summaryrefslogtreecommitdiffstats
path: root/sys/dev/jme/if_jme.c
diff options
context:
space:
mode:
authoryongari <yongari@FreeBSD.org>2008-05-27 01:42:01 +0000
committeryongari <yongari@FreeBSD.org>2008-05-27 01:42:01 +0000
commit1a8fa7ea7b32582484a5d3af6f26666ffc3862e5 (patch)
tree01ecf9739bd6259abcb358f9c1f6f8f5b44a028e /sys/dev/jme/if_jme.c
parent06f1826c5733e5447d167d8e7b91644f11b1b8b8 (diff)
downloadFreeBSD-src-1a8fa7ea7b32582484a5d3af6f26666ffc3862e5.zip
FreeBSD-src-1a8fa7ea7b32582484a5d3af6f26666ffc3862e5.tar.gz
Add driver support for PCIe adapters based on JMicron JMC250
gigabit ethernet and JMC260 fast ethernet controllers. ATM jme(4) supports all hardware features except RSS and multiple Tx/Rx queue. In these days most ethernet controller vendors take a ply of concealing hardware detailes from open source developers. As contrasted with these vendors JMicron provided all necessary information needed to write a stable driver during driver writing and answered many questions I had. They even helped fixing driver bugs with protocol analyzer. Many thanks to JMicron for their support of FreeBSD. H/W donated by: JMicron
Diffstat (limited to 'sys/dev/jme/if_jme.c')
-rw-r--r--sys/dev/jme/if_jme.c3083
1 files changed, 3083 insertions, 0 deletions
diff --git a/sys/dev/jme/if_jme.c b/sys/dev/jme/if_jme.c
new file mode 100644
index 0000000..bbe0c6f
--- /dev/null
+++ b/sys/dev/jme/if_jme.c
@@ -0,0 +1,3083 @@
+/*-
+ * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice unmodified, this list of conditions, and the following
+ * disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/bus.h>
+#include <sys/endian.h>
+#include <sys/kernel.h>
+#include <sys/malloc.h>
+#include <sys/mbuf.h>
+#include <sys/rman.h>
+#include <sys/module.h>
+#include <sys/proc.h>
+#include <sys/queue.h>
+#include <sys/socket.h>
+#include <sys/sockio.h>
+#include <sys/sysctl.h>
+#include <sys/taskqueue.h>
+
+#include <net/bpf.h>
+#include <net/if.h>
+#include <net/if_arp.h>
+#include <net/ethernet.h>
+#include <net/if_dl.h>
+#include <net/if_media.h>
+#include <net/if_types.h>
+#include <net/if_vlan_var.h>
+
+#include <netinet/in.h>
+#include <netinet/in_systm.h>
+#include <netinet/ip.h>
+#include <netinet/tcp.h>
+
+#include <dev/mii/mii.h>
+#include <dev/mii/miivar.h>
+
+#include <dev/pci/pcireg.h>
+#include <dev/pci/pcivar.h>
+
+#include <machine/atomic.h>
+#include <machine/bus.h>
+#include <machine/in_cksum.h>
+
+#include <dev/jme/if_jmereg.h>
+#include <dev/jme/if_jmevar.h>
+
+/* "device miibus" required. See GENERIC if you get errors here. */
+#include "miibus_if.h"
+
+/* Define the following to disable printing Rx errors. */
+#undef JME_SHOW_ERRORS
+
+#define JME_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
+
+MODULE_DEPEND(jme, pci, 1, 1, 1);
+MODULE_DEPEND(jme, ether, 1, 1, 1);
+MODULE_DEPEND(jme, miibus, 1, 1, 1);
+
+/* Tunables. */
+static int msi_disable = 0;
+static int msix_disable = 0;
+TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
+TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
+
+/*
+ * Devices supported by this driver.
+ */
+static struct jme_dev {
+ uint16_t jme_vendorid;
+ uint16_t jme_deviceid;
+ const char *jme_name;
+} jme_devs[] = {
+ { VENDORID_JMICRON, DEVICEID_JMC250,
+ "JMicron Inc, JMC250 Gigabit Ethernet" },
+ { VENDORID_JMICRON, DEVICEID_JMC260,
+ "JMicron Inc, JMC260 Fast Ethernet" },
+};
+
+static int jme_miibus_readreg(device_t, int, int);
+static int jme_miibus_writereg(device_t, int, int, int);
+static void jme_miibus_statchg(device_t);
+static void jme_mediastatus(struct ifnet *, struct ifmediareq *);
+static int jme_mediachange(struct ifnet *);
+static int jme_probe(device_t);
+static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
+static int jme_eeprom_macaddr(struct jme_softc *);
+static void jme_reg_macaddr(struct jme_softc *);
+static void jme_map_intr_vector(struct jme_softc *);
+static int jme_attach(device_t);
+static int jme_detach(device_t);
+static void jme_sysctl_node(struct jme_softc *);
+static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
+static int jme_dma_alloc(struct jme_softc *);
+static void jme_dma_free(struct jme_softc *);
+static int jme_shutdown(device_t);
+static void jme_setlinkspeed(struct jme_softc *);
+static void jme_setwol(struct jme_softc *);
+static int jme_suspend(device_t);
+static int jme_resume(device_t);
+static int jme_encap(struct jme_softc *, struct mbuf **);
+static void jme_tx_task(void *, int);
+static void jme_start(struct ifnet *);
+static void jme_watchdog(struct jme_softc *);
+static int jme_ioctl(struct ifnet *, u_long, caddr_t);
+static void jme_mac_config(struct jme_softc *);
+static void jme_link_task(void *, int);
+static int jme_intr(void *);
+static void jme_int_task(void *, int);
+static void jme_txeof(struct jme_softc *);
+static __inline void jme_discard_rxbuf(struct jme_softc *, int);
+static void jme_rxeof(struct jme_softc *);
+static int jme_rxintr(struct jme_softc *, int);
+static void jme_tick(void *);
+static void jme_reset(struct jme_softc *);
+static void jme_init(void *);
+static void jme_init_locked(struct jme_softc *);
+static void jme_stop(struct jme_softc *);
+static void jme_stop_tx(struct jme_softc *);
+static void jme_stop_rx(struct jme_softc *);
+static int jme_init_rx_ring(struct jme_softc *);
+static void jme_init_tx_ring(struct jme_softc *);
+static void jme_init_ssb(struct jme_softc *);
+static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
+static void jme_set_vlan(struct jme_softc *);
+static void jme_set_filter(struct jme_softc *);
+static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
+static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
+static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
+static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
+static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
+static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
+
+
+static device_method_t jme_methods[] = {
+ /* Device interface. */
+ DEVMETHOD(device_probe, jme_probe),
+ DEVMETHOD(device_attach, jme_attach),
+ DEVMETHOD(device_detach, jme_detach),
+ DEVMETHOD(device_shutdown, jme_shutdown),
+ DEVMETHOD(device_suspend, jme_suspend),
+ DEVMETHOD(device_resume, jme_resume),
+
+ /* MII interface. */
+ DEVMETHOD(miibus_readreg, jme_miibus_readreg),
+ DEVMETHOD(miibus_writereg, jme_miibus_writereg),
+ DEVMETHOD(miibus_statchg, jme_miibus_statchg),
+
+ { NULL, NULL }
+};
+
+static driver_t jme_driver = {
+ "jme",
+ jme_methods,
+ sizeof(struct jme_softc)
+};
+
+static devclass_t jme_devclass;
+
+DRIVER_MODULE(jme, pci, jme_driver, jme_devclass, 0, 0);
+DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, 0, 0);
+
+static struct resource_spec jme_res_spec_mem[] = {
+ { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
+ { -1, 0, 0 }
+};
+
+static struct resource_spec jme_irq_spec_legacy[] = {
+ { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
+ { -1, 0, 0 }
+};
+
+static struct resource_spec jme_irq_spec_msi[] = {
+ { SYS_RES_IRQ, 1, RF_ACTIVE },
+ { SYS_RES_IRQ, 2, RF_ACTIVE },
+ { SYS_RES_IRQ, 3, RF_ACTIVE },
+ { SYS_RES_IRQ, 4, RF_ACTIVE },
+ { SYS_RES_IRQ, 5, RF_ACTIVE },
+ { SYS_RES_IRQ, 6, RF_ACTIVE },
+ { SYS_RES_IRQ, 7, RF_ACTIVE },
+ { SYS_RES_IRQ, 8, RF_ACTIVE },
+ { -1, 0, 0 }
+};
+
+/*
+ * Read a PHY register on the MII of the JMC250.
+ */
+static int
+jme_miibus_readreg(device_t dev, int phy, int reg)
+{
+ struct jme_softc *sc;
+ uint32_t val;
+ int i;
+
+ sc = device_get_softc(dev);
+
+ /* For FPGA version, PHY address 0 should be ignored. */
+ if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
+ if (phy == 0)
+ return (0);
+ } else {
+ if (sc->jme_phyaddr != phy)
+ return (0);
+ }
+
+ CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
+ SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
+ for (i = JME_PHY_TIMEOUT; i > 0; i--) {
+ DELAY(1);
+ if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
+ break;
+ }
+
+ if (i == 0) {
+ device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
+ return (0);
+ }
+
+ return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
+}
+
+/*
+ * Write a PHY register on the MII of the JMC250.
+ */
+static int
+jme_miibus_writereg(device_t dev, int phy, int reg, int val)
+{
+ struct jme_softc *sc;
+ int i;
+
+ sc = device_get_softc(dev);
+
+ /* For FPGA version, PHY address 0 should be ignored. */
+ if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
+ if (phy == 0)
+ return (0);
+ } else {
+ if (sc->jme_phyaddr != phy)
+ return (0);
+ }
+
+ CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
+ ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
+ SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
+ for (i = JME_PHY_TIMEOUT; i > 0; i--) {
+ DELAY(1);
+ if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
+ break;
+ }
+
+ if (i == 0)
+ device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
+
+ return (0);
+}
+
+/*
+ * Callback from MII layer when media changes.
+ */
+static void
+jme_miibus_statchg(device_t dev)
+{
+ struct jme_softc *sc;
+
+ sc = device_get_softc(dev);
+ taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
+}
+
+/*
+ * Get the current interface media status.
+ */
+static void
+jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
+{
+ struct jme_softc *sc;
+ struct mii_data *mii;
+
+ sc = ifp->if_softc;
+ JME_LOCK(sc);
+ mii = device_get_softc(sc->jme_miibus);
+
+ mii_pollstat(mii);
+ ifmr->ifm_status = mii->mii_media_status;
+ ifmr->ifm_active = mii->mii_media_active;
+ JME_UNLOCK(sc);
+}
+
+/*
+ * Set hardware to newly-selected media.
+ */
+static int
+jme_mediachange(struct ifnet *ifp)
+{
+ struct jme_softc *sc;
+ struct mii_data *mii;
+ struct mii_softc *miisc;
+ int error;
+
+ sc = ifp->if_softc;
+ JME_LOCK(sc);
+ mii = device_get_softc(sc->jme_miibus);
+ if (mii->mii_instance != 0) {
+ LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
+ mii_phy_reset(miisc);
+ }
+ error = mii_mediachg(mii);
+ JME_UNLOCK(sc);
+
+ return (error);
+}
+
+static int
+jme_probe(device_t dev)
+{
+ struct jme_dev *sp;
+ int i;
+ uint16_t vendor, devid;
+
+ vendor = pci_get_vendor(dev);
+ devid = pci_get_device(dev);
+ sp = jme_devs;
+ for (i = 0; i < sizeof(jme_devs) / sizeof(jme_devs[0]);
+ i++, sp++) {
+ if (vendor == sp->jme_vendorid &&
+ devid == sp->jme_deviceid) {
+ device_set_desc(dev, sp->jme_name);
+ return (BUS_PROBE_DEFAULT);
+ }
+ }
+
+ return (ENXIO);
+}
+
+static int
+jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
+{
+ uint32_t reg;
+ int i;
+
+ *val = 0;
+ for (i = JME_TIMEOUT; i > 0; i--) {
+ reg = CSR_READ_4(sc, JME_SMBCSR);
+ if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
+ break;
+ DELAY(1);
+ }
+
+ if (i == 0) {
+ device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
+ return (ETIMEDOUT);
+ }
+
+ reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
+ CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
+ for (i = JME_TIMEOUT; i > 0; i--) {
+ DELAY(1);
+ reg = CSR_READ_4(sc, JME_SMBINTF);
+ if ((reg & SMBINTF_CMD_TRIGGER) == 0)
+ break;
+ }
+
+ if (i == 0) {
+ device_printf(sc->jme_dev, "EEPROM read timeout!\n");
+ return (ETIMEDOUT);
+ }
+
+ reg = CSR_READ_4(sc, JME_SMBINTF);
+ *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
+
+ return (0);
+}
+
+static int
+jme_eeprom_macaddr(struct jme_softc *sc)
+{
+ uint8_t eaddr[ETHER_ADDR_LEN];
+ uint8_t fup, reg, val;
+ uint32_t offset;
+ int match;
+
+ offset = 0;
+ if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
+ fup != JME_EEPROM_SIG0)
+ return (ENOENT);
+ if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
+ fup != JME_EEPROM_SIG1)
+ return (ENOENT);
+ match = 0;
+ do {
+ if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
+ break;
+ /* Check for the end of EEPROM descriptor. */
+ if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
+ break;
+ if ((uint8_t)JME_EEPROM_MKDESC(JME_EEPROM_FUNC0,
+ JME_EEPROM_PAGE_BAR1) == fup) {
+ if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
+ break;
+ if (reg >= JME_PAR0 &&
+ reg < JME_PAR0 + ETHER_ADDR_LEN) {
+ if (jme_eeprom_read_byte(sc, offset + 2,
+ &val) != 0)
+ break;
+ eaddr[reg - JME_PAR0] = val;
+ match++;
+ }
+ }
+ /* Try next eeprom descriptor. */
+ offset += JME_EEPROM_DESC_BYTES;
+ } while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
+
+ if (match == ETHER_ADDR_LEN) {
+ bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
+ return (0);
+ }
+
+ return (ENOENT);
+}
+
+static void
+jme_reg_macaddr(struct jme_softc *sc)
+{
+ uint32_t par0, par1;
+
+ /* Read station address. */
+ par0 = CSR_READ_4(sc, JME_PAR0);
+ par1 = CSR_READ_4(sc, JME_PAR1);
+ par1 &= 0xFFFF;
+ if ((par0 == 0 && par1 == 0) ||
+ (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
+ device_printf(sc->jme_dev,
+ "generating fake ethernet address.\n");
+ par0 = arc4random();
+ /* Set OUI to JMicron. */
+ sc->jme_eaddr[0] = 0x00;
+ sc->jme_eaddr[1] = 0x1B;
+ sc->jme_eaddr[2] = 0x8C;
+ sc->jme_eaddr[3] = (par0 >> 16) & 0xff;
+ sc->jme_eaddr[4] = (par0 >> 8) & 0xff;
+ sc->jme_eaddr[5] = par0 & 0xff;
+ } else {
+ sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
+ sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
+ sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
+ sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
+ sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
+ sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
+ }
+}
+
+static void
+jme_map_intr_vector(struct jme_softc *sc)
+{
+ uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
+
+ bzero(map, sizeof(map));
+
+ /* Map Tx interrupts source to MSI/MSIX vector 2. */
+ map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
+ MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
+ map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
+ MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
+ map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
+ MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
+ map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
+ MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
+ map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
+ MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
+ map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
+ MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
+ map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
+ MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
+ map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
+ MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
+ map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
+ MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
+ map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
+ MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
+
+ /* Map Rx interrupts source to MSI/MSIX vector 1. */
+ map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
+ MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
+ map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
+ MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
+ map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
+ MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
+ map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
+ MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
+ map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
+ MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
+ map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
+ MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
+ map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
+ MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
+ map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
+ MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
+ map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
+ MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
+ map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
+ MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
+ map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
+ MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
+ map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
+ MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
+ map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
+ MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
+ map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
+ MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
+ map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
+ MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
+ map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
+ MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
+
+ /* Map all other interrupts source to MSI/MSIX vector 0. */
+ CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
+ CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
+ CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
+ CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
+}
+
+static int
+jme_attach(device_t dev)
+{
+ struct jme_softc *sc;
+ struct ifnet *ifp;
+ struct mii_softc *miisc;
+ struct mii_data *mii;
+ uint32_t reg;
+ uint16_t burst;
+ int error, i, msic, msixc, pmc;
+
+ error = 0;
+ sc = device_get_softc(dev);
+ sc->jme_dev = dev;
+
+ mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
+ MTX_DEF);
+ callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
+ TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
+ TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
+
+ /*
+ * Map the device. JMC250 supports both memory mapped and I/O
+ * register space access. Because I/O register access should
+ * use different BARs to access registers it's waste of time
+ * to use I/O register spce access. JMC250 uses 16K to map
+ * entire memory space.
+ */
+ pci_enable_busmaster(dev);
+ sc->jme_res_spec = jme_res_spec_mem;
+ sc->jme_irq_spec = jme_irq_spec_legacy;
+ error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
+ if (error != 0) {
+ device_printf(dev, "cannot allocate memory resources.\n");
+ goto fail;
+ }
+
+ /* Allocate IRQ resources. */
+ msixc = pci_msix_count(dev);
+ msic = pci_msi_count(dev);
+ if (bootverbose) {
+ device_printf(dev, "MSIX count : %d\n", msixc);
+ device_printf(dev, "MSI count : %d\n", msic);
+ }
+
+ /* Prefer MSIX over MSI. */
+ if (msix_disable == 0 || msi_disable == 0) {
+ if (msix_disable == 0 && msixc == JME_MSIX_MESSAGES &&
+ pci_alloc_msix(dev, &msixc) == 0) {
+ if (msic == JME_MSIX_MESSAGES) {
+ device_printf(dev, "Using %d MSIX messages.\n",
+ msixc);
+ sc->jme_flags |= JME_FLAG_MSIX;
+ sc->jme_irq_spec = jme_irq_spec_msi;
+ } else
+ pci_release_msi(dev);
+ }
+ if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
+ msic == JME_MSI_MESSAGES &&
+ pci_alloc_msi(dev, &msic) == 0) {
+ if (msic == JME_MSI_MESSAGES) {
+ device_printf(dev, "Using %d MSI messages.\n",
+ msic);
+ sc->jme_flags |= JME_FLAG_MSI;
+ sc->jme_irq_spec = jme_irq_spec_msi;
+ } else
+ pci_release_msi(dev);
+ }
+ /* Map interrupt vector 0, 1 and 2. */
+ if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
+ (sc->jme_flags & JME_FLAG_MSIX) != 0)
+ jme_map_intr_vector(sc);
+ }
+
+ error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
+ if (error != 0) {
+ device_printf(dev, "cannot allocate IRQ resources.\n");
+ goto fail;
+ }
+
+ sc->jme_rev = pci_get_revid(dev);
+ if (sc->jme_rev == DEVICEREVID_JMC260) {
+ sc->jme_flags |= JME_FLAG_FASTETH;
+ sc->jme_flags |= JME_FLAG_NOJUMBO;
+ }
+ reg = CSR_READ_4(sc, JME_CHIPMODE);
+ sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
+ if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
+ CHIPMODE_NOT_FPGA)
+ sc->jme_flags |= JME_FLAG_FPGA;
+ if (bootverbose) {
+ device_printf(dev, "PCI device revision : 0x%04x\n",
+ sc->jme_rev);
+ device_printf(dev, "Chip revision : 0x%02x\n",
+ sc->jme_chip_rev);
+ if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
+ device_printf(dev, "FPGA revision : 0x%04x\n",
+ (reg & CHIPMODE_FPGA_REV_MASK) >>
+ CHIPMODE_FPGA_REV_SHIFT);
+ }
+ if (sc->jme_chip_rev == 0xFF) {
+ device_printf(dev, "Unknown chip revision : 0x%02x\n",
+ sc->jme_rev);
+ error = ENXIO;
+ goto fail;
+ }
+
+ /* Reset the ethernet controller. */
+ jme_reset(sc);
+
+ /* Get station address. */
+ reg = CSR_READ_4(sc, JME_SMBCSR);
+ if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
+ error = jme_eeprom_macaddr(sc);
+ if (error != 0 || (reg & SMBCSR_EEPROM_PRESENT) == 0) {
+ if (error != 0 && (bootverbose))
+ device_printf(sc->jme_dev,
+ "ethernet hardware address not found in EEPROM.\n");
+ jme_reg_macaddr(sc);
+ }
+
+ /*
+ * Save PHY address.
+ * Integrated JR0211 has fixed PHY address whereas FPGA version
+ * requires PHY probing to get correct PHY address.
+ */
+ if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
+ sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
+ GPREG0_PHY_ADDR_MASK;
+ if (bootverbose)
+ device_printf(dev, "PHY is at address %d.\n",
+ sc->jme_phyaddr);
+ } else
+ sc->jme_phyaddr = 0;
+
+ /* Set max allowable DMA size. */
+ if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
+ sc->jme_flags |= JME_FLAG_PCIE;
+ burst = pci_read_config(dev, i + 0x08, 2);
+ if (bootverbose) {
+ device_printf(dev, "Read request size : %d bytes.\n",
+ 128 << ((burst >> 12) & 0x07));
+ device_printf(dev, "TLP payload size : %d bytes.\n",
+ 128 << ((burst >> 5) & 0x07));
+ }
+ switch ((burst >> 12) & 0x07) {
+ case 0:
+ sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
+ break;
+ case 1:
+ sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
+ break;
+ default:
+ sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
+ break;
+ }
+ sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
+ } else {
+ sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
+ sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
+ }
+ /* Create coalescing sysctl node. */
+ jme_sysctl_node(sc);
+ if ((error = jme_dma_alloc(sc) != 0))
+ goto fail;
+
+ ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
+ if (ifp == NULL) {
+ device_printf(dev, "cannot allocate ifnet structure.\n");
+ error = ENXIO;
+ goto fail;
+ }
+
+ ifp->if_softc = sc;
+ if_initname(ifp, device_get_name(dev), device_get_unit(dev));
+ ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
+ ifp->if_ioctl = jme_ioctl;
+ ifp->if_start = jme_start;
+ ifp->if_init = jme_init;
+ ifp->if_snd.ifq_drv_maxlen = JME_TX_RING_CNT - 1;
+ IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
+ IFQ_SET_READY(&ifp->if_snd);
+ /* JMC250 supports Tx/Rx checksum offload as well as TSO. */
+ ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
+ ifp->if_hwassist = JME_CSUM_FEATURES | CSUM_TSO;
+ if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
+ sc->jme_flags |= JME_FLAG_PMCAP;
+ ifp->if_capabilities |= IFCAP_WOL_MAGIC;
+ }
+ ifp->if_capenable = ifp->if_capabilities;
+
+ /* Set up MII bus. */
+ if ((error = mii_phy_probe(dev, &sc->jme_miibus, jme_mediachange,
+ jme_mediastatus)) != 0) {
+ device_printf(dev, "no PHY found!\n");
+ goto fail;
+ }
+
+ /*
+ * Force PHY to FPGA mode.
+ */
+ if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
+ mii = device_get_softc(sc->jme_miibus);
+ if (mii->mii_instance != 0) {
+ LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
+ if (miisc->mii_phy != 0) {
+ sc->jme_phyaddr = miisc->mii_phy;
+ break;
+ }
+ }
+ if (sc->jme_phyaddr != 0) {
+ device_printf(sc->jme_dev,
+ "FPGA PHY is at %d\n", sc->jme_phyaddr);
+ /* vendor magic. */
+ jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
+ 0x0004);
+ }
+ }
+ }
+
+ ether_ifattach(ifp, sc->jme_eaddr);
+
+ /* VLAN capability setup */
+ ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
+ IFCAP_VLAN_HWCSUM;
+ ifp->if_capenable = ifp->if_capabilities;
+
+ /* Tell the upper layer(s) we support long frames. */
+ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
+
+ /* Create local taskq. */
+ TASK_INIT(&sc->jme_tx_task, 1, jme_tx_task, ifp);
+ sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
+ taskqueue_thread_enqueue, &sc->jme_tq);
+ if (sc->jme_tq == NULL) {
+ device_printf(dev, "could not create taskqueue.\n");
+ ether_ifdetach(ifp);
+ error = ENXIO;
+ goto fail;
+ }
+ taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
+ device_get_nameunit(sc->jme_dev));
+
+ if ((sc->jme_flags & JME_FLAG_MSIX) != 0)
+ msic = JME_MSIX_MESSAGES;
+ else if ((sc->jme_flags & JME_FLAG_MSI) != 0)
+ msic = JME_MSI_MESSAGES;
+ else
+ msic = 1;
+ for (i = 0; i < msic; i++) {
+ error = bus_setup_intr(dev, sc->jme_irq[i],
+ INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
+ &sc->jme_intrhand[i]);
+ if (error != 0)
+ break;
+ }
+
+ if (error != 0) {
+ device_printf(dev, "could not set up interrupt handler.\n");
+ taskqueue_free(sc->jme_tq);
+ sc->jme_tq = NULL;
+ ether_ifdetach(ifp);
+ goto fail;
+ }
+
+fail:
+ if (error != 0)
+ jme_detach(dev);
+
+ return (error);
+}
+
+static int
+jme_detach(device_t dev)
+{
+ struct jme_softc *sc;
+ struct ifnet *ifp;
+ int i, msic;
+
+ sc = device_get_softc(dev);
+
+ ifp = sc->jme_ifp;
+ if (device_is_attached(dev)) {
+ JME_LOCK(sc);
+ sc->jme_flags |= JME_FLAG_DETACH;
+ jme_stop(sc);
+ JME_UNLOCK(sc);
+ callout_drain(&sc->jme_tick_ch);
+ taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
+ taskqueue_drain(sc->jme_tq, &sc->jme_tx_task);
+ taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
+ ether_ifdetach(ifp);
+ }
+
+ if (sc->jme_tq != NULL) {
+ taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
+ taskqueue_free(sc->jme_tq);
+ sc->jme_tq = NULL;
+ }
+
+ if (sc->jme_miibus != NULL) {
+ device_delete_child(dev, sc->jme_miibus);
+ sc->jme_miibus = NULL;
+ }
+ bus_generic_detach(dev);
+ jme_dma_free(sc);
+
+ if (ifp != NULL) {
+ if_free(ifp);
+ sc->jme_ifp = NULL;
+ }
+
+ msic = 1;
+ if ((sc->jme_flags & JME_FLAG_MSIX) != 0)
+ msic = JME_MSIX_MESSAGES;
+ else if ((sc->jme_flags & JME_FLAG_MSI) != 0)
+ msic = JME_MSI_MESSAGES;
+ else
+ msic = 1;
+ for (i = 0; i < msic; i++) {
+ if (sc->jme_intrhand[i] != NULL) {
+ bus_teardown_intr(dev, sc->jme_irq[i],
+ sc->jme_intrhand[i]);
+ sc->jme_intrhand[i] = NULL;
+ }
+ }
+
+ bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
+ if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
+ pci_release_msi(dev);
+ bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
+ mtx_destroy(&sc->jme_mtx);
+
+ return (0);
+}
+
+static void
+jme_sysctl_node(struct jme_softc *sc)
+{
+ int error;
+
+ SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->jme_dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev)), OID_AUTO,
+ "tx_coal_to", CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_to,
+ 0, sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
+
+ SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->jme_dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev)), OID_AUTO,
+ "tx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_pkt,
+ 0, sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
+
+ SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->jme_dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev)), OID_AUTO,
+ "rx_coal_to", CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_to,
+ 0, sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
+
+ SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->jme_dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev)), OID_AUTO,
+ "rx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_pkt,
+ 0, sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
+
+ SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->jme_dev),
+ SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev)), OID_AUTO,
+ "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->jme_process_limit,
+ 0, sysctl_hw_jme_proc_limit, "I",
+ "max number of Rx events to process");
+
+ /* Pull in device tunables. */
+ sc->jme_process_limit = JME_PROC_DEFAULT;
+ error = resource_int_value(device_get_name(sc->jme_dev),
+ device_get_unit(sc->jme_dev), "process_limit",
+ &sc->jme_process_limit);
+ if (error == 0) {
+ if (sc->jme_process_limit < JME_PROC_MIN ||
+ sc->jme_process_limit > JME_PROC_MAX) {
+ device_printf(sc->jme_dev,
+ "process_limit value out of range; "
+ "using default: %d\n", JME_PROC_DEFAULT);
+ sc->jme_process_limit = JME_PROC_DEFAULT;
+ }
+ }
+
+ sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
+ error = resource_int_value(device_get_name(sc->jme_dev),
+ device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
+ if (error == 0) {
+ if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
+ sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
+ device_printf(sc->jme_dev,
+ "tx_coal_to value out of range; "
+ "using default: %d\n", PCCTX_COAL_TO_DEFAULT);
+ sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
+ }
+ }
+
+ sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
+ error = resource_int_value(device_get_name(sc->jme_dev),
+ device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
+ if (error == 0) {
+ if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
+ sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
+ device_printf(sc->jme_dev,
+ "tx_coal_pkt value out of range; "
+ "using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
+ sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
+ }
+ }
+
+ sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
+ error = resource_int_value(device_get_name(sc->jme_dev),
+ device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
+ if (error == 0) {
+ if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
+ sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
+ device_printf(sc->jme_dev,
+ "rx_coal_to value out of range; "
+ "using default: %d\n", PCCRX_COAL_TO_DEFAULT);
+ sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
+ }
+ }
+
+ sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
+ error = resource_int_value(device_get_name(sc->jme_dev),
+ device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
+ if (error == 0) {
+ if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
+ sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
+ device_printf(sc->jme_dev,
+ "tx_coal_pkt value out of range; "
+ "using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
+ sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
+ }
+ }
+}
+
+struct jme_dmamap_arg {
+ bus_addr_t jme_busaddr;
+};
+
+static void
+jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
+{
+ struct jme_dmamap_arg *ctx;
+
+ if (error != 0)
+ return;
+
+ KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
+
+ ctx = (struct jme_dmamap_arg *)arg;
+ ctx->jme_busaddr = segs[0].ds_addr;
+}
+
+static int
+jme_dma_alloc(struct jme_softc *sc)
+{
+ struct jme_dmamap_arg ctx;
+ struct jme_txdesc *txd;
+ struct jme_rxdesc *rxd;
+ bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
+ int error, i;
+
+ lowaddr = BUS_SPACE_MAXADDR;
+
+again:
+ /* Create parent ring tag. */
+ error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
+ 1, 0, /* algnmnt, boundary */
+ lowaddr, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
+ 0, /* nsegments */
+ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
+ 0, /* flags */
+ NULL, NULL, /* lockfunc, lockarg */
+ &sc->jme_cdata.jme_ring_tag);
+ if (error != 0) {
+ device_printf(sc->jme_dev,
+ "could not create parent ring DMA tag.\n");
+ goto fail;
+ }
+ /* Create tag for Tx ring. */
+ error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
+ JME_TX_RING_ALIGN, 0, /* algnmnt, boundary */
+ BUS_SPACE_MAXADDR, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ JME_TX_RING_SIZE, /* maxsize */
+ 1, /* nsegments */
+ JME_TX_RING_SIZE, /* maxsegsize */
+ 0, /* flags */
+ NULL, NULL, /* lockfunc, lockarg */
+ &sc->jme_cdata.jme_tx_ring_tag);
+ if (error != 0) {
+ device_printf(sc->jme_dev,
+ "could not allocate Tx ring DMA tag.\n");
+ goto fail;
+ }
+
+ /* Create tag for Rx ring. */
+ error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
+ JME_RX_RING_ALIGN, 0, /* algnmnt, boundary */
+ lowaddr, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ JME_RX_RING_SIZE, /* maxsize */
+ 1, /* nsegments */
+ JME_RX_RING_SIZE, /* maxsegsize */
+ 0, /* flags */
+ NULL, NULL, /* lockfunc, lockarg */
+ &sc->jme_cdata.jme_rx_ring_tag);
+ if (error != 0) {
+ device_printf(sc->jme_dev,
+ "could not allocate Rx ring DMA tag.\n");
+ goto fail;
+ }
+
+ /* Allocate DMA'able memory and load the DMA map for Tx ring. */
+ error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
+ (void **)&sc->jme_rdata.jme_tx_ring,
+ BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
+ &sc->jme_cdata.jme_tx_ring_map);
+ if (error != 0) {
+ device_printf(sc->jme_dev,
+ "could not allocate DMA'able memory for Tx ring.\n");
+ goto fail;
+ }
+
+ ctx.jme_busaddr = 0;
+ error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
+ sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
+ JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
+ if (error != 0 || ctx.jme_busaddr == 0) {
+ device_printf(sc->jme_dev,
+ "could not load DMA'able memory for Tx ring.\n");
+ goto fail;
+ }
+ sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
+
+ /* Allocate DMA'able memory and load the DMA map for Rx ring. */
+ error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
+ (void **)&sc->jme_rdata.jme_rx_ring,
+ BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
+ &sc->jme_cdata.jme_rx_ring_map);
+ if (error != 0) {
+ device_printf(sc->jme_dev,
+ "could not allocate DMA'able memory for Rx ring.\n");
+ goto fail;
+ }
+
+ ctx.jme_busaddr = 0;
+ error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
+ sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
+ JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
+ if (error != 0 || ctx.jme_busaddr == 0) {
+ device_printf(sc->jme_dev,
+ "could not load DMA'able memory for Rx ring.\n");
+ goto fail;
+ }
+ sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
+
+ /* Tx/Rx descriptor queue should reside within 4GB boundary. */
+ tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr + JME_TX_RING_SIZE;
+ rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr + JME_RX_RING_SIZE;
+ if ((JME_ADDR_HI(tx_ring_end) !=
+ JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
+ (JME_ADDR_HI(rx_ring_end) !=
+ JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
+ device_printf(sc->jme_dev, "4GB boundary crossed, "
+ "switching to 32bit DMA address mode.\n");
+ jme_dma_free(sc);
+ /* Limit DMA address space to 32bit and try again. */
+ lowaddr = BUS_SPACE_MAXADDR_32BIT;
+ goto again;
+ }
+
+ /* Create parent buffer tag. */
+ error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
+ 1, 0, /* algnmnt, boundary */
+ BUS_SPACE_MAXADDR, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
+ 0, /* nsegments */
+ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
+ 0, /* flags */
+ NULL, NULL, /* lockfunc, lockarg */
+ &sc->jme_cdata.jme_buffer_tag);
+ if (error != 0) {
+ device_printf(sc->jme_dev,
+ "could not create parent buffer DMA tag.\n");
+ goto fail;
+ }
+
+ /* Create shadow status block tag. */
+ error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
+ JME_SSB_ALIGN, 0, /* algnmnt, boundary */
+ BUS_SPACE_MAXADDR, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ JME_SSB_SIZE, /* maxsize */
+ 1, /* nsegments */
+ JME_SSB_SIZE, /* maxsegsize */
+ 0, /* flags */
+ NULL, NULL, /* lockfunc, lockarg */
+ &sc->jme_cdata.jme_ssb_tag);
+ if (error != 0) {
+ device_printf(sc->jme_dev,
+ "could not create shared status block DMA tag.\n");
+ goto fail;
+ }
+
+ /* Create tag for Tx buffers. */
+ error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
+ 1, 0, /* algnmnt, boundary */
+ BUS_SPACE_MAXADDR, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ JME_TSO_MAXSIZE, /* maxsize */
+ JME_MAXTXSEGS, /* nsegments */
+ JME_TSO_MAXSEGSIZE, /* maxsegsize */
+ 0, /* flags */
+ NULL, NULL, /* lockfunc, lockarg */
+ &sc->jme_cdata.jme_tx_tag);
+ if (error != 0) {
+ device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
+ goto fail;
+ }
+
+ /* Create tag for Rx buffers. */
+ error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
+ JME_RX_BUF_ALIGN, 0, /* algnmnt, boundary */
+ BUS_SPACE_MAXADDR, /* lowaddr */
+ BUS_SPACE_MAXADDR, /* highaddr */
+ NULL, NULL, /* filter, filterarg */
+ MCLBYTES, /* maxsize */
+ 1, /* nsegments */
+ MCLBYTES, /* maxsegsize */
+ 0, /* flags */
+ NULL, NULL, /* lockfunc, lockarg */
+ &sc->jme_cdata.jme_rx_tag);
+ if (error != 0) {
+ device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
+ goto fail;
+ }
+
+ /*
+ * Allocate DMA'able memory and load the DMA map for shared
+ * status block.
+ */
+ error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
+ (void **)&sc->jme_rdata.jme_ssb_block,
+ BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
+ &sc->jme_cdata.jme_ssb_map);
+ if (error != 0) {
+ device_printf(sc->jme_dev, "could not allocate DMA'able "
+ "memory for shared status block.\n");
+ goto fail;
+ }
+
+ ctx.jme_busaddr = 0;
+ error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
+ sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
+ JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
+ if (error != 0 || ctx.jme_busaddr == 0) {
+ device_printf(sc->jme_dev, "could not load DMA'able memory "
+ "for shared status block.\n");
+ goto fail;
+ }
+ sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
+
+ /* Create DMA maps for Tx buffers. */
+ for (i = 0; i < JME_TX_RING_CNT; i++) {
+ txd = &sc->jme_cdata.jme_txdesc[i];
+ txd->tx_m = NULL;
+ txd->tx_dmamap = NULL;
+ error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
+ &txd->tx_dmamap);
+ if (error != 0) {
+ device_printf(sc->jme_dev,
+ "could not create Tx dmamap.\n");
+ goto fail;
+ }
+ }
+ /* Create DMA maps for Rx buffers. */
+ if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
+ &sc->jme_cdata.jme_rx_sparemap)) != 0) {
+ device_printf(sc->jme_dev,
+ "could not create spare Rx dmamap.\n");
+ goto fail;
+ }
+ for (i = 0; i < JME_RX_RING_CNT; i++) {
+ rxd = &sc->jme_cdata.jme_rxdesc[i];
+ rxd->rx_m = NULL;
+ rxd->rx_dmamap = NULL;
+ error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
+ &rxd->rx_dmamap);
+ if (error != 0) {
+ device_printf(sc->jme_dev,
+ "could not create Rx dmamap.\n");
+ goto fail;
+ }
+ }
+
+fail:
+ return (error);
+}
+
+static void
+jme_dma_free(struct jme_softc *sc)
+{
+ struct jme_txdesc *txd;
+ struct jme_rxdesc *rxd;
+ int i;
+
+ /* Tx ring */
+ if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
+ if (sc->jme_cdata.jme_tx_ring_map)
+ bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
+ sc->jme_cdata.jme_tx_ring_map);
+ if (sc->jme_cdata.jme_tx_ring_map &&
+ sc->jme_rdata.jme_tx_ring)
+ bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
+ sc->jme_rdata.jme_tx_ring,
+ sc->jme_cdata.jme_tx_ring_map);
+ sc->jme_rdata.jme_tx_ring = NULL;
+ sc->jme_cdata.jme_tx_ring_map = NULL;
+ bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
+ sc->jme_cdata.jme_tx_ring_tag = NULL;
+ }
+ /* Rx ring */
+ if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
+ if (sc->jme_cdata.jme_rx_ring_map)
+ bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
+ sc->jme_cdata.jme_rx_ring_map);
+ if (sc->jme_cdata.jme_rx_ring_map &&
+ sc->jme_rdata.jme_rx_ring)
+ bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
+ sc->jme_rdata.jme_rx_ring,
+ sc->jme_cdata.jme_rx_ring_map);
+ sc->jme_rdata.jme_rx_ring = NULL;
+ sc->jme_cdata.jme_rx_ring_map = NULL;
+ bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
+ sc->jme_cdata.jme_rx_ring_tag = NULL;
+ }
+ /* Tx buffers */
+ if (sc->jme_cdata.jme_tx_tag != NULL) {
+ for (i = 0; i < JME_TX_RING_CNT; i++) {
+ txd = &sc->jme_cdata.jme_txdesc[i];
+ if (txd->tx_dmamap != NULL) {
+ bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
+ txd->tx_dmamap);
+ txd->tx_dmamap = NULL;
+ }
+ }
+ bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
+ sc->jme_cdata.jme_tx_tag = NULL;
+ }
+ /* Rx buffers */
+ if (sc->jme_cdata.jme_rx_tag != NULL) {
+ for (i = 0; i < JME_RX_RING_CNT; i++) {
+ rxd = &sc->jme_cdata.jme_rxdesc[i];
+ if (rxd->rx_dmamap != NULL) {
+ bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
+ rxd->rx_dmamap);
+ rxd->rx_dmamap = NULL;
+ }
+ }
+ if (sc->jme_cdata.jme_rx_sparemap != NULL) {
+ bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
+ sc->jme_cdata.jme_rx_sparemap);
+ sc->jme_cdata.jme_rx_sparemap = NULL;
+ }
+ bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
+ sc->jme_cdata.jme_rx_tag = NULL;
+ }
+
+ /* Shared status block. */
+ if (sc->jme_cdata.jme_ssb_tag != NULL) {
+ if (sc->jme_cdata.jme_ssb_map)
+ bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
+ sc->jme_cdata.jme_ssb_map);
+ if (sc->jme_cdata.jme_ssb_map && sc->jme_rdata.jme_ssb_block)
+ bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
+ sc->jme_rdata.jme_ssb_block,
+ sc->jme_cdata.jme_ssb_map);
+ sc->jme_rdata.jme_ssb_block = NULL;
+ sc->jme_cdata.jme_ssb_map = NULL;
+ bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
+ sc->jme_cdata.jme_ssb_tag = NULL;
+ }
+
+ if (sc->jme_cdata.jme_buffer_tag != NULL) {
+ bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
+ sc->jme_cdata.jme_buffer_tag = NULL;
+ }
+ if (sc->jme_cdata.jme_ring_tag != NULL) {
+ bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
+ sc->jme_cdata.jme_ring_tag = NULL;
+ }
+}
+
+/*
+ * Make sure the interface is stopped at reboot time.
+ */
+static int
+jme_shutdown(device_t dev)
+{
+
+ return (jme_suspend(dev));
+}
+
+/*
+ * Unlike other ethernet controllers, JMC250 requires
+ * explicit resetting link speed to 10/100Mbps as gigabit
+ * link will cunsume more power than 375mA.
+ * Note, we reset the link speed to 10/100Mbps with
+ * auto-negotiation but we don't know whether that operation
+ * would succeed or not as we have no control after powering
+ * off. If the renegotiation fail WOL may not work. Running
+ * at 1Gbps draws more power than 375mA at 3.3V which is
+ * specified in PCI specification and that would result in
+ * complete shutdowning power to ethernet controller.
+ *
+ * TODO
+ * Save current negotiated media speed/duplex/flow-control
+ * to softc and restore the same link again after resuming.
+ * PHY handling such as power down/resetting to 100Mbps
+ * may be better handled in suspend method in phy driver.
+ */
+static void
+jme_setlinkspeed(struct jme_softc *sc)
+{
+ struct mii_data *mii;
+ int aneg, i;
+
+ JME_LOCK_ASSERT(sc);
+
+ mii = device_get_softc(sc->jme_miibus);
+ mii_pollstat(mii);
+ aneg = 0;
+ if ((mii->mii_media_status & IFM_AVALID) != 0) {
+ switch IFM_SUBTYPE(mii->mii_media_active) {
+ case IFM_10_T:
+ case IFM_100_TX:
+ return;
+ case IFM_1000_T:
+ aneg++;
+ default:
+ break;
+ }
+ }
+ jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
+ jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
+ ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
+ jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
+ BMCR_AUTOEN | BMCR_STARTNEG);
+ DELAY(1000);
+ if (aneg != 0) {
+ /* Poll link state until jme(4) get a 10/100 link. */
+ for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
+ mii_pollstat(mii);
+ if ((mii->mii_media_status & IFM_AVALID) != 0) {
+ switch (IFM_SUBTYPE(mii->mii_media_active)) {
+ case IFM_10_T:
+ case IFM_100_TX:
+ jme_mac_config(sc);
+ return;
+ default:
+ break;
+ }
+ }
+ JME_UNLOCK(sc);
+ pause("jmelnk", hz);
+ JME_LOCK(sc);
+ }
+ if (i == MII_ANEGTICKS_GIGE)
+ device_printf(sc->jme_dev, "establishing link failed, "
+ "WOL may not work!");
+ }
+ /*
+ * No link, force MAC to have 100Mbps, full-duplex link.
+ * This is the last resort and may/may not work.
+ */
+ mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
+ mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
+ jme_mac_config(sc);
+}
+
+static void
+jme_setwol(struct jme_softc *sc)
+{
+ struct ifnet *ifp;
+ uint32_t gpr, pmcs;
+ uint16_t pmstat;
+ int pmc;
+
+ JME_LOCK_ASSERT(sc);
+
+ if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
+ /* No PME capability, PHY power down. */
+ jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
+ MII_BMCR, BMCR_PDOWN);
+ return;
+ }
+
+ ifp = sc->jme_ifp;
+ gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
+ pmcs = CSR_READ_4(sc, JME_PMCS);
+ pmcs &= ~PMCS_WOL_ENB_MASK;
+ if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
+ pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
+ /* Enable PME message. */
+ gpr |= GPREG0_PME_ENB;
+ /* For gigabit controllers, reset link speed to 10/100. */
+ if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
+ jme_setlinkspeed(sc);
+ }
+
+ CSR_WRITE_4(sc, JME_PMCS, pmcs);
+ CSR_WRITE_4(sc, JME_GPREG0, gpr);
+
+ /* Request PME. */
+ pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
+ pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
+ if ((ifp->if_capenable & IFCAP_WOL) != 0)
+ pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
+ pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
+ if ((ifp->if_capenable & IFCAP_WOL) == 0) {
+ /* No WOL, PHY power down. */
+ jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
+ MII_BMCR, BMCR_PDOWN);
+ }
+}
+
+static int
+jme_suspend(device_t dev)
+{
+ struct jme_softc *sc;
+
+ sc = device_get_softc(dev);
+
+ JME_LOCK(sc);
+ jme_stop(sc);
+ jme_setwol(sc);
+ JME_UNLOCK(sc);
+
+ return (0);
+}
+
+static int
+jme_resume(device_t dev)
+{
+ struct jme_softc *sc;
+ struct ifnet *ifp;
+ uint16_t pmstat;
+ int pmc;
+
+ sc = device_get_softc(dev);
+
+ JME_LOCK(sc);
+ if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
+ pmstat = pci_read_config(sc->jme_dev,
+ pmc + PCIR_POWER_STATUS, 2);
+ /* Disable PME clear PME status. */
+ pmstat &= ~PCIM_PSTAT_PMEENABLE;
+ pci_write_config(sc->jme_dev,
+ pmc + PCIR_POWER_STATUS, pmstat, 2);
+ }
+ ifp = sc->jme_ifp;
+ if ((ifp->if_flags & IFF_UP) != 0)
+ jme_init_locked(sc);
+
+ JME_UNLOCK(sc);
+
+ return (0);
+}
+
+static int
+jme_encap(struct jme_softc *sc, struct mbuf **m_head)
+{
+ struct jme_txdesc *txd;
+ struct jme_desc *desc;
+ struct mbuf *m;
+ bus_dma_segment_t txsegs[JME_MAXTXSEGS];
+ int error, i, nsegs, prod;
+ uint32_t cflags, tso_segsz;
+
+ JME_LOCK_ASSERT(sc);
+
+ M_ASSERTPKTHDR((*m_head));
+
+ if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
+ /*
+ * Due to the adherence to NDIS specification JMC250
+ * assumes upper stack computed TCP pseudo checksum
+ * without including payload length. This breaks
+ * checksum offload for TSO case so recompute TCP
+ * pseudo checksum for JMC250. Hopefully this wouldn't
+ * be much burden on modern CPUs.
+ */
+ struct ether_header *eh;
+ struct ip *ip;
+ struct tcphdr *tcp;
+ uint32_t ip_off, poff;
+
+ if (M_WRITABLE(*m_head) == 0) {
+ /* Get a writable copy. */
+ m = m_dup(*m_head, M_DONTWAIT);
+ m_freem(*m_head);
+ if (m == NULL) {
+ *m_head = NULL;
+ return (ENOBUFS);
+ }
+ *m_head = m;
+ }
+ ip_off = sizeof(struct ether_header);
+ m = m_pullup(*m_head, ip_off);
+ if (m == NULL) {
+ *m_head = NULL;
+ return (ENOBUFS);
+ }
+ eh = mtod(m, struct ether_header *);
+ /* Check the existence of VLAN tag. */
+ if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
+ ip_off = sizeof(struct ether_vlan_header);
+ m = m_pullup(m, ip_off);
+ if (m == NULL) {
+ *m_head = NULL;
+ return (ENOBUFS);
+ }
+ }
+ m = m_pullup(m, ip_off + sizeof(struct ip));
+ if (m == NULL) {
+ *m_head = NULL;
+ return (ENOBUFS);
+ }
+ ip = (struct ip *)(mtod(m, char *) + ip_off);
+ poff = ip_off + (ip->ip_hl << 2);
+ m = m_pullup(m, poff + sizeof(struct tcphdr));
+ if (m == NULL) {
+ *m_head = NULL;
+ return (ENOBUFS);
+ }
+ tcp = (struct tcphdr *)(mtod(m, char *) + poff);
+ /*
+ * Reset IP checksum and recompute TCP pseudo
+ * checksum that NDIS specification requires.
+ */
+ ip->ip_sum = 0;
+ if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
+ tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
+ ip->ip_dst.s_addr,
+ htons((tcp->th_off << 2) + IPPROTO_TCP));
+ /* No need to TSO, force IP checksum offload. */
+ (*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
+ (*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
+ } else
+ tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
+ ip->ip_dst.s_addr, htons(IPPROTO_TCP));
+ *m_head = m;
+ }
+
+ prod = sc->jme_cdata.jme_tx_prod;
+ txd = &sc->jme_cdata.jme_txdesc[prod];
+
+ error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
+ txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
+ if (error == EFBIG) {
+ m = m_collapse(*m_head, M_DONTWAIT, JME_MAXTXSEGS);
+ if (m == NULL) {
+ m_freem(*m_head);
+ *m_head = NULL;
+ return (ENOMEM);
+ }
+ *m_head = m;
+ error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
+ txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
+ if (error != 0) {
+ m_freem(*m_head);
+ *m_head = NULL;
+ return (error);
+ }
+ } else if (error != 0)
+ return (error);
+ if (nsegs == 0) {
+ m_freem(*m_head);
+ *m_head = NULL;
+ return (EIO);
+ }
+
+ /*
+ * Check descriptor overrun. Leave one free descriptor.
+ * Since we always use 64bit address mode for transmitting,
+ * each Tx request requires one more dummy descriptor.
+ */
+ if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
+ bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
+ return (ENOBUFS);
+ }
+
+ m = *m_head;
+ cflags = 0;
+ tso_segsz = 0;
+ /* Configure checksum offload and TSO. */
+ if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
+ tso_segsz = (uint32_t)m->m_pkthdr.tso_segsz <<
+ JME_TD_MSS_SHIFT;
+ cflags |= JME_TD_TSO;
+ } else {
+ if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
+ cflags |= JME_TD_IPCSUM;
+ if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
+ cflags |= JME_TD_TCPCSUM;
+ if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
+ cflags |= JME_TD_UDPCSUM;
+ }
+ /* Configure VLAN. */
+ if ((m->m_flags & M_VLANTAG) != 0) {
+ cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
+ cflags |= JME_TD_VLAN_TAG;
+ }
+
+ desc = &sc->jme_rdata.jme_tx_ring[prod];
+ desc->flags = htole32(cflags);
+ desc->buflen = htole32(tso_segsz);
+ desc->addr_hi = htole32(m->m_pkthdr.len);
+ desc->addr_lo = 0;
+ sc->jme_cdata.jme_tx_cnt++;
+ JME_DESC_INC(prod, JME_TX_RING_CNT);
+ for (i = 0; i < nsegs; i++) {
+ desc = &sc->jme_rdata.jme_tx_ring[prod];
+ desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
+ desc->buflen = htole32(txsegs[i].ds_len);
+ desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
+ desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
+ sc->jme_cdata.jme_tx_cnt++;
+ JME_DESC_INC(prod, JME_TX_RING_CNT);
+ }
+
+ /* Update producer index. */
+ sc->jme_cdata.jme_tx_prod = prod;
+ /*
+ * Finally request interrupt and give the first descriptor
+ * owenership to hardware.
+ */
+ desc = txd->tx_desc;
+ desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
+
+ txd->tx_m = m;
+ txd->tx_ndesc = nsegs + 1;
+
+ /* Sync descriptors. */
+ bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
+ BUS_DMASYNC_PREWRITE);
+ bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
+ sc->jme_cdata.jme_tx_ring_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+
+ return (0);
+}
+
+static void
+jme_tx_task(void *arg, int pending)
+{
+ struct ifnet *ifp;
+
+ ifp = (struct ifnet *)arg;
+ jme_start(ifp);
+}
+
+static void
+jme_start(struct ifnet *ifp)
+{
+ struct jme_softc *sc;
+ struct mbuf *m_head;
+ int enq;
+
+ sc = ifp->if_softc;
+
+ JME_LOCK(sc);
+
+ if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
+ jme_txeof(sc);
+
+ if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
+ IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0) {
+ JME_UNLOCK(sc);
+ return;
+ }
+
+ for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
+ IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
+ if (m_head == NULL)
+ break;
+ /*
+ * Pack the data into the transmit ring. If we
+ * don't have room, set the OACTIVE flag and wait
+ * for the NIC to drain the ring.
+ */
+ if (jme_encap(sc, &m_head)) {
+ if (m_head == NULL)
+ break;
+ IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
+ ifp->if_drv_flags |= IFF_DRV_OACTIVE;
+ break;
+ }
+
+ enq++;
+ /*
+ * If there's a BPF listener, bounce a copy of this frame
+ * to him.
+ */
+ ETHER_BPF_MTAP(ifp, m_head);
+ }
+
+ if (enq > 0) {
+ /*
+ * Reading TXCSR takes very long time under heavy load
+ * so cache TXCSR value and writes the ORed value with
+ * the kick command to the TXCSR. This saves one register
+ * access cycle.
+ */
+ CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
+ TXCSR_TXQ_N_START(TXCSR_TXQ0));
+ /* Set a timeout in case the chip goes out to lunch. */
+ sc->jme_watchdog_timer = JME_TX_TIMEOUT;
+ }
+
+ JME_UNLOCK(sc);
+}
+
+static void
+jme_watchdog(struct jme_softc *sc)
+{
+ struct ifnet *ifp;
+
+ JME_LOCK_ASSERT(sc);
+
+ if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
+ return;
+
+ ifp = sc->jme_ifp;
+ if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
+ if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
+ ifp->if_oerrors++;
+ jme_init_locked(sc);
+ return;
+ }
+ jme_txeof(sc);
+ if (sc->jme_cdata.jme_tx_cnt == 0) {
+ if_printf(sc->jme_ifp,
+ "watchdog timeout (missed Tx interrupts) -- recovering\n");
+ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
+ taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task);
+ return;
+ }
+
+ if_printf(sc->jme_ifp, "watchdog timeout\n");
+ ifp->if_oerrors++;
+ jme_init_locked(sc);
+ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
+ taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task);
+}
+
+static int
+jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
+{
+ struct jme_softc *sc;
+ struct ifreq *ifr;
+ struct mii_data *mii;
+ uint32_t reg;
+ int error, mask;
+
+ sc = ifp->if_softc;
+ ifr = (struct ifreq *)data;
+ error = 0;
+ switch (cmd) {
+ case SIOCSIFMTU:
+ if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
+ ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
+ ifr->ifr_mtu > JME_MAX_MTU)) {
+ error = EINVAL;
+ break;
+ }
+
+ if (ifp->if_mtu != ifr->ifr_mtu) {
+ /*
+ * No special configuration is required when interface
+ * MTU is changed but availability of TSO/Tx checksum
+ * offload should be chcked against new MTU size as
+ * FIFO size is just 2K.
+ */
+ JME_LOCK(sc);
+ if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
+ ifp->if_capenable &=
+ ~(IFCAP_TXCSUM | IFCAP_TSO4);
+ ifp->if_hwassist &=
+ ~(JME_CSUM_FEATURES | CSUM_TSO);
+ VLAN_CAPABILITIES(ifp);
+ }
+ ifp->if_mtu = ifr->ifr_mtu;
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
+ jme_init_locked(sc);
+ JME_UNLOCK(sc);
+ }
+ break;
+ case SIOCSIFFLAGS:
+ JME_LOCK(sc);
+ if ((ifp->if_flags & IFF_UP) != 0) {
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
+ if (((ifp->if_flags ^ sc->jme_if_flags)
+ & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
+ jme_set_filter(sc);
+ } else {
+ if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
+ jme_init_locked(sc);
+ }
+ } else {
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
+ jme_stop(sc);
+ }
+ sc->jme_if_flags = ifp->if_flags;
+ JME_UNLOCK(sc);
+ break;
+ case SIOCADDMULTI:
+ case SIOCDELMULTI:
+ JME_LOCK(sc);
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
+ jme_set_filter(sc);
+ JME_UNLOCK(sc);
+ break;
+ case SIOCSIFMEDIA:
+ case SIOCGIFMEDIA:
+ mii = device_get_softc(sc->jme_miibus);
+ error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
+ break;
+ case SIOCSIFCAP:
+ JME_LOCK(sc);
+ mask = ifr->ifr_reqcap ^ ifp->if_capenable;
+ if ((mask & IFCAP_TXCSUM) != 0 &&
+ ifp->if_mtu < JME_TX_FIFO_SIZE) {
+ if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
+ ifp->if_capenable ^= IFCAP_TXCSUM;
+ if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
+ ifp->if_hwassist |= JME_CSUM_FEATURES;
+ else
+ ifp->if_hwassist &= ~JME_CSUM_FEATURES;
+ }
+ }
+ if ((mask & IFCAP_RXCSUM) != 0 &&
+ (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
+ ifp->if_capenable ^= IFCAP_RXCSUM;
+ reg = CSR_READ_4(sc, JME_RXMAC);
+ reg &= ~RXMAC_CSUM_ENB;
+ if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
+ reg |= RXMAC_CSUM_ENB;
+ CSR_WRITE_4(sc, JME_RXMAC, reg);
+ }
+ if ((mask & IFCAP_TSO4) != 0 &&
+ ifp->if_mtu < JME_TX_FIFO_SIZE) {
+ if ((IFCAP_TSO4 & ifp->if_capabilities) != 0) {
+ ifp->if_capenable ^= IFCAP_TSO4;
+ if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
+ ifp->if_hwassist |= CSUM_TSO;
+ else
+ ifp->if_hwassist &= ~CSUM_TSO;
+ }
+ }
+ if ((mask & IFCAP_WOL_MAGIC) != 0 &&
+ (IFCAP_WOL_MAGIC & ifp->if_capabilities) != 0)
+ ifp->if_capenable ^= IFCAP_WOL_MAGIC;
+ if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
+ (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
+ ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
+ if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
+ (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
+ ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
+ jme_set_vlan(sc);
+ }
+ JME_UNLOCK(sc);
+ VLAN_CAPABILITIES(ifp);
+ break;
+ default:
+ error = ether_ioctl(ifp, cmd, data);
+ break;
+ }
+
+ return (error);
+}
+
+static void
+jme_mac_config(struct jme_softc *sc)
+{
+ struct mii_data *mii;
+ uint32_t ghc, rxmac, txmac, txpause;
+
+ JME_LOCK_ASSERT(sc);
+
+ mii = device_get_softc(sc->jme_miibus);
+
+ CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
+ DELAY(10);
+ CSR_WRITE_4(sc, JME_GHC, 0);
+ ghc = 0;
+ rxmac = CSR_READ_4(sc, JME_RXMAC);
+ rxmac &= ~RXMAC_FC_ENB;
+ txmac = CSR_READ_4(sc, JME_TXMAC);
+ txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
+ txpause = CSR_READ_4(sc, JME_TXPFC);
+ txpause &= ~TXPFC_PAUSE_ENB;
+ if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
+ ghc |= GHC_FULL_DUPLEX;
+ rxmac &= ~RXMAC_COLL_DET_ENB;
+ txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
+ TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
+ TXMAC_FRAME_BURST);
+#ifdef notyet
+ if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
+ txpause |= TXPFC_PAUSE_ENB;
+ if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
+ rxmac |= RXMAC_FC_ENB;
+#endif
+ /* Disable retry transmit timer/retry limit. */
+ CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
+ ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
+ } else {
+ rxmac |= RXMAC_COLL_DET_ENB;
+ txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
+ /* Enable retry transmit timer/retry limit. */
+ CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
+ TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
+ }
+ /* Reprogram Tx/Rx MACs with resolved speed/duplex. */
+ switch (IFM_SUBTYPE(mii->mii_media_active)) {
+ case IFM_10_T:
+ ghc |= GHC_SPEED_10;
+ break;
+ case IFM_100_TX:
+ ghc |= GHC_SPEED_100;
+ break;
+ case IFM_1000_T:
+ if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
+ break;
+ ghc |= GHC_SPEED_1000;
+ if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
+ txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
+ break;
+ default:
+ break;
+ }
+ CSR_WRITE_4(sc, JME_GHC, ghc);
+ CSR_WRITE_4(sc, JME_RXMAC, rxmac);
+ CSR_WRITE_4(sc, JME_TXMAC, txmac);
+ CSR_WRITE_4(sc, JME_TXPFC, txpause);
+}
+
+static void
+jme_link_task(void *arg, int pending)
+{
+ struct jme_softc *sc;
+ struct mii_data *mii;
+ struct ifnet *ifp;
+ struct jme_txdesc *txd;
+ bus_addr_t paddr;
+ int i;
+
+ sc = (struct jme_softc *)arg;
+
+ JME_LOCK(sc);
+ mii = device_get_softc(sc->jme_miibus);
+ ifp = sc->jme_ifp;
+ if (mii == NULL || ifp == NULL ||
+ (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
+ JME_UNLOCK(sc);
+ return;
+ }
+
+ sc->jme_flags &= ~JME_FLAG_LINK;
+ if ((mii->mii_media_status & IFM_AVALID) != 0) {
+ switch (IFM_SUBTYPE(mii->mii_media_active)) {
+ case IFM_10_T:
+ case IFM_100_TX:
+ sc->jme_flags |= JME_FLAG_LINK;
+ break;
+ case IFM_1000_T:
+ if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
+ break;
+ sc->jme_flags |= JME_FLAG_LINK;
+ break;
+ default:
+ break;
+ }
+ }
+
+ /*
+ * Disabling Rx/Tx MACs have a side-effect of resetting
+ * JME_TXNDA/JME_RXNDA register to the first address of
+ * Tx/Rx descriptor address. So driver should reset its
+ * internal procucer/consumer pointer and reclaim any
+ * allocated resources. Note, just saving the value of
+ * JME_TXNDA and JME_RXNDA registers before stopping MAC
+ * and restoring JME_TXNDA/JME_RXNDA register is not
+ * sufficient to make sure correct MAC state because
+ * stopping MAC operation can take a while and hardware
+ * might have updated JME_TXNDA/JME_RXNDA registers
+ * during the stop operation.
+ */
+ /* Block execution of task. */
+ taskqueue_block(sc->jme_tq);
+ /* Disable interrupts and stop driver. */
+ CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
+ ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
+ callout_stop(&sc->jme_tick_ch);
+ sc->jme_watchdog_timer = 0;
+
+ /* Stop receiver/transmitter. */
+ jme_stop_rx(sc);
+ jme_stop_tx(sc);
+
+ /* XXX Drain all queued tasks. */
+ JME_UNLOCK(sc);
+ taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
+ taskqueue_drain(sc->jme_tq, &sc->jme_tx_task);
+ JME_LOCK(sc);
+
+ jme_rxintr(sc, JME_RX_RING_CNT);
+ if (sc->jme_cdata.jme_rxhead != NULL)
+ m_freem(sc->jme_cdata.jme_rxhead);
+ JME_RXCHAIN_RESET(sc);
+ jme_txeof(sc);
+ if (sc->jme_cdata.jme_tx_cnt != 0) {
+ /* Remove queued packets for transmit. */
+ for (i = 0; i < JME_TX_RING_CNT; i++) {
+ txd = &sc->jme_cdata.jme_txdesc[i];
+ if (txd->tx_m != NULL) {
+ bus_dmamap_sync(
+ sc->jme_cdata.jme_tx_tag,
+ txd->tx_dmamap,
+ BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(
+ sc->jme_cdata.jme_tx_tag,
+ txd->tx_dmamap);
+ m_freem(txd->tx_m);
+ txd->tx_m = NULL;
+ txd->tx_ndesc = 0;
+ ifp->if_oerrors++;
+ }
+ }
+ }
+
+ /*
+ * Reuse configured Rx descriptors and reset
+ * procuder/consumer index.
+ */
+ sc->jme_cdata.jme_rx_cons = 0;
+ atomic_set_int(&sc->jme_morework, 0);
+ jme_init_tx_ring(sc);
+ /* Initialize shadow status block. */
+ jme_init_ssb(sc);
+
+ /* Program MAC with resolved speed/duplex/flow-control. */
+ if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
+ jme_mac_config(sc);
+
+ CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
+ CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
+
+ /* Set Tx ring address to the hardware. */
+ paddr = JME_TX_RING_ADDR(sc, 0);
+ CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
+ CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
+
+ /* Set Rx ring address to the hardware. */
+ paddr = JME_RX_RING_ADDR(sc, 0);
+ CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
+ CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
+
+ /* Restart receiver/transmitter. */
+ CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
+ RXCSR_RXQ_START);
+ CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
+ }
+
+ ifp->if_drv_flags |= IFF_DRV_RUNNING;
+ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
+ callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
+ /* Unblock execution of task. */
+ taskqueue_unblock(sc->jme_tq);
+ /* Reenable interrupts. */
+ CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
+
+ JME_UNLOCK(sc);
+}
+
+static int
+jme_intr(void *arg)
+{
+ struct jme_softc *sc;
+ uint32_t status;
+
+ sc = (struct jme_softc *)arg;
+
+ status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
+ if (status == 0 || status == 0xFFFFFFFF)
+ return (FILTER_STRAY);
+ /* Disable interrupts. */
+ CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
+ taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
+
+ return (FILTER_HANDLED);
+}
+
+static void
+jme_int_task(void *arg, int pending)
+{
+ struct jme_softc *sc;
+ struct ifnet *ifp;
+ uint32_t status;
+ int more;
+
+ sc = (struct jme_softc *)arg;
+ ifp = sc->jme_ifp;
+
+ status = CSR_READ_4(sc, JME_INTR_STATUS);
+ more = atomic_readandclear_int(&sc->jme_morework);
+ if (more != 0) {
+ status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
+ more = 0;
+ }
+ if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
+ goto done;
+ /* Reset PCC counter/timer and Ack interrupts. */
+ status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
+ if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
+ status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
+ if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
+ status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
+ CSR_WRITE_4(sc, JME_INTR_STATUS, status);
+ more = 0;
+ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
+ if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
+ more = jme_rxintr(sc, sc->jme_process_limit);
+ if (more != 0)
+ atomic_set_int(&sc->jme_morework, 1);
+ }
+ if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
+ /*
+ * Notify hardware availability of new Rx
+ * buffers.
+ * Reading RXCSR takes very long time under
+ * heavy load so cache RXCSR value and writes
+ * the ORed value with the kick command to
+ * the RXCSR. This saves one register access
+ * cycle.
+ */
+ CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
+ RXCSR_RX_ENB | RXCSR_RXQ_START);
+ }
+ /*
+ * Reclaiming Tx buffers are deferred to make jme(4) run
+ * without locks held.
+ */
+ if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
+ taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task);
+ }
+
+ if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
+ taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
+ return;
+ }
+done:
+ /* Reenable interrupts. */
+ CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
+}
+
+static void
+jme_txeof(struct jme_softc *sc)
+{
+ struct ifnet *ifp;
+ struct jme_txdesc *txd;
+ uint32_t status;
+ int cons, nsegs;
+
+ JME_LOCK_ASSERT(sc);
+
+ ifp = sc->jme_ifp;
+
+ cons = sc->jme_cdata.jme_tx_cons;
+ if (cons == sc->jme_cdata.jme_tx_prod)
+ return;
+
+ bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
+ sc->jme_cdata.jme_tx_ring_map,
+ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
+
+ /*
+ * Go through our Tx list and free mbufs for those
+ * frames which have been transmitted.
+ */
+ for (; cons != sc->jme_cdata.jme_tx_prod;) {
+ txd = &sc->jme_cdata.jme_txdesc[cons];
+ status = le32toh(txd->tx_desc->flags);
+ if ((status & JME_TD_OWN) == JME_TD_OWN)
+ break;
+
+ if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
+ ifp->if_oerrors++;
+ else {
+ ifp->if_opackets++;
+ if ((status & JME_TD_COLLISION) != 0)
+ ifp->if_collisions +=
+ le32toh(txd->tx_desc->buflen) &
+ JME_TD_BUF_LEN_MASK;
+ }
+ /*
+ * Only the first descriptor of multi-descriptor
+ * transmission is updated so driver have to skip entire
+ * chained buffers for the transmiited frame. In other
+ * words, JME_TD_OWN bit is valid only at the first
+ * descriptor of a multi-descriptor transmission.
+ */
+ for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
+ sc->jme_rdata.jme_tx_ring[cons].flags = 0;
+ JME_DESC_INC(cons, JME_TX_RING_CNT);
+ }
+
+ /* Reclaim transferred mbufs. */
+ bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
+ BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
+
+ KASSERT(txd->tx_m != NULL,
+ ("%s: freeing NULL mbuf!\n", __func__));
+ m_freem(txd->tx_m);
+ txd->tx_m = NULL;
+ sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
+ KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
+ ("%s: Active Tx desc counter was garbled\n", __func__));
+ txd->tx_ndesc = 0;
+ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
+ }
+ sc->jme_cdata.jme_tx_cons = cons;
+ /* Unarm watchog timer when there is no pending descriptors in queue. */
+ if (sc->jme_cdata.jme_tx_cnt == 0)
+ sc->jme_watchdog_timer = 0;
+
+ bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
+ sc->jme_cdata.jme_tx_ring_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+}
+
+static __inline void
+jme_discard_rxbuf(struct jme_softc *sc, int cons)
+{
+ struct jme_desc *desc;
+
+ desc = &sc->jme_rdata.jme_rx_ring[cons];
+ desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
+ desc->buflen = htole32(MCLBYTES);
+}
+
+/* Receive a frame. */
+static void
+jme_rxeof(struct jme_softc *sc)
+{
+ struct ifnet *ifp;
+ struct jme_desc *desc;
+ struct jme_rxdesc *rxd;
+ struct mbuf *mp, *m;
+ uint32_t flags, status;
+ int cons, count, nsegs;
+
+ ifp = sc->jme_ifp;
+
+ cons = sc->jme_cdata.jme_rx_cons;
+ desc = &sc->jme_rdata.jme_rx_ring[cons];
+ flags = le32toh(desc->flags);
+ status = le32toh(desc->buflen);
+ nsegs = JME_RX_NSEGS(status);
+ sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
+ if ((status & JME_RX_ERR_STAT) != 0) {
+ ifp->if_ierrors++;
+ jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
+#ifdef JME_SHOW_ERRORS
+ device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
+ __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
+#endif
+ sc->jme_cdata.jme_rx_cons += nsegs;
+ sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
+ return;
+ }
+
+ for (count = 0; count < nsegs; count++,
+ JME_DESC_INC(cons, JME_RX_RING_CNT)) {
+ rxd = &sc->jme_cdata.jme_rxdesc[cons];
+ mp = rxd->rx_m;
+ /* Add a new receive buffer to the ring. */
+ if (jme_newbuf(sc, rxd) != 0) {
+ ifp->if_iqdrops++;
+ /* Reuse buffer. */
+ jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
+ if (sc->jme_cdata.jme_rxhead != NULL) {
+ m_freem(sc->jme_cdata.jme_rxhead);
+ JME_RXCHAIN_RESET(sc);
+ }
+ break;
+ }
+
+ /*
+ * Assume we've received a full sized frame.
+ * Actual size is fixed when we encounter the end of
+ * multi-segmented frame.
+ */
+ mp->m_len = MCLBYTES;
+
+ /* Chain received mbufs. */
+ if (sc->jme_cdata.jme_rxhead == NULL) {
+ sc->jme_cdata.jme_rxhead = mp;
+ sc->jme_cdata.jme_rxtail = mp;
+ } else {
+ /*
+ * Receive processor can receive a maximum frame
+ * size of 65535 bytes.
+ */
+ mp->m_flags &= ~M_PKTHDR;
+ sc->jme_cdata.jme_rxtail->m_next = mp;
+ sc->jme_cdata.jme_rxtail = mp;
+ }
+
+ if (count == nsegs - 1) {
+ /* Last desc. for this frame. */
+ m = sc->jme_cdata.jme_rxhead;
+ m->m_flags |= M_PKTHDR;
+ m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
+ if (nsegs > 1) {
+ /* Set first mbuf size. */
+ m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
+ /* Set last mbuf size. */
+ mp->m_len = sc->jme_cdata.jme_rxlen -
+ ((MCLBYTES - JME_RX_PAD_BYTES) +
+ (MCLBYTES * (nsegs - 2)));
+ } else
+ m->m_len = sc->jme_cdata.jme_rxlen;
+ m->m_pkthdr.rcvif = ifp;
+
+ /*
+ * Account for 10bytes auto padding which is used
+ * to align IP header on 32bit boundary. Also note,
+ * CRC bytes is automatically removed by the
+ * hardware.
+ */
+ m->m_data += JME_RX_PAD_BYTES;
+
+ /* Set checksum information. */
+ if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
+ (flags & JME_RD_IPV4) != 0) {
+ m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
+ if ((flags & JME_RD_IPCSUM) != 0)
+ m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
+ if (((flags & JME_RD_MORE_FRAG) == 0) &&
+ ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
+ (JME_RD_TCP | JME_RD_TCPCSUM) ||
+ (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
+ (JME_RD_UDP | JME_RD_UDPCSUM))) {
+ m->m_pkthdr.csum_flags |=
+ CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
+ m->m_pkthdr.csum_data = 0xffff;
+ }
+ }
+
+ /* Check for VLAN tagged packets. */
+ if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
+ (flags & JME_RD_VLAN_TAG) != 0) {
+ m->m_pkthdr.ether_vtag =
+ flags & JME_RD_VLAN_MASK;
+ m->m_flags |= M_VLANTAG;
+ }
+
+ ifp->if_ipackets++;
+ /* Pass it on. */
+ (*ifp->if_input)(ifp, m);
+
+ /* Reset mbuf chains. */
+ JME_RXCHAIN_RESET(sc);
+ }
+ }
+
+ sc->jme_cdata.jme_rx_cons += nsegs;
+ sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
+}
+
+static int
+jme_rxintr(struct jme_softc *sc, int count)
+{
+ struct jme_desc *desc;
+ int nsegs, prog, pktlen;
+
+ bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
+ sc->jme_cdata.jme_rx_ring_map,
+ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
+
+ for (prog = 0; count > 0; prog++) {
+ desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
+ if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
+ break;
+ if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
+ break;
+ nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
+ /*
+ * Check number of segments against received bytes.
+ * Non-matching value would indicate that hardware
+ * is still trying to update Rx descriptors. I'm not
+ * sure whether this check is needed.
+ */
+ pktlen = JME_RX_BYTES(le32toh(desc->buflen));
+ if (nsegs != ((pktlen + (MCLBYTES - 1)) / MCLBYTES))
+ break;
+ prog++;
+ /* Received a frame. */
+ jme_rxeof(sc);
+ count -= nsegs;
+ }
+
+ if (prog > 0)
+ bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
+ sc->jme_cdata.jme_rx_ring_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+
+ return (count > 0 ? 0 : EAGAIN);
+}
+
+static void
+jme_tick(void *arg)
+{
+ struct jme_softc *sc;
+ struct mii_data *mii;
+
+ sc = (struct jme_softc *)arg;
+
+ JME_LOCK_ASSERT(sc);
+
+ mii = device_get_softc(sc->jme_miibus);
+ mii_tick(mii);
+ /*
+ * Reclaim Tx buffers that have been completed. It's not
+ * needed here but it would release allocated mbuf chains
+ * faster and limit the maximum delay to a hz.
+ */
+ jme_txeof(sc);
+ jme_watchdog(sc);
+ callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
+}
+
+static void
+jme_reset(struct jme_softc *sc)
+{
+
+ /* Stop receiver, transmitter. */
+ jme_stop_rx(sc);
+ jme_stop_tx(sc);
+ CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
+ DELAY(10);
+ CSR_WRITE_4(sc, JME_GHC, 0);
+}
+
+static void
+jme_init(void *xsc)
+{
+ struct jme_softc *sc;
+
+ sc = (struct jme_softc *)xsc;
+ JME_LOCK(sc);
+ jme_init_locked(sc);
+ JME_UNLOCK(sc);
+}
+
+static void
+jme_init_locked(struct jme_softc *sc)
+{
+ struct ifnet *ifp;
+ struct mii_data *mii;
+ uint8_t eaddr[ETHER_ADDR_LEN];
+ bus_addr_t paddr;
+ uint32_t reg;
+ int error;
+
+ JME_LOCK_ASSERT(sc);
+
+ ifp = sc->jme_ifp;
+ mii = device_get_softc(sc->jme_miibus);
+
+ /*
+ * Cancel any pending I/O.
+ */
+ jme_stop(sc);
+
+ /*
+ * Reset the chip to a known state.
+ */
+ jme_reset(sc);
+
+ /* Init descriptors. */
+ error = jme_init_rx_ring(sc);
+ if (error != 0) {
+ device_printf(sc->jme_dev,
+ "%s: initialization failed: no memory for Rx buffers.\n",
+ __func__);
+ jme_stop(sc);
+ return;
+ }
+ jme_init_tx_ring(sc);
+ /* Initialize shadow status block. */
+ jme_init_ssb(sc);
+
+ /* Reprogram the station address. */
+ bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
+ CSR_WRITE_4(sc, JME_PAR0,
+ eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
+ CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
+
+ /*
+ * Configure Tx queue.
+ * Tx priority queue weight value : 0
+ * Tx FIFO threshold for processing next packet : 16QW
+ * Maximum Tx DMA length : 512
+ * Allow Tx DMA burst.
+ */
+ sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
+ sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
+ sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
+ sc->jme_txcsr |= sc->jme_tx_dma_size;
+ sc->jme_txcsr |= TXCSR_DMA_BURST;
+ CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
+
+ /* Set Tx descriptor counter. */
+ CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
+
+ /* Set Tx ring address to the hardware. */
+ paddr = JME_TX_RING_ADDR(sc, 0);
+ CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
+ CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
+
+ /* Configure TxMAC parameters. */
+ reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
+ reg |= TXMAC_THRESH_1_PKT;
+ reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
+ CSR_WRITE_4(sc, JME_TXMAC, reg);
+
+ /*
+ * Configure Rx queue.
+ * FIFO full threshold for transmitting Tx pause packet : 128T
+ * FIFO threshold for processing next packet : 128QW
+ * Rx queue 0 select
+ * Max Rx DMA length : 128
+ * Rx descriptor retry : 32
+ * Rx descriptor retry time gap : 256ns
+ * Don't receive runt/bad frame.
+ */
+ sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
+ /*
+ * Since Rx FIFO size is 4K bytes, receiving frames larger
+ * than 4K bytes will suffer from Rx FIFO overruns. So
+ * decrease FIFO threshold to reduce the FIFO overruns for
+ * frames larger than 4000 bytes.
+ * For best performance of standard MTU sized frames use
+ * maximum allowable FIFO threshold, 128QW.
+ */
+ if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
+ ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
+ sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
+ else
+ sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
+ sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
+ sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
+ sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
+ CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
+
+ /* Set Rx descriptor counter. */
+ CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
+
+ /* Set Rx ring address to the hardware. */
+ paddr = JME_RX_RING_ADDR(sc, 0);
+ CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
+ CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
+
+ /* Clear receive filter. */
+ CSR_WRITE_4(sc, JME_RXMAC, 0);
+ /* Set up the receive filter. */
+ jme_set_filter(sc);
+ jme_set_vlan(sc);
+
+ /*
+ * Disable all WOL bits as WOL can interfere normal Rx
+ * operation. Also clear WOL detection status bits.
+ */
+ reg = CSR_READ_4(sc, JME_PMCS);
+ reg &= ~PMCS_WOL_ENB_MASK;
+ CSR_WRITE_4(sc, JME_PMCS, reg);
+
+ reg = CSR_READ_4(sc, JME_RXMAC);
+ /*
+ * Pad 10bytes right before received frame. This will greatly
+ * help Rx performance on strict-alignment architectures as
+ * it does not need to copy the frame to align the payload.
+ */
+ reg |= RXMAC_PAD_10BYTES;
+ if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
+ reg |= RXMAC_CSUM_ENB;
+ CSR_WRITE_4(sc, JME_RXMAC, reg);
+
+ /* Configure general purpose reg0 */
+ reg = CSR_READ_4(sc, JME_GPREG0);
+ reg &= ~GPREG0_PCC_UNIT_MASK;
+ /* Set PCC timer resolution to micro-seconds unit. */
+ reg |= GPREG0_PCC_UNIT_US;
+ /*
+ * Disable all shadow register posting as we have to read
+ * JME_INTR_STATUS register in jme_int_task. Also it seems
+ * that it's hard to synchronize interrupt status between
+ * hardware and software with shadow posting due to
+ * requirements of bus_dmamap_sync(9).
+ */
+ reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
+ GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
+ GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
+ GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
+ /* Disable posting of DW0. */
+ reg &= ~GPREG0_POST_DW0_ENB;
+ /* Clear PME message. */
+ reg &= ~GPREG0_PME_ENB;
+ /* Set PHY address. */
+ reg &= ~GPREG0_PHY_ADDR_MASK;
+ reg |= sc->jme_phyaddr;
+ CSR_WRITE_4(sc, JME_GPREG0, reg);
+
+ /* Configure Tx queue 0 packet completion coalescing. */
+ reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
+ PCCTX_COAL_TO_MASK;
+ reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
+ PCCTX_COAL_PKT_MASK;
+ reg |= PCCTX_COAL_TXQ0;
+ CSR_WRITE_4(sc, JME_PCCTX, reg);
+
+ /* Configure Rx queue 0 packet completion coalescing. */
+ reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
+ PCCRX_COAL_TO_MASK;
+ reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
+ PCCRX_COAL_PKT_MASK;
+ CSR_WRITE_4(sc, JME_PCCRX0, reg);
+
+ /* Configure shadow status block but don't enable posting. */
+ paddr = sc->jme_rdata.jme_ssb_block_paddr;
+ CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
+ CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
+
+ /* Disable Timer 1 and Timer 2. */
+ CSR_WRITE_4(sc, JME_TIMER1, 0);
+ CSR_WRITE_4(sc, JME_TIMER2, 0);
+
+ /* Configure retry transmit period, retry limit value. */
+ CSR_WRITE_4(sc, JME_TXTRHD,
+ ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
+ TXTRHD_RT_PERIOD_MASK) |
+ ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
+ TXTRHD_RT_LIMIT_SHIFT));
+
+ /* Disable RSS. */
+ CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
+
+ /* Initialize the interrupt mask. */
+ CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
+ CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
+
+ /*
+ * Enabling Tx/Rx DMA engines and Rx queue processing is
+ * done after detection of valid link in jme_link_task.
+ */
+
+ sc->jme_flags &= ~JME_FLAG_LINK;
+ /* Set the current media. */
+ mii_mediachg(mii);
+
+ callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
+
+ ifp->if_drv_flags |= IFF_DRV_RUNNING;
+ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
+}
+
+static void
+jme_stop(struct jme_softc *sc)
+{
+ struct ifnet *ifp;
+ struct jme_txdesc *txd;
+ struct jme_rxdesc *rxd;
+ int i;
+
+ JME_LOCK_ASSERT(sc);
+ /*
+ * Mark the interface down and cancel the watchdog timer.
+ */
+ ifp = sc->jme_ifp;
+ ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
+ sc->jme_flags &= ~JME_FLAG_LINK;
+ callout_stop(&sc->jme_tick_ch);
+ sc->jme_watchdog_timer = 0;
+
+ /*
+ * Disable interrupts.
+ */
+ CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
+ CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
+
+ /* Disable updating shadow status block. */
+ CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
+ CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
+
+ /* Stop receiver, transmitter. */
+ jme_stop_rx(sc);
+ jme_stop_tx(sc);
+
+ /* Reclaim Rx/Tx buffers that have been completed. */
+ jme_rxintr(sc, JME_RX_RING_CNT);
+ if (sc->jme_cdata.jme_rxhead != NULL)
+ m_freem(sc->jme_cdata.jme_rxhead);
+ JME_RXCHAIN_RESET(sc);
+ jme_txeof(sc);
+ /*
+ * Free RX and TX mbufs still in the queues.
+ */
+ for (i = 0; i < JME_RX_RING_CNT; i++) {
+ rxd = &sc->jme_cdata.jme_rxdesc[i];
+ if (rxd->rx_m != NULL) {
+ bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
+ rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
+ bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
+ rxd->rx_dmamap);
+ m_freem(rxd->rx_m);
+ rxd->rx_m = NULL;
+ }
+ }
+ for (i = 0; i < JME_TX_RING_CNT; i++) {
+ txd = &sc->jme_cdata.jme_txdesc[i];
+ if (txd->tx_m != NULL) {
+ bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
+ txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
+ bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
+ txd->tx_dmamap);
+ m_freem(txd->tx_m);
+ txd->tx_m = NULL;
+ txd->tx_ndesc = 0;
+ }
+ }
+}
+
+static void
+jme_stop_tx(struct jme_softc *sc)
+{
+ uint32_t reg;
+ int i;
+
+ reg = CSR_READ_4(sc, JME_TXCSR);
+ if ((reg & TXCSR_TX_ENB) == 0)
+ return;
+ reg &= ~TXCSR_TX_ENB;
+ CSR_WRITE_4(sc, JME_TXCSR, reg);
+ for (i = JME_TIMEOUT; i > 0; i--) {
+ DELAY(1);
+ if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
+ break;
+ }
+ if (i == 0)
+ device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
+}
+
+static void
+jme_stop_rx(struct jme_softc *sc)
+{
+ uint32_t reg;
+ int i;
+
+ reg = CSR_READ_4(sc, JME_RXCSR);
+ if ((reg & RXCSR_RX_ENB) == 0)
+ return;
+ reg &= ~RXCSR_RX_ENB;
+ CSR_WRITE_4(sc, JME_RXCSR, reg);
+ for (i = JME_TIMEOUT; i > 0; i--) {
+ DELAY(1);
+ if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
+ break;
+ }
+ if (i == 0)
+ device_printf(sc->jme_dev, "stopping recevier timeout!\n");
+}
+
+static void
+jme_init_tx_ring(struct jme_softc *sc)
+{
+ struct jme_ring_data *rd;
+ struct jme_txdesc *txd;
+ int i;
+
+ sc->jme_cdata.jme_tx_prod = 0;
+ sc->jme_cdata.jme_tx_cons = 0;
+ sc->jme_cdata.jme_tx_cnt = 0;
+
+ rd = &sc->jme_rdata;
+ bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
+ for (i = 0; i < JME_TX_RING_CNT; i++) {
+ txd = &sc->jme_cdata.jme_txdesc[i];
+ txd->tx_m = NULL;
+ txd->tx_desc = &rd->jme_tx_ring[i];
+ txd->tx_ndesc = 0;
+ }
+
+ bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
+ sc->jme_cdata.jme_tx_ring_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+}
+
+static void
+jme_init_ssb(struct jme_softc *sc)
+{
+ struct jme_ring_data *rd;
+
+ rd = &sc->jme_rdata;
+ bzero(rd->jme_ssb_block, JME_SSB_SIZE);
+ bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+}
+
+static int
+jme_init_rx_ring(struct jme_softc *sc)
+{
+ struct jme_ring_data *rd;
+ struct jme_rxdesc *rxd;
+ int i;
+
+ sc->jme_cdata.jme_rx_cons = 0;
+ JME_RXCHAIN_RESET(sc);
+ atomic_set_int(&sc->jme_morework, 0);
+
+ rd = &sc->jme_rdata;
+ bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
+ for (i = 0; i < JME_RX_RING_CNT; i++) {
+ rxd = &sc->jme_cdata.jme_rxdesc[i];
+ rxd->rx_m = NULL;
+ rxd->rx_desc = &rd->jme_rx_ring[i];
+ if (jme_newbuf(sc, rxd) != 0)
+ return (ENOBUFS);
+ }
+
+ bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
+ sc->jme_cdata.jme_rx_ring_map,
+ BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
+
+ return (0);
+}
+
+static int
+jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
+{
+ struct jme_desc *desc;
+ struct mbuf *m;
+ bus_dma_segment_t segs[1];
+ bus_dmamap_t map;
+ int nsegs;
+
+ m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
+ if (m == NULL)
+ return (ENOBUFS);
+ /*
+ * JMC250 has 64bit boundary alignment limitation so jme(4)
+ * takes advantage of 10 bytes padding feature of hardware
+ * in order not to copy entire frame to align IP header on
+ * 32bit boundary.
+ */
+ m->m_len = m->m_pkthdr.len = MCLBYTES;
+
+ if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
+ sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
+ m_freem(m);
+ return (ENOBUFS);
+ }
+ KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
+
+ if (rxd->rx_m != NULL) {
+ bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
+ BUS_DMASYNC_POSTREAD);
+ bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
+ }
+ map = rxd->rx_dmamap;
+ rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
+ sc->jme_cdata.jme_rx_sparemap = map;
+ bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
+ BUS_DMASYNC_PREREAD);
+ rxd->rx_m = m;
+
+ desc = rxd->rx_desc;
+ desc->buflen = htole32(segs[0].ds_len);
+ desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
+ desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
+ desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
+
+ return (0);
+}
+
+static void
+jme_set_vlan(struct jme_softc *sc)
+{
+ struct ifnet *ifp;
+ uint32_t reg;
+
+ JME_LOCK_ASSERT(sc);
+
+ ifp = sc->jme_ifp;
+ reg = CSR_READ_4(sc, JME_RXMAC);
+ reg &= ~RXMAC_VLAN_ENB;
+ if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
+ reg |= RXMAC_VLAN_ENB;
+ CSR_WRITE_4(sc, JME_RXMAC, reg);
+}
+
+static void
+jme_set_filter(struct jme_softc *sc)
+{
+ struct ifnet *ifp;
+ struct ifmultiaddr *ifma;
+ uint32_t crc;
+ uint32_t mchash[2];
+ uint32_t rxcfg;
+
+ JME_LOCK_ASSERT(sc);
+
+ ifp = sc->jme_ifp;
+
+ rxcfg = CSR_READ_4(sc, JME_RXMAC);
+ rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
+ RXMAC_ALLMULTI);
+ /* Always accept frames destined to our station address. */
+ rxcfg |= RXMAC_UNICAST;
+ if ((ifp->if_flags & IFF_BROADCAST) != 0)
+ rxcfg |= RXMAC_BROADCAST;
+ if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
+ if ((ifp->if_flags & IFF_PROMISC) != 0)
+ rxcfg |= RXMAC_PROMISC;
+ if ((ifp->if_flags & IFF_ALLMULTI) != 0)
+ rxcfg |= RXMAC_ALLMULTI;
+ CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
+ CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
+ CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
+ return;
+ }
+
+ /*
+ * Set up the multicast address filter by passing all multicast
+ * addresses through a CRC generator, and then using the low-order
+ * 6 bits as an index into the 64 bit multicast hash table. The
+ * high order bits select the register, while the rest of the bits
+ * select the bit within the register.
+ */
+ rxcfg |= RXMAC_MULTICAST;
+ bzero(mchash, sizeof(mchash));
+
+ IF_ADDR_LOCK(ifp);
+ TAILQ_FOREACH(ifma, &sc->jme_ifp->if_multiaddrs, ifma_link) {
+ if (ifma->ifma_addr->sa_family != AF_LINK)
+ continue;
+ crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
+ ifma->ifma_addr), ETHER_ADDR_LEN);
+
+ /* Just want the 6 least significant bits. */
+ crc &= 0x3f;
+
+ /* Set the corresponding bit in the hash table. */
+ mchash[crc >> 5] |= 1 << (crc & 0x1f);
+ }
+ IF_ADDR_UNLOCK(ifp);
+
+ CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
+ CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
+ CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
+}
+
+static int
+sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
+{
+ int error, value;
+
+ if (arg1 == NULL)
+ return (EINVAL);
+ value = *(int *)arg1;
+ error = sysctl_handle_int(oidp, &value, 0, req);
+ if (error || req->newptr == NULL)
+ return (error);
+ if (value < low || value > high)
+ return (EINVAL);
+ *(int *)arg1 = value;
+
+ return (0);
+}
+
+static int
+sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
+{
+ return (sysctl_int_range(oidp, arg1, arg2, req,
+ PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
+}
+
+static int
+sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
+{
+ return (sysctl_int_range(oidp, arg1, arg2, req,
+ PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
+}
+
+static int
+sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
+{
+ return (sysctl_int_range(oidp, arg1, arg2, req,
+ PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
+}
+
+static int
+sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
+{
+ return (sysctl_int_range(oidp, arg1, arg2, req,
+ PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
+}
+
+static int
+sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
+{
+ return (sysctl_int_range(oidp, arg1, arg2, req,
+ JME_PROC_MIN, JME_PROC_MAX));
+}
OpenPOWER on IntegriCloud