summaryrefslogtreecommitdiffstats
path: root/sys/dev/tl
diff options
context:
space:
mode:
authorimp <imp@FreeBSD.org>2008-08-14 20:02:34 +0000
committerimp <imp@FreeBSD.org>2008-08-14 20:02:34 +0000
commit6a728b4e53204fcbd8423d013a8beb811574b400 (patch)
treee84c1c79e9ff01bb6a99e12d1867afeed2865ac1 /sys/dev/tl
parent463ec8e02d0db95b50ab7a1c71563cb72e824d7c (diff)
downloadFreeBSD-src-6a728b4e53204fcbd8423d013a8beb811574b400.zip
FreeBSD-src-6a728b4e53204fcbd8423d013a8beb811574b400.tar.gz
Move the tl driver form sys/pci to sys/dev/tl.
Diffstat (limited to 'sys/dev/tl')
-rw-r--r--sys/dev/tl/if_tl.c2363
-rw-r--r--sys/dev/tl/if_tlreg.h592
2 files changed, 2955 insertions, 0 deletions
diff --git a/sys/dev/tl/if_tl.c b/sys/dev/tl/if_tl.c
new file mode 100644
index 0000000..371feb2
--- /dev/null
+++ b/sys/dev/tl/if_tl.c
@@ -0,0 +1,2363 @@
+/*-
+ * Copyright (c) 1997, 1998
+ * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by Bill Paul.
+ * 4. Neither the name of the author nor the names of any co-contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+/*
+ * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
+ * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
+ * the National Semiconductor DP83840A physical interface and the
+ * Microchip Technology 24Cxx series serial EEPROM.
+ *
+ * Written using the following four documents:
+ *
+ * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
+ * National Semiconductor DP83840A data sheet (www.national.com)
+ * Microchip Technology 24C02C data sheet (www.microchip.com)
+ * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
+ *
+ * Written by Bill Paul <wpaul@ctr.columbia.edu>
+ * Electrical Engineering Department
+ * Columbia University, New York City
+ */
+/*
+ * Some notes about the ThunderLAN:
+ *
+ * The ThunderLAN controller is a single chip containing PCI controller
+ * logic, approximately 3K of on-board SRAM, a LAN controller, and media
+ * independent interface (MII) bus. The MII allows the ThunderLAN chip to
+ * control up to 32 different physical interfaces (PHYs). The ThunderLAN
+ * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
+ * to act as a complete ethernet interface.
+ *
+ * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
+ * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
+ * in full or half duplex. Some of the Compaq Deskpro machines use a
+ * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
+ * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
+ * concert with the ThunderLAN's internal PHY to provide full 10/100
+ * support. This is cheaper than using a standalone external PHY for both
+ * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
+ * A serial EEPROM is also attached to the ThunderLAN chip to provide
+ * power-up default register settings and for storing the adapter's
+ * station address. Although not supported by this driver, the ThunderLAN
+ * chip can also be connected to token ring PHYs.
+ *
+ * The ThunderLAN has a set of registers which can be used to issue
+ * commands, acknowledge interrupts, and to manipulate other internal
+ * registers on its DIO bus. The primary registers can be accessed
+ * using either programmed I/O (inb/outb) or via PCI memory mapping,
+ * depending on how the card is configured during the PCI probing
+ * phase. It is even possible to have both PIO and memory mapped
+ * access turned on at the same time.
+ *
+ * Frame reception and transmission with the ThunderLAN chip is done
+ * using frame 'lists.' A list structure looks more or less like this:
+ *
+ * struct tl_frag {
+ * u_int32_t fragment_address;
+ * u_int32_t fragment_size;
+ * };
+ * struct tl_list {
+ * u_int32_t forward_pointer;
+ * u_int16_t cstat;
+ * u_int16_t frame_size;
+ * struct tl_frag fragments[10];
+ * };
+ *
+ * The forward pointer in the list header can be either a 0 or the address
+ * of another list, which allows several lists to be linked together. Each
+ * list contains up to 10 fragment descriptors. This means the chip allows
+ * ethernet frames to be broken up into up to 10 chunks for transfer to
+ * and from the SRAM. Note that the forward pointer and fragment buffer
+ * addresses are physical memory addresses, not virtual. Note also that
+ * a single ethernet frame can not span lists: if the host wants to
+ * transmit a frame and the frame data is split up over more than 10
+ * buffers, the frame has to collapsed before it can be transmitted.
+ *
+ * To receive frames, the driver sets up a number of lists and populates
+ * the fragment descriptors, then it sends an RX GO command to the chip.
+ * When a frame is received, the chip will DMA it into the memory regions
+ * specified by the fragment descriptors and then trigger an RX 'end of
+ * frame interrupt' when done. The driver may choose to use only one
+ * fragment per list; this may result is slighltly less efficient use
+ * of memory in exchange for improving performance.
+ *
+ * To transmit frames, the driver again sets up lists and fragment
+ * descriptors, only this time the buffers contain frame data that
+ * is to be DMA'ed into the chip instead of out of it. Once the chip
+ * has transfered the data into its on-board SRAM, it will trigger a
+ * TX 'end of frame' interrupt. It will also generate an 'end of channel'
+ * interrupt when it reaches the end of the list.
+ */
+/*
+ * Some notes about this driver:
+ *
+ * The ThunderLAN chip provides a couple of different ways to organize
+ * reception, transmission and interrupt handling. The simplest approach
+ * is to use one list each for transmission and reception. In this mode,
+ * the ThunderLAN will generate two interrupts for every received frame
+ * (one RX EOF and one RX EOC) and two for each transmitted frame (one
+ * TX EOF and one TX EOC). This may make the driver simpler but it hurts
+ * performance to have to handle so many interrupts.
+ *
+ * Initially I wanted to create a circular list of receive buffers so
+ * that the ThunderLAN chip would think there was an infinitely long
+ * receive channel and never deliver an RXEOC interrupt. However this
+ * doesn't work correctly under heavy load: while the manual says the
+ * chip will trigger an RXEOF interrupt each time a frame is copied into
+ * memory, you can't count on the chip waiting around for you to acknowledge
+ * the interrupt before it starts trying to DMA the next frame. The result
+ * is that the chip might traverse the entire circular list and then wrap
+ * around before you have a chance to do anything about it. Consequently,
+ * the receive list is terminated (with a 0 in the forward pointer in the
+ * last element). Each time an RXEOF interrupt arrives, the used list
+ * is shifted to the end of the list. This gives the appearance of an
+ * infinitely large RX chain so long as the driver doesn't fall behind
+ * the chip and allow all of the lists to be filled up.
+ *
+ * If all the lists are filled, the adapter will deliver an RX 'end of
+ * channel' interrupt when it hits the 0 forward pointer at the end of
+ * the chain. The RXEOC handler then cleans out the RX chain and resets
+ * the list head pointer in the ch_parm register and restarts the receiver.
+ *
+ * For frame transmission, it is possible to program the ThunderLAN's
+ * transmit interrupt threshold so that the chip can acknowledge multiple
+ * lists with only a single TX EOF interrupt. This allows the driver to
+ * queue several frames in one shot, and only have to handle a total
+ * two interrupts (one TX EOF and one TX EOC) no matter how many frames
+ * are transmitted. Frame transmission is done directly out of the
+ * mbufs passed to the tl_start() routine via the interface send queue.
+ * The driver simply sets up the fragment descriptors in the transmit
+ * lists to point to the mbuf data regions and sends a TX GO command.
+ *
+ * Note that since the RX and TX lists themselves are always used
+ * only by the driver, the are malloc()ed once at driver initialization
+ * time and never free()ed.
+ *
+ * Also, in order to remain as platform independent as possible, this
+ * driver uses memory mapped register access to manipulate the card
+ * as opposed to programmed I/O. This avoids the use of the inb/outb
+ * (and related) instructions which are specific to the i386 platform.
+ *
+ * Using these techniques, this driver achieves very high performance
+ * by minimizing the amount of interrupts generated during large
+ * transfers and by completely avoiding buffer copies. Frame transfer
+ * to and from the ThunderLAN chip is performed entirely by the chip
+ * itself thereby reducing the load on the host CPU.
+ */
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/sockio.h>
+#include <sys/mbuf.h>
+#include <sys/malloc.h>
+#include <sys/kernel.h>
+#include <sys/module.h>
+#include <sys/socket.h>
+
+#include <net/if.h>
+#include <net/if_arp.h>
+#include <net/ethernet.h>
+#include <net/if_dl.h>
+#include <net/if_media.h>
+#include <net/if_types.h>
+
+#include <net/bpf.h>
+
+#include <vm/vm.h> /* for vtophys */
+#include <vm/pmap.h> /* for vtophys */
+#include <machine/bus.h>
+#include <machine/resource.h>
+#include <sys/bus.h>
+#include <sys/rman.h>
+
+#include <dev/mii/mii.h>
+#include <dev/mii/miivar.h>
+
+#include <dev/pci/pcireg.h>
+#include <dev/pci/pcivar.h>
+
+/*
+ * Default to using PIO register access mode to pacify certain
+ * laptop docking stations with built-in ThunderLAN chips that
+ * don't seem to handle memory mapped mode properly.
+ */
+#define TL_USEIOSPACE
+
+#include <dev/tl/if_tlreg.h>
+
+MODULE_DEPEND(tl, pci, 1, 1, 1);
+MODULE_DEPEND(tl, ether, 1, 1, 1);
+MODULE_DEPEND(tl, miibus, 1, 1, 1);
+
+/* "device miibus" required. See GENERIC if you get errors here. */
+#include "miibus_if.h"
+
+/*
+ * Various supported device vendors/types and their names.
+ */
+
+static struct tl_type tl_devs[] = {
+ { TI_VENDORID, TI_DEVICEID_THUNDERLAN,
+ "Texas Instruments ThunderLAN" },
+ { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
+ "Compaq Netelligent 10" },
+ { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
+ "Compaq Netelligent 10/100" },
+ { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
+ "Compaq Netelligent 10/100 Proliant" },
+ { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
+ "Compaq Netelligent 10/100 Dual Port" },
+ { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
+ "Compaq NetFlex-3/P Integrated" },
+ { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
+ "Compaq NetFlex-3/P" },
+ { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
+ "Compaq NetFlex 3/P w/ BNC" },
+ { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
+ "Compaq Netelligent 10/100 TX Embedded UTP" },
+ { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
+ "Compaq Netelligent 10 T/2 PCI UTP/Coax" },
+ { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
+ "Compaq Netelligent 10/100 TX UTP" },
+ { OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
+ "Olicom OC-2183/2185" },
+ { OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
+ "Olicom OC-2325" },
+ { OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
+ "Olicom OC-2326 10/100 TX UTP" },
+ { 0, 0, NULL }
+};
+
+static int tl_probe(device_t);
+static int tl_attach(device_t);
+static int tl_detach(device_t);
+static int tl_intvec_rxeoc(void *, u_int32_t);
+static int tl_intvec_txeoc(void *, u_int32_t);
+static int tl_intvec_txeof(void *, u_int32_t);
+static int tl_intvec_rxeof(void *, u_int32_t);
+static int tl_intvec_adchk(void *, u_int32_t);
+static int tl_intvec_netsts(void *, u_int32_t);
+
+static int tl_newbuf(struct tl_softc *, struct tl_chain_onefrag *);
+static void tl_stats_update(void *);
+static int tl_encap(struct tl_softc *, struct tl_chain *, struct mbuf *);
+
+static void tl_intr(void *);
+static void tl_start(struct ifnet *);
+static void tl_start_locked(struct ifnet *);
+static int tl_ioctl(struct ifnet *, u_long, caddr_t);
+static void tl_init(void *);
+static void tl_init_locked(struct tl_softc *);
+static void tl_stop(struct tl_softc *);
+static void tl_watchdog(struct ifnet *);
+static void tl_shutdown(device_t);
+static int tl_ifmedia_upd(struct ifnet *);
+static void tl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
+
+static u_int8_t tl_eeprom_putbyte(struct tl_softc *, int);
+static u_int8_t tl_eeprom_getbyte(struct tl_softc *, int, u_int8_t *);
+static int tl_read_eeprom(struct tl_softc *, caddr_t, int, int);
+
+static void tl_mii_sync(struct tl_softc *);
+static void tl_mii_send(struct tl_softc *, u_int32_t, int);
+static int tl_mii_readreg(struct tl_softc *, struct tl_mii_frame *);
+static int tl_mii_writereg(struct tl_softc *, struct tl_mii_frame *);
+static int tl_miibus_readreg(device_t, int, int);
+static int tl_miibus_writereg(device_t, int, int, int);
+static void tl_miibus_statchg(device_t);
+
+static void tl_setmode(struct tl_softc *, int);
+static uint32_t tl_mchash(const uint8_t *);
+static void tl_setmulti(struct tl_softc *);
+static void tl_setfilt(struct tl_softc *, caddr_t, int);
+static void tl_softreset(struct tl_softc *, int);
+static void tl_hardreset(device_t);
+static int tl_list_rx_init(struct tl_softc *);
+static int tl_list_tx_init(struct tl_softc *);
+
+static u_int8_t tl_dio_read8(struct tl_softc *, int);
+static u_int16_t tl_dio_read16(struct tl_softc *, int);
+static u_int32_t tl_dio_read32(struct tl_softc *, int);
+static void tl_dio_write8(struct tl_softc *, int, int);
+static void tl_dio_write16(struct tl_softc *, int, int);
+static void tl_dio_write32(struct tl_softc *, int, int);
+static void tl_dio_setbit(struct tl_softc *, int, int);
+static void tl_dio_clrbit(struct tl_softc *, int, int);
+static void tl_dio_setbit16(struct tl_softc *, int, int);
+static void tl_dio_clrbit16(struct tl_softc *, int, int);
+
+#ifdef TL_USEIOSPACE
+#define TL_RES SYS_RES_IOPORT
+#define TL_RID TL_PCI_LOIO
+#else
+#define TL_RES SYS_RES_MEMORY
+#define TL_RID TL_PCI_LOMEM
+#endif
+
+static device_method_t tl_methods[] = {
+ /* Device interface */
+ DEVMETHOD(device_probe, tl_probe),
+ DEVMETHOD(device_attach, tl_attach),
+ DEVMETHOD(device_detach, tl_detach),
+ DEVMETHOD(device_shutdown, tl_shutdown),
+
+ /* bus interface */
+ DEVMETHOD(bus_print_child, bus_generic_print_child),
+ DEVMETHOD(bus_driver_added, bus_generic_driver_added),
+
+ /* MII interface */
+ DEVMETHOD(miibus_readreg, tl_miibus_readreg),
+ DEVMETHOD(miibus_writereg, tl_miibus_writereg),
+ DEVMETHOD(miibus_statchg, tl_miibus_statchg),
+
+ { 0, 0 }
+};
+
+static driver_t tl_driver = {
+ "tl",
+ tl_methods,
+ sizeof(struct tl_softc)
+};
+
+static devclass_t tl_devclass;
+
+DRIVER_MODULE(tl, pci, tl_driver, tl_devclass, 0, 0);
+DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0);
+
+static u_int8_t tl_dio_read8(sc, reg)
+ struct tl_softc *sc;
+ int reg;
+{
+ CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
+ return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
+}
+
+static u_int16_t tl_dio_read16(sc, reg)
+ struct tl_softc *sc;
+ int reg;
+{
+ CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
+ return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
+}
+
+static u_int32_t tl_dio_read32(sc, reg)
+ struct tl_softc *sc;
+ int reg;
+{
+ CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
+ return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
+}
+
+static void tl_dio_write8(sc, reg, val)
+ struct tl_softc *sc;
+ int reg;
+ int val;
+{
+ CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
+ CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
+ return;
+}
+
+static void tl_dio_write16(sc, reg, val)
+ struct tl_softc *sc;
+ int reg;
+ int val;
+{
+ CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
+ CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
+ return;
+}
+
+static void tl_dio_write32(sc, reg, val)
+ struct tl_softc *sc;
+ int reg;
+ int val;
+{
+ CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
+ CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
+ return;
+}
+
+static void
+tl_dio_setbit(sc, reg, bit)
+ struct tl_softc *sc;
+ int reg;
+ int bit;
+{
+ u_int8_t f;
+
+ CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
+ f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
+ f |= bit;
+ CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
+
+ return;
+}
+
+static void
+tl_dio_clrbit(sc, reg, bit)
+ struct tl_softc *sc;
+ int reg;
+ int bit;
+{
+ u_int8_t f;
+
+ CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
+ f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
+ f &= ~bit;
+ CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
+
+ return;
+}
+
+static void tl_dio_setbit16(sc, reg, bit)
+ struct tl_softc *sc;
+ int reg;
+ int bit;
+{
+ u_int16_t f;
+
+ CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
+ f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
+ f |= bit;
+ CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
+
+ return;
+}
+
+static void tl_dio_clrbit16(sc, reg, bit)
+ struct tl_softc *sc;
+ int reg;
+ int bit;
+{
+ u_int16_t f;
+
+ CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
+ f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
+ f &= ~bit;
+ CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
+
+ return;
+}
+
+/*
+ * Send an instruction or address to the EEPROM, check for ACK.
+ */
+static u_int8_t tl_eeprom_putbyte(sc, byte)
+ struct tl_softc *sc;
+ int byte;
+{
+ register int i, ack = 0;
+
+ /*
+ * Make sure we're in TX mode.
+ */
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
+
+ /*
+ * Feed in each bit and stobe the clock.
+ */
+ for (i = 0x80; i; i >>= 1) {
+ if (byte & i) {
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
+ } else {
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
+ }
+ DELAY(1);
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
+ DELAY(1);
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
+ }
+
+ /*
+ * Turn off TX mode.
+ */
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
+
+ /*
+ * Check for ack.
+ */
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
+ ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
+
+ return(ack);
+}
+
+/*
+ * Read a byte of data stored in the EEPROM at address 'addr.'
+ */
+static u_int8_t tl_eeprom_getbyte(sc, addr, dest)
+ struct tl_softc *sc;
+ int addr;
+ u_int8_t *dest;
+{
+ register int i;
+ u_int8_t byte = 0;
+ device_t tl_dev = sc->tl_dev;
+
+ tl_dio_write8(sc, TL_NETSIO, 0);
+
+ EEPROM_START;
+
+ /*
+ * Send write control code to EEPROM.
+ */
+ if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
+ device_printf(tl_dev, "failed to send write command, status: %x\n",
+ tl_dio_read8(sc, TL_NETSIO));
+ return(1);
+ }
+
+ /*
+ * Send address of byte we want to read.
+ */
+ if (tl_eeprom_putbyte(sc, addr)) {
+ device_printf(tl_dev, "failed to send address, status: %x\n",
+ tl_dio_read8(sc, TL_NETSIO));
+ return(1);
+ }
+
+ EEPROM_STOP;
+ EEPROM_START;
+ /*
+ * Send read control code to EEPROM.
+ */
+ if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
+ device_printf(tl_dev, "failed to send write command, status: %x\n",
+ tl_dio_read8(sc, TL_NETSIO));
+ return(1);
+ }
+
+ /*
+ * Start reading bits from EEPROM.
+ */
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
+ for (i = 0x80; i; i >>= 1) {
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
+ DELAY(1);
+ if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
+ byte |= i;
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
+ DELAY(1);
+ }
+
+ EEPROM_STOP;
+
+ /*
+ * No ACK generated for read, so just return byte.
+ */
+
+ *dest = byte;
+
+ return(0);
+}
+
+/*
+ * Read a sequence of bytes from the EEPROM.
+ */
+static int
+tl_read_eeprom(sc, dest, off, cnt)
+ struct tl_softc *sc;
+ caddr_t dest;
+ int off;
+ int cnt;
+{
+ int err = 0, i;
+ u_int8_t byte = 0;
+
+ for (i = 0; i < cnt; i++) {
+ err = tl_eeprom_getbyte(sc, off + i, &byte);
+ if (err)
+ break;
+ *(dest + i) = byte;
+ }
+
+ return(err ? 1 : 0);
+}
+
+static void
+tl_mii_sync(sc)
+ struct tl_softc *sc;
+{
+ register int i;
+
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
+
+ for (i = 0; i < 32; i++) {
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
+ }
+
+ return;
+}
+
+static void
+tl_mii_send(sc, bits, cnt)
+ struct tl_softc *sc;
+ u_int32_t bits;
+ int cnt;
+{
+ int i;
+
+ for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
+ if (bits & i) {
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
+ } else {
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
+ }
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
+ }
+}
+
+static int
+tl_mii_readreg(sc, frame)
+ struct tl_softc *sc;
+ struct tl_mii_frame *frame;
+
+{
+ int i, ack;
+ int minten = 0;
+
+ tl_mii_sync(sc);
+
+ /*
+ * Set up frame for RX.
+ */
+ frame->mii_stdelim = TL_MII_STARTDELIM;
+ frame->mii_opcode = TL_MII_READOP;
+ frame->mii_turnaround = 0;
+ frame->mii_data = 0;
+
+ /*
+ * Turn off MII interrupt by forcing MINTEN low.
+ */
+ minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
+ if (minten) {
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
+ }
+
+ /*
+ * Turn on data xmit.
+ */
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
+
+ /*
+ * Send command/address info.
+ */
+ tl_mii_send(sc, frame->mii_stdelim, 2);
+ tl_mii_send(sc, frame->mii_opcode, 2);
+ tl_mii_send(sc, frame->mii_phyaddr, 5);
+ tl_mii_send(sc, frame->mii_regaddr, 5);
+
+ /*
+ * Turn off xmit.
+ */
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
+
+ /* Idle bit */
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
+
+ /* Check for ack */
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
+ ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
+
+ /* Complete the cycle */
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
+
+ /*
+ * Now try reading data bits. If the ack failed, we still
+ * need to clock through 16 cycles to keep the PHYs in sync.
+ */
+ if (ack) {
+ for(i = 0; i < 16; i++) {
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
+ }
+ goto fail;
+ }
+
+ for (i = 0x8000; i; i >>= 1) {
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
+ if (!ack) {
+ if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
+ frame->mii_data |= i;
+ }
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
+ }
+
+fail:
+
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
+
+ /* Reenable interrupts */
+ if (minten) {
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
+ }
+
+ if (ack)
+ return(1);
+ return(0);
+}
+
+static int
+tl_mii_writereg(sc, frame)
+ struct tl_softc *sc;
+ struct tl_mii_frame *frame;
+
+{
+ int minten;
+
+ tl_mii_sync(sc);
+
+ /*
+ * Set up frame for TX.
+ */
+
+ frame->mii_stdelim = TL_MII_STARTDELIM;
+ frame->mii_opcode = TL_MII_WRITEOP;
+ frame->mii_turnaround = TL_MII_TURNAROUND;
+
+ /*
+ * Turn off MII interrupt by forcing MINTEN low.
+ */
+ minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
+ if (minten) {
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
+ }
+
+ /*
+ * Turn on data output.
+ */
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
+
+ tl_mii_send(sc, frame->mii_stdelim, 2);
+ tl_mii_send(sc, frame->mii_opcode, 2);
+ tl_mii_send(sc, frame->mii_phyaddr, 5);
+ tl_mii_send(sc, frame->mii_regaddr, 5);
+ tl_mii_send(sc, frame->mii_turnaround, 2);
+ tl_mii_send(sc, frame->mii_data, 16);
+
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
+
+ /*
+ * Turn off xmit.
+ */
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
+
+ /* Reenable interrupts */
+ if (minten)
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
+
+ return(0);
+}
+
+static int
+tl_miibus_readreg(dev, phy, reg)
+ device_t dev;
+ int phy, reg;
+{
+ struct tl_softc *sc;
+ struct tl_mii_frame frame;
+
+ sc = device_get_softc(dev);
+ bzero((char *)&frame, sizeof(frame));
+
+ frame.mii_phyaddr = phy;
+ frame.mii_regaddr = reg;
+ tl_mii_readreg(sc, &frame);
+
+ return(frame.mii_data);
+}
+
+static int
+tl_miibus_writereg(dev, phy, reg, data)
+ device_t dev;
+ int phy, reg, data;
+{
+ struct tl_softc *sc;
+ struct tl_mii_frame frame;
+
+ sc = device_get_softc(dev);
+ bzero((char *)&frame, sizeof(frame));
+
+ frame.mii_phyaddr = phy;
+ frame.mii_regaddr = reg;
+ frame.mii_data = data;
+
+ tl_mii_writereg(sc, &frame);
+
+ return(0);
+}
+
+static void
+tl_miibus_statchg(dev)
+ device_t dev;
+{
+ struct tl_softc *sc;
+ struct mii_data *mii;
+
+ sc = device_get_softc(dev);
+ mii = device_get_softc(sc->tl_miibus);
+
+ if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
+ tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
+ } else {
+ tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
+ }
+
+ return;
+}
+
+/*
+ * Set modes for bitrate devices.
+ */
+static void
+tl_setmode(sc, media)
+ struct tl_softc *sc;
+ int media;
+{
+ if (IFM_SUBTYPE(media) == IFM_10_5)
+ tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
+ if (IFM_SUBTYPE(media) == IFM_10_T) {
+ tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
+ if ((media & IFM_GMASK) == IFM_FDX) {
+ tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
+ tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
+ } else {
+ tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
+ tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
+ }
+ }
+
+ return;
+}
+
+/*
+ * Calculate the hash of a MAC address for programming the multicast hash
+ * table. This hash is simply the address split into 6-bit chunks
+ * XOR'd, e.g.
+ * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
+ * bit: 765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
+ * Bytes 0-2 and 3-5 are symmetrical, so are folded together. Then
+ * the folded 24-bit value is split into 6-bit portions and XOR'd.
+ */
+static uint32_t
+tl_mchash(addr)
+ const uint8_t *addr;
+{
+ int t;
+
+ t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
+ (addr[2] ^ addr[5]);
+ return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
+}
+
+/*
+ * The ThunderLAN has a perfect MAC address filter in addition to
+ * the multicast hash filter. The perfect filter can be programmed
+ * with up to four MAC addresses. The first one is always used to
+ * hold the station address, which leaves us free to use the other
+ * three for multicast addresses.
+ */
+static void
+tl_setfilt(sc, addr, slot)
+ struct tl_softc *sc;
+ caddr_t addr;
+ int slot;
+{
+ int i;
+ u_int16_t regaddr;
+
+ regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
+
+ for (i = 0; i < ETHER_ADDR_LEN; i++)
+ tl_dio_write8(sc, regaddr + i, *(addr + i));
+
+ return;
+}
+
+/*
+ * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
+ * linked list. This is fine, except addresses are added from the head
+ * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
+ * group to always be in the perfect filter, but as more groups are added,
+ * the 224.0.0.1 entry (which is always added first) gets pushed down
+ * the list and ends up at the tail. So after 3 or 4 multicast groups
+ * are added, the all-hosts entry gets pushed out of the perfect filter
+ * and into the hash table.
+ *
+ * Because the multicast list is a doubly-linked list as opposed to a
+ * circular queue, we don't have the ability to just grab the tail of
+ * the list and traverse it backwards. Instead, we have to traverse
+ * the list once to find the tail, then traverse it again backwards to
+ * update the multicast filter.
+ */
+static void
+tl_setmulti(sc)
+ struct tl_softc *sc;
+{
+ struct ifnet *ifp;
+ u_int32_t hashes[2] = { 0, 0 };
+ int h, i;
+ struct ifmultiaddr *ifma;
+ u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
+ ifp = sc->tl_ifp;
+
+ /* First, zot all the existing filters. */
+ for (i = 1; i < 4; i++)
+ tl_setfilt(sc, (caddr_t)&dummy, i);
+ tl_dio_write32(sc, TL_HASH1, 0);
+ tl_dio_write32(sc, TL_HASH2, 0);
+
+ /* Now program new ones. */
+ if (ifp->if_flags & IFF_ALLMULTI) {
+ hashes[0] = 0xFFFFFFFF;
+ hashes[1] = 0xFFFFFFFF;
+ } else {
+ i = 1;
+ IF_ADDR_LOCK(ifp);
+ TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
+ if (ifma->ifma_addr->sa_family != AF_LINK)
+ continue;
+ /*
+ * Program the first three multicast groups
+ * into the perfect filter. For all others,
+ * use the hash table.
+ */
+ if (i < 4) {
+ tl_setfilt(sc,
+ LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
+ i++;
+ continue;
+ }
+
+ h = tl_mchash(
+ LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
+ if (h < 32)
+ hashes[0] |= (1 << h);
+ else
+ hashes[1] |= (1 << (h - 32));
+ }
+ IF_ADDR_UNLOCK(ifp);
+ }
+
+ tl_dio_write32(sc, TL_HASH1, hashes[0]);
+ tl_dio_write32(sc, TL_HASH2, hashes[1]);
+
+ return;
+}
+
+/*
+ * This routine is recommended by the ThunderLAN manual to insure that
+ * the internal PHY is powered up correctly. It also recommends a one
+ * second pause at the end to 'wait for the clocks to start' but in my
+ * experience this isn't necessary.
+ */
+static void
+tl_hardreset(dev)
+ device_t dev;
+{
+ struct tl_softc *sc;
+ int i;
+ u_int16_t flags;
+
+ sc = device_get_softc(dev);
+
+ tl_mii_sync(sc);
+
+ flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
+
+ for (i = 0; i < MII_NPHY; i++)
+ tl_miibus_writereg(dev, i, MII_BMCR, flags);
+
+ tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
+ DELAY(50000);
+ tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
+ tl_mii_sync(sc);
+ while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
+
+ DELAY(50000);
+ return;
+}
+
+static void
+tl_softreset(sc, internal)
+ struct tl_softc *sc;
+ int internal;
+{
+ u_int32_t cmd, dummy, i;
+
+ /* Assert the adapter reset bit. */
+ CMD_SET(sc, TL_CMD_ADRST);
+
+ /* Turn off interrupts */
+ CMD_SET(sc, TL_CMD_INTSOFF);
+
+ /* First, clear the stats registers. */
+ for (i = 0; i < 5; i++)
+ dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
+
+ /* Clear Areg and Hash registers */
+ for (i = 0; i < 8; i++)
+ tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
+
+ /*
+ * Set up Netconfig register. Enable one channel and
+ * one fragment mode.
+ */
+ tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
+ if (internal && !sc->tl_bitrate) {
+ tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
+ } else {
+ tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
+ }
+
+ /* Handle cards with bitrate devices. */
+ if (sc->tl_bitrate)
+ tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
+
+ /*
+ * Load adapter irq pacing timer and tx threshold.
+ * We make the transmit threshold 1 initially but we may
+ * change that later.
+ */
+ cmd = CSR_READ_4(sc, TL_HOSTCMD);
+ cmd |= TL_CMD_NES;
+ cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
+ CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
+ CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
+
+ /* Unreset the MII */
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
+
+ /* Take the adapter out of reset */
+ tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
+
+ /* Wait for things to settle down a little. */
+ DELAY(500);
+
+ return;
+}
+
+/*
+ * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
+ * against our list and return its name if we find a match.
+ */
+static int
+tl_probe(dev)
+ device_t dev;
+{
+ struct tl_type *t;
+
+ t = tl_devs;
+
+ while(t->tl_name != NULL) {
+ if ((pci_get_vendor(dev) == t->tl_vid) &&
+ (pci_get_device(dev) == t->tl_did)) {
+ device_set_desc(dev, t->tl_name);
+ return (BUS_PROBE_DEFAULT);
+ }
+ t++;
+ }
+
+ return(ENXIO);
+}
+
+static int
+tl_attach(dev)
+ device_t dev;
+{
+ int i;
+ u_int16_t did, vid;
+ struct tl_type *t;
+ struct ifnet *ifp;
+ struct tl_softc *sc;
+ int unit, error = 0, rid;
+ u_char eaddr[6];
+
+ vid = pci_get_vendor(dev);
+ did = pci_get_device(dev);
+ sc = device_get_softc(dev);
+ sc->tl_dev = dev;
+ unit = device_get_unit(dev);
+
+ t = tl_devs;
+ while(t->tl_name != NULL) {
+ if (vid == t->tl_vid && did == t->tl_did)
+ break;
+ t++;
+ }
+
+ if (t->tl_name == NULL) {
+ device_printf(dev, "unknown device!?\n");
+ return (ENXIO);
+ }
+
+ mtx_init(&sc->tl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
+ MTX_DEF);
+
+ /*
+ * Map control/status registers.
+ */
+ pci_enable_busmaster(dev);
+
+#ifdef TL_USEIOSPACE
+
+ rid = TL_PCI_LOIO;
+ sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
+ RF_ACTIVE);
+
+ /*
+ * Some cards have the I/O and memory mapped address registers
+ * reversed. Try both combinations before giving up.
+ */
+ if (sc->tl_res == NULL) {
+ rid = TL_PCI_LOMEM;
+ sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
+ RF_ACTIVE);
+ }
+#else
+ rid = TL_PCI_LOMEM;
+ sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
+ RF_ACTIVE);
+ if (sc->tl_res == NULL) {
+ rid = TL_PCI_LOIO;
+ sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
+ RF_ACTIVE);
+ }
+#endif
+
+ if (sc->tl_res == NULL) {
+ device_printf(dev, "couldn't map ports/memory\n");
+ error = ENXIO;
+ goto fail;
+ }
+
+ sc->tl_btag = rman_get_bustag(sc->tl_res);
+ sc->tl_bhandle = rman_get_bushandle(sc->tl_res);
+
+#ifdef notdef
+ /*
+ * The ThunderLAN manual suggests jacking the PCI latency
+ * timer all the way up to its maximum value. I'm not sure
+ * if this is really necessary, but what the manual wants,
+ * the manual gets.
+ */
+ command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
+ command |= 0x0000FF00;
+ pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
+#endif
+
+ /* Allocate interrupt */
+ rid = 0;
+ sc->tl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
+ RF_SHAREABLE | RF_ACTIVE);
+
+ if (sc->tl_irq == NULL) {
+ device_printf(dev, "couldn't map interrupt\n");
+ error = ENXIO;
+ goto fail;
+ }
+
+ /*
+ * Now allocate memory for the TX and RX lists.
+ */
+ sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
+ M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
+
+ if (sc->tl_ldata == NULL) {
+ device_printf(dev, "no memory for list buffers!\n");
+ error = ENXIO;
+ goto fail;
+ }
+
+ bzero(sc->tl_ldata, sizeof(struct tl_list_data));
+
+ sc->tl_dinfo = t;
+ if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID)
+ sc->tl_eeaddr = TL_EEPROM_EADDR;
+ if (t->tl_vid == OLICOM_VENDORID)
+ sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
+
+ /* Reset the adapter. */
+ tl_softreset(sc, 1);
+ tl_hardreset(dev);
+ tl_softreset(sc, 1);
+
+ /*
+ * Get station address from the EEPROM.
+ */
+ if (tl_read_eeprom(sc, eaddr, sc->tl_eeaddr, ETHER_ADDR_LEN)) {
+ device_printf(dev, "failed to read station address\n");
+ error = ENXIO;
+ goto fail;
+ }
+
+ /*
+ * XXX Olicom, in its desire to be different from the
+ * rest of the world, has done strange things with the
+ * encoding of the station address in the EEPROM. First
+ * of all, they store the address at offset 0xF8 rather
+ * than at 0x83 like the ThunderLAN manual suggests.
+ * Second, they store the address in three 16-bit words in
+ * network byte order, as opposed to storing it sequentially
+ * like all the other ThunderLAN cards. In order to get
+ * the station address in a form that matches what the Olicom
+ * diagnostic utility specifies, we have to byte-swap each
+ * word. To make things even more confusing, neither 00:00:28
+ * nor 00:00:24 appear in the IEEE OUI database.
+ */
+ if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) {
+ for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
+ u_int16_t *p;
+ p = (u_int16_t *)&eaddr[i];
+ *p = ntohs(*p);
+ }
+ }
+
+ ifp = sc->tl_ifp = if_alloc(IFT_ETHER);
+ if (ifp == NULL) {
+ device_printf(dev, "can not if_alloc()\n");
+ error = ENOSPC;
+ goto fail;
+ }
+ ifp->if_softc = sc;
+ if_initname(ifp, device_get_name(dev), device_get_unit(dev));
+ ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
+ ifp->if_ioctl = tl_ioctl;
+ ifp->if_start = tl_start;
+ ifp->if_watchdog = tl_watchdog;
+ ifp->if_init = tl_init;
+ ifp->if_mtu = ETHERMTU;
+ ifp->if_snd.ifq_maxlen = TL_TX_LIST_CNT - 1;
+ ifp->if_capabilities |= IFCAP_VLAN_MTU;
+ ifp->if_capenable |= IFCAP_VLAN_MTU;
+ callout_init_mtx(&sc->tl_stat_callout, &sc->tl_mtx, 0);
+
+ /* Reset the adapter again. */
+ tl_softreset(sc, 1);
+ tl_hardreset(dev);
+ tl_softreset(sc, 1);
+
+ /*
+ * Do MII setup. If no PHYs are found, then this is a
+ * bitrate ThunderLAN chip that only supports 10baseT
+ * and AUI/BNC.
+ */
+ if (mii_phy_probe(dev, &sc->tl_miibus,
+ tl_ifmedia_upd, tl_ifmedia_sts)) {
+ struct ifmedia *ifm;
+ sc->tl_bitrate = 1;
+ ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
+ ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
+ /* Reset again, this time setting bitrate mode. */
+ tl_softreset(sc, 1);
+ ifm = &sc->ifmedia;
+ ifm->ifm_media = ifm->ifm_cur->ifm_media;
+ tl_ifmedia_upd(ifp);
+ }
+
+ /*
+ * Call MI attach routine.
+ */
+ ether_ifattach(ifp, eaddr);
+
+ /* Hook interrupt last to avoid having to lock softc */
+ error = bus_setup_intr(dev, sc->tl_irq, INTR_TYPE_NET | INTR_MPSAFE,
+ NULL, tl_intr, sc, &sc->tl_intrhand);
+
+ if (error) {
+ device_printf(dev, "couldn't set up irq\n");
+ ether_ifdetach(ifp);
+ goto fail;
+ }
+
+fail:
+ if (error)
+ tl_detach(dev);
+
+ return(error);
+}
+
+/*
+ * Shutdown hardware and free up resources. This can be called any
+ * time after the mutex has been initialized. It is called in both
+ * the error case in attach and the normal detach case so it needs
+ * to be careful about only freeing resources that have actually been
+ * allocated.
+ */
+static int
+tl_detach(dev)
+ device_t dev;
+{
+ struct tl_softc *sc;
+ struct ifnet *ifp;
+
+ sc = device_get_softc(dev);
+ KASSERT(mtx_initialized(&sc->tl_mtx), ("tl mutex not initialized"));
+ ifp = sc->tl_ifp;
+
+ /* These should only be active if attach succeeded */
+ if (device_is_attached(dev)) {
+ TL_LOCK(sc);
+ tl_stop(sc);
+ TL_UNLOCK(sc);
+ callout_drain(&sc->tl_stat_callout);
+ ether_ifdetach(ifp);
+ }
+ if (sc->tl_miibus)
+ device_delete_child(dev, sc->tl_miibus);
+ bus_generic_detach(dev);
+
+ if (sc->tl_ldata)
+ contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
+ if (sc->tl_bitrate)
+ ifmedia_removeall(&sc->ifmedia);
+
+ if (sc->tl_intrhand)
+ bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
+ if (sc->tl_irq)
+ bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
+ if (sc->tl_res)
+ bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
+
+ if (ifp)
+ if_free(ifp);
+
+ mtx_destroy(&sc->tl_mtx);
+
+ return(0);
+}
+
+/*
+ * Initialize the transmit lists.
+ */
+static int
+tl_list_tx_init(sc)
+ struct tl_softc *sc;
+{
+ struct tl_chain_data *cd;
+ struct tl_list_data *ld;
+ int i;
+
+ cd = &sc->tl_cdata;
+ ld = sc->tl_ldata;
+ for (i = 0; i < TL_TX_LIST_CNT; i++) {
+ cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
+ if (i == (TL_TX_LIST_CNT - 1))
+ cd->tl_tx_chain[i].tl_next = NULL;
+ else
+ cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
+ }
+
+ cd->tl_tx_free = &cd->tl_tx_chain[0];
+ cd->tl_tx_tail = cd->tl_tx_head = NULL;
+ sc->tl_txeoc = 1;
+
+ return(0);
+}
+
+/*
+ * Initialize the RX lists and allocate mbufs for them.
+ */
+static int
+tl_list_rx_init(sc)
+ struct tl_softc *sc;
+{
+ struct tl_chain_data *cd;
+ struct tl_list_data *ld;
+ int i;
+
+ cd = &sc->tl_cdata;
+ ld = sc->tl_ldata;
+
+ for (i = 0; i < TL_RX_LIST_CNT; i++) {
+ cd->tl_rx_chain[i].tl_ptr =
+ (struct tl_list_onefrag *)&ld->tl_rx_list[i];
+ if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
+ return(ENOBUFS);
+ if (i == (TL_RX_LIST_CNT - 1)) {
+ cd->tl_rx_chain[i].tl_next = NULL;
+ ld->tl_rx_list[i].tlist_fptr = 0;
+ } else {
+ cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
+ ld->tl_rx_list[i].tlist_fptr =
+ vtophys(&ld->tl_rx_list[i + 1]);
+ }
+ }
+
+ cd->tl_rx_head = &cd->tl_rx_chain[0];
+ cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
+
+ return(0);
+}
+
+static int
+tl_newbuf(sc, c)
+ struct tl_softc *sc;
+ struct tl_chain_onefrag *c;
+{
+ struct mbuf *m_new = NULL;
+
+ m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
+ if (m_new == NULL)
+ return(ENOBUFS);
+
+ c->tl_mbuf = m_new;
+ c->tl_next = NULL;
+ c->tl_ptr->tlist_frsize = MCLBYTES;
+ c->tl_ptr->tlist_fptr = 0;
+ c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
+ c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
+ c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
+
+ return(0);
+}
+/*
+ * Interrupt handler for RX 'end of frame' condition (EOF). This
+ * tells us that a full ethernet frame has been captured and we need
+ * to handle it.
+ *
+ * Reception is done using 'lists' which consist of a header and a
+ * series of 10 data count/data address pairs that point to buffers.
+ * Initially you're supposed to create a list, populate it with pointers
+ * to buffers, then load the physical address of the list into the
+ * ch_parm register. The adapter is then supposed to DMA the received
+ * frame into the buffers for you.
+ *
+ * To make things as fast as possible, we have the chip DMA directly
+ * into mbufs. This saves us from having to do a buffer copy: we can
+ * just hand the mbufs directly to ether_input(). Once the frame has
+ * been sent on its way, the 'list' structure is assigned a new buffer
+ * and moved to the end of the RX chain. As long we we stay ahead of
+ * the chip, it will always think it has an endless receive channel.
+ *
+ * If we happen to fall behind and the chip manages to fill up all of
+ * the buffers, it will generate an end of channel interrupt and wait
+ * for us to empty the chain and restart the receiver.
+ */
+static int
+tl_intvec_rxeof(xsc, type)
+ void *xsc;
+ u_int32_t type;
+{
+ struct tl_softc *sc;
+ int r = 0, total_len = 0;
+ struct ether_header *eh;
+ struct mbuf *m;
+ struct ifnet *ifp;
+ struct tl_chain_onefrag *cur_rx;
+
+ sc = xsc;
+ ifp = sc->tl_ifp;
+
+ TL_LOCK_ASSERT(sc);
+
+ while(sc->tl_cdata.tl_rx_head != NULL) {
+ cur_rx = sc->tl_cdata.tl_rx_head;
+ if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
+ break;
+ r++;
+ sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
+ m = cur_rx->tl_mbuf;
+ total_len = cur_rx->tl_ptr->tlist_frsize;
+
+ if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
+ ifp->if_ierrors++;
+ cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
+ cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
+ cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
+ continue;
+ }
+
+ sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
+ vtophys(cur_rx->tl_ptr);
+ sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
+ sc->tl_cdata.tl_rx_tail = cur_rx;
+
+ /*
+ * Note: when the ThunderLAN chip is in 'capture all
+ * frames' mode, it will receive its own transmissions.
+ * We drop don't need to process our own transmissions,
+ * so we drop them here and continue.
+ */
+ eh = mtod(m, struct ether_header *);
+ /*if (ifp->if_flags & IFF_PROMISC && */
+ if (!bcmp(eh->ether_shost, IF_LLADDR(sc->tl_ifp),
+ ETHER_ADDR_LEN)) {
+ m_freem(m);
+ continue;
+ }
+
+ m->m_pkthdr.rcvif = ifp;
+ m->m_pkthdr.len = m->m_len = total_len;
+
+ TL_UNLOCK(sc);
+ (*ifp->if_input)(ifp, m);
+ TL_LOCK(sc);
+ }
+
+ return(r);
+}
+
+/*
+ * The RX-EOC condition hits when the ch_parm address hasn't been
+ * initialized or the adapter reached a list with a forward pointer
+ * of 0 (which indicates the end of the chain). In our case, this means
+ * the card has hit the end of the receive buffer chain and we need to
+ * empty out the buffers and shift the pointer back to the beginning again.
+ */
+static int
+tl_intvec_rxeoc(xsc, type)
+ void *xsc;
+ u_int32_t type;
+{
+ struct tl_softc *sc;
+ int r;
+ struct tl_chain_data *cd;
+
+
+ sc = xsc;
+ cd = &sc->tl_cdata;
+
+ /* Flush out the receive queue and ack RXEOF interrupts. */
+ r = tl_intvec_rxeof(xsc, type);
+ CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
+ r = 1;
+ cd->tl_rx_head = &cd->tl_rx_chain[0];
+ cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
+ CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
+ r |= (TL_CMD_GO|TL_CMD_RT);
+ return(r);
+}
+
+static int
+tl_intvec_txeof(xsc, type)
+ void *xsc;
+ u_int32_t type;
+{
+ struct tl_softc *sc;
+ int r = 0;
+ struct tl_chain *cur_tx;
+
+ sc = xsc;
+
+ /*
+ * Go through our tx list and free mbufs for those
+ * frames that have been sent.
+ */
+ while (sc->tl_cdata.tl_tx_head != NULL) {
+ cur_tx = sc->tl_cdata.tl_tx_head;
+ if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
+ break;
+ sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
+
+ r++;
+ m_freem(cur_tx->tl_mbuf);
+ cur_tx->tl_mbuf = NULL;
+
+ cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
+ sc->tl_cdata.tl_tx_free = cur_tx;
+ if (!cur_tx->tl_ptr->tlist_fptr)
+ break;
+ }
+
+ return(r);
+}
+
+/*
+ * The transmit end of channel interrupt. The adapter triggers this
+ * interrupt to tell us it hit the end of the current transmit list.
+ *
+ * A note about this: it's possible for a condition to arise where
+ * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
+ * You have to avoid this since the chip expects things to go in a
+ * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
+ * When the TXEOF handler is called, it will free all of the transmitted
+ * frames and reset the tx_head pointer to NULL. However, a TXEOC
+ * interrupt should be received and acknowledged before any more frames
+ * are queued for transmission. If tl_statrt() is called after TXEOF
+ * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
+ * it could attempt to issue a transmit command prematurely.
+ *
+ * To guard against this, tl_start() will only issue transmit commands
+ * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
+ * can set this flag once tl_start() has cleared it.
+ */
+static int
+tl_intvec_txeoc(xsc, type)
+ void *xsc;
+ u_int32_t type;
+{
+ struct tl_softc *sc;
+ struct ifnet *ifp;
+ u_int32_t cmd;
+
+ sc = xsc;
+ ifp = sc->tl_ifp;
+
+ /* Clear the timeout timer. */
+ ifp->if_timer = 0;
+
+ if (sc->tl_cdata.tl_tx_head == NULL) {
+ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
+ sc->tl_cdata.tl_tx_tail = NULL;
+ sc->tl_txeoc = 1;
+ } else {
+ sc->tl_txeoc = 0;
+ /* First we have to ack the EOC interrupt. */
+ CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
+ /* Then load the address of the next TX list. */
+ CSR_WRITE_4(sc, TL_CH_PARM,
+ vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
+ /* Restart TX channel. */
+ cmd = CSR_READ_4(sc, TL_HOSTCMD);
+ cmd &= ~TL_CMD_RT;
+ cmd |= TL_CMD_GO|TL_CMD_INTSON;
+ CMD_PUT(sc, cmd);
+ return(0);
+ }
+
+ return(1);
+}
+
+static int
+tl_intvec_adchk(xsc, type)
+ void *xsc;
+ u_int32_t type;
+{
+ struct tl_softc *sc;
+
+ sc = xsc;
+
+ if (type)
+ device_printf(sc->tl_dev, "adapter check: %x\n",
+ (unsigned int)CSR_READ_4(sc, TL_CH_PARM));
+
+ tl_softreset(sc, 1);
+ tl_stop(sc);
+ tl_init_locked(sc);
+ CMD_SET(sc, TL_CMD_INTSON);
+
+ return(0);
+}
+
+static int
+tl_intvec_netsts(xsc, type)
+ void *xsc;
+ u_int32_t type;
+{
+ struct tl_softc *sc;
+ u_int16_t netsts;
+
+ sc = xsc;
+
+ netsts = tl_dio_read16(sc, TL_NETSTS);
+ tl_dio_write16(sc, TL_NETSTS, netsts);
+
+ device_printf(sc->tl_dev, "network status: %x\n", netsts);
+
+ return(1);
+}
+
+static void
+tl_intr(xsc)
+ void *xsc;
+{
+ struct tl_softc *sc;
+ struct ifnet *ifp;
+ int r = 0;
+ u_int32_t type = 0;
+ u_int16_t ints = 0;
+ u_int8_t ivec = 0;
+
+ sc = xsc;
+ TL_LOCK(sc);
+
+ /* Disable interrupts */
+ ints = CSR_READ_2(sc, TL_HOST_INT);
+ CSR_WRITE_2(sc, TL_HOST_INT, ints);
+ type = (ints << 16) & 0xFFFF0000;
+ ivec = (ints & TL_VEC_MASK) >> 5;
+ ints = (ints & TL_INT_MASK) >> 2;
+
+ ifp = sc->tl_ifp;
+
+ switch(ints) {
+ case (TL_INTR_INVALID):
+#ifdef DIAGNOSTIC
+ device_printf(sc->tl_dev, "got an invalid interrupt!\n");
+#endif
+ /* Re-enable interrupts but don't ack this one. */
+ CMD_PUT(sc, type);
+ r = 0;
+ break;
+ case (TL_INTR_TXEOF):
+ r = tl_intvec_txeof((void *)sc, type);
+ break;
+ case (TL_INTR_TXEOC):
+ r = tl_intvec_txeoc((void *)sc, type);
+ break;
+ case (TL_INTR_STATOFLOW):
+ tl_stats_update(sc);
+ r = 1;
+ break;
+ case (TL_INTR_RXEOF):
+ r = tl_intvec_rxeof((void *)sc, type);
+ break;
+ case (TL_INTR_DUMMY):
+ device_printf(sc->tl_dev, "got a dummy interrupt\n");
+ r = 1;
+ break;
+ case (TL_INTR_ADCHK):
+ if (ivec)
+ r = tl_intvec_adchk((void *)sc, type);
+ else
+ r = tl_intvec_netsts((void *)sc, type);
+ break;
+ case (TL_INTR_RXEOC):
+ r = tl_intvec_rxeoc((void *)sc, type);
+ break;
+ default:
+ device_printf(sc->tl_dev, "bogus interrupt type\n");
+ break;
+ }
+
+ /* Re-enable interrupts */
+ if (r) {
+ CMD_PUT(sc, TL_CMD_ACK | r | type);
+ }
+
+ if (ifp->if_snd.ifq_head != NULL)
+ tl_start_locked(ifp);
+
+ TL_UNLOCK(sc);
+
+ return;
+}
+
+static void
+tl_stats_update(xsc)
+ void *xsc;
+{
+ struct tl_softc *sc;
+ struct ifnet *ifp;
+ struct tl_stats tl_stats;
+ struct mii_data *mii;
+ u_int32_t *p;
+
+ bzero((char *)&tl_stats, sizeof(struct tl_stats));
+
+ sc = xsc;
+ TL_LOCK_ASSERT(sc);
+ ifp = sc->tl_ifp;
+
+ p = (u_int32_t *)&tl_stats;
+
+ CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
+ *p++ = CSR_READ_4(sc, TL_DIO_DATA);
+ *p++ = CSR_READ_4(sc, TL_DIO_DATA);
+ *p++ = CSR_READ_4(sc, TL_DIO_DATA);
+ *p++ = CSR_READ_4(sc, TL_DIO_DATA);
+ *p++ = CSR_READ_4(sc, TL_DIO_DATA);
+
+ ifp->if_opackets += tl_tx_goodframes(tl_stats);
+ ifp->if_collisions += tl_stats.tl_tx_single_collision +
+ tl_stats.tl_tx_multi_collision;
+ ifp->if_ipackets += tl_rx_goodframes(tl_stats);
+ ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
+ tl_rx_overrun(tl_stats);
+ ifp->if_oerrors += tl_tx_underrun(tl_stats);
+
+ if (tl_tx_underrun(tl_stats)) {
+ u_int8_t tx_thresh;
+ tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
+ if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
+ tx_thresh >>= 4;
+ tx_thresh++;
+ device_printf(sc->tl_dev, "tx underrun -- increasing "
+ "tx threshold to %d bytes\n",
+ (64 * (tx_thresh * 4)));
+ tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
+ tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
+ }
+ }
+
+ callout_reset(&sc->tl_stat_callout, hz, tl_stats_update, sc);
+
+ if (!sc->tl_bitrate) {
+ mii = device_get_softc(sc->tl_miibus);
+ mii_tick(mii);
+ }
+
+ return;
+}
+
+/*
+ * Encapsulate an mbuf chain in a list by coupling the mbuf data
+ * pointers to the fragment pointers.
+ */
+static int
+tl_encap(sc, c, m_head)
+ struct tl_softc *sc;
+ struct tl_chain *c;
+ struct mbuf *m_head;
+{
+ int frag = 0;
+ struct tl_frag *f = NULL;
+ int total_len;
+ struct mbuf *m;
+ struct ifnet *ifp = sc->tl_ifp;
+
+ /*
+ * Start packing the mbufs in this chain into
+ * the fragment pointers. Stop when we run out
+ * of fragments or hit the end of the mbuf chain.
+ */
+ m = m_head;
+ total_len = 0;
+
+ for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
+ if (m->m_len != 0) {
+ if (frag == TL_MAXFRAGS)
+ break;
+ total_len+= m->m_len;
+ c->tl_ptr->tl_frag[frag].tlist_dadr =
+ vtophys(mtod(m, vm_offset_t));
+ c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
+ frag++;
+ }
+ }
+
+ /*
+ * Handle special cases.
+ * Special case #1: we used up all 10 fragments, but
+ * we have more mbufs left in the chain. Copy the
+ * data into an mbuf cluster. Note that we don't
+ * bother clearing the values in the other fragment
+ * pointers/counters; it wouldn't gain us anything,
+ * and would waste cycles.
+ */
+ if (m != NULL) {
+ struct mbuf *m_new = NULL;
+
+ MGETHDR(m_new, M_DONTWAIT, MT_DATA);
+ if (m_new == NULL) {
+ if_printf(ifp, "no memory for tx list\n");
+ return(1);
+ }
+ if (m_head->m_pkthdr.len > MHLEN) {
+ MCLGET(m_new, M_DONTWAIT);
+ if (!(m_new->m_flags & M_EXT)) {
+ m_freem(m_new);
+ if_printf(ifp, "no memory for tx list\n");
+ return(1);
+ }
+ }
+ m_copydata(m_head, 0, m_head->m_pkthdr.len,
+ mtod(m_new, caddr_t));
+ m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
+ m_freem(m_head);
+ m_head = m_new;
+ f = &c->tl_ptr->tl_frag[0];
+ f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
+ f->tlist_dcnt = total_len = m_new->m_len;
+ frag = 1;
+ }
+
+ /*
+ * Special case #2: the frame is smaller than the minimum
+ * frame size. We have to pad it to make the chip happy.
+ */
+ if (total_len < TL_MIN_FRAMELEN) {
+ if (frag == TL_MAXFRAGS)
+ if_printf(ifp,
+ "all frags filled but frame still to small!\n");
+ f = &c->tl_ptr->tl_frag[frag];
+ f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
+ f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
+ total_len += f->tlist_dcnt;
+ frag++;
+ }
+
+ c->tl_mbuf = m_head;
+ c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
+ c->tl_ptr->tlist_frsize = total_len;
+ c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
+ c->tl_ptr->tlist_fptr = 0;
+
+ return(0);
+}
+
+/*
+ * Main transmit routine. To avoid having to do mbuf copies, we put pointers
+ * to the mbuf data regions directly in the transmit lists. We also save a
+ * copy of the pointers since the transmit list fragment pointers are
+ * physical addresses.
+ */
+static void
+tl_start(ifp)
+ struct ifnet *ifp;
+{
+ struct tl_softc *sc;
+
+ sc = ifp->if_softc;
+ TL_LOCK(sc);
+ tl_start_locked(ifp);
+ TL_UNLOCK(sc);
+}
+
+static void
+tl_start_locked(ifp)
+ struct ifnet *ifp;
+{
+ struct tl_softc *sc;
+ struct mbuf *m_head = NULL;
+ u_int32_t cmd;
+ struct tl_chain *prev = NULL, *cur_tx = NULL, *start_tx;
+
+ sc = ifp->if_softc;
+ TL_LOCK_ASSERT(sc);
+
+ /*
+ * Check for an available queue slot. If there are none,
+ * punt.
+ */
+ if (sc->tl_cdata.tl_tx_free == NULL) {
+ ifp->if_drv_flags |= IFF_DRV_OACTIVE;
+ return;
+ }
+
+ start_tx = sc->tl_cdata.tl_tx_free;
+
+ while(sc->tl_cdata.tl_tx_free != NULL) {
+ IF_DEQUEUE(&ifp->if_snd, m_head);
+ if (m_head == NULL)
+ break;
+
+ /* Pick a chain member off the free list. */
+ cur_tx = sc->tl_cdata.tl_tx_free;
+ sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
+
+ cur_tx->tl_next = NULL;
+
+ /* Pack the data into the list. */
+ tl_encap(sc, cur_tx, m_head);
+
+ /* Chain it together */
+ if (prev != NULL) {
+ prev->tl_next = cur_tx;
+ prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
+ }
+ prev = cur_tx;
+
+ /*
+ * If there's a BPF listener, bounce a copy of this frame
+ * to him.
+ */
+ BPF_MTAP(ifp, cur_tx->tl_mbuf);
+ }
+
+ /*
+ * If there are no packets queued, bail.
+ */
+ if (cur_tx == NULL)
+ return;
+
+ /*
+ * That's all we can stands, we can't stands no more.
+ * If there are no other transfers pending, then issue the
+ * TX GO command to the adapter to start things moving.
+ * Otherwise, just leave the data in the queue and let
+ * the EOF/EOC interrupt handler send.
+ */
+ if (sc->tl_cdata.tl_tx_head == NULL) {
+ sc->tl_cdata.tl_tx_head = start_tx;
+ sc->tl_cdata.tl_tx_tail = cur_tx;
+
+ if (sc->tl_txeoc) {
+ sc->tl_txeoc = 0;
+ CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
+ cmd = CSR_READ_4(sc, TL_HOSTCMD);
+ cmd &= ~TL_CMD_RT;
+ cmd |= TL_CMD_GO|TL_CMD_INTSON;
+ CMD_PUT(sc, cmd);
+ }
+ } else {
+ sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
+ sc->tl_cdata.tl_tx_tail = cur_tx;
+ }
+
+ /*
+ * Set a timeout in case the chip goes out to lunch.
+ */
+ ifp->if_timer = 5;
+
+ return;
+}
+
+static void
+tl_init(xsc)
+ void *xsc;
+{
+ struct tl_softc *sc = xsc;
+
+ TL_LOCK(sc);
+ tl_init_locked(sc);
+ TL_UNLOCK(sc);
+}
+
+static void
+tl_init_locked(sc)
+ struct tl_softc *sc;
+{
+ struct ifnet *ifp = sc->tl_ifp;
+ struct mii_data *mii;
+
+ TL_LOCK_ASSERT(sc);
+
+ ifp = sc->tl_ifp;
+
+ /*
+ * Cancel pending I/O.
+ */
+ tl_stop(sc);
+
+ /* Initialize TX FIFO threshold */
+ tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
+ tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
+
+ /* Set PCI burst size */
+ tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
+
+ /*
+ * Set 'capture all frames' bit for promiscuous mode.
+ */
+ if (ifp->if_flags & IFF_PROMISC)
+ tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
+ else
+ tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
+
+ /*
+ * Set capture broadcast bit to capture broadcast frames.
+ */
+ if (ifp->if_flags & IFF_BROADCAST)
+ tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
+ else
+ tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
+
+ tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
+
+ /* Init our MAC address */
+ tl_setfilt(sc, IF_LLADDR(sc->tl_ifp), 0);
+
+ /* Init multicast filter, if needed. */
+ tl_setmulti(sc);
+
+ /* Init circular RX list. */
+ if (tl_list_rx_init(sc) == ENOBUFS) {
+ device_printf(sc->tl_dev,
+ "initialization failed: no memory for rx buffers\n");
+ tl_stop(sc);
+ return;
+ }
+
+ /* Init TX pointers. */
+ tl_list_tx_init(sc);
+
+ /* Enable PCI interrupts. */
+ CMD_SET(sc, TL_CMD_INTSON);
+
+ /* Load the address of the rx list */
+ CMD_SET(sc, TL_CMD_RT);
+ CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
+
+ if (!sc->tl_bitrate) {
+ if (sc->tl_miibus != NULL) {
+ mii = device_get_softc(sc->tl_miibus);
+ mii_mediachg(mii);
+ }
+ } else {
+ tl_ifmedia_upd(ifp);
+ }
+
+ /* Send the RX go command */
+ CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
+
+ ifp->if_drv_flags |= IFF_DRV_RUNNING;
+ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
+
+ /* Start the stats update counter */
+ callout_reset(&sc->tl_stat_callout, hz, tl_stats_update, sc);
+
+ return;
+}
+
+/*
+ * Set media options.
+ */
+static int
+tl_ifmedia_upd(ifp)
+ struct ifnet *ifp;
+{
+ struct tl_softc *sc;
+ struct mii_data *mii = NULL;
+
+ sc = ifp->if_softc;
+
+ TL_LOCK(sc);
+ if (sc->tl_bitrate)
+ tl_setmode(sc, sc->ifmedia.ifm_media);
+ else {
+ mii = device_get_softc(sc->tl_miibus);
+ mii_mediachg(mii);
+ }
+ TL_UNLOCK(sc);
+
+ return(0);
+}
+
+/*
+ * Report current media status.
+ */
+static void
+tl_ifmedia_sts(ifp, ifmr)
+ struct ifnet *ifp;
+ struct ifmediareq *ifmr;
+{
+ struct tl_softc *sc;
+ struct mii_data *mii;
+
+ sc = ifp->if_softc;
+
+ TL_LOCK(sc);
+ ifmr->ifm_active = IFM_ETHER;
+
+ if (sc->tl_bitrate) {
+ if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
+ ifmr->ifm_active = IFM_ETHER|IFM_10_5;
+ else
+ ifmr->ifm_active = IFM_ETHER|IFM_10_T;
+ if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
+ ifmr->ifm_active |= IFM_HDX;
+ else
+ ifmr->ifm_active |= IFM_FDX;
+ return;
+ } else {
+ mii = device_get_softc(sc->tl_miibus);
+ mii_pollstat(mii);
+ ifmr->ifm_active = mii->mii_media_active;
+ ifmr->ifm_status = mii->mii_media_status;
+ }
+ TL_UNLOCK(sc);
+
+ return;
+}
+
+static int
+tl_ioctl(ifp, command, data)
+ struct ifnet *ifp;
+ u_long command;
+ caddr_t data;
+{
+ struct tl_softc *sc = ifp->if_softc;
+ struct ifreq *ifr = (struct ifreq *) data;
+ int error = 0;
+
+ switch(command) {
+ case SIOCSIFFLAGS:
+ TL_LOCK(sc);
+ if (ifp->if_flags & IFF_UP) {
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
+ ifp->if_flags & IFF_PROMISC &&
+ !(sc->tl_if_flags & IFF_PROMISC)) {
+ tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
+ tl_setmulti(sc);
+ } else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
+ !(ifp->if_flags & IFF_PROMISC) &&
+ sc->tl_if_flags & IFF_PROMISC) {
+ tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
+ tl_setmulti(sc);
+ } else
+ tl_init_locked(sc);
+ } else {
+ if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
+ tl_stop(sc);
+ }
+ }
+ sc->tl_if_flags = ifp->if_flags;
+ TL_UNLOCK(sc);
+ error = 0;
+ break;
+ case SIOCADDMULTI:
+ case SIOCDELMULTI:
+ TL_LOCK(sc);
+ tl_setmulti(sc);
+ TL_UNLOCK(sc);
+ error = 0;
+ break;
+ case SIOCSIFMEDIA:
+ case SIOCGIFMEDIA:
+ if (sc->tl_bitrate)
+ error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
+ else {
+ struct mii_data *mii;
+ mii = device_get_softc(sc->tl_miibus);
+ error = ifmedia_ioctl(ifp, ifr,
+ &mii->mii_media, command);
+ }
+ break;
+ default:
+ error = ether_ioctl(ifp, command, data);
+ break;
+ }
+
+ return(error);
+}
+
+static void
+tl_watchdog(ifp)
+ struct ifnet *ifp;
+{
+ struct tl_softc *sc;
+
+ sc = ifp->if_softc;
+
+ if_printf(ifp, "device timeout\n");
+
+ TL_LOCK(sc);
+ ifp->if_oerrors++;
+
+ tl_softreset(sc, 1);
+ tl_init_locked(sc);
+ TL_UNLOCK(sc);
+
+ return;
+}
+
+/*
+ * Stop the adapter and free any mbufs allocated to the
+ * RX and TX lists.
+ */
+static void
+tl_stop(sc)
+ struct tl_softc *sc;
+{
+ register int i;
+ struct ifnet *ifp;
+
+ TL_LOCK_ASSERT(sc);
+
+ ifp = sc->tl_ifp;
+
+ /* Stop the stats updater. */
+ callout_stop(&sc->tl_stat_callout);
+
+ /* Stop the transmitter */
+ CMD_CLR(sc, TL_CMD_RT);
+ CMD_SET(sc, TL_CMD_STOP);
+ CSR_WRITE_4(sc, TL_CH_PARM, 0);
+
+ /* Stop the receiver */
+ CMD_SET(sc, TL_CMD_RT);
+ CMD_SET(sc, TL_CMD_STOP);
+ CSR_WRITE_4(sc, TL_CH_PARM, 0);
+
+ /*
+ * Disable host interrupts.
+ */
+ CMD_SET(sc, TL_CMD_INTSOFF);
+
+ /*
+ * Clear list pointer.
+ */
+ CSR_WRITE_4(sc, TL_CH_PARM, 0);
+
+ /*
+ * Free the RX lists.
+ */
+ for (i = 0; i < TL_RX_LIST_CNT; i++) {
+ if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
+ m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
+ sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
+ }
+ }
+ bzero((char *)&sc->tl_ldata->tl_rx_list,
+ sizeof(sc->tl_ldata->tl_rx_list));
+
+ /*
+ * Free the TX list buffers.
+ */
+ for (i = 0; i < TL_TX_LIST_CNT; i++) {
+ if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
+ m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
+ sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
+ }
+ }
+ bzero((char *)&sc->tl_ldata->tl_tx_list,
+ sizeof(sc->tl_ldata->tl_tx_list));
+
+ ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
+
+ return;
+}
+
+/*
+ * Stop all chip I/O so that the kernel's probe routines don't
+ * get confused by errant DMAs when rebooting.
+ */
+static void
+tl_shutdown(dev)
+ device_t dev;
+{
+ struct tl_softc *sc;
+
+ sc = device_get_softc(dev);
+
+ TL_LOCK(sc);
+ tl_stop(sc);
+ TL_UNLOCK(sc);
+
+ return;
+}
diff --git a/sys/dev/tl/if_tlreg.h b/sys/dev/tl/if_tlreg.h
new file mode 100644
index 0000000..f04b52b
--- /dev/null
+++ b/sys/dev/tl/if_tlreg.h
@@ -0,0 +1,592 @@
+/*-
+ * Copyright (c) 1997, 1998
+ * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by Bill Paul.
+ * 4. Neither the name of the author nor the names of any co-contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * $FreeBSD$
+ */
+
+
+struct tl_type {
+ u_int16_t tl_vid;
+ u_int16_t tl_did;
+ char *tl_name;
+};
+
+/*
+ * ThunderLAN TX/RX list format. The TX and RX lists are pretty much
+ * identical: the list begins with a 32-bit forward pointer which points
+ * at the next list in the chain, followed by 16 bits for the total
+ * frame size, and a 16 bit status field. This is followed by a series
+ * of 10 32-bit data count/data address pairs that point to the fragments
+ * that make up the complete frame.
+ */
+
+#define TL_MAXFRAGS 10
+#define TL_RX_LIST_CNT 64
+#define TL_TX_LIST_CNT 128
+#define TL_MIN_FRAMELEN 64
+
+struct tl_frag {
+ u_int32_t tlist_dcnt;
+ u_int32_t tlist_dadr;
+};
+
+struct tl_list {
+ u_int32_t tlist_fptr; /* phys address of next list */
+ u_int16_t tlist_cstat; /* status word */
+ u_int16_t tlist_frsize; /* size of data in frame */
+ struct tl_frag tl_frag[TL_MAXFRAGS];
+};
+
+/*
+ * This is a special case of an RX list. By setting the One_Frag
+ * bit in the NETCONFIG register, the driver can force the ThunderLAN
+ * chip to use only one fragment when DMAing RX frames.
+ */
+
+struct tl_list_onefrag {
+ u_int32_t tlist_fptr;
+ u_int16_t tlist_cstat;
+ u_int16_t tlist_frsize;
+ struct tl_frag tl_frag;
+};
+
+struct tl_list_data {
+ struct tl_list_onefrag tl_rx_list[TL_RX_LIST_CNT];
+ struct tl_list tl_tx_list[TL_TX_LIST_CNT];
+ unsigned char tl_pad[TL_MIN_FRAMELEN];
+};
+
+struct tl_chain {
+ struct tl_list *tl_ptr;
+ struct mbuf *tl_mbuf;
+ struct tl_chain *tl_next;
+};
+
+struct tl_chain_onefrag {
+ struct tl_list_onefrag *tl_ptr;
+ struct mbuf *tl_mbuf;
+ struct tl_chain_onefrag *tl_next;
+};
+
+struct tl_chain_data {
+ struct tl_chain_onefrag tl_rx_chain[TL_RX_LIST_CNT];
+ struct tl_chain tl_tx_chain[TL_TX_LIST_CNT];
+
+ struct tl_chain_onefrag *tl_rx_head;
+ struct tl_chain_onefrag *tl_rx_tail;
+
+ struct tl_chain *tl_tx_head;
+ struct tl_chain *tl_tx_tail;
+ struct tl_chain *tl_tx_free;
+};
+
+struct tl_softc {
+ struct ifnet *tl_ifp;
+ device_t tl_dev;
+ struct ifmedia ifmedia; /* media info */
+ bus_space_handle_t tl_bhandle;
+ bus_space_tag_t tl_btag;
+ void *tl_intrhand;
+ struct resource *tl_irq;
+ struct resource *tl_res;
+ device_t tl_miibus;
+ struct tl_type *tl_dinfo; /* ThunderLAN adapter info */
+ u_int8_t tl_eeaddr;
+ struct tl_list_data *tl_ldata; /* TX/RX lists and mbufs */
+ struct tl_chain_data tl_cdata;
+ u_int8_t tl_txeoc;
+ u_int8_t tl_bitrate;
+ int tl_if_flags;
+ struct callout tl_stat_callout;
+ struct mtx tl_mtx;
+};
+
+#define TL_LOCK(_sc) mtx_lock(&(_sc)->tl_mtx)
+#define TL_UNLOCK(_sc) mtx_unlock(&(_sc)->tl_mtx)
+#define TL_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->tl_mtx, MA_OWNED)
+
+/*
+ * Transmit interrupt threshold.
+ */
+#define TX_THR 0x00000004
+
+/*
+ * General constants that are fun to know.
+ *
+ * The ThunderLAN controller is made by Texas Instruments. The
+ * manual indicates that if the EEPROM checksum fails, the PCI
+ * vendor and device ID registers will be loaded with TI-specific
+ * values.
+ */
+#define TI_VENDORID 0x104C
+#define TI_DEVICEID_THUNDERLAN 0x0500
+
+/*
+ * These are the PCI vendor and device IDs for Compaq ethernet
+ * adapters based on the ThunderLAN controller.
+ */
+#define COMPAQ_VENDORID 0x0E11
+#define COMPAQ_DEVICEID_NETEL_10_100 0xAE32
+#define COMPAQ_DEVICEID_NETEL_UNKNOWN 0xAE33
+#define COMPAQ_DEVICEID_NETEL_10 0xAE34
+#define COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED 0xAE35
+#define COMPAQ_DEVICEID_NETEL_10_100_DUAL 0xAE40
+#define COMPAQ_DEVICEID_NETEL_10_100_PROLIANT 0xAE43
+#define COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED 0xB011
+#define COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX 0xB012
+#define COMPAQ_DEVICEID_NETEL_10_100_TX_UTP 0xB030
+#define COMPAQ_DEVICEID_NETFLEX_3P 0xF130
+#define COMPAQ_DEVICEID_NETFLEX_3P_BNC 0xF150
+
+/*
+ * These are the PCI vendor and device IDs for Olicom
+ * adapters based on the ThunderLAN controller.
+ */
+#define OLICOM_VENDORID 0x108D
+#define OLICOM_DEVICEID_OC2183 0x0013
+#define OLICOM_DEVICEID_OC2325 0x0012
+#define OLICOM_DEVICEID_OC2326 0x0014
+
+/*
+ * PCI low memory base and low I/O base
+ */
+#define TL_PCI_LOIO 0x10
+#define TL_PCI_LOMEM 0x14
+
+/*
+ * PCI latency timer (it's actually 0x0D, but we want a value
+ * that's longword aligned).
+ */
+#define TL_PCI_LATENCY_TIMER 0x0C
+
+#define TL_DIO_ADDR_INC 0x8000 /* Increment addr on each read */
+#define TL_DIO_RAM_SEL 0x4000 /* RAM address select */
+#define TL_DIO_ADDR_MASK 0x3FFF /* address bits mask */
+
+/*
+ * Interrupt types
+ */
+#define TL_INTR_INVALID 0x0
+#define TL_INTR_TXEOF 0x1
+#define TL_INTR_STATOFLOW 0x2
+#define TL_INTR_RXEOF 0x3
+#define TL_INTR_DUMMY 0x4
+#define TL_INTR_TXEOC 0x5
+#define TL_INTR_ADCHK 0x6
+#define TL_INTR_RXEOC 0x7
+
+#define TL_INT_MASK 0x001C
+#define TL_VEC_MASK 0x1FE0
+/*
+ * Host command register bits
+ */
+#define TL_CMD_GO 0x80000000
+#define TL_CMD_STOP 0x40000000
+#define TL_CMD_ACK 0x20000000
+#define TL_CMD_CHSEL7 0x10000000
+#define TL_CMD_CHSEL6 0x08000000
+#define TL_CMD_CHSEL5 0x04000000
+#define TL_CMD_CHSEL4 0x02000000
+#define TL_CMD_CHSEL3 0x01000000
+#define TL_CMD_CHSEL2 0x00800000
+#define TL_CMD_CHSEL1 0x00400000
+#define TL_CMD_CHSEL0 0x00200000
+#define TL_CMD_EOC 0x00100000
+#define TL_CMD_RT 0x00080000
+#define TL_CMD_NES 0x00040000
+#define TL_CMD_ZERO0 0x00020000
+#define TL_CMD_ZERO1 0x00010000
+#define TL_CMD_ADRST 0x00008000
+#define TL_CMD_LDTMR 0x00004000
+#define TL_CMD_LDTHR 0x00002000
+#define TL_CMD_REQINT 0x00001000
+#define TL_CMD_INTSOFF 0x00000800
+#define TL_CMD_INTSON 0x00000400
+#define TL_CMD_RSVD0 0x00000200
+#define TL_CMD_RSVD1 0x00000100
+#define TL_CMD_ACK7 0x00000080
+#define TL_CMD_ACK6 0x00000040
+#define TL_CMD_ACK5 0x00000020
+#define TL_CMD_ACK4 0x00000010
+#define TL_CMD_ACK3 0x00000008
+#define TL_CMD_ACK2 0x00000004
+#define TL_CMD_ACK1 0x00000002
+#define TL_CMD_ACK0 0x00000001
+
+#define TL_CMD_CHSEL_MASK 0x01FE0000
+#define TL_CMD_ACK_MASK 0xFF
+
+/*
+ * EEPROM address where station address resides.
+ */
+#define TL_EEPROM_EADDR 0x83
+#define TL_EEPROM_EADDR2 0x99
+#define TL_EEPROM_EADDR3 0xAF
+#define TL_EEPROM_EADDR_OC 0xF8 /* Olicom cards use a different
+ address than Compaqs. */
+/*
+ * ThunderLAN host command register offsets.
+ * (Can be accessed either by IO ports or memory map.)
+ */
+#define TL_HOSTCMD 0x00
+#define TL_CH_PARM 0x04
+#define TL_DIO_ADDR 0x08
+#define TL_HOST_INT 0x0A
+#define TL_DIO_DATA 0x0C
+
+/*
+ * ThunderLAN internal registers
+ */
+#define TL_NETCMD 0x00
+#define TL_NETSIO 0x01
+#define TL_NETSTS 0x02
+#define TL_NETMASK 0x03
+
+#define TL_NETCONFIG 0x04
+#define TL_MANTEST 0x06
+
+#define TL_VENID_LSB 0x08
+#define TL_VENID_MSB 0x09
+#define TL_DEVID_LSB 0x0A
+#define TL_DEVID_MSB 0x0B
+
+#define TL_REVISION 0x0C
+#define TL_SUBCLASS 0x0D
+#define TL_MINLAT 0x0E
+#define TL_MAXLAT 0x0F
+
+#define TL_AREG0_B5 0x10
+#define TL_AREG0_B4 0x11
+#define TL_AREG0_B3 0x12
+#define TL_AREG0_B2 0x13
+
+#define TL_AREG0_B1 0x14
+#define TL_AREG0_B0 0x15
+#define TL_AREG1_B5 0x16
+#define TL_AREG1_B4 0x17
+
+#define TL_AREG1_B3 0x18
+#define TL_AREG1_B2 0x19
+#define TL_AREG1_B1 0x1A
+#define TL_AREG1_B0 0x1B
+
+#define TL_AREG2_B5 0x1C
+#define TL_AREG2_B4 0x1D
+#define TL_AREG2_B3 0x1E
+#define TL_AREG2_B2 0x1F
+
+#define TL_AREG2_B1 0x20
+#define TL_AREG2_B0 0x21
+#define TL_AREG3_B5 0x22
+#define TL_AREG3_B4 0x23
+
+#define TL_AREG3_B3 0x24
+#define TL_AREG3_B2 0x25
+#define TL_AREG3_B1 0x26
+#define TL_AREG3_B0 0x27
+
+#define TL_HASH1 0x28
+#define TL_HASH2 0x2C
+#define TL_TXGOODFRAMES 0x30
+#define TL_TXUNDERRUN 0x33
+#define TL_RXGOODFRAMES 0x34
+#define TL_RXOVERRUN 0x37
+#define TL_DEFEREDTX 0x38
+#define TL_CRCERROR 0x3A
+#define TL_CODEERROR 0x3B
+#define TL_MULTICOLTX 0x3C
+#define TL_SINGLECOLTX 0x3E
+#define TL_EXCESSIVECOL 0x40
+#define TL_LATECOL 0x41
+#define TL_CARRIERLOSS 0x42
+#define TL_ACOMMIT 0x43
+#define TL_LDREG 0x44
+#define TL_BSIZEREG 0x45
+#define TL_MAXRX 0x46
+
+/*
+ * ThunderLAN SIO register bits
+ */
+#define TL_SIO_MINTEN 0x80
+#define TL_SIO_ECLOK 0x40
+#define TL_SIO_ETXEN 0x20
+#define TL_SIO_EDATA 0x10
+#define TL_SIO_NMRST 0x08
+#define TL_SIO_MCLK 0x04
+#define TL_SIO_MTXEN 0x02
+#define TL_SIO_MDATA 0x01
+
+/*
+ * Thunderlan NETCONFIG bits
+ */
+#define TL_CFG_RCLKTEST 0x8000
+#define TL_CFG_TCLKTEST 0x4000
+#define TL_CFG_BITRATE 0x2000
+#define TL_CFG_RXCRC 0x1000
+#define TL_CFG_PEF 0x0800
+#define TL_CFG_ONEFRAG 0x0400
+#define TL_CFG_ONECHAN 0x0200
+#define TL_CFG_MTEST 0x0100
+#define TL_CFG_PHYEN 0x0080
+#define TL_CFG_MACSEL6 0x0040
+#define TL_CFG_MACSEL5 0x0020
+#define TL_CFG_MACSEL4 0x0010
+#define TL_CFG_MACSEL3 0x0008
+#define TL_CFG_MACSEL2 0x0004
+#define TL_CFG_MACSEL1 0x0002
+#define TL_CFG_MACSEL0 0x0001
+
+/*
+ * ThunderLAN NETSTS bits
+ */
+#define TL_STS_MIRQ 0x80
+#define TL_STS_HBEAT 0x40
+#define TL_STS_TXSTOP 0x20
+#define TL_STS_RXSTOP 0x10
+
+/*
+ * ThunderLAN NETCMD bits
+ */
+#define TL_CMD_NRESET 0x80
+#define TL_CMD_NWRAP 0x40
+#define TL_CMD_CSF 0x20
+#define TL_CMD_CAF 0x10
+#define TL_CMD_NOBRX 0x08
+#define TL_CMD_DUPLEX 0x04
+#define TL_CMD_TRFRAM 0x02
+#define TL_CMD_TXPACE 0x01
+
+/*
+ * ThunderLAN NETMASK bits
+ */
+#define TL_MASK_MASK7 0x80
+#define TL_MASK_MASK6 0x40
+#define TL_MASK_MASK5 0x20
+#define TL_MASK_MASK4 0x10
+
+/*
+ * MII frame format
+ */
+#ifdef ANSI_DOESNT_ALLOW_BITFIELDS
+struct tl_mii_frame {
+ u_int16_t mii_stdelim:2,
+ mii_opcode:2,
+ mii_phyaddr:5,
+ mii_regaddr:5,
+ mii_turnaround:2;
+ u_int16_t mii_data;
+};
+#else
+struct tl_mii_frame {
+ u_int8_t mii_stdelim;
+ u_int8_t mii_opcode;
+ u_int8_t mii_phyaddr;
+ u_int8_t mii_regaddr;
+ u_int8_t mii_turnaround;
+ u_int16_t mii_data;
+};
+#endif
+/*
+ * MII constants
+ */
+#define TL_MII_STARTDELIM 0x01
+#define TL_MII_READOP 0x02
+#define TL_MII_WRITEOP 0x01
+#define TL_MII_TURNAROUND 0x02
+
+#define TL_LAST_FRAG 0x80000000
+#define TL_CSTAT_UNUSED 0x8000
+#define TL_CSTAT_FRAMECMP 0x4000
+#define TL_CSTAT_READY 0x3000
+#define TL_CSTAT_UNUSED13 0x2000
+#define TL_CSTAT_UNUSED12 0x1000
+#define TL_CSTAT_EOC 0x0800
+#define TL_CSTAT_RXERROR 0x0400
+#define TL_CSTAT_PASSCRC 0x0200
+#define TL_CSTAT_DPRIO 0x0100
+
+#define TL_FRAME_MASK 0x00FFFFFF
+#define tl_tx_goodframes(x) (x.tl_txstat & TL_FRAME_MASK)
+#define tl_tx_underrun(x) ((x.tl_txstat & ~TL_FRAME_MASK) >> 24)
+#define tl_rx_goodframes(x) (x.tl_rxstat & TL_FRAME_MASK)
+#define tl_rx_overrun(x) ((x.tl_rxstat & ~TL_FRAME_MASK) >> 24)
+
+struct tl_stats {
+ u_int32_t tl_txstat;
+ u_int32_t tl_rxstat;
+ u_int16_t tl_deferred;
+ u_int8_t tl_crc_errors;
+ u_int8_t tl_code_errors;
+ u_int16_t tl_tx_multi_collision;
+ u_int16_t tl_tx_single_collision;
+ u_int8_t tl_excessive_collision;
+ u_int8_t tl_late_collision;
+ u_int8_t tl_carrier_loss;
+ u_int8_t acommit;
+};
+
+/*
+ * ACOMMIT register bits. These are used only when a bitrate
+ * PHY is selected ('bitrate' bit in netconfig register is set).
+ */
+#define TL_AC_MTXER 0x01 /* reserved */
+#define TL_AC_MTXD1 0x02 /* 0 == 10baseT 1 == AUI */
+#define TL_AC_MTXD2 0x04 /* loopback disable */
+#define TL_AC_MTXD3 0x08 /* full duplex disable */
+
+#define TL_AC_TXTHRESH 0xF0
+#define TL_AC_TXTHRESH_16LONG 0x00
+#define TL_AC_TXTHRESH_32LONG 0x10
+#define TL_AC_TXTHRESH_64LONG 0x20
+#define TL_AC_TXTHRESH_128LONG 0x30
+#define TL_AC_TXTHRESH_256LONG 0x40
+#define TL_AC_TXTHRESH_WHOLEPKT 0x50
+
+/*
+ * PCI burst size register (TL_BSIZEREG).
+ */
+#define TL_RXBURST 0x0F
+#define TL_TXBURST 0xF0
+
+#define TL_RXBURST_4LONG 0x00
+#define TL_RXBURST_8LONG 0x01
+#define TL_RXBURST_16LONG 0x02
+#define TL_RXBURST_32LONG 0x03
+#define TL_RXBURST_64LONG 0x04
+#define TL_RXBURST_128LONG 0x05
+
+#define TL_TXBURST_4LONG 0x00
+#define TL_TXBURST_8LONG 0x10
+#define TL_TXBURST_16LONG 0x20
+#define TL_TXBURST_32LONG 0x30
+#define TL_TXBURST_64LONG 0x40
+#define TL_TXBURST_128LONG 0x50
+
+/*
+ * register space access macros
+ */
+#define CSR_WRITE_4(sc, reg, val) \
+ bus_space_write_4(sc->tl_btag, sc->tl_bhandle, reg, val)
+#define CSR_WRITE_2(sc, reg, val) \
+ bus_space_write_2(sc->tl_btag, sc->tl_bhandle, reg, val)
+#define CSR_WRITE_1(sc, reg, val) \
+ bus_space_write_1(sc->tl_btag, sc->tl_bhandle, reg, val)
+
+#define CSR_READ_4(sc, reg) \
+ bus_space_read_4(sc->tl_btag, sc->tl_bhandle, reg)
+#define CSR_READ_2(sc, reg) \
+ bus_space_read_2(sc->tl_btag, sc->tl_bhandle, reg)
+#define CSR_READ_1(sc, reg) \
+ bus_space_read_1(sc->tl_btag, sc->tl_bhandle, reg)
+
+#define CMD_PUT(sc, x) CSR_WRITE_4(sc, TL_HOSTCMD, x)
+#define CMD_SET(sc, x) \
+ CSR_WRITE_4(sc, TL_HOSTCMD, CSR_READ_4(sc, TL_HOSTCMD) | (x))
+#define CMD_CLR(sc, x) \
+ CSR_WRITE_4(sc, TL_HOSTCMD, CSR_READ_4(sc, TL_HOSTCMD) & ~(x))
+
+/*
+ * ThunderLAN adapters typically have a serial EEPROM containing
+ * configuration information. The main reason we're interested in
+ * it is because it also contains the adapters's station address.
+ *
+ * Access to the EEPROM is a bit goofy since it is a serial device:
+ * you have to do reads and writes one bit at a time. The state of
+ * the DATA bit can only change while the CLOCK line is held low.
+ * Transactions work basically like this:
+ *
+ * 1) Send the EEPROM_START sequence to prepare the EEPROM for
+ * accepting commands. This pulls the clock high, sets
+ * the data bit to 0, enables transmission to the EEPROM,
+ * pulls the data bit up to 1, then pulls the clock low.
+ * The idea is to do a 0 to 1 transition of the data bit
+ * while the clock pin is held high.
+ *
+ * 2) To write a bit to the EEPROM, set the TXENABLE bit, then
+ * set the EDATA bit to send a 1 or clear it to send a 0.
+ * Finally, set and then clear ECLOK. Strobing the clock
+ * transmits the bit. After 8 bits have been written, the
+ * EEPROM should respond with an ACK, which should be read.
+ *
+ * 3) To read a bit from the EEPROM, clear the TXENABLE bit,
+ * then set ECLOK. The bit can then be read by reading EDATA.
+ * ECLOCK should then be cleared again. This can be repeated
+ * 8 times to read a whole byte, after which the
+ *
+ * 4) We need to send the address byte to the EEPROM. For this
+ * we have to send the write control byte to the EEPROM to
+ * tell it to accept data. The byte is 0xA0. The EEPROM should
+ * ack this. The address byte can be send after that.
+ *
+ * 5) Now we have to tell the EEPROM to send us data. For that we
+ * have to transmit the read control byte, which is 0xA1. This
+ * byte should also be acked. We can then read the data bits
+ * from the EEPROM.
+ *
+ * 6) When we're all finished, send the EEPROM_STOP sequence.
+ *
+ * Note that we use the ThunderLAN's NetSio register to access the
+ * EEPROM, however there is an alternate method. There is a PCI NVRAM
+ * register at PCI offset 0xB4 which can also be used with minor changes.
+ * The difference is that access to PCI registers via pci_conf_read()
+ * and pci_conf_write() is done using programmed I/O, which we want to
+ * avoid.
+ */
+
+/*
+ * Note that EEPROM_START leaves transmission enabled.
+ */
+#define EEPROM_START \
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); /* Pull clock pin high */\
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA); /* Set DATA bit to 1 */ \
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN); /* Enable xmit to write bit */\
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA); /* Pull DATA bit to 0 again */\
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); /* Pull clock low again */
+
+/*
+ * EEPROM_STOP ends access to the EEPROM and clears the ETXEN bit so
+ * that no further data can be written to the EEPROM I/O pin.
+ */
+#define EEPROM_STOP \
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN); /* Disable xmit */ \
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA); /* Pull DATA to 0 */ \
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); /* Pull clock high */ \
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN); /* Enable xmit */ \
+ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA); /* Toggle DATA to 1 */ \
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN); /* Disable xmit. */ \
+ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); /* Pull clock low again */
+
+
+/*
+ * Microchip Technology 24Cxx EEPROM control bytes
+ */
+#define EEPROM_CTL_READ 0xA1 /* 0101 0001 */
+#define EEPROM_CTL_WRITE 0xA0 /* 0101 0000 */
OpenPOWER on IntegriCloud