_DPF(ASYNCIO, + ("ncl_asyncio: %d iods are already processing mount %p\n", + nmp->nm_bufqiods, nmp)); + gotiod = TRUE; + } + } + + /* + * If we have an iod which can process the request, then queue + * the buffer. + */ + if (gotiod) { + /* + * Ensure that the queue never grows too large. We still want + * to asynchronize so we block rather then return EIO. + */ + while (nmp->nm_bufqlen >= 2*ncl_numasync) { + NFS_DPF(ASYNCIO, + ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp)); + nmp->nm_bufqwant = TRUE; + error = ncl_msleep(td, &nmp->nm_bufq, &ncl_iod_mutex, + slpflag | PRIBIO, + "nfsaio", slptimeo); + if (error) { + error2 = newnfs_sigintr(nmp, td); + if (error2) { + mtx_unlock(&ncl_iod_mutex); + return (error2); + } + if (slpflag == PCATCH) { + slpflag = 0; + slptimeo = 2 * hz; + } + } + /* + * We might have lost our iod while sleeping, + * so check and loop if nescessary. + */ + if (nmp->nm_bufqiods == 0) { + NFS_DPF(ASYNCIO, + ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp)); + goto again; + } + } + + /* We might have lost our nfsiod */ + if (nmp->nm_bufqiods == 0) { + NFS_DPF(ASYNCIO, + ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp)); + goto again; + } + + if (bp->b_iocmd == BIO_READ) { + if (bp->b_rcred == NOCRED && cred != NOCRED) + bp->b_rcred = crhold(cred); + } else { + if (bp->b_wcred == NOCRED && cred != NOCRED) + bp->b_wcred = crhold(cred); + } + + if (bp->b_flags & B_REMFREE) + bremfreef(bp); + BUF_KERNPROC(bp); + TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist); + nmp->nm_bufqlen++; + if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { + mtx_lock(&(VTONFS(bp->b_vp))->n_mtx); + VTONFS(bp->b_vp)->n_flag |= NMODIFIED; + VTONFS(bp->b_vp)->n_directio_asyncwr++; + mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx); + } + mtx_unlock(&ncl_iod_mutex); + return (0); + } + + mtx_unlock(&ncl_iod_mutex); + + /* + * All the iods are busy on other mounts, so return EIO to + * force the caller to process the i/o synchronously. + */ + NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n")); + return (EIO); +} + +void +ncl_doio_directwrite(struct buf *bp) +{ + int iomode, must_commit; + struct uio *uiop = (struct uio *)bp->b_caller1; + char *iov_base = uiop->uio_iov->iov_base; + + iomode = NFSWRITE_FILESYNC; + uiop->uio_td = NULL; /* NULL since we're in nfsiod */ + ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit); + KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write")); + free(iov_base, M_NFSDIRECTIO); + free(uiop->uio_iov, M_NFSDIRECTIO); + free(uiop, M_NFSDIRECTIO); + if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { + struct nfsnode *np = VTONFS(bp->b_vp); + mtx_lock(&np->n_mtx); + np->n_directio_asyncwr--; + if (np->n_directio_asyncwr == 0) { + np->n_flag &= ~NMODIFIED; + if ((np->n_flag & NFSYNCWAIT)) { + np->n_flag &= ~NFSYNCWAIT; + wakeup((caddr_t)&np->n_directio_asyncwr); + } + } + mtx_unlock(&np->n_mtx); + } + bp->b_vp = NULL; + relpbuf(bp, &ncl_pbuf_freecnt); +} + +/* + * Do an I/O operation to/from a cache block. This may be called + * synchronously or from an nfsiod. + */ +int +ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td) +{ + struct uio *uiop; + struct nfsnode *np; + struct nfsmount *nmp; + int error = 0, iomode, must_commit = 0; + struct uio uio; + struct iovec io; + struct proc *p = td ? td->td_proc : NULL; + uint8_t iocmd; + + np = VTONFS(vp); + nmp = VFSTONFS(vp->v_mount); + uiop = &uio; + uiop->uio_iov = &io; + uiop->uio_iovcnt = 1; + uiop->uio_segflg = UIO_SYSSPACE; + uiop->uio_td = td; + + /* + * clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We + * do this here so we do not have to do it in all the code that + * calls us. + */ + bp->b_flags &= ~B_INVAL; + bp->b_ioflags &= ~BIO_ERROR; + + KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp)); + iocmd = bp->b_iocmd; + if (iocmd == BIO_READ) { + io.iov_len = uiop->uio_resid = bp->b_bcount; + io.iov_base = bp->b_data; + uiop->uio_rw = UIO_READ; + + switch (vp->v_type) { + case VREG: + uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE; + NFSINCRGLOBAL(newnfsstats.read_bios); + error = ncl_readrpc(vp, uiop, cr); + + if (!error) { + if (uiop->uio_resid) { + /* + * If we had a short read with no error, we must have + * hit a file hole. We should zero-fill the remainder. + * This can also occur if the server hits the file EOF. + * + * Holes used to be able to occur due to pending + * writes, but that is not possible any longer. + */ + int nread = bp->b_bcount - uiop->uio_resid; + int left = uiop->uio_resid; + + if (left > 0) + bzero((char *)bp->b_data + nread, left); + uiop->uio_resid = 0; + } + } + /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */ + if (p && (vp->v_vflag & VV_TEXT)) { + mtx_lock(&np->n_mtx); + if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) { + mtx_unlock(&np->n_mtx); + PROC_LOCK(p); + killproc(p, "text file modification"); + PROC_UNLOCK(p); + } else + mtx_unlock(&np->n_mtx); + } + break; + case VLNK: + uiop->uio_offset = (off_t)0; + NFSINCRGLOBAL(newnfsstats.readlink_bios); + error = ncl_readlinkrpc(vp, uiop, cr); + break; + case VDIR: + NFSINCRGLOBAL(newnfsstats.readdir_bios); + uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ; + if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) { + error = ncl_readdirplusrpc(vp, uiop, cr, td); + if (error == NFSERR_NOTSUPP) + nmp->nm_flag &= ~NFSMNT_RDIRPLUS; + } + if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) + error = ncl_readdirrpc(vp, uiop, cr, td); + /* + * end-of-directory sets B_INVAL but does not generate an + * error. + */ + if (error == 0 && uiop->uio_resid == bp->b_bcount) + bp->b_flags |= B_INVAL; + break; + default: + ncl_printf("ncl_doio: type %x unexpected\n", vp->v_type); + break; + }; + if (error) { + bp->b_ioflags |= BIO_ERROR; + bp->b_error = error; + } + } else { + /* + * If we only need to commit, try to commit + */ + if (bp->b_flags & B_NEEDCOMMIT) { + int retv; + off_t off; + + off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; + retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff, + bp->b_wcred, td); + if (retv == 0) { + bp->b_dirtyoff = bp->b_dirtyend = 0; + bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); + bp->b_resid = 0; + bufdone(bp); + return (0); + } + if (retv == NFSERR_STALEWRITEVERF) { + ncl_clearcommit(vp->v_mount); + } + } + + /* + * Setup for actual write + */ + mtx_lock(&np->n_mtx); + if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size) + bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE; + mtx_unlock(&np->n_mtx); + + if (bp->b_dirtyend > bp->b_dirtyoff) { + io.iov_len = uiop->uio_resid = bp->b_dirtyend + - bp->b_dirtyoff; + uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE + + bp->b_dirtyoff; + io.iov_base = (char *)bp->b_data + bp->b_dirtyoff; + uiop->uio_rw = UIO_WRITE; + NFSINCRGLOBAL(newnfsstats.write_bios); + + if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC) + iomode = NFSWRITE_UNSTABLE; + else + iomode = NFSWRITE_FILESYNC; + + error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit); + + /* + * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try + * to cluster the buffers needing commit. This will allow + * the system to submit a single commit rpc for the whole + * cluster. We can do this even if the buffer is not 100% + * dirty (relative to the NFS blocksize), so we optimize the + * append-to-file-case. + * + * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be + * cleared because write clustering only works for commit + * rpc's, not for the data portion of the write). + */ + + if (!error && iomode == NFSWRITE_UNSTABLE) { + bp->b_flags |= B_NEEDCOMMIT; + if (bp->b_dirtyoff == 0 + && bp->b_dirtyend == bp->b_bcount) + bp->b_flags |= B_CLUSTEROK; + } else { + bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); + } + + /* + * For an interrupted write, the buffer is still valid + * and the write hasn't been pushed to the server yet, + * so we can't set BIO_ERROR and report the interruption + * by setting B_EINTR. For the B_ASYNC case, B_EINTR + * is not relevant, so the rpc attempt is essentially + * a noop. For the case of a V3 write rpc not being + * committed to stable storage, the block is still + * dirty and requires either a commit rpc or another + * write rpc with iomode == NFSV3WRITE_FILESYNC before + * the block is reused. This is indicated by setting + * the B_DELWRI and B_NEEDCOMMIT flags. + * + * If the buffer is marked B_PAGING, it does not reside on + * the vp's paging queues so we cannot call bdirty(). The + * bp in this case is not an NFS cache block so we should + * be safe. XXX + * + * The logic below breaks up errors into recoverable and + * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE + * and keep the buffer around for potential write retries. + * For the latter (eg ESTALE), we toss the buffer away (B_INVAL) + * and save the error in the nfsnode. This is less than ideal + * but necessary. Keeping such buffers around could potentially + * cause buffer exhaustion eventually (they can never be written + * out, so will get constantly be re-dirtied). It also causes + * all sorts of vfs panics. For non-recoverable write errors, + * also invalidate the attrcache, so we'll be forced to go over + * the wire for this object, returning an error to user on next + * call (most of the time). + */ + if (error == EINTR || error == EIO || error == ETIMEDOUT + || (!error && (bp->b_flags & B_NEEDCOMMIT))) { + int s; + + s = splbio(); + bp->b_flags &= ~(B_INVAL|B_NOCACHE); + if ((bp->b_flags & B_PAGING) == 0) { + bdirty(bp); + bp->b_flags &= ~B_DONE; + } + if (error && (bp->b_flags & B_ASYNC) == 0) + bp->b_flags |= B_EINTR; + splx(s); + } else { + if (error) { + bp->b_ioflags |= BIO_ERROR; + bp->b_flags |= B_INVAL; + bp->b_error = np->n_error = error; + mtx_lock(&np->n_mtx); + np->n_flag |= NWRITEERR; + np->n_attrstamp = 0; + mtx_unlock(&np->n_mtx); + } + bp->b_dirtyoff = bp->b_dirtyend = 0; + } + } else { + bp->b_resid = 0; + bufdone(bp); + return (0); + } + } + bp->b_resid = uiop->uio_resid; + if (must_commit) + ncl_clearcommit(vp->v_mount); + bufdone(bp); + return (error); +} + +/* + * Used to aid in handling ftruncate() operations on the NFS client side. + * Truncation creates a number of special problems for NFS. We have to + * throw away VM pages and buffer cache buffers that are beyond EOF, and + * we have to properly handle VM pages or (potentially dirty) buffers + * that straddle the truncation point. + */ + +int +ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize) +{ + struct nfsnode *np = VTONFS(vp); + u_quad_t tsize; + int biosize = vp->v_mount->mnt_stat.f_iosize; + int error = 0; + + mtx_lock(&np->n_mtx); + tsize = np->n_size; + np->n_size = nsize; + mtx_unlock(&np->n_mtx); + + if (nsize < tsize) { + struct buf *bp; + daddr_t lbn; + int bufsize; + + /* + * vtruncbuf() doesn't get the buffer overlapping the + * truncation point. We may have a B_DELWRI and/or B_CACHE + * buffer that now needs to be truncated. + */ + error = vtruncbuf(vp, cred, td, nsize, biosize); + lbn = nsize / biosize; + bufsize = nsize & (biosize - 1); + bp = nfs_getcacheblk(vp, lbn, bufsize, td); + if (!bp) + return EINTR; + if (bp->b_dirtyoff > bp->b_bcount) + bp->b_dirtyoff = bp->b_bcount; + if (bp->b_dirtyend > bp->b_bcount) + bp->b_dirtyend = bp->b_bcount; + bp->b_flags |= B_RELBUF; /* don't leave garbage around */ + brelse(bp); + } else { + vnode_pager_setsize(vp, nsize); + } + return(error); +} + |