diff options
author | jfv <jfv@FreeBSD.org> | 2008-07-30 21:56:53 +0000 |
---|---|---|
committer | jfv <jfv@FreeBSD.org> | 2008-07-30 21:56:53 +0000 |
commit | cdddb209412de9be0c17e06493533b4003f43384 (patch) | |
tree | fe1dbf3f66d8c89f219ef1cfae8050f342d56734 /sys/dev/e1000 | |
parent | dccc76958e4229f049f4373f147f109202fd790f (diff) | |
download | FreeBSD-src-cdddb209412de9be0c17e06493533b4003f43384.zip FreeBSD-src-cdddb209412de9be0c17e06493533b4003f43384.tar.gz |
Merge of the source for igb and em into dev/e1000, this
proved to be necessary to make the static drivers work
in EITHER/OR or BOTH configurations. Modules will still
build in sys/modules/igb or em as before.
This also updates the igb driver for support for the 82576
adapter, adds shared code fixes, and etc....
MFC after: ASAP
Diffstat (limited to 'sys/dev/e1000')
35 files changed, 35053 insertions, 0 deletions
diff --git a/sys/dev/e1000/LICENSE b/sys/dev/e1000/LICENSE new file mode 100644 index 0000000..d3f8bf5 --- /dev/null +++ b/sys/dev/e1000/LICENSE @@ -0,0 +1,31 @@ +$FreeBSD$ + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + diff --git a/sys/dev/e1000/README b/sys/dev/e1000/README new file mode 100644 index 0000000..f0816f0 --- /dev/null +++ b/sys/dev/e1000/README @@ -0,0 +1,405 @@ +$FreeBSD$ +FreeBSD* Driver for Intel Network Connection +============================================= + +May 30, 2007 + + +Contents +======== + +- Overview +- Identifying Your Adapter +- Building and Installation +- Speed and Duplex Configuration +- Additional Configurations +- Known Limitations +- Support +- License + + +Overview +======== + +This file describes the FreeBSD* driver for Intel Network Connection. +This driver has been developed for use with FreeBSD, Release 7.x. + +For questions related to hardware requirements, refer to the documentation +supplied with your Gigabit adapter. All hardware requirements listed +apply to use with FreeBSD. + + +Identifying Your Adapter +======================== + +For information on how to identify your adapter, go to the Adapter & +Driver ID Guide at: + +http://support.intel.com/support/network/sb/cs-012904.htm + + +For the latest Intel network drivers for FreeBSD, see: + +http://downloadfinder.intel.com/scripts-df-external/support_intel.aspx + + +NOTE: Mobile adapters are not fully supported. +NOTE: The Intel(R) 82562v 10/100 Network Connection only provides 10/100 +support. + +Building and Installation +========================= + +NOTE: The driver can be installed as a dynamic loadable kernel module or + compiled into the kernel. You must have kernel sources installed in + order to compile the driver module. + +In the instructions below, x.x.x is the driver version as indicated in the +name of the driver tar file. + +1. Move the base driver tar file to the directory of your choice. For + example, use /home/username/em or /usr/local/src/em. + +2. Untar/unzip the archive: + + tar xzvf em-x.x.x.tar.gz + + This will create an em-x.x.x directory. + +3. To create a loadable module, perform the following steps. + NOTE: To compile the driver into the kernel, go directly to step 4. + + a. To compile the module + + cd em-x.x.x + make + + b. To install the compiled module to the system directory: + + make install + + c. If you want the driver to load automatically when the system is booted: + + 1. Edit /boot/loader.conf, and add the following line: + + if_em_load="YES" + +4. To compile the driver into the kernel, enter: + + cd em-x.x.x/src + cp *.[ch] /usr/src/sys/dev/em + + Edit the kernel configuration file (i.e., GENERIC or MYKERNEL) in + /usr/src/sys/i386/conf, and ensure the following line is present: + + device em + + Compile and install the kernel. The system must be rebooted for the + kernel updates to take effect. For additional information on compiling + the kernel, consult the FreeBSD operating system documentation. + +5. To assign an IP address to the interface, enter the following: + + ifconfig em<interface_num> <IP_address> + +6. Verify that the interface works. Enter the following, where <IP_address> + is the IP address for another machine on the same subnet as the interface + that is being tested: + + ping <IP_address> + +7. To configure the IP address to remain after reboot, edit /etc/rc.conf, + and create the appropriate ifconfig_em<interface_num>entry: + + ifconfig_em<interface_num>="<ifconfig_settings>" + + Example usage: + + ifconfig_em0="inet 192.168.10.1 netmask 255.255.255.0" + + NOTE: For assistance, see the ifconfig man page. + + +Speed and Duplex Configuration +============================== + +By default, the adapter auto-negotiates the speed and duplex of the +connection. If there is a specific need, the ifconfig utility can be used to +configure the speed and duplex settings on the adapter. Example usage: + + ifconfig em<interface_num> <IP_address> media 100baseTX mediaopt + full-duplex + + NOTE: Only use mediaopt to set the driver to full-duplex. If mediaopt is + not specified and you are not running at gigabit speed, the driver + defaults to half-duplex. + +If the interface is currently forced to 100 full duplex, in order to change +to half duplex you must use this command: + + ifconfig em<interface_num> <IP_address> media 100baseTX -mediaopt + full-duplex + + +This driver supports the following media type options: + + autoselect - Enables auto-negotiation for speed and duplex. + + 10baseT/UTP - Sets speed to 10 Mbps. Use the ifconfig mediaopt + option to select full-duplex mode. + + 100baseTX - Sets speed to 100 Mbps. Use the ifconfig mediaopt + option to select full-duplex mode. + + 1000baseTX - Sets speed to 1000 Mbps. In this case, the driver + supports only full-duplex mode. + + 1000baseSX - Sets speed to 1000 Mbps. In this case, the driver + supports only full-duplex mode. + +For more information on the ifconfig utility, see the ifconfig man page. + + +Additional Configurations +========================= + +The driver supports Transmit/Receive Checksum Offload and Jumbo Frames on +all but the 82542-based adapters. For specific adapters, refer to the +Identifying Your Adapter section. + + Jumbo Frames + ------------ + To enable Jumbo Frames, use the ifconfig utility to set the Maximum + Transport Unit (MTU) frame size above its default of 1500 bytes. + + The Jumbo Frames MTU range for Intel Adapters is 1500 to 16110. To modify + the setting, enter the following: + + ifconfig em<interface_num> <hostname or IP address> mtu 9000 + + To confirm the MTU used between two specific devices, use: + + route get <destination_IP_address> + + Notes: + + - Only enable Jumbo Frames if your network infrastructure supports them. + + - To enable Jumbo Frames, increase the MTU size on the interface beyond + 1500. + + - The Jumbo Frames setting on the switch must be set to at least 22 bytes + larger than that of the MTU. + + - The maximum MTU setting for Jumbo Frames is 16110. This value coincides + with the maximum Jumbo Frames size of 16128. + + - Some Intel gigabit adapters that support Jumbo Frames have a frame size + limit of 9238 bytes, with a corresponding MTU size limit of 9216 bytes. + The adapters with this limitation are based on the Intel(R) 82571EB, + 82572EI, 82573L, 82566, 82562, and 80003ES2LAN controller. These + correspond to the following product names: + Intel(R) PRO/1000 PT Server Adapter + Intel(R) PRO/1000 PT Desktop Adapter + Intel(R) PRO/1000 PT Network Connection + Intel(R) PRO/1000 PT Dual Port Server Adapter + Intel(R) PRO/1000 PT Dual Port Network Connection + Intel(R) PRO/1000 PT Quad Port Server Adapter + Intel(R) PRO/1000 PF Quad Port Server Adapter + Intel(R) PRO/1000 PF Server Adapter + Intel(R) PRO/1000 PF Network Connection + Intel(R) PRO/1000 PF Dual Port Server Adapter + Intel(R) PRO/1000 PB Server Connection + Intel(R) PRO/1000 PL Network Connection + Intel(R) PRO/1000 EB Network Connection with I/O Acceleration + Intel(R) PRO/1000 EB Backplane Connection with I/O Acceleration + Intel(R) 82566DM-2 Gigabit Network Connection + + - Adapters based on the Intel(R) 82542 and 82573V/E controller do not + support Jumbo Frames. These correspond to the following product names: + Intel(R) PRO/1000 Gigabit Server Adapter + Intel(R) PRO/1000 PM Network Connection + + - Using Jumbo Frames at 10 or 100 Mbps may result in poor performance or + loss of link. + + - The following adapters do not support Jumbo Frames: + Intel(R) 82562V 10/100 Network Connection + Intel(R) 82566DM Gigabit Network Connection + Intel(R) 82566DC Gigabit Network Connection + Intel(R) 82566MM Gigabit Network Connection + Intel(R) 82566MC Gigabit Network Connection + Intel(R) 82562GT 10/100 Network Connection + Intel(R) 82562G 10/100 Network Connection + Intel(R) 82566DC-2 Gigabit Network Connection + Intel(R) 82562V-2 10/100 Network Connection + Intel(R) 82562G-2 10/100 Network Connection + Intel(R) 82562GT-2 10/100 Network Connection + + VLANs + ----- + To create a new VLAN interface: + + ifconfig <vlan_name> create + + To associate the VLAN interface with a physical interface and + assign a VLAN ID, IP address, and netmask: + + ifconfig <vlan_name> <ip_address> netmask <subnet_mask> vlan + <vlan_id> vlandev <physical_interface> + + Example: + + ifconfig vlan10 10.0.0.1 netmask 255.255.255.0 vlan 10 vlandev em0 + + In this example, all packets will be marked on egress with 802.1Q VLAN + tags, specifying a VLAN ID of 10. + + To remove a VLAN interface: + + Intel Network Connection ifconfig <vlan_name> destroy + + + Polling + ------- + + To enable polling in the driver, add the following options to the kernel + configuration, and then recompile the kernel: + + options DEVICE_POLLING + options HZ=1000 + + At runtime use: + ifconfig emX polling (to turn polling on) + and: + ifconfig emX -polling (to turn it off) + + + Checksum Offload + ---------------- + Checksum offloading is not supported on 82542 Gigabit adapters. + + Checksum offloading supports both TCP and UDP packets and is + supported for both transmit and receive. + + Checksum offloading can be enabled or disabled using ifconfig. + Both transmit and receive offloading will be either enabled or + disabled together. You cannot enable/disable one without the other. + + To enable checksum offloading: + + ifconfig <interface_num> rxcsum + + To disable checksum offloading: + + ifconfig <interface_num> -rxcsum + + To confirm the current setting: + + ifconfig <interface_num> + + Look for the presence or absence of the following line: + + options=3 <RXCSUM,TXCSUM> + + See the ifconfig man page for further information. + + + TSO + --- + The FreeBSD driver offers support for TSO (TCP Segmentation Offload). + + You can enable/disable it in two ways/places: + + - sysctl net.inet.tcp.tso=0 (or 1 to enable it) + + Doing this disables TSO in the stack and will affect all adapters. + + - ifconfig emX -tso + + Doing this will disable TSO only for this adapter. + + To enable: + + - ifconfig emX tso + + NOTES: By default only PCI-Express adapters are ENABLED to do TSO. Others + can be enabled by the user at their own risk + TSO is not supported on 82547 and 82544-based adapters, as well as older adapters. + + +Known Limitations +================= + + Detected Tx Unit Hang in Quad Port Adapters + ------------------------------------------- + + In some cases ports 3 and 4 wont pass traffic. Ports 1 and 2 don't show + any errors and will pass traffic. + + This issue MAY be resolved by updating to the latest BIOS. You can + check your system's BIOS by downloading the Linux Firmware Developer Kit + that can be obtained at http://www.linuxfirmwarekit.org/ + + + There are known performance issues with this driver when running UDP traffic + with Jumbo Frames. + ---------------------------------------------------------------------------- + + 82541/82547 can't link or is slow to link with some link partners + ----------------------------------------------------------------- + + There is a known compatibility issue where time to link is slow or link is not + established between 82541/82547 controllers and some switches. Known switches + include: + Planex FXG-08TE + I-O Data ETG-SH8 + + The driver can be compiled with the following changes: + + Edit ./em.x.x.x/src/if_em.h to change the #define EM_MASTER_SLAVE + For example, change from: + + #define EM_MASTER_SLAVE e1000_ms_hw_default + to: + #define EM_MASTER_SLAVE 2 + + Use one of the following options: + 1 = Master mode + 2 = Slave mode + 3 = Auto master/slave + Setting 2 is recommended. + + Recompile the module: + a. To compile the module + cd em-x.x.x + make clean + make + + b. To install the compiled module in system directory: + make install + + +Support +======= + +For general information and support, go to the Intel support website at: + + http://support.intel.com + +If an issue is identified, support is through email only at: +freebsdnic@mailbox.intel.com + + +License +======= + +This software program is released under the terms of a license agreement +between you ('Licensee') and Intel. Do not use or load this software or any +associated materials (collectively, the 'Software') until you have carefully +read the full terms and conditions of the LICENSE located in this software +package. By loading or using the Software, you agree to the terms of this +Agreement. If you do not agree with the terms of this Agreement, do not +install or use the Software. + +* Other names and brands may be claimed as the property of others. diff --git a/sys/dev/e1000/e1000_80003es2lan.c b/sys/dev/e1000/e1000_80003es2lan.c new file mode 100644 index 0000000..39409bd --- /dev/null +++ b/sys/dev/e1000/e1000_80003es2lan.c @@ -0,0 +1,1423 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +/* e1000_80003es2lan + */ + +#include "e1000_api.h" + +static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw); +static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw); +static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw); +static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw); +static void e1000_release_phy_80003es2lan(struct e1000_hw *hw); +static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw); +static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw); +static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, + u32 offset, + u16 *data); +static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, + u32 offset, + u16 data); +static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw); +static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw); +static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw); +static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, + u16 *duplex); +static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw); +static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw); +static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw); +static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw); +static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); +static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex); +static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw); +static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw); +static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw); +static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); +static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw); +static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw); + +/* + * A table for the GG82563 cable length where the range is defined + * with a lower bound at "index" and the upper bound at + * "index + 5". + */ +static const u16 e1000_gg82563_cable_length_table[] = + { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF }; +#define GG82563_CABLE_LENGTH_TABLE_SIZE \ + (sizeof(e1000_gg82563_cable_length_table) / \ + sizeof(e1000_gg82563_cable_length_table[0])) + +/** + * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_init_phy_params_80003es2lan"); + + if (hw->phy.media_type != e1000_media_type_copper) { + phy->type = e1000_phy_none; + goto out; + } else { + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan; + } + + phy->addr = 1; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 100; + phy->type = e1000_phy_gg82563; + + phy->ops.acquire = e1000_acquire_phy_80003es2lan; + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.check_reset_block = e1000_check_reset_block_generic; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.get_cfg_done = e1000_get_cfg_done_80003es2lan; + phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.release = e1000_release_phy_80003es2lan; + phy->ops.reset = e1000_phy_hw_reset_generic; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; + + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan; + phy->ops.get_cable_length = e1000_get_cable_length_80003es2lan; + phy->ops.read_reg = e1000_read_phy_reg_gg82563_80003es2lan; + phy->ops.write_reg = e1000_write_phy_reg_gg82563_80003es2lan; + + /* This can only be done after all function pointers are setup. */ + ret_val = e1000_get_phy_id(hw); + + /* Verify phy id */ + if (phy->id != GG82563_E_PHY_ID) { + ret_val = -E1000_ERR_PHY; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + u16 size; + + DEBUGFUNC("e1000_init_nvm_params_80003es2lan"); + + nvm->opcode_bits = 8; + nvm->delay_usec = 1; + switch (nvm->override) { + case e1000_nvm_override_spi_large: + nvm->page_size = 32; + nvm->address_bits = 16; + break; + case e1000_nvm_override_spi_small: + nvm->page_size = 8; + nvm->address_bits = 8; + break; + default: + nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; + nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; + break; + } + + nvm->type = e1000_nvm_eeprom_spi; + + size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> + E1000_EECD_SIZE_EX_SHIFT); + + /* + * Added to a constant, "size" becomes the left-shift value + * for setting word_size. + */ + size += NVM_WORD_SIZE_BASE_SHIFT; + + /* EEPROM access above 16k is unsupported */ + if (size > 14) + size = 14; + nvm->word_size = 1 << size; + + /* Function Pointers */ + nvm->ops.acquire = e1000_acquire_nvm_80003es2lan; + nvm->ops.read = e1000_read_nvm_eerd; + nvm->ops.release = e1000_release_nvm_80003es2lan; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.valid_led_default = e1000_valid_led_default_generic; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.write = e1000_write_nvm_80003es2lan; + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_init_mac_params_80003es2lan"); + + /* Set media type */ + switch (hw->device_id) { + case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: + hw->phy.media_type = e1000_media_type_internal_serdes; + break; + default: + hw->phy.media_type = e1000_media_type_copper; + break; + } + + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES; + /* Set if part includes ASF firmware */ + mac->asf_firmware_present = TRUE; + /* Set if manageability features are enabled. */ + mac->arc_subsystem_valid = + (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK) + ? TRUE : FALSE; + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_80003es2lan; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_80003es2lan; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_generic; + /* physical interface link setup */ + mac->ops.setup_physical_interface = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_setup_copper_link_80003es2lan + : e1000_setup_fiber_serdes_link_generic; + /* check for link */ + switch (hw->phy.media_type) { + case e1000_media_type_copper: + mac->ops.check_for_link = e1000_check_for_copper_link_generic; + break; + case e1000_media_type_fiber: + mac->ops.check_for_link = e1000_check_for_fiber_link_generic; + break; + case e1000_media_type_internal_serdes: + mac->ops.check_for_link = e1000_check_for_serdes_link_generic; + break; + default: + ret_val = -E1000_ERR_CONFIG; + goto out; + break; + } + /* check management mode */ + mac->ops.check_mng_mode = e1000_check_mng_mode_generic; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_generic; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_generic; + /* setting MTA */ + mac->ops.mta_set = e1000_mta_set_generic; + /* read mac address */ + mac->ops.read_mac_addr = e1000_read_mac_addr_80003es2lan; + /* blink LED */ + mac->ops.blink_led = e1000_blink_led_generic; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_generic; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_generic; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_generic; + mac->ops.led_off = e1000_led_off_generic; + /* remove device */ + mac->ops.remove_device = e1000_remove_device_generic; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan; + /* link info */ + mac->ops.get_link_up_info = e1000_get_link_up_info_80003es2lan; + +out: + return ret_val; +} + +/** + * e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs. + * @hw: pointer to the HW structure + * + * The only function explicitly called by the api module to initialize + * all function pointers and parameters. + **/ +void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_80003es2lan"); + + hw->mac.ops.init_params = e1000_init_mac_params_80003es2lan; + hw->nvm.ops.init_params = e1000_init_nvm_params_80003es2lan; + hw->phy.ops.init_params = e1000_init_phy_params_80003es2lan; +} + +/** + * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY + * @hw: pointer to the HW structure + * + * A wrapper to acquire access rights to the correct PHY. This is a + * function pointer entry point called by the api module. + **/ +static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw) +{ + u16 mask; + + DEBUGFUNC("e1000_acquire_phy_80003es2lan"); + + mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; + mask |= E1000_SWFW_CSR_SM; + + return e1000_acquire_swfw_sync_80003es2lan(hw, mask); +} + +/** + * e1000_release_phy_80003es2lan - Release rights to access PHY + * @hw: pointer to the HW structure + * + * A wrapper to release access rights to the correct PHY. This is a + * function pointer entry point called by the api module. + **/ +static void e1000_release_phy_80003es2lan(struct e1000_hw *hw) +{ + u16 mask; + + DEBUGFUNC("e1000_release_phy_80003es2lan"); + + mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; + mask |= E1000_SWFW_CSR_SM; + + e1000_release_swfw_sync_80003es2lan(hw, mask); +} + +/** + * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM + * @hw: pointer to the HW structure + * + * Acquire the semaphore to access the EEPROM. This is a function + * pointer entry point called by the api module. + **/ +static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_acquire_nvm_80003es2lan"); + + ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); + if (ret_val) + goto out; + + ret_val = e1000_acquire_nvm_generic(hw); + + if (ret_val) + e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); + +out: + return ret_val; +} + +/** + * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM + * @hw: pointer to the HW structure + * + * Release the semaphore used to access the EEPROM. This is a + * function pointer entry point called by the api module. + **/ +static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_release_nvm_80003es2lan"); + + e1000_release_nvm_generic(hw); + e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); +} + +/** + * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore + * @hw: pointer to the HW structure + * @mask: specifies which semaphore to acquire + * + * Acquire the SW/FW semaphore to access the PHY or NVM. The mask + * will also specify which port we're acquiring the lock for. + **/ +static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) +{ + u32 swfw_sync; + u32 swmask = mask; + u32 fwmask = mask << 16; + s32 ret_val = E1000_SUCCESS; + s32 i = 0, timeout = 200; + + DEBUGFUNC("e1000_acquire_swfw_sync_80003es2lan"); + + while (i < timeout) { + if (e1000_get_hw_semaphore_generic(hw)) { + ret_val = -E1000_ERR_SWFW_SYNC; + goto out; + } + + swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); + if (!(swfw_sync & (fwmask | swmask))) + break; + + /* + * Firmware currently using resource (fwmask) + * or other software thread using resource (swmask) + */ + e1000_put_hw_semaphore_generic(hw); + msec_delay_irq(5); + i++; + } + + if (i == timeout) { + DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); + ret_val = -E1000_ERR_SWFW_SYNC; + goto out; + } + + swfw_sync |= swmask; + E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); + + e1000_put_hw_semaphore_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore + * @hw: pointer to the HW structure + * @mask: specifies which semaphore to acquire + * + * Release the SW/FW semaphore used to access the PHY or NVM. The mask + * will also specify which port we're releasing the lock for. + **/ +static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) +{ + u32 swfw_sync; + + DEBUGFUNC("e1000_release_swfw_sync_80003es2lan"); + + while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS); + /* Empty */ + + swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); + swfw_sync &= ~mask; + E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); + + e1000_put_hw_semaphore_generic(hw); +} + +/** + * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register + * @hw: pointer to the HW structure + * @offset: offset of the register to read + * @data: pointer to the data returned from the operation + * + * Read the GG82563 PHY register. This is a function pointer entry + * point called by the api module. + **/ +static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, + u32 offset, u16 *data) +{ + s32 ret_val; + u32 page_select; + u16 temp; + + DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan"); + + ret_val = e1000_acquire_phy_80003es2lan(hw); + if (ret_val) + goto out; + + /* Select Configuration Page */ + if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { + page_select = GG82563_PHY_PAGE_SELECT; + } else { + /* + * Use Alternative Page Select register to access + * registers 30 and 31 + */ + page_select = GG82563_PHY_PAGE_SELECT_ALT; + } + + temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); + ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp); + if (ret_val) { + e1000_release_phy_80003es2lan(hw); + goto out; + } + + /* + * The "ready" bit in the MDIC register may be incorrectly set + * before the device has completed the "Page Select" MDI + * transaction. So we wait 200us after each MDI command... + */ + usec_delay(200); + + /* ...and verify the command was successful. */ + ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp); + + if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { + ret_val = -E1000_ERR_PHY; + e1000_release_phy_80003es2lan(hw); + goto out; + } + + usec_delay(200); + + ret_val = e1000_read_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + + usec_delay(200); + e1000_release_phy_80003es2lan(hw); + +out: + return ret_val; +} + +/** + * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register + * @hw: pointer to the HW structure + * @offset: offset of the register to read + * @data: value to write to the register + * + * Write to the GG82563 PHY register. This is a function pointer entry + * point called by the api module. + **/ +static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, + u32 offset, u16 data) +{ + s32 ret_val; + u32 page_select; + u16 temp; + + DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan"); + + ret_val = e1000_acquire_phy_80003es2lan(hw); + if (ret_val) + goto out; + + /* Select Configuration Page */ + if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { + page_select = GG82563_PHY_PAGE_SELECT; + } else { + /* + * Use Alternative Page Select register to access + * registers 30 and 31 + */ + page_select = GG82563_PHY_PAGE_SELECT_ALT; + } + + temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); + ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp); + if (ret_val) { + e1000_release_phy_80003es2lan(hw); + goto out; + } + + + /* + * The "ready" bit in the MDIC register may be incorrectly set + * before the device has completed the "Page Select" MDI + * transaction. So we wait 200us after each MDI command... + */ + usec_delay(200); + + /* ...and verify the command was successful. */ + ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp); + + if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { + ret_val = -E1000_ERR_PHY; + e1000_release_phy_80003es2lan(hw); + goto out; + } + + usec_delay(200); + + ret_val = e1000_write_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + + usec_delay(200); + e1000_release_phy_80003es2lan(hw); + +out: + return ret_val; +} + +/** + * e1000_write_nvm_80003es2lan - Write to ESB2 NVM + * @hw: pointer to the HW structure + * @offset: offset of the register to read + * @words: number of words to write + * @data: buffer of data to write to the NVM + * + * Write "words" of data to the ESB2 NVM. This is a function + * pointer entry point called by the api module. + **/ +static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data) +{ + DEBUGFUNC("e1000_write_nvm_80003es2lan"); + + return e1000_write_nvm_spi(hw, offset, words, data); +} + +/** + * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete + * @hw: pointer to the HW structure + * + * Wait a specific amount of time for manageability processes to complete. + * This is a function pointer entry point called by the phy module. + **/ +static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw) +{ + s32 timeout = PHY_CFG_TIMEOUT; + s32 ret_val = E1000_SUCCESS; + u32 mask = E1000_NVM_CFG_DONE_PORT_0; + + DEBUGFUNC("e1000_get_cfg_done_80003es2lan"); + + if (hw->bus.func == 1) + mask = E1000_NVM_CFG_DONE_PORT_1; + + while (timeout) { + if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask) + break; + msec_delay(1); + timeout--; + } + if (!timeout) { + DEBUGOUT("MNG configuration cycle has not completed.\n"); + ret_val = -E1000_ERR_RESET; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex + * @hw: pointer to the HW structure + * + * Force the speed and duplex settings onto the PHY. This is a + * function pointer entry point called by the phy module. + **/ +static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 phy_data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan"); + + if (!(hw->phy.ops.read_reg)) + goto out; + + /* + * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI + * forced whenever speed and duplex are forced. + */ + ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + goto out; + + phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO; + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data); + if (ret_val) + goto out; + + DEBUGOUT1("GG82563 PSCR: %X\n", phy_data); + + ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_data); + if (ret_val) + goto out; + + e1000_phy_force_speed_duplex_setup(hw, &phy_data); + + /* Reset the phy to commit changes. */ + phy_data |= MII_CR_RESET; + + ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_data); + if (ret_val) + goto out; + + usec_delay(1); + + if (hw->phy.autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link " + "on GG82563 phy.\n"); + + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + goto out; + + if (!link) { + /* + * We didn't get link. + * Reset the DSP and cross our fingers. + */ + ret_val = e1000_phy_reset_dsp_generic(hw); + if (ret_val) + goto out; + } + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + goto out; + } + + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); + if (ret_val) + goto out; + + /* + * Resetting the phy means we need to verify the TX_CLK corresponds + * to the link speed. 10Mbps -> 2.5MHz, else 25MHz. + */ + phy_data &= ~GG82563_MSCR_TX_CLK_MASK; + if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED) + phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5; + else + phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25; + + /* + * In addition, we must re-enable CRS on Tx for both half and full + * duplex. + */ + phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); + +out: + return ret_val; +} + +/** + * e1000_get_cable_length_80003es2lan - Set approximate cable length + * @hw: pointer to the HW structure + * + * Find the approximate cable length as measured by the GG82563 PHY. + * This is a function pointer entry point called by the phy module. + **/ +static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 phy_data, index; + + DEBUGFUNC("e1000_get_cable_length_80003es2lan"); + + if (!(hw->phy.ops.read_reg)) + goto out; + + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data); + if (ret_val) + goto out; + + index = phy_data & GG82563_DSPD_CABLE_LENGTH; + phy->min_cable_length = e1000_gg82563_cable_length_table[index]; + phy->max_cable_length = e1000_gg82563_cable_length_table[index+5]; + + phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; + +out: + return ret_val; +} + +/** + * e1000_get_link_up_info_80003es2lan - Report speed and duplex + * @hw: pointer to the HW structure + * @speed: pointer to speed buffer + * @duplex: pointer to duplex buffer + * + * Retrieve the current speed and duplex configuration. + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + s32 ret_val; + + DEBUGFUNC("e1000_get_link_up_info_80003es2lan"); + + if (hw->phy.media_type == e1000_media_type_copper) { + ret_val = e1000_get_speed_and_duplex_copper_generic(hw, + speed, + duplex); + if (ret_val) + goto out; + if (*speed == SPEED_1000) + ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw); + else + ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, + *duplex); + } else { + ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw, + speed, + duplex); + } + +out: + return ret_val; +} + +/** + * e1000_reset_hw_80003es2lan - Reset the ESB2 controller + * @hw: pointer to the HW structure + * + * Perform a global reset to the ESB2 controller. + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw) +{ + u32 ctrl, icr; + s32 ret_val; + + DEBUGFUNC("e1000_reset_hw_80003es2lan"); + + /* + * Prevent the PCI-E bus from sticking if there is no TLP connection + * on the last TLP read/write transaction when MAC is reset. + */ + ret_val = e1000_disable_pcie_master_generic(hw); + if (ret_val) { + DEBUGOUT("PCI-E Master disable polling has failed.\n"); + } + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + msec_delay(10); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGOUT("Issuing a global reset to MAC\n"); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + + ret_val = e1000_get_auto_rd_done_generic(hw); + if (ret_val) + /* We don't want to continue accessing MAC registers. */ + goto out; + + /* Clear any pending interrupt events. */ + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + icr = E1000_READ_REG(hw, E1000_ICR); + + e1000_check_alt_mac_addr_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_init_hw_80003es2lan - Initialize the ESB2 controller + * @hw: pointer to the HW structure + * + * Initialize the hw bits, LED, VFTA, MTA, link and hw counters. + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 reg_data; + s32 ret_val; + u16 i; + + DEBUGFUNC("e1000_init_hw_80003es2lan"); + + e1000_initialize_hw_bits_80003es2lan(hw); + + /* Initialize identification LED */ + ret_val = e1000_id_led_init_generic(hw); + if (ret_val) { + DEBUGOUT("Error initializing identification LED\n"); + /* This is not fatal and we should not stop init due to this */ + } + + /* Disabling VLAN filtering */ + DEBUGOUT("Initializing the IEEE VLAN\n"); + mac->ops.clear_vfta(hw); + + /* Setup the receive address. */ + e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + /* Set the transmit descriptor write-back policy */ + reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0)); + reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; + E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data); + + /* ...for both queues. */ + reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1)); + reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; + E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data); + + /* Enable retransmit on late collisions */ + reg_data = E1000_READ_REG(hw, E1000_TCTL); + reg_data |= E1000_TCTL_RTLC; + E1000_WRITE_REG(hw, E1000_TCTL, reg_data); + + /* Configure Gigabit Carry Extend Padding */ + reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT); + reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; + reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN; + E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data); + + /* Configure Transmit Inter-Packet Gap */ + reg_data = E1000_READ_REG(hw, E1000_TIPG); + reg_data &= ~E1000_TIPG_IPGT_MASK; + reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; + E1000_WRITE_REG(hw, E1000_TIPG, reg_data); + + reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001); + reg_data &= ~0x00100000; + E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data); + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_80003es2lan(hw); + + return ret_val; +} + +/** + * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2 + * @hw: pointer to the HW structure + * + * Initializes required hardware-dependent bits needed for normal operation. + **/ +static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw) +{ + u32 reg; + + DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan"); + + if (hw->mac.disable_hw_init_bits) + goto out; + + /* Transmit Descriptor Control 0 */ + reg = E1000_READ_REG(hw, E1000_TXDCTL(0)); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg); + + /* Transmit Descriptor Control 1 */ + reg = E1000_READ_REG(hw, E1000_TXDCTL(1)); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg); + + /* Transmit Arbitration Control 0 */ + reg = E1000_READ_REG(hw, E1000_TARC(0)); + reg &= ~(0xF << 27); /* 30:27 */ + if (hw->phy.media_type != e1000_media_type_copper) + reg &= ~(1 << 20); + E1000_WRITE_REG(hw, E1000_TARC(0), reg); + + /* Transmit Arbitration Control 1 */ + reg = E1000_READ_REG(hw, E1000_TARC(1)); + if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) + reg &= ~(1 << 28); + else + reg |= (1 << 28); + E1000_WRITE_REG(hw, E1000_TARC(1), reg); + +out: + return; +} + +/** + * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link + * @hw: pointer to the HW structure + * + * Setup some GG82563 PHY registers for obtaining link + **/ +static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u32 ctrl_ext; + u32 i = 0; + u16 data, data2; + + DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan"); + + if (!phy->reset_disable) { + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, + &data); + if (ret_val) + goto out; + + data |= GG82563_MSCR_ASSERT_CRS_ON_TX; + /* Use 25MHz for both link down and 1000Base-T for Tx clock. */ + data |= GG82563_MSCR_TX_CLK_1000MBPS_25; + + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, + data); + if (ret_val) + goto out; + + /* + * Options: + * MDI/MDI-X = 0 (default) + * 0 - Auto for all speeds + * 1 - MDI mode + * 2 - MDI-X mode + * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) + */ + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL, &data); + if (ret_val) + goto out; + + data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; + + switch (phy->mdix) { + case 1: + data |= GG82563_PSCR_CROSSOVER_MODE_MDI; + break; + case 2: + data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; + break; + case 0: + default: + data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; + break; + } + + /* + * Options: + * disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity + * 0 - Disabled + * 1 - Enabled + */ + data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; + if (phy->disable_polarity_correction) + data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; + + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, data); + if (ret_val) + goto out; + + /* SW Reset the PHY so all changes take effect */ + ret_val = hw->phy.ops.commit(hw); + if (ret_val) { + DEBUGOUT("Error Resetting the PHY\n"); + goto out; + } + + } + + /* Bypass Rx and Tx FIFO's */ + ret_val = e1000_write_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL, + E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS | + E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS); + if (ret_val) + goto out; + + ret_val = e1000_read_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, + &data); + if (ret_val) + goto out; + data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE; + ret_val = e1000_write_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, + data); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data); + if (ret_val) + goto out; + + data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL_2, data); + if (ret_val) + goto out; + + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data); + if (ret_val) + goto out; + + /* + * Do not init these registers when the HW is in IAMT mode, since the + * firmware will have already initialized them. We only initialize + * them if the HW is not in IAMT mode. + */ + if (!(hw->mac.ops.check_mng_mode(hw))) { + /* Enable Electrical Idle on the PHY */ + data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; + ret_val = hw->phy.ops.write_reg(hw, + GG82563_PHY_PWR_MGMT_CTRL, + data); + if (ret_val) + goto out; + + do { + ret_val = hw->phy.ops.read_reg(hw, + GG82563_PHY_KMRN_MODE_CTRL, + &data); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.read_reg(hw, + GG82563_PHY_KMRN_MODE_CTRL, + &data2); + if (ret_val) + goto out; + i++; + } while ((data != data2) && (i < GG82563_MAX_KMRN_RETRY)); + + data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + ret_val = hw->phy.ops.write_reg(hw, + GG82563_PHY_KMRN_MODE_CTRL, + data); + + if (ret_val) + goto out; + } + + /* + * Workaround: Disable padding in Kumeran interface in the MAC + * and in the PHY to avoid CRC errors. + */ + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_INBAND_CTRL, &data); + if (ret_val) + goto out; + + data |= GG82563_ICR_DIS_PADDING; + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_INBAND_CTRL, data); + if (ret_val) + goto out; + +out: + return ret_val; +} + +/** + * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2 + * @hw: pointer to the HW structure + * + * Essentially a wrapper for setting up all things "copper" related. + * This is a function pointer entry point called by the mac module. + **/ +static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + u16 reg_data; + + DEBUGFUNC("e1000_setup_copper_link_80003es2lan"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* + * Set the mac to wait the maximum time between each + * iteration and increase the max iterations when + * polling the phy; this fixes erroneous timeouts at 10Mbps. + */ + ret_val = e1000_write_kmrn_reg_generic(hw, GG82563_REG(0x34, 4), + 0xFFFF); + if (ret_val) + goto out; + ret_val = e1000_read_kmrn_reg_generic(hw, GG82563_REG(0x34, 9), + ®_data); + if (ret_val) + goto out; + reg_data |= 0x3F; + ret_val = e1000_write_kmrn_reg_generic(hw, GG82563_REG(0x34, 9), + reg_data); + if (ret_val) + goto out; + ret_val = e1000_read_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, + ®_data); + if (ret_val) + goto out; + reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING; + ret_val = e1000_write_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, + reg_data); + if (ret_val) + goto out; + + ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw); + if (ret_val) + goto out; + + ret_val = e1000_setup_copper_link_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation + * @hw: pointer to the HW structure + * @duplex: current duplex setting + * + * Configure the KMRN interface by applying last minute quirks for + * 10/100 operation. + **/ +static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) +{ + s32 ret_val = E1000_SUCCESS; + u32 tipg; + u32 i = 0; + u16 reg_data, reg_data2; + + DEBUGFUNC("e1000_configure_kmrn_for_10_100"); + + reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT; + ret_val = e1000_write_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, + reg_data); + if (ret_val) + goto out; + + /* Configure Transmit Inter-Packet Gap */ + tipg = E1000_READ_REG(hw, E1000_TIPG); + tipg &= ~E1000_TIPG_IPGT_MASK; + tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN; + E1000_WRITE_REG(hw, E1000_TIPG, tipg); + + + do { + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, + ®_data); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, + ®_data2); + if (ret_val) + goto out; + i++; + } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); + + if (duplex == HALF_DUPLEX) + reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; + else + reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); + +out: + return ret_val; +} + +/** + * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation + * @hw: pointer to the HW structure + * + * Configure the KMRN interface by applying last minute quirks for + * gigabit operation. + **/ +static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 reg_data, reg_data2; + u32 tipg; + u32 i = 0; + + DEBUGFUNC("e1000_configure_kmrn_for_1000"); + + reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT; + ret_val = e1000_write_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, + reg_data); + if (ret_val) + goto out; + + /* Configure Transmit Inter-Packet Gap */ + tipg = E1000_READ_REG(hw, E1000_TIPG); + tipg &= ~E1000_TIPG_IPGT_MASK; + tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; + E1000_WRITE_REG(hw, E1000_TIPG, tipg); + + + do { + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, + ®_data); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, + ®_data2); + if (ret_val) + goto out; + i++; + } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); + + reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); + +out: + return ret_val; +} + +/** + * e1000_read_mac_addr_80003es2lan - Read device MAC address + * @hw: pointer to the HW structure + **/ +static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_mac_addr_80003es2lan"); + if (e1000_check_alt_mac_addr_generic(hw)) + ret_val = e1000_read_mac_addr_generic(hw); + + return ret_val; +} + +/** + * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw) +{ + /* If the management interface is not enabled, then power down */ + if (!(hw->mac.ops.check_mng_mode(hw) || + hw->phy.ops.check_reset_block(hw))) + e1000_power_down_phy_copper(hw); + + return; +} + +/** + * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw) +{ + volatile u32 temp; + + DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan"); + + e1000_clear_hw_cntrs_base_generic(hw); + + temp = E1000_READ_REG(hw, E1000_PRC64); + temp = E1000_READ_REG(hw, E1000_PRC127); + temp = E1000_READ_REG(hw, E1000_PRC255); + temp = E1000_READ_REG(hw, E1000_PRC511); + temp = E1000_READ_REG(hw, E1000_PRC1023); + temp = E1000_READ_REG(hw, E1000_PRC1522); + temp = E1000_READ_REG(hw, E1000_PTC64); + temp = E1000_READ_REG(hw, E1000_PTC127); + temp = E1000_READ_REG(hw, E1000_PTC255); + temp = E1000_READ_REG(hw, E1000_PTC511); + temp = E1000_READ_REG(hw, E1000_PTC1023); + temp = E1000_READ_REG(hw, E1000_PTC1522); + + temp = E1000_READ_REG(hw, E1000_ALGNERRC); + temp = E1000_READ_REG(hw, E1000_RXERRC); + temp = E1000_READ_REG(hw, E1000_TNCRS); + temp = E1000_READ_REG(hw, E1000_CEXTERR); + temp = E1000_READ_REG(hw, E1000_TSCTC); + temp = E1000_READ_REG(hw, E1000_TSCTFC); + + temp = E1000_READ_REG(hw, E1000_MGTPRC); + temp = E1000_READ_REG(hw, E1000_MGTPDC); + temp = E1000_READ_REG(hw, E1000_MGTPTC); + + temp = E1000_READ_REG(hw, E1000_IAC); + temp = E1000_READ_REG(hw, E1000_ICRXOC); + + temp = E1000_READ_REG(hw, E1000_ICRXPTC); + temp = E1000_READ_REG(hw, E1000_ICRXATC); + temp = E1000_READ_REG(hw, E1000_ICTXPTC); + temp = E1000_READ_REG(hw, E1000_ICTXATC); + temp = E1000_READ_REG(hw, E1000_ICTXQEC); + temp = E1000_READ_REG(hw, E1000_ICTXQMTC); + temp = E1000_READ_REG(hw, E1000_ICRXDMTC); +} diff --git a/sys/dev/e1000/e1000_80003es2lan.h b/sys/dev/e1000/e1000_80003es2lan.h new file mode 100644 index 0000000..7bf8d9d --- /dev/null +++ b/sys/dev/e1000/e1000_80003es2lan.h @@ -0,0 +1,102 @@ +/******************************************************************************* + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +*******************************************************************************/ +/* $FreeBSD$ */ + + +#ifndef _E1000_80003ES2LAN_H_ +#define _E1000_80003ES2LAN_H_ + +#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00 +#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02 +#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10 +#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F + +#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008 +#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800 +#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010 + +#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004 +#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000 +#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000 + +#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */ +#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000 + +#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8 +#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9 + +/* GG82563 PHY Specific Status Register (Page 0, Register 16 */ +#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disabled */ +#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060 +#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */ +#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */ +#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */ + +/* PHY Specific Control Register 2 (Page 0, Register 26) */ +#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 + /* 1=Reverse Auto-Negotiation */ + +/* MAC Specific Control Register (Page 2, Register 21) */ +/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */ +#define GG82563_MSCR_TX_CLK_MASK 0x0007 +#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004 +#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005 +#define GG82563_MSCR_TX_CLK_1000MBPS_2_5 0x0006 +#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007 + +#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */ + +/* DSP Distance Register (Page 5, Register 26) */ +/* + * 0 = <50M + * 1 = 50-80M + * 2 = 80-100M + * 3 = 110-140M + * 4 = >140M + */ +#define GG82563_DSPD_CABLE_LENGTH 0x0007 + +/* Kumeran Mode Control Register (Page 193, Register 16) */ +#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800 + +/* Max number of times Kumeran read/write should be validated */ +#define GG82563_MAX_KMRN_RETRY 0x5 + +/* Power Management Control Register (Page 193, Register 20) */ +#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 + /* 1=Enable SERDES Electrical Idle */ + +/* In-Band Control Register (Page 194, Register 18) */ +#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */ + +#endif diff --git a/sys/dev/e1000/e1000_82540.c b/sys/dev/e1000/e1000_82540.c new file mode 100644 index 0000000..0598075 --- /dev/null +++ b/sys/dev/e1000/e1000_82540.c @@ -0,0 +1,683 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +/* e1000_82540 + * e1000_82545 + * e1000_82546 + * e1000_82545_rev_3 + * e1000_82546_rev_3 + */ + +#include "e1000_api.h" + +static s32 e1000_init_phy_params_82540(struct e1000_hw *hw); +static s32 e1000_init_nvm_params_82540(struct e1000_hw *hw); +static s32 e1000_init_mac_params_82540(struct e1000_hw *hw); +static s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw); +static void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw); +static s32 e1000_init_hw_82540(struct e1000_hw *hw); +static s32 e1000_reset_hw_82540(struct e1000_hw *hw); +static s32 e1000_set_phy_mode_82540(struct e1000_hw *hw); +static s32 e1000_set_vco_speed_82540(struct e1000_hw *hw); +static s32 e1000_setup_copper_link_82540(struct e1000_hw *hw); +static s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw); +static void e1000_power_down_phy_copper_82540(struct e1000_hw *hw); + +/** + * e1000_init_phy_params_82540 - Init PHY func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_phy_params_82540(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + + phy->addr = 1; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 10000; + phy->type = e1000_phy_m88; + + /* Function Pointers */ + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; + phy->ops.get_cable_length = e1000_get_cable_length_m88; + phy->ops.get_cfg_done = e1000_get_cfg_done_generic; + phy->ops.read_reg = e1000_read_phy_reg_m88; + phy->ops.reset = e1000_phy_hw_reset_generic; + phy->ops.write_reg = e1000_write_phy_reg_m88; + phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_82540; + + ret_val = e1000_get_phy_id(hw); + if (ret_val) + goto out; + + /* Verify phy id */ + switch (hw->mac.type) { + case e1000_82540: + case e1000_82545: + case e1000_82545_rev_3: + case e1000_82546: + case e1000_82546_rev_3: + if (phy->id == M88E1011_I_PHY_ID) + break; + /* Fall Through */ + default: + ret_val = -E1000_ERR_PHY; + goto out; + break; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params_82540 - Init NVM func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_nvm_params_82540(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + + DEBUGFUNC("e1000_init_nvm_params_82540"); + + nvm->type = e1000_nvm_eeprom_microwire; + nvm->delay_usec = 50; + nvm->opcode_bits = 3; + switch (nvm->override) { + case e1000_nvm_override_microwire_large: + nvm->address_bits = 8; + nvm->word_size = 256; + break; + case e1000_nvm_override_microwire_small: + nvm->address_bits = 6; + nvm->word_size = 64; + break; + default: + nvm->address_bits = eecd & E1000_EECD_SIZE ? 8 : 6; + nvm->word_size = eecd & E1000_EECD_SIZE ? 256 : 64; + break; + } + + /* Function Pointers */ + nvm->ops.acquire = e1000_acquire_nvm_generic; + nvm->ops.read = e1000_read_nvm_microwire; + nvm->ops.release = e1000_release_nvm_generic; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.valid_led_default = e1000_valid_led_default_generic; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.write = e1000_write_nvm_microwire; + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_82540 - Init MAC func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_mac_params_82540(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_init_mac_params_82540"); + + /* Set media type */ + switch (hw->device_id) { + case E1000_DEV_ID_82545EM_FIBER: + case E1000_DEV_ID_82545GM_FIBER: + case E1000_DEV_ID_82546EB_FIBER: + case E1000_DEV_ID_82546GB_FIBER: + hw->phy.media_type = e1000_media_type_fiber; + break; + case E1000_DEV_ID_82545GM_SERDES: + case E1000_DEV_ID_82546GB_SERDES: + hw->phy.media_type = e1000_media_type_internal_serdes; + break; + default: + hw->phy.media_type = e1000_media_type_copper; + break; + } + + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES; + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pci_generic; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_82540; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_82540; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_generic; + /* physical interface setup */ + mac->ops.setup_physical_interface = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_setup_copper_link_82540 + : e1000_setup_fiber_serdes_link_82540; + /* check for link */ + switch (hw->phy.media_type) { + case e1000_media_type_copper: + mac->ops.check_for_link = e1000_check_for_copper_link_generic; + break; + case e1000_media_type_fiber: + mac->ops.check_for_link = e1000_check_for_fiber_link_generic; + break; + case e1000_media_type_internal_serdes: + mac->ops.check_for_link = e1000_check_for_serdes_link_generic; + break; + default: + ret_val = -E1000_ERR_CONFIG; + goto out; + break; + } + /* link info */ + mac->ops.get_link_up_info = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_get_speed_and_duplex_copper_generic + : e1000_get_speed_and_duplex_fiber_serdes_generic; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_generic; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_generic; + /* setting MTA */ + mac->ops.mta_set = e1000_mta_set_generic; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_generic; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_generic; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_generic; + mac->ops.led_off = e1000_led_off_generic; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82540; + +out: + return ret_val; +} + +/** + * e1000_init_function_pointers_82540 - Init func ptrs. + * @hw: pointer to the HW structure + * + * The only function explicitly called by the api module to initialize + * all function pointers and parameters. + **/ +void e1000_init_function_pointers_82540(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_82540"); + + hw->mac.ops.init_params = e1000_init_mac_params_82540; + hw->nvm.ops.init_params = e1000_init_nvm_params_82540; + hw->phy.ops.init_params = e1000_init_phy_params_82540; +} + +/** + * e1000_reset_hw_82540 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. This is a + * function pointer entry point called by the api module. + **/ +static s32 e1000_reset_hw_82540(struct e1000_hw *hw) +{ + u32 ctrl, icr, manc; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_reset_hw_82540"); + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + /* + * Delay to allow any outstanding PCI transactions to complete + * before resetting the device. + */ + msec_delay(10); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGOUT("Issuing a global reset to 82540/82545/82546 MAC\n"); + switch (hw->mac.type) { + case e1000_82545_rev_3: + case e1000_82546_rev_3: + E1000_WRITE_REG(hw, E1000_CTRL_DUP, ctrl | E1000_CTRL_RST); + break; + default: + /* + * These controllers can't ack the 64-bit write when + * issuing the reset, so we use IO-mapping as a + * workaround to issue the reset. + */ + E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + break; + } + + /* Wait for EEPROM reload */ + msec_delay(5); + + /* Disable HW ARPs on ASF enabled adapters */ + manc = E1000_READ_REG(hw, E1000_MANC); + manc &= ~E1000_MANC_ARP_EN; + E1000_WRITE_REG(hw, E1000_MANC, manc); + + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + icr = E1000_READ_REG(hw, E1000_ICR); + + return ret_val; +} + +/** + * e1000_init_hw_82540 - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. This is a + * function pointer entry point called by the api module. + **/ +static s32 e1000_init_hw_82540(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 txdctl, ctrl_ext; + s32 ret_val = E1000_SUCCESS; + u16 i; + + DEBUGFUNC("e1000_init_hw_82540"); + + /* Initialize identification LED */ + ret_val = e1000_id_led_init_generic(hw); + if (ret_val) { + DEBUGOUT("Error initializing identification LED\n"); + /* This is not fatal and we should not stop init due to this */ + } + + /* Disabling VLAN filtering */ + DEBUGOUT("Initializing the IEEE VLAN\n"); + if (mac->type < e1000_82545_rev_3) + E1000_WRITE_REG(hw, E1000_VET, 0); + + mac->ops.clear_vfta(hw); + + /* Setup the receive address. */ + e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) { + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + /* + * Avoid back to back register writes by adding the register + * read (flush). This is to protect against some strange + * bridge configurations that may issue Memory Write Block + * (MWB) to our register space. The *_rev_3 hardware at + * least doesn't respond correctly to every other dword in an + * MWB to our register space. + */ + E1000_WRITE_FLUSH(hw); + } + + if (mac->type < e1000_82545_rev_3) + e1000_pcix_mmrbc_workaround_generic(hw); + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); + txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB; + E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_82540(hw); + + if ((hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER) || + (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3)) { + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + /* + * Relaxed ordering must be disabled to avoid a parity + * error crash in a PCI slot. + */ + ctrl_ext |= E1000_CTRL_EXT_RO_DIS; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + } + + return ret_val; +} + +/** + * e1000_setup_copper_link_82540 - Configure copper link settings + * @hw: pointer to the HW structure + * + * Calls the appropriate function to configure the link for auto-neg or forced + * speed and duplex. Then we check for link, once link is established calls + * to configure collision distance and flow control are called. If link is + * not established, we return -E1000_ERR_PHY (-2). This is a function + * pointer entry point called by the api module. + **/ +static s32 e1000_setup_copper_link_82540(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_setup_copper_link_82540"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + ret_val = e1000_set_phy_mode_82540(hw); + if (ret_val) + goto out; + + if (hw->mac.type == e1000_82545_rev_3 || + hw->mac.type == e1000_82546_rev_3) { + ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &data); + if (ret_val) + goto out; + data |= 0x00000008; + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, data); + if (ret_val) + goto out; + } + + ret_val = e1000_copper_link_setup_m88(hw); + if (ret_val) + goto out; + + ret_val = e1000_setup_copper_link_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_setup_fiber_serdes_link_82540 - Setup link for fiber/serdes + * @hw: pointer to the HW structure + * + * Set the output amplitude to the value in the EEPROM and adjust the VCO + * speed to improve Bit Error Rate (BER) performance. Configures collision + * distance and flow control for fiber and serdes links. Upon successful + * setup, poll for link. This is a function pointer entry point called by + * the api module. + **/ +static s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_setup_fiber_serdes_link_82540"); + + switch (mac->type) { + case e1000_82545_rev_3: + case e1000_82546_rev_3: + if (hw->phy.media_type == e1000_media_type_internal_serdes) { + /* + * If we're on serdes media, adjust the output + * amplitude to value set in the EEPROM. + */ + ret_val = e1000_adjust_serdes_amplitude_82540(hw); + if (ret_val) + goto out; + } + /* Adjust VCO speed to improve BER performance */ + ret_val = e1000_set_vco_speed_82540(hw); + if (ret_val) + goto out; + default: + break; + } + + ret_val = e1000_setup_fiber_serdes_link_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_adjust_serdes_amplitude_82540 - Adjust amplitude based on EEPROM + * @hw: pointer to the HW structure + * + * Adjust the SERDES output amplitude based on the EEPROM settings. + **/ +static s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 nvm_data; + + DEBUGFUNC("e1000_adjust_serdes_amplitude_82540"); + + ret_val = hw->nvm.ops.read(hw, NVM_SERDES_AMPLITUDE, 1, &nvm_data); + if (ret_val) + goto out; + + if (nvm_data != NVM_RESERVED_WORD) { + /* Adjust serdes output amplitude only. */ + nvm_data &= NVM_SERDES_AMPLITUDE_MASK; + ret_val = hw->phy.ops.write_reg(hw, + M88E1000_PHY_EXT_CTRL, + nvm_data); + if (ret_val) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_set_vco_speed_82540 - Set VCO speed for better performance + * @hw: pointer to the HW structure + * + * Set the VCO speed to improve Bit Error Rate (BER) performance. + **/ +static s32 e1000_set_vco_speed_82540(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 default_page = 0; + u16 phy_data; + + DEBUGFUNC("e1000_set_vco_speed_82540"); + + /* Set PHY register 30, page 5, bit 8 to 0 */ + + ret_val = hw->phy.ops.read_reg(hw, + M88E1000_PHY_PAGE_SELECT, + &default_page); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); + if (ret_val) + goto out; + + phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); + if (ret_val) + goto out; + + /* Set PHY register 30, page 4, bit 11 to 1 */ + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); + if (ret_val) + goto out; + + phy_data |= M88E1000_PHY_VCO_REG_BIT11; + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, + default_page); + +out: + return ret_val; +} + +/** + * e1000_set_phy_mode_82540 - Set PHY to class A mode + * @hw: pointer to the HW structure + * + * Sets the PHY to class A mode and assumes the following operations will + * follow to enable the new class mode: + * 1. Do a PHY soft reset. + * 2. Restart auto-negotiation or force link. + **/ +static s32 e1000_set_phy_mode_82540(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 nvm_data; + + DEBUGFUNC("e1000_set_phy_mode_82540"); + + if (hw->mac.type != e1000_82545_rev_3) + goto out; + + ret_val = hw->nvm.ops.read(hw, NVM_PHY_CLASS_WORD, 1, &nvm_data); + if (ret_val) { + ret_val = -E1000_ERR_PHY; + goto out; + } + + if ((nvm_data != NVM_RESERVED_WORD) && (nvm_data & NVM_PHY_CLASS_A)) { + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, + 0x000B); + if (ret_val) { + ret_val = -E1000_ERR_PHY; + goto out; + } + ret_val = hw->phy.ops.write_reg(hw, + M88E1000_PHY_GEN_CONTROL, + 0x8104); + if (ret_val) { + ret_val = -E1000_ERR_PHY; + goto out; + } + + phy->reset_disable = FALSE; + } + +out: + return ret_val; +} + +/** + * e1000_power_down_phy_copper_82540 - Remove link in case of PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +static void e1000_power_down_phy_copper_82540(struct e1000_hw *hw) +{ + /* If the management interface is not enabled, then power down */ + if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN)) + e1000_power_down_phy_copper(hw); + + return; +} + +/** + * e1000_clear_hw_cntrs_82540 - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw) +{ + volatile u32 temp; + + DEBUGFUNC("e1000_clear_hw_cntrs_82540"); + + e1000_clear_hw_cntrs_base_generic(hw); + + temp = E1000_READ_REG(hw, E1000_PRC64); + temp = E1000_READ_REG(hw, E1000_PRC127); + temp = E1000_READ_REG(hw, E1000_PRC255); + temp = E1000_READ_REG(hw, E1000_PRC511); + temp = E1000_READ_REG(hw, E1000_PRC1023); + temp = E1000_READ_REG(hw, E1000_PRC1522); + temp = E1000_READ_REG(hw, E1000_PTC64); + temp = E1000_READ_REG(hw, E1000_PTC127); + temp = E1000_READ_REG(hw, E1000_PTC255); + temp = E1000_READ_REG(hw, E1000_PTC511); + temp = E1000_READ_REG(hw, E1000_PTC1023); + temp = E1000_READ_REG(hw, E1000_PTC1522); + + temp = E1000_READ_REG(hw, E1000_ALGNERRC); + temp = E1000_READ_REG(hw, E1000_RXERRC); + temp = E1000_READ_REG(hw, E1000_TNCRS); + temp = E1000_READ_REG(hw, E1000_CEXTERR); + temp = E1000_READ_REG(hw, E1000_TSCTC); + temp = E1000_READ_REG(hw, E1000_TSCTFC); + + temp = E1000_READ_REG(hw, E1000_MGTPRC); + temp = E1000_READ_REG(hw, E1000_MGTPDC); + temp = E1000_READ_REG(hw, E1000_MGTPTC); +} + diff --git a/sys/dev/e1000/e1000_82541.c b/sys/dev/e1000/e1000_82541.c new file mode 100644 index 0000000..81e68cf --- /dev/null +++ b/sys/dev/e1000/e1000_82541.c @@ -0,0 +1,1330 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +/* e1000_82541 + * e1000_82547 + * e1000_82541_rev_2 + * e1000_82547_rev_2 + */ + +#include "e1000_api.h" + +static s32 e1000_init_phy_params_82541(struct e1000_hw *hw); +static s32 e1000_init_nvm_params_82541(struct e1000_hw *hw); +static s32 e1000_init_mac_params_82541(struct e1000_hw *hw); +static s32 e1000_reset_hw_82541(struct e1000_hw *hw); +static s32 e1000_init_hw_82541(struct e1000_hw *hw); +static s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed, + u16 *duplex); +static s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw); +static s32 e1000_setup_copper_link_82541(struct e1000_hw *hw); +static s32 e1000_check_for_link_82541(struct e1000_hw *hw); +static s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw); +static s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, + bool active); +static s32 e1000_setup_led_82541(struct e1000_hw *hw); +static s32 e1000_cleanup_led_82541(struct e1000_hw *hw); +static void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw); +static s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, + bool link_up); +static s32 e1000_phy_init_script_82541(struct e1000_hw *hw); +static void e1000_power_down_phy_copper_82541(struct e1000_hw *hw); + +static const u16 e1000_igp_cable_length_table[] = + { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, + 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, + 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, + 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, + 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, + 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, + 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; +#define IGP01E1000_AGC_LENGTH_TABLE_SIZE \ + (sizeof(e1000_igp_cable_length_table) / \ + sizeof(e1000_igp_cable_length_table[0])) + +struct e1000_dev_spec_82541 { + enum e1000_dsp_config dsp_config; + enum e1000_ffe_config ffe_config; + u16 spd_default; + bool phy_init_script; +}; + +/** + * e1000_init_phy_params_82541 - Init PHY func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_phy_params_82541(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_init_phy_params_82541"); + + phy->addr = 1; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 10000; + phy->type = e1000_phy_igp; + + /* Function Pointers */ + phy->ops.check_polarity = e1000_check_polarity_igp; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; + phy->ops.get_cable_length = e1000_get_cable_length_igp_82541; + phy->ops.get_cfg_done = e1000_get_cfg_done_generic; + phy->ops.get_info = e1000_get_phy_info_igp; + phy->ops.read_reg = e1000_read_phy_reg_igp; + phy->ops.reset = e1000_phy_hw_reset_82541; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82541; + phy->ops.write_reg = e1000_write_phy_reg_igp; + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_82541; + + ret_val = e1000_get_phy_id(hw); + if (ret_val) + goto out; + + /* Verify phy id */ + if (phy->id != IGP01E1000_I_PHY_ID) { + ret_val = -E1000_ERR_PHY; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params_82541 - Init NVM func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_nvm_params_82541(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + s32 ret_val = E1000_SUCCESS; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + u16 size; + + DEBUGFUNC("e1000_init_nvm_params_82541"); + + switch (nvm->override) { + case e1000_nvm_override_spi_large: + nvm->type = e1000_nvm_eeprom_spi; + eecd |= E1000_EECD_ADDR_BITS; + break; + case e1000_nvm_override_spi_small: + nvm->type = e1000_nvm_eeprom_spi; + eecd &= ~E1000_EECD_ADDR_BITS; + break; + case e1000_nvm_override_microwire_large: + nvm->type = e1000_nvm_eeprom_microwire; + eecd |= E1000_EECD_SIZE; + break; + case e1000_nvm_override_microwire_small: + nvm->type = e1000_nvm_eeprom_microwire; + eecd &= ~E1000_EECD_SIZE; + break; + default: + nvm->type = eecd & E1000_EECD_TYPE + ? e1000_nvm_eeprom_spi + : e1000_nvm_eeprom_microwire; + break; + } + + if (nvm->type == e1000_nvm_eeprom_spi) { + nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) + ? 16 : 8; + nvm->delay_usec = 1; + nvm->opcode_bits = 8; + nvm->page_size = (eecd & E1000_EECD_ADDR_BITS) + ? 32 : 8; + + /* Function Pointers */ + nvm->ops.acquire = e1000_acquire_nvm_generic; + nvm->ops.read = e1000_read_nvm_spi; + nvm->ops.release = e1000_release_nvm_generic; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.valid_led_default = e1000_valid_led_default_generic; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.write = e1000_write_nvm_spi; + + /* + * nvm->word_size must be discovered after the pointers + * are set so we can verify the size from the nvm image + * itself. Temporarily set it to a dummy value so the + * read will work. + */ + nvm->word_size = 64; + ret_val = nvm->ops.read(hw, NVM_CFG, 1, &size); + if (ret_val) + goto out; + size = (size & NVM_SIZE_MASK) >> NVM_SIZE_SHIFT; + /* + * if size != 0, it can be added to a constant and become + * the left-shift value to set the word_size. Otherwise, + * word_size stays at 64. + */ + if (size) { + size += NVM_WORD_SIZE_BASE_SHIFT_82541; + nvm->word_size = 1 << size; + } + } else { + nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) + ? 8 : 6; + nvm->delay_usec = 50; + nvm->opcode_bits = 3; + nvm->word_size = (eecd & E1000_EECD_ADDR_BITS) + ? 256 : 64; + + /* Function Pointers */ + nvm->ops.acquire = e1000_acquire_nvm_generic; + nvm->ops.read = e1000_read_nvm_microwire; + nvm->ops.release = e1000_release_nvm_generic; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.valid_led_default = e1000_valid_led_default_generic; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.write = e1000_write_nvm_microwire; + } + +out: + return ret_val; +} + +/** + * e1000_init_mac_params_82541 - Init MAC func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_mac_params_82541(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + + DEBUGFUNC("e1000_init_mac_params_82541"); + + /* Set media type */ + hw->phy.media_type = e1000_media_type_copper; + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES; + /* Set if part includes ASF firmware */ + mac->asf_firmware_present = TRUE; + + /* Function Pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pci_generic; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_82541; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_82541; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_generic; + /* physical interface link setup */ + mac->ops.setup_physical_interface = e1000_setup_copper_link_82541; + /* check for link */ + mac->ops.check_for_link = e1000_check_for_link_82541; + /* link info */ + mac->ops.get_link_up_info = e1000_get_link_up_info_82541; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_generic; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_generic; + /* setting MTA */ + mac->ops.mta_set = e1000_mta_set_generic; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_82541; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_82541; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_generic; + mac->ops.led_off = e1000_led_off_generic; + /* remove device */ + mac->ops.remove_device = e1000_remove_device_generic; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82541; + + hw->dev_spec_size = sizeof(struct e1000_dev_spec_82541); + + /* Device-specific structure allocation */ + ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size); + + return ret_val; +} + +/** + * e1000_init_function_pointers_82541 - Init func ptrs. + * @hw: pointer to the HW structure + * + * The only function explicitly called by the api module to initialize + * all function pointers and parameters. + **/ +void e1000_init_function_pointers_82541(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_82541"); + + hw->mac.ops.init_params = e1000_init_mac_params_82541; + hw->nvm.ops.init_params = e1000_init_nvm_params_82541; + hw->phy.ops.init_params = e1000_init_phy_params_82541; +} + +/** + * e1000_reset_hw_82541 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. This is a + * function pointer entry point called by the api module. + **/ +static s32 e1000_reset_hw_82541(struct e1000_hw *hw) +{ + u32 ledctl, ctrl, icr, manc; + + DEBUGFUNC("e1000_reset_hw_82541"); + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + /* + * Delay to allow any outstanding PCI transactions to complete + * before resetting the device. + */ + msec_delay(10); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* Must reset the Phy before resetting the MAC */ + if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) { + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_PHY_RST)); + msec_delay(5); + } + + DEBUGOUT("Issuing a global reset to 82541/82547 MAC\n"); + switch (hw->mac.type) { + case e1000_82541: + case e1000_82541_rev_2: + /* + * These controllers can't ack the 64-bit write when + * issuing the reset, so we use IO-mapping as a + * workaround to issue the reset. + */ + E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + break; + default: + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + break; + } + + /* Wait for NVM reload */ + msec_delay(20); + + /* Disable HW ARPs on ASF enabled adapters */ + manc = E1000_READ_REG(hw, E1000_MANC); + manc &= ~E1000_MANC_ARP_EN; + E1000_WRITE_REG(hw, E1000_MANC, manc); + + if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) { + e1000_phy_init_script_82541(hw); + + /* Configure activity LED after Phy reset */ + ledctl = E1000_READ_REG(hw, E1000_LEDCTL); + ledctl &= IGP_ACTIVITY_LED_MASK; + ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); + } + + /* Once again, mask the interrupts */ + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); + + /* Clear any pending interrupt events. */ + icr = E1000_READ_REG(hw, E1000_ICR); + + return E1000_SUCCESS; +} + +/** + * e1000_init_hw_82541 - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. This is a + * function pointer entry point called by the api module. + **/ +static s32 e1000_init_hw_82541(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 i, txdctl; + s32 ret_val; + + DEBUGFUNC("e1000_init_hw_82541"); + + /* Initialize identification LED */ + ret_val = e1000_id_led_init_generic(hw); + if (ret_val) { + DEBUGOUT("Error initializing identification LED\n"); + /* This is not fatal and we should not stop init due to this */ + } + + /* Disabling VLAN filtering */ + DEBUGOUT("Initializing the IEEE VLAN\n"); + mac->ops.clear_vfta(hw); + + /* Setup the receive address. */ + e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) { + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + /* + * Avoid back to back register writes by adding the register + * read (flush). This is to protect against some strange + * bridge configurations that may issue Memory Write Block + * (MWB) to our register space. + */ + E1000_WRITE_FLUSH(hw); + } + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); + txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB; + E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_82541(hw); + + return ret_val; +} + +/** + * e1000_get_link_up_info_82541 - Report speed and duplex + * @hw: pointer to the HW structure + * @speed: pointer to speed buffer + * @duplex: pointer to duplex buffer + * + * Retrieve the current speed and duplex configuration. + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_get_link_up_info_82541"); + + ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex); + if (ret_val) + goto out; + + if (!phy->speed_downgraded) + goto out; + + /* + * IGP01 PHY may advertise full duplex operation after speed + * downgrade even if it is operating at half duplex. + * Here we set the duplex settings to match the duplex in the + * link partner's capabilities. + */ + ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_EXP, &data); + if (ret_val) + goto out; + + if (!(data & NWAY_ER_LP_NWAY_CAPS)) { + *duplex = HALF_DUPLEX; + } else { + ret_val = phy->ops.read_reg(hw, PHY_LP_ABILITY, &data); + if (ret_val) + goto out; + + if (*speed == SPEED_100) { + if (!(data & NWAY_LPAR_100TX_FD_CAPS)) + *duplex = HALF_DUPLEX; + } else if (*speed == SPEED_10) { + if (!(data & NWAY_LPAR_10T_FD_CAPS)) + *duplex = HALF_DUPLEX; + } + } + +out: + return ret_val; +} + +/** + * e1000_phy_hw_reset_82541 - PHY hardware reset + * @hw: pointer to the HW structure + * + * Verify the reset block is not blocking us from resetting. Acquire + * semaphore (if necessary) and read/set/write the device control reset + * bit in the PHY. Wait the appropriate delay time for the device to + * reset and release the semaphore (if necessary). + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw) +{ + s32 ret_val; + u32 ledctl; + + DEBUGFUNC("e1000_phy_hw_reset_82541"); + + ret_val = e1000_phy_hw_reset_generic(hw); + if (ret_val) + goto out; + + e1000_phy_init_script_82541(hw); + + if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) { + /* Configure activity LED after PHY reset */ + ledctl = E1000_READ_REG(hw, E1000_LEDCTL); + ledctl &= IGP_ACTIVITY_LED_MASK; + ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); + } + +out: + return ret_val; +} + +/** + * e1000_setup_copper_link_82541 - Configure copper link settings + * @hw: pointer to the HW structure + * + * Calls the appropriate function to configure the link for auto-neg or forced + * speed and duplex. Then we check for link, once link is established calls + * to configure collision distance and flow control are called. If link is + * not established, we return -E1000_ERR_PHY (-2). This is a function + * pointer entry point called by the api module. + **/ +static s32 e1000_setup_copper_link_82541(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + struct e1000_dev_spec_82541 *dev_spec; + s32 ret_val; + u32 ctrl, ledctl; + + DEBUGFUNC("e1000_setup_copper_link_82541"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + hw->phy.reset_disable = FALSE; + + dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec; + + /* Earlier revs of the IGP phy require us to force MDI. */ + if (hw->mac.type == e1000_82541 || hw->mac.type == e1000_82547) { + dev_spec->dsp_config = e1000_dsp_config_disabled; + phy->mdix = 1; + } else { + dev_spec->dsp_config = e1000_dsp_config_enabled; + } + + ret_val = e1000_copper_link_setup_igp(hw); + if (ret_val) + goto out; + + if (hw->mac.autoneg) { + if (dev_spec->ffe_config == e1000_ffe_config_active) + dev_spec->ffe_config = e1000_ffe_config_enabled; + } + + /* Configure activity LED after Phy reset */ + ledctl = E1000_READ_REG(hw, E1000_LEDCTL); + ledctl &= IGP_ACTIVITY_LED_MASK; + ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); + + ret_val = e1000_setup_copper_link_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_check_for_link_82541 - Check/Store link connection + * @hw: pointer to the HW structure + * + * This checks the link condition of the adapter and stores the + * results in the hw->mac structure. This is a function pointer entry + * point called by the api module. + **/ +static s32 e1000_check_for_link_82541(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + bool link; + + DEBUGFUNC("e1000_check_for_link_82541"); + + /* + * We only want to go out to the PHY registers to see if Auto-Neg + * has completed and/or if our link status has changed. The + * get_link_status flag is set upon receiving a Link Status + * Change or Rx Sequence Error interrupt. + */ + if (!mac->get_link_status) { + ret_val = E1000_SUCCESS; + goto out; + } + + /* + * First we want to see if the MII Status Register reports + * link. If so, then we want to get the current speed/duplex + * of the PHY. + */ + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + goto out; + + if (!link) { + ret_val = e1000_config_dsp_after_link_change_82541(hw, FALSE); + goto out; /* No link detected */ + } + + mac->get_link_status = FALSE; + + /* + * Check if there was DownShift, must be checked + * immediately after link-up + */ + e1000_check_downshift_generic(hw); + + /* + * If we are forcing speed/duplex, then we simply return since + * we have already determined whether we have link or not. + */ + if (!mac->autoneg) { + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + ret_val = e1000_config_dsp_after_link_change_82541(hw, TRUE); + + /* + * Auto-Neg is enabled. Auto Speed Detection takes care + * of MAC speed/duplex configuration. So we only need to + * configure Collision Distance in the MAC. + */ + e1000_config_collision_dist_generic(hw); + + /* + * Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + } + +out: + return ret_val; +} + +/** + * e1000_config_dsp_after_link_change_82541 - Config DSP after link + * @hw: pointer to the HW structure + * @link_up: boolean flag for link up status + * + * Return E1000_ERR_PHY when failing to read/write the PHY, else E1000_SUCCESS + * at any other case. + * + * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a + * gigabit link is achieved to improve link quality. + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, + bool link_up) +{ + struct e1000_phy_info *phy = &hw->phy; + struct e1000_dev_spec_82541 *dev_spec; + s32 ret_val; + u32 idle_errs = 0; + u16 phy_data, phy_saved_data, speed, duplex, i; + u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; + u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = + {IGP01E1000_PHY_AGC_PARAM_A, + IGP01E1000_PHY_AGC_PARAM_B, + IGP01E1000_PHY_AGC_PARAM_C, + IGP01E1000_PHY_AGC_PARAM_D}; + + DEBUGFUNC("e1000_config_dsp_after_link_change_82541"); + + dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec; + + if (link_up) { + ret_val = hw->mac.ops.get_link_up_info(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT("Error getting link speed and duplex\n"); + goto out; + } + + if (speed != SPEED_1000) { + ret_val = E1000_SUCCESS; + goto out; + } + + ret_val = phy->ops.get_cable_length(hw); + if (ret_val) + goto out; + + if ((dev_spec->dsp_config == e1000_dsp_config_enabled) && + phy->min_cable_length >= 50) { + + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + ret_val = phy->ops.read_reg(hw, + dsp_reg_array[i], + &phy_data); + if (ret_val) + goto out; + + phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; + + ret_val = phy->ops.write_reg(hw, + dsp_reg_array[i], + phy_data); + if (ret_val) + goto out; + } + dev_spec->dsp_config = e1000_dsp_config_activated; + } + + if ((dev_spec->ffe_config != e1000_ffe_config_enabled) || + (phy->min_cable_length >= 50)) { + ret_val = E1000_SUCCESS; + goto out; + } + + /* clear previous idle error counts */ + ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); + if (ret_val) + goto out; + + for (i = 0; i < ffe_idle_err_timeout; i++) { + usec_delay(1000); + ret_val = phy->ops.read_reg(hw, + PHY_1000T_STATUS, + &phy_data); + if (ret_val) + goto out; + + idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); + if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { + dev_spec->ffe_config = e1000_ffe_config_active; + + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_DSP_FFE, + IGP01E1000_PHY_DSP_FFE_CM_CP); + if (ret_val) + goto out; + break; + } + + if (idle_errs) + ffe_idle_err_timeout = + FFE_IDLE_ERR_COUNT_TIMEOUT_100; + } + } else { + if (dev_spec->dsp_config == e1000_dsp_config_activated) { + /* + * Save off the current value of register 0x2F5B + * to be restored at the end of the routines. + */ + ret_val = phy->ops.read_reg(hw, + 0x2F5B, + &phy_saved_data); + if (ret_val) + goto out; + + /* Disable the PHY transmitter */ + ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003); + if (ret_val) + goto out; + + msec_delay_irq(20); + + ret_val = phy->ops.write_reg(hw, + 0x0000, + IGP01E1000_IEEE_FORCE_GIG); + if (ret_val) + goto out; + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + ret_val = phy->ops.read_reg(hw, + dsp_reg_array[i], + &phy_data); + if (ret_val) + goto out; + + phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; + phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; + + ret_val = phy->ops.write_reg(hw, + dsp_reg_array[i], + phy_data); + if (ret_val) + goto out; + } + + ret_val = phy->ops.write_reg(hw, + 0x0000, + IGP01E1000_IEEE_RESTART_AUTONEG); + if (ret_val) + goto out; + + msec_delay_irq(20); + + /* Now enable the transmitter */ + ret_val = phy->ops.write_reg(hw, + 0x2F5B, + phy_saved_data); + if (ret_val) + goto out; + + dev_spec->dsp_config = e1000_dsp_config_enabled; + } + + if (dev_spec->ffe_config != e1000_ffe_config_active) { + ret_val = E1000_SUCCESS; + goto out; + } + + /* + * Save off the current value of register 0x2F5B + * to be restored at the end of the routines. + */ + ret_val = phy->ops.read_reg(hw, 0x2F5B, &phy_saved_data); + if (ret_val) + goto out; + + /* Disable the PHY transmitter */ + ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003); + if (ret_val) + goto out; + + msec_delay_irq(20); + + ret_val = phy->ops.write_reg(hw, + 0x0000, + IGP01E1000_IEEE_FORCE_GIG); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_DSP_FFE, + IGP01E1000_PHY_DSP_FFE_DEFAULT); + if (ret_val) + goto out; + + ret_val = phy->ops.write_reg(hw, + 0x0000, + IGP01E1000_IEEE_RESTART_AUTONEG); + if (ret_val) + goto out; + + msec_delay_irq(20); + + /* Now enable the transmitter */ + ret_val = phy->ops.write_reg(hw, 0x2F5B, phy_saved_data); + + if (ret_val) + goto out; + + dev_spec->ffe_config = e1000_ffe_config_enabled; + } + +out: + return ret_val; +} + +/** + * e1000_get_cable_length_igp_82541 - Determine cable length for igp PHY + * @hw: pointer to the HW structure + * + * The automatic gain control (agc) normalizes the amplitude of the + * received signal, adjusting for the attenuation produced by the + * cable. By reading the AGC registers, which represent the + * combination of coarse and fine gain value, the value can be put + * into a lookup table to obtain the approximate cable length + * for each channel. This is a function pointer entry point called by the + * api module. + **/ +static s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 i, data; + u16 cur_agc_value, agc_value = 0; + u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; + u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = + {IGP01E1000_PHY_AGC_A, + IGP01E1000_PHY_AGC_B, + IGP01E1000_PHY_AGC_C, + IGP01E1000_PHY_AGC_D}; + + DEBUGFUNC("e1000_get_cable_length_igp_82541"); + + /* Read the AGC registers for all channels */ + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &data); + if (ret_val) + goto out; + + cur_agc_value = data >> IGP01E1000_AGC_LENGTH_SHIFT; + + /* Bounds checking */ + if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || + (cur_agc_value == 0)) { + ret_val = -E1000_ERR_PHY; + goto out; + } + + agc_value += cur_agc_value; + + if (min_agc_value > cur_agc_value) + min_agc_value = cur_agc_value; + } + + /* Remove the minimal AGC result for length < 50m */ + if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * 50) { + agc_value -= min_agc_value; + /* Average the three remaining channels for the length. */ + agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); + } else { + /* Average the channels for the length. */ + agc_value /= IGP01E1000_PHY_CHANNEL_NUM; + } + + phy->min_cable_length = (e1000_igp_cable_length_table[agc_value] > + IGP01E1000_AGC_RANGE) + ? (e1000_igp_cable_length_table[agc_value] - + IGP01E1000_AGC_RANGE) + : 0; + phy->max_cable_length = e1000_igp_cable_length_table[agc_value] + + IGP01E1000_AGC_RANGE; + + phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; + +out: + return ret_val; +} + +/** + * e1000_set_d3_lplu_state_82541 - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D3 + * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. This is a function pointer entry point called by the + * api module. + **/ +static s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_set_d3_lplu_state_82541"); + + switch (hw->mac.type) { + case e1000_82541_rev_2: + case e1000_82547_rev_2: + break; + default: + ret_val = e1000_set_d3_lplu_state_generic(hw, active); + goto out; + break; + } + + ret_val = phy->ops.read_reg(hw, IGP01E1000_GMII_FIFO, &data); + if (ret_val) + goto out; + + if (!active) { + data &= ~IGP01E1000_GMII_FLEX_SPD; + ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data); + if (ret_val) + goto out; + + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } + } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || + (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || + (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { + data |= IGP01E1000_GMII_FLEX_SPD; + ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data); + if (ret_val) + goto out; + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + } + +out: + return ret_val; +} + +/** + * e1000_setup_led_82541 - Configures SW controllable LED + * @hw: pointer to the HW structure + * + * This prepares the SW controllable LED for use and saves the current state + * of the LED so it can be later restored. This is a function pointer entry + * point called by the api module. + **/ +static s32 e1000_setup_led_82541(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82541 *dev_spec; + s32 ret_val; + + DEBUGFUNC("e1000_setup_led_82541"); + + dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec; + + ret_val = hw->phy.ops.read_reg(hw, + IGP01E1000_GMII_FIFO, + &dev_spec->spd_default); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.write_reg(hw, + IGP01E1000_GMII_FIFO, + (u16)(dev_spec->spd_default & + ~IGP01E1000_GMII_SPD)); + if (ret_val) + goto out; + + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); + +out: + return ret_val; +} + +/** + * e1000_cleanup_led_82541 - Set LED config to default operation + * @hw: pointer to the HW structure + * + * Remove the current LED configuration and set the LED configuration + * to the default value, saved from the EEPROM. This is a function pointer + * entry point called by the api module. + **/ +static s32 e1000_cleanup_led_82541(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82541 *dev_spec; + s32 ret_val; + + DEBUGFUNC("e1000_cleanup_led_82541"); + + dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec; + + ret_val = hw->phy.ops.write_reg(hw, + IGP01E1000_GMII_FIFO, + dev_spec->spd_default); + if (ret_val) + goto out; + + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); + +out: + return ret_val; +} + +/** + * e1000_phy_init_script_82541 - Initialize GbE PHY + * @hw: pointer to the HW structure + * + * Initializes the IGP PHY. + **/ +static s32 e1000_phy_init_script_82541(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82541 *dev_spec; + u32 ret_val; + u16 phy_saved_data; + + DEBUGFUNC("e1000_phy_init_script_82541"); + + dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec; + + if (!dev_spec->phy_init_script) { + ret_val = E1000_SUCCESS; + goto out; + } + + /* Delay after phy reset to enable NVM configuration to load */ + msec_delay(20); + + /* + * Save off the current value of register 0x2F5B to be restored at + * the end of this routine. + */ + ret_val = hw->phy.ops.read_reg(hw, 0x2F5B, &phy_saved_data); + + /* Disabled the PHY transmitter */ + hw->phy.ops.write_reg(hw, 0x2F5B, 0x0003); + + msec_delay(20); + + hw->phy.ops.write_reg(hw, 0x0000, 0x0140); + + msec_delay(5); + + switch (hw->mac.type) { + case e1000_82541: + case e1000_82547: + hw->phy.ops.write_reg(hw, 0x1F95, 0x0001); + + hw->phy.ops.write_reg(hw, 0x1F71, 0xBD21); + + hw->phy.ops.write_reg(hw, 0x1F79, 0x0018); + + hw->phy.ops.write_reg(hw, 0x1F30, 0x1600); + + hw->phy.ops.write_reg(hw, 0x1F31, 0x0014); + + hw->phy.ops.write_reg(hw, 0x1F32, 0x161C); + + hw->phy.ops.write_reg(hw, 0x1F94, 0x0003); + + hw->phy.ops.write_reg(hw, 0x1F96, 0x003F); + + hw->phy.ops.write_reg(hw, 0x2010, 0x0008); + break; + case e1000_82541_rev_2: + case e1000_82547_rev_2: + hw->phy.ops.write_reg(hw, 0x1F73, 0x0099); + break; + default: + break; + } + + hw->phy.ops.write_reg(hw, 0x0000, 0x3300); + + msec_delay(20); + + /* Now enable the transmitter */ + hw->phy.ops.write_reg(hw, 0x2F5B, phy_saved_data); + + if (hw->mac.type == e1000_82547) { + u16 fused, fine, coarse; + + /* Move to analog registers page */ + hw->phy.ops.read_reg(hw, + IGP01E1000_ANALOG_SPARE_FUSE_STATUS, + &fused); + + if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { + hw->phy.ops.read_reg(hw, + IGP01E1000_ANALOG_FUSE_STATUS, + &fused); + + fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; + coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; + + if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { + coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; + fine -= IGP01E1000_ANALOG_FUSE_FINE_1; + } else if (coarse == + IGP01E1000_ANALOG_FUSE_COARSE_THRESH) + fine -= IGP01E1000_ANALOG_FUSE_FINE_10; + + fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | + (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | + (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); + + hw->phy.ops.write_reg(hw, + IGP01E1000_ANALOG_FUSE_CONTROL, + fused); + hw->phy.ops.write_reg(hw, + IGP01E1000_ANALOG_FUSE_BYPASS, + IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); + } + } + +out: + return ret_val; +} + +/** + * e1000_init_script_state_82541 - Enable/Disable PHY init script + * @hw: pointer to the HW structure + * @state: boolean value used to enable/disable PHY init script + * + * Allows the driver to enable/disable the PHY init script, if the PHY is an + * IGP PHY. This is a function pointer entry point called by the api module. + **/ +void e1000_init_script_state_82541(struct e1000_hw *hw, bool state) +{ + struct e1000_dev_spec_82541 *dev_spec; + + DEBUGFUNC("e1000_init_script_state_82541"); + + if (hw->phy.type != e1000_phy_igp) { + DEBUGOUT("Initialization script not necessary.\n"); + goto out; + } + + dev_spec = (struct e1000_dev_spec_82541 *)hw->dev_spec; + + if (!dev_spec) { + DEBUGOUT("dev_spec pointer is set to NULL.\n"); + goto out; + } + + dev_spec->phy_init_script = state; + +out: + return; +} + +/** + * e1000_power_down_phy_copper_82541 - Remove link in case of PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +static void e1000_power_down_phy_copper_82541(struct e1000_hw *hw) +{ + /* If the management interface is not enabled, then power down */ + if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN)) + e1000_power_down_phy_copper(hw); + + return; +} + +/** + * e1000_clear_hw_cntrs_82541 - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw) +{ + volatile u32 temp; + + DEBUGFUNC("e1000_clear_hw_cntrs_82541"); + + e1000_clear_hw_cntrs_base_generic(hw); + + temp = E1000_READ_REG(hw, E1000_PRC64); + temp = E1000_READ_REG(hw, E1000_PRC127); + temp = E1000_READ_REG(hw, E1000_PRC255); + temp = E1000_READ_REG(hw, E1000_PRC511); + temp = E1000_READ_REG(hw, E1000_PRC1023); + temp = E1000_READ_REG(hw, E1000_PRC1522); + temp = E1000_READ_REG(hw, E1000_PTC64); + temp = E1000_READ_REG(hw, E1000_PTC127); + temp = E1000_READ_REG(hw, E1000_PTC255); + temp = E1000_READ_REG(hw, E1000_PTC511); + temp = E1000_READ_REG(hw, E1000_PTC1023); + temp = E1000_READ_REG(hw, E1000_PTC1522); + + temp = E1000_READ_REG(hw, E1000_ALGNERRC); + temp = E1000_READ_REG(hw, E1000_RXERRC); + temp = E1000_READ_REG(hw, E1000_TNCRS); + temp = E1000_READ_REG(hw, E1000_CEXTERR); + temp = E1000_READ_REG(hw, E1000_TSCTC); + temp = E1000_READ_REG(hw, E1000_TSCTFC); + + temp = E1000_READ_REG(hw, E1000_MGTPRC); + temp = E1000_READ_REG(hw, E1000_MGTPDC); + temp = E1000_READ_REG(hw, E1000_MGTPTC); +} diff --git a/sys/dev/e1000/e1000_82541.h b/sys/dev/e1000/e1000_82541.h new file mode 100644 index 0000000..3b6b961 --- /dev/null +++ b/sys/dev/e1000/e1000_82541.h @@ -0,0 +1,92 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_82541_H_ +#define _E1000_82541_H_ + +#define NVM_WORD_SIZE_BASE_SHIFT_82541 (NVM_WORD_SIZE_BASE_SHIFT + 1) + +#define IGP01E1000_PHY_CHANNEL_NUM 4 + +#define IGP01E1000_PHY_AGC_A 0x1172 +#define IGP01E1000_PHY_AGC_B 0x1272 +#define IGP01E1000_PHY_AGC_C 0x1472 +#define IGP01E1000_PHY_AGC_D 0x1872 + +#define IGP01E1000_PHY_AGC_PARAM_A 0x1171 +#define IGP01E1000_PHY_AGC_PARAM_B 0x1271 +#define IGP01E1000_PHY_AGC_PARAM_C 0x1471 +#define IGP01E1000_PHY_AGC_PARAM_D 0x1871 + +#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000 +#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000 + +#define IGP01E1000_PHY_DSP_RESET 0x1F33 + +#define IGP01E1000_PHY_DSP_FFE 0x1F35 +#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069 +#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A + +#define IGP01E1000_IEEE_FORCE_GIG 0x0140 +#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300 + +#define IGP01E1000_AGC_LENGTH_SHIFT 7 +#define IGP01E1000_AGC_RANGE 10 + +#define FFE_IDLE_ERR_COUNT_TIMEOUT_20 20 +#define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100 + +#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0 +#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1 +#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC +#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE + +#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100 +#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80 +#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070 +#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040 +#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010 +#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080 +#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500 +#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000 +#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002 + +#define IGP01E1000_MSE_CHANNEL_D 0x000F +#define IGP01E1000_MSE_CHANNEL_C 0x00F0 +#define IGP01E1000_MSE_CHANNEL_B 0x0F00 +#define IGP01E1000_MSE_CHANNEL_A 0xF000 + + +void e1000_init_script_state_82541(struct e1000_hw *hw, bool state); +#endif diff --git a/sys/dev/e1000/e1000_82542.c b/sys/dev/e1000/e1000_82542.c new file mode 100644 index 0000000..0f76202 --- /dev/null +++ b/sys/dev/e1000/e1000_82542.c @@ -0,0 +1,584 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +/* e1000_82542 (rev 1 & 2) + */ + +#include "e1000_api.h" + +static s32 e1000_init_phy_params_82542(struct e1000_hw *hw); +static s32 e1000_init_nvm_params_82542(struct e1000_hw *hw); +static s32 e1000_init_mac_params_82542(struct e1000_hw *hw); +static s32 e1000_get_bus_info_82542(struct e1000_hw *hw); +static s32 e1000_reset_hw_82542(struct e1000_hw *hw); +static s32 e1000_init_hw_82542(struct e1000_hw *hw); +static s32 e1000_setup_link_82542(struct e1000_hw *hw); +static s32 e1000_led_on_82542(struct e1000_hw *hw); +static s32 e1000_led_off_82542(struct e1000_hw *hw); +static void e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index); +static void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw); + +struct e1000_dev_spec_82542 { + bool dma_fairness; +}; + +/** + * e1000_init_phy_params_82542 - Init PHY func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_phy_params_82542(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_init_phy_params_82542"); + + phy->type = e1000_phy_none; + + return ret_val; +} + +/** + * e1000_init_nvm_params_82542 - Init NVM func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_nvm_params_82542(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + + DEBUGFUNC("e1000_init_nvm_params_82542"); + + nvm->address_bits = 6; + nvm->delay_usec = 50; + nvm->opcode_bits = 3; + nvm->type = e1000_nvm_eeprom_microwire; + nvm->word_size = 64; + + /* Function Pointers */ + nvm->ops.read = e1000_read_nvm_microwire; + nvm->ops.release = e1000_stop_nvm; + nvm->ops.write = e1000_write_nvm_microwire; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_82542 - Init MAC func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_mac_params_82542(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_init_mac_params_82542"); + + /* Set media type */ + hw->phy.media_type = e1000_media_type_fiber; + + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES; + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_82542; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_82542; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_82542; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_82542; + /* phy/fiber/serdes setup */ + mac->ops.setup_physical_interface = e1000_setup_fiber_serdes_link_generic; + /* check for link */ + mac->ops.check_for_link = e1000_check_for_fiber_link_generic; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_generic; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_generic; + /* setting MTA */ + mac->ops.mta_set = e1000_mta_set_generic; + /* set RAR */ + mac->ops.rar_set = e1000_rar_set_82542; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_82542; + mac->ops.led_off = e1000_led_off_82542; + /* remove device */ + mac->ops.remove_device = e1000_remove_device_generic; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82542; + /* link info */ + mac->ops.get_link_up_info = e1000_get_speed_and_duplex_fiber_serdes_generic; + + hw->dev_spec_size = sizeof(struct e1000_dev_spec_82542); + + /* Device-specific structure allocation */ + ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size); + + return ret_val; +} + +/** + * e1000_init_function_pointers_82542 - Init func ptrs. + * @hw: pointer to the HW structure + * + * The only function explicitly called by the api module to initialize + * all function pointers and parameters. + **/ +void e1000_init_function_pointers_82542(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_82542"); + + hw->mac.ops.init_params = e1000_init_mac_params_82542; + hw->nvm.ops.init_params = e1000_init_nvm_params_82542; + hw->phy.ops.init_params = e1000_init_phy_params_82542; +} + +/** + * e1000_get_bus_info_82542 - Obtain bus information for adapter + * @hw: pointer to the HW structure + * + * This will obtain information about the HW bus for which the + * adapter is attached and stores it in the hw structure. This is a function + * pointer entry point called by the api module. + **/ +static s32 e1000_get_bus_info_82542(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_get_bus_info_82542"); + + hw->bus.type = e1000_bus_type_pci; + hw->bus.speed = e1000_bus_speed_unknown; + hw->bus.width = e1000_bus_width_unknown; + + return E1000_SUCCESS; +} + +/** + * e1000_reset_hw_82542 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. This is a + * function pointer entry point called by the api module. + **/ +static s32 e1000_reset_hw_82542(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + s32 ret_val = E1000_SUCCESS; + u32 ctrl, icr; + + DEBUGFUNC("e1000_reset_hw_82542"); + + if (hw->revision_id == E1000_REVISION_2) { + DEBUGOUT("Disabling MWI on 82542 rev 2\n"); + e1000_pci_clear_mwi(hw); + } + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + /* + * Delay to allow any outstanding PCI transactions to complete before + * resetting the device + */ + msec_delay(10); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGOUT("Issuing a global reset to 82542/82543 MAC\n"); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + + hw->nvm.ops.reload(hw); + msec_delay(2); + + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + icr = E1000_READ_REG(hw, E1000_ICR); + + if (hw->revision_id == E1000_REVISION_2) { + if (bus->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + e1000_pci_set_mwi(hw); + } + + return ret_val; +} + +/** + * e1000_init_hw_82542 - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. This is a + * function pointer entry point called by the api module. + **/ +static s32 e1000_init_hw_82542(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + struct e1000_dev_spec_82542 *dev_spec; + s32 ret_val = E1000_SUCCESS; + u32 ctrl; + u16 i; + + DEBUGFUNC("e1000_init_hw_82542"); + + dev_spec = (struct e1000_dev_spec_82542 *)hw->dev_spec; + + /* Disabling VLAN filtering */ + E1000_WRITE_REG(hw, E1000_VET, 0); + mac->ops.clear_vfta(hw); + + /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ + if (hw->revision_id == E1000_REVISION_2) { + DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); + e1000_pci_clear_mwi(hw); + E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST); + E1000_WRITE_FLUSH(hw); + msec_delay(5); + } + + /* Setup the receive address. */ + e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); + + /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ + if (hw->revision_id == E1000_REVISION_2) { + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_FLUSH(hw); + msec_delay(1); + if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + e1000_pci_set_mwi(hw); + } + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + + /* + * Set the PCI priority bit correctly in the CTRL register. This + * determines if the adapter gives priority to receives, or if it + * gives equal priority to transmits and receives. + */ + if (dev_spec->dma_fairness) { + ctrl = E1000_READ_REG(hw, E1000_CTRL); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR); + } + + /* Setup link and flow control */ + ret_val = e1000_setup_link_82542(hw); + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_82542(hw); + + return ret_val; +} + +/** + * e1000_setup_link_82542 - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. This is a function + * pointer entry point called by the api module. + **/ +static s32 e1000_setup_link_82542(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_setup_link_82542"); + + ret_val = e1000_set_default_fc_generic(hw); + if (ret_val) + goto out; + + hw->fc.type &= ~e1000_fc_tx_pause; + + if (mac->report_tx_early == 1) + hw->fc.type &= ~e1000_fc_rx_pause; + + /* + * We want to save off the original Flow Control configuration just in + * case we get disconnected and then reconnected into a different hub + * or switch with different Flow Control capabilities. + */ + hw->fc.original_type = hw->fc.type; + + DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc.type); + + /* Call the necessary subroutine to configure the link. */ + ret_val = mac->ops.setup_physical_interface(hw); + if (ret_val) + goto out; + + /* + * Initialize the flow control address, type, and PAUSE timer + * registers to their default values. This is done even if flow + * control is disabled, because it does not hurt anything to + * initialize these registers. + */ + DEBUGOUT("Initializing Flow Control address, type and timer regs\n"); + + E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); + E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); + E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE); + + E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); + + ret_val = e1000_set_fc_watermarks_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_led_on_82542 - Turn on SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED on. This is a function pointer entry point + * called by the api module. + **/ +static s32 e1000_led_on_82542(struct e1000_hw *hw) +{ + u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGFUNC("e1000_led_on_82542"); + + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + return E1000_SUCCESS; +} + +/** + * e1000_led_off_82542 - Turn off SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED off. This is a function pointer entry point + * called by the api module. + **/ +static s32 e1000_led_off_82542(struct e1000_hw *hw) +{ + u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGFUNC("e1000_led_off_82542"); + + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + return E1000_SUCCESS; +} + +/** + * e1000_rar_set_82542 - Set receive address register + * @hw: pointer to the HW structure + * @addr: pointer to the receive address + * @index: receive address array register + * + * Sets the receive address array register at index to the address passed + * in by addr. + **/ +static void e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index) +{ + u32 rar_low, rar_high; + + DEBUGFUNC("e1000_rar_set_82542"); + + /* + * HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((u32) addr[0] | + ((u32) addr[1] << 8) | + ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); + + rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); + + /* If MAC address zero, no need to set the AV bit */ + if (rar_low || rar_high) { + if (!hw->mac.disable_av) + rar_high |= E1000_RAH_AV; + } + + E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low); + E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high); +} + +/** + * e1000_translate_register_82542 - Translate the proper register offset + * @reg: e1000 register to be read + * + * Registers in 82542 are located in different offsets than other adapters + * even though they function in the same manner. This function takes in + * the name of the register to read and returns the correct offset for + * 82542 silicon. + **/ +u32 e1000_translate_register_82542(u32 reg) +{ + /* + * Some of the 82542 registers are located at different + * offsets than they are in newer adapters. + * Despite the difference in location, the registers + * function in the same manner. + */ + switch (reg) { + case E1000_RA: + reg = 0x00040; + break; + case E1000_RDTR: + reg = 0x00108; + break; + case E1000_RDBAL(0): + reg = 0x00110; + break; + case E1000_RDBAH(0): + reg = 0x00114; + break; + case E1000_RDLEN(0): + reg = 0x00118; + break; + case E1000_RDH(0): + reg = 0x00120; + break; + case E1000_RDT(0): + reg = 0x00128; + break; + case E1000_RDBAL(1): + reg = 0x00138; + break; + case E1000_RDBAH(1): + reg = 0x0013C; + break; + case E1000_RDLEN(1): + reg = 0x00140; + break; + case E1000_RDH(1): + reg = 0x00148; + break; + case E1000_RDT(1): + reg = 0x00150; + break; + case E1000_FCRTH: + reg = 0x00160; + break; + case E1000_FCRTL: + reg = 0x00168; + break; + case E1000_MTA: + reg = 0x00200; + break; + case E1000_TDBAL(0): + reg = 0x00420; + break; + case E1000_TDBAH(0): + reg = 0x00424; + break; + case E1000_TDLEN(0): + reg = 0x00428; + break; + case E1000_TDH(0): + reg = 0x00430; + break; + case E1000_TDT(0): + reg = 0x00438; + break; + case E1000_TIDV: + reg = 0x00440; + break; + case E1000_VFTA: + reg = 0x00600; + break; + case E1000_TDFH: + reg = 0x08010; + break; + case E1000_TDFT: + reg = 0x08018; + break; + default: + break; + } + + return reg; +} + +/** + * e1000_clear_hw_cntrs_82542 - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw) +{ + volatile u32 temp; + + DEBUGFUNC("e1000_clear_hw_cntrs_82542"); + + e1000_clear_hw_cntrs_base_generic(hw); + + temp = E1000_READ_REG(hw, E1000_PRC64); + temp = E1000_READ_REG(hw, E1000_PRC127); + temp = E1000_READ_REG(hw, E1000_PRC255); + temp = E1000_READ_REG(hw, E1000_PRC511); + temp = E1000_READ_REG(hw, E1000_PRC1023); + temp = E1000_READ_REG(hw, E1000_PRC1522); + temp = E1000_READ_REG(hw, E1000_PTC64); + temp = E1000_READ_REG(hw, E1000_PTC127); + temp = E1000_READ_REG(hw, E1000_PTC255); + temp = E1000_READ_REG(hw, E1000_PTC511); + temp = E1000_READ_REG(hw, E1000_PTC1023); + temp = E1000_READ_REG(hw, E1000_PTC1522); +} diff --git a/sys/dev/e1000/e1000_82543.c b/sys/dev/e1000/e1000_82543.c new file mode 100644 index 0000000..80d850f --- /dev/null +++ b/sys/dev/e1000/e1000_82543.c @@ -0,0 +1,1664 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +/* e1000_82543 + * e1000_82544 + */ + +#include "e1000_api.h" + +static s32 e1000_init_phy_params_82543(struct e1000_hw *hw); +static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw); +static s32 e1000_init_mac_params_82543(struct e1000_hw *hw); +static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, + u16 *data); +static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, + u16 data); +static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw); +static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw); +static s32 e1000_reset_hw_82543(struct e1000_hw *hw); +static s32 e1000_init_hw_82543(struct e1000_hw *hw); +static s32 e1000_setup_link_82543(struct e1000_hw *hw); +static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw); +static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw); +static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw); +static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw); +static s32 e1000_led_on_82543(struct e1000_hw *hw); +static s32 e1000_led_off_82543(struct e1000_hw *hw); +static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, + u32 value); +static void e1000_mta_set_82543(struct e1000_hw *hw, u32 hash_value); +static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw); +static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw); +static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw); +static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl); +static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw); +static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl); +static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw); +static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data, + u16 count); +static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw); +static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state); + +struct e1000_dev_spec_82543 { + u32 tbi_compatibility; + bool dma_fairness; + bool init_phy_disabled; +}; + +/** + * e1000_init_phy_params_82543 - Init PHY func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_phy_params_82543(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_init_phy_params_82543"); + + if (hw->phy.media_type != e1000_media_type_copper) { + phy->type = e1000_phy_none; + goto out; + } else { + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper; + } + + phy->addr = 1; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 10000; + phy->type = e1000_phy_m88; + + /* Function Pointers */ + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543; + phy->ops.get_cable_length = e1000_get_cable_length_m88; + phy->ops.get_cfg_done = e1000_get_cfg_done_generic; + phy->ops.read_reg = (hw->mac.type == e1000_82543) + ? e1000_read_phy_reg_82543 + : e1000_read_phy_reg_m88; + phy->ops.reset = (hw->mac.type == e1000_82543) + ? e1000_phy_hw_reset_82543 + : e1000_phy_hw_reset_generic; + phy->ops.write_reg = (hw->mac.type == e1000_82543) + ? e1000_write_phy_reg_82543 + : e1000_write_phy_reg_m88; + phy->ops.get_info = e1000_get_phy_info_m88; + + /* + * The external PHY of the 82543 can be in a funky state. + * Resetting helps us read the PHY registers for acquiring + * the PHY ID. + */ + if (!e1000_init_phy_disabled_82543(hw)) { + ret_val = phy->ops.reset(hw); + if (ret_val) { + DEBUGOUT("Resetting PHY during init failed.\n"); + goto out; + } + msec_delay(20); + } + + ret_val = e1000_get_phy_id(hw); + if (ret_val) + goto out; + + /* Verify phy id */ + switch (hw->mac.type) { + case e1000_82543: + if (phy->id != M88E1000_E_PHY_ID) { + ret_val = -E1000_ERR_PHY; + goto out; + } + break; + case e1000_82544: + if (phy->id != M88E1000_I_PHY_ID) { + ret_val = -E1000_ERR_PHY; + goto out; + } + break; + default: + ret_val = -E1000_ERR_PHY; + goto out; + break; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params_82543 - Init NVM func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + + DEBUGFUNC("e1000_init_nvm_params_82543"); + + nvm->type = e1000_nvm_eeprom_microwire; + nvm->word_size = 64; + nvm->delay_usec = 50; + nvm->address_bits = 6; + nvm->opcode_bits = 3; + + /* Function Pointers */ + nvm->ops.read = e1000_read_nvm_microwire; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.valid_led_default = e1000_valid_led_default_generic; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.write = e1000_write_nvm_microwire; + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_82543 - Init MAC func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_mac_params_82543(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + + DEBUGFUNC("e1000_init_mac_params_82543"); + + /* Set media type */ + switch (hw->device_id) { + case E1000_DEV_ID_82543GC_FIBER: + case E1000_DEV_ID_82544EI_FIBER: + hw->phy.media_type = e1000_media_type_fiber; + break; + default: + hw->phy.media_type = e1000_media_type_copper; + break; + } + + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES; + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pci_generic; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_82543; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_82543; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_82543; + /* physical interface setup */ + mac->ops.setup_physical_interface = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_setup_copper_link_82543 + : e1000_setup_fiber_link_82543; + /* check for link */ + mac->ops.check_for_link = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_check_for_copper_link_82543 + : e1000_check_for_fiber_link_82543; + /* link info */ + mac->ops.get_link_up_info = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_get_speed_and_duplex_copper_generic + : e1000_get_speed_and_duplex_fiber_serdes_generic; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_82543; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_generic; + /* setting MTA */ + mac->ops.mta_set = e1000_mta_set_82543; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_82543; + mac->ops.led_off = e1000_led_off_82543; + /* remove device */ + mac->ops.remove_device = e1000_remove_device_generic; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543; + + hw->dev_spec_size = sizeof(struct e1000_dev_spec_82543); + + /* Device-specific structure allocation */ + ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size); + if (ret_val) + goto out; + + /* Set tbi compatibility */ + if ((hw->mac.type != e1000_82543) || + (hw->phy.media_type == e1000_media_type_fiber)) + e1000_set_tbi_compatibility_82543(hw, FALSE); + +out: + return ret_val; +} + +/** + * e1000_init_function_pointers_82543 - Init func ptrs. + * @hw: pointer to the HW structure + * + * The only function explicitly called by the api module to initialize + * all function pointers and parameters. + **/ +void e1000_init_function_pointers_82543(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_82543"); + + hw->mac.ops.init_params = e1000_init_mac_params_82543; + hw->nvm.ops.init_params = e1000_init_nvm_params_82543; + hw->phy.ops.init_params = e1000_init_phy_params_82543; +} + +/** + * e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status + * @hw: pointer to the HW structure + * + * Returns the current status of 10-bit Interface (TBI) compatibility + * (enabled/disabled). + **/ +static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82543 *dev_spec; + bool state = FALSE; + + DEBUGFUNC("e1000_tbi_compatibility_enabled_82543"); + + if (hw->mac.type != e1000_82543) { + DEBUGOUT("TBI compatibility workaround for 82543 only.\n"); + goto out; + } + + dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec; + + if (!dev_spec) { + DEBUGOUT("dev_spec pointer is set to NULL.\n"); + goto out; + } + + state = (dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED) + ? TRUE : FALSE; + +out: + return state; +} + +/** + * e1000_set_tbi_compatibility_82543 - Set TBI compatibility + * @hw: pointer to the HW structure + * @state: enable/disable TBI compatibility + * + * Enables or disabled 10-bit Interface (TBI) compatibility. + **/ +void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state) +{ + struct e1000_dev_spec_82543 *dev_spec; + + DEBUGFUNC("e1000_set_tbi_compatibility_82543"); + + if (hw->mac.type != e1000_82543) { + DEBUGOUT("TBI compatibility workaround for 82543 only.\n"); + goto out; + } + + dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec; + + if (!dev_spec) { + DEBUGOUT("dev_spec pointer is set to NULL.\n"); + goto out; + } + + if (state) + dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED; + else + dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED; + +out: + return; +} + +/** + * e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status + * @hw: pointer to the HW structure + * + * Returns the current status of 10-bit Interface (TBI) store bad packet (SBP) + * (enabled/disabled). + **/ +bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82543 *dev_spec; + bool state = FALSE; + + DEBUGFUNC("e1000_tbi_sbp_enabled_82543"); + + if (hw->mac.type != e1000_82543) { + DEBUGOUT("TBI compatibility workaround for 82543 only.\n"); + goto out; + } + + dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec; + + if (!dev_spec) { + DEBUGOUT("dev_spec pointer is set to NULL.\n"); + goto out; + } + + state = (dev_spec->tbi_compatibility & TBI_SBP_ENABLED) + ? TRUE : FALSE; + +out: + return state; +} + +/** + * e1000_set_tbi_sbp_82543 - Set TBI SBP + * @hw: pointer to the HW structure + * @state: enable/disable TBI store bad packet + * + * Enables or disabled 10-bit Interface (TBI) store bad packet (SBP). + **/ +static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state) +{ + struct e1000_dev_spec_82543 *dev_spec; + + DEBUGFUNC("e1000_set_tbi_sbp_82543"); + + dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec; + + if (state && e1000_tbi_compatibility_enabled_82543(hw)) + dev_spec->tbi_compatibility |= TBI_SBP_ENABLED; + else + dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED; + + return; +} + +/** + * e1000_init_phy_disabled_82543 - Returns init PHY status + * @hw: pointer to the HW structure + * + * Returns the current status of whether PHY initialization is disabled. + * True if PHY initialization is disabled else FALSE. + **/ +static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82543 *dev_spec; + bool ret_val; + + DEBUGFUNC("e1000_init_phy_disabled_82543"); + + if (hw->mac.type != e1000_82543) { + ret_val = FALSE; + goto out; + } + + dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec; + + if (!dev_spec) { + DEBUGOUT("dev_spec pointer is set to NULL.\n"); + ret_val = FALSE; + goto out; + } + + ret_val = dev_spec->init_phy_disabled; + +out: + return ret_val; +} + +/** + * e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled + * @hw: pointer to the HW structure + * @stats: Struct containing statistic register values + * @frame_len: The length of the frame in question + * @mac_addr: The Ethernet destination address of the frame in question + * @max_frame_size: The maximum frame size + * + * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT + **/ +void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw, + struct e1000_hw_stats *stats, u32 frame_len, + u8 *mac_addr, u32 max_frame_size) +{ + if (!(e1000_tbi_sbp_enabled_82543(hw))) + goto out; + + /* First adjust the frame length. */ + frame_len--; + /* + * We need to adjust the statistics counters, since the hardware + * counters overcount this packet as a CRC error and undercount + * the packet as a good packet + */ + /* This packet should not be counted as a CRC error. */ + stats->crcerrs--; + /* This packet does count as a Good Packet Received. */ + stats->gprc++; + + /* Adjust the Good Octets received counters */ + stats->gorc += frame_len; + + /* + * Is this a broadcast or multicast? Check broadcast first, + * since the test for a multicast frame will test positive on + * a broadcast frame. + */ + if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff)) + /* Broadcast packet */ + stats->bprc++; + else if (*mac_addr & 0x01) + /* Multicast packet */ + stats->mprc++; + + /* + * In this case, the hardware has overcounted the number of + * oversize frames. + */ + if ((frame_len == max_frame_size) && (stats->roc > 0)) + stats->roc--; + + /* + * Adjust the bin counters when the extra byte put the frame in the + * wrong bin. Remember that the frame_len was adjusted above. + */ + if (frame_len == 64) { + stats->prc64++; + stats->prc127--; + } else if (frame_len == 127) { + stats->prc127++; + stats->prc255--; + } else if (frame_len == 255) { + stats->prc255++; + stats->prc511--; + } else if (frame_len == 511) { + stats->prc511++; + stats->prc1023--; + } else if (frame_len == 1023) { + stats->prc1023++; + stats->prc1522--; + } else if (frame_len == 1522) { + stats->prc1522++; + } + +out: + return; +} + +/** + * e1000_read_phy_reg_82543 - Read PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY at offset and stores the information read to data. + **/ +static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data) +{ + u32 mdic; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_phy_reg_82543"); + + if (offset > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", offset); + ret_val = -E1000_ERR_PARAM; + goto out; + } + + /* + * We must first send a preamble through the MDIO pin to signal the + * beginning of an MII instruction. This is done by sending 32 + * consecutive "1" bits. + */ + e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + + /* + * Now combine the next few fields that are required for a read + * operation. We use this method instead of calling the + * e1000_shift_out_mdi_bits routine five different times. The format + * of an MII read instruction consists of a shift out of 14 bits and + * is defined as follows: + * <Preamble><SOF><Op Code><Phy Addr><Offset> + * followed by a shift in of 18 bits. This first two bits shifted in + * are TurnAround bits used to avoid contention on the MDIO pin when a + * READ operation is performed. These two bits are thrown away + * followed by a shift in of 16 bits which contains the desired data. + */ + mdic = (offset | (hw->phy.addr << 5) | + (PHY_OP_READ << 10) | (PHY_SOF << 12)); + + e1000_shift_out_mdi_bits_82543(hw, mdic, 14); + + /* + * Now that we've shifted out the read command to the MII, we need to + * "shift in" the 16-bit value (18 total bits) of the requested PHY + * register address. + */ + *data = e1000_shift_in_mdi_bits_82543(hw); + +out: + return ret_val; +} + +/** + * e1000_write_phy_reg_82543 - Write PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be written + * @data: pointer to the data to be written at offset + * + * Writes data to the PHY at offset. + **/ +static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data) +{ + u32 mdic; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_phy_reg_82543"); + + if (offset > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", offset); + ret_val = -E1000_ERR_PARAM; + goto out; + } + + /* + * We'll need to use the SW defined pins to shift the write command + * out to the PHY. We first send a preamble to the PHY to signal the + * beginning of the MII instruction. This is done by sending 32 + * consecutive "1" bits. + */ + e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + + /* + * Now combine the remaining required fields that will indicate a + * write operation. We use this method instead of calling the + * e1000_shift_out_mdi_bits routine for each field in the command. The + * format of a MII write instruction is as follows: + * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. + */ + mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) | + (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); + mdic <<= 16; + mdic |= (u32) data; + + e1000_shift_out_mdi_bits_82543(hw, mdic, 32); + +out: + return ret_val; +} + +/** + * e1000_raise_mdi_clk_82543 - Raise Management Data Input clock + * @hw: pointer to the HW structure + * @ctrl: pointer to the control register + * + * Raise the management data input clock by setting the MDC bit in the control + * register. + **/ +static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl) +{ + /* + * Raise the clock input to the Management Data Clock (by setting the + * MDC bit), and then delay a sufficient amount of time. + */ + E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC)); + E1000_WRITE_FLUSH(hw); + usec_delay(10); +} + +/** + * e1000_lower_mdi_clk_82543 - Lower Management Data Input clock + * @hw: pointer to the HW structure + * @ctrl: pointer to the control register + * + * Lower the management data input clock by clearing the MDC bit in the + * control register. + **/ +static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl) +{ + /* + * Lower the clock input to the Management Data Clock (by clearing the + * MDC bit), and then delay a sufficient amount of time. + */ + E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC)); + E1000_WRITE_FLUSH(hw); + usec_delay(10); +} + +/** + * e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY + * @hw: pointer to the HW structure + * @data: data to send to the PHY + * @count: number of bits to shift out + * + * We need to shift 'count' bits out to the PHY. So, the value in the + * "data" parameter will be shifted out to the PHY one bit at a time. + * In order to do this, "data" must be broken down into bits. + **/ +static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data, + u16 count) +{ + u32 ctrl, mask; + + /* + * We need to shift "count" number of bits out to the PHY. So, the + * value in the "data" parameter will be shifted out to the PHY one + * bit at a time. In order to do this, "data" must be broken down + * into bits. + */ + mask = 0x01; + mask <<= (count -1); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ + ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); + + while (mask) { + /* + * A "1" is shifted out to the PHY by setting the MDIO bit to + * "1" and then raising and lowering the Management Data Clock. + * A "0" is shifted out to the PHY by setting the MDIO bit to + * "0" and then raising and lowering the clock. + */ + if (data & mask) ctrl |= E1000_CTRL_MDIO; + else ctrl &= ~E1000_CTRL_MDIO; + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + usec_delay(10); + + e1000_raise_mdi_clk_82543(hw, &ctrl); + e1000_lower_mdi_clk_82543(hw, &ctrl); + + mask >>= 1; + } +} + +/** + * e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY + * @hw: pointer to the HW structure + * + * In order to read a register from the PHY, we need to shift 18 bits + * in from the PHY. Bits are "shifted in" by raising the clock input to + * the PHY (setting the MDC bit), and then reading the value of the data out + * MDIO bit. + **/ +static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw) +{ + u32 ctrl; + u16 data = 0; + u8 i; + + /* + * In order to read a register from the PHY, we need to shift in a + * total of 18 bits from the PHY. The first two bit (turnaround) + * times are used to avoid contention on the MDIO pin when a read + * operation is performed. These two bits are ignored by us and + * thrown away. Bits are "shifted in" by raising the input to the + * Management Data Clock (setting the MDC bit) and then reading the + * value of the MDIO bit. + */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* + * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as + * input. + */ + ctrl &= ~E1000_CTRL_MDIO_DIR; + ctrl &= ~E1000_CTRL_MDIO; + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + /* + * Raise and lower the clock before reading in the data. This accounts + * for the turnaround bits. The first clock occurred when we clocked + * out the last bit of the Register Address. + */ + e1000_raise_mdi_clk_82543(hw, &ctrl); + e1000_lower_mdi_clk_82543(hw, &ctrl); + + for (data = 0, i = 0; i < 16; i++) { + data <<= 1; + e1000_raise_mdi_clk_82543(hw, &ctrl); + ctrl = E1000_READ_REG(hw, E1000_CTRL); + /* Check to see if we shifted in a "1". */ + if (ctrl & E1000_CTRL_MDIO) + data |= 1; + e1000_lower_mdi_clk_82543(hw, &ctrl); + } + + e1000_raise_mdi_clk_82543(hw, &ctrl); + e1000_lower_mdi_clk_82543(hw, &ctrl); + + return data; +} + +/** + * e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY + * @hw: pointer to the HW structure + * + * Calls the function to force speed and duplex for the m88 PHY, and + * if the PHY is not auto-negotiating and the speed is forced to 10Mbit, + * then call the function for polarity reversal workaround. + **/ +static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_phy_force_speed_duplex_82543"); + + ret_val = e1000_phy_force_speed_duplex_m88(hw); + if (ret_val) + goto out; + + if (!hw->mac.autoneg && + (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)) + ret_val = e1000_polarity_reversal_workaround_82543(hw); + +out: + return ret_val; +} + +/** + * e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal + * @hw: pointer to the HW structure + * + * When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity + * inadvertently. To workaround the issue, we disable the transmitter on + * the PHY until we have established the link partner's link parameters. + **/ +static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 mii_status_reg; + u16 i; + bool link; + + if (!(hw->phy.ops.write_reg)) + goto out; + + /* Polarity reversal workaround for forced 10F/10H links. */ + + /* Disable the transmitter on the PHY */ + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); + if (ret_val) + goto out; + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); + if (ret_val) + goto out; + + /* + * This loop will early-out if the NO link condition has been met. + * In other words, DO NOT use e1000_phy_has_link_generic() here. + */ + for (i = PHY_FORCE_TIME; i > 0; i--) { + /* + * Read the MII Status Register and wait for Link Status bit + * to be clear. + */ + + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + goto out; + + if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) + break; + msec_delay_irq(100); + } + + /* Recommended delay time after link has been lost */ + msec_delay_irq(1000); + + /* Now we will re-enable the transmitter on the PHY */ + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); + if (ret_val) + goto out; + msec_delay_irq(50); + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); + if (ret_val) + goto out; + msec_delay_irq(50); + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); + if (ret_val) + goto out; + msec_delay_irq(50); + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); + if (ret_val) + goto out; + + /* + * Read the MII Status Register and wait for Link Status bit + * to be set. + */ + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link); + if (ret_val) + goto out; + +out: + return ret_val; +} + +/** + * e1000_phy_hw_reset_82543 - PHY hardware reset + * @hw: pointer to the HW structure + * + * Sets the PHY_RESET_DIR bit in the extended device control register + * to put the PHY into a reset and waits for completion. Once the reset + * has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out + * of reset. This is a function pointer entry point called by the api module. + **/ +static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw) +{ + u32 ctrl_ext; + s32 ret_val; + + DEBUGFUNC("e1000_phy_hw_reset_82543"); + + /* + * Read the Extended Device Control Register, assert the PHY_RESET_DIR + * bit to put the PHY into reset... + */ + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; + ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + + msec_delay(10); + + /* ...then take it out of reset. */ + ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + + usec_delay(150); + + if (!(hw->phy.ops.get_cfg_done)) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.get_cfg_done(hw); + + return ret_val; +} + +/** + * e1000_reset_hw_82543 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. This is a + * function pointer entry point called by the api module. + **/ +static s32 e1000_reset_hw_82543(struct e1000_hw *hw) +{ + u32 ctrl, icr; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_reset_hw_82543"); + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + e1000_set_tbi_sbp_82543(hw, FALSE); + + /* + * Delay to allow any outstanding PCI transactions to complete before + * resetting the device + */ + msec_delay(10); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n"); + if (hw->mac.type == e1000_82543) { + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + } else { + /* + * The 82544 can't ACK the 64-bit write when issuing the + * reset, so use IO-mapping as a workaround. + */ + E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + } + + /* + * After MAC reset, force reload of NVM to restore power-on + * settings to device. + */ + hw->nvm.ops.reload(hw); + msec_delay(2); + + /* Masking off and clearing any pending interrupts */ + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + icr = E1000_READ_REG(hw, E1000_ICR); + + return ret_val; +} + +/** + * e1000_init_hw_82543 - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. + **/ +static s32 e1000_init_hw_82543(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + struct e1000_dev_spec_82543 *dev_spec; + u32 ctrl; + s32 ret_val; + u16 i; + + DEBUGFUNC("e1000_init_hw_82543"); + + dev_spec = (struct e1000_dev_spec_82543 *)hw->dev_spec; + + if (!dev_spec) { + DEBUGOUT("dev_spec pointer is set to NULL.\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + /* Disabling VLAN filtering */ + E1000_WRITE_REG(hw, E1000_VET, 0); + mac->ops.clear_vfta(hw); + + /* Setup the receive address. */ + e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) { + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + E1000_WRITE_FLUSH(hw); + } + + /* + * Set the PCI priority bit correctly in the CTRL register. This + * determines if the adapter gives priority to receives, or if it + * gives equal priority to transmits and receives. + */ + if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) { + ctrl = E1000_READ_REG(hw, E1000_CTRL); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR); + } + + e1000_pcix_mmrbc_workaround_generic(hw); + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_82543(hw); + +out: + return ret_val; +} + +/** + * e1000_setup_link_82543 - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Read the EEPROM to determine the initial polarity value and write the + * extended device control register with the information before calling + * the generic setup link function, which does the following: + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +static s32 e1000_setup_link_82543(struct e1000_hw *hw) +{ + u32 ctrl_ext; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_setup_link_82543"); + + /* + * Take the 4 bits from NVM word 0xF that determine the initial + * polarity value for the SW controlled pins, and setup the + * Extended Device Control reg with that info. + * This is needed because one of the SW controlled pins is used for + * signal detection. So this should be done before phy setup. + */ + if (hw->mac.type == e1000_82543) { + ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) << + NVM_SWDPIO_EXT_SHIFT); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + } + + ret_val = e1000_setup_link_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_setup_copper_link_82543 - Configure copper link settings + * @hw: pointer to the HW structure + * + * Configures the link for auto-neg or forced speed and duplex. Then we check + * for link, once link is established calls to configure collision distance + * and flow control are called. + **/ +static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + bool link; + + DEBUGFUNC("e1000_setup_copper_link_82543"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU; + /* + * With 82543, we need to force speed and duplex on the MAC + * equal to what the PHY speed and duplex configuration is. + * In addition, we need to perform a hardware reset on the + * PHY to take it out of reset. + */ + if (hw->mac.type == e1000_82543) { + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + ret_val = hw->phy.ops.reset(hw); + if (ret_val) + goto out; + hw->phy.reset_disable = FALSE; + } else { + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + } + + /* Set MDI/MDI-X, Polarity Reversal, and downshift settings */ + ret_val = e1000_copper_link_setup_m88(hw); + if (ret_val) + goto out; + + if (hw->mac.autoneg) { + /* + * Setup autoneg and flow control advertisement and perform + * autonegotiation. + */ + ret_val = e1000_copper_link_autoneg(hw); + if (ret_val) + goto out; + } else { + /* + * PHY will be set to 10H, 10F, 100H or 100F + * depending on user settings. + */ + DEBUGOUT("Forcing Speed and Duplex\n"); + ret_val = e1000_phy_force_speed_duplex_82543(hw); + if (ret_val) { + DEBUGOUT("Error Forcing Speed and Duplex\n"); + goto out; + } + } + + /* + * Check link status. Wait up to 100 microseconds for link to become + * valid. + */ + ret_val = e1000_phy_has_link_generic(hw, + COPPER_LINK_UP_LIMIT, + 10, + &link); + if (ret_val) + goto out; + + + if (link) { + DEBUGOUT("Valid link established!!!\n"); + /* Config the MAC and PHY after link is up */ + if (hw->mac.type == e1000_82544) { + e1000_config_collision_dist_generic(hw); + } else { + ret_val = e1000_config_mac_to_phy_82543(hw); + if (ret_val) + goto out; + } + ret_val = e1000_config_fc_after_link_up_generic(hw); + } else { + DEBUGOUT("Unable to establish link!!!\n"); + } + +out: + return ret_val; +} + +/** + * e1000_setup_fiber_link_82543 - Setup link for fiber + * @hw: pointer to the HW structure + * + * Configures collision distance and flow control for fiber links. Upon + * successful setup, poll for link. + **/ +static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + + DEBUGFUNC("e1000_setup_fiber_link_82543"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* Take the link out of reset */ + ctrl &= ~E1000_CTRL_LRST; + + e1000_config_collision_dist_generic(hw); + + ret_val = e1000_commit_fc_settings_generic(hw); + if (ret_val) + goto out; + + DEBUGOUT("Auto-negotiation enabled\n"); + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + msec_delay(1); + + /* + * For these adapters, the SW definable pin 1 is cleared when the + * optics detect a signal. If we have a signal, then poll for a + * "Link-Up" indication. + */ + if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) { + ret_val = e1000_poll_fiber_serdes_link_generic(hw); + } else { + DEBUGOUT("No signal detected\n"); + } + +out: + return ret_val; +} + +/** + * e1000_check_for_copper_link_82543 - Check for link (Copper) + * @hw: pointer to the HW structure + * + * Checks the phy for link, if link exists, do the following: + * - check for downshift + * - do polarity workaround (if necessary) + * - configure collision distance + * - configure flow control after link up + * - configure tbi compatibility + **/ +static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 icr, rctl; + s32 ret_val; + u16 speed, duplex; + bool link; + + DEBUGFUNC("e1000_check_for_copper_link_82543"); + + if (!mac->get_link_status) { + ret_val = E1000_SUCCESS; + goto out; + } + + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + goto out; + + if (!link) + goto out; /* No link detected */ + + mac->get_link_status = FALSE; + + e1000_check_downshift_generic(hw); + + /* + * If we are forcing speed/duplex, then we can return since + * we have already determined whether we have link or not. + */ + if (!mac->autoneg) { + /* + * If speed and duplex are forced to 10H or 10F, then we will + * implement the polarity reversal workaround. We disable + * interrupts first, and upon returning, place the devices + * interrupt state to its previous value except for the link + * status change interrupt which will happened due to the + * execution of this workaround. + */ + if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) { + E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); + ret_val = e1000_polarity_reversal_workaround_82543(hw); + icr = E1000_READ_REG(hw, E1000_ICR); + E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC)); + E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK); + } + + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + /* + * We have a M88E1000 PHY and Auto-Neg is enabled. If we + * have Si on board that is 82544 or newer, Auto + * Speed Detection takes care of MAC speed/duplex + * configuration. So we only need to configure Collision + * Distance in the MAC. Otherwise, we need to force + * speed/duplex on the MAC to the current PHY speed/duplex + * settings. + */ + if (mac->type == e1000_82544) + e1000_config_collision_dist_generic(hw); + else { + ret_val = e1000_config_mac_to_phy_82543(hw); + if (ret_val) { + DEBUGOUT("Error configuring MAC to PHY settings\n"); + goto out; + } + } + + /* + * Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + } + + /* + * At this point we know that we are on copper and we have + * auto-negotiated link. These are conditions for checking the link + * partner capability register. We use the link speed to determine if + * TBI compatibility needs to be turned on or off. If the link is not + * at gigabit speed, then TBI compatibility is not needed. If we are + * at gigabit speed, we turn on TBI compatibility. + */ + if (e1000_tbi_compatibility_enabled_82543(hw)) { + ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT("Error getting link speed and duplex\n"); + return ret_val; + } + if (speed != SPEED_1000) { + /* + * If link speed is not set to gigabit speed, + * we do not need to enable TBI compatibility. + */ + if (e1000_tbi_sbp_enabled_82543(hw)) { + /* + * If we previously were in the mode, + * turn it off. + */ + e1000_set_tbi_sbp_82543(hw, FALSE); + rctl = E1000_READ_REG(hw, E1000_RCTL); + rctl &= ~E1000_RCTL_SBP; + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + } + } else { + /* + * If TBI compatibility is was previously off, + * turn it on. For compatibility with a TBI link + * partner, we will store bad packets. Some + * frames have an additional byte on the end and + * will look like CRC errors to to the hardware. + */ + if (!e1000_tbi_sbp_enabled_82543(hw)) { + e1000_set_tbi_sbp_82543(hw, TRUE); + rctl = E1000_READ_REG(hw, E1000_RCTL); + rctl |= E1000_RCTL_SBP; + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + } + } + } +out: + return ret_val; +} + +/** + * e1000_check_for_fiber_link_82543 - Check for link (Fiber) + * @hw: pointer to the HW structure + * + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + **/ +static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw, ctrl, status; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_check_for_fiber_link_82543"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + status = E1000_READ_REG(hw, E1000_STATUS); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + + /* + * If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), the cable is plugged in (we have signal), + * and our link partner is not trying to auto-negotiate with us (we + * are receiving idles or data), we need to force link up. We also + * need to give auto-negotiation time to complete, in case the cable + * was just plugged in. The autoneg_failed flag does this. + */ + /* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */ + if ((!(ctrl & E1000_CTRL_SWDPIN1)) && + (!(status & E1000_STATUS_LU)) && + (!(rxcw & E1000_RXCW_C))) { + if (mac->autoneg_failed == 0) { + mac->autoneg_failed = 1; + ret_val = 0; + goto out; + } + DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + goto out; + } + } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + /* + * If we are forcing link and we are receiving /C/ ordered + * sets, re-enable auto-negotiation in the TXCW register + * and disable forced link in the Device Control register + * in an attempt to auto-negotiate with our link partner. + */ + DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); + E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); + + mac->serdes_has_link = TRUE; + } + +out: + return ret_val; +} + +/** + * e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings + * @hw: pointer to the HW structure + * + * For the 82543 silicon, we need to set the MAC to match the settings + * of the PHY, even if the PHY is auto-negotiating. + **/ +static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val = E1000_SUCCESS; + u16 phy_data; + + DEBUGFUNC("e1000_config_mac_to_phy_82543"); + + if (!(hw->phy.ops.read_reg)) + goto out; + + /* Set the bits to force speed and duplex */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); + + /* + * Set up duplex in the Device Control and Transmit Control + * registers depending on negotiated values. + */ + ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + goto out; + + ctrl &= ~E1000_CTRL_FD; + if (phy_data & M88E1000_PSSR_DPLX) + ctrl |= E1000_CTRL_FD; + + e1000_config_collision_dist_generic(hw); + + /* + * Set up speed in the Device Control register depending on + * negotiated values. + */ + if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) + ctrl |= E1000_CTRL_SPD_1000; + else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) + ctrl |= E1000_CTRL_SPD_100; + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + +out: + return ret_val; +} + +/** + * e1000_write_vfta_82543 - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: the 32-bit offset in which to write the value to. + * @value: the 32-bit value to write at location offset. + * + * This writes a 32-bit value to a 32-bit offset in the VLAN filter + * table. + **/ +static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value) +{ + u32 temp; + + DEBUGFUNC("e1000_write_vfta_82543"); + + if ((hw->mac.type == e1000_82544) && (offset & 1)) { + temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1); + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp); + E1000_WRITE_FLUSH(hw); + } else { + e1000_write_vfta_generic(hw, offset, value); + } +} + +/** + * e1000_mta_set_82543 - Set multicast filter table address + * @hw: pointer to the HW structure + * @hash_value: determines the MTA register and bit to set + * + * The multicast table address is a register array of 32-bit registers. + * The hash_value is used to determine what register the bit is in, the + * current value is read, the new bit is OR'd in and the new value is + * written back into the register. + **/ +static void e1000_mta_set_82543(struct e1000_hw *hw, u32 hash_value) +{ + u32 hash_bit, hash_reg, mta, temp; + + DEBUGFUNC("e1000_mta_set_82543"); + + hash_reg = (hash_value >> 5); + + /* + * If we are on an 82544 and we are trying to write an odd offset + * in the MTA, save off the previous entry before writing and + * restore the old value after writing. + */ + if ((hw->mac.type == e1000_82544) && (hash_reg & 1)) { + hash_reg &= (hw->mac.mta_reg_count - 1); + hash_bit = hash_value & 0x1F; + mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg); + mta |= (1 << hash_bit); + temp = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg - 1); + + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg - 1, temp); + E1000_WRITE_FLUSH(hw); + } else { + e1000_mta_set_generic(hw, hash_value); + } +} + +/** + * e1000_led_on_82543 - Turn on SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED on. This is a function pointer entry point + * called by the api module. + **/ +static s32 e1000_led_on_82543(struct e1000_hw *hw) +{ + u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGFUNC("e1000_led_on_82543"); + + if (hw->mac.type == e1000_82544 && + hw->phy.media_type == e1000_media_type_copper) { + /* Clear SW-definable Pin 0 to turn on the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else { + /* Fiber 82544 and all 82543 use this method */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + return E1000_SUCCESS; +} + +/** + * e1000_led_off_82543 - Turn off SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED off. This is a function pointer entry point + * called by the api module. + **/ +static s32 e1000_led_off_82543(struct e1000_hw *hw) +{ + u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGFUNC("e1000_led_off_82543"); + + if (hw->mac.type == e1000_82544 && + hw->phy.media_type == e1000_media_type_copper) { + /* Set SW-definable Pin 0 to turn off the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else { + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + return E1000_SUCCESS; +} + +/** + * e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw) +{ + volatile u32 temp; + + DEBUGFUNC("e1000_clear_hw_cntrs_82543"); + + e1000_clear_hw_cntrs_base_generic(hw); + + temp = E1000_READ_REG(hw, E1000_PRC64); + temp = E1000_READ_REG(hw, E1000_PRC127); + temp = E1000_READ_REG(hw, E1000_PRC255); + temp = E1000_READ_REG(hw, E1000_PRC511); + temp = E1000_READ_REG(hw, E1000_PRC1023); + temp = E1000_READ_REG(hw, E1000_PRC1522); + temp = E1000_READ_REG(hw, E1000_PTC64); + temp = E1000_READ_REG(hw, E1000_PTC127); + temp = E1000_READ_REG(hw, E1000_PTC255); + temp = E1000_READ_REG(hw, E1000_PTC511); + temp = E1000_READ_REG(hw, E1000_PTC1023); + temp = E1000_READ_REG(hw, E1000_PTC1522); + + temp = E1000_READ_REG(hw, E1000_ALGNERRC); + temp = E1000_READ_REG(hw, E1000_RXERRC); + temp = E1000_READ_REG(hw, E1000_TNCRS); + temp = E1000_READ_REG(hw, E1000_CEXTERR); + temp = E1000_READ_REG(hw, E1000_TSCTC); + temp = E1000_READ_REG(hw, E1000_TSCTFC); +} diff --git a/sys/dev/e1000/e1000_82543.h b/sys/dev/e1000/e1000_82543.h new file mode 100644 index 0000000..60e5c15 --- /dev/null +++ b/sys/dev/e1000/e1000_82543.h @@ -0,0 +1,57 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_82543_H_ +#define _E1000_82543_H_ + +#define PHY_PREAMBLE 0xFFFFFFFF +#define PHY_PREAMBLE_SIZE 32 +#define PHY_SOF 0x1 +#define PHY_OP_READ 0x2 +#define PHY_OP_WRITE 0x1 +#define PHY_TURNAROUND 0x2 + +#define TBI_COMPAT_ENABLED 0x1 /* Global "knob" for the workaround */ +/* If TBI_COMPAT_ENABLED, then this is the current state (on/off) */ +#define TBI_SBP_ENABLED 0x2 + +void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw, + struct e1000_hw_stats *stats, + u32 frame_len, u8 *mac_addr, + u32 max_frame_size); +void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, + bool state); +bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw); + +#endif diff --git a/sys/dev/e1000/e1000_82571.c b/sys/dev/e1000/e1000_82571.c new file mode 100644 index 0000000..f4f6485 --- /dev/null +++ b/sys/dev/e1000/e1000_82571.c @@ -0,0 +1,1542 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +/* e1000_82571 + * e1000_82572 + * e1000_82573 + * e1000_82574 + */ + +#include "e1000_api.h" + +static s32 e1000_init_phy_params_82571(struct e1000_hw *hw); +static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw); +static s32 e1000_init_mac_params_82571(struct e1000_hw *hw); +static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw); +static void e1000_release_nvm_82571(struct e1000_hw *hw); +static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw); +static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw); +static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw); +static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, + bool active); +static s32 e1000_reset_hw_82571(struct e1000_hw *hw); +static s32 e1000_init_hw_82571(struct e1000_hw *hw); +static void e1000_clear_vfta_82571(struct e1000_hw *hw); +static bool e1000_check_mng_mode_82574(struct e1000_hw *hw); +static s32 e1000_led_on_82574(struct e1000_hw *hw); +static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count, + u32 rar_used_count, u32 rar_count); +static s32 e1000_setup_link_82571(struct e1000_hw *hw); +static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); +static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); +static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data); +static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); +static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw); +static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); +static s32 e1000_get_phy_id_82571(struct e1000_hw *hw); +static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw); +static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); +static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw); +static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw); + +struct e1000_dev_spec_82571 { + bool laa_is_present; +}; + +/** + * e1000_init_phy_params_82571 - Init PHY func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_phy_params_82571(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_init_phy_params_82571"); + + if (hw->phy.media_type != e1000_media_type_copper) { + phy->type = e1000_phy_none; + goto out; + } + + phy->addr = 1; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 100; + + phy->ops.acquire = e1000_get_hw_semaphore_82571; + phy->ops.check_polarity = e1000_check_polarity_igp; + phy->ops.check_reset_block = e1000_check_reset_block_generic; + phy->ops.release = e1000_put_hw_semaphore_82571; + phy->ops.reset = e1000_phy_hw_reset_generic; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82571; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_82571; + + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + phy->type = e1000_phy_igp_2; + phy->ops.get_cfg_done = e1000_get_cfg_done_82571; + phy->ops.get_info = e1000_get_phy_info_igp; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; + phy->ops.get_cable_length = e1000_get_cable_length_igp_2; + phy->ops.read_reg = e1000_read_phy_reg_igp; + phy->ops.write_reg = e1000_write_phy_reg_igp; + + /* This uses above function pointers */ + ret_val = e1000_get_phy_id_82571(hw); + + /* Verify PHY ID */ + if (phy->id != IGP01E1000_I_PHY_ID) { + ret_val = -E1000_ERR_PHY; + goto out; + } + break; + case e1000_82573: + phy->type = e1000_phy_m88; + phy->ops.get_cfg_done = e1000_get_cfg_done_generic; + phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; + phy->ops.get_cable_length = e1000_get_cable_length_m88; + phy->ops.read_reg = e1000_read_phy_reg_m88; + phy->ops.write_reg = e1000_write_phy_reg_m88; + + /* This uses above function pointers */ + ret_val = e1000_get_phy_id_82571(hw); + + /* Verify PHY ID */ + if (phy->id != M88E1111_I_PHY_ID) { + ret_val = -E1000_ERR_PHY; + DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id); + goto out; + } + break; + case e1000_82574: + phy->type = e1000_phy_bm; + phy->ops.get_cfg_done = e1000_get_cfg_done_generic; + phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; + phy->ops.get_cable_length = e1000_get_cable_length_m88; + phy->ops.read_reg = e1000_read_phy_reg_bm2; + phy->ops.write_reg = e1000_write_phy_reg_bm2; + + /* This uses above function pointers */ + ret_val = e1000_get_phy_id_82571(hw); + /* Verify PHY ID */ + if (phy->id != BME1000_E_PHY_ID_R2) { + ret_val = -E1000_ERR_PHY; + DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id); + goto out; + } + break; + default: + ret_val = -E1000_ERR_PHY; + goto out; + break; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params_82571 - Init NVM func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + u16 size; + + DEBUGFUNC("e1000_init_nvm_params_82571"); + + nvm->opcode_bits = 8; + nvm->delay_usec = 1; + switch (nvm->override) { + case e1000_nvm_override_spi_large: + nvm->page_size = 32; + nvm->address_bits = 16; + break; + case e1000_nvm_override_spi_small: + nvm->page_size = 8; + nvm->address_bits = 8; + break; + default: + nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; + nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; + break; + } + + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + if (((eecd >> 15) & 0x3) == 0x3) { + nvm->type = e1000_nvm_flash_hw; + nvm->word_size = 2048; + /* + * Autonomous Flash update bit must be cleared due + * to Flash update issue. + */ + eecd &= ~E1000_EECD_AUPDEN; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + break; + } + /* Fall Through */ + default: + nvm->type = e1000_nvm_eeprom_spi; + size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> + E1000_EECD_SIZE_EX_SHIFT); + /* + * Added to a constant, "size" becomes the left-shift value + * for setting word_size. + */ + size += NVM_WORD_SIZE_BASE_SHIFT; + + /* EEPROM access above 16k is unsupported */ + if (size > 14) + size = 14; + nvm->word_size = 1 << size; + break; + } + + /* Function Pointers */ + nvm->ops.acquire = e1000_acquire_nvm_82571; + nvm->ops.read = e1000_read_nvm_eerd; + nvm->ops.release = e1000_release_nvm_82571; + nvm->ops.update = e1000_update_nvm_checksum_82571; + nvm->ops.validate = e1000_validate_nvm_checksum_82571; + nvm->ops.valid_led_default = e1000_valid_led_default_82571; + nvm->ops.write = e1000_write_nvm_82571; + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_82571 - Init MAC func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_mac_params_82571(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_init_mac_params_82571"); + + /* Set media type */ + switch (hw->device_id) { + case E1000_DEV_ID_82571EB_FIBER: + case E1000_DEV_ID_82572EI_FIBER: + case E1000_DEV_ID_82571EB_QUAD_FIBER: + hw->phy.media_type = e1000_media_type_fiber; + break; + case E1000_DEV_ID_82571EB_SERDES: + case E1000_DEV_ID_82571EB_SERDES_DUAL: + case E1000_DEV_ID_82571EB_SERDES_QUAD: + case E1000_DEV_ID_82572EI_SERDES: + hw->phy.media_type = e1000_media_type_internal_serdes; + break; + default: + hw->phy.media_type = e1000_media_type_copper; + break; + } + + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES; + /* Set if part includes ASF firmware */ + mac->asf_firmware_present = TRUE; + /* Set if manageability features are enabled. */ + mac->arc_subsystem_valid = + (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK) + ? TRUE : FALSE; + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_82571; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_82571; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_82571; + /* physical interface link setup */ + mac->ops.setup_physical_interface = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_setup_copper_link_82571 + : e1000_setup_fiber_serdes_link_82571; + /* check for link */ + switch (hw->phy.media_type) { + case e1000_media_type_copper: + mac->ops.check_for_link = e1000_check_for_copper_link_generic; + break; + case e1000_media_type_fiber: + mac->ops.check_for_link = e1000_check_for_fiber_link_generic; + break; + case e1000_media_type_internal_serdes: + mac->ops.check_for_link = e1000_check_for_serdes_link_generic; + break; + default: + ret_val = -E1000_ERR_CONFIG; + goto out; + break; + } + /* check management mode */ + switch (hw->mac.type) { + case e1000_82574: + mac->ops.check_mng_mode = e1000_check_mng_mode_82574; + break; + default: + mac->ops.check_mng_mode = e1000_check_mng_mode_generic; + break; + } + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_82571; + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_generic; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_82571; + /* setting MTA */ + mac->ops.mta_set = e1000_mta_set_generic; + /* read mac address */ + mac->ops.read_mac_addr = e1000_read_mac_addr_82571; + /* blink LED */ + mac->ops.blink_led = e1000_blink_led_generic; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_generic; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_generic; + /* turn on/off LED */ + switch (hw->mac.type) { + case e1000_82574: + mac->ops.led_on = e1000_led_on_82574; + break; + default: + mac->ops.led_on = e1000_led_on_generic; + break; + } + mac->ops.led_off = e1000_led_off_generic; + /* remove device */ + mac->ops.remove_device = e1000_remove_device_generic; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82571; + /* link info */ + mac->ops.get_link_up_info = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_get_speed_and_duplex_copper_generic + : e1000_get_speed_and_duplex_fiber_serdes_generic; + + hw->dev_spec_size = sizeof(struct e1000_dev_spec_82571); + + /* Device-specific structure allocation */ + ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size); + +out: + return ret_val; +} + +/** + * e1000_init_function_pointers_82571 - Init func ptrs. + * @hw: pointer to the HW structure + * + * The only function explicitly called by the api module to initialize + * all function pointers and parameters. + **/ +void e1000_init_function_pointers_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_82571"); + + hw->mac.ops.init_params = e1000_init_mac_params_82571; + hw->nvm.ops.init_params = e1000_init_nvm_params_82571; + hw->phy.ops.init_params = e1000_init_phy_params_82571; +} + +/** + * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision + * @hw: pointer to the HW structure + * + * Reads the PHY registers and stores the PHY ID and possibly the PHY + * revision in the hardware structure. + **/ +static s32 e1000_get_phy_id_82571(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 phy_id = 0; + + DEBUGFUNC("e1000_get_phy_id_82571"); + + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + /* + * The 82571 firmware may still be configuring the PHY. + * In this case, we cannot access the PHY until the + * configuration is done. So we explicitly set the + * PHY ID. + */ + phy->id = IGP01E1000_I_PHY_ID; + break; + case e1000_82573: + ret_val = e1000_get_phy_id(hw); + break; + case e1000_82574: + ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); + if (ret_val) + goto out; + + phy->id = (u32)(phy_id << 16); + usec_delay(20); + ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); + if (ret_val) + goto out; + + phy->id |= (u32)(phy_id); + phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); + break; + default: + ret_val = -E1000_ERR_PHY; + break; + } + +out: + return ret_val; +} + +/** + * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore + * @hw: pointer to the HW structure + * + * Acquire the HW semaphore to access the PHY or NVM + **/ +static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw) +{ + u32 swsm; + s32 ret_val = E1000_SUCCESS; + s32 timeout = hw->nvm.word_size + 1; + s32 i = 0; + + DEBUGFUNC("e1000_get_hw_semaphore_82571"); + + /* Get the FW semaphore. */ + for (i = 0; i < timeout; i++) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); + + /* Semaphore acquired if bit latched */ + if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) + break; + + usec_delay(50); + } + + if (i == timeout) { + /* Release semaphores */ + e1000_put_hw_semaphore_generic(hw); + DEBUGOUT("Driver can't access the NVM\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_put_hw_semaphore_82571 - Release hardware semaphore + * @hw: pointer to the HW structure + * + * Release hardware semaphore used to access the PHY or NVM + **/ +static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw) +{ + u32 swsm; + + DEBUGFUNC("e1000_put_hw_semaphore_82571"); + + swsm = E1000_READ_REG(hw, E1000_SWSM); + + swsm &= ~E1000_SWSM_SWESMBI; + + E1000_WRITE_REG(hw, E1000_SWSM, swsm); +} + +/** + * e1000_acquire_nvm_82571 - Request for access to the EEPROM + * @hw: pointer to the HW structure + * + * To gain access to the EEPROM, first we must obtain a hardware semaphore. + * Then for non-82573 hardware, set the EEPROM access request bit and wait + * for EEPROM access grant bit. If the access grant bit is not set, release + * hardware semaphore. + **/ +static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_acquire_nvm_82571"); + + ret_val = e1000_get_hw_semaphore_82571(hw); + if (ret_val) + goto out; + + if (hw->mac.type != e1000_82573 && hw->mac.type != e1000_82574) + ret_val = e1000_acquire_nvm_generic(hw); + + if (ret_val) + e1000_put_hw_semaphore_82571(hw); + +out: + return ret_val; +} + +/** + * e1000_release_nvm_82571 - Release exclusive access to EEPROM + * @hw: pointer to the HW structure + * + * Stop any current commands to the EEPROM and clear the EEPROM request bit. + **/ +static void e1000_release_nvm_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_release_nvm_82571"); + + e1000_release_nvm_generic(hw); + e1000_put_hw_semaphore_82571(hw); +} + +/** + * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface + * @hw: pointer to the HW structure + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the EEPROM + * + * For non-82573 silicon, write data to EEPROM at offset using SPI interface. + * + * If e1000_update_nvm_checksum is not called after this function, the + * EEPROM will most likely contain an invalid checksum. + **/ +static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_nvm_82571"); + + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); + break; + case e1000_82571: + case e1000_82572: + ret_val = e1000_write_nvm_spi(hw, offset, words, data); + break; + default: + ret_val = -E1000_ERR_NVM; + break; + } + + return ret_val; +} + +/** + * e1000_update_nvm_checksum_82571 - Update EEPROM checksum + * @hw: pointer to the HW structure + * + * Updates the EEPROM checksum by reading/adding each word of the EEPROM + * up to the checksum. Then calculates the EEPROM checksum and writes the + * value to the EEPROM. + **/ +static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) +{ + u32 eecd; + s32 ret_val; + u16 i; + + DEBUGFUNC("e1000_update_nvm_checksum_82571"); + + ret_val = e1000_update_nvm_checksum_generic(hw); + if (ret_val) + goto out; + + /* + * If our nvm is an EEPROM, then we're done + * otherwise, commit the checksum to the flash NVM. + */ + if (hw->nvm.type != e1000_nvm_flash_hw) + goto out; + + /* Check for pending operations. */ + for (i = 0; i < E1000_FLASH_UPDATES; i++) { + msec_delay(1); + if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD) == 0) + break; + } + + if (i == E1000_FLASH_UPDATES) { + ret_val = -E1000_ERR_NVM; + goto out; + } + + /* Reset the firmware if using STM opcode. */ + if ((E1000_READ_REG(hw, E1000_FLOP) & 0xFF00) == E1000_STM_OPCODE) { + /* + * The enabling of and the actual reset must be done + * in two write cycles. + */ + E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET_ENABLE); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET); + } + + /* Commit the write to flash */ + eecd = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + + for (i = 0; i < E1000_FLASH_UPDATES; i++) { + msec_delay(1); + if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD) == 0) + break; + } + + if (i == E1000_FLASH_UPDATES) { + ret_val = -E1000_ERR_NVM; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Calculates the EEPROM checksum by reading/adding each word of the EEPROM + * and then verifies that the sum of the EEPROM is equal to 0xBABA. + **/ +static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_validate_nvm_checksum_82571"); + + if (hw->nvm.type == e1000_nvm_flash_hw) + e1000_fix_nvm_checksum_82571(hw); + + return e1000_validate_nvm_checksum_generic(hw); +} + +/** + * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon + * @hw: pointer to the HW structure + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the EEPROM + * + * After checking for invalid values, poll the EEPROM to ensure the previous + * command has completed before trying to write the next word. After write + * poll for completion. + * + * If e1000_update_nvm_checksum is not called after this function, the + * EEPROM will most likely contain an invalid checksum. + **/ +static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i, eewr = 0; + s32 ret_val = 0; + + DEBUGFUNC("e1000_write_nvm_eewr_82571"); + + /* + * A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + for (i = 0; i < words; i++) { + eewr = (data[i] << E1000_NVM_RW_REG_DATA) | + ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | + E1000_NVM_RW_REG_START; + + ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); + if (ret_val) + break; + + E1000_WRITE_REG(hw, E1000_EEWR, eewr); + + ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); + if (ret_val) + break; + } + +out: + return ret_val; +} + +/** + * e1000_get_cfg_done_82571 - Poll for configuration done + * @hw: pointer to the HW structure + * + * Reads the management control register for the config done bit to be set. + **/ +static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) +{ + s32 timeout = PHY_CFG_TIMEOUT; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_get_cfg_done_82571"); + + while (timeout) { + if (E1000_READ_REG(hw, E1000_EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0) + break; + msec_delay(1); + timeout--; + } + if (!timeout) { + DEBUGOUT("MNG configuration cycle has not completed.\n"); + ret_val = -E1000_ERR_RESET; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state + * @hw: pointer to the HW structure + * @active: TRUE to enable LPLU, FALSE to disable + * + * Sets the LPLU D0 state according to the active flag. When activating LPLU + * this function also disables smart speed and vice versa. LPLU will not be + * activated unless the device autonegotiation advertisement meets standards + * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function + * pointer entry point only called by PHY setup routines. + **/ +static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_set_d0_lplu_state_82571"); + + if (!(phy->ops.read_reg)) + goto out; + + ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); + if (ret_val) + goto out; + + if (active) { + data |= IGP02E1000_PM_D0_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + if (ret_val) + goto out; + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } else { + data &= ~IGP02E1000_PM_D0_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } + } + +out: + return ret_val; +} + +/** + * e1000_reset_hw_82571 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. This is a + * function pointer entry point called by the api module. + **/ +static s32 e1000_reset_hw_82571(struct e1000_hw *hw) +{ + u32 ctrl, extcnf_ctrl, ctrl_ext, icr; + s32 ret_val; + u16 i = 0; + + DEBUGFUNC("e1000_reset_hw_82571"); + + /* + * Prevent the PCI-E bus from sticking if there is no TLP connection + * on the last TLP read/write transaction when MAC is reset. + */ + ret_val = e1000_disable_pcie_master_generic(hw); + if (ret_val) { + DEBUGOUT("PCI-E Master disable polling has failed.\n"); + } + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + msec_delay(10); + + /* + * Must acquire the MDIO ownership before MAC reset. + * Ownership defaults to firmware after a reset. + */ + if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) { + extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; + + do { + E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); + extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + + if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) + break; + + extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; + + msec_delay(2); + i++; + } while (i < MDIO_OWNERSHIP_TIMEOUT); + } + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGOUT("Issuing a global reset to MAC\n"); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + + if (hw->nvm.type == e1000_nvm_flash_hw) { + usec_delay(10); + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + } + + ret_val = e1000_get_auto_rd_done_generic(hw); + if (ret_val) + /* We don't want to continue accessing MAC registers. */ + goto out; + + /* + * Phy configuration from NVM just starts after EECD_AUTO_RD is set. + * Need to wait for Phy configuration completion before accessing + * NVM and Phy. + */ + if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) + msec_delay(25); + + /* Clear any pending interrupt events. */ + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + icr = E1000_READ_REG(hw, E1000_ICR); + + if (!(e1000_check_alt_mac_addr_generic(hw))) + e1000_set_laa_state_82571(hw, TRUE); + +out: + return ret_val; +} + +/** + * e1000_init_hw_82571 - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. + **/ +static s32 e1000_init_hw_82571(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 reg_data; + s32 ret_val; + u16 i, rar_count = mac->rar_entry_count; + + DEBUGFUNC("e1000_init_hw_82571"); + + e1000_initialize_hw_bits_82571(hw); + + /* Initialize identification LED */ + ret_val = e1000_id_led_init_generic(hw); + if (ret_val) { + DEBUGOUT("Error initializing identification LED\n"); + /* This is not fatal and we should not stop init due to this */ + } + + /* Disabling VLAN filtering */ + DEBUGOUT("Initializing the IEEE VLAN\n"); + mac->ops.clear_vfta(hw); + + /* Setup the receive address. */ + /* + * If, however, a locally administered address was assigned to the + * 82571, we must reserve a RAR for it to work around an issue where + * resetting one port will reload the MAC on the other port. + */ + if (e1000_get_laa_state_82571(hw)) + rar_count--; + e1000_init_rx_addrs_generic(hw, rar_count); + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + /* Set the transmit descriptor write-back policy */ + reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0)); + reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB | + E1000_TXDCTL_COUNT_DESC; + E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data); + + /* ...for both queues. */ + if (mac->type != e1000_82573 && mac->type != e1000_82574) { + reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1)); + reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB | + E1000_TXDCTL_COUNT_DESC; + E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data); + } else { + e1000_enable_tx_pkt_filtering_generic(hw); + reg_data = E1000_READ_REG(hw, E1000_GCR); + reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; + E1000_WRITE_REG(hw, E1000_GCR, reg_data); + } + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_82571(hw); + + return ret_val; +} + +/** + * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits + * @hw: pointer to the HW structure + * + * Initializes required hardware-dependent bits needed for normal operation. + **/ +static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) +{ + u32 reg; + + DEBUGFUNC("e1000_initialize_hw_bits_82571"); + + if (hw->mac.disable_hw_init_bits) + goto out; + + /* Transmit Descriptor Control 0 */ + reg = E1000_READ_REG(hw, E1000_TXDCTL(0)); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg); + + /* Transmit Descriptor Control 1 */ + reg = E1000_READ_REG(hw, E1000_TXDCTL(1)); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg); + + /* Transmit Arbitration Control 0 */ + reg = E1000_READ_REG(hw, E1000_TARC(0)); + reg &= ~(0xF << 27); /* 30:27 */ + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26); + break; + default: + break; + } + E1000_WRITE_REG(hw, E1000_TARC(0), reg); + + /* Transmit Arbitration Control 1 */ + reg = E1000_READ_REG(hw, E1000_TARC(1)); + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + reg &= ~((1 << 29) | (1 << 30)); + reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26); + if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) + reg &= ~(1 << 28); + else + reg |= (1 << 28); + E1000_WRITE_REG(hw, E1000_TARC(1), reg); + break; + default: + break; + } + + /* Device Control */ + if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) { + reg = E1000_READ_REG(hw, E1000_CTRL); + reg &= ~(1 << 29); + E1000_WRITE_REG(hw, E1000_CTRL, reg); + } + + /* Extended Device Control */ + if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) { + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + reg &= ~(1 << 23); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); + } + + /* PCI-Ex Control Register */ + if (hw->mac.type == e1000_82574) { + reg = E1000_READ_REG(hw, E1000_GCR); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_GCR, reg); + } + +out: + return; +} + +/** + * e1000_clear_vfta_82571 - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * Clears the register array which contains the VLAN filter table by + * setting all the values to 0. + **/ +static void e1000_clear_vfta_82571(struct e1000_hw *hw) +{ + u32 offset; + u32 vfta_value = 0; + u32 vfta_offset = 0; + u32 vfta_bit_in_reg = 0; + + DEBUGFUNC("e1000_clear_vfta_82571"); + + if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) { + if (hw->mng_cookie.vlan_id != 0) { + /* + * The VFTA is a 4096b bit-field, each identifying + * a single VLAN ID. The following operations + * determine which 32b entry (i.e. offset) into the + * array we want to set the VLAN ID (i.e. bit) of + * the manageability unit. + */ + vfta_offset = (hw->mng_cookie.vlan_id >> + E1000_VFTA_ENTRY_SHIFT) & + E1000_VFTA_ENTRY_MASK; + vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & + E1000_VFTA_ENTRY_BIT_SHIFT_MASK); + } + } + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { + /* + * If the offset we want to clear is the same offset of the + * manageability VLAN ID, then clear all bits except that of + * the manageability unit. + */ + vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); + E1000_WRITE_FLUSH(hw); + } +} + +/** + * e1000_check_mng_mode_82574 - Check manageability is enabled + * @hw: pointer to the HW structure + * + * Reads the NVM Initialization Control Word 2 and returns TRUE + * (>0) if any manageability is enabled, else FALSE (0). + **/ +static bool e1000_check_mng_mode_82574(struct e1000_hw *hw) +{ + u16 data; + + DEBUGFUNC("e1000_check_mng_mode_82574"); + + hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data); + return ((data & E1000_NVM_INIT_CTRL2_MNGM) != 0); +} + +/** + * e1000_led_on_82574 - Turn LED on + * @hw: pointer to the HW structure + * + * Turn LED on. + **/ +static s32 e1000_led_on_82574(struct e1000_hw *hw) +{ + u32 ctrl; + u32 i; + + DEBUGFUNC("e1000_led_on_82574"); + + ctrl = hw->mac.ledctl_mode2; + if (!(E1000_STATUS_LU & E1000_READ_REG(hw, E1000_STATUS))) { + /* + * If no link, then turn LED on by setting the invert bit + * for each LED that's "on" (0x0E) in ledctl_mode2. + */ + for (i = 0; i < 4; i++) + if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == + E1000_LEDCTL_MODE_LED_ON) + ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8)); + } + E1000_WRITE_REG(hw, E1000_LEDCTL, ctrl); + + return E1000_SUCCESS; +} + +/** + * e1000_update_mc_addr_list_82571 - Update Multicast addresses + * @hw: pointer to the HW structure + * @mc_addr_list: array of multicast addresses to program + * @mc_addr_count: number of multicast addresses to program + * @rar_used_count: the first RAR register free to program + * @rar_count: total number of supported Receive Address Registers + * + * Updates the Receive Address Registers and Multicast Table Array. + * The caller must have a packed mc_addr_list of multicast addresses. + * The parameter rar_count will usually be hw->mac.rar_entry_count + * unless there are workarounds that change this. + **/ +static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count, + u32 rar_used_count, u32 rar_count) +{ + DEBUGFUNC("e1000_update_mc_addr_list_82571"); + + if (e1000_get_laa_state_82571(hw)) + rar_count--; + + e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count, + rar_used_count, rar_count); +} + +/** + * e1000_setup_link_82571 - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +static s32 e1000_setup_link_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_setup_link_82571"); + + /* + * 82573 does not have a word in the NVM to determine + * the default flow control setting, so we explicitly + * set it to full. + */ + if ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) && + hw->fc.type == e1000_fc_default) + hw->fc.type = e1000_fc_full; + + return e1000_setup_link_generic(hw); +} + +/** + * e1000_setup_copper_link_82571 - Configure copper link settings + * @hw: pointer to the HW structure + * + * Configures the link for auto-neg or forced speed and duplex. Then we check + * for link, once link is established calls to configure collision distance + * and flow control are called. + **/ +static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) +{ + u32 ctrl, led_ctrl; + s32 ret_val; + + DEBUGFUNC("e1000_setup_copper_link_82571"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + switch (hw->phy.type) { + case e1000_phy_m88: + case e1000_phy_bm: + ret_val = e1000_copper_link_setup_m88(hw); + break; + case e1000_phy_igp_2: + ret_val = e1000_copper_link_setup_igp(hw); + /* Setup activity LED */ + led_ctrl = E1000_READ_REG(hw, E1000_LEDCTL); + led_ctrl &= IGP_ACTIVITY_LED_MASK; + led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, E1000_LEDCTL, led_ctrl); + break; + default: + ret_val = -E1000_ERR_PHY; + break; + } + + if (ret_val) + goto out; + + ret_val = e1000_setup_copper_link_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes + * @hw: pointer to the HW structure + * + * Configures collision distance and flow control for fiber and serdes links. + * Upon successful setup, poll for link. + **/ +static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_setup_fiber_serdes_link_82571"); + + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + /* + * If SerDes loopback mode is entered, there is no form + * of reset to take the adapter out of that mode. So we + * have to explicitly take the adapter out of loopback + * mode. This prevents drivers from twiddling their thumbs + * if another tool failed to take it out of loopback mode. + */ + E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); + break; + default: + break; + } + + return e1000_setup_fiber_serdes_link_generic(hw); +} + +/** + * e1000_valid_led_default_82571 - Verify a valid default LED config + * @hw: pointer to the HW structure + * @data: pointer to the NVM (EEPROM) + * + * Read the EEPROM for the current default LED configuration. If the + * LED configuration is not valid, set to a valid LED configuration. + **/ +static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_valid_led_default_82571"); + + ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + if ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) && + *data == ID_LED_RESERVED_F746) + *data = ID_LED_DEFAULT_82573; + else if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) + *data = ID_LED_DEFAULT; +out: + return ret_val; +} + +/** + * e1000_get_laa_state_82571 - Get locally administered address state + * @hw: pointer to the HW structure + * + * Retrieve and return the current locally administered address state. + **/ +bool e1000_get_laa_state_82571(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82571 *dev_spec; + bool state = FALSE; + + DEBUGFUNC("e1000_get_laa_state_82571"); + + if (hw->mac.type != e1000_82571) + goto out; + + dev_spec = (struct e1000_dev_spec_82571 *)hw->dev_spec; + + state = dev_spec->laa_is_present; + +out: + return state; +} + +/** + * e1000_set_laa_state_82571 - Set locally administered address state + * @hw: pointer to the HW structure + * @state: enable/disable locally administered address + * + * Enable/Disable the current locally administered address state. + **/ +void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state) +{ + struct e1000_dev_spec_82571 *dev_spec; + + DEBUGFUNC("e1000_set_laa_state_82571"); + + if (hw->mac.type != e1000_82571) + goto out; + + dev_spec = (struct e1000_dev_spec_82571 *)hw->dev_spec; + + dev_spec->laa_is_present = state; + + /* If workaround is activated... */ + if (state) { + /* + * Hold a copy of the LAA in RAR[14] This is done so that + * between the time RAR[0] gets clobbered and the time it + * gets fixed, the actual LAA is in one of the RARs and no + * incoming packets directed to this port are dropped. + * Eventually the LAA will be in RAR[0] and RAR[14]. + */ + e1000_rar_set_generic(hw, hw->mac.addr, + hw->mac.rar_entry_count - 1); + } + +out: + return; +} + +/** + * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum + * @hw: pointer to the HW structure + * + * Verifies that the EEPROM has completed the update. After updating the + * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If + * the checksum fix is not implemented, we need to set the bit and update + * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, + * we need to return bad checksum. + **/ +static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_fix_nvm_checksum_82571"); + + if (nvm->type != e1000_nvm_flash_hw) + goto out; + + /* + * Check bit 4 of word 10h. If it is 0, firmware is done updating + * 10h-12h. Checksum may need to be fixed. + */ + ret_val = nvm->ops.read(hw, 0x10, 1, &data); + if (ret_val) + goto out; + + if (!(data & 0x10)) { + /* + * Read 0x23 and check bit 15. This bit is a 1 + * when the checksum has already been fixed. If + * the checksum is still wrong and this bit is a + * 1, we need to return bad checksum. Otherwise, + * we need to set this bit to a 1 and update the + * checksum. + */ + ret_val = nvm->ops.read(hw, 0x23, 1, &data); + if (ret_val) + goto out; + + if (!(data & 0x8000)) { + data |= 0x8000; + ret_val = nvm->ops.write(hw, 0x23, 1, &data); + if (ret_val) + goto out; + ret_val = nvm->ops.update(hw); + } + } + +out: + return ret_val; +} + +/** + * e1000_read_mac_addr_82571 - Read device MAC address + * @hw: pointer to the HW structure + **/ +static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_mac_addr_82571"); + if (e1000_check_alt_mac_addr_generic(hw)) + ret_val = e1000_read_mac_addr_generic(hw); + + return ret_val; +} + +/** + * e1000_power_down_phy_copper_82571 - Remove link during PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + struct e1000_mac_info *mac = &hw->mac; + + if (!(phy->ops.check_reset_block)) + return; + + /* If the management interface is not enabled, then power down */ + if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw))) + e1000_power_down_phy_copper(hw); + + return; +} + +/** + * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) +{ + volatile u32 temp; + + DEBUGFUNC("e1000_clear_hw_cntrs_82571"); + + e1000_clear_hw_cntrs_base_generic(hw); + temp = E1000_READ_REG(hw, E1000_PRC64); + temp = E1000_READ_REG(hw, E1000_PRC127); + temp = E1000_READ_REG(hw, E1000_PRC255); + temp = E1000_READ_REG(hw, E1000_PRC511); + temp = E1000_READ_REG(hw, E1000_PRC1023); + temp = E1000_READ_REG(hw, E1000_PRC1522); + temp = E1000_READ_REG(hw, E1000_PTC64); + temp = E1000_READ_REG(hw, E1000_PTC127); + temp = E1000_READ_REG(hw, E1000_PTC255); + temp = E1000_READ_REG(hw, E1000_PTC511); + temp = E1000_READ_REG(hw, E1000_PTC1023); + temp = E1000_READ_REG(hw, E1000_PTC1522); + + temp = E1000_READ_REG(hw, E1000_ALGNERRC); + temp = E1000_READ_REG(hw, E1000_RXERRC); + temp = E1000_READ_REG(hw, E1000_TNCRS); + temp = E1000_READ_REG(hw, E1000_CEXTERR); + temp = E1000_READ_REG(hw, E1000_TSCTC); + temp = E1000_READ_REG(hw, E1000_TSCTFC); + + temp = E1000_READ_REG(hw, E1000_MGTPRC); + temp = E1000_READ_REG(hw, E1000_MGTPDC); + temp = E1000_READ_REG(hw, E1000_MGTPTC); + + temp = E1000_READ_REG(hw, E1000_IAC); + temp = E1000_READ_REG(hw, E1000_ICRXOC); + + temp = E1000_READ_REG(hw, E1000_ICRXPTC); + temp = E1000_READ_REG(hw, E1000_ICRXATC); + temp = E1000_READ_REG(hw, E1000_ICTXPTC); + temp = E1000_READ_REG(hw, E1000_ICTXATC); + temp = E1000_READ_REG(hw, E1000_ICTXQEC); + temp = E1000_READ_REG(hw, E1000_ICTXQMTC); + temp = E1000_READ_REG(hw, E1000_ICRXDMTC); +} diff --git a/sys/dev/e1000/e1000_82571.h b/sys/dev/e1000/e1000_82571.h new file mode 100644 index 0000000..5e66793 --- /dev/null +++ b/sys/dev/e1000/e1000_82571.h @@ -0,0 +1,59 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_82571_H_ +#define _E1000_82571_H_ + +#define ID_LED_RESERVED_F746 0xF746 +#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \ + (ID_LED_OFF1_ON2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_DEF1_DEF2)) + +#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 + +/* Intr Throttling - RW */ +#define E1000_EITR_82574(_n) (0x000E8 + (0x4 * (_n))) + +#define E1000_EIAC_82574 0x000DC /* Ext. Interrupt Auto Clear - RW */ +#define E1000_EIAC_MASK_82574 0x01F00000 + +#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */ + +#define E1000_RXCFGL 0x0B634 /* TimeSync Rx EtherType & Msg Type Reg - RW */ + +bool e1000_get_laa_state_82571(struct e1000_hw *hw); +void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state); + +#endif diff --git a/sys/dev/e1000/e1000_82575.c b/sys/dev/e1000/e1000_82575.c new file mode 100644 index 0000000..2fbc0c3 --- /dev/null +++ b/sys/dev/e1000/e1000_82575.c @@ -0,0 +1,1783 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +/* e1000_82575 + * e1000_82576 + */ + +#include "e1000_api.h" + +static s32 e1000_init_phy_params_82575(struct e1000_hw *hw); +static s32 e1000_init_nvm_params_82575(struct e1000_hw *hw); +static s32 e1000_init_mac_params_82575(struct e1000_hw *hw); +static s32 e1000_acquire_phy_82575(struct e1000_hw *hw); +static void e1000_release_phy_82575(struct e1000_hw *hw); +static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw); +static void e1000_release_nvm_82575(struct e1000_hw *hw); +static s32 e1000_check_for_link_82575(struct e1000_hw *hw); +static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw); +static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, + u16 *duplex); +static s32 e1000_init_hw_82575(struct e1000_hw *hw); +static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw); +static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, + u16 *data); +static s32 e1000_reset_hw_82575(struct e1000_hw *hw); +static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, + bool active); +static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw); +static s32 e1000_setup_fiber_serdes_link_82575(struct e1000_hw *hw); +static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data); +static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, + u32 offset, u16 data); +static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw); +static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask); +static s32 e1000_configure_pcs_link_82575(struct e1000_hw *hw); +static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, + u16 *speed, u16 *duplex); +static s32 e1000_get_phy_id_82575(struct e1000_hw *hw); +static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask); +static bool e1000_sgmii_active_82575(struct e1000_hw *hw); +static s32 e1000_reset_init_script_82575(struct e1000_hw *hw); +static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw); +static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw); + +static void e1000_init_rx_addrs_82575(struct e1000_hw *hw, u16 rar_count); +static void e1000_update_mc_addr_list_82575(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count, + u32 rar_used_count, u32 rar_count); +void e1000_remove_device_82575(struct e1000_hw *hw); +void e1000_shutdown_fiber_serdes_link_82575(struct e1000_hw *hw); + +struct e1000_dev_spec_82575 { + bool sgmii_active; +}; + +/** + * e1000_init_phy_params_82575 - Init PHY func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_phy_params_82575(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_init_phy_params_82575"); + + if (hw->phy.media_type != e1000_media_type_copper) { + phy->type = e1000_phy_none; + goto out; + } else { + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_82575; + } + + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 100; + + phy->ops.acquire = e1000_acquire_phy_82575; + phy->ops.check_reset_block = e1000_check_reset_block_generic; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.get_cfg_done = e1000_get_cfg_done_82575; + phy->ops.release = e1000_release_phy_82575; + + if (e1000_sgmii_active_82575(hw)) { + phy->ops.reset = e1000_phy_hw_reset_sgmii_82575; + phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575; + phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575; + } else { + phy->ops.reset = e1000_phy_hw_reset_generic; + phy->ops.read_reg = e1000_read_phy_reg_igp; + phy->ops.write_reg = e1000_write_phy_reg_igp; + } + + /* Set phy->phy_addr and phy->id. */ + ret_val = e1000_get_phy_id_82575(hw); + + /* Verify phy id and set remaining function pointers */ + switch (phy->id) { + case M88E1111_I_PHY_ID: + phy->type = e1000_phy_m88; + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.get_cable_length = e1000_get_cable_length_m88; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; + break; + case IGP03E1000_E_PHY_ID: + case IGP04E1000_E_PHY_ID: + phy->type = e1000_phy_igp_3; + phy->ops.check_polarity = e1000_check_polarity_igp; + phy->ops.get_info = e1000_get_phy_info_igp; + phy->ops.get_cable_length = e1000_get_cable_length_igp_2; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; + break; + default: + ret_val = -E1000_ERR_PHY; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params_82575 - Init NVM func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_nvm_params_82575(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + u16 size; + + DEBUGFUNC("e1000_init_nvm_params_82575"); + + nvm->opcode_bits = 8; + nvm->delay_usec = 1; + switch (nvm->override) { + case e1000_nvm_override_spi_large: + nvm->page_size = 32; + nvm->address_bits = 16; + break; + case e1000_nvm_override_spi_small: + nvm->page_size = 8; + nvm->address_bits = 8; + break; + default: + nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; + nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; + break; + } + + nvm->type = e1000_nvm_eeprom_spi; + + size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> + E1000_EECD_SIZE_EX_SHIFT); + + /* + * Added to a constant, "size" becomes the left-shift value + * for setting word_size. + */ + size += NVM_WORD_SIZE_BASE_SHIFT; + + /* EEPROM access above 16k is unsupported */ + if (size > 14) + size = 14; + nvm->word_size = 1 << size; + + /* Function Pointers */ + nvm->ops.acquire = e1000_acquire_nvm_82575; + nvm->ops.read = e1000_read_nvm_eerd; + nvm->ops.release = e1000_release_nvm_82575; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.valid_led_default = e1000_valid_led_default_82575; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.write = e1000_write_nvm_spi; + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_82575 - Init MAC func ptrs. + * @hw: pointer to the HW structure + * + * This is a function pointer entry point called by the api module. + **/ +static s32 e1000_init_mac_params_82575(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + struct e1000_dev_spec_82575 *dev_spec; + u32 ctrl_ext = 0; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_init_mac_params_82575"); + + hw->dev_spec_size = sizeof(struct e1000_dev_spec_82575); + + /* Device-specific structure allocation */ + ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size); + if (ret_val) + goto out; + + dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec; + + /* Set media type */ + /* + * The 82575 uses bits 22:23 for link mode. The mode can be changed + * based on the EEPROM. We cannot rely upon device ID. There + * is no distinguishable difference between fiber and internal + * SerDes mode on the 82575. There can be an external PHY attached + * on the SGMII interface. For this, we'll set sgmii_active to TRUE. + */ + hw->phy.media_type = e1000_media_type_copper; + dev_spec->sgmii_active = FALSE; + + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) == + E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) { + hw->phy.media_type = e1000_media_type_internal_serdes; + ctrl_ext |= E1000_CTRL_I2C_ENA; + } else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) { + dev_spec->sgmii_active = TRUE; + ctrl_ext |= E1000_CTRL_I2C_ENA; + } else { + ctrl_ext &= ~E1000_CTRL_I2C_ENA; + } + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES_82575; + if (mac->type == e1000_82576) + mac->rar_entry_count = E1000_RAR_ENTRIES_82576; + /* Set if part includes ASF firmware */ + mac->asf_firmware_present = TRUE; + /* Set if manageability features are enabled. */ + mac->arc_subsystem_valid = + (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK) + ? TRUE : FALSE; + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_82575; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_82575; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_generic; + /* physical interface link setup */ + mac->ops.setup_physical_interface = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_setup_copper_link_82575 + : e1000_setup_fiber_serdes_link_82575; + /* physical interface shutdown */ + mac->ops.shutdown_serdes = e1000_shutdown_fiber_serdes_link_82575; + /* check for link */ + mac->ops.check_for_link = e1000_check_for_link_82575; + /* receive address register setting */ + mac->ops.rar_set = e1000_rar_set_generic; + /* read mac address */ + mac->ops.read_mac_addr = e1000_read_mac_addr_82575; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_82575; + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_generic; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_generic; + /* setting MTA */ + mac->ops.mta_set = e1000_mta_set_generic; + /* blink LED */ + mac->ops.blink_led = e1000_blink_led_generic; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_generic; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_generic; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_generic; + mac->ops.led_off = e1000_led_off_generic; + /* remove device */ + mac->ops.remove_device = e1000_remove_device_82575; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575; + /* link info */ + mac->ops.get_link_up_info = e1000_get_link_up_info_82575; + +out: + return ret_val; +} + +/** + * e1000_init_function_pointers_82575 - Init func ptrs. + * @hw: pointer to the HW structure + * + * The only function explicitly called by the api module to initialize + * all function pointers and parameters. + **/ +void e1000_init_function_pointers_82575(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_82575"); + + hw->mac.ops.init_params = e1000_init_mac_params_82575; + hw->nvm.ops.init_params = e1000_init_nvm_params_82575; + hw->phy.ops.init_params = e1000_init_phy_params_82575; +} + +/** + * e1000_acquire_phy_82575 - Acquire rights to access PHY + * @hw: pointer to the HW structure + * + * Acquire access rights to the correct PHY. This is a + * function pointer entry point called by the api module. + **/ +static s32 e1000_acquire_phy_82575(struct e1000_hw *hw) +{ + u16 mask; + + DEBUGFUNC("e1000_acquire_phy_82575"); + + mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; + + return e1000_acquire_swfw_sync_82575(hw, mask); +} + +/** + * e1000_release_phy_82575 - Release rights to access PHY + * @hw: pointer to the HW structure + * + * A wrapper to release access rights to the correct PHY. This is a + * function pointer entry point called by the api module. + **/ +static void e1000_release_phy_82575(struct e1000_hw *hw) +{ + u16 mask; + + DEBUGFUNC("e1000_release_phy_82575"); + + mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; + e1000_release_swfw_sync_82575(hw, mask); +} + +/** + * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset using the serial gigabit media independent + * interface and stores the retrieved information in data. + **/ +static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, + u16 *data) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, i2ccmd = 0; + + DEBUGFUNC("e1000_read_phy_reg_sgmii_82575"); + + if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { + DEBUGOUT1("PHY Address %u is out of range\n", offset); + return -E1000_ERR_PARAM; + } + + /* + * Set up Op-code, Phy Address, and register address in the I2CCMD + * register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | + (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | + (E1000_I2CCMD_OPCODE_READ)); + + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); + + /* Poll the ready bit to see if the I2C read completed */ + for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { + usec_delay(50); + i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); + if (i2ccmd & E1000_I2CCMD_READY) + break; + } + if (!(i2ccmd & E1000_I2CCMD_READY)) { + DEBUGOUT("I2CCMD Read did not complete\n"); + return -E1000_ERR_PHY; + } + if (i2ccmd & E1000_I2CCMD_ERROR) { + DEBUGOUT("I2CCMD Error bit set\n"); + return -E1000_ERR_PHY; + } + + /* Need to byte-swap the 16-bit value. */ + *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); + + return E1000_SUCCESS; +} + +/** + * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes the data to PHY register at the offset using the serial gigabit + * media independent interface. + **/ +static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, + u16 data) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, i2ccmd = 0; + u16 phy_data_swapped; + + DEBUGFUNC("e1000_write_phy_reg_sgmii_82575"); + + if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { + DEBUGOUT1("PHY Address %d is out of range\n", offset); + return -E1000_ERR_PARAM; + } + + /* Swap the data bytes for the I2C interface */ + phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); + + /* + * Set up Op-code, Phy Address, and register address in the I2CCMD + * register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | + (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | + E1000_I2CCMD_OPCODE_WRITE | + phy_data_swapped); + + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); + + /* Poll the ready bit to see if the I2C read completed */ + for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { + usec_delay(50); + i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); + if (i2ccmd & E1000_I2CCMD_READY) + break; + } + if (!(i2ccmd & E1000_I2CCMD_READY)) { + DEBUGOUT("I2CCMD Write did not complete\n"); + return -E1000_ERR_PHY; + } + if (i2ccmd & E1000_I2CCMD_ERROR) { + DEBUGOUT("I2CCMD Error bit set\n"); + return -E1000_ERR_PHY; + } + + return E1000_SUCCESS; +} + +/** + * e1000_get_phy_id_82575 - Retrieve PHY addr and id + * @hw: pointer to the HW structure + * + * Retrieves the PHY address and ID for both PHY's which do and do not use + * sgmi interface. + **/ +static s32 e1000_get_phy_id_82575(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 phy_id; + + DEBUGFUNC("e1000_get_phy_id_82575"); + + /* + * For SGMII PHYs, we try the list of possible addresses until + * we find one that works. For non-SGMII PHYs + * (e.g. integrated copper PHYs), an address of 1 should + * work. The result of this function should mean phy->phy_addr + * and phy->id are set correctly. + */ + if (!(e1000_sgmii_active_82575(hw))) { + phy->addr = 1; + ret_val = e1000_get_phy_id(hw); + goto out; + } + + /* + * The address field in the I2CCMD register is 3 bits and 0 is invalid. + * Therefore, we need to test 1-7 + */ + for (phy->addr = 1; phy->addr < 8; phy->addr++) { + ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); + if (ret_val == E1000_SUCCESS) { + DEBUGOUT2("Vendor ID 0x%08X read at address %u\n", + phy_id, + phy->addr); + /* + * At the time of this writing, The M88 part is + * the only supported SGMII PHY product. + */ + if (phy_id == M88_VENDOR) + break; + } else { + DEBUGOUT1("PHY address %u was unreadable\n", + phy->addr); + } + } + + /* A valid PHY type couldn't be found. */ + if (phy->addr == 8) { + phy->addr = 0; + ret_val = -E1000_ERR_PHY; + goto out; + } + + ret_val = e1000_get_phy_id(hw); + +out: + return ret_val; +} + +/** + * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset + * @hw: pointer to the HW structure + * + * Resets the PHY using the serial gigabit media independent interface. + **/ +static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575"); + + /* + * This isn't a TRUE "hard" reset, but is the only reset + * available to us at this time. + */ + + DEBUGOUT("Soft resetting SGMII attached PHY...\n"); + + if (!(hw->phy.ops.write_reg)) + goto out; + + /* + * SFP documentation requires the following to configure the SPF module + * to work on SGMII. No further documentation is given. + */ + ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.commit(hw); + +out: + return ret_val; +} + +/** + * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state + * @hw: pointer to the HW structure + * @active: TRUE to enable LPLU, FALSE to disable + * + * Sets the LPLU D0 state according to the active flag. When + * activating LPLU this function also disables smart speed + * and vice versa. LPLU will not be activated unless the + * device autonegotiation advertisement meets standards of + * either 10 or 10/100 or 10/100/1000 at all duplexes. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_set_d0_lplu_state_82575"); + + if (!(hw->phy.ops.read_reg)) + goto out; + + ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); + if (ret_val) + goto out; + + if (active) { + data |= IGP02E1000_PM_D0_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + if (ret_val) + goto out; + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } else { + data &= ~IGP02E1000_PM_D0_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } + } + +out: + return ret_val; +} + +/** + * e1000_acquire_nvm_82575 - Request for access to EEPROM + * @hw: pointer to the HW structure + * + * Acquire the necessary semaphores for exclusive access to the EEPROM. + * Set the EEPROM access request bit and wait for EEPROM access grant bit. + * Return successful if access grant bit set, else clear the request for + * EEPROM access and return -E1000_ERR_NVM (-1). + **/ +static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_acquire_nvm_82575"); + + ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); + if (ret_val) + goto out; + + ret_val = e1000_acquire_nvm_generic(hw); + + if (ret_val) + e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); + +out: + return ret_val; +} + +/** + * e1000_release_nvm_82575 - Release exclusive access to EEPROM + * @hw: pointer to the HW structure + * + * Stop any current commands to the EEPROM and clear the EEPROM request bit, + * then release the semaphores acquired. + **/ +static void e1000_release_nvm_82575(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_release_nvm_82575"); + + e1000_release_nvm_generic(hw); + e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); +} + +/** + * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore + * @hw: pointer to the HW structure + * @mask: specifies which semaphore to acquire + * + * Acquire the SW/FW semaphore to access the PHY or NVM. The mask + * will also specify which port we're acquiring the lock for. + **/ +static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) +{ + u32 swfw_sync; + u32 swmask = mask; + u32 fwmask = mask << 16; + s32 ret_val = E1000_SUCCESS; + s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ + + DEBUGFUNC("e1000_acquire_swfw_sync_82575"); + + while (i < timeout) { + if (e1000_get_hw_semaphore_generic(hw)) { + ret_val = -E1000_ERR_SWFW_SYNC; + goto out; + } + + swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); + if (!(swfw_sync & (fwmask | swmask))) + break; + + /* + * Firmware currently using resource (fwmask) + * or other software thread using resource (swmask) + */ + e1000_put_hw_semaphore_generic(hw); + msec_delay_irq(5); + i++; + } + + if (i == timeout) { + DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); + ret_val = -E1000_ERR_SWFW_SYNC; + goto out; + } + + swfw_sync |= swmask; + E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); + + e1000_put_hw_semaphore_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_release_swfw_sync_82575 - Release SW/FW semaphore + * @hw: pointer to the HW structure + * @mask: specifies which semaphore to acquire + * + * Release the SW/FW semaphore used to access the PHY or NVM. The mask + * will also specify which port we're releasing the lock for. + **/ +static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) +{ + u32 swfw_sync; + + DEBUGFUNC("e1000_release_swfw_sync_82575"); + + while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS); + /* Empty */ + + swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); + swfw_sync &= ~mask; + E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); + + e1000_put_hw_semaphore_generic(hw); +} + +/** + * e1000_get_cfg_done_82575 - Read config done bit + * @hw: pointer to the HW structure + * + * Read the management control register for the config done bit for + * completion status. NOTE: silicon which is EEPROM-less will fail trying + * to read the config done bit, so an error is *ONLY* logged and returns + * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon + * would not be able to be reset or change link. + **/ +static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw) +{ + s32 timeout = PHY_CFG_TIMEOUT; + s32 ret_val = E1000_SUCCESS; + u32 mask = E1000_NVM_CFG_DONE_PORT_0; + + DEBUGFUNC("e1000_get_cfg_done_82575"); + + if (hw->bus.func == 1) + mask = E1000_NVM_CFG_DONE_PORT_1; + + while (timeout) { + if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask) + break; + msec_delay(1); + timeout--; + } + if (!timeout) { + DEBUGOUT("MNG configuration cycle has not completed.\n"); + } + + /* If EEPROM is not marked present, init the PHY manually */ + if (((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) && + (hw->phy.type == e1000_phy_igp_3)) { + e1000_phy_init_script_igp3(hw); + } + + return ret_val; +} + +/** + * e1000_get_link_up_info_82575 - Get link speed/duplex info + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * This is a wrapper function, if using the serial gigabit media independent + * interface, use PCS to retrieve the link speed and duplex information. + * Otherwise, use the generic function to get the link speed and duplex info. + **/ +static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + s32 ret_val; + + DEBUGFUNC("e1000_get_link_up_info_82575"); + + if (hw->phy.media_type != e1000_media_type_copper || + e1000_sgmii_active_82575(hw)) { + ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed, + duplex); + } else { + ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, + duplex); + } + + return ret_val; +} + +/** + * e1000_check_for_link_82575 - Check for link + * @hw: pointer to the HW structure + * + * If sgmii is enabled, then use the pcs register to determine link, otherwise + * use the generic interface for determining link. + **/ +static s32 e1000_check_for_link_82575(struct e1000_hw *hw) +{ + s32 ret_val; + u16 speed, duplex; + + DEBUGFUNC("e1000_check_for_link_82575"); + + /* SGMII link check is done through the PCS register. */ + if ((hw->phy.media_type != e1000_media_type_copper) || + (e1000_sgmii_active_82575(hw))) + ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed, + &duplex); + else + ret_val = e1000_check_for_copper_link_generic(hw); + + return ret_val; +} + +/** + * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * Using the physical coding sub-layer (PCS), retrieve the current speed and + * duplex, then store the values in the pointers provided. + **/ +static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, + u16 *speed, u16 *duplex) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 pcs; + + DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575"); + + /* Set up defaults for the return values of this function */ + mac->serdes_has_link = FALSE; + *speed = 0; + *duplex = 0; + + /* + * Read the PCS Status register for link state. For non-copper mode, + * the status register is not accurate. The PCS status register is + * used instead. + */ + pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT); + + /* + * The link up bit determines when link is up on autoneg. The sync ok + * gets set once both sides sync up and agree upon link. Stable link + * can be determined by checking for both link up and link sync ok + */ + if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) { + mac->serdes_has_link = TRUE; + + /* Detect and store PCS speed */ + if (pcs & E1000_PCS_LSTS_SPEED_1000) { + *speed = SPEED_1000; + } else if (pcs & E1000_PCS_LSTS_SPEED_100) { + *speed = SPEED_100; + } else { + *speed = SPEED_10; + } + + /* Detect and store PCS duplex */ + if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) { + *duplex = FULL_DUPLEX; + } else { + *duplex = HALF_DUPLEX; + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_init_rx_addrs_82575 - Initialize receive address's + * @hw: pointer to the HW structure + * @rar_count: receive address registers + * + * Setups the receive address registers by setting the base receive address + * register to the devices MAC address and clearing all the other receive + * address registers to 0. + **/ +static void e1000_init_rx_addrs_82575(struct e1000_hw *hw, u16 rar_count) +{ + u32 i; + u8 addr[6] = {0,0,0,0,0,0}; + /* + * This function is essentially the same as that of + * e1000_init_rx_addrs_generic. However it also takes care + * of the special case where the register offset of the + * second set of RARs begins elsewhere. This is implicitly taken care by + * function e1000_rar_set_generic. + */ + + DEBUGFUNC("e1000_init_rx_addrs_82575"); + + /* Setup the receive address */ + DEBUGOUT("Programming MAC Address into RAR[0]\n"); + hw->mac.ops.rar_set(hw, hw->mac.addr, 0); + + /* Zero out the other (rar_entry_count - 1) receive addresses */ + DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1); + for (i = 1; i < rar_count; i++) { + hw->mac.ops.rar_set(hw, addr, i); + } +} + +/** + * e1000_update_mc_addr_list_82575 - Update Multicast addresses + * @hw: pointer to the HW structure + * @mc_addr_list: array of multicast addresses to program + * @mc_addr_count: number of multicast addresses to program + * @rar_used_count: the first RAR register free to program + * @rar_count: total number of supported Receive Address Registers + * + * Updates the Receive Address Registers and Multicast Table Array. + * The caller must have a packed mc_addr_list of multicast addresses. + * The parameter rar_count will usually be hw->mac.rar_entry_count + * unless there are workarounds that change this. + **/ +static void e1000_update_mc_addr_list_82575(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count, + u32 rar_used_count, u32 rar_count) +{ + u32 hash_value; + u32 i; + u8 addr[6] = {0,0,0,0,0,0}; + /* + * This function is essentially the same as that of + * e1000_update_mc_addr_list_generic. However it also takes care + * of the special case where the register offset of the + * second set of RARs begins elsewhere. This is implicitly taken care by + * function e1000_rar_set_generic. + */ + + DEBUGFUNC("e1000_update_mc_addr_list_82575"); + + /* + * Load the first set of multicast addresses into the exact + * filters (RAR). If there are not enough to fill the RAR + * array, clear the filters. + */ + for (i = rar_used_count; i < rar_count; i++) { + if (mc_addr_count) { + e1000_rar_set_generic(hw, mc_addr_list, i); + mc_addr_count--; + mc_addr_list += ETH_ADDR_LEN; + } else { + e1000_rar_set_generic(hw, addr, i); + } + } + + /* Clear the old settings from the MTA */ + DEBUGOUT("Clearing MTA\n"); + for (i = 0; i < hw->mac.mta_reg_count; i++) { + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + E1000_WRITE_FLUSH(hw); + } + + /* Load any remaining multicast addresses into the hash table. */ + for (; mc_addr_count > 0; mc_addr_count--) { + hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list); + DEBUGOUT1("Hash value = 0x%03X\n", hash_value); + hw->mac.ops.mta_set(hw, hash_value); + mc_addr_list += ETH_ADDR_LEN; + } +} + +/** + * e1000_shutdown_fiber_serdes_link_82575 - Remove link during power down + * @hw: pointer to the HW structure + * + * In the case of fiber serdes shut down optics and PCS on driver unload + * when management pass thru is not enabled. + **/ +void e1000_shutdown_fiber_serdes_link_82575(struct e1000_hw *hw) +{ + u32 reg; + + if (hw->mac.type != e1000_82576 || + (hw->phy.media_type != e1000_media_type_fiber && + hw->phy.media_type != e1000_media_type_internal_serdes)) + return; + + /* if the management interface is not enabled, then power down */ + if (!e1000_enable_mng_pass_thru(hw)) { + /* Disable PCS to turn off link */ + reg = E1000_READ_REG(hw, E1000_PCS_CFG0); + reg &= ~E1000_PCS_CFG_PCS_EN; + E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); + + /* shutdown the laser */ + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + reg |= E1000_CTRL_EXT_SDP7_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); + + /* flush the write to verfiy completion */ + E1000_WRITE_FLUSH(hw); + msec_delay(1); + } + + return; +} + +/** + * e1000_reset_hw_82575 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. This is a + * function pointer entry point called by the api module. + **/ +static s32 e1000_reset_hw_82575(struct e1000_hw *hw) +{ + u32 ctrl, icr; + s32 ret_val; + + DEBUGFUNC("e1000_reset_hw_82575"); + + /* + * Prevent the PCI-E bus from sticking if there is no TLP connection + * on the last TLP read/write transaction when MAC is reset. + */ + ret_val = e1000_disable_pcie_master_generic(hw); + if (ret_val) { + DEBUGOUT("PCI-E Master disable polling has failed.\n"); + } + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + msec_delay(10); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGOUT("Issuing a global reset to MAC\n"); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + + ret_val = e1000_get_auto_rd_done_generic(hw); + if (ret_val) { + /* + * When auto config read does not complete, do not + * return with an error. This can happen in situations + * where there is no eeprom and prevents getting link. + */ + DEBUGOUT("Auto Read Done did not complete\n"); + } + + /* If EEPROM is not present, run manual init scripts */ + if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) + e1000_reset_init_script_82575(hw); + + /* Clear any pending interrupt events. */ + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + icr = E1000_READ_REG(hw, E1000_ICR); + + e1000_check_alt_mac_addr_generic(hw); + + return ret_val; +} + +/** + * e1000_init_hw_82575 - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. + **/ +static s32 e1000_init_hw_82575(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + u16 i, rar_count = mac->rar_entry_count; + + DEBUGFUNC("e1000_init_hw_82575"); + + /* Initialize identification LED */ + ret_val = e1000_id_led_init_generic(hw); + if (ret_val) { + DEBUGOUT("Error initializing identification LED\n"); + /* This is not fatal and we should not stop init due to this */ + } + + /* Disabling VLAN filtering */ + DEBUGOUT("Initializing the IEEE VLAN\n"); + mac->ops.clear_vfta(hw); + + /* Setup the receive address */ + e1000_init_rx_addrs_82575(hw, rar_count); + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_82575(hw); + + return ret_val; +} + +/** + * e1000_setup_copper_link_82575 - Configure copper link settings + * @hw: pointer to the HW structure + * + * Configures the link for auto-neg or forced speed and duplex. Then we check + * for link, once link is established calls to configure collision distance + * and flow control are called. + **/ +static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw) +{ + u32 ctrl, led_ctrl; + s32 ret_val; + bool link; + + DEBUGFUNC("e1000_setup_copper_link_82575"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + switch (hw->phy.type) { + case e1000_phy_m88: + ret_val = e1000_copper_link_setup_m88(hw); + break; + case e1000_phy_igp_3: + ret_val = e1000_copper_link_setup_igp(hw); + /* Setup activity LED */ + led_ctrl = E1000_READ_REG(hw, E1000_LEDCTL); + led_ctrl &= IGP_ACTIVITY_LED_MASK; + led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, E1000_LEDCTL, led_ctrl); + break; + default: + ret_val = -E1000_ERR_PHY; + break; + } + + if (ret_val) + goto out; + + if (hw->mac.autoneg) { + /* + * Setup autoneg and flow control advertisement + * and perform autonegotiation. + */ + ret_val = e1000_copper_link_autoneg(hw); + if (ret_val) + goto out; + } else { + /* + * PHY will be set to 10H, 10F, 100H or 100F + * depending on user settings. + */ + DEBUGOUT("Forcing Speed and Duplex\n"); + ret_val = hw->phy.ops.force_speed_duplex(hw); + if (ret_val) { + DEBUGOUT("Error Forcing Speed and Duplex\n"); + goto out; + } + } + + ret_val = e1000_configure_pcs_link_82575(hw); + if (ret_val) + goto out; + + /* + * Check link status. Wait up to 100 microseconds for link to become + * valid. + */ + ret_val = e1000_phy_has_link_generic(hw, + COPPER_LINK_UP_LIMIT, + 10, + &link); + if (ret_val) + goto out; + + if (link) { + DEBUGOUT("Valid link established!!!\n"); + /* Config the MAC and PHY after link is up */ + e1000_config_collision_dist_generic(hw); + ret_val = e1000_config_fc_after_link_up_generic(hw); + } else { + DEBUGOUT("Unable to establish link!!!\n"); + } + +out: + return ret_val; +} + +/** + * e1000_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes + * @hw: pointer to the HW structure + * + * Configures speed and duplex for fiber and serdes links. + **/ +static s32 e1000_setup_fiber_serdes_link_82575(struct e1000_hw *hw) +{ + u32 reg; + + DEBUGFUNC("e1000_setup_fiber_serdes_link_82575"); + + /* + * On the 82575, SerDes loopback mode persists until it is + * explicitly turned off or a power cycle is performed. A read to + * the register does not indicate its status. Therefore, we ensure + * loopback mode is disabled during initialization. + */ + E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); + + /* Force link up, set 1gb, set both sw defined pins */ + reg = E1000_READ_REG(hw, E1000_CTRL); + reg |= E1000_CTRL_SLU | + E1000_CTRL_SPD_1000 | + E1000_CTRL_FRCSPD | + E1000_CTRL_SWDPIN0 | + E1000_CTRL_SWDPIN1; + E1000_WRITE_REG(hw, E1000_CTRL, reg); + + /* Power on phy for 82576 fiber adapters */ + if (hw->mac.type == e1000_82576) { + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + reg &= ~E1000_CTRL_EXT_SDP7_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); + } + + /* Set switch control to serdes energy detect */ + reg = E1000_READ_REG(hw, E1000_CONNSW); + reg |= E1000_CONNSW_ENRGSRC; + E1000_WRITE_REG(hw, E1000_CONNSW, reg); + + /* + * New SerDes mode allows for forcing speed or autonegotiating speed + * at 1gb. Autoneg should be default set by most drivers. This is the + * mode that will be compatible with older link partners and switches. + * However, both are supported by the hardware and some drivers/tools. + */ + reg = E1000_READ_REG(hw, E1000_PCS_LCTL); + + reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | + E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); + + if (hw->mac.autoneg) { + /* Set PCS register for autoneg */ + reg |= E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ + E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ + E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ + E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ + DEBUGOUT1("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg); + } else { + /* Set PCS register for forced speed */ + reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */ + E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ + E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ + E1000_PCS_LCTL_FSD | /* Force Speed */ + E1000_PCS_LCTL_FORCE_LINK; /* Force Link */ + DEBUGOUT1("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg); + } + + if (hw->mac.type == e1000_82576) { + reg |= E1000_PCS_LCTL_FORCE_FCTRL; + e1000_force_mac_fc_generic(hw); + } + + E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg); + + return E1000_SUCCESS; +} + +/** + * e1000_valid_led_default_82575 - Verify a valid default LED config + * @hw: pointer to the HW structure + * @data: pointer to the NVM (EEPROM) + * + * Read the EEPROM for the current default LED configuration. If the + * LED configuration is not valid, set to a valid LED configuration. + **/ +static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_valid_led_default_82575"); + + ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { + switch(hw->phy.media_type) { + case e1000_media_type_fiber: + case e1000_media_type_internal_serdes: + *data = ID_LED_DEFAULT_82575_SERDES; + break; + case e1000_media_type_copper: + default: + *data = ID_LED_DEFAULT; + break; + } + } +out: + return ret_val; +} + +/** + * e1000_configure_pcs_link_82575 - Configure PCS link + * @hw: pointer to the HW structure + * + * Configure the physical coding sub-layer (PCS) link. The PCS link is + * only used on copper connections where the serialized gigabit media + * independent interface (sgmii) is being used. Configures the link + * for auto-negotiation or forces speed/duplex. + **/ +static s32 e1000_configure_pcs_link_82575(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 reg = 0; + + DEBUGFUNC("e1000_configure_pcs_link_82575"); + + if (hw->phy.media_type != e1000_media_type_copper || + !(e1000_sgmii_active_82575(hw))) + goto out; + + /* For SGMII, we need to issue a PCS autoneg restart */ + reg = E1000_READ_REG(hw, E1000_PCS_LCTL); + + /* AN time out should be disabled for SGMII mode */ + reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); + + if (mac->autoneg) { + /* Make sure forced speed and force link are not set */ + reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); + + /* + * The PHY should be setup prior to calling this function. + * All we need to do is restart autoneg and enable autoneg. + */ + reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE; + } else { + /* Set PCS register for forced speed */ + + /* Turn off bits for full duplex, speed, and autoneg */ + reg &= ~(E1000_PCS_LCTL_FSV_1000 | + E1000_PCS_LCTL_FSV_100 | + E1000_PCS_LCTL_FDV_FULL | + E1000_PCS_LCTL_AN_ENABLE); + + /* Check for duplex first */ + if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX) + reg |= E1000_PCS_LCTL_FDV_FULL; + + /* Now set speed */ + if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) + reg |= E1000_PCS_LCTL_FSV_100; + + /* Force speed and force link */ + reg |= E1000_PCS_LCTL_FSD | + E1000_PCS_LCTL_FORCE_LINK | + E1000_PCS_LCTL_FLV_LINK_UP; + + DEBUGOUT1("Wrote 0x%08X to PCS_LCTL to configure forced link\n", + reg); + } + E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg); + +out: + return E1000_SUCCESS; +} + +/** + * e1000_sgmii_active_82575 - Return sgmii state + * @hw: pointer to the HW structure + * + * 82575 silicon has a serialized gigabit media independent interface (sgmii) + * which can be enabled for use in the embedded applications. Simply + * return the current state of the sgmii interface. + **/ +static bool e1000_sgmii_active_82575(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82575 *dev_spec; + bool ret_val; + + DEBUGFUNC("e1000_sgmii_active_82575"); + + if (hw->mac.type != e1000_82575 && hw->mac.type != e1000_82576) { + ret_val = FALSE; + goto out; + } + + dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec; + + ret_val = dev_spec->sgmii_active; + +out: + return ret_val; +} + +/** + * e1000_translate_register_82576 - Translate the proper register offset + * @reg: e1000 register to be read + * + * Registers in 82576 are located in different offsets than other adapters + * even though they function in the same manner. This function takes in + * the name of the register to read and returns the correct offset for + * 82576 silicon. + **/ +u32 e1000_translate_register_82576(u32 reg) +{ + /* + * Some of the 82576 registers are located at different + * offsets than they are in older adapters. + * Despite the difference in location, the registers + * function in the same manner. + */ + switch (reg) { + case E1000_TDBAL(0): + reg = 0x0E000; + break; + case E1000_TDBAH(0): + reg = 0x0E004; + break; + case E1000_TDLEN(0): + reg = 0x0E008; + break; + case E1000_TDH(0): + reg = 0x0E010; + break; + case E1000_TDT(0): + reg = 0x0E018; + break; + case E1000_TXDCTL(0): + reg = 0x0E028; + break; + case E1000_RDBAL(0): + reg = 0x0C000; + break; + case E1000_RDBAH(0): + reg = 0x0C004; + break; + case E1000_RDLEN(0): + reg = 0x0C008; + break; + case E1000_RDH(0): + reg = 0x0C010; + break; + case E1000_RDT(0): + reg = 0x0C018; + break; + case E1000_RXDCTL(0): + reg = 0x0C028; + break; + case E1000_SRRCTL(0): + reg = 0x0C00C; + break; + default: + break; + } + + return reg; +} + +/** + * e1000_reset_init_script_82575 - Inits HW defaults after reset + * @hw: pointer to the HW structure + * + * Inits recommended HW defaults after a reset when there is no EEPROM + * detected. This is only for the 82575. + **/ +static s32 e1000_reset_init_script_82575(struct e1000_hw* hw) +{ + DEBUGFUNC("e1000_reset_init_script_82575"); + + if (hw->mac.type == e1000_82575) { + DEBUGOUT("Running reset init script for 82575\n"); + /* SerDes configuration via SERDESCTRL */ + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15); + + /* CCM configuration via CCMCTL register */ + e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00); + + /* PCIe lanes configuration */ + e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81); + + /* PCIe PLL Configuration */ + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00); + } + + return E1000_SUCCESS; +} + +/** + * e1000_read_mac_addr_82575 - Read device MAC address + * @hw: pointer to the HW structure + **/ +static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_mac_addr_82575"); + if (e1000_check_alt_mac_addr_generic(hw)) + ret_val = e1000_read_mac_addr_generic(hw); + + return ret_val; +} + +/** + * e1000_power_down_phy_copper_82575 - Remove link during PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + struct e1000_mac_info *mac = &hw->mac; + + if (!(phy->ops.check_reset_block)) + return; + + /* If the management interface is not enabled, then power down */ + if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw))) + e1000_power_down_phy_copper(hw); + + return; +} + +/** + * e1000_remove_device_82575 - Free device specific structure + * @hw: pointer to the HW structure + * + * If a device specific structure was allocated, this function will + * free it after shutting down the serdes interface if available. + **/ +void e1000_remove_device_82575(struct e1000_hw *hw) +{ + u16 eeprom_data = 0; + + /* + * If APM is enabled in the EEPROM then leave the port on for fiber + * serdes adapters. + */ + if (hw->bus.func == 0) + hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); + + if (!(eeprom_data & E1000_NVM_APME_82575)) + e1000_shutdown_fiber_serdes_link_82575(hw); + + e1000_remove_device_generic(hw); +} + +/** + * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw) +{ + volatile u32 temp; + + DEBUGFUNC("e1000_clear_hw_cntrs_82575"); + + e1000_clear_hw_cntrs_base_generic(hw); + + temp = E1000_READ_REG(hw, E1000_PRC64); + temp = E1000_READ_REG(hw, E1000_PRC127); + temp = E1000_READ_REG(hw, E1000_PRC255); + temp = E1000_READ_REG(hw, E1000_PRC511); + temp = E1000_READ_REG(hw, E1000_PRC1023); + temp = E1000_READ_REG(hw, E1000_PRC1522); + temp = E1000_READ_REG(hw, E1000_PTC64); + temp = E1000_READ_REG(hw, E1000_PTC127); + temp = E1000_READ_REG(hw, E1000_PTC255); + temp = E1000_READ_REG(hw, E1000_PTC511); + temp = E1000_READ_REG(hw, E1000_PTC1023); + temp = E1000_READ_REG(hw, E1000_PTC1522); + + temp = E1000_READ_REG(hw, E1000_ALGNERRC); + temp = E1000_READ_REG(hw, E1000_RXERRC); + temp = E1000_READ_REG(hw, E1000_TNCRS); + temp = E1000_READ_REG(hw, E1000_CEXTERR); + temp = E1000_READ_REG(hw, E1000_TSCTC); + temp = E1000_READ_REG(hw, E1000_TSCTFC); + + temp = E1000_READ_REG(hw, E1000_MGTPRC); + temp = E1000_READ_REG(hw, E1000_MGTPDC); + temp = E1000_READ_REG(hw, E1000_MGTPTC); + + temp = E1000_READ_REG(hw, E1000_IAC); + temp = E1000_READ_REG(hw, E1000_ICRXOC); + + temp = E1000_READ_REG(hw, E1000_ICRXPTC); + temp = E1000_READ_REG(hw, E1000_ICRXATC); + temp = E1000_READ_REG(hw, E1000_ICTXPTC); + temp = E1000_READ_REG(hw, E1000_ICTXATC); + temp = E1000_READ_REG(hw, E1000_ICTXQEC); + temp = E1000_READ_REG(hw, E1000_ICTXQMTC); + temp = E1000_READ_REG(hw, E1000_ICRXDMTC); + + temp = E1000_READ_REG(hw, E1000_CBTMPC); + temp = E1000_READ_REG(hw, E1000_HTDPMC); + temp = E1000_READ_REG(hw, E1000_CBRMPC); + temp = E1000_READ_REG(hw, E1000_RPTHC); + temp = E1000_READ_REG(hw, E1000_HGPTC); + temp = E1000_READ_REG(hw, E1000_HTCBDPC); + temp = E1000_READ_REG(hw, E1000_HGORCL); + temp = E1000_READ_REG(hw, E1000_HGORCH); + temp = E1000_READ_REG(hw, E1000_HGOTCL); + temp = E1000_READ_REG(hw, E1000_HGOTCH); + temp = E1000_READ_REG(hw, E1000_LENERRS); + + /* This register should not be read in copper configurations */ + if (hw->phy.media_type == e1000_media_type_internal_serdes) + temp = E1000_READ_REG(hw, E1000_SCVPC); +} +/** + * e1000_rx_fifo_flush_82575 - Clean rx fifo after RX enable + * @hw: pointer to the HW structure + * + * After rx enable if managability is enabled then there is likely some + * bad data at the start of the fifo and possibly in the DMA fifo. This + * function clears the fifos and flushes any packets that came in as rx was + * being enabled. + **/ +void e1000_rx_fifo_flush_82575(struct e1000_hw *hw) +{ + u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled; + int i, ms_wait; + + DEBUGFUNC("e1000_rx_fifo_workaround_82575"); + if (hw->mac.type != e1000_82575 || + !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) + return; + + /* Disable all RX queues */ + for (i = 0; i < 4; i++) { + rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i)); + E1000_WRITE_REG(hw, E1000_RXDCTL(i), + rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE); + } + /* Poll all queues to verify they have shut down */ + for (ms_wait = 0; ms_wait < 10; ms_wait++) { + msec_delay(1); + rx_enabled = 0; + for (i = 0; i < 4; i++) + rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i)); + if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE)) + break; + } + + if (ms_wait == 10) + DEBUGOUT("Queue disable timed out after 10ms\n"); + + /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all + * incoming packets are rejected. Set enable and wait 2ms so that + * any packet that was coming in as RCTL.EN was set is flushed + */ + rfctl = E1000_READ_REG(hw, E1000_RFCTL); + E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF); + + rlpml = E1000_READ_REG(hw, E1000_RLPML); + E1000_WRITE_REG(hw, E1000_RLPML, 0); + + rctl = E1000_READ_REG(hw, E1000_RCTL); + temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP); + temp_rctl |= E1000_RCTL_LPE; + + E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl); + E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN); + E1000_WRITE_FLUSH(hw); + msec_delay(2); + + /* Enable RX queues that were previously enabled and restore our + * previous state + */ + for (i = 0; i < 4; i++) + E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]); + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + E1000_WRITE_FLUSH(hw); + + E1000_WRITE_REG(hw, E1000_RLPML, rlpml); + E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); + + /* Flush receive errors generated by workaround */ + E1000_READ_REG(hw, E1000_ROC); + E1000_READ_REG(hw, E1000_RNBC); + E1000_READ_REG(hw, E1000_MPC); +} diff --git a/sys/dev/e1000/e1000_82575.h b/sys/dev/e1000/e1000_82575.h new file mode 100644 index 0000000..c4bc39c --- /dev/null +++ b/sys/dev/e1000/e1000_82575.h @@ -0,0 +1,449 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_82575_H_ +#define _E1000_82575_H_ + +#define ID_LED_DEFAULT_82575_SERDES ((ID_LED_DEF1_DEF2 << 12) | \ + (ID_LED_DEF1_DEF2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_OFF1_ON2)) +/* + * Receive Address Register Count + * Number of high/low register pairs in the RAR. The RAR (Receive Address + * Registers) holds the directed and multicast addresses that we monitor. + * These entries are also used for MAC-based filtering. + */ + +/* + * For 82576, there are an additional set of RARs that begin at an offset + * separate from the first set of RARs. + */ +#define E1000_RAR_ENTRIES_82575 16 +#define E1000_RAR_ENTRIES_82576 24 + +#ifdef E1000_BIT_FIELDS +struct e1000_adv_data_desc { + u64 buffer_addr; /* Address of the descriptor's data buffer */ + union { + u32 data; + struct { + u32 datalen :16; /* Data buffer length */ + u32 rsvd :4; + u32 dtyp :4; /* Descriptor type */ + u32 dcmd :8; /* Descriptor command */ + } config; + } lower; + union { + u32 data; + struct { + u32 status :4; /* Descriptor status */ + u32 idx :4; + u32 popts :6; /* Packet Options */ + u32 paylen :18; /* Payload length */ + } options; + } upper; +}; + +#define E1000_TXD_DTYP_ADV_C 0x2 /* Advanced Context Descriptor */ +#define E1000_TXD_DTYP_ADV_D 0x3 /* Advanced Data Descriptor */ +#define E1000_ADV_TXD_CMD_DEXT 0x20 /* Descriptor extension (0 = legacy) */ +#define E1000_ADV_TUCMD_IPV4 0x2 /* IP Packet Type: 1=IPv4 */ +#define E1000_ADV_TUCMD_IPV6 0x0 /* IP Packet Type: 0=IPv6 */ +#define E1000_ADV_TUCMD_L4T_UDP 0x0 /* L4 Packet TYPE of UDP */ +#define E1000_ADV_TUCMD_L4T_TCP 0x4 /* L4 Packet TYPE of TCP */ +#define E1000_ADV_TUCMD_MKRREQ 0x10 /* Indicates markers are required */ +#define E1000_ADV_DCMD_EOP 0x1 /* End of Packet */ +#define E1000_ADV_DCMD_IFCS 0x2 /* Insert FCS (Ethernet CRC) */ +#define E1000_ADV_DCMD_RS 0x8 /* Report Status */ +#define E1000_ADV_DCMD_VLE 0x40 /* Add VLAN tag */ +#define E1000_ADV_DCMD_TSE 0x80 /* TCP Seg enable */ +/* Extended Device Control */ +#define E1000_CTRL_EXT_NSICR 0x00000001 /* Disable Intr Clear all on read */ + +struct e1000_adv_context_desc { + union { + u32 ip_config; + struct { + u32 iplen :9; + u32 maclen :7; + u32 vlan_tag :16; + } fields; + } ip_setup; + u32 seq_num; + union { + u64 l4_config; + struct { + u32 mkrloc :9; + u32 tucmd :11; + u32 dtyp :4; + u32 adv :8; + u32 rsvd :4; + u32 idx :4; + u32 l4len :8; + u32 mss :16; + } fields; + } l4_setup; +}; +#endif + +/* SRRCTL bit definitions */ +#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */ +#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00 +#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */ +#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000 +#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000 +#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000 +#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000 +#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000 +#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000 +#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000 + +#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F +#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00 + +#define E1000_TX_HEAD_WB_ENABLE 0x1 +#define E1000_TX_SEQNUM_WB_ENABLE 0x2 + +#define E1000_MRQC_ENABLE_RSS_4Q 0x00000002 +#define E1000_MRQC_ENABLE_VMDQ 0x00000003 +#define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000 +#define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000 +#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000 + +#define E1000_VMRCTL_MIRROR_PORT_SHIFT 8 +#define E1000_VMRCTL_MIRROR_DSTPORT_MASK (7 << E1000_VMRCTL_MIRROR_PORT_SHIFT) +#define E1000_VMRCTL_POOL_MIRROR_ENABLE (1 << 0) +#define E1000_VMRCTL_UPLINK_MIRROR_ENABLE (1 << 1) +#define E1000_VMRCTL_DOWNLINK_MIRROR_ENABLE (1 << 2) + +#define E1000_EICR_TX_QUEUE ( \ + E1000_EICR_TX_QUEUE0 | \ + E1000_EICR_TX_QUEUE1 | \ + E1000_EICR_TX_QUEUE2 | \ + E1000_EICR_TX_QUEUE3) + +#define E1000_EICR_RX_QUEUE ( \ + E1000_EICR_RX_QUEUE0 | \ + E1000_EICR_RX_QUEUE1 | \ + E1000_EICR_RX_QUEUE2 | \ + E1000_EICR_RX_QUEUE3) + +#define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE +#define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE + +#define EIMS_ENABLE_MASK ( \ + E1000_EIMS_RX_QUEUE | \ + E1000_EIMS_TX_QUEUE | \ + E1000_EIMS_TCP_TIMER | \ + E1000_EIMS_OTHER) + +/* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */ +#define E1000_IMIR_PORT_IM_EN 0x00010000 /* TCP port enable */ +#define E1000_IMIR_PORT_BP 0x00020000 /* TCP port check bypass */ +#define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */ +#define E1000_IMIREXT_CTRL_URG 0x00002000 /* Check URG bit in header */ +#define E1000_IMIREXT_CTRL_ACK 0x00004000 /* Check ACK bit in header */ +#define E1000_IMIREXT_CTRL_PSH 0x00008000 /* Check PSH bit in header */ +#define E1000_IMIREXT_CTRL_RST 0x00010000 /* Check RST bit in header */ +#define E1000_IMIREXT_CTRL_SYN 0x00020000 /* Check SYN bit in header */ +#define E1000_IMIREXT_CTRL_FIN 0x00040000 /* Check FIN bit in header */ +#define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of ctrl bits */ + +/* Receive Descriptor - Advanced */ +union e1000_adv_rx_desc { + struct { + u64 pkt_addr; /* Packet buffer address */ + u64 hdr_addr; /* Header buffer address */ + } read; + struct { + struct { + union { + u32 data; + struct { + u16 pkt_info; /* RSS type, Packet type */ + u16 hdr_info; /* Split Header, + * header buffer length */ + } hs_rss; + } lo_dword; + union { + u32 rss; /* RSS Hash */ + struct { + u16 ip_id; /* IP id */ + u16 csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + u32 status_error; /* ext status/error */ + u16 length; /* Packet length */ + u16 vlan; /* VLAN tag */ + } upper; + } wb; /* writeback */ +}; + +#define E1000_RXDADV_RSSTYPE_MASK 0x0000F000 +#define E1000_RXDADV_RSSTYPE_SHIFT 12 +#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0 +#define E1000_RXDADV_HDRBUFLEN_SHIFT 5 +#define E1000_RXDADV_SPLITHEADER_EN 0x00001000 +#define E1000_RXDADV_SPH 0x8000 +#define E1000_RXDADV_ERR_HBO 0x00800000 + +/* RSS Hash results */ +#define E1000_RXDADV_RSSTYPE_NONE 0x00000000 +#define E1000_RXDADV_RSSTYPE_IPV4_TCP 0x00000001 +#define E1000_RXDADV_RSSTYPE_IPV4 0x00000002 +#define E1000_RXDADV_RSSTYPE_IPV6_TCP 0x00000003 +#define E1000_RXDADV_RSSTYPE_IPV6_EX 0x00000004 +#define E1000_RXDADV_RSSTYPE_IPV6 0x00000005 +#define E1000_RXDADV_RSSTYPE_IPV6_TCP_EX 0x00000006 +#define E1000_RXDADV_RSSTYPE_IPV4_UDP 0x00000007 +#define E1000_RXDADV_RSSTYPE_IPV6_UDP 0x00000008 +#define E1000_RXDADV_RSSTYPE_IPV6_UDP_EX 0x00000009 + +/* RSS Packet Types as indicated in the receive descriptor */ +#define E1000_RXDADV_PKTTYPE_NONE 0x00000000 +#define E1000_RXDADV_PKTTYPE_IPV4 0x00000010 /* IPV4 hdr present */ +#define E1000_RXDADV_PKTTYPE_IPV4_EX 0x00000020 /* IPV4 hdr + extensions */ +#define E1000_RXDADV_PKTTYPE_IPV6 0x00000040 /* IPV6 hdr present */ +#define E1000_RXDADV_PKTTYPE_IPV6_EX 0x00000080 /* IPV6 hdr + extensions */ +#define E1000_RXDADV_PKTTYPE_TCP 0x00000100 /* TCP hdr present */ +#define E1000_RXDADV_PKTTYPE_UDP 0x00000200 /* UDP hdr present */ +#define E1000_RXDADV_PKTTYPE_SCTP 0x00000400 /* SCTP hdr present */ +#define E1000_RXDADV_PKTTYPE_NFS 0x00000800 /* NFS hdr present */ + +#define E1000_RXDADV_PKTTYPE_IPSEC_ESP 0x00001000 /* IPSec ESP */ +#define E1000_RXDADV_PKTTYPE_IPSEC_AH 0x00002000 /* IPSec AH */ +#define E1000_RXDADV_PKTTYPE_LINKSEC 0x00004000 /* LinkSec Encap */ +#define E1000_RXDADV_PKTTYPE_ETQF 0x00008000 /* PKTTYPE is ETQF index */ +#define E1000_RXDADV_PKTTYPE_ETQF_MASK 0x00000070 /* ETQF has 8 indices */ +#define E1000_RXDADV_PKTTYPE_ETQF_SHIFT 4 /* Right-shift 4 bits */ + +/* LinkSec results */ +/* Security Processing bit Indication */ +#define E1000_RXDADV_LNKSEC_STATUS_SECP 0x00020000 +#define E1000_RXDADV_LNKSEC_ERROR_BIT_MASK 0x18000000 +#define E1000_RXDADV_LNKSEC_ERROR_NO_SA_MATCH 0x08000000 +#define E1000_RXDADV_LNKSEC_ERROR_REPLAY_ERROR 0x10000000 +#define E1000_RXDADV_LNKSEC_ERROR_BAD_SIG 0x18000000 + +#define E1000_RXDADV_IPSEC_STATUS_SECP 0x00020000 +#define E1000_RXDADV_IPSEC_ERROR_BIT_MASK 0x18000000 +#define E1000_RXDADV_IPSEC_ERROR_INVALID_PROTOCOL 0x08000000 +#define E1000_RXDADV_IPSEC_ERROR_INVALID_LENGTH 0x10000000 +#define E1000_RXDADV_IPSEC_ERROR_AUTHENTICATION_FAILED 0x18000000 + +/* Transmit Descriptor - Advanced */ +union e1000_adv_tx_desc { + struct { + u64 buffer_addr; /* Address of descriptor's data buf */ + u32 cmd_type_len; + u32 olinfo_status; + } read; + struct { + u64 rsvd; /* Reserved */ + u32 nxtseq_seed; + u32 status; + } wb; +}; + +/* Adv Transmit Descriptor Config Masks */ +#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */ +#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */ +#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */ +#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ +#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */ +#define E1000_ADVTXD_DCMD_DDTYP_ISCSI 0x10000000 /* DDP hdr type or iSCSI */ +#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */ +#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */ +#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */ +#define E1000_ADVTXD_MAC_LINKSEC 0x00040000 /* Apply LinkSec on packet */ +#define E1000_ADVTXD_MAC_TSTAMP 0x00080000 /* IEEE1588 Timestamp packet */ +#define E1000_ADVTXD_STAT_SN_CRC 0x00000002 /* NXTSEQ/SEED present in WB */ +#define E1000_ADVTXD_IDX_SHIFT 4 /* Adv desc Index shift */ +#define E1000_ADVTXD_POPTS_ISCO_1ST 0x00000000 /* 1st TSO of iSCSI PDU */ +#define E1000_ADVTXD_POPTS_ISCO_MDL 0x00000800 /* Middle TSO of iSCSI PDU */ +#define E1000_ADVTXD_POPTS_ISCO_LAST 0x00001000 /* Last TSO of iSCSI PDU */ +#define E1000_ADVTXD_POPTS_ISCO_FULL 0x00001800 /* 1st&Last TSO-full iSCSI PDU*/ +#define E1000_ADVTXD_POPTS_IPSEC 0x00000400 /* IPSec offload request */ +#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */ + +/* Context descriptors */ +struct e1000_adv_tx_context_desc { + u32 vlan_macip_lens; + u32 seqnum_seed; + u32 type_tucmd_mlhl; + u32 mss_l4len_idx; +}; + +#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */ +#define E1000_ADVTXD_VLAN_SHIFT 16 /* Adv ctxt vlan tag shift */ +#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */ +#define E1000_ADVTXD_TUCMD_IPV6 0x00000000 /* IP Packet Type: 0=IPv6 */ +#define E1000_ADVTXD_TUCMD_L4T_UDP 0x00000000 /* L4 Packet TYPE of UDP */ +#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */ +#define E1000_ADVTXD_TUCMD_IPSEC_TYPE_ESP 0x00002000 /* IPSec Type ESP */ +/* IPSec Encrypt Enable for ESP */ +#define E1000_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN 0x00004000 +#define E1000_ADVTXD_TUCMD_MKRREQ 0x00002000 /* Req requires Markers and CRC */ +#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */ +#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */ +/* Adv ctxt IPSec SA IDX mask */ +#define E1000_ADVTXD_IPSEC_SA_INDEX_MASK 0x000000FF +/* Adv ctxt IPSec ESP len mask */ +#define E1000_ADVTXD_IPSEC_ESP_LEN_MASK 0x000000FF + +/* Additional Transmit Descriptor Control definitions */ +#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Tx Queue */ +#define E1000_TXDCTL_SWFLSH 0x04000000 /* Tx Desc. write-back flushing */ +/* Tx Queue Arbitration Priority 0=low, 1=high */ +#define E1000_TXDCTL_PRIORITY 0x08000000 + +/* Additional Receive Descriptor Control definitions */ +#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Rx Queue */ +#define E1000_RXDCTL_SWFLSH 0x04000000 /* Rx Desc. write-back flushing */ + +/* Direct Cache Access (DCA) definitions */ +#define E1000_DCA_CTRL_DCA_ENABLE 0x00000000 /* DCA Enable */ +#define E1000_DCA_CTRL_DCA_DISABLE 0x00000001 /* DCA Disable */ + +#define E1000_DCA_CTRL_DCA_MODE_CB1 0x00 /* DCA Mode CB1 */ +#define E1000_DCA_CTRL_DCA_MODE_CB2 0x02 /* DCA Mode CB2 */ + +#define E1000_DCA_RXCTRL_CPUID_MASK 0x0000001F /* Rx CPUID Mask */ +#define E1000_DCA_RXCTRL_DESC_DCA_EN (1 << 5) /* DCA Rx Desc enable */ +#define E1000_DCA_RXCTRL_HEAD_DCA_EN (1 << 6) /* DCA Rx Desc header enable */ +#define E1000_DCA_RXCTRL_DATA_DCA_EN (1 << 7) /* DCA Rx Desc payload enable */ + +#define E1000_DCA_TXCTRL_CPUID_MASK 0x0000001F /* Tx CPUID Mask */ +#define E1000_DCA_TXCTRL_DESC_DCA_EN (1 << 5) /* DCA Tx Desc enable */ +#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */ + +/* Additional DCA related definitions, note change in position of CPUID */ +#define E1000_DCA_TXCTRL_CPUID_MASK_82576 0xFF000000 /* Tx CPUID Mask */ +#define E1000_DCA_RXCTRL_CPUID_MASK_82576 0xFF000000 /* Rx CPUID Mask */ +#define E1000_DCA_TXCTRL_CPUID_SHIFT 24 /* Tx CPUID now in the last byte */ +#define E1000_DCA_RXCTRL_CPUID_SHIFT 24 /* Rx CPUID now in the last byte */ + +/* Additional interrupt register bit definitions */ +#define E1000_ICR_LSECPNS 0x00000020 /* PN threshold - server */ +#define E1000_IMS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */ +#define E1000_ICS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */ + +/* ETQF register bit definitions */ +#define E1000_ETQF_FILTER_ENABLE (1 << 26) +#define E1000_ETQF_IMM_INT (1 << 29) +/* + * ETQF filter list: one static filter per filter consumer. This is + * to avoid filter collisions later. Add new filters + * here!! + * + * Current filters: + * EAPOL 802.1x (0x888e): Filter 0 + */ +#define E1000_ETQF_FILTER_EAPOL 0 + +#define E1000_NVM_APME_82575 0x0400 +#define MAX_NUM_VFS 8 + +#define E1000_DTXSWC_MAC_SPOOF_MASK 0x000000FF /* Per VF MAC spoof control */ +#define E1000_DTXSWC_VLAN_SPOOF_MASK 0x0000FF00 /* Per VF VLAN spoof control */ +#define E1000_DTXSWC_LLE_MASK 0x00FF0000 /* Per VF Local LB enables */ +#define E1000_DTXSWC_VMDQ_LOOPBACK_EN (1 << 31) /* global VF LB enable */ + +/* Easy defines for setting default pool, would normally be left a zero */ +#define E1000_VT_CTL_DEFAULT_POOL_SHIFT 7 +#define E1000_VT_CTL_DEFAULT_POOL_MASK (0x7 << E1000_VT_CTL_DEFAULT_POOL_SHIFT) + +/* Other useful VMD_CTL register defines */ +#define E1000_VT_CTL_IGNORE_MAC (1 << 28) +#define E1000_VT_CTL_DISABLE_DEF_POOL (1 << 29) +#define E1000_VT_CTL_VM_REPL_EN (1 << 30) + +/* Per VM Offload register setup */ +#define E1000_VMOLR_LPE 0x00010000 /* Accept Long packet */ +#define E1000_VMOLR_AUPE 0x01000000 /* Accept untagged packets */ +#define E1000_VMOLR_BAM 0x08000000 /* Accept Broadcast packets */ +#define E1000_VMOLR_MPME 0x10000000 /* Multicast promiscuous mode */ +#define E1000_VMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */ + +#define E1000_V2PMAILBOX_REQ 0x00000001 /* Request for PF Ready bit */ +#define E1000_V2PMAILBOX_ACK 0x00000002 /* Ack PF message received */ +#define E1000_V2PMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */ +#define E1000_V2PMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */ +#define E1000_V2PMAILBOX_PFSTS 0x00000010 /* PF wrote a message in the MB */ +#define E1000_V2PMAILBOX_PFACK 0x00000020 /* PF ack the previous VF msg */ +#define E1000_V2PMAILBOX_RSTI 0x00000040 /* PF has reset indication */ + +#define E1000_P2VMAILBOX_STS 0x00000001 /* Initiate message send to VF */ +#define E1000_P2VMAILBOX_ACK 0x00000002 /* Ack message recv'd from VF */ +#define E1000_P2VMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */ +#define E1000_P2VMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */ +#define E1000_P2VMAILBOX_RVFU 0x00000010 /* Reset VFU - used when VF stuck */ + +#define E1000_VFMAILBOX_SIZE 16 /* 16 32 bit words - 64 bytes */ + +/* If it's a E1000_VF_* msg then it originates in the VF and is sent to the + * PF. The reverse is TRUE if it is E1000_PF_*. + * Message ACK's are the value or'd with 0xF0000000 + */ +#define E1000_VT_MSGTYPE_ACK 0xF0000000 /* Messages below or'd with + * this are the ACK */ +#define E1000_VT_MSGTYPE_NACK 0xFF000000 /* Messages below or'd with + * this are the NACK */ +#define E1000_VF_MSGTYPE_REQ_MAC 1 /* VF needs to know its MAC */ +#define E1000_VF_MSGTYPE_VFLR 2 /* VF notifies VFLR to PF */ +#define E1000_PF_MSGTYPE_RESET 3 /* PF notifies global reset + * imminent to VF */ + +u32 e1000_translate_register_82576(u32 reg); +s32 e1000_send_mail_to_pf_vf(struct e1000_hw *hw, u32 *msg, + s16 size); +s32 e1000_receive_mail_from_pf_vf(struct e1000_hw *hw, + u32 *msg, s16 size); +s32 e1000_send_mail_to_vf(struct e1000_hw *hw, u32 *msg, + u32 vf_number, s16 size); +s32 e1000_receive_mail_from_vf(struct e1000_hw *hw, u32 *msg, + u32 vf_number, s16 size); +void e1000_vmdq_loopback_enable_vf(struct e1000_hw *hw); +void e1000_vmdq_loopback_disable_vf(struct e1000_hw *hw); +void e1000_vmdq_replication_enable_vf(struct e1000_hw *hw, u32 enables); +void e1000_vmdq_replication_disable_vf(struct e1000_hw *hw); +void e1000_init_vfnumber_index_vf(struct e1000_hw *hw, u32 vf_number); +bool e1000_check_for_pf_ack_vf(struct e1000_hw *hw); +bool e1000_check_for_pf_mail_vf(struct e1000_hw *hw); + + +#endif diff --git a/sys/dev/e1000/e1000_api.c b/sys/dev/e1000/e1000_api.c new file mode 100644 index 0000000..aaa70b1 --- /dev/null +++ b/sys/dev/e1000/e1000_api.c @@ -0,0 +1,1232 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#include "e1000_api.h" + +/** + * e1000_init_mac_params - Initialize MAC function pointers + * @hw: pointer to the HW structure + * + * This function initializes the function pointers for the MAC + * set of functions. Called by drivers or by e1000_setup_init_funcs. + **/ +s32 e1000_init_mac_params(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + if (hw->mac.ops.init_params) { + ret_val = hw->mac.ops.init_params(hw); + if (ret_val) { + DEBUGOUT("MAC Initialization Error\n"); + goto out; + } + } else { + DEBUGOUT("mac.init_mac_params was NULL\n"); + ret_val = -E1000_ERR_CONFIG; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params - Initialize NVM function pointers + * @hw: pointer to the HW structure + * + * This function initializes the function pointers for the NVM + * set of functions. Called by drivers or by e1000_setup_init_funcs. + **/ +s32 e1000_init_nvm_params(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + if (hw->nvm.ops.init_params) { + hw->nvm.semaphore_delay = 10; + ret_val = hw->nvm.ops.init_params(hw); + if (ret_val) { + DEBUGOUT("NVM Initialization Error\n"); + goto out; + } + } else { + DEBUGOUT("nvm.init_nvm_params was NULL\n"); + ret_val = -E1000_ERR_CONFIG; + } + +out: + return ret_val; +} + +/** + * e1000_init_phy_params - Initialize PHY function pointers + * @hw: pointer to the HW structure + * + * This function initializes the function pointers for the PHY + * set of functions. Called by drivers or by e1000_setup_init_funcs. + **/ +s32 e1000_init_phy_params(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + if (hw->phy.ops.init_params) { + ret_val = hw->phy.ops.init_params(hw); + if (ret_val) { + DEBUGOUT("PHY Initialization Error\n"); + goto out; + } + } else { + DEBUGOUT("phy.init_phy_params was NULL\n"); + ret_val = -E1000_ERR_CONFIG; + } + +out: + return ret_val; +} + +/** + * e1000_set_mac_type - Sets MAC type + * @hw: pointer to the HW structure + * + * This function sets the mac type of the adapter based on the + * device ID stored in the hw structure. + * MUST BE FIRST FUNCTION CALLED (explicitly or through + * e1000_setup_init_funcs()). + **/ +s32 e1000_set_mac_type(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_set_mac_type"); + + switch (hw->device_id) { + case E1000_DEV_ID_82542: + mac->type = e1000_82542; + break; + case E1000_DEV_ID_82543GC_FIBER: + case E1000_DEV_ID_82543GC_COPPER: + mac->type = e1000_82543; + break; + case E1000_DEV_ID_82544EI_COPPER: + case E1000_DEV_ID_82544EI_FIBER: + case E1000_DEV_ID_82544GC_COPPER: + case E1000_DEV_ID_82544GC_LOM: + mac->type = e1000_82544; + break; + case E1000_DEV_ID_82540EM: + case E1000_DEV_ID_82540EM_LOM: + case E1000_DEV_ID_82540EP: + case E1000_DEV_ID_82540EP_LOM: + case E1000_DEV_ID_82540EP_LP: + mac->type = e1000_82540; + break; + case E1000_DEV_ID_82545EM_COPPER: + case E1000_DEV_ID_82545EM_FIBER: + mac->type = e1000_82545; + break; + case E1000_DEV_ID_82545GM_COPPER: + case E1000_DEV_ID_82545GM_FIBER: + case E1000_DEV_ID_82545GM_SERDES: + mac->type = e1000_82545_rev_3; + break; + case E1000_DEV_ID_82546EB_COPPER: + case E1000_DEV_ID_82546EB_FIBER: + case E1000_DEV_ID_82546EB_QUAD_COPPER: + mac->type = e1000_82546; + break; + case E1000_DEV_ID_82546GB_COPPER: + case E1000_DEV_ID_82546GB_FIBER: + case E1000_DEV_ID_82546GB_SERDES: + case E1000_DEV_ID_82546GB_PCIE: + case E1000_DEV_ID_82546GB_QUAD_COPPER: + case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: + mac->type = e1000_82546_rev_3; + break; + case E1000_DEV_ID_82541EI: + case E1000_DEV_ID_82541EI_MOBILE: + case E1000_DEV_ID_82541ER_LOM: + mac->type = e1000_82541; + break; + case E1000_DEV_ID_82541ER: + case E1000_DEV_ID_82541GI: + case E1000_DEV_ID_82541GI_LF: + case E1000_DEV_ID_82541GI_MOBILE: + mac->type = e1000_82541_rev_2; + break; + case E1000_DEV_ID_82547EI: + case E1000_DEV_ID_82547EI_MOBILE: + mac->type = e1000_82547; + break; + case E1000_DEV_ID_82547GI: + mac->type = e1000_82547_rev_2; + break; + case E1000_DEV_ID_82571EB_COPPER: + case E1000_DEV_ID_82571EB_FIBER: + case E1000_DEV_ID_82571EB_SERDES: + case E1000_DEV_ID_82571EB_SERDES_DUAL: + case E1000_DEV_ID_82571EB_SERDES_QUAD: + case E1000_DEV_ID_82571EB_QUAD_COPPER: + case E1000_DEV_ID_82571PT_QUAD_COPPER: + case E1000_DEV_ID_82571EB_QUAD_FIBER: + case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: + mac->type = e1000_82571; + break; + case E1000_DEV_ID_82572EI: + case E1000_DEV_ID_82572EI_COPPER: + case E1000_DEV_ID_82572EI_FIBER: + case E1000_DEV_ID_82572EI_SERDES: + mac->type = e1000_82572; + break; + case E1000_DEV_ID_82573E: + case E1000_DEV_ID_82573E_IAMT: + case E1000_DEV_ID_82573L: + mac->type = e1000_82573; + break; + case E1000_DEV_ID_82574L: + mac->type = e1000_82574; + break; + case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: + case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: + case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: + case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: + mac->type = e1000_80003es2lan; + break; + case E1000_DEV_ID_ICH8_IFE: + case E1000_DEV_ID_ICH8_IFE_GT: + case E1000_DEV_ID_ICH8_IFE_G: + case E1000_DEV_ID_ICH8_IGP_M: + case E1000_DEV_ID_ICH8_IGP_M_AMT: + case E1000_DEV_ID_ICH8_IGP_AMT: + case E1000_DEV_ID_ICH8_IGP_C: + mac->type = e1000_ich8lan; + break; + case E1000_DEV_ID_ICH9_IFE: + case E1000_DEV_ID_ICH9_IFE_GT: + case E1000_DEV_ID_ICH9_IFE_G: + case E1000_DEV_ID_ICH9_IGP_M: + case E1000_DEV_ID_ICH9_IGP_M_AMT: + case E1000_DEV_ID_ICH9_IGP_M_V: + case E1000_DEV_ID_ICH9_IGP_AMT: + case E1000_DEV_ID_ICH9_BM: + case E1000_DEV_ID_ICH9_IGP_C: + case E1000_DEV_ID_ICH10_R_BM_LM: + case E1000_DEV_ID_ICH10_R_BM_LF: + case E1000_DEV_ID_ICH10_R_BM_V: + mac->type = e1000_ich9lan; + break; + case E1000_DEV_ID_ICH10_D_BM_LM: + case E1000_DEV_ID_ICH10_D_BM_LF: + mac->type = e1000_ich10lan; + break; + case E1000_DEV_ID_82575EB_COPPER: + case E1000_DEV_ID_82575EB_FIBER_SERDES: + case E1000_DEV_ID_82575GB_QUAD_COPPER: + mac->type = e1000_82575; + break; + case E1000_DEV_ID_82576: + case E1000_DEV_ID_82576_FIBER: + case E1000_DEV_ID_82576_SERDES: + case E1000_DEV_ID_82576_QUAD_COPPER: + mac->type = e1000_82576; + break; + default: + /* Should never have loaded on this device */ + ret_val = -E1000_ERR_MAC_INIT; + break; + } + + return ret_val; +} + +/** + * e1000_setup_init_funcs - Initializes function pointers + * @hw: pointer to the HW structure + * @init_device: TRUE will initialize the rest of the function pointers + * getting the device ready for use. FALSE will only set + * MAC type and the function pointers for the other init + * functions. Passing FALSE will not generate any hardware + * reads or writes. + * + * This function must be called by a driver in order to use the rest + * of the 'shared' code files. Called by drivers only. + **/ +s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) +{ + s32 ret_val; + + /* Can't do much good without knowing the MAC type. */ + ret_val = e1000_set_mac_type(hw); + if (ret_val) { + DEBUGOUT("ERROR: MAC type could not be set properly.\n"); + goto out; + } + + if (!hw->hw_addr) { + DEBUGOUT("ERROR: Registers not mapped\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + /* + * Init function pointers to generic implementations. We do this first + * allowing a driver module to override it afterward. + */ + e1000_init_mac_ops_generic(hw); + e1000_init_phy_ops_generic(hw); + e1000_init_nvm_ops_generic(hw); + + /* + * Set up the init function pointers. These are functions within the + * adapter family file that sets up function pointers for the rest of + * the functions in that family. + */ + switch (hw->mac.type) { + case e1000_82542: + e1000_init_function_pointers_82542(hw); + break; + case e1000_82543: + case e1000_82544: + e1000_init_function_pointers_82543(hw); + break; + case e1000_82540: + case e1000_82545: + case e1000_82545_rev_3: + case e1000_82546: + case e1000_82546_rev_3: + e1000_init_function_pointers_82540(hw); + break; + case e1000_82541: + case e1000_82541_rev_2: + case e1000_82547: + case e1000_82547_rev_2: + e1000_init_function_pointers_82541(hw); + break; + case e1000_82571: + case e1000_82572: + case e1000_82573: + case e1000_82574: + e1000_init_function_pointers_82571(hw); + break; + case e1000_80003es2lan: + e1000_init_function_pointers_80003es2lan(hw); + break; + case e1000_ich8lan: + case e1000_ich9lan: + case e1000_ich10lan: + e1000_init_function_pointers_ich8lan(hw); + break; + case e1000_82575: + case e1000_82576: + e1000_init_function_pointers_82575(hw); + break; + default: + DEBUGOUT("Hardware not supported\n"); + ret_val = -E1000_ERR_CONFIG; + break; + } + + /* + * Initialize the rest of the function pointers. These require some + * register reads/writes in some cases. + */ + if (!(ret_val) && init_device) { + ret_val = e1000_init_mac_params(hw); + if (ret_val) + goto out; + + ret_val = e1000_init_nvm_params(hw); + if (ret_val) + goto out; + + ret_val = e1000_init_phy_params(hw); + if (ret_val) + goto out; + + } + +out: + return ret_val; +} + +/** + * e1000_remove_device - Free device specific structure + * @hw: pointer to the HW structure + * + * If a device specific structure was allocated, this function will + * free it. This is a function pointer entry point called by drivers. + **/ +void e1000_remove_device(struct e1000_hw *hw) +{ + if (hw->mac.ops.remove_device) + hw->mac.ops.remove_device(hw); +} + +/** + * e1000_get_bus_info - Obtain bus information for adapter + * @hw: pointer to the HW structure + * + * This will obtain information about the HW bus for which the + * adapter is attached and stores it in the hw structure. This is a + * function pointer entry point called by drivers. + **/ +s32 e1000_get_bus_info(struct e1000_hw *hw) +{ + if (hw->mac.ops.get_bus_info) + return hw->mac.ops.get_bus_info(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_clear_vfta - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * This clears the VLAN filter table on the adapter. This is a function + * pointer entry point called by drivers. + **/ +void e1000_clear_vfta(struct e1000_hw *hw) +{ + if (hw->mac.ops.clear_vfta) + hw->mac.ops.clear_vfta(hw); +} + +/** + * e1000_write_vfta - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: the 32-bit offset in which to write the value to. + * @value: the 32-bit value to write at location offset. + * + * This writes a 32-bit value to a 32-bit offset in the VLAN filter + * table. This is a function pointer entry point called by drivers. + **/ +void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) +{ + if (hw->mac.ops.write_vfta) + hw->mac.ops.write_vfta(hw, offset, value); +} + +/** + * e1000_update_mc_addr_list - Update Multicast addresses + * @hw: pointer to the HW structure + * @mc_addr_list: array of multicast addresses to program + * @mc_addr_count: number of multicast addresses to program + * @rar_used_count: the first RAR register free to program + * @rar_count: total number of supported Receive Address Registers + * + * Updates the Receive Address Registers and Multicast Table Array. + * The caller must have a packed mc_addr_list of multicast addresses. + * The parameter rar_count will usually be hw->mac.rar_entry_count + * unless there are workarounds that change this. Currently no func pointer + * exists and all implementations are handled in the generic version of this + * function. + **/ +void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, + u32 mc_addr_count, u32 rar_used_count, + u32 rar_count) +{ + if (hw->mac.ops.update_mc_addr_list) + hw->mac.ops.update_mc_addr_list(hw, + mc_addr_list, + mc_addr_count, + rar_used_count, + rar_count); +} + +/** + * e1000_force_mac_fc - Force MAC flow control + * @hw: pointer to the HW structure + * + * Force the MAC's flow control settings. Currently no func pointer exists + * and all implementations are handled in the generic version of this + * function. + **/ +s32 e1000_force_mac_fc(struct e1000_hw *hw) +{ + return e1000_force_mac_fc_generic(hw); +} + +/** + * e1000_check_for_link - Check/Store link connection + * @hw: pointer to the HW structure + * + * This checks the link condition of the adapter and stores the + * results in the hw->mac structure. This is a function pointer entry + * point called by drivers. + **/ +s32 e1000_check_for_link(struct e1000_hw *hw) +{ + if (hw->mac.ops.check_for_link) + return hw->mac.ops.check_for_link(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_check_mng_mode - Check management mode + * @hw: pointer to the HW structure + * + * This checks if the adapter has manageability enabled. + * This is a function pointer entry point called by drivers. + **/ +bool e1000_check_mng_mode(struct e1000_hw *hw) +{ + if (hw->mac.ops.check_mng_mode) + return hw->mac.ops.check_mng_mode(hw); + + return FALSE; +} + +/** + * e1000_mng_write_dhcp_info - Writes DHCP info to host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface + * @length: size of the buffer + * + * Writes the DHCP information to the host interface. + **/ +s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) +{ + return e1000_mng_write_dhcp_info_generic(hw, buffer, length); +} + +/** + * e1000_reset_hw - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. This is a function pointer + * entry point called by drivers. + **/ +s32 e1000_reset_hw(struct e1000_hw *hw) +{ + if (hw->mac.ops.reset_hw) + return hw->mac.ops.reset_hw(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_init_hw - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. This is a function + * pointer entry point called by drivers. + **/ +s32 e1000_init_hw(struct e1000_hw *hw) +{ + if (hw->mac.ops.init_hw) + return hw->mac.ops.init_hw(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_setup_link - Configures link and flow control + * @hw: pointer to the HW structure + * + * This configures link and flow control settings for the adapter. This + * is a function pointer entry point called by drivers. While modules can + * also call this, they probably call their own version of this function. + **/ +s32 e1000_setup_link(struct e1000_hw *hw) +{ + if (hw->mac.ops.setup_link) + return hw->mac.ops.setup_link(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_get_speed_and_duplex - Returns current speed and duplex + * @hw: pointer to the HW structure + * @speed: pointer to a 16-bit value to store the speed + * @duplex: pointer to a 16-bit value to store the duplex. + * + * This returns the speed and duplex of the adapter in the two 'out' + * variables passed in. This is a function pointer entry point called + * by drivers. + **/ +s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) +{ + if (hw->mac.ops.get_link_up_info) + return hw->mac.ops.get_link_up_info(hw, speed, duplex); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_setup_led - Configures SW controllable LED + * @hw: pointer to the HW structure + * + * This prepares the SW controllable LED for use and saves the current state + * of the LED so it can be later restored. This is a function pointer entry + * point called by drivers. + **/ +s32 e1000_setup_led(struct e1000_hw *hw) +{ + if (hw->mac.ops.setup_led) + return hw->mac.ops.setup_led(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_cleanup_led - Restores SW controllable LED + * @hw: pointer to the HW structure + * + * This restores the SW controllable LED to the value saved off by + * e1000_setup_led. This is a function pointer entry point called by drivers. + **/ +s32 e1000_cleanup_led(struct e1000_hw *hw) +{ + if (hw->mac.ops.cleanup_led) + return hw->mac.ops.cleanup_led(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_blink_led - Blink SW controllable LED + * @hw: pointer to the HW structure + * + * This starts the adapter LED blinking. Request the LED to be setup first + * and cleaned up after. This is a function pointer entry point called by + * drivers. + **/ +s32 e1000_blink_led(struct e1000_hw *hw) +{ + if (hw->mac.ops.blink_led) + return hw->mac.ops.blink_led(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_led_on - Turn on SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED on. This is a function pointer entry point + * called by drivers. + **/ +s32 e1000_led_on(struct e1000_hw *hw) +{ + if (hw->mac.ops.led_on) + return hw->mac.ops.led_on(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_led_off - Turn off SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED off. This is a function pointer entry point + * called by drivers. + **/ +s32 e1000_led_off(struct e1000_hw *hw) +{ + if (hw->mac.ops.led_off) + return hw->mac.ops.led_off(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_reset_adaptive - Reset adaptive IFS + * @hw: pointer to the HW structure + * + * Resets the adaptive IFS. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +void e1000_reset_adaptive(struct e1000_hw *hw) +{ + e1000_reset_adaptive_generic(hw); +} + +/** + * e1000_update_adaptive - Update adaptive IFS + * @hw: pointer to the HW structure + * + * Updates adapter IFS. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +void e1000_update_adaptive(struct e1000_hw *hw) +{ + e1000_update_adaptive_generic(hw); +} + +/** + * e1000_disable_pcie_master - Disable PCI-Express master access + * @hw: pointer to the HW structure + * + * Disables PCI-Express master access and verifies there are no pending + * requests. Currently no func pointer exists and all implementations are + * handled in the generic version of this function. + **/ +s32 e1000_disable_pcie_master(struct e1000_hw *hw) +{ + return e1000_disable_pcie_master_generic(hw); +} + +/** + * e1000_config_collision_dist - Configure collision distance + * @hw: pointer to the HW structure + * + * Configures the collision distance to the default value and is used + * during link setup. + **/ +void e1000_config_collision_dist(struct e1000_hw *hw) +{ + if (hw->mac.ops.config_collision_dist) + hw->mac.ops.config_collision_dist(hw); +} + +/** + * e1000_rar_set - Sets a receive address register + * @hw: pointer to the HW structure + * @addr: address to set the RAR to + * @index: the RAR to set + * + * Sets a Receive Address Register (RAR) to the specified address. + **/ +void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) +{ + if (hw->mac.ops.rar_set) + hw->mac.ops.rar_set(hw, addr, index); +} + +/** + * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state + * @hw: pointer to the HW structure + * + * Ensures that the MDI/MDIX SW state is valid. + **/ +s32 e1000_validate_mdi_setting(struct e1000_hw *hw) +{ + if (hw->mac.ops.validate_mdi_setting) + return hw->mac.ops.validate_mdi_setting(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_mta_set - Sets multicast table bit + * @hw: pointer to the HW structure + * @hash_value: Multicast hash value. + * + * This sets the bit in the multicast table corresponding to the + * hash value. This is a function pointer entry point called by drivers. + **/ +void e1000_mta_set(struct e1000_hw *hw, u32 hash_value) +{ + if (hw->mac.ops.mta_set) + hw->mac.ops.mta_set(hw, hash_value); +} + +/** + * e1000_hash_mc_addr - Determines address location in multicast table + * @hw: pointer to the HW structure + * @mc_addr: Multicast address to hash. + * + * This hashes an address to determine its location in the multicast + * table. Currently no func pointer exists and all implementations + * are handled in the generic version of this function. + **/ +u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) +{ + return e1000_hash_mc_addr_generic(hw, mc_addr); +} + +/** + * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX + * @hw: pointer to the HW structure + * + * Enables packet filtering on transmit packets if manageability is enabled + * and host interface is enabled. + * Currently no func pointer exists and all implementations are handled in the + * generic version of this function. + **/ +bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) +{ + return e1000_enable_tx_pkt_filtering_generic(hw); +} + +/** + * e1000_mng_host_if_write - Writes to the manageability host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface buffer + * @length: size of the buffer + * @offset: location in the buffer to write to + * @sum: sum of the data (not checksum) + * + * This function writes the buffer content at the offset given on the host if. + * It also does alignment considerations to do the writes in most efficient + * way. Also fills up the sum of the buffer in *buffer parameter. + **/ +s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length, + u16 offset, u8 *sum) +{ + if (hw->mac.ops.mng_host_if_write) + return hw->mac.ops.mng_host_if_write(hw, buffer, length, + offset, sum); + + return E1000_NOT_IMPLEMENTED; +} + +/** + * e1000_mng_write_cmd_header - Writes manageability command header + * @hw: pointer to the HW structure + * @hdr: pointer to the host interface command header + * + * Writes the command header after does the checksum calculation. + **/ +s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr) +{ + if (hw->mac.ops.mng_write_cmd_header) + return hw->mac.ops.mng_write_cmd_header(hw, hdr); + + return E1000_NOT_IMPLEMENTED; +} + +/** + * e1000_mng_enable_host_if - Checks host interface is enabled + * @hw: pointer to the HW structure + * + * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND + * + * This function checks whether the HOST IF is enabled for command operation + * and also checks whether the previous command is completed. It busy waits + * in case of previous command is not completed. + **/ +s32 e1000_mng_enable_host_if(struct e1000_hw * hw) +{ + if (hw->mac.ops.mng_enable_host_if) + return hw->mac.ops.mng_enable_host_if(hw); + + return E1000_NOT_IMPLEMENTED; +} + +/** + * e1000_wait_autoneg - Waits for autonegotiation completion + * @hw: pointer to the HW structure + * + * Waits for autoneg to complete. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +s32 e1000_wait_autoneg(struct e1000_hw *hw) +{ + if (hw->mac.ops.wait_autoneg) + return hw->mac.ops.wait_autoneg(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_check_reset_block - Verifies PHY can be reset + * @hw: pointer to the HW structure + * + * Checks if the PHY is in a state that can be reset or if manageability + * has it tied up. This is a function pointer entry point called by drivers. + **/ +s32 e1000_check_reset_block(struct e1000_hw *hw) +{ + if (hw->phy.ops.check_reset_block) + return hw->phy.ops.check_reset_block(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_read_phy_reg - Reads PHY register + * @hw: pointer to the HW structure + * @offset: the register to read + * @data: the buffer to store the 16-bit read. + * + * Reads the PHY register and returns the value in data. + * This is a function pointer entry point called by drivers. + **/ +s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) +{ + if (hw->phy.ops.read_reg) + return hw->phy.ops.read_reg(hw, offset, data); + + return E1000_SUCCESS; +} + +/** + * e1000_write_phy_reg - Writes PHY register + * @hw: pointer to the HW structure + * @offset: the register to write + * @data: the value to write. + * + * Writes the PHY register at offset with the value in data. + * This is a function pointer entry point called by drivers. + **/ +s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) +{ + if (hw->phy.ops.write_reg) + return hw->phy.ops.write_reg(hw, offset, data); + + return E1000_SUCCESS; +} + +/** + * e1000_release_phy - Generic release PHY + * @hw: pointer to the HW structure + * + * Return if silicon family does not require a semaphore when accessing the + * PHY. + **/ +void e1000_release_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.release) + hw->phy.ops.release(hw); +} + +/** + * e1000_acquire_phy - Generic acquire PHY + * @hw: pointer to the HW structure + * + * Return success if silicon family does not require a semaphore when + * accessing the PHY. + **/ +s32 e1000_acquire_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.acquire) + return hw->phy.ops.acquire(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_read_kmrn_reg - Reads register using Kumeran interface + * @hw: pointer to the HW structure + * @offset: the register to read + * @data: the location to store the 16-bit value read. + * + * Reads a register out of the Kumeran interface. Currently no func pointer + * exists and all implementations are handled in the generic version of + * this function. + **/ +s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return e1000_read_kmrn_reg_generic(hw, offset, data); +} + +/** + * e1000_write_kmrn_reg - Writes register using Kumeran interface + * @hw: pointer to the HW structure + * @offset: the register to write + * @data: the value to write. + * + * Writes a register to the Kumeran interface. Currently no func pointer + * exists and all implementations are handled in the generic version of + * this function. + **/ +s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) +{ + return e1000_write_kmrn_reg_generic(hw, offset, data); +} + +/** + * e1000_get_cable_length - Retrieves cable length estimation + * @hw: pointer to the HW structure + * + * This function estimates the cable length and stores them in + * hw->phy.min_length and hw->phy.max_length. This is a function pointer + * entry point called by drivers. + **/ +s32 e1000_get_cable_length(struct e1000_hw *hw) +{ + if (hw->phy.ops.get_cable_length) + return hw->phy.ops.get_cable_length(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_get_phy_info - Retrieves PHY information from registers + * @hw: pointer to the HW structure + * + * This function gets some information from various PHY registers and + * populates hw->phy values with it. This is a function pointer entry + * point called by drivers. + **/ +s32 e1000_get_phy_info(struct e1000_hw *hw) +{ + if (hw->phy.ops.get_info) + return hw->phy.ops.get_info(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_phy_hw_reset - Hard PHY reset + * @hw: pointer to the HW structure + * + * Performs a hard PHY reset. This is a function pointer entry point called + * by drivers. + **/ +s32 e1000_phy_hw_reset(struct e1000_hw *hw) +{ + if (hw->phy.ops.reset) + return hw->phy.ops.reset(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_phy_commit - Soft PHY reset + * @hw: pointer to the HW structure + * + * Performs a soft PHY reset on those that apply. This is a function pointer + * entry point called by drivers. + **/ +s32 e1000_phy_commit(struct e1000_hw *hw) +{ + if (hw->phy.ops.commit) + return hw->phy.ops.commit(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_set_d0_lplu_state - Sets low power link up state for D0 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D0 + * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. This is a function pointer entry point called by drivers. + **/ +s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) +{ + if (hw->phy.ops.set_d0_lplu_state) + return hw->phy.ops.set_d0_lplu_state(hw, active); + + return E1000_SUCCESS; +} + +/** + * e1000_set_d3_lplu_state - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D3 + * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. This is a function pointer entry point called by drivers. + **/ +s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) +{ + if (hw->phy.ops.set_d3_lplu_state) + return hw->phy.ops.set_d3_lplu_state(hw, active); + + return E1000_SUCCESS; +} + +/** + * e1000_read_mac_addr - Reads MAC address + * @hw: pointer to the HW structure + * + * Reads the MAC address out of the adapter and stores it in the HW structure. + * Currently no func pointer exists and all implementations are handled in the + * generic version of this function. + **/ +s32 e1000_read_mac_addr(struct e1000_hw *hw) +{ + if (hw->mac.ops.read_mac_addr) + return hw->mac.ops.read_mac_addr(hw); + + return e1000_read_mac_addr_generic(hw); +} + +/** + * e1000_read_pba_num - Read device part number + * @hw: pointer to the HW structure + * @pba_num: pointer to device part number + * + * Reads the product board assembly (PBA) number from the EEPROM and stores + * the value in pba_num. + * Currently no func pointer exists and all implementations are handled in the + * generic version of this function. + **/ +s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num) +{ + return e1000_read_pba_num_generic(hw, pba_num); +} + +/** + * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum + * @hw: pointer to the HW structure + * + * Validates the NVM checksum is correct. This is a function pointer entry + * point called by drivers. + **/ +s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) +{ + if (hw->nvm.ops.validate) + return hw->nvm.ops.validate(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum + * @hw: pointer to the HW structure + * + * Updates the NVM checksum. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +s32 e1000_update_nvm_checksum(struct e1000_hw *hw) +{ + if (hw->nvm.ops.update) + return hw->nvm.ops.update(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_reload_nvm - Reloads EEPROM + * @hw: pointer to the HW structure + * + * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the + * extended control register. + **/ +void e1000_reload_nvm(struct e1000_hw *hw) +{ + if (hw->nvm.ops.reload) + hw->nvm.ops.reload(hw); +} + +/** + * e1000_read_nvm - Reads NVM (EEPROM) + * @hw: pointer to the HW structure + * @offset: the word offset to read + * @words: number of 16-bit words to read + * @data: pointer to the properly sized buffer for the data. + * + * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function + * pointer entry point called by drivers. + **/ +s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + if (hw->nvm.ops.read) + return hw->nvm.ops.read(hw, offset, words, data); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_write_nvm - Writes to NVM (EEPROM) + * @hw: pointer to the HW structure + * @offset: the word offset to read + * @words: number of 16-bit words to write + * @data: pointer to the properly sized buffer for the data. + * + * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function + * pointer entry point called by drivers. + **/ +s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + if (hw->nvm.ops.write) + return hw->nvm.ops.write(hw, offset, words, data); + + return E1000_SUCCESS; +} + +/** + * e1000_write_8bit_ctrl_reg - Writes 8bit Control register + * @hw: pointer to the HW structure + * @reg: 32bit register offset + * @offset: the register to write + * @data: the value to write. + * + * Writes the PHY register at offset with the value in data. + * This is a function pointer entry point called by drivers. + **/ +s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, + u8 data) +{ + return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); +} + +/** + * e1000_power_up_phy - Restores link in case of PHY power down + * @hw: pointer to the HW structure + * + * The phy may be powered down to save power, to turn off link when the + * driver is unloaded, or wake on lan is not enabled (among others). + **/ +void e1000_power_up_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.power_up) + hw->phy.ops.power_up(hw); + + e1000_setup_link(hw); +} + +/** + * e1000_power_down_phy - Power down PHY + * @hw: pointer to the HW structure + * + * The phy may be powered down to save power, to turn off link when the + * driver is unloaded, or wake on lan is not enabled (among others). + **/ +void e1000_power_down_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.power_down) + hw->phy.ops.power_down(hw); +} + +/** + * e1000_shutdown_fiber_serdes_link - Remove link during power down + * @hw: pointer to the HW structure + * + * Shutdown the optics and PCS on driver unload. + **/ +void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) +{ + if (hw->mac.ops.shutdown_serdes) + hw->mac.ops.shutdown_serdes(hw); +} + diff --git a/sys/dev/e1000/e1000_api.h b/sys/dev/e1000/e1000_api.h new file mode 100644 index 0000000..2a901aa --- /dev/null +++ b/sys/dev/e1000/e1000_api.h @@ -0,0 +1,162 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_API_H_ +#define _E1000_API_H_ + +#include "e1000_hw.h" + +extern void e1000_init_function_pointers_82542(struct e1000_hw *hw); +extern void e1000_init_function_pointers_82543(struct e1000_hw *hw); +extern void e1000_init_function_pointers_82540(struct e1000_hw *hw); +extern void e1000_init_function_pointers_82571(struct e1000_hw *hw); +extern void e1000_init_function_pointers_82541(struct e1000_hw *hw); +extern void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw); +extern void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw); +extern void e1000_init_function_pointers_82575(struct e1000_hw *hw); +extern void e1000_rx_fifo_flush_82575(struct e1000_hw *hw); +extern void e1000_init_function_pointers_vf(struct e1000_hw *hw); +extern void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw); + +s32 e1000_set_mac_type(struct e1000_hw *hw); +s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device); +s32 e1000_init_mac_params(struct e1000_hw *hw); +s32 e1000_init_nvm_params(struct e1000_hw *hw); +s32 e1000_init_phy_params(struct e1000_hw *hw); +void e1000_remove_device(struct e1000_hw *hw); +s32 e1000_get_bus_info(struct e1000_hw *hw); +void e1000_clear_vfta(struct e1000_hw *hw); +void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value); +s32 e1000_force_mac_fc(struct e1000_hw *hw); +s32 e1000_check_for_link(struct e1000_hw *hw); +s32 e1000_reset_hw(struct e1000_hw *hw); +s32 e1000_init_hw(struct e1000_hw *hw); +s32 e1000_setup_link(struct e1000_hw *hw); +s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, + u16 *duplex); +s32 e1000_disable_pcie_master(struct e1000_hw *hw); +void e1000_config_collision_dist(struct e1000_hw *hw); +void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index); +void e1000_mta_set(struct e1000_hw *hw, u32 hash_value); +u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr); +void e1000_update_mc_addr_list(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count, + u32 rar_used_count, u32 rar_count); +s32 e1000_setup_led(struct e1000_hw *hw); +s32 e1000_cleanup_led(struct e1000_hw *hw); +s32 e1000_check_reset_block(struct e1000_hw *hw); +s32 e1000_blink_led(struct e1000_hw *hw); +s32 e1000_led_on(struct e1000_hw *hw); +s32 e1000_led_off(struct e1000_hw *hw); +void e1000_reset_adaptive(struct e1000_hw *hw); +void e1000_update_adaptive(struct e1000_hw *hw); +s32 e1000_get_cable_length(struct e1000_hw *hw); +s32 e1000_validate_mdi_setting(struct e1000_hw *hw); +s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, + u32 offset, u8 data); +s32 e1000_get_phy_info(struct e1000_hw *hw); +void e1000_release_phy(struct e1000_hw *hw); +s32 e1000_acquire_phy(struct e1000_hw *hw); +s32 e1000_phy_hw_reset(struct e1000_hw *hw); +s32 e1000_phy_commit(struct e1000_hw *hw); +void e1000_power_up_phy(struct e1000_hw *hw); +void e1000_power_down_phy(struct e1000_hw *hw); +s32 e1000_read_mac_addr(struct e1000_hw *hw); +s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *part_num); +void e1000_reload_nvm(struct e1000_hw *hw); +s32 e1000_update_nvm_checksum(struct e1000_hw *hw); +s32 e1000_validate_nvm_checksum(struct e1000_hw *hw); +s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); +s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data); +s32 e1000_wait_autoneg(struct e1000_hw *hw); +s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); +s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); +bool e1000_check_mng_mode(struct e1000_hw *hw); +bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw); +s32 e1000_mng_enable_host_if(struct e1000_hw *hw); +s32 e1000_mng_host_if_write(struct e1000_hw *hw, + u8 *buffer, u16 length, u16 offset, u8 *sum); +s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr); +s32 e1000_mng_write_dhcp_info(struct e1000_hw * hw, + u8 *buffer, u16 length); +u32 e1000_translate_register_82542(u32 reg); + +/* + * TBI_ACCEPT macro definition: + * + * This macro requires: + * adapter = a pointer to struct e1000_hw + * status = the 8 bit status field of the Rx descriptor with EOP set + * error = the 8 bit error field of the Rx descriptor with EOP set + * length = the sum of all the length fields of the Rx descriptors that + * make up the current frame + * last_byte = the last byte of the frame DMAed by the hardware + * max_frame_length = the maximum frame length we want to accept. + * min_frame_length = the minimum frame length we want to accept. + * + * This macro is a conditional that should be used in the interrupt + * handler's Rx processing routine when RxErrors have been detected. + * + * Typical use: + * ... + * if (TBI_ACCEPT) { + * accept_frame = TRUE; + * e1000_tbi_adjust_stats(adapter, MacAddress); + * frame_length--; + * } else { + * accept_frame = FALSE; + * } + * ... + */ + +/* The carrier extension symbol, as received by the NIC. */ +#define CARRIER_EXTENSION 0x0F + +#define TBI_ACCEPT(a, status, errors, length, last_byte, min_frame_size, max_frame_size) \ + (e1000_tbi_sbp_enabled_82543(a) && \ + (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \ + ((last_byte) == CARRIER_EXTENSION) && \ + (((status) & E1000_RXD_STAT_VP) ? \ + (((length) > (min_frame_size - VLAN_TAG_SIZE)) && \ + ((length) <= (max_frame_size + 1))) : \ + (((length) > min_frame_size) && \ + ((length) <= (max_frame_size + VLAN_TAG_SIZE + 1))))) + +#endif diff --git a/sys/dev/e1000/e1000_defines.h b/sys/dev/e1000/e1000_defines.h new file mode 100644 index 0000000..c017a30 --- /dev/null +++ b/sys/dev/e1000/e1000_defines.h @@ -0,0 +1,1492 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_DEFINES_H_ +#define _E1000_DEFINES_H_ + +/* Number of Transmit and Receive Descriptors must be a multiple of 8 */ +#define REQ_TX_DESCRIPTOR_MULTIPLE 8 +#define REQ_RX_DESCRIPTOR_MULTIPLE 8 + +/* Definitions for power management and wakeup registers */ +/* Wake Up Control */ +#define E1000_WUC_APME 0x00000001 /* APM Enable */ +#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ +#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */ +#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */ +#define E1000_WUC_LSCWE 0x00000010 /* Link Status wake up enable */ +#define E1000_WUC_LSCWO 0x00000020 /* Link Status wake up override */ +#define E1000_WUC_SPM 0x80000000 /* Enable SPM */ +#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */ + +/* Wake Up Filter Control */ +#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ +#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ +#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ +#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ +#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ +#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ +#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ +#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */ +#define E1000_WUFC_IGNORE_TCO_BM 0x00000800 /* Ignore WakeOn TCO packets */ +#define E1000_WUFC_FLX0_BM 0x00001000 /* Flexible Filter 0 Enable */ +#define E1000_WUFC_FLX1_BM 0x00002000 /* Flexible Filter 1 Enable */ +#define E1000_WUFC_FLX2_BM 0x00004000 /* Flexible Filter 2 Enable */ +#define E1000_WUFC_FLX3_BM 0x00008000 /* Flexible Filter 3 Enable */ +#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */ +#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ +#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */ +#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */ +#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */ +#define E1000_WUFC_FLX4 0x00100000 /* Flexible Filter 4 Enable */ +#define E1000_WUFC_FLX5 0x00200000 /* Flexible Filter 5 Enable */ +#define E1000_WUFC_ALL_FILTERS_BM 0x0000F0FF /* Mask for all wakeup filters */ +#define E1000_WUFC_FLX_OFFSET_BM 12 /* Offset to the Flexible Filters bits */ +#define E1000_WUFC_FLX_FILTERS_BM 0x0000F000 /* Mask for the 4 flexible filters */ +#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */ +#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */ +#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ +/* + * For 82576 to utilize Extended filter masks in addition to + * existing (filter) masks + */ +#define E1000_WUFC_EXT_FLX_FILTERS 0x00300000 /* Ext. FLX filter mask */ + +/* Wake Up Status */ +#define E1000_WUS_LNKC E1000_WUFC_LNKC +#define E1000_WUS_MAG E1000_WUFC_MAG +#define E1000_WUS_EX E1000_WUFC_EX +#define E1000_WUS_MC E1000_WUFC_MC +#define E1000_WUS_BC E1000_WUFC_BC +#define E1000_WUS_ARP E1000_WUFC_ARP +#define E1000_WUS_IPV4 E1000_WUFC_IPV4 +#define E1000_WUS_IPV6 E1000_WUFC_IPV6 +#define E1000_WUS_FLX0_BM E1000_WUFC_FLX0_BM +#define E1000_WUS_FLX1_BM E1000_WUFC_FLX1_BM +#define E1000_WUS_FLX2_BM E1000_WUFC_FLX2_BM +#define E1000_WUS_FLX3_BM E1000_WUFC_FLX3_BM +#define E1000_WUS_FLX_FILTERS_BM E1000_WUFC_FLX_FILTERS_BM +#define E1000_WUS_FLX0 E1000_WUFC_FLX0 +#define E1000_WUS_FLX1 E1000_WUFC_FLX1 +#define E1000_WUS_FLX2 E1000_WUFC_FLX2 +#define E1000_WUS_FLX3 E1000_WUFC_FLX3 +#define E1000_WUS_FLX_FILTERS E1000_WUFC_FLX_FILTERS + +/* Wake Up Packet Length */ +#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */ + +/* Four Flexible Filters are supported */ +#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4 +/* Two Extended Flexible Filters are supported (82576) */ +#define E1000_EXT_FLEXIBLE_FILTER_COUNT_MAX 2 +#define E1000_FHFT_LENGTH_OFFSET 0xFC /* Length byte in FHFT */ +#define E1000_FHFT_LENGTH_MASK 0x0FF /* Length in lower byte */ + +/* Each Flexible Filter is at most 128 (0x80) bytes in length */ +#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128 + +#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX +#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX +#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX + +/* Extended Device Control */ +#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */ +#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */ +#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN +#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */ +#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */ +/* Reserved (bits 4,5) in >= 82575 */ +#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Definable Pin 4 */ +#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Definable Pin 5 */ +#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA +#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Definable Pin 6 */ +#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Definable Pin 7 */ +/* SDP 4/5 (bits 8,9) are reserved in >= 82575 */ +#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */ +#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */ +#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ +#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */ +#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */ +#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ +#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */ +/* Physical Func Reset Done Indication */ +#define E1000_CTRL_EXT_PFRSTD 0x00004000 +#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ +#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */ +#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 +#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 +#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000 +#define E1000_CTRL_EXT_LINK_MODE_KMRN 0x00000000 +#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000 +#define E1000_CTRL_EXT_LINK_MODE_PCIX_SERDES 0x00800000 +#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000 +#define E1000_CTRL_EXT_EIAME 0x01000000 +#define E1000_CTRL_EXT_IRCA 0x00000001 +#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000 +#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000 +#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 +#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 +#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 +#define E1000_CTRL_EXT_CANC 0x04000000 /* Interrupt delay cancellation */ +#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */ +/* IAME enable bit (27) was removed in >= 82575 */ +#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */ +#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */ +#define E1000_CRTL_EXT_PB_PAREN 0x01000000 /* packet buffer parity error detection enabled */ +#define E1000_CTRL_EXT_DF_PAREN 0x02000000 /* descriptor FIFO parity error detection enable */ +#define E1000_CTRL_EXT_GHOST_PAREN 0x40000000 +#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */ +#define E1000_CTRL_EXT_LSECCK 0x00001000 +#define E1000_I2CCMD_REG_ADDR_SHIFT 16 +#define E1000_I2CCMD_REG_ADDR 0x00FF0000 +#define E1000_I2CCMD_PHY_ADDR_SHIFT 24 +#define E1000_I2CCMD_PHY_ADDR 0x07000000 +#define E1000_I2CCMD_OPCODE_READ 0x08000000 +#define E1000_I2CCMD_OPCODE_WRITE 0x00000000 +#define E1000_I2CCMD_RESET 0x10000000 +#define E1000_I2CCMD_READY 0x20000000 +#define E1000_I2CCMD_INTERRUPT_ENA 0x40000000 +#define E1000_I2CCMD_ERROR 0x80000000 +#define E1000_MAX_SGMII_PHY_REG_ADDR 255 +#define E1000_I2CCMD_PHY_TIMEOUT 200 +#define E1000_IVAR_VALID 0x80 +#define E1000_GPIE_NSICR 0x00000001 +#define E1000_GPIE_MSIX_MODE 0x00000010 +#define E1000_GPIE_EIAME 0x40000000 +#define E1000_GPIE_PBA 0x80000000 + +/* Receive Descriptor bit definitions */ +#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ +#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ +#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ +#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ +#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */ +#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ +#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ +#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ +#define E1000_RXD_STAT_CRCV 0x100 /* Speculative CRC Valid */ +#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */ +#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */ +#define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */ +#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */ +#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ +#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ +#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ +#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ +#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ +#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ +#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ +#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ +#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */ +#define E1000_RXD_SPC_PRI_SHIFT 13 +#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */ +#define E1000_RXD_SPC_CFI_SHIFT 12 + +#define E1000_RXDEXT_STATERR_CE 0x01000000 +#define E1000_RXDEXT_STATERR_SE 0x02000000 +#define E1000_RXDEXT_STATERR_SEQ 0x04000000 +#define E1000_RXDEXT_STATERR_CXE 0x10000000 +#define E1000_RXDEXT_STATERR_TCPE 0x20000000 +#define E1000_RXDEXT_STATERR_IPE 0x40000000 +#define E1000_RXDEXT_STATERR_RXE 0x80000000 + +#define E1000_RXDEXT_LSECH 0x01000000 +#define E1000_RXDEXT_LSECE_MASK 0x60000000 +#define E1000_RXDEXT_LSECE_NO_ERROR 0x00000000 +#define E1000_RXDEXT_LSECE_NO_SA_MATCH 0x20000000 +#define E1000_RXDEXT_LSECE_REPLAY_DETECT 0x40000000 +#define E1000_RXDEXT_LSECE_BAD_SIG 0x60000000 + +/* mask to determine if packets should be dropped due to frame errors */ +#define E1000_RXD_ERR_FRAME_ERR_MASK ( \ + E1000_RXD_ERR_CE | \ + E1000_RXD_ERR_SE | \ + E1000_RXD_ERR_SEQ | \ + E1000_RXD_ERR_CXE | \ + E1000_RXD_ERR_RXE) + +/* Same mask, but for extended and packet split descriptors */ +#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ + E1000_RXDEXT_STATERR_CE | \ + E1000_RXDEXT_STATERR_SE | \ + E1000_RXDEXT_STATERR_SEQ | \ + E1000_RXDEXT_STATERR_CXE | \ + E1000_RXDEXT_STATERR_RXE) + +#define E1000_MRQC_ENABLE_MASK 0x00000007 +#define E1000_MRQC_ENABLE_RSS_2Q 0x00000001 +#define E1000_MRQC_ENABLE_RSS_INT 0x00000004 +#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 +#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 +#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 +#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000 +#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000 +#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 +#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000 + +#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000 +#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK 0x000003FF + +/* Management Control */ +#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ +#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ +#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */ +#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */ +#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */ +#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */ +#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */ +#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */ +#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ +/* Enable Neighbor Discovery Filtering */ +#define E1000_MANC_NEIGHBOR_EN 0x00004000 +#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */ +#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */ +#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ +#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */ +#define E1000_MANC_RCV_ALL 0x00080000 /* Receive All Enabled */ +#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ +/* Enable MAC address filtering */ +#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 +/* Enable MNG packets to host memory */ +#define E1000_MANC_EN_MNG2HOST 0x00200000 +/* Enable IP address filtering */ +#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000 +#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */ +#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */ +#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */ +#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */ +#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */ +#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */ +#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */ +#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */ + +#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */ +#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */ + +/* Receive Control */ +#define E1000_RCTL_RST 0x00000001 /* Software reset */ +#define E1000_RCTL_EN 0x00000002 /* enable */ +#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ +#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */ +#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */ +#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ +#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ +#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ +#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */ +#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ +#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */ +#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ +#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ +#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */ +#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */ +#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ +#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */ +#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */ +#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */ +#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ +#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */ +#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ +#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */ +#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */ +#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */ +#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ +#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */ +#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */ +#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */ +#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ +#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ +#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ +#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ +#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ +#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ +#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ +#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */ +#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */ + +/* + * Use byte values for the following shift parameters + * Usage: + * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & + * E1000_PSRCTL_BSIZE0_MASK) | + * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & + * E1000_PSRCTL_BSIZE1_MASK) | + * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & + * E1000_PSRCTL_BSIZE2_MASK) | + * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; + * E1000_PSRCTL_BSIZE3_MASK)) + * where value0 = [128..16256], default=256 + * value1 = [1024..64512], default=4096 + * value2 = [0..64512], default=4096 + * value3 = [0..64512], default=0 + */ + +#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F +#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 +#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 +#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 + +#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ +#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ +#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ +#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ + +/* SWFW_SYNC Definitions */ +#define E1000_SWFW_EEP_SM 0x1 +#define E1000_SWFW_PHY0_SM 0x2 +#define E1000_SWFW_PHY1_SM 0x4 +#define E1000_SWFW_CSR_SM 0x8 + +/* FACTPS Definitions */ +#define E1000_FACTPS_LFS 0x40000000 /* LAN Function Select */ +/* Device Control */ +#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ +#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */ +#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ +#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */ +#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ +#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */ +#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */ +#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ +#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ +#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ +#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ +#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ +#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ +#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ +#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */ +#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ +#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ +#define E1000_CTRL_D_UD_EN 0x00002000 /* Dock/Undock enable */ +#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock indication in SDP[0] */ +#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 /* Reset both PHY ports, through PHYRST_N pin */ +#define E1000_CTRL_EXT_LINK_EN 0x00010000 /* enable link status from external LINK_0 and LINK_1 pins */ +#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ +#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ +#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ +#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ +#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ +#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */ +#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */ +#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */ +#define E1000_CTRL_RST 0x04000000 /* Global reset */ +#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ +#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ +#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ +#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ +#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ +#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to manageability engine */ +#define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */ + +/* Bit definitions for the Management Data IO (MDIO) and Management Data + * Clock (MDC) pins in the Device Control Register. + */ +#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0 +#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0 +#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2 +#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2 +#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3 +#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3 +#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR +#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA + +#define E1000_CONNSW_ENRGSRC 0x4 +#define E1000_PCS_CFG_PCS_EN 8 +#define E1000_PCS_LCTL_FLV_LINK_UP 1 +#define E1000_PCS_LCTL_FSV_10 0 +#define E1000_PCS_LCTL_FSV_100 2 +#define E1000_PCS_LCTL_FSV_1000 4 +#define E1000_PCS_LCTL_FDV_FULL 8 +#define E1000_PCS_LCTL_FSD 0x10 +#define E1000_PCS_LCTL_FORCE_LINK 0x20 +#define E1000_PCS_LCTL_LOW_LINK_LATCH 0x40 +#define E1000_PCS_LCTL_FORCE_FCTRL 0x80 +#define E1000_PCS_LCTL_AN_ENABLE 0x10000 +#define E1000_PCS_LCTL_AN_RESTART 0x20000 +#define E1000_PCS_LCTL_AN_TIMEOUT 0x40000 +#define E1000_PCS_LCTL_AN_SGMII_BYPASS 0x80000 +#define E1000_PCS_LCTL_AN_SGMII_TRIGGER 0x100000 +#define E1000_PCS_LCTL_FAST_LINK_TIMER 0x1000000 +#define E1000_PCS_LCTL_LINK_OK_FIX 0x2000000 +#define E1000_PCS_LCTL_CRS_ON_NI 0x4000000 +#define E1000_ENABLE_SERDES_LOOPBACK 0x0410 + +#define E1000_PCS_LSTS_LINK_OK 1 +#define E1000_PCS_LSTS_SPEED_10 0 +#define E1000_PCS_LSTS_SPEED_100 2 +#define E1000_PCS_LSTS_SPEED_1000 4 +#define E1000_PCS_LSTS_DUPLEX_FULL 8 +#define E1000_PCS_LSTS_SYNK_OK 0x10 +#define E1000_PCS_LSTS_AN_COMPLETE 0x10000 +#define E1000_PCS_LSTS_AN_PAGE_RX 0x20000 +#define E1000_PCS_LSTS_AN_TIMED_OUT 0x40000 +#define E1000_PCS_LSTS_AN_REMOTE_FAULT 0x80000 +#define E1000_PCS_LSTS_AN_ERROR_RWS 0x100000 + +/* Device Status */ +#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ +#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ +#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ +#define E1000_STATUS_FUNC_SHIFT 2 +#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */ +#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ +#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ +#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */ +#define E1000_STATUS_SPEED_MASK 0x000000C0 +#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ +#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ +#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ +#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion by NVM */ +#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ +#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */ +#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */ +#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */ +#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ +#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ +#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */ +#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */ +#define E1000_STATUS_BMC_SKU_0 0x00100000 /* BMC USB redirect disabled */ +#define E1000_STATUS_BMC_SKU_1 0x00200000 /* BMC SRAM disabled */ +#define E1000_STATUS_BMC_SKU_2 0x00400000 /* BMC SDRAM disabled */ +#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */ +#define E1000_STATUS_BMC_LITE 0x01000000 /* BMC external code execution disabled */ +#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */ +#define E1000_STATUS_FUSE_8 0x04000000 +#define E1000_STATUS_FUSE_9 0x08000000 +#define E1000_STATUS_SERDES0_DIS 0x10000000 /* SERDES disabled on port 0 */ +#define E1000_STATUS_SERDES1_DIS 0x20000000 /* SERDES disabled on port 1 */ + +/* Constants used to interpret the masked PCI-X bus speed. */ +#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */ +#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */ +#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */ + +#define SPEED_10 10 +#define SPEED_100 100 +#define SPEED_1000 1000 +#define HALF_DUPLEX 1 +#define FULL_DUPLEX 2 + +#define PHY_FORCE_TIME 20 + +#define ADVERTISE_10_HALF 0x0001 +#define ADVERTISE_10_FULL 0x0002 +#define ADVERTISE_100_HALF 0x0004 +#define ADVERTISE_100_FULL 0x0008 +#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */ +#define ADVERTISE_1000_FULL 0x0020 + +/* 1000/H is not supported, nor spec-compliant. */ +#define E1000_ALL_SPEED_DUPLEX ( ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ + ADVERTISE_100_HALF | ADVERTISE_100_FULL | \ + ADVERTISE_1000_FULL) +#define E1000_ALL_NOT_GIG ( ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ + ADVERTISE_100_HALF | ADVERTISE_100_FULL) +#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL) +#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL) +#define E1000_ALL_FULL_DUPLEX (ADVERTISE_10_FULL | ADVERTISE_100_FULL | \ + ADVERTISE_1000_FULL) +#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF) + +#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX + +/* LED Control */ +#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F +#define E1000_LEDCTL_LED0_MODE_SHIFT 0 +#define E1000_LEDCTL_LED0_BLINK_RATE 0x00000020 +#define E1000_LEDCTL_LED0_IVRT 0x00000040 +#define E1000_LEDCTL_LED0_BLINK 0x00000080 +#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00 +#define E1000_LEDCTL_LED1_MODE_SHIFT 8 +#define E1000_LEDCTL_LED1_BLINK_RATE 0x00002000 +#define E1000_LEDCTL_LED1_IVRT 0x00004000 +#define E1000_LEDCTL_LED1_BLINK 0x00008000 +#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000 +#define E1000_LEDCTL_LED2_MODE_SHIFT 16 +#define E1000_LEDCTL_LED2_BLINK_RATE 0x00200000 +#define E1000_LEDCTL_LED2_IVRT 0x00400000 +#define E1000_LEDCTL_LED2_BLINK 0x00800000 +#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000 +#define E1000_LEDCTL_LED3_MODE_SHIFT 24 +#define E1000_LEDCTL_LED3_BLINK_RATE 0x20000000 +#define E1000_LEDCTL_LED3_IVRT 0x40000000 +#define E1000_LEDCTL_LED3_BLINK 0x80000000 + +#define E1000_LEDCTL_MODE_LINK_10_1000 0x0 +#define E1000_LEDCTL_MODE_LINK_100_1000 0x1 +#define E1000_LEDCTL_MODE_LINK_UP 0x2 +#define E1000_LEDCTL_MODE_ACTIVITY 0x3 +#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4 +#define E1000_LEDCTL_MODE_LINK_10 0x5 +#define E1000_LEDCTL_MODE_LINK_100 0x6 +#define E1000_LEDCTL_MODE_LINK_1000 0x7 +#define E1000_LEDCTL_MODE_PCIX_MODE 0x8 +#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9 +#define E1000_LEDCTL_MODE_COLLISION 0xA +#define E1000_LEDCTL_MODE_BUS_SPEED 0xB +#define E1000_LEDCTL_MODE_BUS_SIZE 0xC +#define E1000_LEDCTL_MODE_PAUSED 0xD +#define E1000_LEDCTL_MODE_LED_ON 0xE +#define E1000_LEDCTL_MODE_LED_OFF 0xF + +/* Transmit Descriptor bit definitions */ +#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ +#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ +#define E1000_TXD_POPTS_SHIFT 8 /* POPTS shift */ +#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ +#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ +#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ +#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ +#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ +#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ +#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ +#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ +#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ +#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ +#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ +#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ +#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ +#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ +#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ +#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ +#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ +#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ +/* Extended desc bits for Linksec and timesync */ +#define E1000_TXD_CMD_LINKSEC 0x10000000 /* Apply LinkSec on packet */ +#define E1000_TXD_EXTCMD_TSTAMP 0x00000010 /* IEEE1588 Timestamp packet */ + +/* Transmit Control */ +#define E1000_TCTL_RST 0x00000001 /* software reset */ +#define E1000_TCTL_EN 0x00000002 /* enable tx */ +#define E1000_TCTL_BCE 0x00000004 /* busy check enable */ +#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ +#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ +#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ +#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */ +#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */ +#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ +#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */ +#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ + +/* Transmit Arbitration Count */ +#define E1000_TARC0_ENABLE 0x00000400 /* Enable Tx Queue 0 */ + +/* SerDes Control */ +#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400 + +/* Receive Checksum Control */ +#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */ +#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ +#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ +#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */ +#define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */ +#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ +#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ + +/* Header split receive */ +#define E1000_RFCTL_ISCSI_DIS 0x00000001 +#define E1000_RFCTL_ISCSI_DWC_MASK 0x0000003E +#define E1000_RFCTL_ISCSI_DWC_SHIFT 1 +#define E1000_RFCTL_NFSW_DIS 0x00000040 +#define E1000_RFCTL_NFSR_DIS 0x00000080 +#define E1000_RFCTL_NFS_VER_MASK 0x00000300 +#define E1000_RFCTL_NFS_VER_SHIFT 8 +#define E1000_RFCTL_IPV6_DIS 0x00000400 +#define E1000_RFCTL_IPV6_XSUM_DIS 0x00000800 +#define E1000_RFCTL_ACK_DIS 0x00001000 +#define E1000_RFCTL_ACKD_DIS 0x00002000 +#define E1000_RFCTL_IPFRSP_DIS 0x00004000 +#define E1000_RFCTL_EXTEN 0x00008000 +#define E1000_RFCTL_IPV6_EX_DIS 0x00010000 +#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000 +#define E1000_RFCTL_LEF 0x00040000 + +/* Collision related configuration parameters */ +#define E1000_COLLISION_THRESHOLD 15 +#define E1000_CT_SHIFT 4 +#define E1000_COLLISION_DISTANCE 63 +#define E1000_COLD_SHIFT 12 + +/* Default values for the transmit IPG register */ +#define DEFAULT_82542_TIPG_IPGT 10 +#define DEFAULT_82543_TIPG_IPGT_FIBER 9 +#define DEFAULT_82543_TIPG_IPGT_COPPER 8 + +#define E1000_TIPG_IPGT_MASK 0x000003FF +#define E1000_TIPG_IPGR1_MASK 0x000FFC00 +#define E1000_TIPG_IPGR2_MASK 0x3FF00000 + +#define DEFAULT_82542_TIPG_IPGR1 2 +#define DEFAULT_82543_TIPG_IPGR1 8 +#define E1000_TIPG_IPGR1_SHIFT 10 + +#define DEFAULT_82542_TIPG_IPGR2 10 +#define DEFAULT_82543_TIPG_IPGR2 6 +#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7 +#define E1000_TIPG_IPGR2_SHIFT 20 + +/* Ethertype field values */ +#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ + +#define ETHERNET_FCS_SIZE 4 +#define MAX_JUMBO_FRAME_SIZE 0x3F00 + +/* Extended Configuration Control and Size */ +#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 +#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001 +#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020 +#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000 +#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16 +#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000 +#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16 + +#define E1000_PHY_CTRL_SPD_EN 0x00000001 +#define E1000_PHY_CTRL_D0A_LPLU 0x00000002 +#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 +#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 +#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 + +#define E1000_KABGTXD_BGSQLBIAS 0x00050000 + +/* PBA constants */ +#define E1000_PBA_6K 0x0006 /* 6KB */ +#define E1000_PBA_8K 0x0008 /* 8KB */ +#define E1000_PBA_12K 0x000C /* 12KB */ +#define E1000_PBA_16K 0x0010 /* 16KB */ +#define E1000_PBA_20K 0x0014 +#define E1000_PBA_22K 0x0016 +#define E1000_PBA_24K 0x0018 +#define E1000_PBA_30K 0x001E +#define E1000_PBA_32K 0x0020 +#define E1000_PBA_34K 0x0022 +#define E1000_PBA_38K 0x0026 +#define E1000_PBA_40K 0x0028 +#define E1000_PBA_48K 0x0030 /* 48KB */ +#define E1000_PBA_64K 0x0040 /* 64KB */ + +#define E1000_PBS_16K E1000_PBA_16K +#define E1000_PBS_24K E1000_PBA_24K + +#define IFS_MAX 80 +#define IFS_MIN 40 +#define IFS_RATIO 4 +#define IFS_STEP 10 +#define MIN_NUM_XMITS 1000 + +/* SW Semaphore Register */ +#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ +#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ +#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */ +#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ + +/* Interrupt Cause Read */ +#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ +#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ +#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ +#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */ +#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */ +#define E1000_ICR_RXO 0x00000040 /* rx overrun */ +#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */ +#define E1000_ICR_VMMB 0x00000100 /* VM MB event */ +#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */ +#define E1000_ICR_RXCFG 0x00000400 /* Rx /c/ ordered set */ +#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ +#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ +#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ +#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ +#define E1000_ICR_TXD_LOW 0x00008000 +#define E1000_ICR_SRPD 0x00010000 +#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */ +#define E1000_ICR_MNG 0x00040000 /* Manageability event */ +#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */ +#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */ +#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 /* queue 0 Rx descriptor FIFO parity error */ +#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 /* queue 0 Tx descriptor FIFO parity error */ +#define E1000_ICR_HOST_ARB_PAR 0x00400000 /* host arb read buffer parity error */ +#define E1000_ICR_PB_PAR 0x00800000 /* packet buffer parity error */ +#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */ +#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */ +#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */ +#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW bit in the FWSM */ +#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates an interrupt */ +#define E1000_ICR_EPRST 0x00100000 /* ME hardware reset occurs */ +#define E1000_ICR_RXQ0 0x00100000 /* Rx Queue 0 Interrupt */ +#define E1000_ICR_RXQ1 0x00200000 /* Rx Queue 1 Interrupt */ +#define E1000_ICR_TXQ0 0x00400000 /* Tx Queue 0 Interrupt */ +#define E1000_ICR_TXQ1 0x00800000 /* Tx Queue 1 Interrupt */ +#define E1000_ICR_OTHER 0x01000000 /* Other Interrupts */ + +/* Extended Interrupt Cause Read */ +#define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */ +#define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */ +#define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */ +#define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */ +#define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */ +#define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */ +#define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */ +#define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */ +#define E1000_EICR_TCP_TIMER 0x40000000 /* TCP Timer */ +#define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */ +/* TCP Timer */ +#define E1000_TCPTIMER_KS 0x00000100 /* KickStart */ +#define E1000_TCPTIMER_COUNT_ENABLE 0x00000200 /* Count Enable */ +#define E1000_TCPTIMER_COUNT_FINISH 0x00000400 /* Count finish */ +#define E1000_TCPTIMER_LOOP 0x00000800 /* Loop */ + +/* + * This defines the bits that are set in the Interrupt Mask + * Set/Read Register. Each bit is documented below: + * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) + * o RXSEQ = Receive Sequence Error + */ +#define POLL_IMS_ENABLE_MASK ( \ + E1000_IMS_RXDMT0 | \ + E1000_IMS_RXSEQ) + +/* + * This defines the bits that are set in the Interrupt Mask + * Set/Read Register. Each bit is documented below: + * o RXT0 = Receiver Timer Interrupt (ring 0) + * o TXDW = Transmit Descriptor Written Back + * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) + * o RXSEQ = Receive Sequence Error + * o LSC = Link Status Change + */ +#define IMS_ENABLE_MASK ( \ + E1000_IMS_RXT0 | \ + E1000_IMS_TXDW | \ + E1000_IMS_RXDMT0 | \ + E1000_IMS_RXSEQ | \ + E1000_IMS_LSC) + +/* Interrupt Mask Set */ +#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ +#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_IMS_VMMB E1000_ICR_VMMB /* Mail box activity */ +#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ +#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ +#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */ +#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ +#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */ +#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* Rx /c/ ordered set */ +#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ +#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ +#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ +#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ +#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_IMS_SRPD E1000_ICR_SRPD +#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */ +#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */ +#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */ +#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */ +#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */ +#define E1000_IMS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */ +#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ +#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ +#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ +#define E1000_IMS_DSW E1000_ICR_DSW +#define E1000_IMS_PHYINT E1000_ICR_PHYINT +#define E1000_IMS_EPRST E1000_ICR_EPRST +#define E1000_IMS_RXQ0 E1000_ICR_RXQ0 /* Rx Queue 0 Interrupt */ +#define E1000_IMS_RXQ1 E1000_ICR_RXQ1 /* Rx Queue 1 Interrupt */ +#define E1000_IMS_TXQ0 E1000_ICR_TXQ0 /* Tx Queue 0 Interrupt */ +#define E1000_IMS_TXQ1 E1000_ICR_TXQ1 /* Tx Queue 1 Interrupt */ +#define E1000_IMS_OTHER E1000_ICR_OTHER /* Other Interrupts */ + +/* Extended Interrupt Mask Set */ +#define E1000_EIMS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */ +#define E1000_EIMS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */ +#define E1000_EIMS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */ +#define E1000_EIMS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */ +#define E1000_EIMS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */ +#define E1000_EIMS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */ +#define E1000_EIMS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */ +#define E1000_EIMS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */ +#define E1000_EIMS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */ +#define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */ + +/* Interrupt Cause Set */ +#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ +#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ +#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ +#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */ +#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ +#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */ +#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* Rx /c/ ordered set */ +#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ +#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ +#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ +#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ +#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_ICS_SRPD E1000_ICR_SRPD +#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */ +#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */ +#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */ +#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */ +#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */ +#define E1000_ICS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */ +#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ +#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ +#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ +#define E1000_ICS_DSW E1000_ICR_DSW +#define E1000_ICS_PHYINT E1000_ICR_PHYINT +#define E1000_ICS_EPRST E1000_ICR_EPRST + +/* Extended Interrupt Cause Set */ +#define E1000_EICS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */ +#define E1000_EICS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */ +#define E1000_EICS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */ +#define E1000_EICS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */ +#define E1000_EICS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */ +#define E1000_EICS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */ +#define E1000_EICS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */ +#define E1000_EICS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */ +#define E1000_EICS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */ +#define E1000_EICS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */ + +/* Transmit Descriptor Control */ +#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */ +#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */ +#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */ +#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ +#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */ +#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ +#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */ +/* Enable the counting of descriptors still to be processed. */ +#define E1000_TXDCTL_COUNT_DESC 0x00400000 + +/* Flow Control Constants */ +#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 +#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 +#define FLOW_CONTROL_TYPE 0x8808 + +/* 802.1q VLAN Packet Size */ +#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */ +#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ + +/* Receive Address */ +/* + * Number of high/low register pairs in the RAR. The RAR (Receive Address + * Registers) holds the directed and multicast addresses that we monitor. + * Technically, we have 16 spots. However, we reserve one of these spots + * (RAR[15]) for our directed address used by controllers with + * manageability enabled, allowing us room for 15 multicast addresses. + */ +#define E1000_RAR_ENTRIES 15 +#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ + +/* Error Codes */ +#define E1000_SUCCESS 0 +#define E1000_ERR_NVM 1 +#define E1000_ERR_PHY 2 +#define E1000_ERR_CONFIG 3 +#define E1000_ERR_PARAM 4 +#define E1000_ERR_MAC_INIT 5 +#define E1000_ERR_PHY_TYPE 6 +#define E1000_ERR_RESET 9 +#define E1000_ERR_MASTER_REQUESTS_PENDING 10 +#define E1000_ERR_HOST_INTERFACE_COMMAND 11 +#define E1000_BLK_PHY_RESET 12 +#define E1000_ERR_SWFW_SYNC 13 +#define E1000_NOT_IMPLEMENTED 14 + +/* Loop limit on how long we wait for auto-negotiation to complete */ +#define FIBER_LINK_UP_LIMIT 50 +#define COPPER_LINK_UP_LIMIT 10 +#define PHY_AUTO_NEG_LIMIT 45 +#define PHY_FORCE_LIMIT 20 +/* Number of 100 microseconds we wait for PCI Express master disable */ +#define MASTER_DISABLE_TIMEOUT 800 +/* Number of milliseconds we wait for PHY configuration done after MAC reset */ +#define PHY_CFG_TIMEOUT 100 +/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */ +#define MDIO_OWNERSHIP_TIMEOUT 10 +/* Number of milliseconds for NVM auto read done after MAC reset. */ +#define AUTO_READ_DONE_TIMEOUT 10 + +/* Flow Control */ +#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ +#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */ +#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ +#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ + +/* Transmit Configuration Word */ +#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ +#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */ +#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ +#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ +#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ +#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */ +#define E1000_TXCW_NP 0x00008000 /* TXCW next page */ +#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */ +#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */ +#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ + +/* Receive Configuration Word */ +#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ +#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */ +#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ +#define E1000_RXCW_CC 0x10000000 /* Receive config change */ +#define E1000_RXCW_C 0x20000000 /* Receive config */ +#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ +#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */ + +/* PCI Express Control */ +#define E1000_GCR_RXD_NO_SNOOP 0x00000001 +#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002 +#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004 +#define E1000_GCR_TXD_NO_SNOOP 0x00000008 +#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010 +#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020 + +#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \ + E1000_GCR_RXDSCW_NO_SNOOP | \ + E1000_GCR_RXDSCR_NO_SNOOP | \ + E1000_GCR_TXD_NO_SNOOP | \ + E1000_GCR_TXDSCW_NO_SNOOP | \ + E1000_GCR_TXDSCR_NO_SNOOP) + +/* PHY Control Register */ +#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ +#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ +#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ +#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ +#define MII_CR_POWER_DOWN 0x0800 /* Power down */ +#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ +#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ +#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ +#define MII_CR_SPEED_1000 0x0040 +#define MII_CR_SPEED_100 0x2000 +#define MII_CR_SPEED_10 0x0000 + +/* PHY Status Register */ +#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ +#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ +#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ +#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ +#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ +#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ +#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ +#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ +#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ +#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ +#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ +#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ +#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ +#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ +#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ + +/* Autoneg Advertisement Register */ +#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ +#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ +#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ +#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ +#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ +#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ +#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ +#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ +#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ +#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ + +/* Link Partner Ability Register (Base Page) */ +#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ +#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */ +#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */ +#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */ +#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */ +#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ +#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ +#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ +#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */ +#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */ +#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ + +/* Autoneg Expansion Register */ +#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ +#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */ +#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */ +#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */ +#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */ + +/* 1000BASE-T Control Register */ +#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ +#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ +#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ +#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */ + /* 0=DTE device */ +#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ + /* 0=Configure PHY as Slave */ +#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ + /* 0=Automatic Master/Slave config */ +#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ +#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ +#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ +#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ +#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ + +/* 1000BASE-T Status Register */ +#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */ +#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */ +#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ +#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ +#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ +#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ +#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local Tx is Master, 0=Slave */ +#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ + +#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5 + +/* PHY 1000 MII Register/Bit Definitions */ +/* PHY Registers defined by IEEE */ +#define PHY_CONTROL 0x00 /* Control Register */ +#define PHY_STATUS 0x01 /* Status Register */ +#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ +#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ +#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ +#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ +#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ +#define PHY_NEXT_PAGE_TX 0x07 /* Next Page Tx */ +#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ +#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ +#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ +#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ + +/* NVM Control */ +#define E1000_EECD_SK 0x00000001 /* NVM Clock */ +#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */ +#define E1000_EECD_DI 0x00000004 /* NVM Data In */ +#define E1000_EECD_DO 0x00000008 /* NVM Data Out */ +#define E1000_EECD_FWE_MASK 0x00000030 +#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */ +#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */ +#define E1000_EECD_FWE_SHIFT 4 +#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */ +#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */ +#define E1000_EECD_PRES 0x00000100 /* NVM Present */ +#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */ +/* NVM Addressing bits based on type 0=small, 1=large */ +#define E1000_EECD_ADDR_BITS 0x00000400 +#define E1000_EECD_TYPE 0x00002000 /* NVM Type (1-SPI, 0-Microwire) */ +#ifndef E1000_NVM_GRANT_ATTEMPTS +#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */ +#endif +#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */ +#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */ +#define E1000_EECD_SIZE_EX_SHIFT 11 +#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */ +#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */ +#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */ +#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ +#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */ +#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */ +#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ +#define E1000_EECD_SECVAL_SHIFT 22 + +#define E1000_NVM_SWDPIN0 0x0001 /* SWDPIN 0 NVM Value */ +#define E1000_NVM_LED_LOGIC 0x0020 /* Led Logic Word */ +#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write registers */ +#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ +#define E1000_NVM_RW_REG_START 1 /* Start operation */ +#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ +#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */ +#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */ +#define E1000_FLASH_UPDATES 2000 + +/* NVM Word Offsets */ +#define NVM_COMPAT 0x0003 +#define NVM_ID_LED_SETTINGS 0x0004 +#define NVM_VERSION 0x0005 +#define NVM_SERDES_AMPLITUDE 0x0006 /* For SERDES output amplitude adjustment. */ +#define NVM_PHY_CLASS_WORD 0x0007 +#define NVM_INIT_CONTROL1_REG 0x000A +#define NVM_INIT_CONTROL2_REG 0x000F +#define NVM_SWDEF_PINS_CTRL_PORT_1 0x0010 +#define NVM_INIT_CONTROL3_PORT_B 0x0014 +#define NVM_INIT_3GIO_3 0x001A +#define NVM_SWDEF_PINS_CTRL_PORT_0 0x0020 +#define NVM_INIT_CONTROL3_PORT_A 0x0024 +#define NVM_CFG 0x0012 +#define NVM_FLASH_VERSION 0x0032 +#define NVM_ALT_MAC_ADDR_PTR 0x0037 +#define NVM_CHECKSUM_REG 0x003F + +#define E1000_NVM_CFG_DONE_PORT_0 0x40000 /* MNG config cycle done */ +#define E1000_NVM_CFG_DONE_PORT_1 0x80000 /* ...for second port */ + +/* Mask bits for fields in Word 0x0f of the NVM */ +#define NVM_WORD0F_PAUSE_MASK 0x3000 +#define NVM_WORD0F_PAUSE 0x1000 +#define NVM_WORD0F_ASM_DIR 0x2000 +#define NVM_WORD0F_ANE 0x0800 +#define NVM_WORD0F_SWPDIO_EXT_MASK 0x00F0 +#define NVM_WORD0F_LPLU 0x0001 + +/* Mask bits for fields in Word 0x1a of the NVM */ +#define NVM_WORD1A_ASPM_MASK 0x000C + +/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */ +#define NVM_SUM 0xBABA + +#define NVM_MAC_ADDR_OFFSET 0 +#define NVM_PBA_OFFSET_0 8 +#define NVM_PBA_OFFSET_1 9 +#define NVM_RESERVED_WORD 0xFFFF +#define NVM_PHY_CLASS_A 0x8000 +#define NVM_SERDES_AMPLITUDE_MASK 0x000F +#define NVM_SIZE_MASK 0x1C00 +#define NVM_SIZE_SHIFT 10 +#define NVM_WORD_SIZE_BASE_SHIFT 6 +#define NVM_SWDPIO_EXT_SHIFT 4 + +/* NVM Commands - Microwire */ +#define NVM_READ_OPCODE_MICROWIRE 0x6 /* NVM read opcode */ +#define NVM_WRITE_OPCODE_MICROWIRE 0x5 /* NVM write opcode */ +#define NVM_ERASE_OPCODE_MICROWIRE 0x7 /* NVM erase opcode */ +#define NVM_EWEN_OPCODE_MICROWIRE 0x13 /* NVM erase/write enable */ +#define NVM_EWDS_OPCODE_MICROWIRE 0x10 /* NVM erase/write disable */ + +/* NVM Commands - SPI */ +#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ +#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */ +#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */ +#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ +#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */ +#define NVM_WRDI_OPCODE_SPI 0x04 /* NVM reset Write Enable latch */ +#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */ +#define NVM_WRSR_OPCODE_SPI 0x01 /* NVM write Status register */ + +/* SPI NVM Status Register */ +#define NVM_STATUS_RDY_SPI 0x01 +#define NVM_STATUS_WEN_SPI 0x02 +#define NVM_STATUS_BP0_SPI 0x04 +#define NVM_STATUS_BP1_SPI 0x08 +#define NVM_STATUS_WPEN_SPI 0x80 + +/* Word definitions for ID LED Settings */ +#define ID_LED_RESERVED_0000 0x0000 +#define ID_LED_RESERVED_FFFF 0xFFFF +#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ + (ID_LED_OFF1_OFF2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_DEF1_DEF2)) +#define ID_LED_DEF1_DEF2 0x1 +#define ID_LED_DEF1_ON2 0x2 +#define ID_LED_DEF1_OFF2 0x3 +#define ID_LED_ON1_DEF2 0x4 +#define ID_LED_ON1_ON2 0x5 +#define ID_LED_ON1_OFF2 0x6 +#define ID_LED_OFF1_DEF2 0x7 +#define ID_LED_OFF1_ON2 0x8 +#define ID_LED_OFF1_OFF2 0x9 + +#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF +#define IGP_ACTIVITY_LED_ENABLE 0x0300 +#define IGP_LED3_MODE 0x07000000 + +/* PCI/PCI-X/PCI-EX Config space */ +#define PCIX_COMMAND_REGISTER 0xE6 +#define PCIX_STATUS_REGISTER_LO 0xE8 +#define PCIX_STATUS_REGISTER_HI 0xEA +#define PCI_HEADER_TYPE_REGISTER 0x0E +#define PCIE_LINK_STATUS 0x12 + +#define PCIX_COMMAND_MMRBC_MASK 0x000C +#define PCIX_COMMAND_MMRBC_SHIFT 0x2 +#define PCIX_STATUS_HI_MMRBC_MASK 0x0060 +#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5 +#define PCIX_STATUS_HI_MMRBC_4K 0x3 +#define PCIX_STATUS_HI_MMRBC_2K 0x2 +#define PCIX_STATUS_LO_FUNC_MASK 0x7 +#define PCI_HEADER_TYPE_MULTIFUNC 0x80 +#define PCIE_LINK_WIDTH_MASK 0x3F0 +#define PCIE_LINK_WIDTH_SHIFT 4 + +#ifndef ETH_ADDR_LEN +#define ETH_ADDR_LEN 6 +#endif + +#define PHY_REVISION_MASK 0xFFFFFFF0 +#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ +#define MAX_PHY_MULTI_PAGE_REG 0xF + +/* Bit definitions for valid PHY IDs. */ +/* + * I = Integrated + * E = External + */ +#define M88E1000_E_PHY_ID 0x01410C50 +#define M88E1000_I_PHY_ID 0x01410C30 +#define M88E1011_I_PHY_ID 0x01410C20 +#define IGP01E1000_I_PHY_ID 0x02A80380 +#define M88E1011_I_REV_4 0x04 +#define M88E1111_I_PHY_ID 0x01410CC0 +#define GG82563_E_PHY_ID 0x01410CA0 +#define IGP03E1000_E_PHY_ID 0x02A80390 +#define IFE_E_PHY_ID 0x02A80330 +#define IFE_PLUS_E_PHY_ID 0x02A80320 +#define IFE_C_E_PHY_ID 0x02A80310 +#define BME1000_E_PHY_ID 0x01410CB0 +#define BME1000_E_PHY_ID_R2 0x01410CB1 +#define IGP04E1000_E_PHY_ID 0x02A80391 +#define M88_VENDOR 0x0141 + +/* M88E1000 Specific Registers */ +#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ +#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ +#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */ +#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */ +#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ +#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ + +#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */ +#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */ +#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */ +#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */ +#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */ + +/* M88E1000 PHY Specific Control Register */ +#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */ +#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */ +#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */ +/* 1=CLK125 low, 0=CLK125 toggling */ +#define M88E1000_PSCR_CLK125_DISABLE 0x0010 +#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ + /* Manual MDI configuration */ +#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ +/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */ +#define M88E1000_PSCR_AUTO_X_1000T 0x0040 +/* Auto crossover enabled all speeds */ +#define M88E1000_PSCR_AUTO_X_MODE 0x0060 +/* + * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold + * 0=Normal 10BASE-T Rx Threshold + */ +#define M88E1000_PSCR_EN_10BT_EXT_DIST 0x0080 +/* 1=5-bit interface in 100BASE-TX, 0=MII interface in 100BASE-TX */ +#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100 +#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */ +#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */ +#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */ + +/* M88E1000 PHY Specific Status Register */ +#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */ +#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ +#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ +#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ +/* + * 0 = <50M + * 1 = 50-80M + * 2 = 80-110M + * 3 = 110-140M + * 4 = >140M + */ +#define M88E1000_PSSR_CABLE_LENGTH 0x0380 +#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ +#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ +#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */ +#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */ +#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ +#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */ +#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */ +#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ + +#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 + +/* M88E1000 Extended PHY Specific Control Register */ +#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */ +/* + * 1 = Lost lock detect enabled. + * Will assert lost lock and bring + * link down if idle not seen + * within 1ms in 1000BASE-T + */ +#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 +/* + * Number of times we will attempt to autonegotiate before downshifting if we + * are the master + */ +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00 +/* + * Number of times we will attempt to autonegotiate before downshifting if we + * are the slave + */ +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300 +#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */ +#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ +#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */ + +/* M88EC018 Rev 2 specific DownShift settings */ +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00 + +/* BME1000 PHY Specific Control Register */ +#define BME1000_PSCR_ENABLE_DOWNSHIFT 0x0800 /* 1 = enable downshift */ + +/* + * Bits... + * 15-5: page + * 4-0: register offset + */ +#define GG82563_PAGE_SHIFT 5 +#define GG82563_REG(page, reg) \ + (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) +#define GG82563_MIN_ALT_REG 30 + +/* GG82563 Specific Registers */ +#define GG82563_PHY_SPEC_CTRL \ + GG82563_REG(0, 16) /* PHY Specific Control */ +#define GG82563_PHY_SPEC_STATUS \ + GG82563_REG(0, 17) /* PHY Specific Status */ +#define GG82563_PHY_INT_ENABLE \ + GG82563_REG(0, 18) /* Interrupt Enable */ +#define GG82563_PHY_SPEC_STATUS_2 \ + GG82563_REG(0, 19) /* PHY Specific Status 2 */ +#define GG82563_PHY_RX_ERR_CNTR \ + GG82563_REG(0, 21) /* Receive Error Counter */ +#define GG82563_PHY_PAGE_SELECT \ + GG82563_REG(0, 22) /* Page Select */ +#define GG82563_PHY_SPEC_CTRL_2 \ + GG82563_REG(0, 26) /* PHY Specific Control 2 */ +#define GG82563_PHY_PAGE_SELECT_ALT \ + GG82563_REG(0, 29) /* Alternate Page Select */ +#define GG82563_PHY_TEST_CLK_CTRL \ + GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */ + +#define GG82563_PHY_MAC_SPEC_CTRL \ + GG82563_REG(2, 21) /* MAC Specific Control Register */ +#define GG82563_PHY_MAC_SPEC_CTRL_2 \ + GG82563_REG(2, 26) /* MAC Specific Control 2 */ + +#define GG82563_PHY_DSP_DISTANCE \ + GG82563_REG(5, 26) /* DSP Distance */ + +/* Page 193 - Port Control Registers */ +#define GG82563_PHY_KMRN_MODE_CTRL \ + GG82563_REG(193, 16) /* Kumeran Mode Control */ +#define GG82563_PHY_PORT_RESET \ + GG82563_REG(193, 17) /* Port Reset */ +#define GG82563_PHY_REVISION_ID \ + GG82563_REG(193, 18) /* Revision ID */ +#define GG82563_PHY_DEVICE_ID \ + GG82563_REG(193, 19) /* Device ID */ +#define GG82563_PHY_PWR_MGMT_CTRL \ + GG82563_REG(193, 20) /* Power Management Control */ +#define GG82563_PHY_RATE_ADAPT_CTRL \ + GG82563_REG(193, 25) /* Rate Adaptation Control */ + +/* Page 194 - KMRN Registers */ +#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \ + GG82563_REG(194, 16) /* FIFO's Control/Status */ +#define GG82563_PHY_KMRN_CTRL \ + GG82563_REG(194, 17) /* Control */ +#define GG82563_PHY_INBAND_CTRL \ + GG82563_REG(194, 18) /* Inband Control */ +#define GG82563_PHY_KMRN_DIAGNOSTIC \ + GG82563_REG(194, 19) /* Diagnostic */ +#define GG82563_PHY_ACK_TIMEOUTS \ + GG82563_REG(194, 20) /* Acknowledge Timeouts */ +#define GG82563_PHY_ADV_ABILITY \ + GG82563_REG(194, 21) /* Advertised Ability */ +#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \ + GG82563_REG(194, 23) /* Link Partner Advertised Ability */ +#define GG82563_PHY_ADV_NEXT_PAGE \ + GG82563_REG(194, 24) /* Advertised Next Page */ +#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \ + GG82563_REG(194, 25) /* Link Partner Advertised Next page */ +#define GG82563_PHY_KMRN_MISC \ + GG82563_REG(194, 26) /* Misc. */ + +/* MDI Control */ +#define E1000_MDIC_DATA_MASK 0x0000FFFF +#define E1000_MDIC_REG_MASK 0x001F0000 +#define E1000_MDIC_REG_SHIFT 16 +#define E1000_MDIC_PHY_MASK 0x03E00000 +#define E1000_MDIC_PHY_SHIFT 21 +#define E1000_MDIC_OP_WRITE 0x04000000 +#define E1000_MDIC_OP_READ 0x08000000 +#define E1000_MDIC_READY 0x10000000 +#define E1000_MDIC_INT_EN 0x20000000 +#define E1000_MDIC_ERROR 0x40000000 + +/* SerDes Control */ +#define E1000_GEN_CTL_READY 0x80000000 +#define E1000_GEN_CTL_ADDRESS_SHIFT 8 +#define E1000_GEN_POLL_TIMEOUT 640 + +/* LinkSec register fields */ +#define E1000_LSECTXCAP_SUM_MASK 0x00FF0000 +#define E1000_LSECTXCAP_SUM_SHIFT 16 +#define E1000_LSECRXCAP_SUM_MASK 0x00FF0000 +#define E1000_LSECRXCAP_SUM_SHIFT 16 + +#define E1000_LSECTXCTRL_EN_MASK 0x00000003 +#define E1000_LSECTXCTRL_DISABLE 0x0 +#define E1000_LSECTXCTRL_AUTH 0x1 +#define E1000_LSECTXCTRL_AUTH_ENCRYPT 0x2 +#define E1000_LSECTXCTRL_AISCI 0x00000020 +#define E1000_LSECTXCTRL_PNTHRSH_MASK 0xFFFFFF00 +#define E1000_LSECTXCTRL_RSV_MASK 0x000000D8 + +#define E1000_LSECRXCTRL_EN_MASK 0x0000000C +#define E1000_LSECRXCTRL_EN_SHIFT 2 +#define E1000_LSECRXCTRL_DISABLE 0x0 +#define E1000_LSECRXCTRL_CHECK 0x1 +#define E1000_LSECRXCTRL_STRICT 0x2 +#define E1000_LSECRXCTRL_DROP 0x3 +#define E1000_LSECRXCTRL_PLSH 0x00000040 +#define E1000_LSECRXCTRL_RP 0x00000080 +#define E1000_LSECRXCTRL_RSV_MASK 0xFFFFFF33 + +#endif diff --git a/sys/dev/e1000/e1000_hw.h b/sys/dev/e1000/e1000_hw.h new file mode 100644 index 0000000..0391e14 --- /dev/null +++ b/sys/dev/e1000/e1000_hw.h @@ -0,0 +1,753 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_HW_H_ +#define _E1000_HW_H_ + +#include "e1000_osdep.h" +#include "e1000_regs.h" +#include "e1000_defines.h" + +struct e1000_hw; + +#define E1000_DEV_ID_82542 0x1000 +#define E1000_DEV_ID_82543GC_FIBER 0x1001 +#define E1000_DEV_ID_82543GC_COPPER 0x1004 +#define E1000_DEV_ID_82544EI_COPPER 0x1008 +#define E1000_DEV_ID_82544EI_FIBER 0x1009 +#define E1000_DEV_ID_82544GC_COPPER 0x100C +#define E1000_DEV_ID_82544GC_LOM 0x100D +#define E1000_DEV_ID_82540EM 0x100E +#define E1000_DEV_ID_82540EM_LOM 0x1015 +#define E1000_DEV_ID_82540EP_LOM 0x1016 +#define E1000_DEV_ID_82540EP 0x1017 +#define E1000_DEV_ID_82540EP_LP 0x101E +#define E1000_DEV_ID_82545EM_COPPER 0x100F +#define E1000_DEV_ID_82545EM_FIBER 0x1011 +#define E1000_DEV_ID_82545GM_COPPER 0x1026 +#define E1000_DEV_ID_82545GM_FIBER 0x1027 +#define E1000_DEV_ID_82545GM_SERDES 0x1028 +#define E1000_DEV_ID_82546EB_COPPER 0x1010 +#define E1000_DEV_ID_82546EB_FIBER 0x1012 +#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D +#define E1000_DEV_ID_82546GB_COPPER 0x1079 +#define E1000_DEV_ID_82546GB_FIBER 0x107A +#define E1000_DEV_ID_82546GB_SERDES 0x107B +#define E1000_DEV_ID_82546GB_PCIE 0x108A +#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 +#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5 +#define E1000_DEV_ID_82541EI 0x1013 +#define E1000_DEV_ID_82541EI_MOBILE 0x1018 +#define E1000_DEV_ID_82541ER_LOM 0x1014 +#define E1000_DEV_ID_82541ER 0x1078 +#define E1000_DEV_ID_82541GI 0x1076 +#define E1000_DEV_ID_82541GI_LF 0x107C +#define E1000_DEV_ID_82541GI_MOBILE 0x1077 +#define E1000_DEV_ID_82547EI 0x1019 +#define E1000_DEV_ID_82547EI_MOBILE 0x101A +#define E1000_DEV_ID_82547GI 0x1075 +#define E1000_DEV_ID_82571EB_COPPER 0x105E +#define E1000_DEV_ID_82571EB_FIBER 0x105F +#define E1000_DEV_ID_82571EB_SERDES 0x1060 +#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9 +#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA +#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4 +#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5 +#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5 +#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP 0x10BC +#define E1000_DEV_ID_82572EI_COPPER 0x107D +#define E1000_DEV_ID_82572EI_FIBER 0x107E +#define E1000_DEV_ID_82572EI_SERDES 0x107F +#define E1000_DEV_ID_82572EI 0x10B9 +#define E1000_DEV_ID_82573E 0x108B +#define E1000_DEV_ID_82573E_IAMT 0x108C +#define E1000_DEV_ID_82573L 0x109A +#define E1000_DEV_ID_82574L 0x10D3 +#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096 +#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098 +#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA +#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB +#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049 +#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A +#define E1000_DEV_ID_ICH8_IGP_C 0x104B +#define E1000_DEV_ID_ICH8_IFE 0x104C +#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4 +#define E1000_DEV_ID_ICH8_IFE_G 0x10C5 +#define E1000_DEV_ID_ICH8_IGP_M 0x104D +#define E1000_DEV_ID_ICH9_IGP_M 0x10BF +#define E1000_DEV_ID_ICH9_IGP_M_AMT 0x10F5 +#define E1000_DEV_ID_ICH9_IGP_M_V 0x10CB +#define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD +#define E1000_DEV_ID_ICH9_BM 0x10E5 +#define E1000_DEV_ID_ICH9_IGP_C 0x294C +#define E1000_DEV_ID_ICH9_IFE 0x10C0 +#define E1000_DEV_ID_ICH9_IFE_GT 0x10C3 +#define E1000_DEV_ID_ICH9_IFE_G 0x10C2 +#define E1000_DEV_ID_ICH10_R_BM_LM 0x10CC +#define E1000_DEV_ID_ICH10_R_BM_LF 0x10CD +#define E1000_DEV_ID_ICH10_R_BM_V 0x10CE +#define E1000_DEV_ID_ICH10_D_BM_LM 0x10DE +#define E1000_DEV_ID_ICH10_D_BM_LF 0x10DF +#define E1000_DEV_ID_82576 0x10C9 +#define E1000_DEV_ID_82576_FIBER 0x10E6 +#define E1000_DEV_ID_82576_SERDES 0x10E7 +#define E1000_DEV_ID_82576_QUAD_COPPER 0x10E8 +#define E1000_DEV_ID_82575EB_COPPER 0x10A7 +#define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9 +#define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6 + +#define E1000_REVISION_0 0 +#define E1000_REVISION_1 1 +#define E1000_REVISION_2 2 +#define E1000_REVISION_3 3 +#define E1000_REVISION_4 4 + +#define E1000_FUNC_0 0 +#define E1000_FUNC_1 1 + +enum e1000_mac_type { + e1000_undefined = 0, + e1000_82542, + e1000_82543, + e1000_82544, + e1000_82540, + e1000_82545, + e1000_82545_rev_3, + e1000_82546, + e1000_82546_rev_3, + e1000_82541, + e1000_82541_rev_2, + e1000_82547, + e1000_82547_rev_2, + e1000_82571, + e1000_82572, + e1000_82573, + e1000_82574, + e1000_80003es2lan, + e1000_ich8lan, + e1000_ich9lan, + e1000_ich10lan, + e1000_82575, + e1000_82576, + e1000_num_macs /* List is 1-based, so subtract 1 for TRUE count. */ +}; + +enum e1000_media_type { + e1000_media_type_unknown = 0, + e1000_media_type_copper = 1, + e1000_media_type_fiber = 2, + e1000_media_type_internal_serdes = 3, + e1000_num_media_types +}; + +enum e1000_nvm_type { + e1000_nvm_unknown = 0, + e1000_nvm_none, + e1000_nvm_eeprom_spi, + e1000_nvm_eeprom_microwire, + e1000_nvm_flash_hw, + e1000_nvm_flash_sw +}; + +enum e1000_nvm_override { + e1000_nvm_override_none = 0, + e1000_nvm_override_spi_small, + e1000_nvm_override_spi_large, + e1000_nvm_override_microwire_small, + e1000_nvm_override_microwire_large +}; + +enum e1000_phy_type { + e1000_phy_unknown = 0, + e1000_phy_none, + e1000_phy_m88, + e1000_phy_igp, + e1000_phy_igp_2, + e1000_phy_gg82563, + e1000_phy_igp_3, + e1000_phy_ife, + e1000_phy_bm, + e1000_phy_vf, +}; + +enum e1000_bus_type { + e1000_bus_type_unknown = 0, + e1000_bus_type_pci, + e1000_bus_type_pcix, + e1000_bus_type_pci_express, + e1000_bus_type_reserved +}; + +enum e1000_bus_speed { + e1000_bus_speed_unknown = 0, + e1000_bus_speed_33, + e1000_bus_speed_66, + e1000_bus_speed_100, + e1000_bus_speed_120, + e1000_bus_speed_133, + e1000_bus_speed_2500, + e1000_bus_speed_5000, + e1000_bus_speed_reserved +}; + +enum e1000_bus_width { + e1000_bus_width_unknown = 0, + e1000_bus_width_pcie_x1, + e1000_bus_width_pcie_x2, + e1000_bus_width_pcie_x4 = 4, + e1000_bus_width_pcie_x8 = 8, + e1000_bus_width_32, + e1000_bus_width_64, + e1000_bus_width_reserved +}; + +enum e1000_1000t_rx_status { + e1000_1000t_rx_status_not_ok = 0, + e1000_1000t_rx_status_ok, + e1000_1000t_rx_status_undefined = 0xFF +}; + +enum e1000_rev_polarity { + e1000_rev_polarity_normal = 0, + e1000_rev_polarity_reversed, + e1000_rev_polarity_undefined = 0xFF +}; + +enum e1000_fc_type { + e1000_fc_none = 0, + e1000_fc_rx_pause, + e1000_fc_tx_pause, + e1000_fc_full, + e1000_fc_default = 0xFF +}; + +enum e1000_ffe_config { + e1000_ffe_config_enabled = 0, + e1000_ffe_config_active, + e1000_ffe_config_blocked +}; + +enum e1000_dsp_config { + e1000_dsp_config_disabled = 0, + e1000_dsp_config_enabled, + e1000_dsp_config_activated, + e1000_dsp_config_undefined = 0xFF +}; + +/* Receive Descriptor */ +struct e1000_rx_desc { + u64 buffer_addr; /* Address of the descriptor's data buffer */ + u16 length; /* Length of data DMAed into data buffer */ + u16 csum; /* Packet checksum */ + u8 status; /* Descriptor status */ + u8 errors; /* Descriptor Errors */ + u16 special; +}; + +/* Receive Descriptor - Extended */ +union e1000_rx_desc_extended { + struct { + u64 buffer_addr; + u64 reserved; + } read; + struct { + struct { + u32 mrq; /* Multiple Rx Queues */ + union { + u32 rss; /* RSS Hash */ + struct { + u16 ip_id; /* IP id */ + u16 csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + u32 status_error; /* ext status/error */ + u16 length; + u16 vlan; /* VLAN tag */ + } upper; + } wb; /* writeback */ +}; + +#define MAX_PS_BUFFERS 4 +/* Receive Descriptor - Packet Split */ +union e1000_rx_desc_packet_split { + struct { + /* one buffer for protocol header(s), three data buffers */ + u64 buffer_addr[MAX_PS_BUFFERS]; + } read; + struct { + struct { + u32 mrq; /* Multiple Rx Queues */ + union { + u32 rss; /* RSS Hash */ + struct { + u16 ip_id; /* IP id */ + u16 csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + u32 status_error; /* ext status/error */ + u16 length0; /* length of buffer 0 */ + u16 vlan; /* VLAN tag */ + } middle; + struct { + u16 header_status; + u16 length[3]; /* length of buffers 1-3 */ + } upper; + u64 reserved; + } wb; /* writeback */ +}; + +/* Transmit Descriptor */ +struct e1000_tx_desc { + u64 buffer_addr; /* Address of the descriptor's data buffer */ + union { + u32 data; + struct { + u16 length; /* Data buffer length */ + u8 cso; /* Checksum offset */ + u8 cmd; /* Descriptor control */ + } flags; + } lower; + union { + u32 data; + struct { + u8 status; /* Descriptor status */ + u8 css; /* Checksum start */ + u16 special; + } fields; + } upper; +}; + +/* Offload Context Descriptor */ +struct e1000_context_desc { + union { + u32 ip_config; + struct { + u8 ipcss; /* IP checksum start */ + u8 ipcso; /* IP checksum offset */ + u16 ipcse; /* IP checksum end */ + } ip_fields; + } lower_setup; + union { + u32 tcp_config; + struct { + u8 tucss; /* TCP checksum start */ + u8 tucso; /* TCP checksum offset */ + u16 tucse; /* TCP checksum end */ + } tcp_fields; + } upper_setup; + u32 cmd_and_length; + union { + u32 data; + struct { + u8 status; /* Descriptor status */ + u8 hdr_len; /* Header length */ + u16 mss; /* Maximum segment size */ + } fields; + } tcp_seg_setup; +}; + +/* Offload data descriptor */ +struct e1000_data_desc { + u64 buffer_addr; /* Address of the descriptor's buffer address */ + union { + u32 data; + struct { + u16 length; /* Data buffer length */ + u8 typ_len_ext; + u8 cmd; + } flags; + } lower; + union { + u32 data; + struct { + u8 status; /* Descriptor status */ + u8 popts; /* Packet Options */ + u16 special; + } fields; + } upper; +}; + +/* Statistics counters collected by the MAC */ +struct e1000_hw_stats { + u64 crcerrs; + u64 algnerrc; + u64 symerrs; + u64 rxerrc; + u64 mpc; + u64 scc; + u64 ecol; + u64 mcc; + u64 latecol; + u64 colc; + u64 dc; + u64 tncrs; + u64 sec; + u64 cexterr; + u64 rlec; + u64 xonrxc; + u64 xontxc; + u64 xoffrxc; + u64 xofftxc; + u64 fcruc; + u64 prc64; + u64 prc127; + u64 prc255; + u64 prc511; + u64 prc1023; + u64 prc1522; + u64 gprc; + u64 bprc; + u64 mprc; + u64 gptc; + u64 gorc; + u64 gotc; + u64 rnbc; + u64 ruc; + u64 rfc; + u64 roc; + u64 rjc; + u64 mgprc; + u64 mgpdc; + u64 mgptc; + u64 tor; + u64 tot; + u64 tpr; + u64 tpt; + u64 ptc64; + u64 ptc127; + u64 ptc255; + u64 ptc511; + u64 ptc1023; + u64 ptc1522; + u64 mptc; + u64 bptc; + u64 tsctc; + u64 tsctfc; + u64 iac; + u64 icrxptc; + u64 icrxatc; + u64 ictxptc; + u64 ictxatc; + u64 ictxqec; + u64 ictxqmtc; + u64 icrxdmtc; + u64 icrxoc; + u64 cbtmpc; + u64 htdpmc; + u64 cbrdpc; + u64 cbrmpc; + u64 rpthc; + u64 hgptc; + u64 htcbdpc; + u64 hgorc; + u64 hgotc; + u64 lenerrs; + u64 scvpc; + u64 hrmpc; +}; + +struct e1000_phy_stats { + u32 idle_errors; + u32 receive_errors; +}; + +struct e1000_host_mng_dhcp_cookie { + u32 signature; + u8 status; + u8 reserved0; + u16 vlan_id; + u32 reserved1; + u16 reserved2; + u8 reserved3; + u8 checksum; +}; + +/* Host Interface "Rev 1" */ +struct e1000_host_command_header { + u8 command_id; + u8 command_length; + u8 command_options; + u8 checksum; +}; + +#define E1000_HI_MAX_DATA_LENGTH 252 +struct e1000_host_command_info { + struct e1000_host_command_header command_header; + u8 command_data[E1000_HI_MAX_DATA_LENGTH]; +}; + +/* Host Interface "Rev 2" */ +struct e1000_host_mng_command_header { + u8 command_id; + u8 checksum; + u16 reserved1; + u16 reserved2; + u16 command_length; +}; + +#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 +struct e1000_host_mng_command_info { + struct e1000_host_mng_command_header command_header; + u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; +}; + +#include "e1000_mac.h" +#include "e1000_phy.h" +#include "e1000_nvm.h" +#include "e1000_manage.h" + +struct e1000_mac_operations { + /* Function pointers for the MAC. */ + s32 (*init_params)(struct e1000_hw *); + s32 (*blink_led)(struct e1000_hw *); + s32 (*check_for_link)(struct e1000_hw *); + bool (*check_mng_mode)(struct e1000_hw *hw); + s32 (*cleanup_led)(struct e1000_hw *); + void (*clear_hw_cntrs)(struct e1000_hw *); + void (*clear_vfta)(struct e1000_hw *); + s32 (*get_bus_info)(struct e1000_hw *); + s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *); + s32 (*led_on)(struct e1000_hw *); + s32 (*led_off)(struct e1000_hw *); + void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32, u32, + u32); + void (*remove_device)(struct e1000_hw *); + s32 (*reset_hw)(struct e1000_hw *); + s32 (*init_hw)(struct e1000_hw *); + void (*shutdown_serdes)(struct e1000_hw *); + s32 (*setup_link)(struct e1000_hw *); + s32 (*setup_physical_interface)(struct e1000_hw *); + s32 (*setup_led)(struct e1000_hw *); + void (*write_vfta)(struct e1000_hw *, u32, u32); + void (*mta_set)(struct e1000_hw *, u32); + void (*config_collision_dist)(struct e1000_hw*); + void (*rar_set)(struct e1000_hw*, u8*, u32); + s32 (*read_mac_addr)(struct e1000_hw*); + s32 (*validate_mdi_setting)(struct e1000_hw*); + s32 (*mng_host_if_write)(struct e1000_hw*, u8*, u16, u16, u8*); + s32 (*mng_write_cmd_header)(struct e1000_hw *hw, + struct e1000_host_mng_command_header*); + s32 (*mng_enable_host_if)(struct e1000_hw*); + s32 (*wait_autoneg)(struct e1000_hw*); +}; + +struct e1000_phy_operations { + s32 (*init_params)(struct e1000_hw *); + s32 (*acquire)(struct e1000_hw *); + s32 (*check_polarity)(struct e1000_hw *); + s32 (*check_reset_block)(struct e1000_hw *); + s32 (*commit)(struct e1000_hw *); + s32 (*force_speed_duplex)(struct e1000_hw *); + s32 (*get_cfg_done)(struct e1000_hw *hw); + s32 (*get_cable_length)(struct e1000_hw *); + s32 (*get_info)(struct e1000_hw *); + s32 (*read_reg)(struct e1000_hw *, u32, u16 *); + void (*release)(struct e1000_hw *); + s32 (*reset)(struct e1000_hw *); + s32 (*set_d0_lplu_state)(struct e1000_hw *, bool); + s32 (*set_d3_lplu_state)(struct e1000_hw *, bool); + s32 (*write_reg)(struct e1000_hw *, u32, u16); + void (*power_up)(struct e1000_hw *); + void (*power_down)(struct e1000_hw *); +}; + +struct e1000_nvm_operations { + s32 (*init_params)(struct e1000_hw *); + s32 (*acquire)(struct e1000_hw *); + s32 (*read)(struct e1000_hw *, u16, u16, u16 *); + void (*release)(struct e1000_hw *); + void (*reload)(struct e1000_hw *); + s32 (*update)(struct e1000_hw *); + s32 (*valid_led_default)(struct e1000_hw *, u16 *); + s32 (*validate)(struct e1000_hw *); + s32 (*write)(struct e1000_hw *, u16, u16, u16 *); +}; + +struct e1000_mac_info { + struct e1000_mac_operations ops; + u8 addr[6]; + u8 perm_addr[6]; + + enum e1000_mac_type type; + + u32 collision_delta; + u32 ledctl_default; + u32 ledctl_mode1; + u32 ledctl_mode2; + u32 mc_filter_type; + u32 tx_packet_delta; + u32 txcw; + + u16 current_ifs_val; + u16 ifs_max_val; + u16 ifs_min_val; + u16 ifs_ratio; + u16 ifs_step_size; + u16 mta_reg_count; + u16 rar_entry_count; + + u8 forced_speed_duplex; + + bool adaptive_ifs; + bool arc_subsystem_valid; + bool asf_firmware_present; + bool autoneg; + bool autoneg_failed; + bool disable_av; + bool disable_hw_init_bits; + bool get_link_status; + bool ifs_params_forced; + bool in_ifs_mode; + bool report_tx_early; + bool serdes_has_link; + bool tx_pkt_filtering; +}; + +struct e1000_phy_info { + struct e1000_phy_operations ops; + enum e1000_phy_type type; + + enum e1000_1000t_rx_status local_rx; + enum e1000_1000t_rx_status remote_rx; + enum e1000_ms_type ms_type; + enum e1000_ms_type original_ms_type; + enum e1000_rev_polarity cable_polarity; + enum e1000_smart_speed smart_speed; + + u32 addr; + u32 id; + u32 reset_delay_us; /* in usec */ + u32 revision; + + enum e1000_media_type media_type; + + u16 autoneg_advertised; + u16 autoneg_mask; + u16 cable_length; + u16 max_cable_length; + u16 min_cable_length; + + u8 mdix; + + bool disable_polarity_correction; + bool is_mdix; + bool polarity_correction; + bool reset_disable; + bool speed_downgraded; + bool autoneg_wait_to_complete; +}; + +struct e1000_nvm_info { + struct e1000_nvm_operations ops; + enum e1000_nvm_type type; + enum e1000_nvm_override override; + + u32 flash_bank_size; + u32 flash_base_addr; + u32 semaphore_delay; + + u16 word_size; + u16 delay_usec; + u16 address_bits; + u16 opcode_bits; + u16 page_size; +}; + +struct e1000_bus_info { + enum e1000_bus_type type; + enum e1000_bus_speed speed; + enum e1000_bus_width width; + + u32 snoop; + + u16 func; + u16 pci_cmd_word; +}; + +struct e1000_fc_info { + u32 high_water; /* Flow control high-water mark */ + u32 low_water; /* Flow control low-water mark */ + u16 pause_time; /* Flow control pause timer */ + bool send_xon; /* Flow control send XON */ + bool strict_ieee; /* Strict IEEE mode */ + enum e1000_fc_type type; /* Type of flow control */ + enum e1000_fc_type original_type; +}; + +struct e1000_hw { + void *back; + void *dev_spec; + + u8 *hw_addr; + u8 *flash_address; + unsigned long io_base; + + struct e1000_mac_info mac; + struct e1000_fc_info fc; + struct e1000_phy_info phy; + struct e1000_nvm_info nvm; + struct e1000_bus_info bus; + struct e1000_host_mng_dhcp_cookie mng_cookie; + + u32 dev_spec_size; + + u16 device_id; + u16 subsystem_vendor_id; + u16 subsystem_device_id; + u16 vendor_id; + + u8 revision_id; +}; + +#include "e1000_82541.h" +#include "e1000_82543.h" +#include "e1000_82571.h" +#include "e1000_80003es2lan.h" +#include "e1000_ich8lan.h" +#include "e1000_82575.h" + +/* These functions must be implemented by drivers */ +void e1000_pci_clear_mwi(struct e1000_hw *hw); +void e1000_pci_set_mwi(struct e1000_hw *hw); +s32 e1000_alloc_zeroed_dev_spec_struct(struct e1000_hw *hw, u32 size); +s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); +void e1000_free_dev_spec_struct(struct e1000_hw *hw); +void e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value); +void e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value); + +#endif diff --git a/sys/dev/e1000/e1000_ich8lan.c b/sys/dev/e1000/e1000_ich8lan.c new file mode 100644 index 0000000..c4b9a2b --- /dev/null +++ b/sys/dev/e1000/e1000_ich8lan.c @@ -0,0 +1,2717 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +/* e1000_ich8lan + * e1000_ich9lan + */ + +#include "e1000_api.h" + +static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw); +static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw); +static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw); +static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw); +static void e1000_release_swflag_ich8lan(struct e1000_hw *hw); +static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); +static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw); +static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw); +static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw); +static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw); +static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw); +static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, + bool active); +static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, + bool active); +static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw); +static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw); +static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, + u16 *data); +static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw); +static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw); +static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw); +static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); +static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); +static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, + u16 *speed, u16 *duplex); +static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); +static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); +static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); +static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); +static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); +static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout); +static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw); +static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw); +static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); +static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); +static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, + u32 offset, u8* data); +static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, + u8 size, u16* data); +static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, + u32 offset, u16 *data); +static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, + u32 offset, u8 byte); +static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, + u32 offset, u8 data); +static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, + u8 size, u16 data); +static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw); +static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); + +/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ +/* Offset 04h HSFSTS */ +union ich8_hws_flash_status { + struct ich8_hsfsts { + u16 flcdone :1; /* bit 0 Flash Cycle Done */ + u16 flcerr :1; /* bit 1 Flash Cycle Error */ + u16 dael :1; /* bit 2 Direct Access error Log */ + u16 berasesz :2; /* bit 4:3 Sector Erase Size */ + u16 flcinprog :1; /* bit 5 flash cycle in Progress */ + u16 reserved1 :2; /* bit 13:6 Reserved */ + u16 reserved2 :6; /* bit 13:6 Reserved */ + u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */ + u16 flockdn :1; /* bit 15 Flash Config Lock-Down */ + } hsf_status; + u16 regval; +}; + +/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ +/* Offset 06h FLCTL */ +union ich8_hws_flash_ctrl { + struct ich8_hsflctl { + u16 flcgo :1; /* 0 Flash Cycle Go */ + u16 flcycle :2; /* 2:1 Flash Cycle */ + u16 reserved :5; /* 7:3 Reserved */ + u16 fldbcount :2; /* 9:8 Flash Data Byte Count */ + u16 flockdn :6; /* 15:10 Reserved */ + } hsf_ctrl; + u16 regval; +}; + +/* ICH Flash Region Access Permissions */ +union ich8_hws_flash_regacc { + struct ich8_flracc { + u32 grra :8; /* 0:7 GbE region Read Access */ + u32 grwa :8; /* 8:15 GbE region Write Access */ + u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */ + u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */ + } hsf_flregacc; + u16 regval; +}; + +struct e1000_shadow_ram { + u16 value; + bool modified; +}; + +struct e1000_dev_spec_ich8lan { + bool kmrn_lock_loss_workaround_enabled; + struct e1000_shadow_ram shadow_ram[E1000_SHADOW_RAM_WORDS]; +}; + +/** + * e1000_init_phy_params_ich8lan - Initialize PHY function pointers + * @hw: pointer to the HW structure + * + * Initialize family-specific PHY parameters and function pointers. + **/ +static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 i = 0; + + DEBUGFUNC("e1000_init_phy_params_ich8lan"); + + phy->addr = 1; + phy->reset_delay_us = 100; + + phy->ops.acquire = e1000_acquire_swflag_ich8lan; + phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan; + phy->ops.check_reset_block = e1000_check_reset_block_ich8lan; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan; + phy->ops.get_cable_length = e1000_get_cable_length_igp_2; + phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan; + phy->ops.get_info = e1000_get_phy_info_ich8lan; + phy->ops.read_reg = e1000_read_phy_reg_igp; + phy->ops.release = e1000_release_swflag_ich8lan; + phy->ops.reset = e1000_phy_hw_reset_ich8lan; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan; + phy->ops.write_reg = e1000_write_phy_reg_igp; + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; + + /* + * We may need to do this twice - once for IGP and if that fails, + * we'll set BM func pointers and try again + */ + ret_val = e1000_determine_phy_address(hw); + if (ret_val) { + phy->ops.write_reg = e1000_write_phy_reg_bm; + phy->ops.read_reg = e1000_read_phy_reg_bm; + ret_val = e1000_determine_phy_address(hw); + if (ret_val) { + DEBUGOUT("Cannot determine PHY address. Erroring out\n"); + goto out; + } + } + + phy->id = 0; + while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) && + (i++ < 100)) { + msec_delay(1); + ret_val = e1000_get_phy_id(hw); + if (ret_val) + goto out; + } + + /* Verify phy id */ + switch (phy->id) { + case IGP03E1000_E_PHY_ID: + phy->type = e1000_phy_igp_3; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + break; + case IFE_E_PHY_ID: + case IFE_PLUS_E_PHY_ID: + case IFE_C_E_PHY_ID: + phy->type = e1000_phy_ife; + phy->autoneg_mask = E1000_ALL_NOT_GIG; + break; + case BME1000_E_PHY_ID: + phy->type = e1000_phy_bm; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->ops.read_reg = e1000_read_phy_reg_bm; + phy->ops.write_reg = e1000_write_phy_reg_bm; + phy->ops.commit = e1000_phy_sw_reset_generic; + break; + default: + ret_val = -E1000_ERR_PHY; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers + * @hw: pointer to the HW structure + * + * Initialize family-specific NVM parameters and function + * pointers. + **/ +static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + struct e1000_dev_spec_ich8lan *dev_spec; + u32 gfpreg, sector_base_addr, sector_end_addr; + s32 ret_val = E1000_SUCCESS; + u16 i; + + DEBUGFUNC("e1000_init_nvm_params_ich8lan"); + + /* Can't read flash registers if the register set isn't mapped. */ + if (!hw->flash_address) { + DEBUGOUT("ERROR: Flash registers not mapped\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + nvm->type = e1000_nvm_flash_sw; + + gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG); + + /* + * sector_X_addr is a "sector"-aligned address (4096 bytes) + * Add 1 to sector_end_addr since this sector is included in + * the overall size. + */ + sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; + sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; + + /* flash_base_addr is byte-aligned */ + nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; + + /* + * find total size of the NVM, then cut in half since the total + * size represents two separate NVM banks. + */ + nvm->flash_bank_size = (sector_end_addr - sector_base_addr) + << FLASH_SECTOR_ADDR_SHIFT; + nvm->flash_bank_size /= 2; + /* Adjust to word count */ + nvm->flash_bank_size /= sizeof(u16); + + nvm->word_size = E1000_SHADOW_RAM_WORDS; + + dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec; + + if (!dev_spec) { + DEBUGOUT("dev_spec pointer is set to NULL.\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + /* Clear shadow ram */ + for (i = 0; i < nvm->word_size; i++) { + dev_spec->shadow_ram[i].modified = FALSE; + dev_spec->shadow_ram[i].value = 0xFFFF; + } + + /* Function Pointers */ + nvm->ops.acquire = e1000_acquire_swflag_ich8lan; + nvm->ops.read = e1000_read_nvm_ich8lan; + nvm->ops.release = e1000_release_swflag_ich8lan; + nvm->ops.update = e1000_update_nvm_checksum_ich8lan; + nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan; + nvm->ops.validate = e1000_validate_nvm_checksum_ich8lan; + nvm->ops.write = e1000_write_nvm_ich8lan; + +out: + return ret_val; +} + +/** + * e1000_init_mac_params_ich8lan - Initialize MAC function pointers + * @hw: pointer to the HW structure + * + * Initialize family-specific MAC parameters and function + * pointers. + **/ +static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_init_mac_params_ich8lan"); + + /* Set media type function pointer */ + hw->phy.media_type = e1000_media_type_copper; + + /* Set mta register count */ + mac->mta_reg_count = 32; + /* Set rar entry count */ + mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; + if (mac->type == e1000_ich8lan) + mac->rar_entry_count--; + /* Set if part includes ASF firmware */ + mac->asf_firmware_present = TRUE; + /* Set if manageability features are enabled. */ + mac->arc_subsystem_valid = TRUE; + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_ich8lan; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_ich8lan; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_ich8lan; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_ich8lan; + /* physical interface setup */ + mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan; + /* check for link */ + mac->ops.check_for_link = e1000_check_for_copper_link_generic; + /* check management mode */ + mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; + /* link info */ + mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + /* setting MTA */ + mac->ops.mta_set = e1000_mta_set_generic; + /* blink LED */ + mac->ops.blink_led = e1000_blink_led_generic; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_generic; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_ich8lan; + mac->ops.led_off = e1000_led_off_ich8lan; + /* remove device */ + mac->ops.remove_device = e1000_remove_device_generic; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan; + + hw->dev_spec_size = sizeof(struct e1000_dev_spec_ich8lan); + + /* Device-specific structure allocation */ + ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size); + if (ret_val) + goto out; + + /* Enable PCS Lock-loss workaround for ICH8 */ + if (mac->type == e1000_ich8lan) + e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE); + + +out: + return ret_val; +} + +/** + * e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers + * @hw: pointer to the HW structure + * + * Initialize family-specific function pointers for PHY, MAC, and NVM. + **/ +void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_ich8lan"); + + hw->mac.ops.init_params = e1000_init_mac_params_ich8lan; + hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan; + hw->phy.ops.init_params = e1000_init_phy_params_ich8lan; +} + +/** + * e1000_acquire_swflag_ich8lan - Acquire software control flag + * @hw: pointer to the HW structure + * + * Acquires the software control flag for performing NVM and PHY + * operations. This is a function pointer entry point only called by + * read/write routines for the PHY and NVM parts. + **/ +static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) +{ + u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_acquire_swflag_ich8lan"); + + while (timeout) { + extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; + E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); + + extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) + break; + msec_delay_irq(1); + timeout--; + } + + if (!timeout) { + DEBUGOUT("FW or HW has locked the resource for too long.\n"); + extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; + E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_release_swflag_ich8lan - Release software control flag + * @hw: pointer to the HW structure + * + * Releases the software control flag for performing NVM and PHY operations. + * This is a function pointer entry point only called by read/write + * routines for the PHY and NVM parts. + **/ +static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) +{ + u32 extcnf_ctrl; + + DEBUGFUNC("e1000_release_swflag_ich8lan"); + + extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; + E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); + + return; +} + +/** + * e1000_check_mng_mode_ich8lan - Checks management mode + * @hw: pointer to the HW structure + * + * This checks if the adapter has manageability enabled. + * This is a function pointer entry point only called by read/write + * routines for the PHY and NVM parts. + **/ +static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) +{ + u32 fwsm; + + DEBUGFUNC("e1000_check_mng_mode_ich8lan"); + + fwsm = E1000_READ_REG(hw, E1000_FWSM); + + return ((fwsm & E1000_FWSM_MODE_MASK) == + (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); +} + +/** + * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked + * @hw: pointer to the HW structure + * + * Checks if firmware is blocking the reset of the PHY. + * This is a function pointer entry point only called by + * reset routines. + **/ +static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) +{ + u32 fwsm; + + DEBUGFUNC("e1000_check_reset_block_ich8lan"); + + fwsm = E1000_READ_REG(hw, E1000_FWSM); + + return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? E1000_SUCCESS + : E1000_BLK_PHY_RESET; +} + +/** + * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex + * @hw: pointer to the HW structure + * + * Forces the speed and duplex settings of the PHY. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_ich8lan"); + + if (phy->type != e1000_phy_ife) { + ret_val = e1000_phy_force_speed_duplex_igp(hw); + goto out; + } + + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data); + if (ret_val) + goto out; + + e1000_phy_force_speed_duplex_setup(hw, &data); + + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data); + if (ret_val) + goto out; + + /* Disable MDI-X support for 10/100 */ + ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); + if (ret_val) + goto out; + + data &= ~IFE_PMC_AUTO_MDIX; + data &= ~IFE_PMC_FORCE_MDIX; + + ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data); + if (ret_val) + goto out; + + DEBUGOUT1("IFE PMC: %X\n", data); + + usec_delay(1); + + if (phy->autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n"); + + ret_val = e1000_phy_has_link_generic(hw, + PHY_FORCE_LIMIT, + 100000, + &link); + if (ret_val) + goto out; + + if (!link) { + DEBUGOUT("Link taking longer than expected.\n"); + } + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, + PHY_FORCE_LIMIT, + 100000, + &link); + if (ret_val) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_phy_hw_reset_ich8lan - Performs a PHY reset + * @hw: pointer to the HW structure + * + * Resets the PHY + * This is a function pointer entry point called by drivers + * or other shared routines. + **/ +static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; + s32 ret_val; + u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT; + u16 word_addr, reg_data, reg_addr, phy_page = 0; + + DEBUGFUNC("e1000_phy_hw_reset_ich8lan"); + + ret_val = e1000_phy_hw_reset_generic(hw); + if (ret_val) + goto out; + + /* + * Initialize the PHY from the NVM on ICH platforms. This + * is needed due to an issue where the NVM configuration is + * not properly autoloaded after power transitions. + * Therefore, after each PHY reset, we will load the + * configuration data out of the NVM manually. + */ + if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) { + /* Check if SW needs configure the PHY */ + if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_M_AMT) || + (hw->device_id == E1000_DEV_ID_ICH8_IGP_M)) + sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; + else + sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; + + data = E1000_READ_REG(hw, E1000_FEXTNVM); + if (!(data & sw_cfg_mask)) + goto out; + + /* Wait for basic configuration completes before proceeding*/ + do { + data = E1000_READ_REG(hw, E1000_STATUS); + data &= E1000_STATUS_LAN_INIT_DONE; + usec_delay(100); + } while ((!data) && --loop); + + /* + * If basic configuration is incomplete before the above loop + * count reaches 0, loading the configuration from NVM will + * leave the PHY in a bad state possibly resulting in no link. + */ + if (loop == 0) { + DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n"); + } + + /* Clear the Init Done bit for the next init event */ + data = E1000_READ_REG(hw, E1000_STATUS); + data &= ~E1000_STATUS_LAN_INIT_DONE; + E1000_WRITE_REG(hw, E1000_STATUS, data); + + /* + * Make sure HW does not configure LCD from PHY + * extended configuration before SW configuration + */ + data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) + goto out; + + cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE); + cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; + cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; + if (!cnf_size) + goto out; + + cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; + cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; + + /* + * Configure LCD from extended configuration + * region. + */ + + /* cnf_base_addr is in DWORD */ + word_addr = (u16)(cnf_base_addr << 1); + + for (i = 0; i < cnf_size; i++) { + ret_val = nvm->ops.read(hw, + (word_addr + i * 2), + 1, + ®_data); + if (ret_val) + goto out; + + ret_val = nvm->ops.read(hw, + (word_addr + i * 2 + 1), + 1, + ®_addr); + if (ret_val) + goto out; + + /* Save off the PHY page for future writes. */ + if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { + phy_page = reg_data; + continue; + } + + reg_addr |= phy_page; + + ret_val = phy->ops.write_reg(hw, + (u32)reg_addr, + reg_data); + if (ret_val) + goto out; + } + } + +out: + return ret_val; +} + +/** + * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info + * @hw: pointer to the HW structure + * + * Wrapper for calling the get_phy_info routines for the appropriate phy type. + * This is a function pointer entry point called by drivers + * or other shared routines. + **/ +static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = -E1000_ERR_PHY_TYPE; + + DEBUGFUNC("e1000_get_phy_info_ich8lan"); + + switch (hw->phy.type) { + case e1000_phy_ife: + ret_val = e1000_get_phy_info_ife_ich8lan(hw); + break; + case e1000_phy_igp_3: + case e1000_phy_bm: + ret_val = e1000_get_phy_info_igp(hw); + break; + default: + break; + } + + return ret_val; +} + +/** + * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states + * @hw: pointer to the HW structure + * + * Populates "phy" structure with various feature states. + * This function is only called by other family-specific + * routines. + **/ +static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + DEBUGFUNC("e1000_get_phy_info_ife_ich8lan"); + + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + goto out; + + if (!link) { + DEBUGOUT("Phy info is only valid if link is up\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data); + if (ret_val) + goto out; + phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE) + ? FALSE : TRUE; + + if (phy->polarity_correction) { + ret_val = e1000_check_polarity_ife_ich8lan(hw); + if (ret_val) + goto out; + } else { + /* Polarity is forced */ + phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal; + } + + ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); + if (ret_val) + goto out; + + phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? TRUE : FALSE; + + /* The following parameters are undefined for 10/100 operation. */ + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; + +out: + return ret_val; +} + +/** + * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY + * @hw: pointer to the HW structure + * + * Polarity is determined on the polarity reversal feature being enabled. + * This function is only called by other family-specific + * routines. + **/ +static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, offset, mask; + + DEBUGFUNC("e1000_check_polarity_ife_ich8lan"); + + /* + * Polarity is determined based on the reversal feature + * being enabled. + */ + if (phy->polarity_correction) { + offset = IFE_PHY_EXTENDED_STATUS_CONTROL; + mask = IFE_PESC_POLARITY_REVERSED; + } else { + offset = IFE_PHY_SPECIAL_CONTROL; + mask = IFE_PSC_FORCE_POLARITY; + } + + ret_val = phy->ops.read_reg(hw, offset, &phy_data); + + if (!ret_val) + phy->cable_polarity = (phy_data & mask) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal; + + return ret_val; +} + +/** + * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state + * @hw: pointer to the HW structure + * @active: TRUE to enable LPLU, FALSE to disable + * + * Sets the LPLU D0 state according to the active flag. When + * activating LPLU this function also disables smart speed + * and vice versa. LPLU will not be activated unless the + * device autonegotiation advertisement meets standards of + * either 10 or 10/100 or 10/100/1000 at all duplexes. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, + bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 phy_ctrl; + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan"); + + if (phy->type == e1000_phy_ife) + goto out; + + phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); + + if (active) { + phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; + E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); + + /* + * Call gig speed drop workaround on LPLU before accessing + * any PHY registers + */ + if ((hw->mac.type == e1000_ich8lan) && + (hw->phy.type == e1000_phy_igp_3)) + e1000_gig_downshift_workaround_ich8lan(hw); + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } else { + phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; + E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); + + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } + } + +out: + return ret_val; +} + +/** + * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state + * @hw: pointer to the HW structure + * @active: TRUE to enable LPLU, FALSE to disable + * + * Sets the LPLU D3 state according to the active flag. When + * activating LPLU this function also disables smart speed + * and vice versa. LPLU will not be activated unless the + * device autonegotiation advertisement meets standards of + * either 10 or 10/100 or 10/100/1000 at all duplexes. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, + bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 phy_ctrl; + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan"); + + phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); + + if (!active) { + phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; + E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } + } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || + (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || + (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { + phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; + E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); + + /* + * Call gig speed drop workaround on LPLU before accessing + * any PHY registers + */ + if ((hw->mac.type == e1000_ich8lan) && + (hw->phy.type == e1000_phy_igp_3)) + e1000_gig_downshift_workaround_ich8lan(hw); + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + } + +out: + return ret_val; +} + +/** + * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 + * @hw: pointer to the HW structure + * @bank: pointer to the variable that returns the active bank + * + * Reads signature byte from the NVM using the flash access registers. + **/ +static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) +{ + s32 ret_val = E1000_SUCCESS; + struct e1000_nvm_info *nvm = &hw->nvm; + /* flash bank size is in words */ + u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); + u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; + u8 bank_high_byte = 0; + + if (hw->mac.type != e1000_ich10lan) { + if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_SEC1VAL) + *bank = 1; + else + *bank = 0; + } else if (hw->dev_spec != NULL) { + /* + * Make sure the signature for bank 0 is valid, + * if not check for bank1 + */ + e1000_read_flash_byte_ich8lan(hw, act_offset, &bank_high_byte); + if ((bank_high_byte & 0xC0) == 0x80) { + *bank = 0; + } else { + /* + * find if segment 1 is valid by verifying + * bit 15:14 = 10b in word 0x13 + */ + e1000_read_flash_byte_ich8lan(hw, + act_offset + bank1_offset, + &bank_high_byte); + + /* bank1 has a valid signature equivalent to SEC1V */ + if ((bank_high_byte & 0xC0) == 0x80) { + *bank = 1; + } else { + DEBUGOUT("ERROR: EEPROM not present\n"); + ret_val = -E1000_ERR_NVM; + } + } + } else { + DEBUGOUT("DEV SPEC is NULL\n"); + ret_val = -E1000_ERR_NVM; + } + + return ret_val; +} + +/** + * e1000_read_nvm_ich8lan - Read word(s) from the NVM + * @hw: pointer to the HW structure + * @offset: The offset (in bytes) of the word(s) to read. + * @words: Size of data to read in words + * @data: Pointer to the word(s) to read at offset. + * + * Reads a word(s) from the NVM using the flash access registers. + **/ +static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + struct e1000_dev_spec_ich8lan *dev_spec; + u32 act_offset; + s32 ret_val = E1000_SUCCESS; + u32 bank = 0; + u16 i, word; + + DEBUGFUNC("e1000_read_nvm_ich8lan"); + + dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec; + + if (!dev_spec) { + DEBUGOUT("dev_spec pointer is set to NULL.\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); + if (ret_val != E1000_SUCCESS) + goto out; + + act_offset = (bank) ? nvm->flash_bank_size : 0; + act_offset += offset; + + for (i = 0; i < words; i++) { + if ((dev_spec->shadow_ram) && + (dev_spec->shadow_ram[offset+i].modified)) { + data[i] = dev_spec->shadow_ram[offset+i].value; + } else { + ret_val = e1000_read_flash_word_ich8lan(hw, + act_offset + i, + &word); + if (ret_val) + break; + data[i] = word; + } + } + + nvm->ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_flash_cycle_init_ich8lan - Initialize flash + * @hw: pointer to the HW structure + * + * This function does initial flash setup so that a new read/write/erase cycle + * can be started. + **/ +static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) +{ + union ich8_hws_flash_status hsfsts; + s32 ret_val = -E1000_ERR_NVM; + s32 i = 0; + + DEBUGFUNC("e1000_flash_cycle_init_ich8lan"); + + hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + + /* Check if the flash descriptor is valid */ + if (hsfsts.hsf_status.fldesvalid == 0) { + DEBUGOUT("Flash descriptor invalid. " + "SW Sequencing must be used."); + goto out; + } + + /* Clear FCERR and DAEL in hw status by writing 1 */ + hsfsts.hsf_status.flcerr = 1; + hsfsts.hsf_status.dael = 1; + + E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); + + /* + * Either we should have a hardware SPI cycle in progress + * bit to check against, in order to start a new cycle or + * FDONE bit should be changed in the hardware so that it + * is 1 after hardware reset, which can then be used as an + * indication whether a cycle is in progress or has been + * completed. + */ + + if (hsfsts.hsf_status.flcinprog == 0) { + /* + * There is no cycle running at present, + * so we can start a cycle. + * Begin by setting Flash Cycle Done. + */ + hsfsts.hsf_status.flcdone = 1; + E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); + ret_val = E1000_SUCCESS; + } else { + /* + * Otherwise poll for sometime so the current + * cycle has a chance to end before giving up. + */ + for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { + hsfsts.regval = E1000_READ_FLASH_REG16(hw, + ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcinprog == 0) { + ret_val = E1000_SUCCESS; + break; + } + usec_delay(1); + } + if (ret_val == E1000_SUCCESS) { + /* + * Successful in waiting for previous cycle to timeout, + * now set the Flash Cycle Done. + */ + hsfsts.hsf_status.flcdone = 1; + E1000_WRITE_FLASH_REG16(hw, + ICH_FLASH_HSFSTS, + hsfsts.regval); + } else { + DEBUGOUT("Flash controller busy, cannot get access"); + } + } + +out: + return ret_val; +} + +/** + * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) + * @hw: pointer to the HW structure + * @timeout: maximum time to wait for completion + * + * This function starts a flash cycle and waits for its completion. + **/ +static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) +{ + union ich8_hws_flash_ctrl hsflctl; + union ich8_hws_flash_status hsfsts; + s32 ret_val = -E1000_ERR_NVM; + u32 i = 0; + + DEBUGFUNC("e1000_flash_cycle_ich8lan"); + + /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ + hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); + hsflctl.hsf_ctrl.flcgo = 1; + E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); + + /* wait till FDONE bit is set to 1 */ + do { + hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcdone == 1) + break; + usec_delay(1); + } while (i++ < timeout); + + if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) + ret_val = E1000_SUCCESS; + + return ret_val; +} + +/** + * e1000_read_flash_word_ich8lan - Read word from flash + * @hw: pointer to the HW structure + * @offset: offset to data location + * @data: pointer to the location for storing the data + * + * Reads the flash word at offset into data. Offset is converted + * to bytes before read. + **/ +static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, + u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_read_flash_word_ich8lan"); + + if (!data) { + ret_val = -E1000_ERR_NVM; + goto out; + } + + /* Must convert offset into bytes. */ + offset <<= 1; + + ret_val = e1000_read_flash_data_ich8lan(hw, offset, 2, data); + +out: + return ret_val; +} + +/** + * e1000_read_flash_byte_ich8lan - Read byte from flash + * @hw: pointer to the HW structure + * @offset: The offset of the byte to read. + * @data: Pointer to a byte to store the value read. + * + * Reads a single byte from the NVM using the flash access registers. + **/ +static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, + u8* data) +{ + s32 ret_val = E1000_SUCCESS; + u16 word = 0; + + ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); + if (ret_val) + goto out; + + *data = (u8)word; + +out: + return ret_val; +} + +/** + * e1000_read_flash_data_ich8lan - Read byte or word from NVM + * @hw: pointer to the HW structure + * @offset: The offset (in bytes) of the byte or word to read. + * @size: Size of data to read, 1=byte 2=word + * @data: Pointer to the word to store the value read. + * + * Reads a byte or word from the NVM using the flash access registers. + **/ +static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, + u8 size, u16* data) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + u32 flash_linear_addr; + u32 flash_data = 0; + s32 ret_val = -E1000_ERR_NVM; + u8 count = 0; + + DEBUGFUNC("e1000_read_flash_data_ich8lan"); + + if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) + goto out; + + flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + + hw->nvm.flash_base_addr; + + do { + usec_delay(1); + /* Steps */ + ret_val = e1000_flash_cycle_init_ich8lan(hw); + if (ret_val != E1000_SUCCESS) + break; + + hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); + /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ + hsflctl.hsf_ctrl.fldbcount = size - 1; + hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; + E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); + + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); + + ret_val = e1000_flash_cycle_ich8lan(hw, + ICH_FLASH_READ_COMMAND_TIMEOUT); + + /* + * Check if FCERR is set to 1, if set to 1, clear it + * and try the whole sequence a few more times, else + * read in (shift in) the Flash Data0, the order is + * least significant byte first msb to lsb + */ + if (ret_val == E1000_SUCCESS) { + flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0); + if (size == 1) { + *data = (u8)(flash_data & 0x000000FF); + } else if (size == 2) { + *data = (u16)(flash_data & 0x0000FFFF); + } + break; + } else { + /* + * If we've gotten here, then things are probably + * completely hosed, but if the error condition is + * detected, it won't hurt to give it another try... + * ICH_FLASH_CYCLE_REPEAT_COUNT times. + */ + hsfsts.regval = E1000_READ_FLASH_REG16(hw, + ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) { + /* Repeat for some time before giving up. */ + continue; + } else if (hsfsts.hsf_status.flcdone == 0) { + DEBUGOUT("Timeout error - flash cycle " + "did not complete."); + break; + } + } + } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); + +out: + return ret_val; +} + +/** + * e1000_write_nvm_ich8lan - Write word(s) to the NVM + * @hw: pointer to the HW structure + * @offset: The offset (in bytes) of the word(s) to write. + * @words: Size of data to write in words + * @data: Pointer to the word(s) to write at offset. + * + * Writes a byte or word to the NVM using the flash access registers. + **/ +static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + struct e1000_dev_spec_ich8lan *dev_spec; + s32 ret_val = E1000_SUCCESS; + u16 i; + + DEBUGFUNC("e1000_write_nvm_ich8lan"); + + dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec; + + if (!dev_spec) { + DEBUGOUT("dev_spec pointer is set to NULL.\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + goto out; + + for (i = 0; i < words; i++) { + dev_spec->shadow_ram[offset+i].modified = TRUE; + dev_spec->shadow_ram[offset+i].value = data[i]; + } + + nvm->ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM + * @hw: pointer to the HW structure + * + * The NVM checksum is updated by calling the generic update_nvm_checksum, + * which writes the checksum to the shadow ram. The changes in the shadow + * ram are then committed to the EEPROM by processing each bank at a time + * checking for the modified bit and writing only the pending changes. + * After a successful commit, the shadow ram is cleared and is ready for + * future writes. + **/ +static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + struct e1000_dev_spec_ich8lan *dev_spec; + u32 i, act_offset, new_bank_offset, old_bank_offset, bank; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_update_nvm_checksum_ich8lan"); + + dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec; + + ret_val = e1000_update_nvm_checksum_generic(hw); + if (ret_val) + goto out; + + if (nvm->type != e1000_nvm_flash_sw) + goto out; + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + goto out; + + /* + * We're writing to the opposite bank so if we're on bank 1, + * write to bank 0 etc. We also need to erase the segment that + * is going to be written + */ + ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); + if (ret_val != E1000_SUCCESS) + goto out; + + if (bank == 0) { + new_bank_offset = nvm->flash_bank_size; + old_bank_offset = 0; + e1000_erase_flash_bank_ich8lan(hw, 1); + } else { + old_bank_offset = nvm->flash_bank_size; + new_bank_offset = 0; + e1000_erase_flash_bank_ich8lan(hw, 0); + } + + for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { + /* + * Determine whether to write the value stored + * in the other NVM bank or a modified value stored + * in the shadow RAM + */ + if (dev_spec->shadow_ram[i].modified) { + data = dev_spec->shadow_ram[i].value; + } else { + e1000_read_flash_word_ich8lan(hw, + i + old_bank_offset, + &data); + } + + /* + * If the word is 0x13, then make sure the signature bits + * (15:14) are 11b until the commit has completed. + * This will allow us to write 10b which indicates the + * signature is valid. We want to do this after the write + * has completed so that we don't mark the segment valid + * while the write is still in progress + */ + if (i == E1000_ICH_NVM_SIG_WORD) + data |= E1000_ICH_NVM_SIG_MASK; + + /* Convert offset to bytes. */ + act_offset = (i + new_bank_offset) << 1; + + usec_delay(100); + /* Write the bytes to the new bank. */ + ret_val = e1000_retry_write_flash_byte_ich8lan(hw, + act_offset, + (u8)data); + if (ret_val) + break; + + usec_delay(100); + ret_val = e1000_retry_write_flash_byte_ich8lan(hw, + act_offset + 1, + (u8)(data >> 8)); + if (ret_val) + break; + } + + /* + * Don't bother writing the segment valid bits if sector + * programming failed. + */ + if (ret_val) { + DEBUGOUT("Flash commit failed.\n"); + nvm->ops.release(hw); + goto out; + } + + /* + * Finally validate the new segment by setting bit 15:14 + * to 10b in word 0x13 , this can be done without an + * erase as well since these bits are 11 to start with + * and we need to change bit 14 to 0b + */ + act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; + e1000_read_flash_word_ich8lan(hw, act_offset, &data); + data &= 0xBFFF; + ret_val = e1000_retry_write_flash_byte_ich8lan(hw, + act_offset * 2 + 1, + (u8)(data >> 8)); + if (ret_val) { + nvm->ops.release(hw); + goto out; + } + + /* + * And invalidate the previously valid segment by setting + * its signature word (0x13) high_byte to 0b. This can be + * done without an erase because flash erase sets all bits + * to 1's. We can write 1's to 0's without an erase + */ + act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; + ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); + if (ret_val) { + nvm->ops.release(hw); + goto out; + } + + /* Great! Everything worked, we can now clear the cached entries. */ + for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { + dev_spec->shadow_ram[i].modified = FALSE; + dev_spec->shadow_ram[i].value = 0xFFFF; + } + + nvm->ops.release(hw); + + /* + * Reload the EEPROM, or else modifications will not appear + * until after the next adapter reset. + */ + nvm->ops.reload(hw); + msec_delay(10); + +out: + return ret_val; +} + +/** + * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. + * If the bit is 0, that the EEPROM had been modified, but the checksum was + * not calculated, in which case we need to calculate the checksum and set + * bit 6. + **/ +static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan"); + + /* + * Read 0x19 and check bit 6. If this bit is 0, the checksum + * needs to be fixed. This bit is an indication that the NVM + * was prepared by OEM software and did not calculate the + * checksum...a likely scenario. + */ + ret_val = hw->nvm.ops.read(hw, 0x19, 1, &data); + if (ret_val) + goto out; + + if ((data & 0x40) == 0) { + data |= 0x40; + ret_val = hw->nvm.ops.write(hw, 0x19, 1, &data); + if (ret_val) + goto out; + ret_val = hw->nvm.ops.update(hw); + if (ret_val) + goto out; + } + + ret_val = e1000_validate_nvm_checksum_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_write_flash_data_ich8lan - Writes bytes to the NVM + * @hw: pointer to the HW structure + * @offset: The offset (in bytes) of the byte/word to read. + * @size: Size of data to read, 1=byte 2=word + * @data: The byte(s) to write to the NVM. + * + * Writes one/two bytes to the NVM using the flash access registers. + **/ +static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, + u8 size, u16 data) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + u32 flash_linear_addr; + u32 flash_data = 0; + s32 ret_val = -E1000_ERR_NVM; + u8 count = 0; + + DEBUGFUNC("e1000_write_ich8_data"); + + if (size < 1 || size > 2 || data > size * 0xff || + offset > ICH_FLASH_LINEAR_ADDR_MASK) + goto out; + + flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + + hw->nvm.flash_base_addr; + + do { + usec_delay(1); + /* Steps */ + ret_val = e1000_flash_cycle_init_ich8lan(hw); + if (ret_val != E1000_SUCCESS) + break; + + hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); + /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ + hsflctl.hsf_ctrl.fldbcount = size -1; + hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; + E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); + + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); + + if (size == 1) + flash_data = (u32)data & 0x00FF; + else + flash_data = (u32)data; + + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data); + + /* + * check if FCERR is set to 1 , if set to 1, clear it + * and try the whole sequence a few more times else done + */ + ret_val = e1000_flash_cycle_ich8lan(hw, + ICH_FLASH_WRITE_COMMAND_TIMEOUT); + if (ret_val == E1000_SUCCESS) { + break; + } else { + /* + * If we're here, then things are most likely + * completely hosed, but if the error condition + * is detected, it won't hurt to give it another + * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. + */ + hsfsts.regval = E1000_READ_FLASH_REG16(hw, + ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) { + /* Repeat for some time before giving up. */ + continue; + } else if (hsfsts.hsf_status.flcdone == 0) { + DEBUGOUT("Timeout error - flash cycle " + "did not complete."); + break; + } + } + } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); + +out: + return ret_val; +} + +/** + * e1000_write_flash_byte_ich8lan - Write a single byte to NVM + * @hw: pointer to the HW structure + * @offset: The index of the byte to read. + * @data: The byte to write to the NVM. + * + * Writes a single byte to the NVM using the flash access registers. + **/ +static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, + u8 data) +{ + u16 word = (u16)data; + + DEBUGFUNC("e1000_write_flash_byte_ich8lan"); + + return e1000_write_flash_data_ich8lan(hw, offset, 1, word); +} + +/** + * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM + * @hw: pointer to the HW structure + * @offset: The offset of the byte to write. + * @byte: The byte to write to the NVM. + * + * Writes a single byte to the NVM using the flash access registers. + * Goes through a retry algorithm before giving up. + **/ +static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, + u32 offset, u8 byte) +{ + s32 ret_val; + u16 program_retries; + + DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan"); + + ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); + if (ret_val == E1000_SUCCESS) + goto out; + + for (program_retries = 0; program_retries < 100; program_retries++) { + DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset); + usec_delay(100); + ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); + if (ret_val == E1000_SUCCESS) + break; + } + if (program_retries == 100) { + ret_val = -E1000_ERR_NVM; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM + * @hw: pointer to the HW structure + * @bank: 0 for first bank, 1 for second bank, etc. + * + * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. + * bank N is 4096 * N + flash_reg_addr. + **/ +static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + u32 flash_linear_addr; + /* bank size is in 16bit words - adjust to bytes */ + u32 flash_bank_size = nvm->flash_bank_size * 2; + s32 ret_val = E1000_SUCCESS; + s32 count = 0; + s32 j, iteration, sector_size; + + DEBUGFUNC("e1000_erase_flash_bank_ich8lan"); + + hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + + /* + * Determine HW Sector size: Read BERASE bits of hw flash status + * register + * 00: The Hw sector is 256 bytes, hence we need to erase 16 + * consecutive sectors. The start index for the nth Hw sector + * can be calculated as = bank * 4096 + n * 256 + * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. + * The start index for the nth Hw sector can be calculated + * as = bank * 4096 + * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 + * (ich9 only, otherwise error condition) + * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 + */ + switch (hsfsts.hsf_status.berasesz) { + case 0: + /* Hw sector size 256 */ + sector_size = ICH_FLASH_SEG_SIZE_256; + iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; + break; + case 1: + sector_size = ICH_FLASH_SEG_SIZE_4K; + iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K; + break; + case 2: + if (hw->mac.type == e1000_ich9lan) { + sector_size = ICH_FLASH_SEG_SIZE_8K; + iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K; + } else { + ret_val = -E1000_ERR_NVM; + goto out; + } + break; + case 3: + sector_size = ICH_FLASH_SEG_SIZE_64K; + iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K; + break; + default: + ret_val = -E1000_ERR_NVM; + goto out; + } + + /* Start with the base address, then add the sector offset. */ + flash_linear_addr = hw->nvm.flash_base_addr; + flash_linear_addr += (bank) ? (sector_size * iteration) : 0; + + for (j = 0; j < iteration ; j++) { + do { + /* Steps */ + ret_val = e1000_flash_cycle_init_ich8lan(hw); + if (ret_val) + goto out; + + /* + * Write a value 11 (block Erase) in Flash + * Cycle field in hw flash control + */ + hsflctl.regval = E1000_READ_FLASH_REG16(hw, + ICH_FLASH_HSFCTL); + hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; + E1000_WRITE_FLASH_REG16(hw, + ICH_FLASH_HSFCTL, + hsflctl.regval); + + /* + * Write the last 24 bits of an index within the + * block into Flash Linear address field in Flash + * Address. + */ + flash_linear_addr += (j * sector_size); + E1000_WRITE_FLASH_REG(hw, + ICH_FLASH_FADDR, + flash_linear_addr); + + ret_val = e1000_flash_cycle_ich8lan(hw, + ICH_FLASH_ERASE_COMMAND_TIMEOUT); + if (ret_val == E1000_SUCCESS) { + break; + } else { + /* + * Check if FCERR is set to 1. If 1, + * clear it and try the whole sequence + * a few more times else Done + */ + hsfsts.regval = E1000_READ_FLASH_REG16(hw, + ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) { + /* + * repeat for some time before + * giving up + */ + continue; + } else if (hsfsts.hsf_status.flcdone == 0) + goto out; + } + } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); + } + +out: + return ret_val; +} + +/** + * e1000_valid_led_default_ich8lan - Set the default LED settings + * @hw: pointer to the HW structure + * @data: Pointer to the LED settings + * + * Reads the LED default settings from the NVM to data. If the NVM LED + * settings is all 0's or F's, set the LED default to a valid LED default + * setting. + **/ +static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_valid_led_default_ich8lan"); + + ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + if (*data == ID_LED_RESERVED_0000 || + *data == ID_LED_RESERVED_FFFF) + *data = ID_LED_DEFAULT_ICH8LAN; + +out: + return ret_val; +} + +/** + * e1000_get_bus_info_ich8lan - Get/Set the bus type and width + * @hw: pointer to the HW structure + * + * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability + * register, so the the bus width is hard coded. + **/ +static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + s32 ret_val; + + DEBUGFUNC("e1000_get_bus_info_ich8lan"); + + ret_val = e1000_get_bus_info_pcie_generic(hw); + + /* + * ICH devices are "PCI Express"-ish. They have + * a configuration space, but do not contain + * PCI Express Capability registers, so bus width + * must be hardcoded. + */ + if (bus->width == e1000_bus_width_unknown) + bus->width = e1000_bus_width_pcie_x1; + + return ret_val; +} + +/** + * e1000_reset_hw_ich8lan - Reset the hardware + * @hw: pointer to the HW structure + * + * Does a full reset of the hardware which includes a reset of the PHY and + * MAC. + **/ +static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) +{ + u32 ctrl, icr, kab; + s32 ret_val; + + DEBUGFUNC("e1000_reset_hw_ich8lan"); + + /* + * Prevent the PCI-E bus from sticking if there is no TLP connection + * on the last TLP read/write transaction when MAC is reset. + */ + ret_val = e1000_disable_pcie_master_generic(hw); + if (ret_val) { + DEBUGOUT("PCI-E Master disable polling has failed.\n"); + } + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + + /* + * Disable the Transmit and Receive units. Then delay to allow + * any pending transactions to complete before we hit the MAC + * with the global reset. + */ + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + msec_delay(10); + + /* Workaround for ICH8 bit corruption issue in FIFO memory */ + if (hw->mac.type == e1000_ich8lan) { + /* Set Tx and Rx buffer allocation to 8k apiece. */ + E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K); + /* Set Packet Buffer Size to 16k. */ + E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K); + } + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + if (!hw->phy.ops.check_reset_block(hw) && !hw->phy.reset_disable) { + /* + * PHY HW reset requires MAC CORE reset at the same + * time to make sure the interface between MAC and the + * external PHY is reset. + */ + ctrl |= E1000_CTRL_PHY_RST; + } + ret_val = e1000_acquire_swflag_ich8lan(hw); + DEBUGOUT("Issuing a global reset to ich8lan"); + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST)); + msec_delay(20); + + ret_val = e1000_get_auto_rd_done_generic(hw); + if (ret_val) { + /* + * When auto config read does not complete, do not + * return with an error. This can happen in situations + * where there is no eeprom and prevents getting link. + */ + DEBUGOUT("Auto Read Done did not complete\n"); + } + + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + icr = E1000_READ_REG(hw, E1000_ICR); + + kab = E1000_READ_REG(hw, E1000_KABGTXD); + kab |= E1000_KABGTXD_BGSQLBIAS; + E1000_WRITE_REG(hw, E1000_KABGTXD, kab); + + return ret_val; +} + +/** + * e1000_init_hw_ich8lan - Initialize the hardware + * @hw: pointer to the HW structure + * + * Prepares the hardware for transmit and receive by doing the following: + * - initialize hardware bits + * - initialize LED identification + * - setup receive address registers + * - setup flow control + * - setup transmit descriptors + * - clear statistics + **/ +static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 ctrl_ext, txdctl, snoop; + s32 ret_val; + u16 i; + + DEBUGFUNC("e1000_init_hw_ich8lan"); + + e1000_initialize_hw_bits_ich8lan(hw); + + /* Initialize identification LED */ + ret_val = e1000_id_led_init_generic(hw); + if (ret_val) { + DEBUGOUT("Error initializing identification LED\n"); + /* This is not fatal and we should not stop init due to this */ + } + + /* Setup the receive address. */ + e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + /* Set the transmit descriptor write-back policy for both queues */ + txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); + txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB; + txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | + E1000_TXDCTL_MAX_TX_DESC_PREFETCH; + E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); + txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1)); + txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB; + txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | + E1000_TXDCTL_MAX_TX_DESC_PREFETCH; + E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl); + + /* + * ICH8 has opposite polarity of no_snoop bits. + * By default, we should use snoop behavior. + */ + if (mac->type == e1000_ich8lan) + snoop = PCIE_ICH8_SNOOP_ALL; + else + snoop = (u32)~(PCIE_NO_SNOOP_ALL); + e1000_set_pcie_no_snoop_generic(hw, snoop); + + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_RO_DIS; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_ich8lan(hw); + + return ret_val; +} +/** + * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits + * @hw: pointer to the HW structure + * + * Sets/Clears required hardware bits necessary for correctly setting up the + * hardware for transmit and receive. + **/ +static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) +{ + u32 reg; + + DEBUGFUNC("e1000_initialize_hw_bits_ich8lan"); + + if (hw->mac.disable_hw_init_bits) + goto out; + + /* Extended Device Control */ + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); + + /* Transmit Descriptor Control 0 */ + reg = E1000_READ_REG(hw, E1000_TXDCTL(0)); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg); + + /* Transmit Descriptor Control 1 */ + reg = E1000_READ_REG(hw, E1000_TXDCTL(1)); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg); + + /* Transmit Arbitration Control 0 */ + reg = E1000_READ_REG(hw, E1000_TARC(0)); + if (hw->mac.type == e1000_ich8lan) + reg |= (1 << 28) | (1 << 29); + reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); + E1000_WRITE_REG(hw, E1000_TARC(0), reg); + + /* Transmit Arbitration Control 1 */ + reg = E1000_READ_REG(hw, E1000_TARC(1)); + if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) + reg &= ~(1 << 28); + else + reg |= (1 << 28); + reg |= (1 << 24) | (1 << 26) | (1 << 30); + E1000_WRITE_REG(hw, E1000_TARC(1), reg); + + /* Device Status */ + if (hw->mac.type == e1000_ich8lan) { + reg = E1000_READ_REG(hw, E1000_STATUS); + reg &= ~(1 << 31); + E1000_WRITE_REG(hw, E1000_STATUS, reg); + } + +out: + return; +} + +/** + * e1000_setup_link_ich8lan - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_setup_link_ich8lan"); + + if (hw->phy.ops.check_reset_block(hw)) + goto out; + + /* + * ICH parts do not have a word in the NVM to determine + * the default flow control setting, so we explicitly + * set it to full. + */ + if (hw->fc.type == e1000_fc_default) + hw->fc.type = e1000_fc_full; + + hw->fc.original_type = hw->fc.type; + + DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc.type); + + /* Continue to configure the copper link. */ + ret_val = hw->mac.ops.setup_physical_interface(hw); + if (ret_val) + goto out; + + E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); + + ret_val = e1000_set_fc_watermarks_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface + * @hw: pointer to the HW structure + * + * Configures the kumeran interface to the PHY to wait the appropriate time + * when polling the PHY, then call the generic setup_copper_link to finish + * configuring the copper link. + **/ +static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + u16 reg_data; + + DEBUGFUNC("e1000_setup_copper_link_ich8lan"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* + * Set the mac to wait the maximum time between each iteration + * and increase the max iterations when polling the phy; + * this fixes erroneous timeouts at 10Mbps. + */ + ret_val = e1000_write_kmrn_reg_generic(hw, GG82563_REG(0x34, 4), + 0xFFFF); + if (ret_val) + goto out; + ret_val = e1000_read_kmrn_reg_generic(hw, GG82563_REG(0x34, 9), + ®_data); + if (ret_val) + goto out; + reg_data |= 0x3F; + ret_val = e1000_write_kmrn_reg_generic(hw, GG82563_REG(0x34, 9), + reg_data); + if (ret_val) + goto out; + + if (hw->phy.type == e1000_phy_igp_3) { + ret_val = e1000_copper_link_setup_igp(hw); + if (ret_val) + goto out; + } else if (hw->phy.type == e1000_phy_bm) { + ret_val = e1000_copper_link_setup_m88(hw); + if (ret_val) + goto out; + } + + if (hw->phy.type == e1000_phy_ife) { + ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, + ®_data); + if (ret_val) + goto out; + + reg_data &= ~IFE_PMC_AUTO_MDIX; + + switch (hw->phy.mdix) { + case 1: + reg_data &= ~IFE_PMC_FORCE_MDIX; + break; + case 2: + reg_data |= IFE_PMC_FORCE_MDIX; + break; + case 0: + default: + reg_data |= IFE_PMC_AUTO_MDIX; + break; + } + ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, + reg_data); + if (ret_val) + goto out; + } + ret_val = e1000_setup_copper_link_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_get_link_up_info_ich8lan - Get current link speed and duplex + * @hw: pointer to the HW structure + * @speed: pointer to store current link speed + * @duplex: pointer to store the current link duplex + * + * Calls the generic get_speed_and_duplex to retrieve the current link + * information and then calls the Kumeran lock loss workaround for links at + * gigabit speeds. + **/ +static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + s32 ret_val; + + DEBUGFUNC("e1000_get_link_up_info_ich8lan"); + + ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex); + if (ret_val) + goto out; + + if ((hw->mac.type == e1000_ich8lan) && + (hw->phy.type == e1000_phy_igp_3) && + (*speed == SPEED_1000)) { + ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); + } + +out: + return ret_val; +} + +/** + * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround + * @hw: pointer to the HW structure + * + * Work-around for 82566 Kumeran PCS lock loss: + * On link status change (i.e. PCI reset, speed change) and link is up and + * speed is gigabit- + * 0) if workaround is optionally disabled do nothing + * 1) wait 1ms for Kumeran link to come up + * 2) check Kumeran Diagnostic register PCS lock loss bit + * 3) if not set the link is locked (all is good), otherwise... + * 4) reset the PHY + * 5) repeat up to 10 times + * Note: this is only called for IGP3 copper when speed is 1gb. + **/ +static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) +{ + struct e1000_dev_spec_ich8lan *dev_spec; + u32 phy_ctrl; + s32 ret_val = E1000_SUCCESS; + u16 i, data; + bool link; + + DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan"); + + dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec; + + if (!dev_spec) { + DEBUGOUT("dev_spec pointer is set to NULL.\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + if (!(dev_spec->kmrn_lock_loss_workaround_enabled)) + goto out; + + /* + * Make sure link is up before proceeding. If not just return. + * Attempting this while link is negotiating fouled up link + * stability + */ + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (!link) { + ret_val = E1000_SUCCESS; + goto out; + } + + for (i = 0; i < 10; i++) { + /* read once to clear */ + ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data); + if (ret_val) + goto out; + /* and again to get new status */ + ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data); + if (ret_val) + goto out; + + /* check for PCS lock */ + if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) { + ret_val = E1000_SUCCESS; + goto out; + } + + /* Issue PHY reset */ + hw->phy.ops.reset(hw); + msec_delay_irq(5); + } + /* Disable GigE link negotiation */ + phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); + phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | + E1000_PHY_CTRL_NOND0A_GBE_DISABLE); + E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); + + /* + * Call gig speed drop workaround on Gig disable before accessing + * any PHY registers + */ + e1000_gig_downshift_workaround_ich8lan(hw); + + /* unable to acquire PCS lock */ + ret_val = -E1000_ERR_PHY; + +out: + return ret_val; +} + +/** + * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state + * @hw: pointer to the HW structure + * @state: boolean value used to set the current Kumeran workaround state + * + * If ICH8, set the current Kumeran workaround state (enabled - TRUE + * /disabled - FALSE). + **/ +void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, + bool state) +{ + struct e1000_dev_spec_ich8lan *dev_spec; + + DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan"); + + if (hw->mac.type != e1000_ich8lan) { + DEBUGOUT("Workaround applies to ICH8 only.\n"); + goto out; + } + + dev_spec = (struct e1000_dev_spec_ich8lan *)hw->dev_spec; + + if (!dev_spec) { + DEBUGOUT("dev_spec pointer is set to NULL.\n"); + goto out; + } + + dev_spec->kmrn_lock_loss_workaround_enabled = state; + +out: + return; +} + +/** + * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 + * @hw: pointer to the HW structure + * + * Workaround for 82566 power-down on D3 entry: + * 1) disable gigabit link + * 2) write VR power-down enable + * 3) read it back + * Continue if successful, else issue LCD reset and repeat + **/ +void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) +{ + u32 reg; + u16 data; + u8 retry = 0; + + DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan"); + + if (hw->phy.type != e1000_phy_igp_3) + goto out; + + /* Try the workaround twice (if needed) */ + do { + /* Disable link */ + reg = E1000_READ_REG(hw, E1000_PHY_CTRL); + reg |= (E1000_PHY_CTRL_GBE_DISABLE | + E1000_PHY_CTRL_NOND0A_GBE_DISABLE); + E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg); + + /* + * Call gig speed drop workaround on Gig disable before + * accessing any PHY registers + */ + if (hw->mac.type == e1000_ich8lan) + e1000_gig_downshift_workaround_ich8lan(hw); + + /* Write VR power-down enable */ + hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data); + data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; + hw->phy.ops.write_reg(hw, + IGP3_VR_CTRL, + data | IGP3_VR_CTRL_MODE_SHUTDOWN); + + /* Read it back and test */ + hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data); + data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; + if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) + break; + + /* Issue PHY reset and repeat at most one more time */ + reg = E1000_READ_REG(hw, E1000_CTRL); + E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST); + retry++; + } while (retry); + +out: + return; +} + +/** + * e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working + * @hw: pointer to the HW structure + * + * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), + * LPLU, Gig disable, MDIC PHY reset): + * 1) Set Kumeran Near-end loopback + * 2) Clear Kumeran Near-end loopback + * Should only be called for ICH8[m] devices with IGP_3 Phy. + **/ +void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 reg_data; + + DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan"); + + if ((hw->mac.type != e1000_ich8lan) || + (hw->phy.type != e1000_phy_igp_3)) + goto out; + + ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, + ®_data); + if (ret_val) + goto out; + reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; + ret_val = e1000_write_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_DIAG_OFFSET, + reg_data); + if (ret_val) + goto out; + reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; + ret_val = e1000_write_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_DIAG_OFFSET, + reg_data); +out: + return; +} + +/** + * e1000_disable_gig_wol_ich8lan - disable gig during WoL + * @hw: pointer to the HW structure + * + * During S0 to Sx transition, it is possible the link remains at gig + * instead of negotiating to a lower speed. Before going to Sx, set + * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation + * to a lower speed. + * + * Should only be called for ICH9 and ICH10 devices. + **/ +void e1000_disable_gig_wol_ich8lan(struct e1000_hw *hw) +{ + u32 phy_ctrl; + + if ((hw->mac.type == e1000_ich10lan) || + (hw->mac.type == e1000_ich9lan)) { + phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); + phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | + E1000_PHY_CTRL_GBE_DISABLE; + E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); + } + + return; +} + +/** + * e1000_cleanup_led_ich8lan - Restore the default LED operation + * @hw: pointer to the HW structure + * + * Return the LED back to the default configuration. + **/ +static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_cleanup_led_ich8lan"); + + if (hw->phy.type == e1000_phy_ife) + ret_val = hw->phy.ops.write_reg(hw, + IFE_PHY_SPECIAL_CONTROL_LED, + 0); + else + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); + + return ret_val; +} + +/** + * e1000_led_on_ich8lan - Turn LEDs on + * @hw: pointer to the HW structure + * + * Turn on the LEDs. + **/ +static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_led_on_ich8lan"); + + if (hw->phy.type == e1000_phy_ife) + ret_val = hw->phy.ops.write_reg(hw, + IFE_PHY_SPECIAL_CONTROL_LED, + (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); + else + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); + + return ret_val; +} + +/** + * e1000_led_off_ich8lan - Turn LEDs off + * @hw: pointer to the HW structure + * + * Turn off the LEDs. + **/ +static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_led_off_ich8lan"); + + if (hw->phy.type == e1000_phy_ife) + ret_val = hw->phy.ops.write_reg(hw, + IFE_PHY_SPECIAL_CONTROL_LED, + (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); + else + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); + + return ret_val; +} + +/** + * e1000_get_cfg_done_ich8lan - Read config done bit + * @hw: pointer to the HW structure + * + * Read the management control register for the config done bit for + * completion status. NOTE: silicon which is EEPROM-less will fail trying + * to read the config done bit, so an error is *ONLY* logged and returns + * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon + * would not be able to be reset or change link. + **/ +static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u32 bank = 0; + + e1000_get_cfg_done_generic(hw); + + /* If EEPROM is not marked present, init the IGP 3 PHY manually */ + if (hw->mac.type != e1000_ich10lan) { + if (((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) && + (hw->phy.type == e1000_phy_igp_3)) { + e1000_phy_init_script_igp3(hw); + } + } else { + if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { + /* Maybe we should do a basic Boazman config */ + DEBUGOUT("EEPROM not present\n"); + ret_val = -E1000_ERR_CONFIG; + } + } + + return ret_val; +} + +/** + * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + struct e1000_mac_info *mac = &hw->mac; + + /* If the management interface is not enabled, then power down */ + if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw))) + e1000_power_down_phy_copper(hw); + + return; +} + +/** + * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters + * @hw: pointer to the HW structure + * + * Clears hardware counters specific to the silicon family and calls + * clear_hw_cntrs_generic to clear all general purpose counters. + **/ +static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) +{ + volatile u32 temp; + + DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan"); + + e1000_clear_hw_cntrs_base_generic(hw); + + temp = E1000_READ_REG(hw, E1000_ALGNERRC); + temp = E1000_READ_REG(hw, E1000_RXERRC); + temp = E1000_READ_REG(hw, E1000_TNCRS); + temp = E1000_READ_REG(hw, E1000_CEXTERR); + temp = E1000_READ_REG(hw, E1000_TSCTC); + temp = E1000_READ_REG(hw, E1000_TSCTFC); + + temp = E1000_READ_REG(hw, E1000_MGTPRC); + temp = E1000_READ_REG(hw, E1000_MGTPDC); + temp = E1000_READ_REG(hw, E1000_MGTPTC); + + temp = E1000_READ_REG(hw, E1000_IAC); + temp = E1000_READ_REG(hw, E1000_ICRXOC); +} + diff --git a/sys/dev/e1000/e1000_ich8lan.h b/sys/dev/e1000/e1000_ich8lan.h new file mode 100644 index 0000000..f43c1aa --- /dev/null +++ b/sys/dev/e1000/e1000_ich8lan.h @@ -0,0 +1,134 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_ICH8LAN_H_ +#define _E1000_ICH8LAN_H_ + +#define ICH_FLASH_GFPREG 0x0000 +#define ICH_FLASH_HSFSTS 0x0004 +#define ICH_FLASH_HSFCTL 0x0006 +#define ICH_FLASH_FADDR 0x0008 +#define ICH_FLASH_FDATA0 0x0010 + +#define ICH_FLASH_READ_COMMAND_TIMEOUT 500 +#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500 +#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000 +#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF +#define ICH_FLASH_CYCLE_REPEAT_COUNT 10 + +#define ICH_CYCLE_READ 0 +#define ICH_CYCLE_WRITE 2 +#define ICH_CYCLE_ERASE 3 + +#define FLASH_GFPREG_BASE_MASK 0x1FFF +#define FLASH_SECTOR_ADDR_SHIFT 12 + +#define E1000_SHADOW_RAM_WORDS 2048 + +#define ICH_FLASH_SEG_SIZE_256 256 +#define ICH_FLASH_SEG_SIZE_4K 4096 +#define ICH_FLASH_SEG_SIZE_8K 8192 +#define ICH_FLASH_SEG_SIZE_64K 65536 +#define ICH_FLASH_SECTOR_SIZE 4096 + +#define ICH_FLASH_REG_MAPSIZE 0x00A0 + +#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */ +#define E1000_ICH_FWSM_DISSW 0x10000000 /* FW Disables SW Writes */ +/* FW established a valid mode */ +#define E1000_ICH_FWSM_FW_VALID 0x00008000 + +#define E1000_ICH_MNG_IAMT_MODE 0x2 + +#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ + (ID_LED_DEF1_OFF2 << 8) | \ + (ID_LED_DEF1_ON2 << 4) | \ + (ID_LED_DEF1_DEF2)) + +#define E1000_ICH_NVM_SIG_WORD 0x13 +#define E1000_ICH_NVM_SIG_MASK 0xC000 + +#define E1000_ICH8_LAN_INIT_TIMEOUT 1500 + +#define E1000_FEXTNVM_SW_CONFIG 1 +#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M */ + +#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL + +#define E1000_ICH_RAR_ENTRIES 7 + +#define PHY_PAGE_SHIFT 5 +#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \ + ((reg) & MAX_PHY_REG_ADDRESS)) +#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */ +#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */ +#define IGP3_CAPABILITY PHY_REG(776, 19) /* Capability */ +#define IGP3_PM_CTRL PHY_REG(769, 20) /* Power Management Control */ + +#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 +#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300 +#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200 +#define IGP3_PM_CTRL_FORCE_PWR_DOWN 0x0020 + +/* + * Additional interrupts need to be handled for ICH family: + * DSW = The FW changed the status of the DISSW bit in FWSM + * PHYINT = The LAN connected device generates an interrupt + * EPRST = Manageability reset event + */ +#define IMS_ICH_ENABLE_MASK (\ + E1000_IMS_DSW | \ + E1000_IMS_PHYINT | \ + E1000_IMS_EPRST) + +/* Additional interrupt register bit definitions */ +#define E1000_ICR_LSECPNC 0x00004000 /* PN threshold - client */ +#define E1000_IMS_LSECPNC E1000_ICR_LSECPNC /* PN threshold - client */ +#define E1000_ICS_LSECPNC E1000_ICR_LSECPNC /* PN threshold - client */ + +/* Security Processing bit Indication */ +#define E1000_RXDEXT_LINKSEC_STATUS_LSECH 0x01000000 +#define E1000_RXDEXT_LINKSEC_ERROR_BIT_MASK 0x60000000 +#define E1000_RXDEXT_LINKSEC_ERROR_NO_SA_MATCH 0x20000000 +#define E1000_RXDEXT_LINKSEC_ERROR_REPLAY_ERROR 0x40000000 +#define E1000_RXDEXT_LINKSEC_ERROR_BAD_SIG 0x60000000 + + +void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, + bool state); +void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw); +void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw); +void e1000_disable_gig_wol_ich8lan(struct e1000_hw *hw); + +#endif diff --git a/sys/dev/e1000/e1000_mac.c b/sys/dev/e1000/e1000_mac.c new file mode 100644 index 0000000..fdf72c0 --- /dev/null +++ b/sys/dev/e1000/e1000_mac.c @@ -0,0 +1,2191 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#include "e1000_api.h" + +/** + * e1000_init_mac_ops_generic - Initialize MAC function pointers + * @hw: pointer to the HW structure + * + * Setups up the function pointers to no-op functions + **/ +void e1000_init_mac_ops_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + DEBUGFUNC("e1000_init_mac_ops_generic"); + + /* General Setup */ + mac->ops.init_params = e1000_null_ops_generic; + mac->ops.init_hw = e1000_null_ops_generic; + mac->ops.reset_hw = e1000_null_ops_generic; + mac->ops.setup_physical_interface = e1000_null_ops_generic; + mac->ops.get_bus_info = e1000_null_ops_generic; + mac->ops.read_mac_addr = e1000_read_mac_addr_generic; + mac->ops.remove_device = e1000_remove_device_generic; + mac->ops.config_collision_dist = e1000_config_collision_dist_generic; + mac->ops.clear_hw_cntrs = e1000_null_mac_generic; + /* LED */ + mac->ops.cleanup_led = e1000_null_ops_generic; + mac->ops.setup_led = e1000_null_ops_generic; + mac->ops.blink_led = e1000_null_ops_generic; + mac->ops.led_on = e1000_null_ops_generic; + mac->ops.led_off = e1000_null_ops_generic; + /* LINK */ + mac->ops.setup_link = e1000_null_ops_generic; + mac->ops.get_link_up_info = e1000_null_link_info; + mac->ops.check_for_link = e1000_null_ops_generic; + mac->ops.wait_autoneg = e1000_wait_autoneg_generic; + /* Management */ + mac->ops.check_mng_mode = e1000_null_mng_mode; + mac->ops.mng_host_if_write = e1000_mng_host_if_write_generic; + mac->ops.mng_write_cmd_header = e1000_mng_write_cmd_header_generic; + mac->ops.mng_enable_host_if = e1000_mng_enable_host_if_generic; + /* VLAN, MC, etc. */ + mac->ops.update_mc_addr_list = e1000_null_update_mc; + mac->ops.clear_vfta = e1000_null_mac_generic; + mac->ops.write_vfta = e1000_null_write_vfta; + mac->ops.mta_set = e1000_null_mta_set; + mac->ops.rar_set = e1000_rar_set_generic; + mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic; +} + +/** + * e1000_null_ops_generic - No-op function, returns 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_ops_generic(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_null_ops_generic"); + return E1000_SUCCESS; +} + +/** + * e1000_null_mac_generic - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_mac_generic(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_null_mac_generic"); + return; +} + +/** + * e1000_null_link_info - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d) +{ + DEBUGFUNC("e1000_null_link_info"); + return E1000_SUCCESS; +} + +/** + * e1000_null_mng_mode - No-op function, return FALSE + * @hw: pointer to the HW structure + **/ +bool e1000_null_mng_mode(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_null_mng_mode"); + return FALSE; +} + +/** + * e1000_null_update_mc - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a, u32 b, u32 c) +{ + DEBUGFUNC("e1000_null_update_mc"); + return; +} + +/** + * e1000_null_write_vfta - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b) +{ + DEBUGFUNC("e1000_null_write_vfta"); + return; +} + +/** + * e1000_null_set_mta - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_mta_set(struct e1000_hw *hw, u32 a) +{ + DEBUGFUNC("e1000_null_mta_set"); + return; +} + +/** + * e1000_null_rar_set - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a) +{ + DEBUGFUNC("e1000_null_rar_set"); + return; +} + +/** + * e1000_remove_device_generic - Free device specific structure + * @hw: pointer to the HW structure + * + * If a device specific structure was allocated, this function will + * free it. + **/ +void e1000_remove_device_generic(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_remove_device_generic"); + + /* Freeing the dev_spec member of e1000_hw structure */ + e1000_free_dev_spec_struct(hw); +} + +/** + * e1000_get_bus_info_pci_generic - Get PCI(x) bus information + * @hw: pointer to the HW structure + * + * Determines and stores the system bus information for a particular + * network interface. The following bus information is determined and stored: + * bus speed, bus width, type (PCI/PCIx), and PCI(-x) function. + **/ +s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + u32 status = E1000_READ_REG(hw, E1000_STATUS); + s32 ret_val = E1000_SUCCESS; + u16 pci_header_type; + + DEBUGFUNC("e1000_get_bus_info_pci_generic"); + + /* PCI or PCI-X? */ + bus->type = (status & E1000_STATUS_PCIX_MODE) + ? e1000_bus_type_pcix + : e1000_bus_type_pci; + + /* Bus speed */ + if (bus->type == e1000_bus_type_pci) { + bus->speed = (status & E1000_STATUS_PCI66) + ? e1000_bus_speed_66 + : e1000_bus_speed_33; + } else { + switch (status & E1000_STATUS_PCIX_SPEED) { + case E1000_STATUS_PCIX_SPEED_66: + bus->speed = e1000_bus_speed_66; + break; + case E1000_STATUS_PCIX_SPEED_100: + bus->speed = e1000_bus_speed_100; + break; + case E1000_STATUS_PCIX_SPEED_133: + bus->speed = e1000_bus_speed_133; + break; + default: + bus->speed = e1000_bus_speed_reserved; + break; + } + } + + /* Bus width */ + bus->width = (status & E1000_STATUS_BUS64) + ? e1000_bus_width_64 + : e1000_bus_width_32; + + /* Which PCI(-X) function? */ + e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type); + if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) + bus->func = (status & E1000_STATUS_FUNC_MASK) + >> E1000_STATUS_FUNC_SHIFT; + else + bus->func = 0; + + return ret_val; +} + +/** + * e1000_get_bus_info_pcie_generic - Get PCIe bus information + * @hw: pointer to the HW structure + * + * Determines and stores the system bus information for a particular + * network interface. The following bus information is determined and stored: + * bus speed, bus width, type (PCIe), and PCIe function. + **/ +s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + s32 ret_val; + u32 status; + u16 pcie_link_status, pci_header_type; + + DEBUGFUNC("e1000_get_bus_info_pcie_generic"); + + bus->type = e1000_bus_type_pci_express; + bus->speed = e1000_bus_speed_2500; + + ret_val = e1000_read_pcie_cap_reg(hw, + PCIE_LINK_STATUS, + &pcie_link_status); + if (ret_val) + bus->width = e1000_bus_width_unknown; + else + bus->width = (enum e1000_bus_width)((pcie_link_status & + PCIE_LINK_WIDTH_MASK) >> + PCIE_LINK_WIDTH_SHIFT); + + e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type); + if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { + status = E1000_READ_REG(hw, E1000_STATUS); + bus->func = (status & E1000_STATUS_FUNC_MASK) + >> E1000_STATUS_FUNC_SHIFT; + } else { + bus->func = 0; + } + + return E1000_SUCCESS; +} + +/** + * e1000_clear_vfta_generic - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * Clears the register array which contains the VLAN filter table by + * setting all the values to 0. + **/ +void e1000_clear_vfta_generic(struct e1000_hw *hw) +{ + u32 offset; + + DEBUGFUNC("e1000_clear_vfta_generic"); + + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); + E1000_WRITE_FLUSH(hw); + } +} + +/** + * e1000_write_vfta_generic - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: register offset in VLAN filter table + * @value: register value written to VLAN filter table + * + * Writes value at the given offset in the register array which stores + * the VLAN filter table. + **/ +void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) +{ + DEBUGFUNC("e1000_write_vfta_generic"); + + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_init_rx_addrs_generic - Initialize receive address's + * @hw: pointer to the HW structure + * @rar_count: receive address registers + * + * Setups the receive address registers by setting the base receive address + * register to the devices MAC address and clearing all the other receive + * address registers to 0. + **/ +void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count) +{ + u32 i; + + DEBUGFUNC("e1000_init_rx_addrs_generic"); + + /* Setup the receive address */ + DEBUGOUT("Programming MAC Address into RAR[0]\n"); + + hw->mac.ops.rar_set(hw, hw->mac.addr, 0); + + /* Zero out the other (rar_entry_count - 1) receive addresses */ + DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1); + for (i = 1; i < rar_count; i++) { + E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0); + E1000_WRITE_FLUSH(hw); + } +} + +/** + * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr + * @hw: pointer to the HW structure + * + * Checks the nvm for an alternate MAC address. An alternate MAC address + * can be setup by pre-boot software and must be treated like a permanent + * address and must override the actual permanent MAC address. If an + * alternate MAC address is found it is saved in the hw struct and + * programmed into RAR0 and the function returns success, otherwise the + * function returns an error. + **/ +s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) +{ + u32 i; + s32 ret_val = E1000_SUCCESS; + u16 offset, nvm_alt_mac_addr_offset, nvm_data; + u8 alt_mac_addr[ETH_ADDR_LEN]; + + DEBUGFUNC("e1000_check_alt_mac_addr_generic"); + + ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, + &nvm_alt_mac_addr_offset); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + if (nvm_alt_mac_addr_offset == 0xFFFF) { + ret_val = -(E1000_NOT_IMPLEMENTED); + goto out; + } + + if (hw->bus.func == E1000_FUNC_1) + nvm_alt_mac_addr_offset += ETH_ADDR_LEN/sizeof(u16); + + for (i = 0; i < ETH_ADDR_LEN; i += 2) { + offset = nvm_alt_mac_addr_offset + (i >> 1); + ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + alt_mac_addr[i] = (u8)(nvm_data & 0xFF); + alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); + } + + /* if multicast bit is set, the alternate address will not be used */ + if (alt_mac_addr[0] & 0x01) { + ret_val = -(E1000_NOT_IMPLEMENTED); + goto out; + } + + for (i = 0; i < ETH_ADDR_LEN; i++) + hw->mac.addr[i] = hw->mac.perm_addr[i] = alt_mac_addr[i]; + + hw->mac.ops.rar_set(hw, hw->mac.perm_addr, 0); + +out: + return ret_val; +} + +/** + * e1000_rar_set_generic - Set receive address register + * @hw: pointer to the HW structure + * @addr: pointer to the receive address + * @index: receive address array register + * + * Sets the receive address array register at index to the address passed + * in by addr. + **/ +void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index) +{ + u32 rar_low, rar_high; + + DEBUGFUNC("e1000_rar_set_generic"); + + /* + * HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((u32) addr[0] | + ((u32) addr[1] << 8) | + ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); + + rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); + + /* If MAC address zero, no need to set the AV bit */ + if (rar_low || rar_high) { + if (!hw->mac.disable_av) + rar_high |= E1000_RAH_AV; + } + + E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); + E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); +} + +/** + * e1000_mta_set_generic - Set multicast filter table address + * @hw: pointer to the HW structure + * @hash_value: determines the MTA register and bit to set + * + * The multicast table address is a register array of 32-bit registers. + * The hash_value is used to determine what register the bit is in, the + * current value is read, the new bit is OR'd in and the new value is + * written back into the register. + **/ +void e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value) +{ + u32 hash_bit, hash_reg, mta; + + DEBUGFUNC("e1000_mta_set_generic"); + /* + * The MTA is a register array of 32-bit registers. It is + * treated like an array of (32*mta_reg_count) bits. We want to + * set bit BitArray[hash_value]. So we figure out what register + * the bit is in, read it, OR in the new bit, then write + * back the new value. The (hw->mac.mta_reg_count - 1) serves as a + * mask to bits 31:5 of the hash value which gives us the + * register we're modifying. The hash bit within that register + * is determined by the lower 5 bits of the hash value. + */ + hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); + hash_bit = hash_value & 0x1F; + + mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg); + + mta |= (1 << hash_bit); + + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_update_mc_addr_list_generic - Update Multicast addresses + * @hw: pointer to the HW structure + * @mc_addr_list: array of multicast addresses to program + * @mc_addr_count: number of multicast addresses to program + * @rar_used_count: the first RAR register free to program + * @rar_count: total number of supported Receive Address Registers + * + * Updates the Receive Address Registers and Multicast Table Array. + * The caller must have a packed mc_addr_list of multicast addresses. + * The parameter rar_count will usually be hw->mac.rar_entry_count + * unless there are workarounds that change this. + **/ +void e1000_update_mc_addr_list_generic(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count, + u32 rar_used_count, u32 rar_count) +{ + u32 hash_value; + u32 i; + + DEBUGFUNC("e1000_update_mc_addr_list_generic"); + + /* + * Load the first set of multicast addresses into the exact + * filters (RAR). If there are not enough to fill the RAR + * array, clear the filters. + */ + for (i = rar_used_count; i < rar_count; i++) { + if (mc_addr_count) { + hw->mac.ops.rar_set(hw, mc_addr_list, i); + mc_addr_count--; + mc_addr_list += ETH_ADDR_LEN; + } else { + E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0); + E1000_WRITE_FLUSH(hw); + } + } + + /* Clear the old settings from the MTA */ + DEBUGOUT("Clearing MTA\n"); + for (i = 0; i < hw->mac.mta_reg_count; i++) { + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + E1000_WRITE_FLUSH(hw); + } + + /* Load any remaining multicast addresses into the hash table. */ + for (; mc_addr_count > 0; mc_addr_count--) { + hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list); + DEBUGOUT1("Hash value = 0x%03X\n", hash_value); + hw->mac.ops.mta_set(hw, hash_value); + mc_addr_list += ETH_ADDR_LEN; + } +} + +/** + * e1000_hash_mc_addr_generic - Generate a multicast hash value + * @hw: pointer to the HW structure + * @mc_addr: pointer to a multicast address + * + * Generates a multicast address hash value which is used to determine + * the multicast filter table array address and new table value. See + * e1000_mta_set_generic() + **/ +u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr) +{ + u32 hash_value, hash_mask; + u8 bit_shift = 0; + + DEBUGFUNC("e1000_hash_mc_addr_generic"); + + /* Register count multiplied by bits per register */ + hash_mask = (hw->mac.mta_reg_count * 32) - 1; + + /* + * For a mc_filter_type of 0, bit_shift is the number of left-shifts + * where 0xFF would still fall within the hash mask. + */ + while (hash_mask >> bit_shift != 0xFF) + bit_shift++; + + /* + * The portion of the address that is used for the hash table + * is determined by the mc_filter_type setting. + * The algorithm is such that there is a total of 8 bits of shifting. + * The bit_shift for a mc_filter_type of 0 represents the number of + * left-shifts where the MSB of mc_addr[5] would still fall within + * the hash_mask. Case 0 does this exactly. Since there are a total + * of 8 bits of shifting, then mc_addr[4] will shift right the + * remaining number of bits. Thus 8 - bit_shift. The rest of the + * cases are a variation of this algorithm...essentially raising the + * number of bits to shift mc_addr[5] left, while still keeping the + * 8-bit shifting total. + * + * For example, given the following Destination MAC Address and an + * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), + * we can see that the bit_shift for case 0 is 4. These are the hash + * values resulting from each mc_filter_type... + * [0] [1] [2] [3] [4] [5] + * 01 AA 00 12 34 56 + * LSB MSB + * + * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 + * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 + * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 + * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 + */ + switch (hw->mac.mc_filter_type) { + default: + case 0: + break; + case 1: + bit_shift += 1; + break; + case 2: + bit_shift += 2; + break; + case 3: + bit_shift += 4; + break; + } + + hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | + (((u16) mc_addr[5]) << bit_shift))); + + return hash_value; +} + +/** + * e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value + * @hw: pointer to the HW structure + * + * In certain situations, a system BIOS may report that the PCIx maximum + * memory read byte count (MMRBC) value is higher than than the actual + * value. We check the PCIx command register with the current PCIx status + * register. + **/ +void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw) +{ + u16 cmd_mmrbc; + u16 pcix_cmd; + u16 pcix_stat_hi_word; + u16 stat_mmrbc; + + DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic"); + + /* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */ + if (hw->bus.type != e1000_bus_type_pcix) + return; + + e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd); + e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word); + cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >> + PCIX_COMMAND_MMRBC_SHIFT; + stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> + PCIX_STATUS_HI_MMRBC_SHIFT; + if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) + stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; + if (cmd_mmrbc > stat_mmrbc) { + pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK; + pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; + e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd); + } +} + +/** + * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters + * @hw: pointer to the HW structure + * + * Clears the base hardware counters by reading the counter registers. + **/ +void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw) +{ + volatile u32 temp; + + DEBUGFUNC("e1000_clear_hw_cntrs_base_generic"); + + temp = E1000_READ_REG(hw, E1000_CRCERRS); + temp = E1000_READ_REG(hw, E1000_SYMERRS); + temp = E1000_READ_REG(hw, E1000_MPC); + temp = E1000_READ_REG(hw, E1000_SCC); + temp = E1000_READ_REG(hw, E1000_ECOL); + temp = E1000_READ_REG(hw, E1000_MCC); + temp = E1000_READ_REG(hw, E1000_LATECOL); + temp = E1000_READ_REG(hw, E1000_COLC); + temp = E1000_READ_REG(hw, E1000_DC); + temp = E1000_READ_REG(hw, E1000_SEC); + temp = E1000_READ_REG(hw, E1000_RLEC); + temp = E1000_READ_REG(hw, E1000_XONRXC); + temp = E1000_READ_REG(hw, E1000_XONTXC); + temp = E1000_READ_REG(hw, E1000_XOFFRXC); + temp = E1000_READ_REG(hw, E1000_XOFFTXC); + temp = E1000_READ_REG(hw, E1000_FCRUC); + temp = E1000_READ_REG(hw, E1000_GPRC); + temp = E1000_READ_REG(hw, E1000_BPRC); + temp = E1000_READ_REG(hw, E1000_MPRC); + temp = E1000_READ_REG(hw, E1000_GPTC); + temp = E1000_READ_REG(hw, E1000_GORCL); + temp = E1000_READ_REG(hw, E1000_GORCH); + temp = E1000_READ_REG(hw, E1000_GOTCL); + temp = E1000_READ_REG(hw, E1000_GOTCH); + temp = E1000_READ_REG(hw, E1000_RNBC); + temp = E1000_READ_REG(hw, E1000_RUC); + temp = E1000_READ_REG(hw, E1000_RFC); + temp = E1000_READ_REG(hw, E1000_ROC); + temp = E1000_READ_REG(hw, E1000_RJC); + temp = E1000_READ_REG(hw, E1000_TORL); + temp = E1000_READ_REG(hw, E1000_TORH); + temp = E1000_READ_REG(hw, E1000_TOTL); + temp = E1000_READ_REG(hw, E1000_TOTH); + temp = E1000_READ_REG(hw, E1000_TPR); + temp = E1000_READ_REG(hw, E1000_TPT); + temp = E1000_READ_REG(hw, E1000_MPTC); + temp = E1000_READ_REG(hw, E1000_BPTC); +} + +/** + * e1000_check_for_copper_link_generic - Check for link (Copper) + * @hw: pointer to the HW structure + * + * Checks to see of the link status of the hardware has changed. If a + * change in link status has been detected, then we read the PHY registers + * to get the current speed/duplex if link exists. + **/ +s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + bool link; + + DEBUGFUNC("e1000_check_for_copper_link"); + + /* + * We only want to go out to the PHY registers to see if Auto-Neg + * has completed and/or if our link status has changed. The + * get_link_status flag is set upon receiving a Link Status + * Change or Rx Sequence Error interrupt. + */ + if (!mac->get_link_status) { + ret_val = E1000_SUCCESS; + goto out; + } + + /* + * First we want to see if the MII Status Register reports + * link. If so, then we want to get the current speed/duplex + * of the PHY. + */ + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + goto out; + + if (!link) + goto out; /* No link detected */ + + mac->get_link_status = FALSE; + + /* + * Check if there was DownShift, must be checked + * immediately after link-up + */ + e1000_check_downshift_generic(hw); + + /* + * If we are forcing speed/duplex, then we simply return since + * we have already determined whether we have link or not. + */ + if (!mac->autoneg) { + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + /* + * Auto-Neg is enabled. Auto Speed Detection takes care + * of MAC speed/duplex configuration. So we only need to + * configure Collision Distance in the MAC. + */ + e1000_config_collision_dist_generic(hw); + + /* + * Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + } + +out: + return ret_val; +} + +/** + * e1000_check_for_fiber_link_generic - Check for link (Fiber) + * @hw: pointer to the HW structure + * + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + **/ +s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw; + u32 ctrl; + u32 status; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_check_for_fiber_link_generic"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + status = E1000_READ_REG(hw, E1000_STATUS); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + + /* + * If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), the cable is plugged in (we have signal), + * and our link partner is not trying to auto-negotiate with us (we + * are receiving idles or data), we need to force link up. We also + * need to give auto-negotiation time to complete, in case the cable + * was just plugged in. The autoneg_failed flag does this. + */ + /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ + if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) && + (!(rxcw & E1000_RXCW_C))) { + if (mac->autoneg_failed == 0) { + mac->autoneg_failed = 1; + goto out; + } + DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + goto out; + } + } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + /* + * If we are forcing link and we are receiving /C/ ordered + * sets, re-enable auto-negotiation in the TXCW register + * and disable forced link in the Device Control register + * in an attempt to auto-negotiate with our link partner. + */ + DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); + E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); + + mac->serdes_has_link = TRUE; + } + +out: + return ret_val; +} + +/** + * e1000_check_for_serdes_link_generic - Check for link (Serdes) + * @hw: pointer to the HW structure + * + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + **/ +s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw; + u32 ctrl; + u32 status; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_check_for_serdes_link_generic"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + status = E1000_READ_REG(hw, E1000_STATUS); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + + /* + * If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), and our link partner is not trying to + * auto-negotiate with us (we are receiving idles or data), + * we need to force link up. We also need to give auto-negotiation + * time to complete. + */ + /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ + if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { + if (mac->autoneg_failed == 0) { + mac->autoneg_failed = 1; + goto out; + } + DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + goto out; + } + } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + /* + * If we are forcing link and we are receiving /C/ ordered + * sets, re-enable auto-negotiation in the TXCW register + * and disable forced link in the Device Control register + * in an attempt to auto-negotiate with our link partner. + */ + DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); + E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); + + mac->serdes_has_link = TRUE; + } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) { + /* + * If we force link for non-auto-negotiation switch, check + * link status based on MAC synchronization for internal + * serdes media type. + */ + /* SYNCH bit and IV bit are sticky. */ + usec_delay(10); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + if (rxcw & E1000_RXCW_SYNCH) { + if (!(rxcw & E1000_RXCW_IV)) { + mac->serdes_has_link = TRUE; + DEBUGOUT("SERDES: Link up - forced.\n"); + } + } else { + mac->serdes_has_link = FALSE; + DEBUGOUT("SERDES: Link down - force failed.\n"); + } + } + + if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) { + status = E1000_READ_REG(hw, E1000_STATUS); + if (status & E1000_STATUS_LU) { + /* SYNCH bit and IV bit are sticky, so reread rxcw. */ + usec_delay(10); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + if (rxcw & E1000_RXCW_SYNCH) { + if (!(rxcw & E1000_RXCW_IV)) { + mac->serdes_has_link = TRUE; + DEBUGOUT("SERDES: Link up - autoneg " + "completed sucessfully.\n"); + } else { + mac->serdes_has_link = FALSE; + DEBUGOUT("SERDES: Link down - invalid" + "codewords detected in autoneg.\n"); + } + } else { + mac->serdes_has_link = FALSE; + DEBUGOUT("SERDES: Link down - no sync.\n"); + } + } else { + mac->serdes_has_link = FALSE; + DEBUGOUT("SERDES: Link down - autoneg failed\n"); + } + } + +out: + return ret_val; +} + +/** + * e1000_setup_link_generic - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +s32 e1000_setup_link_generic(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_setup_link_generic"); + + /* + * In the case of the phy reset being blocked, we already have a link. + * We do not need to set it up again. + */ + if (hw->phy.ops.check_reset_block) + if (hw->phy.ops.check_reset_block(hw)) + goto out; + + /* + * If flow control is set to default, set flow control based on + * the EEPROM flow control settings. + */ + if (hw->fc.type == e1000_fc_default) { + ret_val = e1000_set_default_fc_generic(hw); + if (ret_val) + goto out; + } + + /* + * We want to save off the original Flow Control configuration just + * in case we get disconnected and then reconnected into a different + * hub or switch with different Flow Control capabilities. + */ + hw->fc.original_type = hw->fc.type; + + DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc.type); + + /* Call the necessary media_type subroutine to configure the link. */ + ret_val = hw->mac.ops.setup_physical_interface(hw); + if (ret_val) + goto out; + + /* + * Initialize the flow control address, type, and PAUSE timer + * registers to their default values. This is done even if flow + * control is disabled, because it does not hurt anything to + * initialize these registers. + */ + DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); + E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE); + E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); + E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); + + E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); + + ret_val = e1000_set_fc_watermarks_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes + * @hw: pointer to the HW structure + * + * Configures collision distance and flow control for fiber and serdes + * links. Upon successful setup, poll for link. + **/ +s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_setup_fiber_serdes_link_generic"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* Take the link out of reset */ + ctrl &= ~E1000_CTRL_LRST; + + e1000_config_collision_dist_generic(hw); + + ret_val = e1000_commit_fc_settings_generic(hw); + if (ret_val) + goto out; + + /* + * Since auto-negotiation is enabled, take the link out of reset (the + * link will be in reset, because we previously reset the chip). This + * will restart auto-negotiation. If auto-negotiation is successful + * then the link-up status bit will be set and the flow control enable + * bits (RFCE and TFCE) will be set according to their negotiated value. + */ + DEBUGOUT("Auto-negotiation enabled\n"); + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + msec_delay(1); + + /* + * For these adapters, the SW definable pin 1 is set when the optics + * detect a signal. If we have a signal, then poll for a "Link-Up" + * indication. + */ + if (hw->phy.media_type == e1000_media_type_internal_serdes || + (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) { + ret_val = e1000_poll_fiber_serdes_link_generic(hw); + } else { + DEBUGOUT("No signal detected\n"); + } + +out: + return ret_val; +} + +/** + * e1000_config_collision_dist_generic - Configure collision distance + * @hw: pointer to the HW structure + * + * Configures the collision distance to the default value and is used + * during link setup. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +void e1000_config_collision_dist_generic(struct e1000_hw *hw) +{ + u32 tctl; + + DEBUGFUNC("e1000_config_collision_dist_generic"); + + tctl = E1000_READ_REG(hw, E1000_TCTL); + + tctl &= ~E1000_TCTL_COLD; + tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; + + E1000_WRITE_REG(hw, E1000_TCTL, tctl); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_poll_fiber_serdes_link_generic - Poll for link up + * @hw: pointer to the HW structure + * + * Polls for link up by reading the status register, if link fails to come + * up with auto-negotiation, then the link is forced if a signal is detected. + **/ +s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 i, status; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_poll_fiber_serdes_link_generic"); + + /* + * If we have a signal (the cable is plugged in, or assumed TRUE for + * serdes media) then poll for a "Link-Up" indication in the Device + * Status Register. Time-out if a link isn't seen in 500 milliseconds + * seconds (Auto-negotiation should complete in less than 500 + * milliseconds even if the other end is doing it in SW). + */ + for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { + msec_delay(10); + status = E1000_READ_REG(hw, E1000_STATUS); + if (status & E1000_STATUS_LU) + break; + } + if (i == FIBER_LINK_UP_LIMIT) { + DEBUGOUT("Never got a valid link from auto-neg!!!\n"); + mac->autoneg_failed = 1; + /* + * AutoNeg failed to achieve a link, so we'll call + * mac->check_for_link. This routine will force the + * link up if we detect a signal. This will allow us to + * communicate with non-autonegotiating link partners. + */ + ret_val = hw->mac.ops.check_for_link(hw); + if (ret_val) { + DEBUGOUT("Error while checking for link\n"); + goto out; + } + mac->autoneg_failed = 0; + } else { + mac->autoneg_failed = 0; + DEBUGOUT("Valid Link Found\n"); + } + +out: + return ret_val; +} + +/** + * e1000_commit_fc_settings_generic - Configure flow control + * @hw: pointer to the HW structure + * + * Write the flow control settings to the Transmit Config Word Register (TXCW) + * base on the flow control settings in e1000_mac_info. + **/ +s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 txcw; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_commit_fc_settings_generic"); + + /* + * Check for a software override of the flow control settings, and + * setup the device accordingly. If auto-negotiation is enabled, then + * software will have to set the "PAUSE" bits to the correct value in + * the Transmit Config Word Register (TXCW) and re-start auto- + * negotiation. However, if auto-negotiation is disabled, then + * software will have to manually configure the two flow control enable + * bits in the CTRL register. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames, + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames but we + * do not support receiving pause frames). + * 3: Both Rx and Tx flow control (symmetric) are enabled. + */ + switch (hw->fc.type) { + case e1000_fc_none: + /* Flow control completely disabled by a software over-ride. */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); + break; + case e1000_fc_rx_pause: + /* + * Rx Flow control is enabled and Tx Flow control is disabled + * by a software over-ride. Since there really isn't a way to + * advertise that we are capable of Rx Pause ONLY, we will + * advertise that we support both symmetric and asymmetric RX + * PAUSE. Later, we will disable the adapter's ability to send + * PAUSE frames. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + case e1000_fc_tx_pause: + /* + * Tx Flow control is enabled, and Rx Flow control is disabled, + * by a software over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); + break; + case e1000_fc_full: + /* + * Flow control (both Rx and Tx) is enabled by a software + * over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + break; + } + + E1000_WRITE_REG(hw, E1000_TXCW, txcw); + mac->txcw = txcw; + +out: + return ret_val; +} + +/** + * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks + * @hw: pointer to the HW structure + * + * Sets the flow control high/low threshold (watermark) registers. If + * flow control XON frame transmission is enabled, then set XON frame + * transmission as well. + **/ +s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u32 fcrtl = 0, fcrth = 0; + + DEBUGFUNC("e1000_set_fc_watermarks_generic"); + + /* + * Set the flow control receive threshold registers. Normally, + * these registers will be set to a default threshold that may be + * adjusted later by the driver's runtime code. However, if the + * ability to transmit pause frames is not enabled, then these + * registers will be set to 0. + */ + if (hw->fc.type & e1000_fc_tx_pause) { + /* + * We need to set up the Receive Threshold high and low water + * marks as well as (optionally) enabling the transmission of + * XON frames. + */ + fcrtl = hw->fc.low_water; + if (hw->fc.send_xon) + fcrtl |= E1000_FCRTL_XONE; + + fcrth = hw->fc.high_water; + } + E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl); + E1000_WRITE_REG(hw, E1000_FCRTH, fcrth); + + return ret_val; +} + +/** + * e1000_set_default_fc_generic - Set flow control default values + * @hw: pointer to the HW structure + * + * Read the EEPROM for the default values for flow control and store the + * values. + **/ +s32 e1000_set_default_fc_generic(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 nvm_data; + + DEBUGFUNC("e1000_set_default_fc_generic"); + + /* + * Read and store word 0x0F of the EEPROM. This word contains bits + * that determine the hardware's default PAUSE (flow control) mode, + * a bit that determines whether the HW defaults to enabling or + * disabling auto-negotiation, and the direction of the + * SW defined pins. If there is no SW over-ride of the flow + * control setting, then the variable hw->fc will + * be initialized based on a value in the EEPROM. + */ + ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); + + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) + hw->fc.type = e1000_fc_none; + else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == + NVM_WORD0F_ASM_DIR) + hw->fc.type = e1000_fc_tx_pause; + else + hw->fc.type = e1000_fc_full; + +out: + return ret_val; +} + +/** + * e1000_force_mac_fc_generic - Force the MAC's flow control settings + * @hw: pointer to the HW structure + * + * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the + * device control register to reflect the adapter settings. TFCE and RFCE + * need to be explicitly set by software when a copper PHY is used because + * autonegotiation is managed by the PHY rather than the MAC. Software must + * also configure these bits when link is forced on a fiber connection. + **/ +s32 e1000_force_mac_fc_generic(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_force_mac_fc_generic"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* + * Because we didn't get link via the internal auto-negotiation + * mechanism (we either forced link or we got link via PHY + * auto-neg), we have to manually enable/disable transmit an + * receive flow control. + * + * The "Case" statement below enables/disable flow control + * according to the "hw->fc.type" parameter. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause + * frames but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * frames but we do not receive pause frames). + * 3: Both Rx and Tx flow control (symmetric) is enabled. + * other: No other values should be possible at this point. + */ + DEBUGOUT1("hw->fc.type = %u\n", hw->fc.type); + + switch (hw->fc.type) { + case e1000_fc_none: + ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); + break; + case e1000_fc_rx_pause: + ctrl &= (~E1000_CTRL_TFCE); + ctrl |= E1000_CTRL_RFCE; + break; + case e1000_fc_tx_pause: + ctrl &= (~E1000_CTRL_RFCE); + ctrl |= E1000_CTRL_TFCE; + break; + case e1000_fc_full: + ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + +out: + return ret_val; +} + +/** + * e1000_config_fc_after_link_up_generic - Configures flow control after link + * @hw: pointer to the HW structure + * + * Checks the status of auto-negotiation after link up to ensure that the + * speed and duplex were not forced. If the link needed to be forced, then + * flow control needs to be forced also. If auto-negotiation is enabled + * and did not fail, then we configure flow control based on our link + * partner. + **/ +s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; + u16 speed, duplex; + + DEBUGFUNC("e1000_config_fc_after_link_up_generic"); + + /* + * Check for the case where we have fiber media and auto-neg failed + * so we had to force link. In this case, we need to force the + * configuration of the MAC to match the "fc" parameter. + */ + if (mac->autoneg_failed) { + if (hw->phy.media_type == e1000_media_type_fiber || + hw->phy.media_type == e1000_media_type_internal_serdes) + ret_val = e1000_force_mac_fc_generic(hw); + } else { + if (hw->phy.media_type == e1000_media_type_copper) + ret_val = e1000_force_mac_fc_generic(hw); + } + + if (ret_val) { + DEBUGOUT("Error forcing flow control settings\n"); + goto out; + } + + /* + * Check for the case where we have copper media and auto-neg is + * enabled. In this case, we need to check and see if Auto-Neg + * has completed, and if so, how the PHY and link partner has + * flow control configured. + */ + if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { + /* + * Read the MII Status Register and check to see if AutoNeg + * has completed. We read this twice because this reg has + * some "sticky" (latched) bits. + */ + ret_val = phy->ops.read_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + goto out; + ret_val = phy->ops.read_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + goto out; + + if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { + DEBUGOUT("Copper PHY and Auto Neg " + "has not completed.\n"); + goto out; + } + + /* + * The AutoNeg process has completed, so we now need to + * read both the Auto Negotiation Advertisement + * Register (Address 4) and the Auto_Negotiation Base + * Page Ability Register (Address 5) to determine how + * flow control was negotiated. + */ + ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, + &mii_nway_adv_reg); + if (ret_val) + goto out; + ret_val = phy->ops.read_reg(hw, PHY_LP_ABILITY, + &mii_nway_lp_ability_reg); + if (ret_val) + goto out; + + /* + * Two bits in the Auto Negotiation Advertisement Register + * (Address 4) and two bits in the Auto Negotiation Base + * Page Ability Register (Address 5) determine flow control + * for both the PHY and the link partner. The following + * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, + * 1999, describes these PAUSE resolution bits and how flow + * control is determined based upon these settings. + * NOTE: DC = Don't Care + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution + *-------|---------|-------|---------|-------------------- + * 0 | 0 | DC | DC | e1000_fc_none + * 0 | 1 | 0 | DC | e1000_fc_none + * 0 | 1 | 1 | 0 | e1000_fc_none + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + * 1 | 0 | 0 | DC | e1000_fc_none + * 1 | DC | 1 | DC | e1000_fc_full + * 1 | 1 | 0 | 0 | e1000_fc_none + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + * + * Are both PAUSE bits set to 1? If so, this implies + * Symmetric Flow Control is enabled at both ends. The + * ASM_DIR bits are irrelevant per the spec. + * + * For Symmetric Flow Control: + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | DC | 1 | DC | E1000_fc_full + * + */ + if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { + /* + * Now we need to check if the user selected Rx ONLY + * of pause frames. In this case, we had to advertise + * FULL flow control because we could not advertise RX + * ONLY. Hence, we must now check to see if we need to + * turn OFF the TRANSMISSION of PAUSE frames. + */ + if (hw->fc.original_type == e1000_fc_full) { + hw->fc.type = e1000_fc_full; + DEBUGOUT("Flow Control = FULL.\r\n"); + } else { + hw->fc.type = e1000_fc_rx_pause; + DEBUGOUT("Flow Control = " + "RX PAUSE frames only.\r\n"); + } + } + /* + * For receiving PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + */ + else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + hw->fc.type = e1000_fc_tx_pause; + DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n"); + } + /* + * For transmitting PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + */ + else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + hw->fc.type = e1000_fc_rx_pause; + DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); + } else { + /* + * Per the IEEE spec, at this point flow control + * should be disabled. + */ + hw->fc.type = e1000_fc_none; + DEBUGOUT("Flow Control = NONE.\r\n"); + } + + /* + * Now we need to do one last check... If we auto- + * negotiated to HALF DUPLEX, flow control should not be + * enabled per IEEE 802.3 spec. + */ + ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT("Error getting link speed and duplex\n"); + goto out; + } + + if (duplex == HALF_DUPLEX) + hw->fc.type = e1000_fc_none; + + /* + * Now we call a subroutine to actually force the MAC + * controller to use the correct flow control settings. + */ + ret_val = e1000_force_mac_fc_generic(hw); + if (ret_val) { + DEBUGOUT("Error forcing flow control settings\n"); + goto out; + } + } + +out: + return ret_val; +} + +/** + * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * Read the status register for the current speed/duplex and store the current + * speed and duplex for copper connections. + **/ +s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + u32 status; + + DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic"); + + status = E1000_READ_REG(hw, E1000_STATUS); + if (status & E1000_STATUS_SPEED_1000) { + *speed = SPEED_1000; + DEBUGOUT("1000 Mbs, "); + } else if (status & E1000_STATUS_SPEED_100) { + *speed = SPEED_100; + DEBUGOUT("100 Mbs, "); + } else { + *speed = SPEED_10; + DEBUGOUT("10 Mbs, "); + } + + if (status & E1000_STATUS_FD) { + *duplex = FULL_DUPLEX; + DEBUGOUT("Full Duplex\n"); + } else { + *duplex = HALF_DUPLEX; + DEBUGOUT("Half Duplex\n"); + } + + return E1000_SUCCESS; +} + +/** + * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * Sets the speed and duplex to gigabit full duplex (the only possible option) + * for fiber/serdes links. + **/ +s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw, + u16 *speed, u16 *duplex) +{ + DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic"); + + *speed = SPEED_1000; + *duplex = FULL_DUPLEX; + + return E1000_SUCCESS; +} + +/** + * e1000_get_hw_semaphore_generic - Acquire hardware semaphore + * @hw: pointer to the HW structure + * + * Acquire the HW semaphore to access the PHY or NVM + **/ +s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw) +{ + u32 swsm; + s32 ret_val = E1000_SUCCESS; + s32 timeout = hw->nvm.word_size + 1; + s32 i = 0; + + DEBUGFUNC("e1000_get_hw_semaphore_generic"); + + /* Get the SW semaphore */ + while (i < timeout) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + if (!(swsm & E1000_SWSM_SMBI)) + break; + + usec_delay(50); + i++; + } + + if (i == timeout) { + DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + /* Get the FW semaphore. */ + for (i = 0; i < timeout; i++) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); + + /* Semaphore acquired if bit latched */ + if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) + break; + + usec_delay(50); + } + + if (i == timeout) { + /* Release semaphores */ + e1000_put_hw_semaphore_generic(hw); + DEBUGOUT("Driver can't access the NVM\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_put_hw_semaphore_generic - Release hardware semaphore + * @hw: pointer to the HW structure + * + * Release hardware semaphore used to access the PHY or NVM + **/ +void e1000_put_hw_semaphore_generic(struct e1000_hw *hw) +{ + u32 swsm; + + DEBUGFUNC("e1000_put_hw_semaphore_generic"); + + swsm = E1000_READ_REG(hw, E1000_SWSM); + + swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); + + E1000_WRITE_REG(hw, E1000_SWSM, swsm); +} + +/** + * e1000_get_auto_rd_done_generic - Check for auto read completion + * @hw: pointer to the HW structure + * + * Check EEPROM for Auto Read done bit. + **/ +s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw) +{ + s32 i = 0; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_get_auto_rd_done_generic"); + + while (i < AUTO_READ_DONE_TIMEOUT) { + if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD) + break; + msec_delay(1); + i++; + } + + if (i == AUTO_READ_DONE_TIMEOUT) { + DEBUGOUT("Auto read by HW from NVM has not completed.\n"); + ret_val = -E1000_ERR_RESET; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_valid_led_default_generic - Verify a valid default LED config + * @hw: pointer to the HW structure + * @data: pointer to the NVM (EEPROM) + * + * Read the EEPROM for the current default LED configuration. If the + * LED configuration is not valid, set to a valid LED configuration. + **/ +s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_valid_led_default_generic"); + + ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) + *data = ID_LED_DEFAULT; + +out: + return ret_val; +} + +/** + * e1000_id_led_init_generic - + * @hw: pointer to the HW structure + * + **/ +s32 e1000_id_led_init_generic(struct e1000_hw * hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + const u32 ledctl_mask = 0x000000FF; + const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; + const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; + u16 data, i, temp; + const u16 led_mask = 0x0F; + + DEBUGFUNC("e1000_id_led_init_generic"); + + ret_val = hw->nvm.ops.valid_led_default(hw, &data); + if (ret_val) + goto out; + + mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); + mac->ledctl_mode1 = mac->ledctl_default; + mac->ledctl_mode2 = mac->ledctl_default; + + for (i = 0; i < 4; i++) { + temp = (data >> (i << 2)) & led_mask; + switch (temp) { + case ID_LED_ON1_DEF2: + case ID_LED_ON1_ON2: + case ID_LED_ON1_OFF2: + mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode1 |= ledctl_on << (i << 3); + break; + case ID_LED_OFF1_DEF2: + case ID_LED_OFF1_ON2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode1 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + switch (temp) { + case ID_LED_DEF1_ON2: + case ID_LED_ON1_ON2: + case ID_LED_OFF1_ON2: + mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode2 |= ledctl_on << (i << 3); + break; + case ID_LED_DEF1_OFF2: + case ID_LED_ON1_OFF2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode2 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + } + +out: + return ret_val; +} + +/** + * e1000_setup_led_generic - Configures SW controllable LED + * @hw: pointer to the HW structure + * + * This prepares the SW controllable LED for use and saves the current state + * of the LED so it can be later restored. + **/ +s32 e1000_setup_led_generic(struct e1000_hw *hw) +{ + u32 ledctl; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_setup_led_generic"); + + if (hw->mac.ops.setup_led != e1000_setup_led_generic) { + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + if (hw->phy.media_type == e1000_media_type_fiber) { + ledctl = E1000_READ_REG(hw, E1000_LEDCTL); + hw->mac.ledctl_default = ledctl; + /* Turn off LED0 */ + ledctl &= ~(E1000_LEDCTL_LED0_IVRT | + E1000_LEDCTL_LED0_BLINK | + E1000_LEDCTL_LED0_MODE_MASK); + ledctl |= (E1000_LEDCTL_MODE_LED_OFF << + E1000_LEDCTL_LED0_MODE_SHIFT); + E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); + } else if (hw->phy.media_type == e1000_media_type_copper) { + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); + } + +out: + return ret_val; +} + +/** + * e1000_cleanup_led_generic - Set LED config to default operation + * @hw: pointer to the HW structure + * + * Remove the current LED configuration and set the LED configuration + * to the default value, saved from the EEPROM. + **/ +s32 e1000_cleanup_led_generic(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_cleanup_led_generic"); + + if (hw->mac.ops.cleanup_led != e1000_cleanup_led_generic) { + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); + +out: + return ret_val; +} + +/** + * e1000_blink_led_generic - Blink LED + * @hw: pointer to the HW structure + * + * Blink the LEDs which are set to be on. + **/ +s32 e1000_blink_led_generic(struct e1000_hw *hw) +{ + u32 ledctl_blink = 0; + u32 i; + + DEBUGFUNC("e1000_blink_led_generic"); + + if (hw->phy.media_type == e1000_media_type_fiber) { + /* always blink LED0 for PCI-E fiber */ + ledctl_blink = E1000_LEDCTL_LED0_BLINK | + (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); + } else { + /* + * set the blink bit for each LED that's "on" (0x0E) + * in ledctl_mode2 + */ + ledctl_blink = hw->mac.ledctl_mode2; + for (i = 0; i < 4; i++) + if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == + E1000_LEDCTL_MODE_LED_ON) + ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << + (i * 8)); + } + + E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink); + + return E1000_SUCCESS; +} + +/** + * e1000_led_on_generic - Turn LED on + * @hw: pointer to the HW structure + * + * Turn LED on. + **/ +s32 e1000_led_on_generic(struct e1000_hw *hw) +{ + u32 ctrl; + + DEBUGFUNC("e1000_led_on_generic"); + + switch (hw->phy.media_type) { + case e1000_media_type_fiber: + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + break; + case e1000_media_type_copper: + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); + break; + default: + break; + } + + return E1000_SUCCESS; +} + +/** + * e1000_led_off_generic - Turn LED off + * @hw: pointer to the HW structure + * + * Turn LED off. + **/ +s32 e1000_led_off_generic(struct e1000_hw *hw) +{ + u32 ctrl; + + DEBUGFUNC("e1000_led_off_generic"); + + switch (hw->phy.media_type) { + case e1000_media_type_fiber: + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + break; + case e1000_media_type_copper: + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); + break; + default: + break; + } + + return E1000_SUCCESS; +} + +/** + * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities + * @hw: pointer to the HW structure + * @no_snoop: bitmap of snoop events + * + * Set the PCI-express register to snoop for events enabled in 'no_snoop'. + **/ +void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop) +{ + u32 gcr; + + DEBUGFUNC("e1000_set_pcie_no_snoop_generic"); + + if (hw->bus.type != e1000_bus_type_pci_express) + goto out; + + if (no_snoop) { + gcr = E1000_READ_REG(hw, E1000_GCR); + gcr &= ~(PCIE_NO_SNOOP_ALL); + gcr |= no_snoop; + E1000_WRITE_REG(hw, E1000_GCR, gcr); + } +out: + return; +} + +/** + * e1000_disable_pcie_master_generic - Disables PCI-express master access + * @hw: pointer to the HW structure + * + * Returns 0 (E1000_SUCCESS) if successful, else returns -10 + * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused + * the master requests to be disabled. + * + * Disables PCI-Express master access and verifies there are no pending + * requests. + **/ +s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw) +{ + u32 ctrl; + s32 timeout = MASTER_DISABLE_TIMEOUT; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_disable_pcie_master_generic"); + + if (hw->bus.type != e1000_bus_type_pci_express) + goto out; + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + while (timeout) { + if (!(E1000_READ_REG(hw, E1000_STATUS) & + E1000_STATUS_GIO_MASTER_ENABLE)) + break; + usec_delay(100); + timeout--; + } + + if (!timeout) { + DEBUGOUT("Master requests are pending.\n"); + ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing + * @hw: pointer to the HW structure + * + * Reset the Adaptive Interframe Spacing throttle to default values. + **/ +void e1000_reset_adaptive_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + DEBUGFUNC("e1000_reset_adaptive_generic"); + + if (!mac->adaptive_ifs) { + DEBUGOUT("Not in Adaptive IFS mode!\n"); + goto out; + } + + if (!mac->ifs_params_forced) { + mac->current_ifs_val = 0; + mac->ifs_min_val = IFS_MIN; + mac->ifs_max_val = IFS_MAX; + mac->ifs_step_size = IFS_STEP; + mac->ifs_ratio = IFS_RATIO; + } + + mac->in_ifs_mode = FALSE; + E1000_WRITE_REG(hw, E1000_AIT, 0); +out: + return; +} + +/** + * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing + * @hw: pointer to the HW structure + * + * Update the Adaptive Interframe Spacing Throttle value based on the + * time between transmitted packets and time between collisions. + **/ +void e1000_update_adaptive_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + DEBUGFUNC("e1000_update_adaptive_generic"); + + if (!mac->adaptive_ifs) { + DEBUGOUT("Not in Adaptive IFS mode!\n"); + goto out; + } + + if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { + if (mac->tx_packet_delta > MIN_NUM_XMITS) { + mac->in_ifs_mode = TRUE; + if (mac->current_ifs_val < mac->ifs_max_val) { + if (!mac->current_ifs_val) + mac->current_ifs_val = mac->ifs_min_val; + else + mac->current_ifs_val += + mac->ifs_step_size; + E1000_WRITE_REG(hw, E1000_AIT, mac->current_ifs_val); + } + } + } else { + if (mac->in_ifs_mode && + (mac->tx_packet_delta <= MIN_NUM_XMITS)) { + mac->current_ifs_val = 0; + mac->in_ifs_mode = FALSE; + E1000_WRITE_REG(hw, E1000_AIT, 0); + } + } +out: + return; +} + +/** + * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings + * @hw: pointer to the HW structure + * + * Verify that when not using auto-negotiation that MDI/MDIx is correctly + * set, which is forced to MDI mode only. + **/ +s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_validate_mdi_setting_generic"); + + if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { + DEBUGOUT("Invalid MDI setting detected\n"); + hw->phy.mdix = 1; + ret_val = -E1000_ERR_CONFIG; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register + * @hw: pointer to the HW structure + * @reg: 32bit register offset such as E1000_SCTL + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes an address/data control type register. There are several of these + * and they all have the format address << 8 | data and bit 31 is polled for + * completion. + **/ +s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg, + u32 offset, u8 data) +{ + u32 i, regvalue = 0; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic"); + + /* Set up the address and data */ + regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); + E1000_WRITE_REG(hw, reg, regvalue); + + /* Poll the ready bit to see if the MDI read completed */ + for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { + usec_delay(5); + regvalue = E1000_READ_REG(hw, reg); + if (regvalue & E1000_GEN_CTL_READY) + break; + } + if (!(regvalue & E1000_GEN_CTL_READY)) { + DEBUGOUT1("Reg %08x did not indicate ready\n", reg); + ret_val = -E1000_ERR_PHY; + goto out; + } + +out: + return ret_val; +} diff --git a/sys/dev/e1000/e1000_mac.h b/sys/dev/e1000/e1000_mac.h new file mode 100644 index 0000000..5992764 --- /dev/null +++ b/sys/dev/e1000/e1000_mac.h @@ -0,0 +1,101 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_MAC_H_ +#define _E1000_MAC_H_ + +/* + * Functions that should not be called directly from drivers but can be used + * by other files in this 'shared code' + */ +void e1000_init_mac_ops_generic(struct e1000_hw *hw); +void e1000_null_mac_generic(struct e1000_hw *hw); +s32 e1000_null_ops_generic(struct e1000_hw *hw); +s32 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d); +bool e1000_null_mng_mode(struct e1000_hw *hw); +void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a, u32 b, u32 c); +void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b); +void e1000_null_mta_set(struct e1000_hw *hw, u32 a); +void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a); +s32 e1000_blink_led_generic(struct e1000_hw *hw); +s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw); +s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw); +s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw); +s32 e1000_cleanup_led_generic(struct e1000_hw *hw); +s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw); +s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw); +s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw); +s32 e1000_force_mac_fc_generic(struct e1000_hw *hw); +s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw); +s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw); +s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw); +s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw); +s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed, + u16 *duplex); +s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw, + u16 *speed, u16 *duplex); +s32 e1000_id_led_init_generic(struct e1000_hw *hw); +s32 e1000_led_on_generic(struct e1000_hw *hw); +s32 e1000_led_off_generic(struct e1000_hw *hw); +void e1000_update_mc_addr_list_generic(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count, + u32 rar_used_count, u32 rar_count); +s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw); +s32 e1000_set_default_fc_generic(struct e1000_hw *hw); +s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw); +s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw); +s32 e1000_setup_led_generic(struct e1000_hw *hw); +s32 e1000_setup_link_generic(struct e1000_hw *hw); +s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw); +s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg, + u32 offset, u8 data); + +u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr); + +void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw); +void e1000_clear_vfta_generic(struct e1000_hw *hw); +void e1000_config_collision_dist_generic(struct e1000_hw *hw); +void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count); +void e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value); +void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw); +void e1000_put_hw_semaphore_generic(struct e1000_hw *hw); +void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index); +s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw); +void e1000_remove_device_generic(struct e1000_hw *hw); +void e1000_reset_adaptive_generic(struct e1000_hw *hw); +void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop); +void e1000_update_adaptive_generic(struct e1000_hw *hw); +void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value); + +#endif diff --git a/sys/dev/e1000/e1000_manage.c b/sys/dev/e1000/e1000_manage.c new file mode 100644 index 0000000..88753ad --- /dev/null +++ b/sys/dev/e1000/e1000_manage.c @@ -0,0 +1,389 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#include "e1000_api.h" + +static u8 e1000_calculate_checksum(u8 *buffer, u32 length); + +/** + * e1000_calculate_checksum - Calculate checksum for buffer + * @buffer: pointer to EEPROM + * @length: size of EEPROM to calculate a checksum for + * + * Calculates the checksum for some buffer on a specified length. The + * checksum calculated is returned. + **/ +static u8 e1000_calculate_checksum(u8 *buffer, u32 length) +{ + u32 i; + u8 sum = 0; + + DEBUGFUNC("e1000_calculate_checksum"); + + if (!buffer) + return 0; + + for (i = 0; i < length; i++) + sum += buffer[i]; + + return (u8) (0 - sum); +} + +/** + * e1000_mng_enable_host_if_generic - Checks host interface is enabled + * @hw: pointer to the HW structure + * + * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND + * + * This function checks whether the HOST IF is enabled for command operation + * and also checks whether the previous command is completed. It busy waits + * in case of previous command is not completed. + **/ +s32 e1000_mng_enable_host_if_generic(struct e1000_hw * hw) +{ + u32 hicr; + s32 ret_val = E1000_SUCCESS; + u8 i; + + DEBUGFUNC("e1000_mng_enable_host_if_generic"); + + /* Check that the host interface is enabled. */ + hicr = E1000_READ_REG(hw, E1000_HICR); + if ((hicr & E1000_HICR_EN) == 0) { + DEBUGOUT("E1000_HOST_EN bit disabled.\n"); + ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND; + goto out; + } + /* check the previous command is completed */ + for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { + hicr = E1000_READ_REG(hw, E1000_HICR); + if (!(hicr & E1000_HICR_C)) + break; + msec_delay_irq(1); + } + + if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { + DEBUGOUT("Previous command timeout failed .\n"); + ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_check_mng_mode_generic - Generic check management mode + * @hw: pointer to the HW structure + * + * Reads the firmware semaphore register and returns TRUE (>0) if + * manageability is enabled, else FALSE (0). + **/ +bool e1000_check_mng_mode_generic(struct e1000_hw *hw) +{ + u32 fwsm; + + DEBUGFUNC("e1000_check_mng_mode_generic"); + + fwsm = E1000_READ_REG(hw, E1000_FWSM); + + return ((fwsm & E1000_FWSM_MODE_MASK) == + (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); +} + +/** + * e1000_enable_tx_pkt_filtering_generic - Enable packet filtering on TX + * @hw: pointer to the HW structure + * + * Enables packet filtering on transmit packets if manageability is enabled + * and host interface is enabled. + **/ +bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw) +{ + struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; + u32 *buffer = (u32 *)&hw->mng_cookie; + u32 offset; + s32 ret_val, hdr_csum, csum; + u8 i, len; + bool tx_filter = TRUE; + + DEBUGFUNC("e1000_enable_tx_pkt_filtering_generic"); + + /* No manageability, no filtering */ + if (!hw->mac.ops.check_mng_mode(hw)) { + tx_filter = FALSE; + goto out; + } + + /* + * If we can't read from the host interface for whatever + * reason, disable filtering. + */ + ret_val = hw->mac.ops.mng_enable_host_if(hw); + if (ret_val != E1000_SUCCESS) { + tx_filter = FALSE; + goto out; + } + + /* Read in the header. Length and offset are in dwords. */ + len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; + offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; + for (i = 0; i < len; i++) { + *(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, + E1000_HOST_IF, + offset + i); + } + hdr_csum = hdr->checksum; + hdr->checksum = 0; + csum = e1000_calculate_checksum((u8 *)hdr, + E1000_MNG_DHCP_COOKIE_LENGTH); + /* + * If either the checksums or signature don't match, then + * the cookie area isn't considered valid, in which case we + * take the safe route of assuming Tx filtering is enabled. + */ + if (hdr_csum != csum) + goto out; + if (hdr->signature != E1000_IAMT_SIGNATURE) + goto out; + + /* Cookie area is valid, make the final check for filtering. */ + if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) + tx_filter = FALSE; + +out: + hw->mac.tx_pkt_filtering = tx_filter; + return tx_filter; +} + +/** + * e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface + * @length: size of the buffer + * + * Writes the DHCP information to the host interface. + **/ +s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw * hw, u8 *buffer, + u16 length) +{ + struct e1000_host_mng_command_header hdr; + s32 ret_val; + u32 hicr; + + DEBUGFUNC("e1000_mng_write_dhcp_info_generic"); + + hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; + hdr.command_length = length; + hdr.reserved1 = 0; + hdr.reserved2 = 0; + hdr.checksum = 0; + + /* Enable the host interface */ + ret_val = hw->mac.ops.mng_enable_host_if(hw); + if (ret_val) + goto out; + + /* Populate the host interface with the contents of "buffer". */ + ret_val = hw->mac.ops.mng_host_if_write(hw, buffer, length, + sizeof(hdr), &(hdr.checksum)); + if (ret_val) + goto out; + + /* Write the manageability command header */ + ret_val = hw->mac.ops.mng_write_cmd_header(hw, &hdr); + if (ret_val) + goto out; + + /* Tell the ARC a new command is pending. */ + hicr = E1000_READ_REG(hw, E1000_HICR); + E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C); + +out: + return ret_val; +} + +/** + * e1000_mng_write_cmd_header_generic - Writes manageability command header + * @hw: pointer to the HW structure + * @hdr: pointer to the host interface command header + * + * Writes the command header after does the checksum calculation. + **/ +s32 e1000_mng_write_cmd_header_generic(struct e1000_hw * hw, + struct e1000_host_mng_command_header * hdr) +{ + u16 i, length = sizeof(struct e1000_host_mng_command_header); + + DEBUGFUNC("e1000_mng_write_cmd_header_generic"); + + /* Write the whole command header structure with new checksum. */ + + hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); + + length >>= 2; + /* Write the relevant command block into the ram area. */ + for (i = 0; i < length; i++) { + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i, + *((u32 *) hdr + i)); + E1000_WRITE_FLUSH(hw); + } + + return E1000_SUCCESS; +} + +/** + * e1000_mng_host_if_write_generic - Write to the manageability host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface buffer + * @length: size of the buffer + * @offset: location in the buffer to write to + * @sum: sum of the data (not checksum) + * + * This function writes the buffer content at the offset given on the host if. + * It also does alignment considerations to do the writes in most efficient + * way. Also fills up the sum of the buffer in *buffer parameter. + **/ +s32 e1000_mng_host_if_write_generic(struct e1000_hw * hw, u8 *buffer, + u16 length, u16 offset, u8 *sum) +{ + u8 *tmp; + u8 *bufptr = buffer; + u32 data = 0; + s32 ret_val = E1000_SUCCESS; + u16 remaining, i, j, prev_bytes; + + DEBUGFUNC("e1000_mng_host_if_write_generic"); + + /* sum = only sum of the data and it is not checksum */ + + if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) { + ret_val = -E1000_ERR_PARAM; + goto out; + } + + tmp = (u8 *)&data; + prev_bytes = offset & 0x3; + offset >>= 2; + + if (prev_bytes) { + data = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset); + for (j = prev_bytes; j < sizeof(u32); j++) { + *(tmp + j) = *bufptr++; + *sum += *(tmp + j); + } + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset, data); + length -= j - prev_bytes; + offset++; + } + + remaining = length & 0x3; + length -= remaining; + + /* Calculate length in DWORDs */ + length >>= 2; + + /* + * The device driver writes the relevant command block into the + * ram area. + */ + for (i = 0; i < length; i++) { + for (j = 0; j < sizeof(u32); j++) { + *(tmp + j) = *bufptr++; + *sum += *(tmp + j); + } + + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, data); + } + if (remaining) { + for (j = 0; j < sizeof(u32); j++) { + if (j < remaining) + *(tmp + j) = *bufptr++; + else + *(tmp + j) = 0; + + *sum += *(tmp + j); + } + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, data); + } + +out: + return ret_val; +} + +/** + * e1000_enable_mng_pass_thru - Enable processing of ARP's + * @hw: pointer to the HW structure + * + * Verifies the hardware needs to allow ARPs to be processed by the host. + **/ +bool e1000_enable_mng_pass_thru(struct e1000_hw *hw) +{ + u32 manc; + u32 fwsm, factps; + bool ret_val = FALSE; + + DEBUGFUNC("e1000_enable_mng_pass_thru"); + + if (!hw->mac.asf_firmware_present) + goto out; + + manc = E1000_READ_REG(hw, E1000_MANC); + + if (!(manc & E1000_MANC_RCV_TCO_EN) || + !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) + goto out; + + if (hw->mac.arc_subsystem_valid) { + fwsm = E1000_READ_REG(hw, E1000_FWSM); + factps = E1000_READ_REG(hw, E1000_FACTPS); + + if (!(factps & E1000_FACTPS_MNGCG) && + ((fwsm & E1000_FWSM_MODE_MASK) == + (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { + ret_val = TRUE; + goto out; + } + } else { + if ((manc & E1000_MANC_SMBUS_EN) && + !(manc & E1000_MANC_ASF_EN)) { + ret_val = TRUE; + goto out; + } + } + +out: + return ret_val; +} + diff --git a/sys/dev/e1000/e1000_manage.h b/sys/dev/e1000/e1000_manage.h new file mode 100644 index 0000000..146caeb --- /dev/null +++ b/sys/dev/e1000/e1000_manage.h @@ -0,0 +1,88 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_MANAGE_H_ +#define _E1000_MANAGE_H_ + +bool e1000_check_mng_mode_generic(struct e1000_hw *hw); +bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw); +s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw); +s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer, + u16 length, u16 offset, u8 *sum); +s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr); +s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, + u8 *buffer, u16 length); +bool e1000_enable_mng_pass_thru(struct e1000_hw *hw); + +enum e1000_mng_mode { + e1000_mng_mode_none = 0, + e1000_mng_mode_asf, + e1000_mng_mode_pt, + e1000_mng_mode_ipmi, + e1000_mng_mode_host_if_only +}; + +#define E1000_FACTPS_MNGCG 0x20000000 + +#define E1000_FWSM_MODE_MASK 0xE +#define E1000_FWSM_MODE_SHIFT 1 + +#define E1000_MNG_IAMT_MODE 0x3 +#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 +#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 +#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 +#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64 +#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1 +#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2 + +#define E1000_VFTA_ENTRY_SHIFT 5 +#define E1000_VFTA_ENTRY_MASK 0x7F +#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F + +#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Num of bytes in range */ +#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Num of dwords in range */ +#define E1000_HI_COMMAND_TIMEOUT 500 /* Process HI command limit */ + +#define E1000_HICR_EN 0x01 /* Enable bit - RO */ +/* Driver sets this bit when done to put command in RAM */ +#define E1000_HICR_C 0x02 +#define E1000_HICR_SV 0x04 /* Status Validity */ +#define E1000_HICR_FW_RESET_ENABLE 0x40 +#define E1000_HICR_FW_RESET 0x80 + +/* Intel(R) Active Management Technology signature */ +#define E1000_IAMT_SIGNATURE 0x544D4149 + +#endif diff --git a/sys/dev/e1000/e1000_nvm.c b/sys/dev/e1000/e1000_nvm.c new file mode 100644 index 0000000..1a99cac --- /dev/null +++ b/sys/dev/e1000/e1000_nvm.c @@ -0,0 +1,929 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#include "e1000_api.h" + +/** + * e1000_init_nvm_ops_generic - Initialize NVM function pointers + * @hw: pointer to the HW structure + * + * Setups up the function pointers to no-op functions + **/ +void e1000_init_nvm_ops_generic(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + DEBUGFUNC("e1000_init_nvm_ops_generic"); + + /* Initialize function pointers */ + nvm->ops.init_params = e1000_null_ops_generic; + nvm->ops.acquire = e1000_null_ops_generic; + nvm->ops.read = e1000_null_read_nvm; + nvm->ops.release = e1000_null_nvm_generic; + nvm->ops.reload = e1000_reload_nvm_generic; + nvm->ops.update = e1000_null_ops_generic; + nvm->ops.valid_led_default = e1000_null_led_default; + nvm->ops.validate = e1000_null_ops_generic; + nvm->ops.write = e1000_null_write_nvm; +} + +/** + * e1000_null_nvm_read - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c) +{ + DEBUGFUNC("e1000_null_read_nvm"); + return E1000_SUCCESS; +} + +/** + * e1000_null_nvm_generic - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_nvm_generic(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_null_nvm_generic"); + return; +} + +/** + * e1000_null_led_default - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data) +{ + DEBUGFUNC("e1000_null_led_default"); + return E1000_SUCCESS; +} + +/** + * e1000_null_write_nvm - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c) +{ + DEBUGFUNC("e1000_null_write_nvm"); + return E1000_SUCCESS; +} + +/** + * e1000_raise_eec_clk - Raise EEPROM clock + * @hw: pointer to the HW structure + * @eecd: pointer to the EEPROM + * + * Enable/Raise the EEPROM clock bit. + **/ +static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) +{ + *eecd = *eecd | E1000_EECD_SK; + E1000_WRITE_REG(hw, E1000_EECD, *eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(hw->nvm.delay_usec); +} + +/** + * e1000_lower_eec_clk - Lower EEPROM clock + * @hw: pointer to the HW structure + * @eecd: pointer to the EEPROM + * + * Clear/Lower the EEPROM clock bit. + **/ +static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) +{ + *eecd = *eecd & ~E1000_EECD_SK; + E1000_WRITE_REG(hw, E1000_EECD, *eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(hw->nvm.delay_usec); +} + +/** + * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM + * @hw: pointer to the HW structure + * @data: data to send to the EEPROM + * @count: number of bits to shift out + * + * We need to shift 'count' bits out to the EEPROM. So, the value in the + * "data" parameter will be shifted out to the EEPROM one bit at a time. + * In order to do this, "data" must be broken down into bits. + **/ +static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + u32 mask; + + DEBUGFUNC("e1000_shift_out_eec_bits"); + + mask = 0x01 << (count - 1); + if (nvm->type == e1000_nvm_eeprom_microwire) + eecd &= ~E1000_EECD_DO; + else if (nvm->type == e1000_nvm_eeprom_spi) + eecd |= E1000_EECD_DO; + + do { + eecd &= ~E1000_EECD_DI; + + if (data & mask) + eecd |= E1000_EECD_DI; + + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + + usec_delay(nvm->delay_usec); + + e1000_raise_eec_clk(hw, &eecd); + e1000_lower_eec_clk(hw, &eecd); + + mask >>= 1; + } while (mask); + + eecd &= ~E1000_EECD_DI; + E1000_WRITE_REG(hw, E1000_EECD, eecd); +} + +/** + * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM + * @hw: pointer to the HW structure + * @count: number of bits to shift in + * + * In order to read a register from the EEPROM, we need to shift 'count' bits + * in from the EEPROM. Bits are "shifted in" by raising the clock input to + * the EEPROM (setting the SK bit), and then reading the value of the data out + * "DO" bit. During this "shifting in" process the data in "DI" bit should + * always be clear. + **/ +static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) +{ + u32 eecd; + u32 i; + u16 data; + + DEBUGFUNC("e1000_shift_in_eec_bits"); + + eecd = E1000_READ_REG(hw, E1000_EECD); + + eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); + data = 0; + + for (i = 0; i < count; i++) { + data <<= 1; + e1000_raise_eec_clk(hw, &eecd); + + eecd = E1000_READ_REG(hw, E1000_EECD); + + eecd &= ~E1000_EECD_DI; + if (eecd & E1000_EECD_DO) + data |= 1; + + e1000_lower_eec_clk(hw, &eecd); + } + + return data; +} + +/** + * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion + * @hw: pointer to the HW structure + * @ee_reg: EEPROM flag for polling + * + * Polls the EEPROM status bit for either read or write completion based + * upon the value of 'ee_reg'. + **/ +s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) +{ + u32 attempts = 100000; + u32 i, reg = 0; + s32 ret_val = -E1000_ERR_NVM; + + DEBUGFUNC("e1000_poll_eerd_eewr_done"); + + for (i = 0; i < attempts; i++) { + if (ee_reg == E1000_NVM_POLL_READ) + reg = E1000_READ_REG(hw, E1000_EERD); + else + reg = E1000_READ_REG(hw, E1000_EEWR); + + if (reg & E1000_NVM_RW_REG_DONE) { + ret_val = E1000_SUCCESS; + break; + } + + usec_delay(5); + } + + return ret_val; +} + +/** + * e1000_acquire_nvm_generic - Generic request for access to EEPROM + * @hw: pointer to the HW structure + * + * Set the EEPROM access request bit and wait for EEPROM access grant bit. + * Return successful if access grant bit set, else clear the request for + * EEPROM access and return -E1000_ERR_NVM (-1). + **/ +s32 e1000_acquire_nvm_generic(struct e1000_hw *hw) +{ + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + s32 timeout = E1000_NVM_GRANT_ATTEMPTS; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_acquire_nvm_generic"); + + E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ); + eecd = E1000_READ_REG(hw, E1000_EECD); + + while (timeout) { + if (eecd & E1000_EECD_GNT) + break; + usec_delay(5); + eecd = E1000_READ_REG(hw, E1000_EECD); + timeout--; + } + + if (!timeout) { + eecd &= ~E1000_EECD_REQ; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + DEBUGOUT("Could not acquire NVM grant\n"); + ret_val = -E1000_ERR_NVM; + } + + return ret_val; +} + +/** + * e1000_standby_nvm - Return EEPROM to standby state + * @hw: pointer to the HW structure + * + * Return the EEPROM to a standby state. + **/ +static void e1000_standby_nvm(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + + DEBUGFUNC("e1000_standby_nvm"); + + if (nvm->type == e1000_nvm_eeprom_microwire) { + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(nvm->delay_usec); + + e1000_raise_eec_clk(hw, &eecd); + + /* Select EEPROM */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(nvm->delay_usec); + + e1000_lower_eec_clk(hw, &eecd); + } else if (nvm->type == e1000_nvm_eeprom_spi) { + /* Toggle CS to flush commands */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(nvm->delay_usec); + eecd &= ~E1000_EECD_CS; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(nvm->delay_usec); + } +} + +/** + * e1000_stop_nvm - Terminate EEPROM command + * @hw: pointer to the HW structure + * + * Terminates the current command by inverting the EEPROM's chip select pin. + **/ +void e1000_stop_nvm(struct e1000_hw *hw) +{ + u32 eecd; + + DEBUGFUNC("e1000_stop_nvm"); + + eecd = E1000_READ_REG(hw, E1000_EECD); + if (hw->nvm.type == e1000_nvm_eeprom_spi) { + /* Pull CS high */ + eecd |= E1000_EECD_CS; + e1000_lower_eec_clk(hw, &eecd); + } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) { + /* CS on Microwire is active-high */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + e1000_raise_eec_clk(hw, &eecd); + e1000_lower_eec_clk(hw, &eecd); + } +} + +/** + * e1000_release_nvm_generic - Release exclusive access to EEPROM + * @hw: pointer to the HW structure + * + * Stop any current commands to the EEPROM and clear the EEPROM request bit. + **/ +void e1000_release_nvm_generic(struct e1000_hw *hw) +{ + u32 eecd; + + DEBUGFUNC("e1000_release_nvm_generic"); + + e1000_stop_nvm(hw); + + eecd = E1000_READ_REG(hw, E1000_EECD); + eecd &= ~E1000_EECD_REQ; + E1000_WRITE_REG(hw, E1000_EECD, eecd); +} + +/** + * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write + * @hw: pointer to the HW structure + * + * Setups the EEPROM for reading and writing. + **/ +static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + s32 ret_val = E1000_SUCCESS; + u16 timeout = 0; + u8 spi_stat_reg; + + DEBUGFUNC("e1000_ready_nvm_eeprom"); + + if (nvm->type == e1000_nvm_eeprom_microwire) { + /* Clear SK and DI */ + eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + /* Set CS */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + } else if (nvm->type == e1000_nvm_eeprom_spi) { + /* Clear SK and CS */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + usec_delay(1); + timeout = NVM_MAX_RETRY_SPI; + + /* + * Read "Status Register" repeatedly until the LSB is cleared. + * The EEPROM will signal that the command has been completed + * by clearing bit 0 of the internal status register. If it's + * not cleared within 'timeout', then error out. + */ + while (timeout) { + e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, + hw->nvm.opcode_bits); + spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); + if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) + break; + + usec_delay(5); + e1000_standby_nvm(hw); + timeout--; + } + + if (!timeout) { + DEBUGOUT("SPI NVM Status error\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + } + +out: + return ret_val; +} + +/** + * e1000_read_nvm_spi - Read EEPROM's using SPI + * @hw: pointer to the HW structure + * @offset: offset of word in the EEPROM to read + * @words: number of words to read + * @data: word read from the EEPROM + * + * Reads a 16 bit word from the EEPROM. + **/ +s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i = 0; + s32 ret_val; + u16 word_in; + u8 read_opcode = NVM_READ_OPCODE_SPI; + + DEBUGFUNC("e1000_read_nvm_spi"); + + /* + * A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_ready_nvm_eeprom(hw); + if (ret_val) + goto release; + + e1000_standby_nvm(hw); + + if ((nvm->address_bits == 8) && (offset >= 128)) + read_opcode |= NVM_A8_OPCODE_SPI; + + /* Send the READ command (opcode + addr) */ + e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); + e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); + + /* + * Read the data. SPI NVMs increment the address with each byte + * read and will roll over if reading beyond the end. This allows + * us to read the whole NVM from any offset + */ + for (i = 0; i < words; i++) { + word_in = e1000_shift_in_eec_bits(hw, 16); + data[i] = (word_in >> 8) | (word_in << 8); + } + +release: + nvm->ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_read_nvm_microwire - Reads EEPROM's using microwire + * @hw: pointer to the HW structure + * @offset: offset of word in the EEPROM to read + * @words: number of words to read + * @data: word read from the EEPROM + * + * Reads a 16 bit word from the EEPROM. + **/ +s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i = 0; + s32 ret_val; + u8 read_opcode = NVM_READ_OPCODE_MICROWIRE; + + DEBUGFUNC("e1000_read_nvm_microwire"); + + /* + * A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_ready_nvm_eeprom(hw); + if (ret_val) + goto release; + + for (i = 0; i < words; i++) { + /* Send the READ command (opcode + addr) */ + e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); + e1000_shift_out_eec_bits(hw, (u16)(offset + i), + nvm->address_bits); + + /* + * Read the data. For microwire, each word requires the + * overhead of setup and tear-down. + */ + data[i] = e1000_shift_in_eec_bits(hw, 16); + e1000_standby_nvm(hw); + } + +release: + nvm->ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_read_nvm_eerd - Reads EEPROM using EERD register + * @hw: pointer to the HW structure + * @offset: offset of word in the EEPROM to read + * @words: number of words to read + * @data: word read from the EEPROM + * + * Reads a 16 bit word from the EEPROM using the EERD register. + **/ +s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i, eerd = 0; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_nvm_eerd"); + + /* + * A check for invalid values: offset too large, too many words, + * too many words for the offset, and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + for (i = 0; i < words; i++) { + eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + + E1000_NVM_RW_REG_START; + + E1000_WRITE_REG(hw, E1000_EERD, eerd); + ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); + if (ret_val) + break; + + data[i] = (E1000_READ_REG(hw, E1000_EERD) >> + E1000_NVM_RW_REG_DATA); + } + +out: + return ret_val; +} + +/** + * e1000_write_nvm_spi - Write to EEPROM using SPI + * @hw: pointer to the HW structure + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the EEPROM + * + * Writes data to EEPROM at offset using SPI interface. + * + * If e1000_update_nvm_checksum is not called after this function , the + * EEPROM will most likely contain an invalid checksum. + **/ +s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + s32 ret_val; + u16 widx = 0; + + DEBUGFUNC("e1000_write_nvm_spi"); + + /* + * A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + goto out; + + while (widx < words) { + u8 write_opcode = NVM_WRITE_OPCODE_SPI; + + ret_val = e1000_ready_nvm_eeprom(hw); + if (ret_val) + goto release; + + e1000_standby_nvm(hw); + + /* Send the WRITE ENABLE command (8 bit opcode) */ + e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, + nvm->opcode_bits); + + e1000_standby_nvm(hw); + + /* + * Some SPI eeproms use the 8th address bit embedded in the + * opcode + */ + if ((nvm->address_bits == 8) && (offset >= 128)) + write_opcode |= NVM_A8_OPCODE_SPI; + + /* Send the Write command (8-bit opcode + addr) */ + e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); + e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), + nvm->address_bits); + + /* Loop to allow for up to whole page write of eeprom */ + while (widx < words) { + u16 word_out = data[widx]; + word_out = (word_out >> 8) | (word_out << 8); + e1000_shift_out_eec_bits(hw, word_out, 16); + widx++; + + if ((((offset + widx) * 2) % nvm->page_size) == 0) { + e1000_standby_nvm(hw); + break; + } + } + } + + msec_delay(nvm->semaphore_delay); +release: + nvm->ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_write_nvm_microwire - Writes EEPROM using microwire + * @hw: pointer to the HW structure + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the EEPROM + * + * Writes data to EEPROM at offset using microwire interface. + * + * If e1000_update_nvm_checksum is not called after this function , the + * EEPROM will most likely contain an invalid checksum. + **/ +s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + s32 ret_val; + u32 eecd; + u16 words_written = 0; + u16 widx = 0; + + DEBUGFUNC("e1000_write_nvm_microwire"); + + /* + * A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_ready_nvm_eeprom(hw); + if (ret_val) + goto release; + + e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE, + (u16)(nvm->opcode_bits + 2)); + + e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); + + e1000_standby_nvm(hw); + + while (words_written < words) { + e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE, + nvm->opcode_bits); + + e1000_shift_out_eec_bits(hw, (u16)(offset + words_written), + nvm->address_bits); + + e1000_shift_out_eec_bits(hw, data[words_written], 16); + + e1000_standby_nvm(hw); + + for (widx = 0; widx < 200; widx++) { + eecd = E1000_READ_REG(hw, E1000_EECD); + if (eecd & E1000_EECD_DO) + break; + usec_delay(50); + } + + if (widx == 200) { + DEBUGOUT("NVM Write did not complete\n"); + ret_val = -E1000_ERR_NVM; + goto release; + } + + e1000_standby_nvm(hw); + + words_written++; + } + + e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE, + (u16)(nvm->opcode_bits + 2)); + + e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); + +release: + nvm->ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_read_pba_num_generic - Read device part number + * @hw: pointer to the HW structure + * @pba_num: pointer to device part number + * + * Reads the product board assembly (PBA) number from the EEPROM and stores + * the value in pba_num. + **/ +s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num) +{ + s32 ret_val; + u16 nvm_data; + + DEBUGFUNC("e1000_read_pba_num_generic"); + + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + *pba_num = (u32)(nvm_data << 16); + + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + *pba_num |= nvm_data; + +out: + return ret_val; +} + +/** + * e1000_read_mac_addr_generic - Read device MAC address + * @hw: pointer to the HW structure + * + * Reads the device MAC address from the EEPROM and stores the value. + * Since devices with two ports use the same EEPROM, we increment the + * last bit in the MAC address for the second port. + **/ +s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 offset, nvm_data, i; + + DEBUGFUNC("e1000_read_mac_addr"); + + for (i = 0; i < ETH_ADDR_LEN; i += 2) { + offset = i >> 1; + ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF); + hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8); + } + + /* Flip last bit of mac address if we're on second port */ + if (hw->bus.func == E1000_FUNC_1) + hw->mac.perm_addr[5] ^= 1; + + for (i = 0; i < ETH_ADDR_LEN; i++) + hw->mac.addr[i] = hw->mac.perm_addr[i]; + +out: + return ret_val; +} + +/** + * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Calculates the EEPROM checksum by reading/adding each word of the EEPROM + * and then verifies that the sum of the EEPROM is equal to 0xBABA. + **/ +s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 checksum = 0; + u16 i, nvm_data; + + DEBUGFUNC("e1000_validate_nvm_checksum_generic"); + + for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { + ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + checksum += nvm_data; + } + + if (checksum != (u16) NVM_SUM) { + DEBUGOUT("NVM Checksum Invalid\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_update_nvm_checksum_generic - Update EEPROM checksum + * @hw: pointer to the HW structure + * + * Updates the EEPROM checksum by reading/adding each word of the EEPROM + * up to the checksum. Then calculates the EEPROM checksum and writes the + * value to the EEPROM. + **/ +s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw) +{ + s32 ret_val; + u16 checksum = 0; + u16 i, nvm_data; + + DEBUGFUNC("e1000_update_nvm_checksum"); + + for (i = 0; i < NVM_CHECKSUM_REG; i++) { + ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error while updating checksum.\n"); + goto out; + } + checksum += nvm_data; + } + checksum = (u16) NVM_SUM - checksum; + ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); + if (ret_val) { + DEBUGOUT("NVM Write Error while updating checksum.\n"); + } + +out: + return ret_val; +} + +/** + * e1000_reload_nvm_generic - Reloads EEPROM + * @hw: pointer to the HW structure + * + * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the + * extended control register. + **/ +void e1000_reload_nvm_generic(struct e1000_hw *hw) +{ + u32 ctrl_ext; + + DEBUGFUNC("e1000_reload_nvm_generic"); + + usec_delay(10); + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); +} + diff --git a/sys/dev/e1000/e1000_nvm.h b/sys/dev/e1000/e1000_nvm.h new file mode 100644 index 0000000..d0ab33c --- /dev/null +++ b/sys/dev/e1000/e1000_nvm.h @@ -0,0 +1,68 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_NVM_H_ +#define _E1000_NVM_H_ + +void e1000_init_nvm_ops_generic(struct e1000_hw *hw); +s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c); +void e1000_null_nvm_generic(struct e1000_hw *hw); +s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data); +s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c); +s32 e1000_acquire_nvm_generic(struct e1000_hw *hw); + +s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg); +s32 e1000_read_mac_addr_generic(struct e1000_hw *hw); +s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num); +s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); +s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data); +s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data); +s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw); +s32 e1000_write_nvm_eewr(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data); +s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw); +void e1000_stop_nvm(struct e1000_hw *hw); +void e1000_release_nvm_generic(struct e1000_hw *hw); +void e1000_reload_nvm_generic(struct e1000_hw *hw); + +#define E1000_STM_OPCODE 0xDB00 + +#endif diff --git a/sys/dev/e1000/e1000_osdep.c b/sys/dev/e1000/e1000_osdep.c new file mode 100644 index 0000000..60be867 --- /dev/null +++ b/sys/dev/e1000/e1000_osdep.c @@ -0,0 +1,101 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#include "e1000_api.h" + +/* + * NOTE: the following routines using the e1000 + * naming style are provided to the shared + * code but are OS specific + */ + +void +e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) +{ + pci_write_config(((struct e1000_osdep *)hw->back)->dev, reg, *value, 2); +} + +void +e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) +{ + *value = pci_read_config(((struct e1000_osdep *)hw->back)->dev, reg, 2); +} + +void +e1000_pci_set_mwi(struct e1000_hw *hw) +{ + pci_write_config(((struct e1000_osdep *)hw->back)->dev, PCIR_COMMAND, + (hw->bus.pci_cmd_word | CMD_MEM_WRT_INVALIDATE), 2); +} + +void +e1000_pci_clear_mwi(struct e1000_hw *hw) +{ + pci_write_config(((struct e1000_osdep *)hw->back)->dev, PCIR_COMMAND, + (hw->bus.pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE), 2); +} + +/* + * Read the PCI Express capabilities + */ +int32_t +e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) +{ + u32 result; + + pci_find_extcap(((struct e1000_osdep *)hw->back)->dev, + reg, &result); + *value = (u16)result; + return (E1000_SUCCESS); +} + +int32_t +e1000_alloc_zeroed_dev_spec_struct(struct e1000_hw *hw, uint32_t size) +{ + int32_t error = 0; + + hw->dev_spec = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); + if (hw->dev_spec == NULL) + error = ENOMEM; + + return (error); +} + +void +e1000_free_dev_spec_struct(struct e1000_hw *hw) +{ + if (hw->dev_spec != NULL) + free(hw->dev_spec, M_DEVBUF); + return; +} diff --git a/sys/dev/e1000/e1000_osdep.h b/sys/dev/e1000/e1000_osdep.h new file mode 100644 index 0000000..8a63950 --- /dev/null +++ b/sys/dev/e1000/e1000_osdep.h @@ -0,0 +1,187 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + + +#ifndef _FREEBSD_OS_H_ +#define _FREEBSD_OS_H_ + +#include <sys/types.h> +#include <sys/param.h> +#include <sys/systm.h> +#include <sys/mbuf.h> +#include <sys/protosw.h> +#include <sys/socket.h> +#include <sys/malloc.h> +#include <sys/kernel.h> +#include <sys/bus.h> +#include <machine/bus.h> +#include <sys/rman.h> +#include <machine/resource.h> +#include <vm/vm.h> +#include <vm/pmap.h> +#include <machine/clock.h> +#include <dev/pci/pcivar.h> +#include <dev/pci/pcireg.h> + + +#define ASSERT(x) if(!(x)) panic("EM: x") + +/* The happy-fun DELAY macro is defined in /usr/src/sys/i386/include/clock.h */ +#define usec_delay(x) DELAY(x) +#define msec_delay(x) DELAY(1000*(x)) +/* TODO: Should we be paranoid about delaying in interrupt context? */ +#define msec_delay_irq(x) DELAY(1000*(x)) + +#define MSGOUT(S, A, B) printf(S "\n", A, B) +#define DEBUGFUNC(F) DEBUGOUT(F); + #define DEBUGOUT(S) + #define DEBUGOUT1(S,A) + #define DEBUGOUT2(S,A,B) + #define DEBUGOUT3(S,A,B,C) + #define DEBUGOUT7(S,A,B,C,D,E,F,G) + +#define STATIC static +#define FALSE 0 +#define false FALSE /* shared code stupidity */ +#define TRUE 1 +#define true TRUE +#define CMD_MEM_WRT_INVALIDATE 0x0010 /* BIT_4 */ +#define PCI_COMMAND_REGISTER PCIR_COMMAND + +/* +** These typedefs are necessary due to the new +** shared code, they are native to Linux. +*/ +typedef uint64_t u64; +typedef uint32_t u32; +typedef uint16_t u16; +typedef uint8_t u8; +typedef int64_t s64; +typedef int32_t s32; +typedef int16_t s16; +typedef int8_t s8; +typedef boolean_t bool; + +struct e1000_osdep +{ + bus_space_tag_t mem_bus_space_tag; + bus_space_handle_t mem_bus_space_handle; + bus_space_tag_t io_bus_space_tag; + bus_space_handle_t io_bus_space_handle; + bus_space_tag_t flash_bus_space_tag; + bus_space_handle_t flash_bus_space_handle; + struct device *dev; +}; + +#define E1000_REGISTER(hw, reg) (((hw)->mac.type >= e1000_82543) \ + ? reg : e1000_translate_register_82542(reg)) + +#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, E1000_STATUS) + +/* Read from an absolute offset in the adapter's memory space */ +#define E1000_READ_OFFSET(hw, offset) \ + bus_space_read_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \ + ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, offset) + +/* Write to an absolute offset in the adapter's memory space */ +#define E1000_WRITE_OFFSET(hw, offset, value) \ + bus_space_write_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \ + ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, offset, value) + +/* Register READ/WRITE macros */ + +#define E1000_READ_REG(hw, reg) \ + bus_space_read_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \ + ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \ + E1000_REGISTER(hw, reg)) + +#define E1000_WRITE_REG(hw, reg, value) \ + bus_space_write_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \ + ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \ + E1000_REGISTER(hw, reg), value) + +#define E1000_READ_REG_ARRAY(hw, reg, index) \ + bus_space_read_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \ + ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \ + E1000_REGISTER(hw, reg) + ((index)<< 2)) + +#define E1000_WRITE_REG_ARRAY(hw, reg, index, value) \ + bus_space_write_4(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \ + ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \ + E1000_REGISTER(hw, reg) + ((index)<< 2), value) + +#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY +#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY + +#define E1000_READ_REG_ARRAY_BYTE(hw, reg, index) \ + bus_space_read_1(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \ + ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \ + E1000_REGISTER(hw, reg) + index) + +#define E1000_WRITE_REG_ARRAY_BYTE(hw, reg, index, value) \ + bus_space_write_1(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \ + ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \ + E1000_REGISTER(hw, reg) + index, value) + +#define E1000_WRITE_REG_ARRAY_WORD(hw, reg, index, value) \ + bus_space_write_2(((struct e1000_osdep *)(hw)->back)->mem_bus_space_tag, \ + ((struct e1000_osdep *)(hw)->back)->mem_bus_space_handle, \ + E1000_REGISTER(hw, reg) + (index << 1), value) + +#define E1000_WRITE_REG_IO(hw, reg, value) do {\ + bus_space_write_4(((struct e1000_osdep *)(hw)->back)->io_bus_space_tag, \ + ((struct e1000_osdep *)(hw)->back)->io_bus_space_handle, \ + (hw)->io_base, reg); \ + bus_space_write_4(((struct e1000_osdep *)(hw)->back)->io_bus_space_tag, \ + ((struct e1000_osdep *)(hw)->back)->io_bus_space_handle, \ + (hw)->io_base + 4, value); } while (0) + +#define E1000_READ_FLASH_REG(hw, reg) \ + bus_space_read_4(((struct e1000_osdep *)(hw)->back)->flash_bus_space_tag, \ + ((struct e1000_osdep *)(hw)->back)->flash_bus_space_handle, reg) + +#define E1000_READ_FLASH_REG16(hw, reg) \ + bus_space_read_2(((struct e1000_osdep *)(hw)->back)->flash_bus_space_tag, \ + ((struct e1000_osdep *)(hw)->back)->flash_bus_space_handle, reg) + +#define E1000_WRITE_FLASH_REG(hw, reg, value) \ + bus_space_write_4(((struct e1000_osdep *)(hw)->back)->flash_bus_space_tag, \ + ((struct e1000_osdep *)(hw)->back)->flash_bus_space_handle, reg, value) + +#define E1000_WRITE_FLASH_REG16(hw, reg, value) \ + bus_space_write_2(((struct e1000_osdep *)(hw)->back)->flash_bus_space_tag, \ + ((struct e1000_osdep *)(hw)->back)->flash_bus_space_handle, reg, value) + +#endif /* _FREEBSD_OS_H_ */ + diff --git a/sys/dev/e1000/e1000_phy.c b/sys/dev/e1000/e1000_phy.c new file mode 100644 index 0000000..5ef2643 --- /dev/null +++ b/sys/dev/e1000/e1000_phy.c @@ -0,0 +1,2566 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#include "e1000_api.h" + +static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg); +/* Cable length tables */ +static const u16 e1000_m88_cable_length_table[] = + { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; +#define M88E1000_CABLE_LENGTH_TABLE_SIZE \ + (sizeof(e1000_m88_cable_length_table) / \ + sizeof(e1000_m88_cable_length_table[0])) + +static const u16 e1000_igp_2_cable_length_table[] = + { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, + 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, + 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, + 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, + 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, + 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, + 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, + 104, 109, 114, 118, 121, 124}; +#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ + (sizeof(e1000_igp_2_cable_length_table) / \ + sizeof(e1000_igp_2_cable_length_table[0])) + +/** + * e1000_init_phy_ops_generic - Initialize PHY function pointers + * @hw: pointer to the HW structure + * + * Setups up the function pointers to no-op functions + **/ +void e1000_init_phy_ops_generic(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + DEBUGFUNC("e1000_init_phy_ops_generic"); + + /* Initialize function pointers */ + phy->ops.init_params = e1000_null_ops_generic; + phy->ops.acquire = e1000_null_ops_generic; + phy->ops.check_polarity = e1000_null_ops_generic; + phy->ops.check_reset_block = e1000_null_ops_generic; + phy->ops.commit = e1000_null_ops_generic; + phy->ops.force_speed_duplex = e1000_null_ops_generic; + phy->ops.get_cfg_done = e1000_null_ops_generic; + phy->ops.get_cable_length = e1000_null_ops_generic; + phy->ops.get_info = e1000_null_ops_generic; + phy->ops.read_reg = e1000_null_read_reg; + phy->ops.release = e1000_null_phy_generic; + phy->ops.reset = e1000_null_ops_generic; + phy->ops.set_d0_lplu_state = e1000_null_lplu_state; + phy->ops.set_d3_lplu_state = e1000_null_lplu_state; + phy->ops.write_reg = e1000_null_write_reg; + phy->ops.power_up = e1000_null_phy_generic; + phy->ops.power_down = e1000_null_phy_generic; +} + +/** + * e1000_null_read_reg - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data) +{ + DEBUGFUNC("e1000_null_read_reg"); + return E1000_SUCCESS; +} + +/** + * e1000_null_phy_generic - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_phy_generic(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_null_phy_generic"); + return; +} + +/** + * e1000_null_lplu_state - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_lplu_state(struct e1000_hw *hw, bool active) +{ + DEBUGFUNC("e1000_null_lplu_state"); + return E1000_SUCCESS; +} + +/** + * e1000_null_write_reg - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data) +{ + DEBUGFUNC("e1000_null_write_reg"); + return E1000_SUCCESS; +} + +/** + * e1000_check_reset_block_generic - Check if PHY reset is blocked + * @hw: pointer to the HW structure + * + * Read the PHY management control register and check whether a PHY reset + * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise + * return E1000_BLK_PHY_RESET (12). + **/ +s32 e1000_check_reset_block_generic(struct e1000_hw *hw) +{ + u32 manc; + + DEBUGFUNC("e1000_check_reset_block"); + + manc = E1000_READ_REG(hw, E1000_MANC); + + return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? + E1000_BLK_PHY_RESET : E1000_SUCCESS; +} + +/** + * e1000_get_phy_id - Retrieve the PHY ID and revision + * @hw: pointer to the HW structure + * + * Reads the PHY registers and stores the PHY ID and possibly the PHY + * revision in the hardware structure. + **/ +s32 e1000_get_phy_id(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 phy_id; + + DEBUGFUNC("e1000_get_phy_id"); + + if (!(phy->ops.read_reg)) + goto out; + + ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); + if (ret_val) + goto out; + + phy->id = (u32)(phy_id << 16); + usec_delay(20); + ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); + if (ret_val) + goto out; + + phy->id |= (u32)(phy_id & PHY_REVISION_MASK); + phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); + +out: + return ret_val; +} + +/** + * e1000_phy_reset_dsp_generic - Reset PHY DSP + * @hw: pointer to the HW structure + * + * Reset the digital signal processor. + **/ +s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_phy_reset_dsp_generic"); + + if (!(hw->phy.ops.write_reg)) + goto out; + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); + +out: + return ret_val; +} + +/** + * e1000_read_phy_reg_mdic - Read MDI control register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the MDI control register in the PHY at offset and stores the + * information read to data. + **/ +s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, mdic = 0; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_phy_reg_mdic"); + + /* + * Set up Op-code, Phy Address, and register offset in the MDI + * Control register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + mdic = ((offset << E1000_MDIC_REG_SHIFT) | + (phy->addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_READ)); + + E1000_WRITE_REG(hw, E1000_MDIC, mdic); + + /* + * Poll the ready bit to see if the MDI read completed + * Increasing the time out as testing showed failures with + * the lower time out + */ + for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { + usec_delay(50); + mdic = E1000_READ_REG(hw, E1000_MDIC); + if (mdic & E1000_MDIC_READY) + break; + } + if (!(mdic & E1000_MDIC_READY)) { + DEBUGOUT("MDI Read did not complete\n"); + ret_val = -E1000_ERR_PHY; + goto out; + } + if (mdic & E1000_MDIC_ERROR) { + DEBUGOUT("MDI Error\n"); + ret_val = -E1000_ERR_PHY; + goto out; + } + *data = (u16) mdic; + +out: + return ret_val; +} + +/** + * e1000_write_phy_reg_mdic - Write MDI control register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write to register at offset + * + * Writes data to MDI control register in the PHY at offset. + **/ +s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, mdic = 0; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_phy_reg_mdic"); + + /* + * Set up Op-code, Phy Address, and register offset in the MDI + * Control register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + mdic = (((u32)data) | + (offset << E1000_MDIC_REG_SHIFT) | + (phy->addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_WRITE)); + + E1000_WRITE_REG(hw, E1000_MDIC, mdic); + + /* + * Poll the ready bit to see if the MDI read completed + * Increasing the time out as testing showed failures with + * the lower time out + */ + for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { + usec_delay(50); + mdic = E1000_READ_REG(hw, E1000_MDIC); + if (mdic & E1000_MDIC_READY) + break; + } + if (!(mdic & E1000_MDIC_READY)) { + DEBUGOUT("MDI Write did not complete\n"); + ret_val = -E1000_ERR_PHY; + goto out; + } + if (mdic & E1000_MDIC_ERROR) { + DEBUGOUT("MDI Error\n"); + ret_val = -E1000_ERR_PHY; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_read_phy_reg_m88 - Read m88 PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and storing the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_phy_reg_m88"); + + if (!(hw->phy.ops.acquire)) + goto out; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_read_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_write_phy_reg_m88 - Write m88 PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_phy_reg_m88"); + + if (!(hw->phy.ops.acquire)) + goto out; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_write_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_read_phy_reg_igp - Read igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and storing the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_phy_reg_igp"); + + if (!(hw->phy.ops.acquire)) + goto out; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + ret_val = e1000_write_phy_reg_mdic(hw, + IGP01E1000_PHY_PAGE_SELECT, + (u16)offset); + if (ret_val) { + hw->phy.ops.release(hw); + goto out; + } + } + + ret_val = e1000_read_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_write_phy_reg_igp - Write igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_phy_reg_igp"); + + if (!(hw->phy.ops.acquire)) + goto out; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + ret_val = e1000_write_phy_reg_mdic(hw, + IGP01E1000_PHY_PAGE_SELECT, + (u16)offset); + if (ret_val) { + hw->phy.ops.release(hw); + goto out; + } + } + + ret_val = e1000_write_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_read_kmrn_reg_generic - Read kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore, if necessary. Then reads the PHY register at offset + * using the kumeran interface. The information retrieved is stored in data. + * Release any acquired semaphores before exiting. + **/ +s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data) +{ + u32 kmrnctrlsta; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_kmrn_reg_generic"); + + if (!(hw->phy.ops.acquire)) + goto out; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & + E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; + E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); + + usec_delay(2); + + kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA); + *data = (u16)kmrnctrlsta; + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_write_kmrn_reg_generic - Write kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary. Then write the data to PHY register + * at the offset using the kumeran interface. Release any acquired semaphores + * before exiting. + **/ +s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data) +{ + u32 kmrnctrlsta; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_kmrn_reg_generic"); + + if (!(hw->phy.ops.acquire)) + goto out; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & + E1000_KMRNCTRLSTA_OFFSET) | data; + E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); + + usec_delay(2); + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link + * @hw: pointer to the HW structure + * + * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock + * and downshift values are set also. + **/ +s32 e1000_copper_link_setup_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_copper_link_setup_m88"); + + if (phy->reset_disable) { + ret_val = E1000_SUCCESS; + goto out; + } + + /* Enable CRS on TX. This must be set for half-duplex operation. */ + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + goto out; + + /* For newer PHYs this bit is downshift enable */ + if (phy->type == e1000_phy_m88) + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + + /* + * Options: + * MDI/MDI-X = 0 (default) + * 0 - Auto for all speeds + * 1 - MDI mode + * 2 - MDI-X mode + * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + + switch (phy->mdix) { + case 1: + phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; + break; + case 2: + phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; + break; + case 3: + phy_data |= M88E1000_PSCR_AUTO_X_1000T; + break; + case 0: + default: + phy_data |= M88E1000_PSCR_AUTO_X_MODE; + break; + } + + /* + * Options: + * disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity + * 0 - Disabled + * 1 - Enabled + */ + phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; + if (phy->disable_polarity_correction == 1) + phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; + + /* Enable downshift on BM (disabled by default) */ + if (phy->type == e1000_phy_bm) + phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; + + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + goto out; + + if ((phy->type == e1000_phy_m88) && + (phy->revision < E1000_REVISION_4) && + (phy->id != BME1000_E_PHY_ID_R2)) { + /* + * Force TX_CLK in the Extended PHY Specific Control Register + * to 25MHz clock. + */ + ret_val = phy->ops.read_reg(hw, + M88E1000_EXT_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + goto out; + + phy_data |= M88E1000_EPSCR_TX_CLK_25; + + if ((phy->revision == E1000_REVISION_2) && + (phy->id == M88E1111_I_PHY_ID)) { + /* 82573L PHY - set the downshift counter to 5x. */ + phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; + phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; + } else { + /* Configure Master and Slave downshift values */ + phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); + phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); + } + ret_val = phy->ops.write_reg(hw, + M88E1000_EXT_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + goto out; + } + + if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { + /* Set PHY page 0, register 29 to 0x0003 */ + ret_val = phy->ops.write_reg(hw, 29, 0x0003); + if (ret_val) + goto out; + + /* Set PHY page 0, register 30 to 0x0000 */ + ret_val = phy->ops.write_reg(hw, 30, 0x0000); + if (ret_val) + goto out; + } + + /* Commit the changes. */ + ret_val = phy->ops.commit(hw); + if (ret_val) { + DEBUGOUT("Error committing the PHY changes\n"); + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_copper_link_setup_igp - Setup igp PHY's for copper link + * @hw: pointer to the HW structure + * + * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for + * igp PHY's. + **/ +s32 e1000_copper_link_setup_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_copper_link_setup_igp"); + + if (phy->reset_disable) { + ret_val = E1000_SUCCESS; + goto out; + } + + ret_val = hw->phy.ops.reset(hw); + if (ret_val) { + DEBUGOUT("Error resetting the PHY.\n"); + goto out; + } + + /* + * Wait 100ms for MAC to configure PHY from NVM settings, to avoid + * timeout issues when LFS is enabled. + */ + msec_delay(100); + + /* + * The NVM settings will configure LPLU in D3 for + * non-IGP1 PHYs. + */ + if (phy->type == e1000_phy_igp) { + /* disable lplu d3 during driver init */ + ret_val = hw->phy.ops.set_d3_lplu_state(hw, FALSE); + if (ret_val) { + DEBUGOUT("Error Disabling LPLU D3\n"); + goto out; + } + } + + /* disable lplu d0 during driver init */ + if (hw->phy.ops.set_d0_lplu_state) { + ret_val = hw->phy.ops.set_d0_lplu_state(hw, FALSE); + if (ret_val) { + DEBUGOUT("Error Disabling LPLU D0\n"); + goto out; + } + } + /* Configure mdi-mdix settings */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCR_AUTO_MDIX; + + switch (phy->mdix) { + case 1: + data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 2: + data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 0: + default: + data |= IGP01E1000_PSCR_AUTO_MDIX; + break; + } + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); + if (ret_val) + goto out; + + /* set auto-master slave resolution settings */ + if (hw->mac.autoneg) { + /* + * when autonegotiation advertisement is only 1000Mbps then we + * should disable SmartSpeed and enable Auto MasterSlave + * resolution as hardware default. + */ + if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { + /* Disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + + /* Set auto Master/Slave resolution process */ + ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); + if (ret_val) + goto out; + + data &= ~CR_1000T_MS_ENABLE; + ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); + if (ret_val) + goto out; + } + + ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); + if (ret_val) + goto out; + + /* load defaults for future use */ + phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? + ((data & CR_1000T_MS_VALUE) ? + e1000_ms_force_master : + e1000_ms_force_slave) : + e1000_ms_auto; + + switch (phy->ms_type) { + case e1000_ms_force_master: + data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); + break; + case e1000_ms_force_slave: + data |= CR_1000T_MS_ENABLE; + data &= ~(CR_1000T_MS_VALUE); + break; + case e1000_ms_auto: + data &= ~CR_1000T_MS_ENABLE; + default: + break; + } + ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); + if (ret_val) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link + * @hw: pointer to the HW structure + * + * Performs initial bounds checking on autoneg advertisement parameter, then + * configure to advertise the full capability. Setup the PHY to autoneg + * and restart the negotiation process between the link partner. If + * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. + **/ +s32 e1000_copper_link_autoneg(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_ctrl; + + DEBUGFUNC("e1000_copper_link_autoneg"); + + /* + * Perform some bounds checking on the autoneg advertisement + * parameter. + */ + phy->autoneg_advertised &= phy->autoneg_mask; + + /* + * If autoneg_advertised is zero, we assume it was not defaulted + * by the calling code so we set to advertise full capability. + */ + if (phy->autoneg_advertised == 0) + phy->autoneg_advertised = phy->autoneg_mask; + + DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); + ret_val = e1000_phy_setup_autoneg(hw); + if (ret_val) { + DEBUGOUT("Error Setting up Auto-Negotiation\n"); + goto out; + } + DEBUGOUT("Restarting Auto-Neg\n"); + + /* + * Restart auto-negotiation by setting the Auto Neg Enable bit and + * the Auto Neg Restart bit in the PHY control register. + */ + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); + if (ret_val) + goto out; + + phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); + if (ret_val) + goto out; + + /* + * Does the user want to wait for Auto-Neg to complete here, or + * check at a later time (for example, callback routine). + */ + if (phy->autoneg_wait_to_complete) { + ret_val = hw->mac.ops.wait_autoneg(hw); + if (ret_val) { + DEBUGOUT("Error while waiting for " + "autoneg to complete\n"); + goto out; + } + } + + hw->mac.get_link_status = TRUE; + +out: + return ret_val; +} + +/** + * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation + * @hw: pointer to the HW structure + * + * Reads the MII auto-neg advertisement register and/or the 1000T control + * register and if the PHY is already setup for auto-negotiation, then + * return successful. Otherwise, setup advertisement and flow control to + * the appropriate values for the wanted auto-negotiation. + **/ +s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 mii_autoneg_adv_reg; + u16 mii_1000t_ctrl_reg = 0; + + DEBUGFUNC("e1000_phy_setup_autoneg"); + + phy->autoneg_advertised &= phy->autoneg_mask; + + /* Read the MII Auto-Neg Advertisement Register (Address 4). */ + ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); + if (ret_val) + goto out; + + if (phy->autoneg_mask & ADVERTISE_1000_FULL) { + /* Read the MII 1000Base-T Control Register (Address 9). */ + ret_val = phy->ops.read_reg(hw, + PHY_1000T_CTRL, + &mii_1000t_ctrl_reg); + if (ret_val) + goto out; + } + + /* + * Need to parse both autoneg_advertised and fc and set up + * the appropriate PHY registers. First we will parse for + * autoneg_advertised software override. Since we can advertise + * a plethora of combinations, we need to check each bit + * individually. + */ + + /* + * First we clear all the 10/100 mb speed bits in the Auto-Neg + * Advertisement Register (Address 4) and the 1000 mb speed bits in + * the 1000Base-T Control Register (Address 9). + */ + mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | + NWAY_AR_100TX_HD_CAPS | + NWAY_AR_10T_FD_CAPS | + NWAY_AR_10T_HD_CAPS); + mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); + + DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised); + + /* Do we want to advertise 10 Mb Half Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_10_HALF) { + DEBUGOUT("Advertise 10mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; + } + + /* Do we want to advertise 10 Mb Full Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_10_FULL) { + DEBUGOUT("Advertise 10mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; + } + + /* Do we want to advertise 100 Mb Half Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_100_HALF) { + DEBUGOUT("Advertise 100mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; + } + + /* Do we want to advertise 100 Mb Full Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_100_FULL) { + DEBUGOUT("Advertise 100mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; + } + + /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ + if (phy->autoneg_advertised & ADVERTISE_1000_HALF) { + DEBUGOUT("Advertise 1000mb Half duplex request denied!\n"); + } + + /* Do we want to advertise 1000 Mb Full Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { + DEBUGOUT("Advertise 1000mb Full duplex\n"); + mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; + } + + /* + * Check for a software override of the flow control settings, and + * setup the PHY advertisement registers accordingly. If + * auto-negotiation is enabled, then software will have to set the + * "PAUSE" bits to the correct value in the Auto-Negotiation + * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- + * negotiation. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * but we do not support receiving pause frames). + * 3: Both Rx and Tx flow control (symmetric) are enabled. + * other: No software override. The flow control configuration + * in the EEPROM is used. + */ + switch (hw->fc.type) { + case e1000_fc_none: + /* + * Flow control (Rx & Tx) is completely disabled by a + * software over-ride. + */ + mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case e1000_fc_rx_pause: + /* + * Rx Flow control is enabled, and Tx Flow control is + * disabled, by a software over-ride. + * + * Since there really isn't a way to advertise that we are + * capable of Rx Pause ONLY, we will advertise that we + * support both symmetric and asymmetric Rx PAUSE. Later + * (in e1000_config_fc_after_link_up) we will disable the + * hw's ability to send PAUSE frames. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case e1000_fc_tx_pause: + /* + * Tx Flow control is enabled, and Rx Flow control is + * disabled, by a software over-ride. + */ + mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; + mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; + break; + case e1000_fc_full: + /* + * Flow control (both Rx and Tx) is enabled by a software + * over-ride. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); + if (ret_val) + goto out; + + DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); + + if (phy->autoneg_mask & ADVERTISE_1000_FULL) { + ret_val = phy->ops.write_reg(hw, + PHY_1000T_CTRL, + mii_1000t_ctrl_reg); + if (ret_val) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_setup_copper_link_generic - Configure copper link settings + * @hw: pointer to the HW structure + * + * Calls the appropriate function to configure the link for auto-neg or forced + * speed and duplex. Then we check for link, once link is established calls + * to configure collision distance and flow control are called. If link is + * not established, we return -E1000_ERR_PHY (-2). + **/ +s32 e1000_setup_copper_link_generic(struct e1000_hw *hw) +{ + s32 ret_val; + bool link; + + DEBUGFUNC("e1000_setup_copper_link_generic"); + + if (hw->mac.autoneg) { + /* + * Setup autoneg and flow control advertisement and perform + * autonegotiation. + */ + ret_val = e1000_copper_link_autoneg(hw); + if (ret_val) + goto out; + } else { + /* + * PHY will be set to 10H, 10F, 100H or 100F + * depending on user settings. + */ + DEBUGOUT("Forcing Speed and Duplex\n"); + ret_val = hw->phy.ops.force_speed_duplex(hw); + if (ret_val) { + DEBUGOUT("Error Forcing Speed and Duplex\n"); + goto out; + } + } + + /* + * Check link status. Wait up to 100 microseconds for link to become + * valid. + */ + ret_val = e1000_phy_has_link_generic(hw, + COPPER_LINK_UP_LIMIT, + 10, + &link); + if (ret_val) + goto out; + + if (link) { + DEBUGOUT("Valid link established!!!\n"); + e1000_config_collision_dist_generic(hw); + ret_val = e1000_config_fc_after_link_up_generic(hw); + } else { + DEBUGOUT("Unable to establish link!!!\n"); + } + +out: + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY + * @hw: pointer to the HW structure + * + * Calls the PHY setup function to force speed and duplex. Clears the + * auto-crossover to force MDI manually. Waits for link and returns + * successful if link up is successful, else -E1000_ERR_PHY (-2). + **/ +s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_igp"); + + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); + if (ret_val) + goto out; + + e1000_phy_force_speed_duplex_setup(hw, &phy_data); + + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); + if (ret_val) + goto out; + + /* + * Clear Auto-Crossover to force MDI manually. IGP requires MDI + * forced whenever speed and duplex are forced. + */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); + if (ret_val) + goto out; + + phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; + phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); + if (ret_val) + goto out; + + DEBUGOUT1("IGP PSCR: %X\n", phy_data); + + usec_delay(1); + + if (phy->autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n"); + + ret_val = e1000_phy_has_link_generic(hw, + PHY_FORCE_LIMIT, + 100000, + &link); + if (ret_val) + goto out; + + if (!link) { + DEBUGOUT("Link taking longer than expected.\n"); + } + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, + PHY_FORCE_LIMIT, + 100000, + &link); + if (ret_val) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY + * @hw: pointer to the HW structure + * + * Calls the PHY setup function to force speed and duplex. Clears the + * auto-crossover to force MDI manually. Resets the PHY to commit the + * changes. If time expires while waiting for link up, we reset the DSP. + * After reset, TX_CLK and CRS on Tx must be set. Return successful upon + * successful completion, else return corresponding error code. + **/ +s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_m88"); + + /* + * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI + * forced whenever speed and duplex are forced. + */ + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + goto out; + + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + goto out; + + DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data); + + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); + if (ret_val) + goto out; + + e1000_phy_force_speed_duplex_setup(hw, &phy_data); + + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); + if (ret_val) + goto out; + + /* Reset the phy to commit changes. */ + ret_val = hw->phy.ops.commit(hw); + if (ret_val) + goto out; + + if (phy->autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n"); + + ret_val = e1000_phy_has_link_generic(hw, + PHY_FORCE_LIMIT, + 100000, + &link); + if (ret_val) + goto out; + + if (!link) { + /* + * We didn't get link. + * Reset the DSP and cross our fingers. + */ + ret_val = phy->ops.write_reg(hw, + M88E1000_PHY_PAGE_SELECT, + 0x001d); + if (ret_val) + goto out; + ret_val = e1000_phy_reset_dsp_generic(hw); + if (ret_val) + goto out; + } + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, + PHY_FORCE_LIMIT, + 100000, + &link); + if (ret_val) + goto out; + } + + ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + goto out; + + /* + * Resetting the phy means we need to re-force TX_CLK in the + * Extended PHY Specific Control Register to 25MHz clock from + * the reset value of 2.5MHz. + */ + phy_data |= M88E1000_EPSCR_TX_CLK_25; + ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if (ret_val) + goto out; + + /* + * In addition, we must re-enable CRS on Tx for both half and full + * duplex. + */ + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + goto out; + + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + +out: + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex + * @hw: pointer to the HW structure + * @phy_ctrl: pointer to current value of PHY_CONTROL + * + * Forces speed and duplex on the PHY by doing the following: disable flow + * control, force speed/duplex on the MAC, disable auto speed detection, + * disable auto-negotiation, configure duplex, configure speed, configure + * the collision distance, write configuration to CTRL register. The + * caller must write to the PHY_CONTROL register for these settings to + * take affect. + **/ +void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 ctrl; + + DEBUGFUNC("e1000_phy_force_speed_duplex_setup"); + + /* Turn off flow control when forcing speed/duplex */ + hw->fc.type = e1000_fc_none; + + /* Force speed/duplex on the mac */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~E1000_CTRL_SPD_SEL; + + /* Disable Auto Speed Detection */ + ctrl &= ~E1000_CTRL_ASDE; + + /* Disable autoneg on the phy */ + *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; + + /* Forcing Full or Half Duplex? */ + if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { + ctrl &= ~E1000_CTRL_FD; + *phy_ctrl &= ~MII_CR_FULL_DUPLEX; + DEBUGOUT("Half Duplex\n"); + } else { + ctrl |= E1000_CTRL_FD; + *phy_ctrl |= MII_CR_FULL_DUPLEX; + DEBUGOUT("Full Duplex\n"); + } + + /* Forcing 10mb or 100mb? */ + if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { + ctrl |= E1000_CTRL_SPD_100; + *phy_ctrl |= MII_CR_SPEED_100; + *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); + DEBUGOUT("Forcing 100mb\n"); + } else { + ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); + *phy_ctrl |= MII_CR_SPEED_10; + *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); + DEBUGOUT("Forcing 10mb\n"); + } + + e1000_config_collision_dist_generic(hw); + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); +} + +/** + * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D3 + * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. + **/ +s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_set_d3_lplu_state_generic"); + + if (!(hw->phy.ops.read_reg)) + goto out; + + ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); + if (ret_val) + goto out; + + if (!active) { + data &= ~IGP02E1000_PM_D3_LPLU; + ret_val = phy->ops.write_reg(hw, + IGP02E1000_PHY_POWER_MGMT, + data); + if (ret_val) + goto out; + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } + } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || + (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || + (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { + data |= IGP02E1000_PM_D3_LPLU; + ret_val = phy->ops.write_reg(hw, + IGP02E1000_PHY_POWER_MGMT, + data); + if (ret_val) + goto out; + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + } + +out: + return ret_val; +} + +/** + * e1000_check_downshift_generic - Checks whether a downshift in speed occurred + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns 1 + * + * A downshift is detected by querying the PHY link health. + **/ +s32 e1000_check_downshift_generic(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, offset, mask; + + DEBUGFUNC("e1000_check_downshift_generic"); + + switch (phy->type) { + case e1000_phy_m88: + case e1000_phy_gg82563: + case e1000_phy_bm: + offset = M88E1000_PHY_SPEC_STATUS; + mask = M88E1000_PSSR_DOWNSHIFT; + break; + case e1000_phy_igp_2: + case e1000_phy_igp: + case e1000_phy_igp_3: + offset = IGP01E1000_PHY_LINK_HEALTH; + mask = IGP01E1000_PLHR_SS_DOWNGRADE; + break; + default: + /* speed downshift not supported */ + phy->speed_downgraded = FALSE; + ret_val = E1000_SUCCESS; + goto out; + } + + ret_val = phy->ops.read_reg(hw, offset, &phy_data); + + if (!ret_val) + phy->speed_downgraded = (phy_data & mask) ? TRUE : FALSE; + +out: + return ret_val; +} + +/** + * e1000_check_polarity_m88 - Checks the polarity. + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns -E1000_ERR_PHY (-2) + * + * Polarity is determined based on the PHY specific status register. + **/ +s32 e1000_check_polarity_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_check_polarity_m88"); + + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); + + if (!ret_val) + phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal; + + return ret_val; +} + +/** + * e1000_check_polarity_igp - Checks the polarity. + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns -E1000_ERR_PHY (-2) + * + * Polarity is determined based on the PHY port status register, and the + * current speed (since there is no polarity at 100Mbps). + **/ +s32 e1000_check_polarity_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data, offset, mask; + + DEBUGFUNC("e1000_check_polarity_igp"); + + /* + * Polarity is determined based on the speed of + * our connection. + */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); + if (ret_val) + goto out; + + if ((data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) { + offset = IGP01E1000_PHY_PCS_INIT_REG; + mask = IGP01E1000_PHY_POLARITY_MASK; + } else { + /* + * This really only applies to 10Mbps since + * there is no polarity for 100Mbps (always 0). + */ + offset = IGP01E1000_PHY_PORT_STATUS; + mask = IGP01E1000_PSSR_POLARITY_REVERSED; + } + + ret_val = phy->ops.read_reg(hw, offset, &data); + + if (!ret_val) + phy->cable_polarity = (data & mask) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal; + +out: + return ret_val; +} + +/** + * e1000_wait_autoneg_generic - Wait for auto-neg completion + * @hw: pointer to the HW structure + * + * Waits for auto-negotiation to complete or for the auto-negotiation time + * limit to expire, which ever happens first. + **/ +s32 e1000_wait_autoneg_generic(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 i, phy_status; + + DEBUGFUNC("e1000_wait_autoneg_generic"); + + if (!(hw->phy.ops.read_reg)) + return E1000_SUCCESS; + + /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ + for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); + if (ret_val) + break; + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); + if (ret_val) + break; + if (phy_status & MII_SR_AUTONEG_COMPLETE) + break; + msec_delay(100); + } + + /* + * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation + * has completed. + */ + return ret_val; +} + +/** + * e1000_phy_has_link_generic - Polls PHY for link + * @hw: pointer to the HW structure + * @iterations: number of times to poll for link + * @usec_interval: delay between polling attempts + * @success: pointer to whether polling was successful or not + * + * Polls the PHY status register for link, 'iterations' number of times. + **/ +s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, + u32 usec_interval, bool *success) +{ + s32 ret_val = E1000_SUCCESS; + u16 i, phy_status; + + DEBUGFUNC("e1000_phy_has_link_generic"); + + if (!(hw->phy.ops.read_reg)) + return E1000_SUCCESS; + + for (i = 0; i < iterations; i++) { + /* + * Some PHYs require the PHY_STATUS register to be read + * twice due to the link bit being sticky. No harm doing + * it across the board. + */ + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); + if (ret_val) + break; + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); + if (ret_val) + break; + if (phy_status & MII_SR_LINK_STATUS) + break; + if (usec_interval >= 1000) + msec_delay_irq(usec_interval/1000); + else + usec_delay(usec_interval); + } + + *success = (i < iterations) ? TRUE : FALSE; + + return ret_val; +} + +/** + * e1000_get_cable_length_m88 - Determine cable length for m88 PHY + * @hw: pointer to the HW structure + * + * Reads the PHY specific status register to retrieve the cable length + * information. The cable length is determined by averaging the minimum and + * maximum values to get the "average" cable length. The m88 PHY has four + * possible cable length values, which are: + * Register Value Cable Length + * 0 < 50 meters + * 1 50 - 80 meters + * 2 80 - 110 meters + * 3 110 - 140 meters + * 4 > 140 meters + **/ +s32 e1000_get_cable_length_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, index; + + DEBUGFUNC("e1000_get_cable_length_m88"); + + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + goto out; + + index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> + M88E1000_PSSR_CABLE_LENGTH_SHIFT; + phy->min_cable_length = e1000_m88_cable_length_table[index]; + phy->max_cable_length = e1000_m88_cable_length_table[index+1]; + + phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; + +out: + return ret_val; +} + +/** + * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY + * @hw: pointer to the HW structure + * + * The automatic gain control (agc) normalizes the amplitude of the + * received signal, adjusting for the attenuation produced by the + * cable. By reading the AGC registers, which represent the + * combination of coarse and fine gain value, the value can be put + * into a lookup table to obtain the approximate cable length + * for each channel. + **/ +s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 phy_data, i, agc_value = 0; + u16 cur_agc_index, max_agc_index = 0; + u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; + u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = + {IGP02E1000_PHY_AGC_A, + IGP02E1000_PHY_AGC_B, + IGP02E1000_PHY_AGC_C, + IGP02E1000_PHY_AGC_D}; + + DEBUGFUNC("e1000_get_cable_length_igp_2"); + + /* Read the AGC registers for all channels */ + for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { + ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data); + if (ret_val) + goto out; + + /* + * Getting bits 15:9, which represent the combination of + * coarse and fine gain values. The result is a number + * that can be put into the lookup table to obtain the + * approximate cable length. + */ + cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & + IGP02E1000_AGC_LENGTH_MASK; + + /* Array index bound check. */ + if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || + (cur_agc_index == 0)) { + ret_val = -E1000_ERR_PHY; + goto out; + } + + /* Remove min & max AGC values from calculation. */ + if (e1000_igp_2_cable_length_table[min_agc_index] > + e1000_igp_2_cable_length_table[cur_agc_index]) + min_agc_index = cur_agc_index; + if (e1000_igp_2_cable_length_table[max_agc_index] < + e1000_igp_2_cable_length_table[cur_agc_index]) + max_agc_index = cur_agc_index; + + agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; + } + + agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + + e1000_igp_2_cable_length_table[max_agc_index]); + agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); + + /* Calculate cable length with the error range of +/- 10 meters. */ + phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? + (agc_value - IGP02E1000_AGC_RANGE) : 0; + phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; + + phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; + +out: + return ret_val; +} + +/** + * e1000_get_phy_info_m88 - Retrieve PHY information + * @hw: pointer to the HW structure + * + * Valid for only copper links. Read the PHY status register (sticky read) + * to verify that link is up. Read the PHY special control register to + * determine the polarity and 10base-T extended distance. Read the PHY + * special status register to determine MDI/MDIx and current speed. If + * speed is 1000, then determine cable length, local and remote receiver. + **/ +s32 e1000_get_phy_info_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + DEBUGFUNC("e1000_get_phy_info_m88"); + + if (hw->phy.media_type != e1000_media_type_copper) { + DEBUGOUT("Phy info is only valid for copper media\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + goto out; + + if (!link) { + DEBUGOUT("Phy info is only valid if link is up\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + goto out; + + phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) + ? TRUE + : FALSE; + + ret_val = e1000_check_polarity_m88(hw); + if (ret_val) + goto out; + + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + goto out; + + phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? TRUE : FALSE; + + if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { + ret_val = hw->phy.ops.get_cable_length(hw); + if (ret_val) + goto out; + + ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); + if (ret_val) + goto out; + + phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + + phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + } else { + /* Set values to "undefined" */ + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; + } + +out: + return ret_val; +} + +/** + * e1000_get_phy_info_igp - Retrieve igp PHY information + * @hw: pointer to the HW structure + * + * Read PHY status to determine if link is up. If link is up, then + * set/determine 10base-T extended distance and polarity correction. Read + * PHY port status to determine MDI/MDIx and speed. Based on the speed, + * determine on the cable length, local and remote receiver. + **/ +s32 e1000_get_phy_info_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + DEBUGFUNC("e1000_get_phy_info_igp"); + + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + goto out; + + if (!link) { + DEBUGOUT("Phy info is only valid if link is up\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + phy->polarity_correction = TRUE; + + ret_val = e1000_check_polarity_igp(hw); + if (ret_val) + goto out; + + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); + if (ret_val) + goto out; + + phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? TRUE : FALSE; + + if ((data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) { + ret_val = hw->phy.ops.get_cable_length(hw); + if (ret_val) + goto out; + + ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); + if (ret_val) + goto out; + + phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + + phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + } else { + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; + } + +out: + return ret_val; +} + +/** + * e1000_phy_sw_reset_generic - PHY software reset + * @hw: pointer to the HW structure + * + * Does a software reset of the PHY by reading the PHY control register and + * setting/write the control register reset bit to the PHY. + **/ +s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 phy_ctrl; + + DEBUGFUNC("e1000_phy_sw_reset_generic"); + + if (!(hw->phy.ops.read_reg)) + goto out; + + ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); + if (ret_val) + goto out; + + phy_ctrl |= MII_CR_RESET; + ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl); + if (ret_val) + goto out; + + usec_delay(1); + +out: + return ret_val; +} + +/** + * e1000_phy_hw_reset_generic - PHY hardware reset + * @hw: pointer to the HW structure + * + * Verify the reset block is not blocking us from resetting. Acquire + * semaphore (if necessary) and read/set/write the device control reset + * bit in the PHY. Wait the appropriate delay time for the device to + * reset and release the semaphore (if necessary). + **/ +s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u32 ctrl; + + DEBUGFUNC("e1000_phy_hw_reset_generic"); + + ret_val = phy->ops.check_reset_block(hw); + if (ret_val) { + ret_val = E1000_SUCCESS; + goto out; + } + + ret_val = phy->ops.acquire(hw); + if (ret_val) + goto out; + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); + E1000_WRITE_FLUSH(hw); + + usec_delay(phy->reset_delay_us); + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + usec_delay(150); + + phy->ops.release(hw); + + ret_val = phy->ops.get_cfg_done(hw); + +out: + return ret_val; +} + +/** + * e1000_get_cfg_done_generic - Generic configuration done + * @hw: pointer to the HW structure + * + * Generic function to wait 10 milli-seconds for configuration to complete + * and return success. + **/ +s32 e1000_get_cfg_done_generic(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_get_cfg_done_generic"); + + msec_delay_irq(10); + + return E1000_SUCCESS; +} + +/** + * e1000_phy_init_script_igp3 - Inits the IGP3 PHY + * @hw: pointer to the HW structure + * + * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. + **/ +s32 e1000_phy_init_script_igp3(struct e1000_hw *hw) +{ + DEBUGOUT("Running IGP 3 PHY init script\n"); + + /* PHY init IGP 3 */ + /* Enable rise/fall, 10-mode work in class-A */ + hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018); + /* Remove all caps from Replica path filter */ + hw->phy.ops.write_reg(hw, 0x2F52, 0x0000); + /* Bias trimming for ADC, AFE and Driver (Default) */ + hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24); + /* Increase Hybrid poly bias */ + hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0); + /* Add 4% to Tx amplitude in Gig mode */ + hw->phy.ops.write_reg(hw, 0x2010, 0x10B0); + /* Disable trimming (TTT) */ + hw->phy.ops.write_reg(hw, 0x2011, 0x0000); + /* Poly DC correction to 94.6% + 2% for all channels */ + hw->phy.ops.write_reg(hw, 0x20DD, 0x249A); + /* ABS DC correction to 95.9% */ + hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3); + /* BG temp curve trim */ + hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE); + /* Increasing ADC OPAMP stage 1 currents to max */ + hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4); + /* Force 1000 ( required for enabling PHY regs configuration) */ + hw->phy.ops.write_reg(hw, 0x0000, 0x0140); + /* Set upd_freq to 6 */ + hw->phy.ops.write_reg(hw, 0x1F30, 0x1606); + /* Disable NPDFE */ + hw->phy.ops.write_reg(hw, 0x1F31, 0xB814); + /* Disable adaptive fixed FFE (Default) */ + hw->phy.ops.write_reg(hw, 0x1F35, 0x002A); + /* Enable FFE hysteresis */ + hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067); + /* Fixed FFE for short cable lengths */ + hw->phy.ops.write_reg(hw, 0x1F54, 0x0065); + /* Fixed FFE for medium cable lengths */ + hw->phy.ops.write_reg(hw, 0x1F55, 0x002A); + /* Fixed FFE for long cable lengths */ + hw->phy.ops.write_reg(hw, 0x1F56, 0x002A); + /* Enable Adaptive Clip Threshold */ + hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0); + /* AHT reset limit to 1 */ + hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF); + /* Set AHT master delay to 127 msec */ + hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC); + /* Set scan bits for AHT */ + hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF); + /* Set AHT Preset bits */ + hw->phy.ops.write_reg(hw, 0x1F79, 0x0210); + /* Change integ_factor of channel A to 3 */ + hw->phy.ops.write_reg(hw, 0x1895, 0x0003); + /* Change prop_factor of channels BCD to 8 */ + hw->phy.ops.write_reg(hw, 0x1796, 0x0008); + /* Change cg_icount + enable integbp for channels BCD */ + hw->phy.ops.write_reg(hw, 0x1798, 0xD008); + /* + * Change cg_icount + enable integbp + change prop_factor_master + * to 8 for channel A + */ + hw->phy.ops.write_reg(hw, 0x1898, 0xD918); + /* Disable AHT in Slave mode on channel A */ + hw->phy.ops.write_reg(hw, 0x187A, 0x0800); + /* + * Enable LPLU and disable AN to 1000 in non-D0a states, + * Enable SPD+B2B + */ + hw->phy.ops.write_reg(hw, 0x0019, 0x008D); + /* Enable restart AN on an1000_dis change */ + hw->phy.ops.write_reg(hw, 0x001B, 0x2080); + /* Enable wh_fifo read clock in 10/100 modes */ + hw->phy.ops.write_reg(hw, 0x0014, 0x0045); + /* Restart AN, Speed selection is 1000 */ + hw->phy.ops.write_reg(hw, 0x0000, 0x1340); + + return E1000_SUCCESS; +} + +/** + * e1000_get_phy_type_from_id - Get PHY type from id + * @phy_id: phy_id read from the phy + * + * Returns the phy type from the id. + **/ +enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id) +{ + enum e1000_phy_type phy_type = e1000_phy_unknown; + + switch (phy_id) { + case M88E1000_I_PHY_ID: + case M88E1000_E_PHY_ID: + case M88E1111_I_PHY_ID: + case M88E1011_I_PHY_ID: + phy_type = e1000_phy_m88; + break; + case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ + phy_type = e1000_phy_igp_2; + break; + case GG82563_E_PHY_ID: + phy_type = e1000_phy_gg82563; + break; + case IGP03E1000_E_PHY_ID: + phy_type = e1000_phy_igp_3; + break; + case IFE_E_PHY_ID: + case IFE_PLUS_E_PHY_ID: + case IFE_C_E_PHY_ID: + phy_type = e1000_phy_ife; + break; + case BME1000_E_PHY_ID: + case BME1000_E_PHY_ID_R2: + phy_type = e1000_phy_bm; + break; + default: + phy_type = e1000_phy_unknown; + break; + } + return phy_type; +} + +/** + * e1000_determine_phy_address - Determines PHY address. + * @hw: pointer to the HW structure + * + * This uses a trial and error method to loop through possible PHY + * addresses. It tests each by reading the PHY ID registers and + * checking for a match. + **/ +s32 e1000_determine_phy_address(struct e1000_hw* hw) +{ + s32 ret_val = -E1000_ERR_PHY_TYPE; + u32 phy_addr= 0; + u32 i; + enum e1000_phy_type phy_type = e1000_phy_unknown; + + for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { + hw->phy.addr = phy_addr; + i = 0; + + do { + e1000_get_phy_id(hw); + phy_type = e1000_get_phy_type_from_id(hw->phy.id); + + /* + * If phy_type is valid, break - we found our + * PHY address + */ + if (phy_type != e1000_phy_unknown) { + ret_val = E1000_SUCCESS; + goto out; + } + msec_delay(1); + i++; + } while (i < 10); + } + +out: + return ret_val; +} + +/** + * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address + * @page: page to access + * + * Returns the phy address for the page requested. + **/ +static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) +{ + u32 phy_addr = 2; + + if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) + phy_addr = 1; + + return phy_addr; +} + +/** + * e1000_write_phy_reg_bm - Write BM PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val; + u32 page_select = 0; + u32 page = offset >> IGP_PAGE_SHIFT; + u32 page_shift = 0; + + DEBUGFUNC("e1000_write_phy_reg_bm"); + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, + offset, &data, FALSE); + goto out; + } + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + /* + * Page select is register 31 for phy address 1 and 22 for + * phy address 2 and 3. Page select is shifted only for + * phy address 1. + */ + if (hw->phy.addr == 1) { + page_shift = IGP_PAGE_SHIFT; + page_select = IGP01E1000_PHY_PAGE_SELECT; + } else { + page_shift = 0; + page_select = BM_PHY_PAGE_SELECT; + } + + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_write_phy_reg_mdic(hw, page_select, + (page << page_shift)); + if (ret_val) { + hw->phy.ops.release(hw); + goto out; + } + } + + ret_val = e1000_write_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_read_phy_reg_bm - Read BM PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and storing the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val; + u32 page_select = 0; + u32 page = offset >> IGP_PAGE_SHIFT; + u32 page_shift = 0; + + DEBUGFUNC("e1000_read_phy_reg_bm"); + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, + offset, data, TRUE); + goto out; + } + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + /* + * Page select is register 31 for phy address 1 and 22 for + * phy address 2 and 3. Page select is shifted only for + * phy address 1. + */ + if (hw->phy.addr == 1) { + page_shift = IGP_PAGE_SHIFT; + page_select = IGP01E1000_PHY_PAGE_SELECT; + } else { + page_shift = 0; + page_select = BM_PHY_PAGE_SELECT; + } + + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_write_phy_reg_mdic(hw, page_select, + (page << page_shift)); + if (ret_val) { + hw->phy.ops.release(hw); + goto out; + } + } + + ret_val = e1000_read_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_read_phy_reg_bm2 - Read BM PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and storing the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val; + u16 page = (u16)(offset >> IGP_PAGE_SHIFT); + + DEBUGFUNC("e1000_write_phy_reg_bm2"); + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, + TRUE); + goto out; + } + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + hw->phy.addr = 1; + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, + page); + + if (ret_val) { + hw->phy.ops.release(hw); + goto out; + } + } + + ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_write_phy_reg_bm2 - Write BM PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val; + u16 page = (u16)(offset >> IGP_PAGE_SHIFT); + + DEBUGFUNC("e1000_write_phy_reg_bm2"); + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, + FALSE); + goto out; + } + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + hw->phy.addr = 1; + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, + page); + + if (ret_val) { + hw->phy.ops.release(hw); + goto out; + } + } + + ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register + * @hw: pointer to the HW structure + * @offset: register offset to be read or written + * @data: pointer to the data to read or write + * @read: determines if operation is read or write + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and storing the retrieved information in data. Release any acquired + * semaphores before exiting. Note that procedure to read the wakeup + * registers are different. It works as such: + * 1) Set page 769, register 17, bit 2 = 1 + * 2) Set page to 800 for host (801 if we were manageability) + * 3) Write the address using the address opcode (0x11) + * 4) Read or write the data using the data opcode (0x12) + * 5) Restore 769_17.2 to its original value + **/ +s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, + u32 offset, u16 *data, bool read) +{ + s32 ret_val; + u16 reg = ((u16)offset); + u16 phy_reg = 0; + u8 phy_acquired = 1; + + DEBUGFUNC("e1000_read_phy_wakeup_reg_bm"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) { + DEBUGOUT("Could not acquire PHY\n"); + phy_acquired = 0; + goto out; + } + + /* All operations in this function are phy address 1 */ + hw->phy.addr = 1; + + /* Set page 769 */ + e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, + (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); + + ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg); + if (ret_val) { + DEBUGOUT("Could not read PHY page 769\n"); + goto out; + } + + /* First clear bit 4 to avoid a power state change */ + phy_reg &= ~(BM_WUC_HOST_WU_BIT); + ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); + if (ret_val) { + DEBUGOUT("Could not clear PHY page 769 bit 4\n"); + goto out; + } + + /* Write bit 2 = 1, and clear bit 4 to 769_17 */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, + phy_reg | BM_WUC_ENABLE_BIT); + if (ret_val) { + DEBUGOUT("Could not write PHY page 769 bit 2\n"); + goto out; + } + + /* Select page 800 */ + ret_val = e1000_write_phy_reg_mdic(hw, + IGP01E1000_PHY_PAGE_SELECT, + (BM_WUC_PAGE << IGP_PAGE_SHIFT)); + + /* Write the page 800 offset value using opcode 0x11 */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg); + if (ret_val) { + DEBUGOUT("Could not write address opcode to page 800\n"); + goto out; + } + + if (read) { + /* Read the page 800 value using opcode 0x12 */ + ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, + data); + } else { + /* Read the page 800 value using opcode 0x12 */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, + *data); + } + + if (ret_val) { + DEBUGOUT("Could not read data value from page 800\n"); + goto out; + } + + /* + * Restore 769_17.2 to its original value + * Set page 769 + */ + e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, + (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); + + /* Clear 769_17.2 */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); + if (ret_val) { + DEBUGOUT("Could not clear PHY page 769 bit 2\n"); + goto out; + } + +out: + if (phy_acquired == 1) + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_power_up_phy_copper - Restore copper link in case of PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, restore the link to previous + * settings. + **/ +void e1000_power_up_phy_copper(struct e1000_hw *hw) +{ + u16 mii_reg = 0; + + /* The PHY will retain its settings across a power down/up cycle */ + hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); + mii_reg &= ~MII_CR_POWER_DOWN; + hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); +} + +/** + * e1000_power_down_phy_copper - Restore copper link in case of PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, restore the link to previous + * settings. + **/ +void e1000_power_down_phy_copper(struct e1000_hw *hw) +{ + u16 mii_reg = 0; + + /* The PHY will retain its settings across a power down/up cycle */ + hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); + mii_reg |= MII_CR_POWER_DOWN; + hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); + msec_delay(1); +} diff --git a/sys/dev/e1000/e1000_phy.h b/sys/dev/e1000/e1000_phy.h new file mode 100644 index 0000000..0aa03e6 --- /dev/null +++ b/sys/dev/e1000/e1000_phy.h @@ -0,0 +1,200 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_PHY_H_ +#define _E1000_PHY_H_ + +enum e1000_ms_type { + e1000_ms_hw_default = 0, + e1000_ms_force_master, + e1000_ms_force_slave, + e1000_ms_auto +}; + +enum e1000_smart_speed { + e1000_smart_speed_default = 0, + e1000_smart_speed_on, + e1000_smart_speed_off +}; + +void e1000_init_phy_ops_generic(struct e1000_hw *hw); +s32 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data); +void e1000_null_phy_generic(struct e1000_hw *hw); +s32 e1000_null_lplu_state(struct e1000_hw *hw, bool active); +s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_check_downshift_generic(struct e1000_hw *hw); +s32 e1000_check_polarity_m88(struct e1000_hw *hw); +s32 e1000_check_polarity_igp(struct e1000_hw *hw); +s32 e1000_check_reset_block_generic(struct e1000_hw *hw); +s32 e1000_copper_link_autoneg(struct e1000_hw *hw); +s32 e1000_copper_link_setup_igp(struct e1000_hw *hw); +s32 e1000_copper_link_setup_m88(struct e1000_hw *hw); +s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw); +s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw); +s32 e1000_get_cable_length_m88(struct e1000_hw *hw); +s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw); +s32 e1000_get_cfg_done_generic(struct e1000_hw *hw); +s32 e1000_get_phy_id(struct e1000_hw *hw); +s32 e1000_get_phy_info_igp(struct e1000_hw *hw); +s32 e1000_get_phy_info_m88(struct e1000_hw *hw); +s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw); +void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl); +s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw); +s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw); +s32 e1000_phy_setup_autoneg(struct e1000_hw *hw); +s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active); +s32 e1000_setup_copper_link_generic(struct e1000_hw *hw); +s32 e1000_wait_autoneg_generic(struct e1000_hw *hw); +s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_phy_reset_dsp(struct e1000_hw *hw); +s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, + u32 usec_interval, bool *success); +s32 e1000_phy_init_script_igp3(struct e1000_hw *hw); +enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id); +s32 e1000_determine_phy_address(struct e1000_hw* hw); +s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data, + bool read); +s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data); +void e1000_power_up_phy_copper(struct e1000_hw *hw); +void e1000_power_down_phy_copper(struct e1000_hw *hw); +s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data); + +#define E1000_MAX_PHY_ADDR 4 + +/* IGP01E1000 Specific Registers */ +#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */ +#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */ +#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */ +#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */ +#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO */ +#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality */ +#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */ +#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */ +#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */ +#define IGP_PAGE_SHIFT 5 +#define PHY_REG_MASK 0x1F + +#define BM_WUC_PAGE 800 +#define BM_WUC_ADDRESS_OPCODE 0x11 +#define BM_WUC_DATA_OPCODE 0x12 +#define BM_WUC_ENABLE_PAGE 769 +#define BM_WUC_ENABLE_REG 17 +#define BM_WUC_ENABLE_BIT (1 << 2) +#define BM_WUC_HOST_WU_BIT (1 << 4) + +/* BM PHY Copper Specific Control 1 */ +#define BM_CS_CTRL1 16 +#define BM_CS_CTRL1_ENERGY_DETECT 0x0300 /* Enable Energy Detect */ + +/* BM PHY Copper Specific States */ +#define BM_CS_STATUS 17 +#define BM_CS_STATUS_ENERGY_DETECT 0x0010 /* Energy Detect Status */ + +#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 +#define IGP01E1000_PHY_POLARITY_MASK 0x0078 + +#define IGP01E1000_PSCR_AUTO_MDIX 0x1000 +#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */ + +#define IGP01E1000_PSCFR_SMART_SPEED 0x0080 + +/* Enable flexible speed on link-up */ +#define IGP01E1000_GMII_FLEX_SPD 0x0010 +#define IGP01E1000_GMII_SPD 0x0020 /* Enable SPD */ + +#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */ +#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */ +#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */ + +#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000 + +#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002 +#define IGP01E1000_PSSR_MDIX 0x0008 +#define IGP01E1000_PSSR_SPEED_MASK 0xC000 +#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000 + +#define IGP02E1000_PHY_CHANNEL_NUM 4 +#define IGP02E1000_PHY_AGC_A 0x11B1 +#define IGP02E1000_PHY_AGC_B 0x12B1 +#define IGP02E1000_PHY_AGC_C 0x14B1 +#define IGP02E1000_PHY_AGC_D 0x18B1 + +#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */ +#define IGP02E1000_AGC_LENGTH_MASK 0x7F +#define IGP02E1000_AGC_RANGE 15 + +#define IGP03E1000_PHY_MISC_CTRL 0x1B +#define IGP03E1000_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Manually Set Duplex */ + +#define E1000_CABLE_LENGTH_UNDEFINED 0xFF + +#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000 +#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16 +#define E1000_KMRNCTRLSTA_REN 0x00200000 +#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */ +#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */ + +#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 +#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */ +#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */ +#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */ + +/* IFE PHY Extended Status Control */ +#define IFE_PESC_POLARITY_REVERSED 0x0100 + +/* IFE PHY Special Control */ +#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 +#define IFE_PSC_FORCE_POLARITY 0x0020 +#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 + +/* IFE PHY Special Control and LED Control */ +#define IFE_PSCL_PROBE_MODE 0x0020 +#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */ +#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */ + +/* IFE PHY MDIX Control */ +#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */ +#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */ +#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */ + +#endif diff --git a/sys/dev/e1000/e1000_regs.h b/sys/dev/e1000/e1000_regs.h new file mode 100644 index 0000000..5edd502 --- /dev/null +++ b/sys/dev/e1000/e1000_regs.h @@ -0,0 +1,464 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_REGS_H_ +#define _E1000_REGS_H_ + +#define E1000_CTRL 0x00000 /* Device Control - RW */ +#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */ +#define E1000_STATUS 0x00008 /* Device Status - RO */ +#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ +#define E1000_EERD 0x00014 /* EEPROM Read - RW */ +#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ +#define E1000_FLA 0x0001C /* Flash Access - RW */ +#define E1000_MDIC 0x00020 /* MDI Control - RW */ +#define E1000_SCTL 0x00024 /* SerDes Control - RW */ +#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ +#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ +#define E1000_FEXTNVM 0x00028 /* Future Extended NVM - RW */ +#define E1000_FCT 0x00030 /* Flow Control Type - RW */ +#define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */ +#define E1000_VET 0x00038 /* VLAN Ether Type - RW */ +#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ +#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ +#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ +#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ +#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ +#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */ +#define E1000_IVAR 0x000E4 /* Interrupt Vector Allocation Register - RW */ +#define E1000_RCTL 0x00100 /* Rx Control - RW */ +#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ +#define E1000_TXCW 0x00178 /* Tx Configuration Word - RW */ +#define E1000_RXCW 0x00180 /* Rx Configuration Word - RO */ +#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */ +#define E1000_EITR(_n) (0x01680 + (0x4 * (_n))) +#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */ +#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */ +#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */ +#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */ +#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */ +#define E1000_GPIE 0x01514 /* General Purpose Interrupt Enable - RW */ +#define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */ +#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */ +#define E1000_TCTL 0x00400 /* Tx Control - RW */ +#define E1000_TCTL_EXT 0x00404 /* Extended Tx Control - RW */ +#define E1000_TIPG 0x00410 /* Tx Inter-packet gap -RW */ +#define E1000_TBT 0x00448 /* Tx Burst Timer - RW */ +#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ +#define E1000_LEDCTL 0x00E00 /* LED Control - RW */ +#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ +#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ +#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */ +#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ +#define E1000_PBS 0x01008 /* Packet Buffer Size */ +#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ +#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */ +#define E1000_FLASHT 0x01028 /* FLASH Timer Register */ +#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ +#define E1000_FLSWCTL 0x01030 /* FLASH control register */ +#define E1000_FLSWDATA 0x01034 /* FLASH data register */ +#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */ +#define E1000_FLOP 0x0103C /* FLASH Opcode Register */ +#define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */ +#define E1000_I2CPARAMS 0x0102C /* SFPI2C Parameters Register - RW */ +#define E1000_WDSTP 0x01040 /* Watchdog Setup - RW */ +#define E1000_SWDSTS 0x01044 /* SW Device Status - RW */ +#define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */ +#define E1000_TCPTIMER 0x0104C /* TCP Timer - RW */ +#define E1000_VPDDIAG 0x01060 /* VPD Diagnostic - RO */ +#define E1000_ICR_V2 0x01500 /* Interrupt Cause - new location - RC */ +#define E1000_ICS_V2 0x01504 /* Interrupt Cause Set - new location - WO */ +#define E1000_IMS_V2 0x01508 /* Interrupt Mask Set/Read - new location - RW */ +#define E1000_IMC_V2 0x0150C /* Interrupt Mask Clear - new location - WO */ +#define E1000_IAM_V2 0x01510 /* Interrupt Ack Auto Mask - new location - RW */ +#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */ +#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ +#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ +#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */ +#define E1000_RDFPCQ(_n) (0x02430 + (0x4 * (_n))) +#define E1000_PBRTH 0x02458 /* PB Rx Arbitration Threshold - RW */ +#define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */ +/* Split and Replication Rx Control - RW */ +#define E1000_RDPUMB 0x025CC /* DMA Rx Descriptor uC Mailbox - RW */ +#define E1000_RDPUAD 0x025D0 /* DMA Rx Descriptor uC Addr Command - RW */ +#define E1000_RDPUWD 0x025D4 /* DMA Rx Descriptor uC Data Write - RW */ +#define E1000_RDPURD 0x025D8 /* DMA Rx Descriptor uC Data Read - RW */ +#define E1000_RDPUCTL 0x025DC /* DMA Rx Descriptor uC Control - RW */ +#define E1000_PBDIAG 0x02458 /* Packet Buffer Diagnostic - RW */ +#define E1000_RXPBS 0x02404 /* Rx Packet Buffer Size - RW */ +#define E1000_RXCTL(_n) (0x0C014 + (0x40 * (_n))) +#define E1000_RQDPC(_n) (0x0C030 + (0x40 * (_n))) +#define E1000_TXCTL(_n) (0x0E014 + (0x40 * (_n))) +#define E1000_RDTR 0x02820 /* Rx Delay Timer - RW */ +#define E1000_RADV 0x0282C /* Rx Interrupt Absolute Delay Timer - RW */ +/* + * Convenience macros + * + * Note: "_n" is the queue number of the register to be written to. + * + * Example usage: + * E1000_RDBAL_REG(current_rx_queue) + */ +#define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : (0x0C000 + ((_n) * 0x40))) +#define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : (0x0C004 + ((_n) * 0x40))) +#define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : (0x0C008 + ((_n) * 0x40))) +#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : (0x0C00C + ((_n) * 0x40))) +#define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : (0x0C010 + ((_n) * 0x40))) +#define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : (0x0C018 + ((_n) * 0x40))) +#define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : (0x0C028 + ((_n) * 0x40))) +#define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : (0x0E000 + ((_n) * 0x40))) +#define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : (0x0E004 + ((_n) * 0x40))) +#define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : (0x0E008 + ((_n) * 0x40))) +#define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : (0x0E010 + ((_n) * 0x40))) +#define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : (0x0E018 + ((_n) * 0x40))) +#define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : (0x0E028 + ((_n) * 0x40))) +#define E1000_TARC(_n) (0x03840 + (_n << 8)) +#define E1000_DCA_TXCTRL(_n) (0x03814 + (_n << 8)) +#define E1000_DCA_RXCTRL(_n) (0x02814 + (_n << 8)) +#define E1000_TDWBAL(_n) ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) : (0x0E038 + ((_n) * 0x40))) +#define E1000_TDWBAH(_n) ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) : (0x0E03C + ((_n) * 0x40))) +#define E1000_RSRPD 0x02C00 /* Rx Small Packet Detect - RW */ +#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ +#define E1000_TXDMAC 0x03000 /* Tx DMA Control - RW */ +#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */ +#define E1000_PSRTYPE(_i) (0x05480 + ((_i) * 4)) +#define E1000_RAL(_i) (((_i) <= 15) ? (0x05400 + ((_i) * 8)) : (0x054E0 + ((_i - 16) * 8))) +#define E1000_RAH(_i) (((_i) <= 15) ? (0x05404 + ((_i) * 8)) : (0x054E4 + ((_i - 16) * 8))) +#define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8)) +#define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4)) +#define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4)) +#define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8)) +#define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8)) +#define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8)) +#define E1000_PBSLAC 0x03100 /* Packet Buffer Slave Access Control */ +#define E1000_PBSLAD(_n) (0x03110 + (0x4 * (_n))) /* Packet Buffer DWORD (_n) */ +#define E1000_TXPBS 0x03404 /* Tx Packet Buffer Size - RW */ +#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */ +#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */ +#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */ +#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */ +#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */ +#define E1000_TDPUMB 0x0357C /* DMA Tx Descriptor uC Mail Box - RW */ +#define E1000_TDPUAD 0x03580 /* DMA Tx Descriptor uC Addr Command - RW */ +#define E1000_TDPUWD 0x03584 /* DMA Tx Descriptor uC Data Write - RW */ +#define E1000_TDPURD 0x03588 /* DMA Tx Descriptor uC Data Read - RW */ +#define E1000_TDPUCTL 0x0358C /* DMA Tx Descriptor uC Control - RW */ +#define E1000_DTXCTL 0x03590 /* DMA Tx Control - RW */ +#define E1000_DTXTCPFLGL 0x0359C /* DMA Tx Control flag low - RW */ +#define E1000_DTXTCPFLGH 0x035A0 /* DMA Tx Control flag high - RW */ +#define E1000_DTXMXSZRQ 0x03540 /* DMA Tx Max Total Allow Size Requests - RW */ +#define E1000_TIDV 0x03820 /* Tx Interrupt Delay Value - RW */ +#define E1000_TADV 0x0382C /* Tx Interrupt Absolute Delay Val - RW */ +#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ +#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ +#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ +#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ +#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ +#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ +#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ +#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ +#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ +#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ +#define E1000_COLC 0x04028 /* Collision Count - R/clr */ +#define E1000_DC 0x04030 /* Defer Count - R/clr */ +#define E1000_TNCRS 0x04034 /* Tx-No CRS - R/clr */ +#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ +#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ +#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ +#define E1000_XONRXC 0x04048 /* XON Rx Count - R/clr */ +#define E1000_XONTXC 0x0404C /* XON Tx Count - R/clr */ +#define E1000_XOFFRXC 0x04050 /* XOFF Rx Count - R/clr */ +#define E1000_XOFFTXC 0x04054 /* XOFF Tx Count - R/clr */ +#define E1000_FCRUC 0x04058 /* Flow Control Rx Unsupported Count- R/clr */ +#define E1000_PRC64 0x0405C /* Packets Rx (64 bytes) - R/clr */ +#define E1000_PRC127 0x04060 /* Packets Rx (65-127 bytes) - R/clr */ +#define E1000_PRC255 0x04064 /* Packets Rx (128-255 bytes) - R/clr */ +#define E1000_PRC511 0x04068 /* Packets Rx (255-511 bytes) - R/clr */ +#define E1000_PRC1023 0x0406C /* Packets Rx (512-1023 bytes) - R/clr */ +#define E1000_PRC1522 0x04070 /* Packets Rx (1024-1522 bytes) - R/clr */ +#define E1000_GPRC 0x04074 /* Good Packets Rx Count - R/clr */ +#define E1000_BPRC 0x04078 /* Broadcast Packets Rx Count - R/clr */ +#define E1000_MPRC 0x0407C /* Multicast Packets Rx Count - R/clr */ +#define E1000_GPTC 0x04080 /* Good Packets Tx Count - R/clr */ +#define E1000_GORCL 0x04088 /* Good Octets Rx Count Low - R/clr */ +#define E1000_GORCH 0x0408C /* Good Octets Rx Count High - R/clr */ +#define E1000_GOTCL 0x04090 /* Good Octets Tx Count Low - R/clr */ +#define E1000_GOTCH 0x04094 /* Good Octets Tx Count High - R/clr */ +#define E1000_RNBC 0x040A0 /* Rx No Buffers Count - R/clr */ +#define E1000_RUC 0x040A4 /* Rx Undersize Count - R/clr */ +#define E1000_RFC 0x040A8 /* Rx Fragment Count - R/clr */ +#define E1000_ROC 0x040AC /* Rx Oversize Count - R/clr */ +#define E1000_RJC 0x040B0 /* Rx Jabber Count - R/clr */ +#define E1000_MGTPRC 0x040B4 /* Management Packets Rx Count - R/clr */ +#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ +#define E1000_MGTPTC 0x040BC /* Management Packets Tx Count - R/clr */ +#define E1000_TORL 0x040C0 /* Total Octets Rx Low - R/clr */ +#define E1000_TORH 0x040C4 /* Total Octets Rx High - R/clr */ +#define E1000_TOTL 0x040C8 /* Total Octets Tx Low - R/clr */ +#define E1000_TOTH 0x040CC /* Total Octets Tx High - R/clr */ +#define E1000_TPR 0x040D0 /* Total Packets Rx - R/clr */ +#define E1000_TPT 0x040D4 /* Total Packets Tx - R/clr */ +#define E1000_PTC64 0x040D8 /* Packets Tx (64 bytes) - R/clr */ +#define E1000_PTC127 0x040DC /* Packets Tx (65-127 bytes) - R/clr */ +#define E1000_PTC255 0x040E0 /* Packets Tx (128-255 bytes) - R/clr */ +#define E1000_PTC511 0x040E4 /* Packets Tx (256-511 bytes) - R/clr */ +#define E1000_PTC1023 0x040E8 /* Packets Tx (512-1023 bytes) - R/clr */ +#define E1000_PTC1522 0x040EC /* Packets Tx (1024-1522 Bytes) - R/clr */ +#define E1000_MPTC 0x040F0 /* Multicast Packets Tx Count - R/clr */ +#define E1000_BPTC 0x040F4 /* Broadcast Packets Tx Count - R/clr */ +#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context Tx - R/clr */ +#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context Tx Fail - R/clr */ +#define E1000_IAC 0x04100 /* Interrupt Assertion Count */ +#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Packet Timer Expire Count */ +#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Absolute Timer Expire Count */ +#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Packet Timer Expire Count */ +#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Absolute Timer Expire Count */ +#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */ +#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Minimum Threshold Count */ +#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Descriptor Minimum Threshold Count */ +#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */ + +#define E1000_LSECTXUT 0x04300 /* LinkSec Tx Untagged Packet Count - OutPktsUntagged */ +#define E1000_LSECTXPKTE 0x04304 /* LinkSec Encrypted Tx Packets Count - OutPktsEncrypted */ +#define E1000_LSECTXPKTP 0x04308 /* LinkSec Protected Tx Packet Count - OutPktsProtected */ +#define E1000_LSECTXOCTE 0x0430C /* LinkSec Encrypted Tx Octets Count - OutOctetsEncrypted */ +#define E1000_LSECTXOCTP 0x04310 /* LinkSec Protected Tx Octets Count - OutOctetsProtected */ +#define E1000_LSECRXUT 0x04314 /* LinkSec Untagged non-Strict Rx Packet Count - InPktsUntagged/InPktsNoTag */ +#define E1000_LSECRXOCTD 0x0431C /* LinkSec Rx Octets Decrypted Count - InOctetsDecrypted */ +#define E1000_LSECRXOCTV 0x04320 /* LinkSec Rx Octets Validated - InOctetsValidated */ +#define E1000_LSECRXBAD 0x04324 /* LinkSec Rx Bad Tag - InPktsBadTag */ +#define E1000_LSECRXNOSCI 0x04328 /* LinkSec Rx Packet No SCI Count - InPktsNoSci */ +#define E1000_LSECRXUNSCI 0x0432C /* LinkSec Rx Packet Unknown SCI Count - InPktsUnknownSci */ +#define E1000_LSECRXUNCH 0x04330 /* LinkSec Rx Unchecked Packets Count - InPktsUnchecked */ +#define E1000_LSECRXDELAY 0x04340 /* LinkSec Rx Delayed Packet Count - InPktsDelayed */ +#define E1000_LSECRXLATE 0x04350 /* LinkSec Rx Late Packets Count - InPktsLate */ +#define E1000_LSECRXOK(_n) (0x04360 + (0x04 * (_n))) /* LinkSec Rx Packet OK Count - InPktsOk */ +#define E1000_LSECRXINV(_n) (0x04380 + (0x04 * (_n))) /* LinkSec Rx Invalid Count - InPktsInvalid */ +#define E1000_LSECRXNV(_n) (0x043A0 + (0x04 * (_n))) /* LinkSec Rx Not Valid Count - InPktsNotValid */ +#define E1000_LSECRXUNSA 0x043C0 /* LinkSec Rx Unused SA Count - InPktsUnusedSa */ +#define E1000_LSECRXNUSA 0x043D0 /* LinkSec Rx Not Using SA Count - InPktsNotUsingSa */ +#define E1000_LSECTXCAP 0x0B000 /* LinkSec Tx Capabilities Register - RO */ +#define E1000_LSECRXCAP 0x0B300 /* LinkSec Rx Capabilities Register - RO */ +#define E1000_LSECTXCTRL 0x0B004 /* LinkSec Tx Control - RW */ +#define E1000_LSECRXCTRL 0x0B304 /* LinkSec Rx Control - RW */ +#define E1000_LSECTXSCL 0x0B008 /* LinkSec Tx SCI Low - RW */ +#define E1000_LSECTXSCH 0x0B00C /* LinkSec Tx SCI High - RW */ +#define E1000_LSECTXSA 0x0B010 /* LinkSec Tx SA0 - RW */ +#define E1000_LSECTXPN0 0x0B018 /* LinkSec Tx SA PN 0 - RW */ +#define E1000_LSECTXPN1 0x0B01C /* LinkSec Tx SA PN 1 - RW */ +#define E1000_LSECRXSCL 0x0B3D0 /* LinkSec Rx SCI Low - RW */ +#define E1000_LSECRXSCH 0x0B3E0 /* LinkSec Rx SCI High - RW */ +#define E1000_LSECTXKEY0(_n) (0x0B020 + (0x04 * (_n))) /* LinkSec Tx 128-bit Key 0 - WO */ +#define E1000_LSECTXKEY1(_n) (0x0B030 + (0x04 * (_n))) /* LinkSec Tx 128-bit Key 1 - WO */ +#define E1000_LSECRXSA(_n) (0x0B310 + (0x04 * (_n))) /* LinkSec Rx SAs - RW */ +#define E1000_LSECRXPN(_n) (0x0B330 + (0x04 * (_n))) /* LinkSec Rx SAs - RW */ +/* + * LinkSec Rx Keys - where _n is the SA no. and _m the 4 dwords of the 128 bit + * key - RW. + */ +#define E1000_LSECRXKEY(_n, _m) (0x0B350 + (0x10 * (_n)) + (0x04 * (_m))) + +#define E1000_SSVPC 0x041A0 /* Switch Security Violation Packet Count */ +#define E1000_IPSCTRL 0xB430 /* IpSec Control Register */ +#define E1000_IPSRXCMD 0x0B408 /* IPSec Rx Command Register - RW */ +#define E1000_IPSRXIDX 0x0B400 /* IPSec Rx Index - RW */ +#define E1000_IPSRXIPADDR(_n) (0x0B420+ (0x04 * (_n))) /* IPSec Rx IPv4/v6 Address - RW */ +#define E1000_IPSRXKEY(_n) (0x0B410 + (0x04 * (_n))) /* IPSec Rx 128-bit Key - RW */ +#define E1000_IPSRXSALT 0x0B404 /* IPSec Rx Salt - RW */ +#define E1000_IPSRXSPI 0x0B40C /* IPSec Rx SPI - RW */ +#define E1000_IPSTXKEY(_n) (0x0B460 + (0x04 * (_n))) /* IPSec Tx 128-bit Key - RW */ +#define E1000_IPSTXSALT 0x0B454 /* IPSec Tx Salt - RW */ +#define E1000_IPSTXIDX 0x0B450 /* IPSec Tx SA IDX - RW */ +#define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */ +#define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */ +#define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */ +#define E1000_CBTMPC 0x0402C /* Circuit Breaker Tx Packet Count */ +#define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */ +#define E1000_CBRDPC 0x04044 /* Circuit Breaker Rx Dropped Count */ +#define E1000_CBRMPC 0x040FC /* Circuit Breaker Rx Packet Count */ +#define E1000_RPTHC 0x04104 /* Rx Packets To Host */ +#define E1000_HGPTC 0x04118 /* Host Good Packets Tx Count */ +#define E1000_HTCBDPC 0x04124 /* Host Tx Circuit Breaker Dropped Count */ +#define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */ +#define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */ +#define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */ +#define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */ +#define E1000_LENERRS 0x04138 /* Length Errors Count */ +#define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */ +#define E1000_HRMPC 0x0A018 /* Header Redirection Missed Packet Count */ +#define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */ +#define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */ +#define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */ +#define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Page - RW */ +#define E1000_1GSTAT_RCV 0x04228 /* 1GSTAT Code Violation Packet Count - RW */ +#define E1000_RXCSUM 0x05000 /* Rx Checksum Control - RW */ +#define E1000_RLPML 0x05004 /* Rx Long Packet Max Length */ +#define E1000_RFCTL 0x05008 /* Receive Filter Control*/ +#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ +#define E1000_RA 0x05400 /* Receive Address - RW Array */ +#define E1000_RA2 0x054E0 /* 2nd half of receive address array - RW Array */ +#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ +#define E1000_VT_CTL 0x0581C /* VMDq Control - RW */ +#define E1000_VFQA0 0x0B000 /* VLAN Filter Queue Array 0 - RW Array */ +#define E1000_VFQA1 0x0B200 /* VLAN Filter Queue Array 1 - RW Array */ +#define E1000_WUC 0x05800 /* Wakeup Control - RW */ +#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ +#define E1000_WUS 0x05810 /* Wakeup Status - RO */ +#define E1000_MANC 0x05820 /* Management Control - RW */ +#define E1000_IPAV 0x05838 /* IP Address Valid - RW */ +#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ +#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ +#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ +#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ +#define E1000_PBACL 0x05B68 /* MSIx PBA Clear - Read/Write 1's to clear */ +#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ +#define E1000_HOST_IF 0x08800 /* Host Interface */ +#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ +#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ +#define E1000_FHFT(_n) (0x09000 + (_n * 0x100)) /* Flexible Host Filter Table */ +#define E1000_FHFT_EXT(_n) (0x09A00 + (_n * 0x100)) /* Ext Flexible Host Filter Table */ + + +#define E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */ +#define E1000_MDPHYA 0x0003C /* PHY address - RW */ +#define E1000_MANC2H 0x05860 /* Management Control To Host - RW */ +#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */ +#define E1000_CCMCTL 0x05B48 /* CCM Control Register */ +#define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */ +#define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */ +#define E1000_GCR 0x05B00 /* PCI-Ex Control */ +#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */ +#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */ +#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */ +#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */ +#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */ +#define E1000_SWSM 0x05B50 /* SW Semaphore */ +#define E1000_FWSM 0x05B54 /* FW Semaphore */ +#define E1000_DCA_ID 0x05B70 /* DCA Requester ID Information - RO */ +#define E1000_DCA_CTRL 0x05B74 /* DCA Control - RW */ +#define E1000_FFLT_DBG 0x05F04 /* Debug Register */ +#define E1000_HICR 0x08F00 /* Host Interface Control */ + +/* RSS registers */ +#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */ +#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */ +#define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */ +#define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) /* Immediate Interrupt Ext*/ +#define E1000_IMIRVP 0x05AC0 /* Immediate Interrupt Rx VLAN Priority - RW */ +#define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4)) /* MSI-X Allocation Register (_i) - RW */ +#define E1000_MSIXTADD(_i) (0x0C000 + ((_i) * 0x10)) /* MSI-X Table entry addr low reg 0 - RW */ +#define E1000_MSIXTUADD(_i) (0x0C004 + ((_i) * 0x10)) /* MSI-X Table entry addr upper reg 0 - RW */ +#define E1000_MSIXTMSG(_i) (0x0C008 + ((_i) * 0x10)) /* MSI-X Table entry message reg 0 - RW */ +#define E1000_MSIXVCTRL(_i) (0x0C00C + ((_i) * 0x10)) /* MSI-X Table entry vector ctrl reg 0 - RW */ +#define E1000_MSIXPBA 0x0E000 /* MSI-X Pending bit array */ +#define E1000_RETA(_i) (0x05C00 + ((_i) * 4)) /* Redirection Table - RW Array */ +#define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) /* RSS Random Key - RW Array */ +#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */ +#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */ +/* VT Registers */ +#define E1000_SWPBS 0x03004 /* Switch Packet Buffer Size - RW */ +#define E1000_MBVFICR 0x00C80 /* Mailbox VF Cause - RWC */ +#define E1000_MBVFIMR 0x00C84 /* Mailbox VF int Mask - RW */ +#define E1000_VFLRE 0x00C88 /* VF Register Events - RWC */ +#define E1000_VFRE 0x00C8C /* VF Receive Enables */ +#define E1000_VFTE 0x00C90 /* VF Transmit Enables */ +#define E1000_QDE 0x02408 /* Queue Drop Enable - RW */ +#define E1000_DTXSWC 0x03500 /* DMA Tx Switch Control - RW */ +#define E1000_VLVF 0x05D00 /* VLAN Virtual Machine Filter - RW */ +#define E1000_RPLOLR 0x05AF0 /* Replication Offload - RW */ +#define E1000_UTA 0x0A000 /* Unicast Table Array - RW */ +#define E1000_IOVTCL 0x05BBC /* IOV Control Register */ +#define E1000_VMRCTL 0X05D80 /* Virtual Mirror Rule Control */ +/* These act per VF so an array friendly macro is used */ +#define E1000_V2PMAILBOX(_n) (0x00C40 + (4 * (_n))) +#define E1000_P2VMAILBOX(_n) (0x00C00 + (4 * (_n))) +#define E1000_VMBMEM(_n) (0x00800 + (64 * (_n))) +#define E1000_VFVMBMEM(_n) (0x00800 + (_n)) +#define E1000_VMOLR(_n) (0x05AD0 + (4 * (_n))) +/* Time Sync */ +#define E1000_TSYNCRXCTL 0x0B620 /* Rx Time Sync Control register - RW */ +#define E1000_TSYNCTXCTL 0x0B614 /* Tx Time Sync Control register - RW */ +#define E1000_TSYNCRXCFG 0x05F50 /* Time Sync Rx Configuration - RW */ +#define E1000_RXSTMPL 0x0B624 /* Rx timestamp Low - RO */ +#define E1000_RXSTMPH 0x0B628 /* Rx timestamp High - RO */ +#define E1000_RXSATRL 0x0B62C /* Rx timestamp attribute low - RO */ +#define E1000_RXSATRH 0x0B630 /* Rx timestamp attribute high - RO */ +#define E1000_TXSTMPL 0x0B618 /* Tx timestamp value Low - RO */ +#define E1000_TXSTMPH 0x0B61C /* Tx timestamp value High - RO */ +#define E1000_SYSTIML 0x0B600 /* System time register Low - RO */ +#define E1000_SYSTIMH 0x0B604 /* System time register High - RO */ +#define E1000_TIMINCA 0x0B608 /* Increment attributes register - RW */ +#define E1000_RXMTRL 0x0B634 /* Time sync Rx EtherType and Message Type - RW */ +#define E1000_RXUDP 0x0B638 /* Time Sync Rx UDP Port - RW */ + +/* Filtering Registers */ +#define E1000_SAQF(_n) (0x05980 + (4 * (_n))) /* Source Address Queue Fltr */ +#define E1000_DAQF(_n) (0x059A0 + (4 * (_n))) /* Dest Address Queue Fltr */ +#define E1000_SPQF(_n) (0x059C0 + (4 * (_n))) /* Source Port Queue Fltr */ +#define E1000_FTQF(_n) (0x059E0 + (4 * (_n))) /* 5-tuple Queue Fltr */ +#define E1000_SYNQF(_n) (0x055FC + (4 * (_n))) /* SYN Packet Queue Fltr */ +#define E1000_ETQF(_n) (0x05CB0 + (4 * (_n))) /* EType Queue Fltr */ + +#define E1000_RTTDCS 0x3600 /* Reedtown Tx Desc plane control and status */ +#define E1000_RTTPCS 0x3474 /* Reedtown Tx Packet Plane control and status */ +#define E1000_RTRPCS 0x2474 /* Rx packet plane control and status */ +#define E1000_RTRUP2TC 0x05AC4 /* Rx User Priority to Traffic Class */ +#define E1000_RTTUP2TC 0x0418 /* Transmit User Priority to Traffic Class */ +#define E1000_RTTDTCRC(_n) (0x3610 + ((_n) * 4)) /* Tx Desc plane TC Rate-scheduler config */ +#define E1000_RTTPTCRC(_n) (0x3480 + ((_n) * 4)) /* Tx Packet plane TC Rate-Scheduler Config */ +#define E1000_RTRPTCRC(_n) (0x2480 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler Config */ +#define E1000_RTTDTCRS(_n) (0x3630 + ((_n) * 4)) /* Tx Desc Plane TC Rate-Scheduler Status */ +#define E1000_RTTDTCRM(_n) (0x3650 + ((_n) * 4)) /* Tx Desc Plane TC Rate-Scheduler MMW */ +#define E1000_RTTPTCRS(_n) (0x34A0 + ((_n) * 4)) /* Tx Packet plane TC Rate-Scheduler Status */ +#define E1000_RTTPTCRM(_n) (0x34C0 + ((_n) * 4)) /* Tx Packet plane TC Rate-scheduler MMW */ +#define E1000_RTRPTCRS(_n) (0x24A0 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler Status */ +#define E1000_RTRPTCRM(_n) (0x24C0 + ((_n) * 4)) /* Rx Packet plane TC Rate-Scheduler MMW */ +#define E1000_RTTDVMRM(_n) (0x3670 + ((_n) * 4)) /* Tx Desc plane VM Rate-Scheduler MMW*/ +#define E1000_RTTBCNRM(_n) (0x3690 + ((_n) * 4)) /* Tx BCN Rate-Scheduler MMW */ +#define E1000_RTTDQSEL 0x3604 /* Tx Desc Plane Queue Select */ +#define E1000_RTTDVMRC 0x3608 /* Tx Desc Plane VM Rate-Scheduler Config */ +#define E1000_RTTDVMRS 0x360C /* Tx Desc Plane VM Rate-Scheduler Status */ +#define E1000_RTTBCNRC 0x36B0 /* Tx BCN Rate-Scheduler Config */ +#define E1000_RTTBCNRS 0x36B4 /* Tx BCN Rate-Scheduler Status */ +#define E1000_RTTBCNCR 0xB200 /* Tx BCN Control Register */ +#define E1000_RTTBCNTG 0x35A4 /* Tx BCN Tagging */ +#define E1000_RTTBCNCP 0xB208 /* Tx BCN Congestion point */ +#define E1000_RTRBCNCR 0xB20C /* Rx BCN Control Register */ +#define E1000_RTTBCNRD 0x36B8 /* Tx BCN Rate Drift */ +#define E1000_PFCTOP 0x1080 /* Priority Flow Control Type and Opcode */ +#define E1000_RTTBCNIDX 0xB204 /* Tx BCN Congestion Point */ +#define E1000_RTTBCNACH 0x0B214 /* Tx BCN Control High */ +#define E1000_RTTBCNACL 0x0B210 /* Tx BCN Control Low */ + +#endif diff --git a/sys/dev/e1000/if_em.c b/sys/dev/e1000/if_em.c new file mode 100644 index 0000000..bbc9d6c --- /dev/null +++ b/sys/dev/e1000/if_em.c @@ -0,0 +1,5317 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifdef HAVE_KERNEL_OPTION_HEADERS +#include "opt_device_polling.h" +#endif + +#include <sys/param.h> +#include <sys/systm.h> +#include <sys/bus.h> +#include <sys/endian.h> +#include <sys/kernel.h> +#include <sys/kthread.h> +#include <sys/malloc.h> +#include <sys/mbuf.h> +#include <sys/module.h> +#include <sys/rman.h> +#include <sys/socket.h> +#include <sys/sockio.h> +#include <sys/sysctl.h> +#include <sys/taskqueue.h> +#ifdef EM_TIMESYNC +#include <sys/ioccom.h> +#include <sys/time.h> +#endif +#include <machine/bus.h> +#include <machine/resource.h> + +#include <net/bpf.h> +#include <net/ethernet.h> +#include <net/if.h> +#include <net/if_arp.h> +#include <net/if_dl.h> +#include <net/if_media.h> + +#include <net/if_types.h> +#include <net/if_vlan_var.h> + +#include <netinet/in_systm.h> +#include <netinet/in.h> +#include <netinet/if_ether.h> +#include <netinet/ip.h> +#include <netinet/ip6.h> +#include <netinet/tcp.h> +#include <netinet/udp.h> + +#include <machine/in_cksum.h> +#include <dev/pci/pcivar.h> +#include <dev/pci/pcireg.h> + +#include "e1000_api.h" +#include "e1000_82571.h" +#include "if_em.h" + +/********************************************************************* + * Set this to one to display debug statistics + *********************************************************************/ +int em_display_debug_stats = 0; + +/********************************************************************* + * Driver version: + *********************************************************************/ +char em_driver_version[] = "6.9.5"; + + +/********************************************************************* + * PCI Device ID Table + * + * Used by probe to select devices to load on + * Last field stores an index into e1000_strings + * Last entry must be all 0s + * + * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index } + *********************************************************************/ + +static em_vendor_info_t em_vendor_info_array[] = +{ + /* Intel(R) PRO/1000 Network Connection */ + { 0x8086, E1000_DEV_ID_82540EM, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82540EM_LOM, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82540EP, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82540EP_LOM, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82540EP_LP, PCI_ANY_ID, PCI_ANY_ID, 0}, + + { 0x8086, E1000_DEV_ID_82541EI, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82541ER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82541ER_LOM, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82541EI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82541GI, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82541GI_LF, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82541GI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0}, + + { 0x8086, E1000_DEV_ID_82542, PCI_ANY_ID, PCI_ANY_ID, 0}, + + { 0x8086, E1000_DEV_ID_82543GC_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82543GC_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + + { 0x8086, E1000_DEV_ID_82544EI_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82544EI_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82544GC_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82544GC_LOM, PCI_ANY_ID, PCI_ANY_ID, 0}, + + { 0x8086, E1000_DEV_ID_82545EM_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82545EM_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82545GM_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82545GM_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82545GM_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0}, + + { 0x8086, E1000_DEV_ID_82546EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82546EB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82546GB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82546GB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82546GB_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82546GB_PCIE, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, + PCI_ANY_ID, PCI_ANY_ID, 0}, + + { 0x8086, E1000_DEV_ID_82547EI, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82547EI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82547GI, PCI_ANY_ID, PCI_ANY_ID, 0}, + + { 0x8086, E1000_DEV_ID_82571EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82571EB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82571EB_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, + PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, + PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, + PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, + PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, + PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, + PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82572EI_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82572EI_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82572EI_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82572EI, PCI_ANY_ID, PCI_ANY_ID, 0}, + + { 0x8086, E1000_DEV_ID_82573E, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82573E_IAMT, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82573L, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, + PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, + PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, + PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, + PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH8_IGP_AMT, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH8_IGP_C, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH8_IFE, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH8_IFE_GT, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH8_IFE_G, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH8_IGP_M, PCI_ANY_ID, PCI_ANY_ID, 0}, + + { 0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH9_IGP_AMT, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH9_IGP_C, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH9_IGP_M, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH9_IGP_M_V, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH9_IFE, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH9_IFE_GT, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH9_IFE_G, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH9_BM, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82574L, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH10_R_BM_LM, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH10_R_BM_LF, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH10_R_BM_V, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH10_D_BM_LM, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH10_D_BM_LF, PCI_ANY_ID, PCI_ANY_ID, 0}, + /* required last entry */ + { 0, 0, 0, 0, 0} +}; + +/********************************************************************* + * Table of branding strings for all supported NICs. + *********************************************************************/ + +static char *em_strings[] = { + "Intel(R) PRO/1000 Network Connection" +}; + +/********************************************************************* + * Function prototypes + *********************************************************************/ +static int em_probe(device_t); +static int em_attach(device_t); +static int em_detach(device_t); +static int em_shutdown(device_t); +static int em_suspend(device_t); +static int em_resume(device_t); +static void em_start(struct ifnet *); +static void em_start_locked(struct ifnet *ifp); +static int em_ioctl(struct ifnet *, u_long, caddr_t); +static void em_watchdog(struct adapter *); +static void em_init(void *); +static void em_init_locked(struct adapter *); +static void em_stop(void *); +static void em_media_status(struct ifnet *, struct ifmediareq *); +static int em_media_change(struct ifnet *); +static void em_identify_hardware(struct adapter *); +static int em_allocate_pci_resources(struct adapter *); +static int em_allocate_legacy(struct adapter *adapter); +static int em_allocate_msix(struct adapter *adapter); +static int em_setup_msix(struct adapter *); +static void em_free_pci_resources(struct adapter *); +static void em_local_timer(void *); +static int em_hardware_init(struct adapter *); +static void em_setup_interface(device_t, struct adapter *); +static void em_setup_transmit_structures(struct adapter *); +static void em_initialize_transmit_unit(struct adapter *); +static int em_setup_receive_structures(struct adapter *); +static void em_initialize_receive_unit(struct adapter *); +static void em_enable_intr(struct adapter *); +static void em_disable_intr(struct adapter *); +static void em_free_transmit_structures(struct adapter *); +static void em_free_receive_structures(struct adapter *); +static void em_update_stats_counters(struct adapter *); +static void em_txeof(struct adapter *); +static void em_tx_purge(struct adapter *); +static int em_allocate_receive_structures(struct adapter *); +static int em_allocate_transmit_structures(struct adapter *); +static int em_rxeof(struct adapter *, int); +#ifndef __NO_STRICT_ALIGNMENT +static int em_fixup_rx(struct adapter *); +#endif +static void em_receive_checksum(struct adapter *, struct e1000_rx_desc *, + struct mbuf *); +static void em_transmit_checksum_setup(struct adapter *, struct mbuf *, + u32 *, u32 *); +#if __FreeBSD_version >= 700000 +static bool em_tso_setup(struct adapter *, struct mbuf *, + u32 *, u32 *); +#endif /* FreeBSD_version >= 700000 */ +static void em_set_promisc(struct adapter *); +static void em_disable_promisc(struct adapter *); +static void em_set_multi(struct adapter *); +static void em_print_hw_stats(struct adapter *); +static void em_update_link_status(struct adapter *); +static int em_get_buf(struct adapter *, int); +static void em_enable_hw_vlans(struct adapter *); +static int em_xmit(struct adapter *, struct mbuf **); +static void em_smartspeed(struct adapter *); +static int em_82547_fifo_workaround(struct adapter *, int); +static void em_82547_update_fifo_head(struct adapter *, int); +static int em_82547_tx_fifo_reset(struct adapter *); +static void em_82547_move_tail(void *); +static int em_dma_malloc(struct adapter *, bus_size_t, + struct em_dma_alloc *, int); +static void em_dma_free(struct adapter *, struct em_dma_alloc *); +static void em_print_debug_info(struct adapter *); +static void em_print_nvm_info(struct adapter *); +static int em_is_valid_ether_addr(u8 *); +static int em_sysctl_stats(SYSCTL_HANDLER_ARGS); +static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS); +static u32 em_fill_descriptors (bus_addr_t address, u32 length, + PDESC_ARRAY desc_array); +static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS); +static void em_add_int_delay_sysctl(struct adapter *, const char *, + const char *, struct em_int_delay_info *, int, int); +/* Management and WOL Support */ +static void em_init_manageability(struct adapter *); +static void em_release_manageability(struct adapter *); +static void em_get_hw_control(struct adapter *); +static void em_release_hw_control(struct adapter *); +static void em_enable_wakeup(device_t); + +#ifdef EM_TIMESYNC +/* Precision Time sync support */ +static int em_tsync_init(struct adapter *); +static void em_tsync_disable(struct adapter *); +#endif + +#ifdef EM_LEGACY_IRQ +static void em_intr(void *); +#else /* FAST IRQ */ +#if __FreeBSD_version < 700000 +static void em_irq_fast(void *); +#else +static int em_irq_fast(void *); +#endif +/* MSIX handlers */ +static void em_msix_tx(void *); +static void em_msix_rx(void *); +static void em_msix_link(void *); +static void em_add_rx_process_limit(struct adapter *, const char *, + const char *, int *, int); +static void em_handle_rxtx(void *context, int pending); +static void em_handle_rx(void *context, int pending); +static void em_handle_tx(void *context, int pending); +static void em_handle_link(void *context, int pending); +#endif /* EM_LEGACY_IRQ */ + +#ifdef DEVICE_POLLING +static poll_handler_t em_poll; +#endif /* POLLING */ + +/********************************************************************* + * FreeBSD Device Interface Entry Points + *********************************************************************/ + +static device_method_t em_methods[] = { + /* Device interface */ + DEVMETHOD(device_probe, em_probe), + DEVMETHOD(device_attach, em_attach), + DEVMETHOD(device_detach, em_detach), + DEVMETHOD(device_shutdown, em_shutdown), + DEVMETHOD(device_suspend, em_suspend), + DEVMETHOD(device_resume, em_resume), + {0, 0} +}; + +static driver_t em_driver = { + "em", em_methods, sizeof(struct adapter), +}; + +static devclass_t em_devclass; +DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0); +MODULE_DEPEND(em, pci, 1, 1, 1); +MODULE_DEPEND(em, ether, 1, 1, 1); + +/********************************************************************* + * Tunable default values. + *********************************************************************/ + +#define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000) +#define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024) +#define M_TSO_LEN 66 + +/* Allow common code without TSO */ +#ifndef CSUM_TSO +#define CSUM_TSO 0 +#endif + +static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV); +static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR); +static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV); +static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV); +static int em_rxd = EM_DEFAULT_RXD; +static int em_txd = EM_DEFAULT_TXD; +static int em_smart_pwr_down = FALSE; +/* Controls whether promiscuous also shows bad packets */ +static int em_debug_sbp = FALSE; +/* Local switch for MSI/MSIX */ +static int em_enable_msi = TRUE; + +TUNABLE_INT("hw.em.tx_int_delay", &em_tx_int_delay_dflt); +TUNABLE_INT("hw.em.rx_int_delay", &em_rx_int_delay_dflt); +TUNABLE_INT("hw.em.tx_abs_int_delay", &em_tx_abs_int_delay_dflt); +TUNABLE_INT("hw.em.rx_abs_int_delay", &em_rx_abs_int_delay_dflt); +TUNABLE_INT("hw.em.rxd", &em_rxd); +TUNABLE_INT("hw.em.txd", &em_txd); +TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down); +TUNABLE_INT("hw.em.sbp", &em_debug_sbp); +TUNABLE_INT("hw.em.enable_msi", &em_enable_msi); + +#ifndef EM_LEGACY_IRQ +/* How many packets rxeof tries to clean at a time */ +static int em_rx_process_limit = 100; +TUNABLE_INT("hw.em.rx_process_limit", &em_rx_process_limit); +#endif + +/* Global used in WOL setup with multiport cards */ +static int global_quad_port_a = 0; + +/********************************************************************* + * Device identification routine + * + * em_probe determines if the driver should be loaded on + * adapter based on PCI vendor/device id of the adapter. + * + * return BUS_PROBE_DEFAULT on success, positive on failure + *********************************************************************/ + +static int +em_probe(device_t dev) +{ + char adapter_name[60]; + u16 pci_vendor_id = 0; + u16 pci_device_id = 0; + u16 pci_subvendor_id = 0; + u16 pci_subdevice_id = 0; + em_vendor_info_t *ent; + + INIT_DEBUGOUT("em_probe: begin"); + + pci_vendor_id = pci_get_vendor(dev); + if (pci_vendor_id != EM_VENDOR_ID) + return (ENXIO); + + pci_device_id = pci_get_device(dev); + pci_subvendor_id = pci_get_subvendor(dev); + pci_subdevice_id = pci_get_subdevice(dev); + + ent = em_vendor_info_array; + while (ent->vendor_id != 0) { + if ((pci_vendor_id == ent->vendor_id) && + (pci_device_id == ent->device_id) && + + ((pci_subvendor_id == ent->subvendor_id) || + (ent->subvendor_id == PCI_ANY_ID)) && + + ((pci_subdevice_id == ent->subdevice_id) || + (ent->subdevice_id == PCI_ANY_ID))) { + sprintf(adapter_name, "%s %s", + em_strings[ent->index], + em_driver_version); + device_set_desc_copy(dev, adapter_name); + return (BUS_PROBE_DEFAULT); + } + ent++; + } + + return (ENXIO); +} + +/********************************************************************* + * Device initialization routine + * + * The attach entry point is called when the driver is being loaded. + * This routine identifies the type of hardware, allocates all resources + * and initializes the hardware. + * + * return 0 on success, positive on failure + *********************************************************************/ + +static int +em_attach(device_t dev) +{ + struct adapter *adapter; + int tsize, rsize; + int error = 0; + u16 eeprom_data, device_id; + + INIT_DEBUGOUT("em_attach: begin"); + + adapter = device_get_softc(dev); + adapter->dev = adapter->osdep.dev = dev; + EM_CORE_LOCK_INIT(adapter, device_get_nameunit(dev)); + EM_TX_LOCK_INIT(adapter, device_get_nameunit(dev)); + EM_RX_LOCK_INIT(adapter, device_get_nameunit(dev)); + + /* SYSCTL stuff */ + SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), + SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), + OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, + em_sysctl_debug_info, "I", "Debug Information"); + + SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), + SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), + OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, + em_sysctl_stats, "I", "Statistics"); + + callout_init_mtx(&adapter->timer, &adapter->core_mtx, 0); + callout_init_mtx(&adapter->tx_fifo_timer, &adapter->tx_mtx, 0); + + /* Determine hardware and mac info */ + em_identify_hardware(adapter); + + /* Setup PCI resources */ + if (em_allocate_pci_resources(adapter)) { + device_printf(dev, "Allocation of PCI resources failed\n"); + error = ENXIO; + goto err_pci; + } + + /* + ** For ICH8 and family we need to + ** map the flash memory, and this + ** must happen after the MAC is + ** identified + */ + if ((adapter->hw.mac.type == e1000_ich8lan) || + (adapter->hw.mac.type == e1000_ich10lan) || + (adapter->hw.mac.type == e1000_ich9lan)) { + int rid = EM_BAR_TYPE_FLASH; + adapter->flash = bus_alloc_resource_any(dev, + SYS_RES_MEMORY, &rid, RF_ACTIVE); + if (adapter->flash == NULL) { + device_printf(dev, "Mapping of Flash failed\n"); + error = ENXIO; + goto err_pci; + } + /* This is used in the shared code */ + adapter->hw.flash_address = (u8 *)adapter->flash; + adapter->osdep.flash_bus_space_tag = + rman_get_bustag(adapter->flash); + adapter->osdep.flash_bus_space_handle = + rman_get_bushandle(adapter->flash); + } + + /* Do Shared Code initialization */ + if (e1000_setup_init_funcs(&adapter->hw, TRUE)) { + device_printf(dev, "Setup of Shared code failed\n"); + error = ENXIO; + goto err_pci; + } + + e1000_get_bus_info(&adapter->hw); + + /* Set up some sysctls for the tunable interrupt delays */ + em_add_int_delay_sysctl(adapter, "rx_int_delay", + "receive interrupt delay in usecs", &adapter->rx_int_delay, + E1000_REGISTER(&adapter->hw, E1000_RDTR), em_rx_int_delay_dflt); + em_add_int_delay_sysctl(adapter, "tx_int_delay", + "transmit interrupt delay in usecs", &adapter->tx_int_delay, + E1000_REGISTER(&adapter->hw, E1000_TIDV), em_tx_int_delay_dflt); + if (adapter->hw.mac.type >= e1000_82540) { + em_add_int_delay_sysctl(adapter, "rx_abs_int_delay", + "receive interrupt delay limit in usecs", + &adapter->rx_abs_int_delay, + E1000_REGISTER(&adapter->hw, E1000_RADV), + em_rx_abs_int_delay_dflt); + em_add_int_delay_sysctl(adapter, "tx_abs_int_delay", + "transmit interrupt delay limit in usecs", + &adapter->tx_abs_int_delay, + E1000_REGISTER(&adapter->hw, E1000_TADV), + em_tx_abs_int_delay_dflt); + } + +#ifndef EM_LEGACY_IRQ + /* Sysctls for limiting the amount of work done in the taskqueue */ + em_add_rx_process_limit(adapter, "rx_processing_limit", + "max number of rx packets to process", &adapter->rx_process_limit, + em_rx_process_limit); +#endif + + /* + * Validate number of transmit and receive descriptors. It + * must not exceed hardware maximum, and must be multiple + * of E1000_DBA_ALIGN. + */ + if (((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN) != 0 || + (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) || + (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) || + (em_txd < EM_MIN_TXD)) { + device_printf(dev, "Using %d TX descriptors instead of %d!\n", + EM_DEFAULT_TXD, em_txd); + adapter->num_tx_desc = EM_DEFAULT_TXD; + } else + adapter->num_tx_desc = em_txd; + if (((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN) != 0 || + (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) || + (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) || + (em_rxd < EM_MIN_RXD)) { + device_printf(dev, "Using %d RX descriptors instead of %d!\n", + EM_DEFAULT_RXD, em_rxd); + adapter->num_rx_desc = EM_DEFAULT_RXD; + } else + adapter->num_rx_desc = em_rxd; + + adapter->hw.mac.autoneg = DO_AUTO_NEG; + adapter->hw.phy.autoneg_wait_to_complete = FALSE; + adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; + adapter->rx_buffer_len = 2048; + + e1000_init_script_state_82541(&adapter->hw, TRUE); + e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE); + + /* Copper options */ + if (adapter->hw.phy.media_type == e1000_media_type_copper) { + adapter->hw.phy.mdix = AUTO_ALL_MODES; + adapter->hw.phy.disable_polarity_correction = FALSE; + adapter->hw.phy.ms_type = EM_MASTER_SLAVE; + } + + /* + * Set the frame limits assuming + * standard ethernet sized frames. + */ + adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE; + adapter->min_frame_size = ETH_ZLEN + ETHERNET_FCS_SIZE; + + /* + * This controls when hardware reports transmit completion + * status. + */ + adapter->hw.mac.report_tx_early = 1; + + tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc), + EM_DBA_ALIGN); + + /* Allocate Transmit Descriptor ring */ + if (em_dma_malloc(adapter, tsize, &adapter->txdma, BUS_DMA_NOWAIT)) { + device_printf(dev, "Unable to allocate tx_desc memory\n"); + error = ENOMEM; + goto err_tx_desc; + } + adapter->tx_desc_base = + (struct e1000_tx_desc *)adapter->txdma.dma_vaddr; + + rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc), + EM_DBA_ALIGN); + + /* Allocate Receive Descriptor ring */ + if (em_dma_malloc(adapter, rsize, &adapter->rxdma, BUS_DMA_NOWAIT)) { + device_printf(dev, "Unable to allocate rx_desc memory\n"); + error = ENOMEM; + goto err_rx_desc; + } + adapter->rx_desc_base = + (struct e1000_rx_desc *)adapter->rxdma.dma_vaddr; + + /* Make sure we have a good EEPROM before we read from it */ + if (e1000_validate_nvm_checksum(&adapter->hw) < 0) { + /* + ** Some PCI-E parts fail the first check due to + ** the link being in sleep state, call it again, + ** if it fails a second time its a real issue. + */ + if (e1000_validate_nvm_checksum(&adapter->hw) < 0) { + device_printf(dev, + "The EEPROM Checksum Is Not Valid\n"); + error = EIO; + goto err_hw_init; + } + } + + /* Initialize the hardware */ + if (em_hardware_init(adapter)) { + device_printf(dev, "Unable to initialize the hardware\n"); + error = EIO; + goto err_hw_init; + } + + /* Copy the permanent MAC address out of the EEPROM */ + if (e1000_read_mac_addr(&adapter->hw) < 0) { + device_printf(dev, "EEPROM read error while reading MAC" + " address\n"); + error = EIO; + goto err_hw_init; + } + + if (!em_is_valid_ether_addr(adapter->hw.mac.addr)) { + device_printf(dev, "Invalid MAC address\n"); + error = EIO; + goto err_hw_init; + } + + /* Allocate transmit descriptors and buffers */ + if (em_allocate_transmit_structures(adapter)) { + device_printf(dev, "Could not setup transmit structures\n"); + error = ENOMEM; + goto err_tx_struct; + } + + /* Allocate receive descriptors and buffers */ + if (em_allocate_receive_structures(adapter)) { + device_printf(dev, "Could not setup receive structures\n"); + error = ENOMEM; + goto err_rx_struct; + } + + /* + ** Do interrupt configuration + */ + if (adapter->msi > 1) /* Do MSI/X */ + error = em_allocate_msix(adapter); + else /* MSI or Legacy */ + error = em_allocate_legacy(adapter); + if (error) + goto err_rx_struct; + + /* Setup OS specific network interface */ + em_setup_interface(dev, adapter); + + /* Initialize statistics */ + em_update_stats_counters(adapter); + + adapter->hw.mac.get_link_status = 1; + em_update_link_status(adapter); + + /* Indicate SOL/IDER usage */ + if (e1000_check_reset_block(&adapter->hw)) + device_printf(dev, + "PHY reset is blocked due to SOL/IDER session.\n"); + + /* Determine if we have to control management hardware */ + adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw); + + /* + * Setup Wake-on-Lan + */ + switch (adapter->hw.mac.type) { + + case e1000_82542: + case e1000_82543: + break; + case e1000_82546: + case e1000_82546_rev_3: + case e1000_82571: + case e1000_80003es2lan: + if (adapter->hw.bus.func == 1) + e1000_read_nvm(&adapter->hw, + NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); + else + e1000_read_nvm(&adapter->hw, + NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); + eeprom_data &= EM_EEPROM_APME; + break; + default: + /* APME bit in EEPROM is mapped to WUC.APME */ + eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC) & + E1000_WUC_APME; + break; + } + if (eeprom_data) + adapter->wol = E1000_WUFC_MAG; + /* + * We have the eeprom settings, now apply the special cases + * where the eeprom may be wrong or the board won't support + * wake on lan on a particular port + */ + device_id = pci_get_device(dev); + switch (device_id) { + case E1000_DEV_ID_82546GB_PCIE: + adapter->wol = 0; + break; + case E1000_DEV_ID_82546EB_FIBER: + case E1000_DEV_ID_82546GB_FIBER: + case E1000_DEV_ID_82571EB_FIBER: + /* Wake events only supported on port A for dual fiber + * regardless of eeprom setting */ + if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & + E1000_STATUS_FUNC_1) + adapter->wol = 0; + break; + case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: + case E1000_DEV_ID_82571EB_QUAD_COPPER: + case E1000_DEV_ID_82571EB_QUAD_FIBER: + case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: + /* if quad port adapter, disable WoL on all but port A */ + if (global_quad_port_a != 0) + adapter->wol = 0; + /* Reset for multiple quad port adapters */ + if (++global_quad_port_a == 4) + global_quad_port_a = 0; + break; + } + + /* Do we need workaround for 82544 PCI-X adapter? */ + if (adapter->hw.bus.type == e1000_bus_type_pcix && + adapter->hw.mac.type == e1000_82544) + adapter->pcix_82544 = TRUE; + else + adapter->pcix_82544 = FALSE; + + /* Tell the stack that the interface is not active */ + adapter->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); + + INIT_DEBUGOUT("em_attach: end"); + + return (0); + +err_rx_struct: + em_free_transmit_structures(adapter); +err_tx_struct: +err_hw_init: + em_release_hw_control(adapter); + e1000_remove_device(&adapter->hw); + em_dma_free(adapter, &adapter->rxdma); +err_rx_desc: + em_dma_free(adapter, &adapter->txdma); +err_tx_desc: +err_pci: + em_free_pci_resources(adapter); + EM_TX_LOCK_DESTROY(adapter); + EM_RX_LOCK_DESTROY(adapter); + EM_CORE_LOCK_DESTROY(adapter); + + return (error); +} + +/********************************************************************* + * Device removal routine + * + * The detach entry point is called when the driver is being removed. + * This routine stops the adapter and deallocates all the resources + * that were allocated for driver operation. + * + * return 0 on success, positive on failure + *********************************************************************/ + +static int +em_detach(device_t dev) +{ + struct adapter *adapter = device_get_softc(dev); + struct ifnet *ifp = adapter->ifp; + + INIT_DEBUGOUT("em_detach: begin"); + + /* Make sure VLANS are not using driver */ +#if __FreeBSD_version >= 700000 + if (adapter->ifp->if_vlantrunk != NULL) { +#else + if (adapter->ifp->if_nvlans != 0) { +#endif + device_printf(dev,"Vlan in use, detach first\n"); + return (EBUSY); + } + +#ifdef DEVICE_POLLING + if (ifp->if_capenable & IFCAP_POLLING) + ether_poll_deregister(ifp); +#endif + + EM_CORE_LOCK(adapter); + EM_TX_LOCK(adapter); + adapter->in_detach = 1; + em_stop(adapter); + e1000_phy_hw_reset(&adapter->hw); + + em_release_manageability(adapter); + + if (((adapter->hw.mac.type == e1000_82573) || + (adapter->hw.mac.type == e1000_ich8lan) || + (adapter->hw.mac.type == e1000_ich10lan) || + (adapter->hw.mac.type == e1000_ich9lan)) && + e1000_check_mng_mode(&adapter->hw)) + em_release_hw_control(adapter); + + if (adapter->wol) { + E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN); + E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol); + em_enable_wakeup(dev); + } + + EM_TX_UNLOCK(adapter); + EM_CORE_UNLOCK(adapter); + + ether_ifdetach(adapter->ifp); + callout_drain(&adapter->timer); + callout_drain(&adapter->tx_fifo_timer); + + em_free_pci_resources(adapter); + bus_generic_detach(dev); + if_free(ifp); + + e1000_remove_device(&adapter->hw); + em_free_transmit_structures(adapter); + em_free_receive_structures(adapter); + + /* Free Transmit Descriptor ring */ + if (adapter->tx_desc_base) { + em_dma_free(adapter, &adapter->txdma); + adapter->tx_desc_base = NULL; + } + + /* Free Receive Descriptor ring */ + if (adapter->rx_desc_base) { + em_dma_free(adapter, &adapter->rxdma); + adapter->rx_desc_base = NULL; + } + + EM_TX_LOCK_DESTROY(adapter); + EM_RX_LOCK_DESTROY(adapter); + EM_CORE_LOCK_DESTROY(adapter); + + return (0); +} + +/********************************************************************* + * + * Shutdown entry point + * + **********************************************************************/ + +static int +em_shutdown(device_t dev) +{ + return em_suspend(dev); +} + +/* + * Suspend/resume device methods. + */ +static int +em_suspend(device_t dev) +{ + struct adapter *adapter = device_get_softc(dev); + + EM_CORE_LOCK(adapter); + + EM_TX_LOCK(adapter); + em_stop(adapter); + EM_TX_UNLOCK(adapter); + + em_release_manageability(adapter); + + if (((adapter->hw.mac.type == e1000_82573) || + (adapter->hw.mac.type == e1000_ich8lan) || + (adapter->hw.mac.type == e1000_ich10lan) || + (adapter->hw.mac.type == e1000_ich9lan)) && + e1000_check_mng_mode(&adapter->hw)) + em_release_hw_control(adapter); + + if (adapter->wol) { + E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN); + E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol); + em_enable_wakeup(dev); + } + + EM_CORE_UNLOCK(adapter); + + return bus_generic_suspend(dev); +} + +static int +em_resume(device_t dev) +{ + struct adapter *adapter = device_get_softc(dev); + struct ifnet *ifp = adapter->ifp; + + EM_CORE_LOCK(adapter); + em_init_locked(adapter); + em_init_manageability(adapter); + EM_CORE_UNLOCK(adapter); + em_start(ifp); + + return bus_generic_resume(dev); +} + + +/********************************************************************* + * Transmit entry point + * + * em_start is called by the stack to initiate a transmit. + * The driver will remain in this routine as long as there are + * packets to transmit and transmit resources are available. + * In case resources are not available stack is notified and + * the packet is requeued. + **********************************************************************/ + +static void +em_start_locked(struct ifnet *ifp) +{ + struct adapter *adapter = ifp->if_softc; + struct mbuf *m_head; + + EM_TX_LOCK_ASSERT(adapter); + + if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) != + IFF_DRV_RUNNING) + return; + if (!adapter->link_active) + return; + + while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { + + IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); + if (m_head == NULL) + break; + /* + * Encapsulation can modify our pointer, and or make it + * NULL on failure. In that event, we can't requeue. + */ + if (em_xmit(adapter, &m_head)) { + if (m_head == NULL) + break; + ifp->if_drv_flags |= IFF_DRV_OACTIVE; + IFQ_DRV_PREPEND(&ifp->if_snd, m_head); + break; + } + + /* Send a copy of the frame to the BPF listener */ + ETHER_BPF_MTAP(ifp, m_head); + + /* Set timeout in case hardware has problems transmitting. */ + adapter->watchdog_timer = EM_TX_TIMEOUT; + } +} + +static void +em_start(struct ifnet *ifp) +{ + struct adapter *adapter = ifp->if_softc; + + EM_TX_LOCK(adapter); + if (ifp->if_drv_flags & IFF_DRV_RUNNING) + em_start_locked(ifp); + EM_TX_UNLOCK(adapter); +} + +/********************************************************************* + * Ioctl entry point + * + * em_ioctl is called when the user wants to configure the + * interface. + * + * return 0 on success, positive on failure + **********************************************************************/ + +static int +em_ioctl(struct ifnet *ifp, u_long command, caddr_t data) +{ + struct adapter *adapter = ifp->if_softc; + struct ifreq *ifr = (struct ifreq *)data; + struct ifaddr *ifa = (struct ifaddr *)data; + int error = 0; + + if (adapter->in_detach) + return (error); + + switch (command) { + case SIOCSIFADDR: + if (ifa->ifa_addr->sa_family == AF_INET) { + /* + * XXX + * Since resetting hardware takes a very long time + * and results in link renegotiation we only + * initialize the hardware only when it is absolutely + * required. + */ + ifp->if_flags |= IFF_UP; + if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { + EM_CORE_LOCK(adapter); + em_init_locked(adapter); + EM_CORE_UNLOCK(adapter); + } + arp_ifinit(ifp, ifa); + } else + error = ether_ioctl(ifp, command, data); + break; + case SIOCSIFMTU: + { + int max_frame_size; + u16 eeprom_data = 0; + + IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)"); + + EM_CORE_LOCK(adapter); + switch (adapter->hw.mac.type) { + case e1000_82573: + /* + * 82573 only supports jumbo frames + * if ASPM is disabled. + */ + e1000_read_nvm(&adapter->hw, + NVM_INIT_3GIO_3, 1, &eeprom_data); + if (eeprom_data & NVM_WORD1A_ASPM_MASK) { + max_frame_size = ETHER_MAX_LEN; + break; + } + /* Allow Jumbo frames - fall thru */ + case e1000_82571: + case e1000_82572: + case e1000_ich9lan: + case e1000_ich10lan: + case e1000_82574: + case e1000_80003es2lan: /* Limit Jumbo Frame size */ + max_frame_size = 9234; + break; + /* Adapters that do not support jumbo frames */ + case e1000_82542: + case e1000_ich8lan: + max_frame_size = ETHER_MAX_LEN; + break; + default: + max_frame_size = MAX_JUMBO_FRAME_SIZE; + } + if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN - + ETHER_CRC_LEN) { + EM_CORE_UNLOCK(adapter); + error = EINVAL; + break; + } + + ifp->if_mtu = ifr->ifr_mtu; + adapter->max_frame_size = + ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; + em_init_locked(adapter); + EM_CORE_UNLOCK(adapter); + break; + } + case SIOCSIFFLAGS: + IOCTL_DEBUGOUT("ioctl rcv'd:\ + SIOCSIFFLAGS (Set Interface Flags)"); + EM_CORE_LOCK(adapter); + if (ifp->if_flags & IFF_UP) { + if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) { + if ((ifp->if_flags ^ adapter->if_flags) & + (IFF_PROMISC | IFF_ALLMULTI)) { + em_disable_promisc(adapter); + em_set_promisc(adapter); + } + } else + em_init_locked(adapter); + } else + if (ifp->if_drv_flags & IFF_DRV_RUNNING) { + EM_TX_LOCK(adapter); + em_stop(adapter); + EM_TX_UNLOCK(adapter); + } + adapter->if_flags = ifp->if_flags; + EM_CORE_UNLOCK(adapter); + break; + case SIOCADDMULTI: + case SIOCDELMULTI: + IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI"); + if (ifp->if_drv_flags & IFF_DRV_RUNNING) { + EM_CORE_LOCK(adapter); + em_disable_intr(adapter); + em_set_multi(adapter); + if (adapter->hw.mac.type == e1000_82542 && + adapter->hw.revision_id == E1000_REVISION_2) { + em_initialize_receive_unit(adapter); + } +#ifdef DEVICE_POLLING + if (!(ifp->if_capenable & IFCAP_POLLING)) +#endif + em_enable_intr(adapter); + EM_CORE_UNLOCK(adapter); + } + break; + case SIOCSIFMEDIA: + /* Check SOL/IDER usage */ + EM_CORE_LOCK(adapter); + if (e1000_check_reset_block(&adapter->hw)) { + EM_CORE_UNLOCK(adapter); + device_printf(adapter->dev, "Media change is" + " blocked due to SOL/IDER session.\n"); + break; + } + EM_CORE_UNLOCK(adapter); + case SIOCGIFMEDIA: + IOCTL_DEBUGOUT("ioctl rcv'd: \ + SIOCxIFMEDIA (Get/Set Interface Media)"); + error = ifmedia_ioctl(ifp, ifr, &adapter->media, command); + break; + case SIOCSIFCAP: + { + int mask, reinit; + + IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)"); + reinit = 0; + mask = ifr->ifr_reqcap ^ ifp->if_capenable; +#ifdef DEVICE_POLLING + if (mask & IFCAP_POLLING) { + if (ifr->ifr_reqcap & IFCAP_POLLING) { + error = ether_poll_register(em_poll, ifp); + if (error) + return (error); + EM_CORE_LOCK(adapter); + em_disable_intr(adapter); + ifp->if_capenable |= IFCAP_POLLING; + EM_CORE_UNLOCK(adapter); + } else { + error = ether_poll_deregister(ifp); + /* Enable interrupt even in error case */ + EM_CORE_LOCK(adapter); + em_enable_intr(adapter); + ifp->if_capenable &= ~IFCAP_POLLING; + EM_CORE_UNLOCK(adapter); + } + } +#endif + if (mask & IFCAP_HWCSUM) { + ifp->if_capenable ^= IFCAP_HWCSUM; + reinit = 1; + } +#if __FreeBSD_version >= 700000 + if (mask & IFCAP_TSO4) { + ifp->if_capenable ^= IFCAP_TSO4; + reinit = 1; + } +#endif + + if (mask & IFCAP_VLAN_HWTAGGING) { + ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; + reinit = 1; + } + if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING)) + em_init(adapter); +#if __FreeBSD_version >= 700000 + VLAN_CAPABILITIES(ifp); +#endif + break; + } + +#ifdef EM_TIMESYNC + /* + ** IOCTL support for Precision Time (IEEE 1588) Support + */ + case EM_TIMESYNC_READTS: + { + u32 rx_ctl, tx_ctl; + struct em_tsync_read *tdata; + + tdata = (struct em_tsync_read *) ifr->ifr_data; + + IOCTL_DEBUGOUT("Reading Timestamp\n"); + + if (tdata->read_current_time) { + getnanotime(&tdata->system_time); + tdata->network_time = E1000_READ_REG(&adapter->hw, E1000_SYSTIML); + tdata->network_time |= + (u64)E1000_READ_REG(&adapter->hw, E1000_SYSTIMH ) << 32; + } + + rx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCRXCTL); + tx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCTXCTL); + + IOCTL_DEBUGOUT1("RX_CTL value = %u\n", rx_ctl); + IOCTL_DEBUGOUT1("TX_CTL value = %u\n", tx_ctl); + + if (rx_ctl & 0x1) { + IOCTL_DEBUGOUT("RX timestamp is valid\n"); + u32 tmp; + unsigned char *tmp_cp; + + tdata->rx_valid = 1; + tdata->rx_stamp = E1000_READ_REG(&adapter->hw, E1000_RXSTMPL); + tdata->rx_stamp |= (u64)E1000_READ_REG(&adapter->hw, + E1000_RXSTMPH) << 32; + + tmp = E1000_READ_REG(&adapter->hw, E1000_RXSATRL); + tmp_cp = (unsigned char *) &tmp; + tdata->srcid[0] = tmp_cp[0]; + tdata->srcid[1] = tmp_cp[1]; + tdata->srcid[2] = tmp_cp[2]; + tdata->srcid[3] = tmp_cp[3]; + tmp = E1000_READ_REG(&adapter->hw, E1000_RXSATRH); + tmp_cp = (unsigned char *) &tmp; + tdata->srcid[4] = tmp_cp[0]; + tdata->srcid[5] = tmp_cp[1]; + tdata->seqid = tmp >> 16; + tdata->seqid = htons(tdata->seqid); + } else + tdata->rx_valid = 0; + + if (tx_ctl & 0x1) { + IOCTL_DEBUGOUT("TX timestamp is valid\n"); + tdata->tx_valid = 1; + tdata->tx_stamp = E1000_READ_REG(&adapter->hw, E1000_TXSTMPL); + tdata->tx_stamp |= (u64) E1000_READ_REG(&adapter->hw, + E1000_TXSTMPH) << 32; + } else + tdata->tx_valid = 0; + + return (0); + } +#endif /* EM_TIMESYNC */ + + default: + error = ether_ioctl(ifp, command, data); + break; + } + + return (error); +} + +/********************************************************************* + * Watchdog timer: + * + * This routine is called from the local timer every second. + * As long as transmit descriptors are being cleaned the value + * is non-zero and we do nothing. Reaching 0 indicates a tx hang + * and we then reset the device. + * + **********************************************************************/ + +static void +em_watchdog(struct adapter *adapter) +{ + + EM_CORE_LOCK_ASSERT(adapter); + + /* + ** The timer is set to 5 every time start queues a packet. + ** Then txeof keeps resetting it as long as it cleans at + ** least one descriptor. + ** Finally, anytime all descriptors are clean the timer is + ** set to 0. + */ + EM_TX_LOCK(adapter); + if ((adapter->watchdog_timer == 0) || (--adapter->watchdog_timer)) { + EM_TX_UNLOCK(adapter); + return; + } + + /* If we are in this routine because of pause frames, then + * don't reset the hardware. + */ + if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & + E1000_STATUS_TXOFF) { + adapter->watchdog_timer = EM_TX_TIMEOUT; + EM_TX_UNLOCK(adapter); + return; + } + + if (e1000_check_for_link(&adapter->hw) == 0) + device_printf(adapter->dev, "watchdog timeout -- resetting\n"); + adapter->ifp->if_drv_flags &= ~IFF_DRV_RUNNING; + adapter->watchdog_events++; + EM_TX_UNLOCK(adapter); + + em_init_locked(adapter); +} + +/********************************************************************* + * Init entry point + * + * This routine is used in two ways. It is used by the stack as + * init entry point in network interface structure. It is also used + * by the driver as a hw/sw initialization routine to get to a + * consistent state. + * + * return 0 on success, positive on failure + **********************************************************************/ + +static void +em_init_locked(struct adapter *adapter) +{ + struct ifnet *ifp = adapter->ifp; + device_t dev = adapter->dev; + u32 pba; + + INIT_DEBUGOUT("em_init: begin"); + + EM_CORE_LOCK_ASSERT(adapter); + + EM_TX_LOCK(adapter); + em_stop(adapter); + EM_TX_UNLOCK(adapter); + + /* + * Packet Buffer Allocation (PBA) + * Writing PBA sets the receive portion of the buffer + * the remainder is used for the transmit buffer. + * + * Devices before the 82547 had a Packet Buffer of 64K. + * Default allocation: PBA=48K for Rx, leaving 16K for Tx. + * After the 82547 the buffer was reduced to 40K. + * Default allocation: PBA=30K for Rx, leaving 10K for Tx. + * Note: default does not leave enough room for Jumbo Frame >10k. + */ + switch (adapter->hw.mac.type) { + case e1000_82547: + case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */ + if (adapter->max_frame_size > 8192) + pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */ + else + pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */ + adapter->tx_fifo_head = 0; + adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT; + adapter->tx_fifo_size = + (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT; + break; + /* Total Packet Buffer on these is 48K */ + case e1000_82571: + case e1000_82572: + case e1000_80003es2lan: + pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ + break; + case e1000_82573: /* 82573: Total Packet Buffer is 32K */ + pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */ + break; + case e1000_82574: + pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */ + break; + case e1000_ich9lan: + case e1000_ich10lan: +#define E1000_PBA_10K 0x000A + pba = E1000_PBA_10K; + break; + case e1000_ich8lan: + pba = E1000_PBA_8K; + break; + default: + /* Devices before 82547 had a Packet Buffer of 64K. */ + if (adapter->max_frame_size > 8192) + pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */ + else + pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */ + } + + INIT_DEBUGOUT1("em_init: pba=%dK",pba); + E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba); + + /* Get the latest mac address, User can use a LAA */ + bcopy(IF_LLADDR(adapter->ifp), adapter->hw.mac.addr, + ETHER_ADDR_LEN); + + /* Put the address into the Receive Address Array */ + e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); + + /* + * With the 82571 adapter, RAR[0] may be overwritten + * when the other port is reset, we make a duplicate + * in RAR[14] for that eventuality, this assures + * the interface continues to function. + */ + if (adapter->hw.mac.type == e1000_82571) { + e1000_set_laa_state_82571(&adapter->hw, TRUE); + e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, + E1000_RAR_ENTRIES - 1); + } + + /* Initialize the hardware */ + if (em_hardware_init(adapter)) { + device_printf(dev, "Unable to initialize the hardware\n"); + return; + } + em_update_link_status(adapter); + + /* Setup VLAN support, basic and offload if available */ + E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN); + if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) + em_enable_hw_vlans(adapter); + + /* Set hardware offload abilities */ + ifp->if_hwassist = 0; + if (adapter->hw.mac.type >= e1000_82543) { + if (ifp->if_capenable & IFCAP_TXCSUM) + ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP); +#if __FreeBSD_version >= 700000 + if (ifp->if_capenable & IFCAP_TSO4) + ifp->if_hwassist |= CSUM_TSO; +#endif + } + + /* Configure for OS presence */ + em_init_manageability(adapter); + + /* Prepare transmit descriptors and buffers */ + em_setup_transmit_structures(adapter); + em_initialize_transmit_unit(adapter); + + /* Setup Multicast table */ + em_set_multi(adapter); + + /* Prepare receive descriptors and buffers */ + if (em_setup_receive_structures(adapter)) { + device_printf(dev, "Could not setup receive structures\n"); + EM_TX_LOCK(adapter); + em_stop(adapter); + EM_TX_UNLOCK(adapter); + return; + } + em_initialize_receive_unit(adapter); + + /* Don't lose promiscuous settings */ + em_set_promisc(adapter); + + ifp->if_drv_flags |= IFF_DRV_RUNNING; + ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; + + callout_reset(&adapter->timer, hz, em_local_timer, adapter); + e1000_clear_hw_cntrs_base_generic(&adapter->hw); + + /* MSI/X configuration for 82574 */ + if (adapter->hw.mac.type == e1000_82574) { + int tmp; + tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); + tmp |= E1000_CTRL_EXT_PBA_CLR; + E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp); + /* + ** Set the IVAR - interrupt vector routing. + ** Each nibble represents a vector, high bit + ** is enable, other 3 bits are the MSIX table + ** entry, we map RXQ0 to 0, TXQ0 to 1, and + ** Link (other) to 2, hence the magic number. + */ + E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908); + } + +#ifdef DEVICE_POLLING + /* + * Only enable interrupts if we are not polling, make sure + * they are off otherwise. + */ + if (ifp->if_capenable & IFCAP_POLLING) + em_disable_intr(adapter); + else +#endif /* DEVICE_POLLING */ + em_enable_intr(adapter); + +#ifdef EM_TIMESYNC + /* Initializae IEEE 1588 Precision Time hardware */ + if ((adapter->hw.mac.type == e1000_82574) || + (adapter->hw.mac.type == e1000_ich10lan)) + em_tsync_init(adapter); +#endif + + /* Don't reset the phy next time init gets called */ + adapter->hw.phy.reset_disable = TRUE; +} + +static void +em_init(void *arg) +{ + struct adapter *adapter = arg; + + EM_CORE_LOCK(adapter); + em_init_locked(adapter); + EM_CORE_UNLOCK(adapter); +} + + +#ifdef DEVICE_POLLING +/********************************************************************* + * + * Legacy polling routine + * + *********************************************************************/ +static void +em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) +{ + struct adapter *adapter = ifp->if_softc; + u32 reg_icr; + + EM_CORE_LOCK(adapter); + if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { + EM_CORE_UNLOCK(adapter); + return; + } + + if (cmd == POLL_AND_CHECK_STATUS) { + reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); + if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { + callout_stop(&adapter->timer); + adapter->hw.mac.get_link_status = 1; + em_update_link_status(adapter); + callout_reset(&adapter->timer, hz, + em_local_timer, adapter); + } + } + EM_CORE_UNLOCK(adapter); + + em_rxeof(adapter, count); + + EM_TX_LOCK(adapter); + em_txeof(adapter); + + if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) + em_start_locked(ifp); + EM_TX_UNLOCK(adapter); +} +#endif /* DEVICE_POLLING */ + +#ifdef EM_LEGACY_IRQ +/********************************************************************* + * + * Legacy Interrupt Service routine + * + *********************************************************************/ + +static void +em_intr(void *arg) +{ + struct adapter *adapter = arg; + struct ifnet *ifp = adapter->ifp; + u32 reg_icr; + + + if (ifp->if_capenable & IFCAP_POLLING) + return; + + EM_CORE_LOCK(adapter); + for (;;) { + reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); + + if (adapter->hw.mac.type >= e1000_82571 && + (reg_icr & E1000_ICR_INT_ASSERTED) == 0) + break; + else if (reg_icr == 0) + break; + + /* + * XXX: some laptops trigger several spurious interrupts + * on em(4) when in the resume cycle. The ICR register + * reports all-ones value in this case. Processing such + * interrupts would lead to a freeze. I don't know why. + */ + if (reg_icr == 0xffffffff) + break; + + EM_CORE_UNLOCK(adapter); + if (ifp->if_drv_flags & IFF_DRV_RUNNING) { + em_rxeof(adapter, -1); + EM_TX_LOCK(adapter); + em_txeof(adapter); + EM_TX_UNLOCK(adapter); + } + EM_CORE_LOCK(adapter); + + /* Link status change */ + if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { + callout_stop(&adapter->timer); + adapter->hw.mac.get_link_status = 1; + em_update_link_status(adapter); + /* Deal with TX cruft when link lost */ + em_tx_purge(adapter); + callout_reset(&adapter->timer, hz, + em_local_timer, adapter); + } + + if (reg_icr & E1000_ICR_RXO) + adapter->rx_overruns++; + } + EM_CORE_UNLOCK(adapter); + + if (ifp->if_drv_flags & IFF_DRV_RUNNING && + !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) + em_start(ifp); +} + +#else /* EM_FAST_IRQ, then fast interrupt routines only */ + +static void +em_handle_link(void *context, int pending) +{ + struct adapter *adapter = context; + struct ifnet *ifp = adapter->ifp; + + if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) + return; + + EM_CORE_LOCK(adapter); + callout_stop(&adapter->timer); + em_update_link_status(adapter); + /* Deal with TX cruft when link lost */ + em_tx_purge(adapter); + callout_reset(&adapter->timer, hz, em_local_timer, adapter); + EM_CORE_UNLOCK(adapter); +} + + +/* Combined RX/TX handler, used by Legacy and MSI */ +static void +em_handle_rxtx(void *context, int pending) +{ + struct adapter *adapter = context; + struct ifnet *ifp = adapter->ifp; + + + if (ifp->if_drv_flags & IFF_DRV_RUNNING) { + if (em_rxeof(adapter, adapter->rx_process_limit) != 0) + taskqueue_enqueue(adapter->tq, &adapter->rxtx_task); + EM_TX_LOCK(adapter); + em_txeof(adapter); + + if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) + em_start_locked(ifp); + EM_TX_UNLOCK(adapter); + } + + em_enable_intr(adapter); +} + +static void +em_handle_rx(void *context, int pending) +{ + struct adapter *adapter = context; + struct ifnet *ifp = adapter->ifp; + + if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && + (em_rxeof(adapter, adapter->rx_process_limit) != 0)) + taskqueue_enqueue(adapter->tq, &adapter->rx_task); + +} + +static void +em_handle_tx(void *context, int pending) +{ + struct adapter *adapter = context; + struct ifnet *ifp = adapter->ifp; + + if (ifp->if_drv_flags & IFF_DRV_RUNNING) { + EM_TX_LOCK(adapter); + em_txeof(adapter); + if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) + em_start_locked(ifp); + EM_TX_UNLOCK(adapter); + } +} + +/********************************************************************* + * + * Fast Legacy/MSI Combined Interrupt Service routine + * + *********************************************************************/ +#if __FreeBSD_version < 700000 +#define FILTER_STRAY +#define FILTER_HANDLED +static void +#else +static int +#endif +em_irq_fast(void *arg) +{ + struct adapter *adapter = arg; + struct ifnet *ifp; + u32 reg_icr; + + ifp = adapter->ifp; + + reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); + + /* Hot eject? */ + if (reg_icr == 0xffffffff) + return FILTER_STRAY; + + /* Definitely not our interrupt. */ + if (reg_icr == 0x0) + return FILTER_STRAY; + + /* + * Starting with the 82571 chip, bit 31 should be used to + * determine whether the interrupt belongs to us. + */ + if (adapter->hw.mac.type >= e1000_82571 && + (reg_icr & E1000_ICR_INT_ASSERTED) == 0) + return FILTER_STRAY; + + /* + * Mask interrupts until the taskqueue is finished running. This is + * cheap, just assume that it is needed. This also works around the + * MSI message reordering errata on certain systems. + */ + em_disable_intr(adapter); + taskqueue_enqueue(adapter->tq, &adapter->rxtx_task); + + /* Link status change */ + if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { + adapter->hw.mac.get_link_status = 1; + taskqueue_enqueue(taskqueue_fast, &adapter->link_task); + } + + if (reg_icr & E1000_ICR_RXO) + adapter->rx_overruns++; + return FILTER_HANDLED; +} + +/********************************************************************* + * + * MSIX Interrupt Service Routines + * + **********************************************************************/ +#define EM_MSIX_TX 0x00040000 +#define EM_MSIX_RX 0x00010000 +#define EM_MSIX_LINK 0x00100000 + +static void +em_msix_tx(void *arg) +{ + struct adapter *adapter = arg; + struct ifnet *ifp = adapter->ifp; + + ++adapter->tx_irq; + if (ifp->if_drv_flags & IFF_DRV_RUNNING) { + EM_TX_LOCK(adapter); + em_txeof(adapter); + EM_TX_UNLOCK(adapter); + taskqueue_enqueue(adapter->tq, &adapter->tx_task); + } + /* Reenable this interrupt */ + E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_TX); + return; +} + +/********************************************************************* + * + * MSIX RX Interrupt Service routine + * + **********************************************************************/ + +static void +em_msix_rx(void *arg) +{ + struct adapter *adapter = arg; + struct ifnet *ifp = adapter->ifp; + + ++adapter->rx_irq; + if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && + (em_rxeof(adapter, adapter->rx_process_limit) != 0)) + taskqueue_enqueue(adapter->tq, &adapter->rx_task); + /* Reenable this interrupt */ + E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_RX); + return; +} + +/********************************************************************* + * + * MSIX Link Fast Interrupt Service routine + * + **********************************************************************/ + +static void +em_msix_link(void *arg) +{ + struct adapter *adapter = arg; + u32 reg_icr; + + ++adapter->link_irq; + reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); + + if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { + adapter->hw.mac.get_link_status = 1; + taskqueue_enqueue(taskqueue_fast, &adapter->link_task); + } + E1000_WRITE_REG(&adapter->hw, E1000_IMS, + EM_MSIX_LINK | E1000_IMS_LSC); + return; +} +#endif /* EM_FAST_IRQ */ + +/********************************************************************* + * + * Media Ioctl callback + * + * This routine is called whenever the user queries the status of + * the interface using ifconfig. + * + **********************************************************************/ +static void +em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) +{ + struct adapter *adapter = ifp->if_softc; + u_char fiber_type = IFM_1000_SX; + + INIT_DEBUGOUT("em_media_status: begin"); + + EM_CORE_LOCK(adapter); + em_update_link_status(adapter); + + ifmr->ifm_status = IFM_AVALID; + ifmr->ifm_active = IFM_ETHER; + + if (!adapter->link_active) { + EM_CORE_UNLOCK(adapter); + return; + } + + ifmr->ifm_status |= IFM_ACTIVE; + + if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || + (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) { + if (adapter->hw.mac.type == e1000_82545) + fiber_type = IFM_1000_LX; + ifmr->ifm_active |= fiber_type | IFM_FDX; + } else { + switch (adapter->link_speed) { + case 10: + ifmr->ifm_active |= IFM_10_T; + break; + case 100: + ifmr->ifm_active |= IFM_100_TX; + break; + case 1000: + ifmr->ifm_active |= IFM_1000_T; + break; + } + if (adapter->link_duplex == FULL_DUPLEX) + ifmr->ifm_active |= IFM_FDX; + else + ifmr->ifm_active |= IFM_HDX; + } + EM_CORE_UNLOCK(adapter); +} + +/********************************************************************* + * + * Media Ioctl callback + * + * This routine is called when the user changes speed/duplex using + * media/mediopt option with ifconfig. + * + **********************************************************************/ +static int +em_media_change(struct ifnet *ifp) +{ + struct adapter *adapter = ifp->if_softc; + struct ifmedia *ifm = &adapter->media; + + INIT_DEBUGOUT("em_media_change: begin"); + + if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) + return (EINVAL); + + EM_CORE_LOCK(adapter); + switch (IFM_SUBTYPE(ifm->ifm_media)) { + case IFM_AUTO: + adapter->hw.mac.autoneg = DO_AUTO_NEG; + adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; + break; + case IFM_1000_LX: + case IFM_1000_SX: + case IFM_1000_T: + adapter->hw.mac.autoneg = DO_AUTO_NEG; + adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; + break; + case IFM_100_TX: + adapter->hw.mac.autoneg = FALSE; + adapter->hw.phy.autoneg_advertised = 0; + if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) + adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL; + else + adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF; + break; + case IFM_10_T: + adapter->hw.mac.autoneg = FALSE; + adapter->hw.phy.autoneg_advertised = 0; + if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) + adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL; + else + adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF; + break; + default: + device_printf(adapter->dev, "Unsupported media type\n"); + } + + /* As the speed/duplex settings my have changed we need to + * reset the PHY. + */ + adapter->hw.phy.reset_disable = FALSE; + + em_init_locked(adapter); + EM_CORE_UNLOCK(adapter); + + return (0); +} + +/********************************************************************* + * + * This routine maps the mbufs to tx descriptors. + * + * return 0 on success, positive on failure + **********************************************************************/ + +static int +em_xmit(struct adapter *adapter, struct mbuf **m_headp) +{ + bus_dma_segment_t segs[EM_MAX_SCATTER]; + bus_dmamap_t map; + struct em_buffer *tx_buffer, *tx_buffer_mapped; + struct e1000_tx_desc *ctxd = NULL; + struct mbuf *m_head; + u32 txd_upper, txd_lower, txd_used, txd_saved; + int nsegs, i, j, first, last = 0; + int error, do_tso, tso_desc = 0; +#if __FreeBSD_version < 700000 + struct m_tag *mtag; +#endif + m_head = *m_headp; + txd_upper = txd_lower = txd_used = txd_saved = 0; + +#if __FreeBSD_version >= 700000 + do_tso = ((m_head->m_pkthdr.csum_flags & CSUM_TSO) != 0); +#else + do_tso = 0; +#endif + + /* + * Force a cleanup if number of TX descriptors + * available hits the threshold + */ + if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) { + em_txeof(adapter); + /* Now do we at least have a minimal? */ + if (adapter->num_tx_desc_avail <= EM_TX_OP_THRESHOLD) { + adapter->no_tx_desc_avail1++; + return (ENOBUFS); + } + } + + + /* + * TSO workaround: + * If an mbuf is only header we need + * to pull 4 bytes of data into it. + */ + if (do_tso && (m_head->m_len <= M_TSO_LEN)) { + m_head = m_pullup(m_head, M_TSO_LEN + 4); + *m_headp = m_head; + if (m_head == NULL) + return (ENOBUFS); + } + + /* + * Map the packet for DMA + * + * Capture the first descriptor index, + * this descriptor will have the index + * of the EOP which is the only one that + * now gets a DONE bit writeback. + */ + first = adapter->next_avail_tx_desc; + tx_buffer = &adapter->tx_buffer_area[first]; + tx_buffer_mapped = tx_buffer; + map = tx_buffer->map; + + error = bus_dmamap_load_mbuf_sg(adapter->txtag, map, + *m_headp, segs, &nsegs, BUS_DMA_NOWAIT); + + /* + * There are two types of errors we can (try) to handle: + * - EFBIG means the mbuf chain was too long and bus_dma ran + * out of segments. Defragment the mbuf chain and try again. + * - ENOMEM means bus_dma could not obtain enough bounce buffers + * at this point in time. Defer sending and try again later. + * All other errors, in particular EINVAL, are fatal and prevent the + * mbuf chain from ever going through. Drop it and report error. + */ + if (error == EFBIG) { + struct mbuf *m; + + m = m_defrag(*m_headp, M_DONTWAIT); + if (m == NULL) { + adapter->mbuf_alloc_failed++; + m_freem(*m_headp); + *m_headp = NULL; + return (ENOBUFS); + } + *m_headp = m; + + /* Try it again */ + error = bus_dmamap_load_mbuf_sg(adapter->txtag, map, + *m_headp, segs, &nsegs, BUS_DMA_NOWAIT); + + if (error == ENOMEM) { + adapter->no_tx_dma_setup++; + return (error); + } else if (error != 0) { + adapter->no_tx_dma_setup++; + m_freem(*m_headp); + *m_headp = NULL; + return (error); + } + } else if (error == ENOMEM) { + adapter->no_tx_dma_setup++; + return (error); + } else if (error != 0) { + adapter->no_tx_dma_setup++; + m_freem(*m_headp); + *m_headp = NULL; + return (error); + } + + /* + * TSO Hardware workaround, if this packet is not + * TSO, and is only a single descriptor long, and + * it follows a TSO burst, then we need to add a + * sentinel descriptor to prevent premature writeback. + */ + if ((do_tso == 0) && (adapter->tx_tso == TRUE)) { + if (nsegs == 1) + tso_desc = TRUE; + adapter->tx_tso = FALSE; + } + + if (nsegs > (adapter->num_tx_desc_avail - 2)) { + adapter->no_tx_desc_avail2++; + bus_dmamap_unload(adapter->txtag, map); + return (ENOBUFS); + } + m_head = *m_headp; + + /* Do hardware assists */ +#if __FreeBSD_version >= 700000 + if (m_head->m_pkthdr.csum_flags & CSUM_TSO) { + error = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower); + if (error != TRUE) + return (ENXIO); /* something foobar */ + /* we need to make a final sentinel transmit desc */ + tso_desc = TRUE; + } else +#endif +#ifndef EM_TIMESYNC + /* + ** Timesync needs to check the packet header + ** so call checksum code to do so, but don't + ** penalize the code if not defined. + */ + if (m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD) +#endif + em_transmit_checksum_setup(adapter, m_head, + &txd_upper, &txd_lower); + + i = adapter->next_avail_tx_desc; + if (adapter->pcix_82544) + txd_saved = i; + + /* Set up our transmit descriptors */ + for (j = 0; j < nsegs; j++) { + bus_size_t seg_len; + bus_addr_t seg_addr; + /* If adapter is 82544 and on PCIX bus */ + if(adapter->pcix_82544) { + DESC_ARRAY desc_array; + u32 array_elements, counter; + /* + * Check the Address and Length combination and + * split the data accordingly + */ + array_elements = em_fill_descriptors(segs[j].ds_addr, + segs[j].ds_len, &desc_array); + for (counter = 0; counter < array_elements; counter++) { + if (txd_used == adapter->num_tx_desc_avail) { + adapter->next_avail_tx_desc = txd_saved; + adapter->no_tx_desc_avail2++; + bus_dmamap_unload(adapter->txtag, map); + return (ENOBUFS); + } + tx_buffer = &adapter->tx_buffer_area[i]; + ctxd = &adapter->tx_desc_base[i]; + ctxd->buffer_addr = htole64( + desc_array.descriptor[counter].address); + ctxd->lower.data = htole32( + (adapter->txd_cmd | txd_lower | (u16) + desc_array.descriptor[counter].length)); + ctxd->upper.data = + htole32((txd_upper)); + last = i; + if (++i == adapter->num_tx_desc) + i = 0; + tx_buffer->m_head = NULL; + tx_buffer->next_eop = -1; + txd_used++; + } + } else { + tx_buffer = &adapter->tx_buffer_area[i]; + ctxd = &adapter->tx_desc_base[i]; + seg_addr = segs[j].ds_addr; + seg_len = segs[j].ds_len; + /* + ** TSO Workaround: + ** If this is the last descriptor, we want to + ** split it so we have a small final sentinel + */ + if (tso_desc && (j == (nsegs -1)) && (seg_len > 8)) { + seg_len -= 4; + ctxd->buffer_addr = htole64(seg_addr); + ctxd->lower.data = htole32( + adapter->txd_cmd | txd_lower | seg_len); + ctxd->upper.data = + htole32(txd_upper); + if (++i == adapter->num_tx_desc) + i = 0; + /* Now make the sentinel */ + ++txd_used; /* using an extra txd */ + ctxd = &adapter->tx_desc_base[i]; + tx_buffer = &adapter->tx_buffer_area[i]; + ctxd->buffer_addr = + htole64(seg_addr + seg_len); + ctxd->lower.data = htole32( + adapter->txd_cmd | txd_lower | 4); + ctxd->upper.data = + htole32(txd_upper); + last = i; + if (++i == adapter->num_tx_desc) + i = 0; + } else { + ctxd->buffer_addr = htole64(seg_addr); + ctxd->lower.data = htole32( + adapter->txd_cmd | txd_lower | seg_len); + ctxd->upper.data = + htole32(txd_upper); + last = i; + if (++i == adapter->num_tx_desc) + i = 0; + } + tx_buffer->m_head = NULL; + tx_buffer->next_eop = -1; + } + } + + adapter->next_avail_tx_desc = i; + if (adapter->pcix_82544) + adapter->num_tx_desc_avail -= txd_used; + else { + adapter->num_tx_desc_avail -= nsegs; + if (tso_desc) /* TSO used an extra for sentinel */ + adapter->num_tx_desc_avail -= txd_used; + } + + /* + ** Handle VLAN tag, this is the + ** biggest difference between + ** 6.x and 7 + */ +#if __FreeBSD_version < 700000 + /* Find out if we are in vlan mode. */ + mtag = VLAN_OUTPUT_TAG(ifp, m_head); + if (mtag != NULL) { + ctxd->upper.fields.special = + htole16(VLAN_TAG_VALUE(mtag)); +#else /* FreeBSD 7 */ + if (m_head->m_flags & M_VLANTAG) { + /* Set the vlan id. */ + ctxd->upper.fields.special = + htole16(m_head->m_pkthdr.ether_vtag); +#endif + /* Tell hardware to add tag */ + ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE); + } + + tx_buffer->m_head = m_head; + tx_buffer_mapped->map = tx_buffer->map; + tx_buffer->map = map; + bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE); + + /* + * Last Descriptor of Packet + * needs End Of Packet (EOP) + * and Report Status (RS) + */ + ctxd->lower.data |= + htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS); + /* + * Keep track in the first buffer which + * descriptor will be written back + */ + tx_buffer = &adapter->tx_buffer_area[first]; + tx_buffer->next_eop = last; + + /* + * Advance the Transmit Descriptor Tail (TDT), this tells the E1000 + * that this frame is available to transmit. + */ + bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map, + BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); + if (adapter->hw.mac.type == e1000_82547 && + adapter->link_duplex == HALF_DUPLEX) + em_82547_move_tail(adapter); + else { + E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i); + if (adapter->hw.mac.type == e1000_82547) + em_82547_update_fifo_head(adapter, + m_head->m_pkthdr.len); + } + +#ifdef EM_TIMESYNC + if (ctxd->upper.data & E1000_TXD_EXTCMD_TSTAMP) { + HW_DEBUGOUT( "@@@ Timestamp bit is set in transmit descriptor\n" ); + } +#endif + return (0); +} + +/********************************************************************* + * + * 82547 workaround to avoid controller hang in half-duplex environment. + * The workaround is to avoid queuing a large packet that would span + * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers + * in this case. We do that only when FIFO is quiescent. + * + **********************************************************************/ +static void +em_82547_move_tail(void *arg) +{ + struct adapter *adapter = arg; + struct e1000_tx_desc *tx_desc; + u16 hw_tdt, sw_tdt, length = 0; + bool eop = 0; + + EM_TX_LOCK_ASSERT(adapter); + + hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0)); + sw_tdt = adapter->next_avail_tx_desc; + + while (hw_tdt != sw_tdt) { + tx_desc = &adapter->tx_desc_base[hw_tdt]; + length += tx_desc->lower.flags.length; + eop = tx_desc->lower.data & E1000_TXD_CMD_EOP; + if (++hw_tdt == adapter->num_tx_desc) + hw_tdt = 0; + + if (eop) { + if (em_82547_fifo_workaround(adapter, length)) { + adapter->tx_fifo_wrk_cnt++; + callout_reset(&adapter->tx_fifo_timer, 1, + em_82547_move_tail, adapter); + break; + } + E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt); + em_82547_update_fifo_head(adapter, length); + length = 0; + } + } +} + +static int +em_82547_fifo_workaround(struct adapter *adapter, int len) +{ + int fifo_space, fifo_pkt_len; + + fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR); + + if (adapter->link_duplex == HALF_DUPLEX) { + fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; + + if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) { + if (em_82547_tx_fifo_reset(adapter)) + return (0); + else + return (1); + } + } + + return (0); +} + +static void +em_82547_update_fifo_head(struct adapter *adapter, int len) +{ + int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR); + + /* tx_fifo_head is always 16 byte aligned */ + adapter->tx_fifo_head += fifo_pkt_len; + if (adapter->tx_fifo_head >= adapter->tx_fifo_size) { + adapter->tx_fifo_head -= adapter->tx_fifo_size; + } +} + + +static int +em_82547_tx_fifo_reset(struct adapter *adapter) +{ + u32 tctl; + + if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) == + E1000_READ_REG(&adapter->hw, E1000_TDH(0))) && + (E1000_READ_REG(&adapter->hw, E1000_TDFT) == + E1000_READ_REG(&adapter->hw, E1000_TDFH)) && + (E1000_READ_REG(&adapter->hw, E1000_TDFTS) == + E1000_READ_REG(&adapter->hw, E1000_TDFHS)) && + (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) { + /* Disable TX unit */ + tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL); + E1000_WRITE_REG(&adapter->hw, E1000_TCTL, + tctl & ~E1000_TCTL_EN); + + /* Reset FIFO pointers */ + E1000_WRITE_REG(&adapter->hw, E1000_TDFT, + adapter->tx_head_addr); + E1000_WRITE_REG(&adapter->hw, E1000_TDFH, + adapter->tx_head_addr); + E1000_WRITE_REG(&adapter->hw, E1000_TDFTS, + adapter->tx_head_addr); + E1000_WRITE_REG(&adapter->hw, E1000_TDFHS, + adapter->tx_head_addr); + + /* Re-enable TX unit */ + E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl); + E1000_WRITE_FLUSH(&adapter->hw); + + adapter->tx_fifo_head = 0; + adapter->tx_fifo_reset_cnt++; + + return (TRUE); + } + else { + return (FALSE); + } +} + +static void +em_set_promisc(struct adapter *adapter) +{ + struct ifnet *ifp = adapter->ifp; + u32 reg_rctl; + + reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); + + if (ifp->if_flags & IFF_PROMISC) { + reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); + /* Turn this on if you want to see bad packets */ + if (em_debug_sbp) + reg_rctl |= E1000_RCTL_SBP; + E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); + } else if (ifp->if_flags & IFF_ALLMULTI) { + reg_rctl |= E1000_RCTL_MPE; + reg_rctl &= ~E1000_RCTL_UPE; + E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); + } +} + +static void +em_disable_promisc(struct adapter *adapter) +{ + u32 reg_rctl; + + reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); + + reg_rctl &= (~E1000_RCTL_UPE); + reg_rctl &= (~E1000_RCTL_MPE); + reg_rctl &= (~E1000_RCTL_SBP); + E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); +} + + +/********************************************************************* + * Multicast Update + * + * This routine is called whenever multicast address list is updated. + * + **********************************************************************/ + +static void +em_set_multi(struct adapter *adapter) +{ + struct ifnet *ifp = adapter->ifp; + struct ifmultiaddr *ifma; + u32 reg_rctl = 0; + u8 mta[512]; /* Largest MTS is 4096 bits */ + int mcnt = 0; + + IOCTL_DEBUGOUT("em_set_multi: begin"); + + if (adapter->hw.mac.type == e1000_82542 && + adapter->hw.revision_id == E1000_REVISION_2) { + reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); + if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + e1000_pci_clear_mwi(&adapter->hw); + reg_rctl |= E1000_RCTL_RST; + E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); + msec_delay(5); + } + + IF_ADDR_LOCK(ifp); + TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { + if (ifma->ifma_addr->sa_family != AF_LINK) + continue; + + if (mcnt == MAX_NUM_MULTICAST_ADDRESSES) + break; + + bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), + &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN); + mcnt++; + } + IF_ADDR_UNLOCK(ifp); + + if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) { + reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); + reg_rctl |= E1000_RCTL_MPE; + E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); + } else + e1000_update_mc_addr_list(&adapter->hw, mta, + mcnt, 1, adapter->hw.mac.rar_entry_count); + + if (adapter->hw.mac.type == e1000_82542 && + adapter->hw.revision_id == E1000_REVISION_2) { + reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); + reg_rctl &= ~E1000_RCTL_RST; + E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); + msec_delay(5); + if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + e1000_pci_set_mwi(&adapter->hw); + } +} + + +/********************************************************************* + * Timer routine + * + * This routine checks for link status and updates statistics. + * + **********************************************************************/ + +static void +em_local_timer(void *arg) +{ + struct adapter *adapter = arg; + struct ifnet *ifp = adapter->ifp; + + EM_CORE_LOCK_ASSERT(adapter); + + em_update_link_status(adapter); + em_update_stats_counters(adapter); + + /* Reset LAA into RAR[0] on 82571 */ + if (e1000_get_laa_state_82571(&adapter->hw) == TRUE) + e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); + + if (em_display_debug_stats && ifp->if_drv_flags & IFF_DRV_RUNNING) + em_print_hw_stats(adapter); + + em_smartspeed(adapter); + + /* + * Each second we check the watchdog to + * protect against hardware hangs. + */ + em_watchdog(adapter); + + callout_reset(&adapter->timer, hz, em_local_timer, adapter); + +} + +static void +em_update_link_status(struct adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + struct ifnet *ifp = adapter->ifp; + device_t dev = adapter->dev; + u32 link_check = 0; + + /* Get the cached link value or read phy for real */ + switch (hw->phy.media_type) { + case e1000_media_type_copper: + if (hw->mac.get_link_status) { + /* Do the work to read phy */ + e1000_check_for_link(hw); + link_check = !hw->mac.get_link_status; + } else + link_check = TRUE; + break; + case e1000_media_type_fiber: + e1000_check_for_link(hw); + link_check = (E1000_READ_REG(hw, E1000_STATUS) & + E1000_STATUS_LU); + break; + case e1000_media_type_internal_serdes: + e1000_check_for_link(hw); + link_check = adapter->hw.mac.serdes_has_link; + break; + default: + case e1000_media_type_unknown: + break; + } + + /* Now check for a transition */ + if (link_check && (adapter->link_active == 0)) { + e1000_get_speed_and_duplex(hw, &adapter->link_speed, + &adapter->link_duplex); + /* Check if we must disable SPEED_MODE bit on PCI-E */ + if ((adapter->link_speed != SPEED_1000) && + ((hw->mac.type == e1000_82571) || + (hw->mac.type == e1000_82572))) { + int tarc0; + tarc0 = E1000_READ_REG(hw, E1000_TARC(0)); + tarc0 &= ~SPEED_MODE_BIT; + E1000_WRITE_REG(hw, E1000_TARC(0), tarc0); + } + if (bootverbose) + device_printf(dev, "Link is up %d Mbps %s\n", + adapter->link_speed, + ((adapter->link_duplex == FULL_DUPLEX) ? + "Full Duplex" : "Half Duplex")); + adapter->link_active = 1; + adapter->smartspeed = 0; + ifp->if_baudrate = adapter->link_speed * 1000000; + if_link_state_change(ifp, LINK_STATE_UP); + } else if (!link_check && (adapter->link_active == 1)) { + ifp->if_baudrate = adapter->link_speed = 0; + adapter->link_duplex = 0; + if (bootverbose) + device_printf(dev, "Link is Down\n"); + adapter->link_active = 0; + /* Link down, disable watchdog */ + adapter->watchdog_timer = FALSE; + if_link_state_change(ifp, LINK_STATE_DOWN); + } +} + +/********************************************************************* + * + * This routine disables all traffic on the adapter by issuing a + * global reset on the MAC and deallocates TX/RX buffers. + * + * This routine should always be called with BOTH the CORE + * and TX locks. + **********************************************************************/ + +static void +em_stop(void *arg) +{ + struct adapter *adapter = arg; + struct ifnet *ifp = adapter->ifp; + + EM_CORE_LOCK_ASSERT(adapter); + EM_TX_LOCK_ASSERT(adapter); + + INIT_DEBUGOUT("em_stop: begin"); + + em_disable_intr(adapter); + callout_stop(&adapter->timer); + callout_stop(&adapter->tx_fifo_timer); + + /* Tell the stack that the interface is no longer active */ + ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); + +#ifdef EM_TIMESYNC + /* Disable IEEE 1588 Time hardware */ + if ((adapter->hw.mac.type == e1000_82574) || + (adapter->hw.mac.type == e1000_ich10lan)) + em_tsync_disable(adapter); +#endif + + e1000_reset_hw(&adapter->hw); + if (adapter->hw.mac.type >= e1000_82544) + E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0); +} + + +/********************************************************************* + * + * Determine hardware revision. + * + **********************************************************************/ +static void +em_identify_hardware(struct adapter *adapter) +{ + device_t dev = adapter->dev; + + /* Make sure our PCI config space has the necessary stuff set */ + adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2); + if (!((adapter->hw.bus.pci_cmd_word & PCIM_CMD_BUSMASTEREN) && + (adapter->hw.bus.pci_cmd_word & PCIM_CMD_MEMEN))) { + device_printf(dev, "Memory Access and/or Bus Master bits " + "were not set!\n"); + adapter->hw.bus.pci_cmd_word |= + (PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN); + pci_write_config(dev, PCIR_COMMAND, + adapter->hw.bus.pci_cmd_word, 2); + } + + /* Save off the information about this board */ + adapter->hw.vendor_id = pci_get_vendor(dev); + adapter->hw.device_id = pci_get_device(dev); + adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1); + adapter->hw.subsystem_vendor_id = + pci_read_config(dev, PCIR_SUBVEND_0, 2); + adapter->hw.subsystem_device_id = + pci_read_config(dev, PCIR_SUBDEV_0, 2); + + /* Do Shared Code Init and Setup */ + if (e1000_set_mac_type(&adapter->hw)) { + device_printf(dev, "Setup init failure\n"); + return; + } +} + +static int +em_allocate_pci_resources(struct adapter *adapter) +{ + device_t dev = adapter->dev; + int val, rid, error = E1000_SUCCESS; + + rid = PCIR_BAR(0); + adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, + &rid, RF_ACTIVE); + if (adapter->memory == NULL) { + device_printf(dev, "Unable to allocate bus resource: memory\n"); + return (ENXIO); + } + adapter->osdep.mem_bus_space_tag = + rman_get_bustag(adapter->memory); + adapter->osdep.mem_bus_space_handle = + rman_get_bushandle(adapter->memory); + adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle; + + /* Only older adapters use IO mapping */ + if ((adapter->hw.mac.type > e1000_82543) && + (adapter->hw.mac.type < e1000_82571)) { + /* Figure our where our IO BAR is ? */ + for (rid = PCIR_BAR(0); rid < PCIR_CIS;) { + val = pci_read_config(dev, rid, 4); + if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) { + adapter->io_rid = rid; + break; + } + rid += 4; + /* check for 64bit BAR */ + if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT) + rid += 4; + } + if (rid >= PCIR_CIS) { + device_printf(dev, "Unable to locate IO BAR\n"); + return (ENXIO); + } + adapter->ioport = bus_alloc_resource_any(dev, + SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE); + if (adapter->ioport == NULL) { + device_printf(dev, "Unable to allocate bus resource: " + "ioport\n"); + return (ENXIO); + } + adapter->hw.io_base = 0; + adapter->osdep.io_bus_space_tag = + rman_get_bustag(adapter->ioport); + adapter->osdep.io_bus_space_handle = + rman_get_bushandle(adapter->ioport); + } + + /* + ** Init the resource arrays + ** used by MSIX setup + */ + for (int i = 0; i < 3; i++) { + adapter->rid[i] = i + 1; /* MSI/X RID starts at 1 */ + adapter->tag[i] = NULL; + adapter->res[i] = NULL; + } + + /* + * Setup MSI/X or MSI if PCI Express + */ + if (em_enable_msi) + adapter->msi = em_setup_msix(adapter); + + adapter->hw.back = &adapter->osdep; + + return (error); +} + +/********************************************************************* + * + * Setup the Legacy or MSI Interrupt handler + * + **********************************************************************/ +int +em_allocate_legacy(struct adapter *adapter) +{ + device_t dev = adapter->dev; + int error; + + /* Manually turn off all interrupts */ + E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff); + + /* Legacy RID is 0 */ + if (adapter->msi == 0) + adapter->rid[0] = 0; + + /* We allocate a single interrupt resource */ + adapter->res[0] = bus_alloc_resource_any(dev, + SYS_RES_IRQ, &adapter->rid[0], RF_SHAREABLE | RF_ACTIVE); + if (adapter->res[0] == NULL) { + device_printf(dev, "Unable to allocate bus resource: " + "interrupt\n"); + return (ENXIO); + } + +#ifdef EM_LEGACY_IRQ + /* We do Legacy setup */ + if ((error = bus_setup_intr(dev, adapter->res[0], +#if __FreeBSD_version > 700000 + INTR_TYPE_NET | INTR_MPSAFE, NULL, em_intr, adapter, +#else /* 6.X */ + INTR_TYPE_NET | INTR_MPSAFE, em_intr, adapter, +#endif + &adapter->tag[0])) != 0) { + device_printf(dev, "Failed to register interrupt handler"); + return (error); + } + +#else /* FAST_IRQ */ + /* + * Try allocating a fast interrupt and the associated deferred + * processing contexts. + */ + TASK_INIT(&adapter->rxtx_task, 0, em_handle_rxtx, adapter); + TASK_INIT(&adapter->link_task, 0, em_handle_link, adapter); + adapter->tq = taskqueue_create_fast("em_taskq", M_NOWAIT, + taskqueue_thread_enqueue, &adapter->tq); + taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s taskq", + device_get_nameunit(adapter->dev)); +#if __FreeBSD_version < 700000 + if ((error = bus_setup_intr(dev, adapter->res[0], + INTR_TYPE_NET | INTR_FAST, em_irq_fast, adapter, +#else + if ((error = bus_setup_intr(dev, adapter->res[0], + INTR_TYPE_NET, em_irq_fast, NULL, adapter, +#endif + &adapter->tag[0])) != 0) { + device_printf(dev, "Failed to register fast interrupt " + "handler: %d\n", error); + taskqueue_free(adapter->tq); + adapter->tq = NULL; + return (error); + } +#endif /* EM_LEGACY_IRQ */ + + return (0); +} + +/********************************************************************* + * + * Setup the MSIX Interrupt handlers + * This is not really Multiqueue, rather + * its just multiple interrupt vectors. + * + **********************************************************************/ +int +em_allocate_msix(struct adapter *adapter) +{ + device_t dev = adapter->dev; + int error; + + /* Make sure all interrupts are disabled */ + E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff); + + /* First get the resources */ + for (int i = 0; i < adapter->msi; i++) { + adapter->res[i] = bus_alloc_resource_any(dev, + SYS_RES_IRQ, &adapter->rid[i], RF_ACTIVE); + if (adapter->res[i] == NULL) { + device_printf(dev, + "Unable to allocate bus resource: " + "MSIX Interrupt\n"); + return (ENXIO); + } + } + + /* + * Now allocate deferred processing contexts. + */ + TASK_INIT(&adapter->rx_task, 0, em_handle_rx, adapter); + TASK_INIT(&adapter->tx_task, 0, em_handle_tx, adapter); + TASK_INIT(&adapter->link_task, 0, em_handle_link, adapter); + adapter->tq = taskqueue_create_fast("em_taskq", M_NOWAIT, + taskqueue_thread_enqueue, &adapter->tq); + taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s taskq", + device_get_nameunit(adapter->dev)); + + /* + * And setup the interrupt handlers + */ + + /* First slot to RX */ + if ((error = bus_setup_intr(dev, adapter->res[0], +#if __FreeBSD_version > 700000 + INTR_TYPE_NET | INTR_MPSAFE, NULL, em_msix_rx, adapter, +#else /* 6.X */ + INTR_TYPE_NET | INTR_MPSAFE, em_msix_rx, adapter, +#endif + &adapter->tag[0])) != 0) { + device_printf(dev, "Failed to register RX handler"); + return (error); + } + + /* Next TX */ + if ((error = bus_setup_intr(dev, adapter->res[1], +#if __FreeBSD_version > 700000 + INTR_TYPE_NET | INTR_MPSAFE, NULL, em_msix_tx, adapter, +#else /* 6.X */ + INTR_TYPE_NET | INTR_MPSAFE, em_msix_tx, adapter, +#endif + &adapter->tag[1])) != 0) { + device_printf(dev, "Failed to register TX handler"); + return (error); + } + + /* And Link */ + if ((error = bus_setup_intr(dev, adapter->res[2], +#if __FreeBSD_version > 700000 + INTR_TYPE_NET | INTR_MPSAFE, NULL, em_msix_link, adapter, +#else /* 6.X */ + INTR_TYPE_NET | INTR_MPSAFE, em_msix_link, adapter, +#endif + &adapter->tag[2])) != 0) { + device_printf(dev, "Failed to register TX handler"); + return (error); + } + + return (0); +} + +static void +em_free_pci_resources(struct adapter *adapter) +{ + device_t dev = adapter->dev; + + /* Make sure the for loop below runs once */ + if (adapter->msi == 0) + adapter->msi = 1; + + /* + * First release all the interrupt resources: + * notice that since these are just kept + * in an array we can do the same logic + * whether its MSIX or just legacy. + */ + for (int i = 0; i < adapter->msi; i++) { + if (adapter->tag[i] != NULL) { + bus_teardown_intr(dev, adapter->res[i], + adapter->tag[i]); + adapter->tag[i] = NULL; + } + if (adapter->res[i] != NULL) { + bus_release_resource(dev, SYS_RES_IRQ, + adapter->rid[i], adapter->res[i]); + } + } + + if (adapter->msi) + pci_release_msi(dev); + + if (adapter->msix != NULL) + bus_release_resource(dev, SYS_RES_MEMORY, + PCIR_BAR(EM_MSIX_BAR), adapter->msix); + + if (adapter->memory != NULL) + bus_release_resource(dev, SYS_RES_MEMORY, + PCIR_BAR(0), adapter->memory); + + if (adapter->flash != NULL) + bus_release_resource(dev, SYS_RES_MEMORY, + EM_FLASH, adapter->flash); + + if (adapter->ioport != NULL) + bus_release_resource(dev, SYS_RES_IOPORT, + adapter->io_rid, adapter->ioport); +} + +/* + * Setup MSI/X + */ +static int +em_setup_msix(struct adapter *adapter) +{ + device_t dev = adapter->dev; + int val = 0; + + if (adapter->hw.mac.type < e1000_82571) + return (0); + + /* Setup MSI/X for Hartwell */ + if (adapter->hw.mac.type == e1000_82574) { + /* Map the MSIX BAR */ + int rid = PCIR_BAR(EM_MSIX_BAR); + adapter->msix = bus_alloc_resource_any(dev, + SYS_RES_MEMORY, &rid, RF_ACTIVE); + if (!adapter->msix) { + /* May not be enabled */ + device_printf(adapter->dev, + "Unable to map MSIX table \n"); + goto msi; + } + val = pci_msix_count(dev); + /* + ** 82574 can be configured for 5 but + ** we limit use to 3. + */ + if (val > 3) val = 3; + if ((val) && pci_alloc_msix(dev, &val) == 0) { + device_printf(adapter->dev,"Using MSIX interrupts\n"); + return (val); + } + } +msi: + val = pci_msi_count(dev); + if (val == 1 && pci_alloc_msi(dev, &val) == 0) { + adapter->msi = 1; + device_printf(adapter->dev,"Using MSI interrupt\n"); + return (val); + } + return (0); +} + +/********************************************************************* + * + * Initialize the hardware to a configuration + * as specified by the adapter structure. + * + **********************************************************************/ +static int +em_hardware_init(struct adapter *adapter) +{ + device_t dev = adapter->dev; + u16 rx_buffer_size; + + INIT_DEBUGOUT("em_hardware_init: begin"); + + /* Issue a global reset */ + e1000_reset_hw(&adapter->hw); + + /* Get control from any management/hw control */ + if (((adapter->hw.mac.type == e1000_82573) || + (adapter->hw.mac.type == e1000_ich8lan) || + (adapter->hw.mac.type == e1000_ich10lan) || + (adapter->hw.mac.type == e1000_ich9lan)) && + e1000_check_mng_mode(&adapter->hw)) + em_get_hw_control(adapter); + + /* When hardware is reset, fifo_head is also reset */ + adapter->tx_fifo_head = 0; + + /* Set up smart power down as default off on newer adapters. */ + if (!em_smart_pwr_down && (adapter->hw.mac.type == e1000_82571 || + adapter->hw.mac.type == e1000_82572)) { + u16 phy_tmp = 0; + + /* Speed up time to link by disabling smart power down. */ + e1000_read_phy_reg(&adapter->hw, + IGP02E1000_PHY_POWER_MGMT, &phy_tmp); + phy_tmp &= ~IGP02E1000_PM_SPD; + e1000_write_phy_reg(&adapter->hw, + IGP02E1000_PHY_POWER_MGMT, phy_tmp); + } + + /* + * These parameters control the automatic generation (Tx) and + * response (Rx) to Ethernet PAUSE frames. + * - High water mark should allow for at least two frames to be + * received after sending an XOFF. + * - Low water mark works best when it is very near the high water mark. + * This allows the receiver to restart by sending XON when it has + * drained a bit. Here we use an arbitary value of 1500 which will + * restart after one full frame is pulled from the buffer. There + * could be several smaller frames in the buffer and if so they will + * not trigger the XON until their total number reduces the buffer + * by 1500. + * - The pause time is fairly large at 1000 x 512ns = 512 usec. + */ + rx_buffer_size = ((E1000_READ_REG(&adapter->hw, E1000_PBA) & + 0xffff) << 10 ); + + adapter->hw.fc.high_water = rx_buffer_size - + roundup2(adapter->max_frame_size, 1024); + adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500; + + if (adapter->hw.mac.type == e1000_80003es2lan) + adapter->hw.fc.pause_time = 0xFFFF; + else + adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME; + adapter->hw.fc.send_xon = TRUE; + adapter->hw.fc.type = e1000_fc_full; + + if (e1000_init_hw(&adapter->hw) < 0) { + device_printf(dev, "Hardware Initialization Failed\n"); + return (EIO); + } + + e1000_check_for_link(&adapter->hw); + + return (0); +} + +/********************************************************************* + * + * Setup networking device structure and register an interface. + * + **********************************************************************/ +static void +em_setup_interface(device_t dev, struct adapter *adapter) +{ + struct ifnet *ifp; + + INIT_DEBUGOUT("em_setup_interface: begin"); + + ifp = adapter->ifp = if_alloc(IFT_ETHER); + if (ifp == NULL) + panic("%s: can not if_alloc()", device_get_nameunit(dev)); + if_initname(ifp, device_get_name(dev), device_get_unit(dev)); + ifp->if_mtu = ETHERMTU; + ifp->if_init = em_init; + ifp->if_softc = adapter; + ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; + ifp->if_ioctl = em_ioctl; + ifp->if_start = em_start; + IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1); + ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1; + IFQ_SET_READY(&ifp->if_snd); + + ether_ifattach(ifp, adapter->hw.mac.addr); + + ifp->if_capabilities = ifp->if_capenable = 0; + + if (adapter->hw.mac.type >= e1000_82543) { + int version_cap; +#if __FreeBSD_version < 700000 + version_cap = IFCAP_HWCSUM; +#else + version_cap = IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM; +#endif + ifp->if_capabilities |= version_cap; + ifp->if_capenable |= version_cap; + } + +#if __FreeBSD_version >= 700000 + /* Identify TSO capable adapters */ + if ((adapter->hw.mac.type > e1000_82544) && + (adapter->hw.mac.type != e1000_82547)) + ifp->if_capabilities |= IFCAP_TSO4; + /* + * By default only enable on PCI-E, this + * can be overriden by ifconfig. + */ + if (adapter->hw.mac.type >= e1000_82571) + ifp->if_capenable |= IFCAP_TSO4; +#endif + + /* + * Tell the upper layer(s) we support long frames. + */ + ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); + ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU; + ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU; + +#ifdef DEVICE_POLLING + ifp->if_capabilities |= IFCAP_POLLING; +#endif + + /* + * Specify the media types supported by this adapter and register + * callbacks to update media and link information + */ + ifmedia_init(&adapter->media, IFM_IMASK, + em_media_change, em_media_status); + if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || + (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) { + u_char fiber_type = IFM_1000_SX; /* default type */ + + if (adapter->hw.mac.type == e1000_82545) + fiber_type = IFM_1000_LX; + ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX, + 0, NULL); + ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL); + } else { + ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL); + ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, + 0, NULL); + ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX, + 0, NULL); + ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, + 0, NULL); + if (adapter->hw.phy.type != e1000_phy_ife) { + ifmedia_add(&adapter->media, + IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); + ifmedia_add(&adapter->media, + IFM_ETHER | IFM_1000_T, 0, NULL); + } + } + ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL); + ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO); +} + + +/********************************************************************* + * + * Workaround for SmartSpeed on 82541 and 82547 controllers + * + **********************************************************************/ +static void +em_smartspeed(struct adapter *adapter) +{ + u16 phy_tmp; + + if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) || + adapter->hw.mac.autoneg == 0 || + (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0) + return; + + if (adapter->smartspeed == 0) { + /* If Master/Slave config fault is asserted twice, + * we assume back-to-back */ + e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp); + if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT)) + return; + e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp); + if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) { + e1000_read_phy_reg(&adapter->hw, + PHY_1000T_CTRL, &phy_tmp); + if(phy_tmp & CR_1000T_MS_ENABLE) { + phy_tmp &= ~CR_1000T_MS_ENABLE; + e1000_write_phy_reg(&adapter->hw, + PHY_1000T_CTRL, phy_tmp); + adapter->smartspeed++; + if(adapter->hw.mac.autoneg && + !e1000_phy_setup_autoneg(&adapter->hw) && + !e1000_read_phy_reg(&adapter->hw, + PHY_CONTROL, &phy_tmp)) { + phy_tmp |= (MII_CR_AUTO_NEG_EN | + MII_CR_RESTART_AUTO_NEG); + e1000_write_phy_reg(&adapter->hw, + PHY_CONTROL, phy_tmp); + } + } + } + return; + } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) { + /* If still no link, perhaps using 2/3 pair cable */ + e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp); + phy_tmp |= CR_1000T_MS_ENABLE; + e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp); + if(adapter->hw.mac.autoneg && + !e1000_phy_setup_autoneg(&adapter->hw) && + !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) { + phy_tmp |= (MII_CR_AUTO_NEG_EN | + MII_CR_RESTART_AUTO_NEG); + e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp); + } + } + /* Restart process after EM_SMARTSPEED_MAX iterations */ + if(adapter->smartspeed++ == EM_SMARTSPEED_MAX) + adapter->smartspeed = 0; +} + + +/* + * Manage DMA'able memory. + */ +static void +em_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) +{ + if (error) + return; + *(bus_addr_t *) arg = segs[0].ds_addr; +} + +static int +em_dma_malloc(struct adapter *adapter, bus_size_t size, + struct em_dma_alloc *dma, int mapflags) +{ + int error; + +#if __FreeBSD_version >= 700000 + error = bus_dma_tag_create(bus_get_dma_tag(adapter->dev), /* parent */ +#else + error = bus_dma_tag_create(NULL, /* parent */ +#endif + EM_DBA_ALIGN, 0, /* alignment, bounds */ + BUS_SPACE_MAXADDR, /* lowaddr */ + BUS_SPACE_MAXADDR, /* highaddr */ + NULL, NULL, /* filter, filterarg */ + size, /* maxsize */ + 1, /* nsegments */ + size, /* maxsegsize */ + 0, /* flags */ + NULL, /* lockfunc */ + NULL, /* lockarg */ + &dma->dma_tag); + if (error) { + device_printf(adapter->dev, + "%s: bus_dma_tag_create failed: %d\n", + __func__, error); + goto fail_0; + } + + error = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr, + BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &dma->dma_map); + if (error) { + device_printf(adapter->dev, + "%s: bus_dmamem_alloc(%ju) failed: %d\n", + __func__, (uintmax_t)size, error); + goto fail_2; + } + + dma->dma_paddr = 0; + error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, + size, em_dmamap_cb, &dma->dma_paddr, mapflags | BUS_DMA_NOWAIT); + if (error || dma->dma_paddr == 0) { + device_printf(adapter->dev, + "%s: bus_dmamap_load failed: %d\n", + __func__, error); + goto fail_3; + } + + return (0); + +fail_3: + bus_dmamap_unload(dma->dma_tag, dma->dma_map); +fail_2: + bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); + bus_dma_tag_destroy(dma->dma_tag); +fail_0: + dma->dma_map = NULL; + dma->dma_tag = NULL; + + return (error); +} + +static void +em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma) +{ + if (dma->dma_tag == NULL) + return; + if (dma->dma_map != NULL) { + bus_dmamap_sync(dma->dma_tag, dma->dma_map, + BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); + bus_dmamap_unload(dma->dma_tag, dma->dma_map); + bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); + dma->dma_map = NULL; + } + bus_dma_tag_destroy(dma->dma_tag); + dma->dma_tag = NULL; +} + + +/********************************************************************* + * + * Allocate memory for tx_buffer structures. The tx_buffer stores all + * the information needed to transmit a packet on the wire. + * + **********************************************************************/ +static int +em_allocate_transmit_structures(struct adapter *adapter) +{ + device_t dev = adapter->dev; + struct em_buffer *tx_buffer; + int error; + + /* + * Create DMA tags for tx descriptors + */ +#if __FreeBSD_version >= 700000 + if ((error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ +#else + if ((error = bus_dma_tag_create(NULL, /* parent */ +#endif + 1, 0, /* alignment, bounds */ + BUS_SPACE_MAXADDR, /* lowaddr */ + BUS_SPACE_MAXADDR, /* highaddr */ + NULL, NULL, /* filter, filterarg */ + EM_TSO_SIZE, /* maxsize */ + EM_MAX_SCATTER, /* nsegments */ + EM_TSO_SEG_SIZE, /* maxsegsize */ + 0, /* flags */ + NULL, /* lockfunc */ + NULL, /* lockarg */ + &adapter->txtag)) != 0) { + device_printf(dev, "Unable to allocate TX DMA tag\n"); + goto fail; + } + + adapter->tx_buffer_area = malloc(sizeof(struct em_buffer) * + adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO); + if (adapter->tx_buffer_area == NULL) { + device_printf(dev, "Unable to allocate tx_buffer memory\n"); + error = ENOMEM; + goto fail; + } + + /* Create the descriptor buffer dma maps */ + for (int i = 0; i < adapter->num_tx_desc; i++) { + tx_buffer = &adapter->tx_buffer_area[i]; + error = bus_dmamap_create(adapter->txtag, 0, &tx_buffer->map); + if (error != 0) { + device_printf(dev, "Unable to create TX DMA map\n"); + goto fail; + } + tx_buffer->next_eop = -1; + } + + return (0); +fail: + em_free_transmit_structures(adapter); + return (error); +} + +/********************************************************************* + * + * (Re)Initialize transmit structures. + * + **********************************************************************/ +static void +em_setup_transmit_structures(struct adapter *adapter) +{ + struct em_buffer *tx_buffer; + + /* Clear the old ring contents */ + bzero(adapter->tx_desc_base, + (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc); + + /* Free any existing TX buffers */ + for (int i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) { + tx_buffer = &adapter->tx_buffer_area[i]; + bus_dmamap_sync(adapter->txtag, tx_buffer->map, + BUS_DMASYNC_POSTWRITE); + bus_dmamap_unload(adapter->txtag, tx_buffer->map); + m_freem(tx_buffer->m_head); + tx_buffer->m_head = NULL; + tx_buffer->next_eop = -1; + } + + /* Reset state */ + adapter->next_avail_tx_desc = 0; + adapter->next_tx_to_clean = 0; + adapter->num_tx_desc_avail = adapter->num_tx_desc; + + bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map, + BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); + + return; +} + +/********************************************************************* + * + * Enable transmit unit. + * + **********************************************************************/ +static void +em_initialize_transmit_unit(struct adapter *adapter) +{ + u32 tctl, tarc, tipg = 0; + u64 bus_addr; + + INIT_DEBUGOUT("em_initialize_transmit_unit: begin"); + /* Setup the Base and Length of the Tx Descriptor Ring */ + bus_addr = adapter->txdma.dma_paddr; + E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0), + adapter->num_tx_desc * sizeof(struct e1000_tx_desc)); + E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0), + (u32)(bus_addr >> 32)); + E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0), + (u32)bus_addr); + /* Setup the HW Tx Head and Tail descriptor pointers */ + E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0); + E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0); + + HW_DEBUGOUT2("Base = %x, Length = %x\n", + E1000_READ_REG(&adapter->hw, E1000_TDBAL(0)), + E1000_READ_REG(&adapter->hw, E1000_TDLEN(0))); + + /* Set the default values for the Tx Inter Packet Gap timer */ + switch (adapter->hw.mac.type) { + case e1000_82542: + tipg = DEFAULT_82542_TIPG_IPGT; + tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; + tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; + break; + case e1000_80003es2lan: + tipg = DEFAULT_82543_TIPG_IPGR1; + tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 << + E1000_TIPG_IPGR2_SHIFT; + break; + default: + if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || + (adapter->hw.phy.media_type == + e1000_media_type_internal_serdes)) + tipg = DEFAULT_82543_TIPG_IPGT_FIBER; + else + tipg = DEFAULT_82543_TIPG_IPGT_COPPER; + tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; + tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; + } + + E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg); + E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value); + if(adapter->hw.mac.type >= e1000_82540) + E1000_WRITE_REG(&adapter->hw, E1000_TADV, + adapter->tx_abs_int_delay.value); + + if ((adapter->hw.mac.type == e1000_82571) || + (adapter->hw.mac.type == e1000_82572)) { + tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); + tarc |= SPEED_MODE_BIT; + E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); + } else if (adapter->hw.mac.type == e1000_80003es2lan) { + tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); + tarc |= 1; + E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); + tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1)); + tarc |= 1; + E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc); + } + + /* Program the Transmit Control Register */ + tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL); + tctl &= ~E1000_TCTL_CT; + tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | + (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); + + if (adapter->hw.mac.type >= e1000_82571) + tctl |= E1000_TCTL_MULR; + + /* This write will effectively turn on the transmit unit. */ + E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl); + + /* Setup Transmit Descriptor Base Settings */ + adapter->txd_cmd = E1000_TXD_CMD_IFCS; + + if (adapter->tx_int_delay.value > 0) + adapter->txd_cmd |= E1000_TXD_CMD_IDE; +} + +/********************************************************************* + * + * Free all transmit related data structures. + * + **********************************************************************/ +static void +em_free_transmit_structures(struct adapter *adapter) +{ + struct em_buffer *tx_buffer; + + INIT_DEBUGOUT("free_transmit_structures: begin"); + + if (adapter->tx_buffer_area != NULL) { + for (int i = 0; i < adapter->num_tx_desc; i++) { + tx_buffer = &adapter->tx_buffer_area[i]; + if (tx_buffer->m_head != NULL) { + bus_dmamap_sync(adapter->txtag, tx_buffer->map, + BUS_DMASYNC_POSTWRITE); + bus_dmamap_unload(adapter->txtag, + tx_buffer->map); + m_freem(tx_buffer->m_head); + tx_buffer->m_head = NULL; + } else if (tx_buffer->map != NULL) + bus_dmamap_unload(adapter->txtag, + tx_buffer->map); + if (tx_buffer->map != NULL) { + bus_dmamap_destroy(adapter->txtag, + tx_buffer->map); + tx_buffer->map = NULL; + } + } + } + if (adapter->tx_buffer_area != NULL) { + free(adapter->tx_buffer_area, M_DEVBUF); + adapter->tx_buffer_area = NULL; + } + if (adapter->txtag != NULL) { + bus_dma_tag_destroy(adapter->txtag); + adapter->txtag = NULL; + } +} + +/********************************************************************* + * + * The offload context needs to be set when we transfer the first + * packet of a particular protocol (TCP/UDP). This routine has been + * enhanced to deal with inserted VLAN headers, and IPV6 (not complete) + * + **********************************************************************/ +static void +em_transmit_checksum_setup(struct adapter *adapter, struct mbuf *mp, + u32 *txd_upper, u32 *txd_lower) +{ + struct e1000_context_desc *TXD; + struct em_buffer *tx_buffer; + struct ether_vlan_header *eh; + struct ip *ip = NULL; + struct ip6_hdr *ip6; + struct tcp_hdr *th; + int curr_txd, ehdrlen; + u32 cmd, hdr_len, ip_hlen; + u16 etype; + u8 ipproto; + + cmd = hdr_len = ipproto = 0; + /* Setup checksum offload context. */ + curr_txd = adapter->next_avail_tx_desc; + tx_buffer = &adapter->tx_buffer_area[curr_txd]; + TXD = (struct e1000_context_desc *) &adapter->tx_desc_base[curr_txd]; + + /* + * Determine where frame payload starts. + * Jump over vlan headers if already present, + * helpful for QinQ too. + */ + eh = mtod(mp, struct ether_vlan_header *); + if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { + etype = ntohs(eh->evl_proto); + ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; + } else { + etype = ntohs(eh->evl_encap_proto); + ehdrlen = ETHER_HDR_LEN; + } + + /* + * We only support TCP/UDP for IPv4 and IPv6 for the moment. + * TODO: Support SCTP too when it hits the tree. + */ + switch (etype) { + case ETHERTYPE_IP: + ip = (struct ip *)(mp->m_data + ehdrlen); + ip_hlen = ip->ip_hl << 2; + + /* Setup of IP header checksum. */ + if (mp->m_pkthdr.csum_flags & CSUM_IP) { + /* + * Start offset for header checksum calculation. + * End offset for header checksum calculation. + * Offset of place to put the checksum. + */ + TXD->lower_setup.ip_fields.ipcss = ehdrlen; + TXD->lower_setup.ip_fields.ipcse = + htole16(ehdrlen + ip_hlen); + TXD->lower_setup.ip_fields.ipcso = + ehdrlen + offsetof(struct ip, ip_sum); + cmd |= E1000_TXD_CMD_IP; + *txd_upper |= E1000_TXD_POPTS_IXSM << 8; + } + + if (mp->m_len < ehdrlen + ip_hlen) + return; /* failure */ + + hdr_len = ehdrlen + ip_hlen; + ipproto = ip->ip_p; + + break; + case ETHERTYPE_IPV6: + ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen); + ip_hlen = sizeof(struct ip6_hdr); /* XXX: No header stacking. */ + + if (mp->m_len < ehdrlen + ip_hlen) + return; /* failure */ + + /* IPv6 doesn't have a header checksum. */ + + hdr_len = ehdrlen + ip_hlen; + ipproto = ip6->ip6_nxt; + + break; +#ifdef EM_TIMESYNC + case ETHERTYPE_IEEE1588: + *txd_upper |= E1000_TXD_EXTCMD_TSTAMP; + break; +#endif + default: + *txd_upper = 0; + *txd_lower = 0; + return; + } + + switch (ipproto) { + case IPPROTO_TCP: + if (mp->m_pkthdr.csum_flags & CSUM_TCP) { + /* + * Start offset for payload checksum calculation. + * End offset for payload checksum calculation. + * Offset of place to put the checksum. + */ + th = (struct tcp_hdr *)(mp->m_data + hdr_len); + TXD->upper_setup.tcp_fields.tucss = hdr_len; + TXD->upper_setup.tcp_fields.tucse = htole16(0); + TXD->upper_setup.tcp_fields.tucso = + hdr_len + offsetof(struct tcphdr, th_sum); + cmd |= E1000_TXD_CMD_TCP; + *txd_upper |= E1000_TXD_POPTS_TXSM << 8; + } + break; + case IPPROTO_UDP: + { +#ifdef EM_TIMESYNC + void *hdr = (caddr_t) ip + ip_hlen; + struct udphdr *uh = (struct udphdr *)hdr; + + if (uh->uh_dport == htons(TSYNC_PORT)) { + *txd_upper |= E1000_TXD_EXTCMD_TSTAMP; + IOCTL_DEBUGOUT("@@@ Sending Event Packet\n"); + } +#endif + if (mp->m_pkthdr.csum_flags & CSUM_UDP) { + /* + * Start offset for header checksum calculation. + * End offset for header checksum calculation. + * Offset of place to put the checksum. + */ + TXD->upper_setup.tcp_fields.tucss = hdr_len; + TXD->upper_setup.tcp_fields.tucse = htole16(0); + TXD->upper_setup.tcp_fields.tucso = + hdr_len + offsetof(struct udphdr, uh_sum); + *txd_upper |= E1000_TXD_POPTS_TXSM << 8; + } + /* Fall Thru */ + } + default: + break; + } + +#ifdef EM_TIMESYNC + /* + ** We might be here just for TIMESYNC + ** which means we don't need the context + ** descriptor. + */ + if (!mp->m_pkthdr.csum_flags & CSUM_OFFLOAD) + return; +#endif + *txd_lower = E1000_TXD_CMD_DEXT | /* Extended descr type */ + E1000_TXD_DTYP_D; /* Data descr */ + TXD->tcp_seg_setup.data = htole32(0); + TXD->cmd_and_length = + htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT | cmd); + tx_buffer->m_head = NULL; + tx_buffer->next_eop = -1; + + if (++curr_txd == adapter->num_tx_desc) + curr_txd = 0; + + adapter->num_tx_desc_avail--; + adapter->next_avail_tx_desc = curr_txd; +} + + +#if __FreeBSD_version >= 700000 +/********************************************************************** + * + * Setup work for hardware segmentation offload (TSO) + * + **********************************************************************/ +static bool +em_tso_setup(struct adapter *adapter, struct mbuf *mp, u32 *txd_upper, + u32 *txd_lower) +{ + struct e1000_context_desc *TXD; + struct em_buffer *tx_buffer; + struct ether_vlan_header *eh; + struct ip *ip; + struct ip6_hdr *ip6; + struct tcphdr *th; + int curr_txd, ehdrlen, hdr_len, ip_hlen, isip6; + u16 etype; + + /* + * This function could/should be extended to support IP/IPv6 + * fragmentation as well. But as they say, one step at a time. + */ + + /* + * Determine where frame payload starts. + * Jump over vlan headers if already present, + * helpful for QinQ too. + */ + eh = mtod(mp, struct ether_vlan_header *); + if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { + etype = ntohs(eh->evl_proto); + ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; + } else { + etype = ntohs(eh->evl_encap_proto); + ehdrlen = ETHER_HDR_LEN; + } + + /* Ensure we have at least the IP+TCP header in the first mbuf. */ + if (mp->m_len < ehdrlen + sizeof(struct ip) + sizeof(struct tcphdr)) + return FALSE; /* -1 */ + + /* + * We only support TCP for IPv4 and IPv6 (notyet) for the moment. + * TODO: Support SCTP too when it hits the tree. + */ + switch (etype) { + case ETHERTYPE_IP: + isip6 = 0; + ip = (struct ip *)(mp->m_data + ehdrlen); + if (ip->ip_p != IPPROTO_TCP) + return FALSE; /* 0 */ + ip->ip_len = 0; + ip->ip_sum = 0; + ip_hlen = ip->ip_hl << 2; + if (mp->m_len < ehdrlen + ip_hlen + sizeof(struct tcphdr)) + return FALSE; /* -1 */ + th = (struct tcphdr *)((caddr_t)ip + ip_hlen); +#if 1 + th->th_sum = in_pseudo(ip->ip_src.s_addr, + ip->ip_dst.s_addr, htons(IPPROTO_TCP)); +#else + th->th_sum = mp->m_pkthdr.csum_data; +#endif + break; + case ETHERTYPE_IPV6: + isip6 = 1; + return FALSE; /* Not supported yet. */ + ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen); + if (ip6->ip6_nxt != IPPROTO_TCP) + return FALSE; /* 0 */ + ip6->ip6_plen = 0; + ip_hlen = sizeof(struct ip6_hdr); /* XXX: no header stacking. */ + if (mp->m_len < ehdrlen + ip_hlen + sizeof(struct tcphdr)) + return FALSE; /* -1 */ + th = (struct tcphdr *)((caddr_t)ip6 + ip_hlen); +#if 0 + th->th_sum = in6_pseudo(ip6->ip6_src, ip->ip6_dst, + htons(IPPROTO_TCP)); /* XXX: function notyet. */ +#else + th->th_sum = mp->m_pkthdr.csum_data; +#endif + break; + default: + return FALSE; + } + hdr_len = ehdrlen + ip_hlen + (th->th_off << 2); + + *txd_lower = (E1000_TXD_CMD_DEXT | /* Extended descr type */ + E1000_TXD_DTYP_D | /* Data descr type */ + E1000_TXD_CMD_TSE); /* Do TSE on this packet */ + + /* IP and/or TCP header checksum calculation and insertion. */ + *txd_upper = ((isip6 ? 0 : E1000_TXD_POPTS_IXSM) | + E1000_TXD_POPTS_TXSM) << 8; + + curr_txd = adapter->next_avail_tx_desc; + tx_buffer = &adapter->tx_buffer_area[curr_txd]; + TXD = (struct e1000_context_desc *) &adapter->tx_desc_base[curr_txd]; + + /* IPv6 doesn't have a header checksum. */ + if (!isip6) { + /* + * Start offset for header checksum calculation. + * End offset for header checksum calculation. + * Offset of place put the checksum. + */ + TXD->lower_setup.ip_fields.ipcss = ehdrlen; + TXD->lower_setup.ip_fields.ipcse = + htole16(ehdrlen + ip_hlen - 1); + TXD->lower_setup.ip_fields.ipcso = + ehdrlen + offsetof(struct ip, ip_sum); + } + /* + * Start offset for payload checksum calculation. + * End offset for payload checksum calculation. + * Offset of place to put the checksum. + */ + TXD->upper_setup.tcp_fields.tucss = + ehdrlen + ip_hlen; + TXD->upper_setup.tcp_fields.tucse = 0; + TXD->upper_setup.tcp_fields.tucso = + ehdrlen + ip_hlen + offsetof(struct tcphdr, th_sum); + /* + * Payload size per packet w/o any headers. + * Length of all headers up to payload. + */ + TXD->tcp_seg_setup.fields.mss = htole16(mp->m_pkthdr.tso_segsz); + TXD->tcp_seg_setup.fields.hdr_len = hdr_len; + + TXD->cmd_and_length = htole32(adapter->txd_cmd | + E1000_TXD_CMD_DEXT | /* Extended descr */ + E1000_TXD_CMD_TSE | /* TSE context */ + (isip6 ? 0 : E1000_TXD_CMD_IP) | /* Do IP csum */ + E1000_TXD_CMD_TCP | /* Do TCP checksum */ + (mp->m_pkthdr.len - (hdr_len))); /* Total len */ + + tx_buffer->m_head = NULL; + tx_buffer->next_eop = -1; + + if (++curr_txd == adapter->num_tx_desc) + curr_txd = 0; + + adapter->num_tx_desc_avail--; + adapter->next_avail_tx_desc = curr_txd; + adapter->tx_tso = TRUE; + + return TRUE; +} + +#endif /* __FreeBSD_version >= 700000 */ + +/********************************************************************** + * + * Examine each tx_buffer in the used queue. If the hardware is done + * processing the packet then free associated resources. The + * tx_buffer is put back on the free queue. + * + **********************************************************************/ +static void +em_txeof(struct adapter *adapter) +{ + int first, last, done, num_avail; + struct em_buffer *tx_buffer; + struct e1000_tx_desc *tx_desc, *eop_desc; + struct ifnet *ifp = adapter->ifp; + + EM_TX_LOCK_ASSERT(adapter); + + if (adapter->num_tx_desc_avail == adapter->num_tx_desc) + return; + + num_avail = adapter->num_tx_desc_avail; + first = adapter->next_tx_to_clean; + tx_desc = &adapter->tx_desc_base[first]; + tx_buffer = &adapter->tx_buffer_area[first]; + last = tx_buffer->next_eop; + eop_desc = &adapter->tx_desc_base[last]; + + /* + * What this does is get the index of the + * first descriptor AFTER the EOP of the + * first packet, that way we can do the + * simple comparison on the inner while loop. + */ + if (++last == adapter->num_tx_desc) + last = 0; + done = last; + + bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map, + BUS_DMASYNC_POSTREAD); + + while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) { + /* We clean the range of the packet */ + while (first != done) { + tx_desc->upper.data = 0; + tx_desc->lower.data = 0; + tx_desc->buffer_addr = 0; + num_avail++; + + if (tx_buffer->m_head) { + ifp->if_opackets++; + bus_dmamap_sync(adapter->txtag, + tx_buffer->map, + BUS_DMASYNC_POSTWRITE); + bus_dmamap_unload(adapter->txtag, + tx_buffer->map); + + m_freem(tx_buffer->m_head); + tx_buffer->m_head = NULL; + } + tx_buffer->next_eop = -1; + + if (++first == adapter->num_tx_desc) + first = 0; + + tx_buffer = &adapter->tx_buffer_area[first]; + tx_desc = &adapter->tx_desc_base[first]; + } + /* See if we can continue to the next packet */ + last = tx_buffer->next_eop; + if (last != -1) { + eop_desc = &adapter->tx_desc_base[last]; + /* Get new done point */ + if (++last == adapter->num_tx_desc) last = 0; + done = last; + } else + break; + } + bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map, + BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); + + adapter->next_tx_to_clean = first; + + /* + * If we have enough room, clear IFF_DRV_OACTIVE to tell the stack + * that it is OK to send packets. + * If there are no pending descriptors, clear the timeout. Otherwise, + * if some descriptors have been freed, restart the timeout. + */ + if (num_avail > EM_TX_CLEANUP_THRESHOLD) { + ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; + /* All clean, turn off the timer */ + if (num_avail == adapter->num_tx_desc) { + adapter->watchdog_timer = 0; + } else + /* Some cleaned, reset the timer */ + if (num_avail != adapter->num_tx_desc_avail) + adapter->watchdog_timer = EM_TX_TIMEOUT; + } + adapter->num_tx_desc_avail = num_avail; + return; +} + +/********************************************************************* + * + * When Link is lost sometimes there is work still in the TX ring + * which will result in a watchdog, rather than allow that do an + * attempted cleanup and then reinit here. Note that this has been + * seens mostly with fiber adapters. + * + **********************************************************************/ +static void +em_tx_purge(struct adapter *adapter) +{ + if ((!adapter->link_active) && (adapter->watchdog_timer)) { + EM_TX_LOCK(adapter); + em_txeof(adapter); + EM_TX_UNLOCK(adapter); + if (adapter->watchdog_timer) { /* Still not clean? */ + adapter->watchdog_timer = 0; + em_init_locked(adapter); + } + } +} + +/********************************************************************* + * + * Get a buffer from system mbuf buffer pool. + * + **********************************************************************/ +static int +em_get_buf(struct adapter *adapter, int i) +{ + struct mbuf *m; + bus_dma_segment_t segs[1]; + bus_dmamap_t map; + struct em_buffer *rx_buffer; + int error, nsegs; + + m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); + if (m == NULL) { + adapter->mbuf_cluster_failed++; + return (ENOBUFS); + } + m->m_len = m->m_pkthdr.len = MCLBYTES; + + if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN)) + m_adj(m, ETHER_ALIGN); + + /* + * Using memory from the mbuf cluster pool, invoke the + * bus_dma machinery to arrange the memory mapping. + */ + error = bus_dmamap_load_mbuf_sg(adapter->rxtag, + adapter->rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT); + if (error != 0) { + m_free(m); + return (error); + } + + /* If nsegs is wrong then the stack is corrupt. */ + KASSERT(nsegs == 1, ("Too many segments returned!")); + + rx_buffer = &adapter->rx_buffer_area[i]; + if (rx_buffer->m_head != NULL) + bus_dmamap_unload(adapter->rxtag, rx_buffer->map); + + map = rx_buffer->map; + rx_buffer->map = adapter->rx_sparemap; + adapter->rx_sparemap = map; + bus_dmamap_sync(adapter->rxtag, rx_buffer->map, BUS_DMASYNC_PREREAD); + rx_buffer->m_head = m; + + adapter->rx_desc_base[i].buffer_addr = htole64(segs[0].ds_addr); + return (0); +} + +/********************************************************************* + * + * Allocate memory for rx_buffer structures. Since we use one + * rx_buffer per received packet, the maximum number of rx_buffer's + * that we'll need is equal to the number of receive descriptors + * that we've allocated. + * + **********************************************************************/ +static int +em_allocate_receive_structures(struct adapter *adapter) +{ + device_t dev = adapter->dev; + struct em_buffer *rx_buffer; + int i, error; + + adapter->rx_buffer_area = malloc(sizeof(struct em_buffer) * + adapter->num_rx_desc, M_DEVBUF, M_NOWAIT | M_ZERO); + if (adapter->rx_buffer_area == NULL) { + device_printf(dev, "Unable to allocate rx_buffer memory\n"); + return (ENOMEM); + } + +#if __FreeBSD_version >= 700000 + error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ +#else + error = bus_dma_tag_create(NULL, /* parent */ +#endif + 1, 0, /* alignment, bounds */ + BUS_SPACE_MAXADDR, /* lowaddr */ + BUS_SPACE_MAXADDR, /* highaddr */ + NULL, NULL, /* filter, filterarg */ + MCLBYTES, /* maxsize */ + 1, /* nsegments */ + MCLBYTES, /* maxsegsize */ + 0, /* flags */ + NULL, /* lockfunc */ + NULL, /* lockarg */ + &adapter->rxtag); + if (error) { + device_printf(dev, "%s: bus_dma_tag_create failed %d\n", + __func__, error); + goto fail; + } + + /* Create the spare map (used by getbuf) */ + error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT, + &adapter->rx_sparemap); + if (error) { + device_printf(dev, "%s: bus_dmamap_create failed: %d\n", + __func__, error); + goto fail; + } + + rx_buffer = adapter->rx_buffer_area; + for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) { + error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT, + &rx_buffer->map); + if (error) { + device_printf(dev, "%s: bus_dmamap_create failed: %d\n", + __func__, error); + goto fail; + } + } + + return (0); + +fail: + em_free_receive_structures(adapter); + return (error); +} + +/********************************************************************* + * + * (Re)initialize receive structures. + * + **********************************************************************/ +static int +em_setup_receive_structures(struct adapter *adapter) +{ + struct em_buffer *rx_buffer; + int i, error; + + /* Reset descriptor ring */ + bzero(adapter->rx_desc_base, + (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc); + + /* Free current RX buffers. */ + rx_buffer = adapter->rx_buffer_area; + for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) { + if (rx_buffer->m_head != NULL) { + bus_dmamap_sync(adapter->rxtag, rx_buffer->map, + BUS_DMASYNC_POSTREAD); + bus_dmamap_unload(adapter->rxtag, rx_buffer->map); + m_freem(rx_buffer->m_head); + rx_buffer->m_head = NULL; + } + } + + /* Allocate new ones. */ + for (i = 0; i < adapter->num_rx_desc; i++) { + error = em_get_buf(adapter, i); + if (error) + return (error); + } + + /* Setup our descriptor pointers */ + adapter->next_rx_desc_to_check = 0; + bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map, + BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); + + return (0); +} + +/********************************************************************* + * + * Enable receive unit. + * + **********************************************************************/ +#define MAX_INTS_PER_SEC 8000 +#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256) + +static void +em_initialize_receive_unit(struct adapter *adapter) +{ + struct ifnet *ifp = adapter->ifp; + u64 bus_addr; + u32 rctl, rxcsum; + + INIT_DEBUGOUT("em_initialize_receive_unit: begin"); + + /* + * Make sure receives are disabled while setting + * up the descriptor ring + */ + rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); + E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); + + if (adapter->hw.mac.type >= e1000_82540) { + E1000_WRITE_REG(&adapter->hw, E1000_RADV, + adapter->rx_abs_int_delay.value); + /* + * Set the interrupt throttling rate. Value is calculated + * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) + */ + E1000_WRITE_REG(&adapter->hw, E1000_ITR, DEFAULT_ITR); + } + + /* + ** When using MSIX interrupts we need to throttle + ** using the EITR register (82574 only) + */ + if (adapter->msix) + for (int i = 0; i < 4; i++) + E1000_WRITE_REG(&adapter->hw, + E1000_EITR_82574(i), DEFAULT_ITR); + + /* Disable accelerated ackknowledge */ + if (adapter->hw.mac.type == e1000_82574) + E1000_WRITE_REG(&adapter->hw, + E1000_RFCTL, E1000_RFCTL_ACK_DIS); + + /* Setup the Base and Length of the Rx Descriptor Ring */ + bus_addr = adapter->rxdma.dma_paddr; + E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0), + adapter->num_rx_desc * sizeof(struct e1000_rx_desc)); + E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0), + (u32)(bus_addr >> 32)); + E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0), + (u32)bus_addr); + + /* Setup the Receive Control Register */ + rctl &= ~(3 << E1000_RCTL_MO_SHIFT); + rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | + E1000_RCTL_RDMTS_HALF | + (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); + + /* Make sure VLAN Filters are off */ + rctl &= ~E1000_RCTL_VFE; + + if (e1000_tbi_sbp_enabled_82543(&adapter->hw)) + rctl |= E1000_RCTL_SBP; + else + rctl &= ~E1000_RCTL_SBP; + + switch (adapter->rx_buffer_len) { + default: + case 2048: + rctl |= E1000_RCTL_SZ_2048; + break; + case 4096: + rctl |= E1000_RCTL_SZ_4096 | + E1000_RCTL_BSEX | E1000_RCTL_LPE; + break; + case 8192: + rctl |= E1000_RCTL_SZ_8192 | + E1000_RCTL_BSEX | E1000_RCTL_LPE; + break; + case 16384: + rctl |= E1000_RCTL_SZ_16384 | + E1000_RCTL_BSEX | E1000_RCTL_LPE; + break; + } + + if (ifp->if_mtu > ETHERMTU) + rctl |= E1000_RCTL_LPE; + else + rctl &= ~E1000_RCTL_LPE; + + /* Enable 82543 Receive Checksum Offload for TCP and UDP */ + if ((adapter->hw.mac.type >= e1000_82543) && + (ifp->if_capenable & IFCAP_RXCSUM)) { + rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM); + rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL); + E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum); + } + + /* + ** XXX TEMPORARY WORKAROUND: on some systems with 82573 + ** long latencies are observed, like Lenovo X60. This + ** change eliminates the problem, but since having positive + ** values in RDTR is a known source of problems on other + ** platforms another solution is being sought. + */ + if (adapter->hw.mac.type == e1000_82573) + E1000_WRITE_REG(&adapter->hw, E1000_RDTR, 0x20); + + /* Enable Receives */ + E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl); + + /* + * Setup the HW Rx Head and + * Tail Descriptor Pointers + */ + E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0); + E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1); + + return; +} + +/********************************************************************* + * + * Free receive related data structures. + * + **********************************************************************/ +static void +em_free_receive_structures(struct adapter *adapter) +{ + struct em_buffer *rx_buffer; + int i; + + INIT_DEBUGOUT("free_receive_structures: begin"); + + if (adapter->rx_sparemap) { + bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap); + adapter->rx_sparemap = NULL; + } + + /* Cleanup any existing buffers */ + if (adapter->rx_buffer_area != NULL) { + rx_buffer = adapter->rx_buffer_area; + for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) { + if (rx_buffer->m_head != NULL) { + bus_dmamap_sync(adapter->rxtag, rx_buffer->map, + BUS_DMASYNC_POSTREAD); + bus_dmamap_unload(adapter->rxtag, + rx_buffer->map); + m_freem(rx_buffer->m_head); + rx_buffer->m_head = NULL; + } else if (rx_buffer->map != NULL) + bus_dmamap_unload(adapter->rxtag, + rx_buffer->map); + if (rx_buffer->map != NULL) { + bus_dmamap_destroy(adapter->rxtag, + rx_buffer->map); + rx_buffer->map = NULL; + } + } + } + + if (adapter->rx_buffer_area != NULL) { + free(adapter->rx_buffer_area, M_DEVBUF); + adapter->rx_buffer_area = NULL; + } + + if (adapter->rxtag != NULL) { + bus_dma_tag_destroy(adapter->rxtag); + adapter->rxtag = NULL; + } +} + +/********************************************************************* + * + * This routine executes in interrupt context. It replenishes + * the mbufs in the descriptor and sends data which has been + * dma'ed into host memory to upper layer. + * + * We loop at most count times if count is > 0, or until done if + * count < 0. + * + *********************************************************************/ +static int +em_rxeof(struct adapter *adapter, int count) +{ + struct ifnet *ifp = adapter->ifp;; + struct mbuf *mp; + u8 status, accept_frame = 0, eop = 0; + u16 len, desc_len, prev_len_adj; + int i; + struct e1000_rx_desc *current_desc; + + EM_RX_LOCK(adapter); + i = adapter->next_rx_desc_to_check; + current_desc = &adapter->rx_desc_base[i]; + bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map, + BUS_DMASYNC_POSTREAD); + + if (!((current_desc->status) & E1000_RXD_STAT_DD)) { + EM_RX_UNLOCK(adapter); + return (0); + } + + while ((current_desc->status & E1000_RXD_STAT_DD) && + (count != 0) && + (ifp->if_drv_flags & IFF_DRV_RUNNING)) { + struct mbuf *m = NULL; + + mp = adapter->rx_buffer_area[i].m_head; + /* + * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT + * needs to access the last received byte in the mbuf. + */ + bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map, + BUS_DMASYNC_POSTREAD); + + accept_frame = 1; + prev_len_adj = 0; + desc_len = le16toh(current_desc->length); + status = current_desc->status; + if (status & E1000_RXD_STAT_EOP) { + count--; + eop = 1; + if (desc_len < ETHER_CRC_LEN) { + len = 0; + prev_len_adj = ETHER_CRC_LEN - desc_len; + } else + len = desc_len - ETHER_CRC_LEN; + } else { + eop = 0; + len = desc_len; + } + + if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { + u8 last_byte; + u32 pkt_len = desc_len; + + if (adapter->fmp != NULL) + pkt_len += adapter->fmp->m_pkthdr.len; + + last_byte = *(mtod(mp, caddr_t) + desc_len - 1); + if (TBI_ACCEPT(&adapter->hw, status, + current_desc->errors, pkt_len, last_byte, + adapter->min_frame_size, adapter->max_frame_size)) { + e1000_tbi_adjust_stats_82543(&adapter->hw, + &adapter->stats, pkt_len, + adapter->hw.mac.addr, + adapter->max_frame_size); + if (len > 0) + len--; + } else + accept_frame = 0; + } + + if (accept_frame) { + if (em_get_buf(adapter, i) != 0) { + ifp->if_iqdrops++; + goto discard; + } + + /* Assign correct length to the current fragment */ + mp->m_len = len; + + if (adapter->fmp == NULL) { + mp->m_pkthdr.len = len; + adapter->fmp = mp; /* Store the first mbuf */ + adapter->lmp = mp; + } else { + /* Chain mbuf's together */ + mp->m_flags &= ~M_PKTHDR; + /* + * Adjust length of previous mbuf in chain if + * we received less than 4 bytes in the last + * descriptor. + */ + if (prev_len_adj > 0) { + adapter->lmp->m_len -= prev_len_adj; + adapter->fmp->m_pkthdr.len -= + prev_len_adj; + } + adapter->lmp->m_next = mp; + adapter->lmp = adapter->lmp->m_next; + adapter->fmp->m_pkthdr.len += len; + } + + if (eop) { + adapter->fmp->m_pkthdr.rcvif = ifp; + ifp->if_ipackets++; + em_receive_checksum(adapter, current_desc, + adapter->fmp); +#ifndef __NO_STRICT_ALIGNMENT + if (adapter->max_frame_size > + (MCLBYTES - ETHER_ALIGN) && + em_fixup_rx(adapter) != 0) + goto skip; +#endif + if (status & E1000_RXD_STAT_VP) { +#if __FreeBSD_version < 700000 + VLAN_INPUT_TAG_NEW(ifp, adapter->fmp, + (le16toh(current_desc->special) & + E1000_RXD_SPC_VLAN_MASK)); +#else + adapter->fmp->m_pkthdr.ether_vtag = + (le16toh(current_desc->special) & + E1000_RXD_SPC_VLAN_MASK); + adapter->fmp->m_flags |= M_VLANTAG; +#endif + } +#ifndef __NO_STRICT_ALIGNMENT +skip: +#endif + m = adapter->fmp; + adapter->fmp = NULL; + adapter->lmp = NULL; + } + } else { + ifp->if_ierrors++; +discard: + /* Reuse loaded DMA map and just update mbuf chain */ + mp = adapter->rx_buffer_area[i].m_head; + mp->m_len = mp->m_pkthdr.len = MCLBYTES; + mp->m_data = mp->m_ext.ext_buf; + mp->m_next = NULL; + if (adapter->max_frame_size <= + (MCLBYTES - ETHER_ALIGN)) + m_adj(mp, ETHER_ALIGN); + if (adapter->fmp != NULL) { + m_freem(adapter->fmp); + adapter->fmp = NULL; + adapter->lmp = NULL; + } + m = NULL; + } + + /* Zero out the receive descriptors status. */ + current_desc->status = 0; + bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map, + BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); + + /* Advance our pointers to the next descriptor. */ + if (++i == adapter->num_rx_desc) + i = 0; + if (m != NULL) { + adapter->next_rx_desc_to_check = i; + /* Unlock for call into stack */ + EM_RX_UNLOCK(adapter); + (*ifp->if_input)(ifp, m); + EM_RX_LOCK(adapter); + i = adapter->next_rx_desc_to_check; + } + current_desc = &adapter->rx_desc_base[i]; + } + adapter->next_rx_desc_to_check = i; + + /* Advance the E1000's Receive Queue #0 "Tail Pointer". */ + if (--i < 0) + i = adapter->num_rx_desc - 1; + E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i); + EM_RX_UNLOCK(adapter); + if (!((current_desc->status) & E1000_RXD_STAT_DD)) + return (0); + + return (1); +} + +#ifndef __NO_STRICT_ALIGNMENT +/* + * When jumbo frames are enabled we should realign entire payload on + * architecures with strict alignment. This is serious design mistake of 8254x + * as it nullifies DMA operations. 8254x just allows RX buffer size to be + * 2048/4096/8192/16384. What we really want is 2048 - ETHER_ALIGN to align its + * payload. On architecures without strict alignment restrictions 8254x still + * performs unaligned memory access which would reduce the performance too. + * To avoid copying over an entire frame to align, we allocate a new mbuf and + * copy ethernet header to the new mbuf. The new mbuf is prepended into the + * existing mbuf chain. + * + * Be aware, best performance of the 8254x is achived only when jumbo frame is + * not used at all on architectures with strict alignment. + */ +static int +em_fixup_rx(struct adapter *adapter) +{ + struct mbuf *m, *n; + int error; + + error = 0; + m = adapter->fmp; + if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) { + bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len); + m->m_data += ETHER_HDR_LEN; + } else { + MGETHDR(n, M_DONTWAIT, MT_DATA); + if (n != NULL) { + bcopy(m->m_data, n->m_data, ETHER_HDR_LEN); + m->m_data += ETHER_HDR_LEN; + m->m_len -= ETHER_HDR_LEN; + n->m_len = ETHER_HDR_LEN; + M_MOVE_PKTHDR(n, m); + n->m_next = m; + adapter->fmp = n; + } else { + adapter->dropped_pkts++; + m_freem(adapter->fmp); + adapter->fmp = NULL; + error = ENOMEM; + } + } + + return (error); +} +#endif + +/********************************************************************* + * + * Verify that the hardware indicated that the checksum is valid. + * Inform the stack about the status of checksum so that stack + * doesn't spend time verifying the checksum. + * + *********************************************************************/ +static void +em_receive_checksum(struct adapter *adapter, + struct e1000_rx_desc *rx_desc, struct mbuf *mp) +{ + /* 82543 or newer only */ + if ((adapter->hw.mac.type < e1000_82543) || + /* Ignore Checksum bit is set */ + (rx_desc->status & E1000_RXD_STAT_IXSM)) { + mp->m_pkthdr.csum_flags = 0; + return; + } + + if (rx_desc->status & E1000_RXD_STAT_IPCS) { + /* Did it pass? */ + if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) { + /* IP Checksum Good */ + mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED; + mp->m_pkthdr.csum_flags |= CSUM_IP_VALID; + + } else { + mp->m_pkthdr.csum_flags = 0; + } + } + + if (rx_desc->status & E1000_RXD_STAT_TCPCS) { + /* Did it pass? */ + if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) { + mp->m_pkthdr.csum_flags |= + (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); + mp->m_pkthdr.csum_data = htons(0xffff); + } + } +} + +/* + * This turns on the hardware offload of the VLAN + * tag insertion and strip + */ +static void +em_enable_hw_vlans(struct adapter *adapter) +{ + u32 ctrl; + + ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); + ctrl |= E1000_CTRL_VME; + E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); +} + +static void +em_enable_intr(struct adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 ims_mask = IMS_ENABLE_MASK; + + if (adapter->msix) { + E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK); + ims_mask |= EM_MSIX_MASK; + } + E1000_WRITE_REG(hw, E1000_IMS, ims_mask); +} + +static void +em_disable_intr(struct adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + + if (adapter->msix) + E1000_WRITE_REG(hw, EM_EIAC, 0); + E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff); +} + +/* + * Bit of a misnomer, what this really means is + * to enable OS management of the system... aka + * to disable special hardware management features + */ +static void +em_init_manageability(struct adapter *adapter) +{ + /* A shared code workaround */ +#define E1000_82542_MANC2H E1000_MANC2H + if (adapter->has_manage) { + int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H); + int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); + + /* disable hardware interception of ARP */ + manc &= ~(E1000_MANC_ARP_EN); + + /* enable receiving management packets to the host */ + if (adapter->hw.mac.type >= e1000_82571) { + manc |= E1000_MANC_EN_MNG2HOST; +#define E1000_MNG2HOST_PORT_623 (1 << 5) +#define E1000_MNG2HOST_PORT_664 (1 << 6) + manc2h |= E1000_MNG2HOST_PORT_623; + manc2h |= E1000_MNG2HOST_PORT_664; + E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h); + } + + E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); + } +} + +/* + * Give control back to hardware management + * controller if there is one. + */ +static void +em_release_manageability(struct adapter *adapter) +{ + if (adapter->has_manage) { + int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); + + /* re-enable hardware interception of ARP */ + manc |= E1000_MANC_ARP_EN; + + if (adapter->hw.mac.type >= e1000_82571) + manc &= ~E1000_MANC_EN_MNG2HOST; + + E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); + } +} + +/* + * em_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit. + * For ASF and Pass Through versions of f/w this means that + * the driver is loaded. For AMT version (only with 82573) + * of the f/w this means that the network i/f is open. + * + */ +static void +em_get_hw_control(struct adapter *adapter) +{ + u32 ctrl_ext, swsm; + + /* Let firmware know the driver has taken over */ + switch (adapter->hw.mac.type) { + case e1000_82573: + swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM); + E1000_WRITE_REG(&adapter->hw, E1000_SWSM, + swsm | E1000_SWSM_DRV_LOAD); + break; + case e1000_82571: + case e1000_82572: + case e1000_80003es2lan: + case e1000_ich8lan: + case e1000_ich9lan: + case e1000_ich10lan: + ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); + E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, + ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); + break; + default: + break; + } +} + +/* + * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. + * For ASF and Pass Through versions of f/w this means that the + * driver is no longer loaded. For AMT version (only with 82573) i + * of the f/w this means that the network i/f is closed. + * + */ +static void +em_release_hw_control(struct adapter *adapter) +{ + u32 ctrl_ext, swsm; + + /* Let firmware taken over control of h/w */ + switch (adapter->hw.mac.type) { + case e1000_82573: + swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM); + E1000_WRITE_REG(&adapter->hw, E1000_SWSM, + swsm & ~E1000_SWSM_DRV_LOAD); + break; + case e1000_82571: + case e1000_82572: + case e1000_80003es2lan: + case e1000_ich8lan: + case e1000_ich9lan: + case e1000_ich10lan: + ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); + E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, + ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); + break; + default: + break; + + } +} + +static int +em_is_valid_ether_addr(u8 *addr) +{ + char zero_addr[6] = { 0, 0, 0, 0, 0, 0 }; + + if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) { + return (FALSE); + } + + return (TRUE); +} + +/* + * Enable PCI Wake On Lan capability + */ +void +em_enable_wakeup(device_t dev) +{ + u16 cap, status; + u8 id; + + /* First find the capabilities pointer*/ + cap = pci_read_config(dev, PCIR_CAP_PTR, 2); + /* Read the PM Capabilities */ + id = pci_read_config(dev, cap, 1); + if (id != PCIY_PMG) /* Something wrong */ + return; + /* OK, we have the power capabilities, so + now get the status register */ + cap += PCIR_POWER_STATUS; + status = pci_read_config(dev, cap, 2); + status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; + pci_write_config(dev, cap, status, 2); + return; +} + + +/********************************************************************* +* 82544 Coexistence issue workaround. +* There are 2 issues. +* 1. Transmit Hang issue. +* To detect this issue, following equation can be used... +* SIZE[3:0] + ADDR[2:0] = SUM[3:0]. +* If SUM[3:0] is in between 1 to 4, we will have this issue. +* +* 2. DAC issue. +* To detect this issue, following equation can be used... +* SIZE[3:0] + ADDR[2:0] = SUM[3:0]. +* If SUM[3:0] is in between 9 to c, we will have this issue. +* +* +* WORKAROUND: +* Make sure we do not have ending address +* as 1,2,3,4(Hang) or 9,a,b,c (DAC) +* +*************************************************************************/ +static u32 +em_fill_descriptors (bus_addr_t address, u32 length, + PDESC_ARRAY desc_array) +{ + u32 safe_terminator; + + /* Since issue is sensitive to length and address.*/ + /* Let us first check the address...*/ + if (length <= 4) { + desc_array->descriptor[0].address = address; + desc_array->descriptor[0].length = length; + desc_array->elements = 1; + return (desc_array->elements); + } + safe_terminator = (u32)((((u32)address & 0x7) + + (length & 0xF)) & 0xF); + /* if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */ + if (safe_terminator == 0 || + (safe_terminator > 4 && + safe_terminator < 9) || + (safe_terminator > 0xC && + safe_terminator <= 0xF)) { + desc_array->descriptor[0].address = address; + desc_array->descriptor[0].length = length; + desc_array->elements = 1; + return (desc_array->elements); + } + + desc_array->descriptor[0].address = address; + desc_array->descriptor[0].length = length - 4; + desc_array->descriptor[1].address = address + (length - 4); + desc_array->descriptor[1].length = 4; + desc_array->elements = 2; + return (desc_array->elements); +} + +/********************************************************************** + * + * Update the board statistics counters. + * + **********************************************************************/ +static void +em_update_stats_counters(struct adapter *adapter) +{ + struct ifnet *ifp; + + if(adapter->hw.phy.media_type == e1000_media_type_copper || + (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) { + adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS); + adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC); + } + adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS); + adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC); + adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC); + adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL); + + adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC); + adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL); + adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC); + adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC); + adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC); + adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC); + adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC); + adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC); + adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC); + adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC); + adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64); + adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127); + adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255); + adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511); + adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023); + adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522); + adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC); + adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC); + adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC); + adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC); + + /* For the 64-bit byte counters the low dword must be read first. */ + /* Both registers clear on the read of the high dword */ + + adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH); + adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH); + + adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC); + adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC); + adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC); + adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC); + adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC); + + adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH); + adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH); + + adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR); + adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT); + adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64); + adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127); + adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255); + adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511); + adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023); + adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522); + adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC); + adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC); + + if (adapter->hw.mac.type >= e1000_82543) { + adapter->stats.algnerrc += + E1000_READ_REG(&adapter->hw, E1000_ALGNERRC); + adapter->stats.rxerrc += + E1000_READ_REG(&adapter->hw, E1000_RXERRC); + adapter->stats.tncrs += + E1000_READ_REG(&adapter->hw, E1000_TNCRS); + adapter->stats.cexterr += + E1000_READ_REG(&adapter->hw, E1000_CEXTERR); + adapter->stats.tsctc += + E1000_READ_REG(&adapter->hw, E1000_TSCTC); + adapter->stats.tsctfc += + E1000_READ_REG(&adapter->hw, E1000_TSCTFC); + } + ifp = adapter->ifp; + + ifp->if_collisions = adapter->stats.colc; + + /* Rx Errors */ + ifp->if_ierrors = adapter->dropped_pkts + adapter->stats.rxerrc + + adapter->stats.crcerrs + adapter->stats.algnerrc + + adapter->stats.ruc + adapter->stats.roc + + adapter->stats.mpc + adapter->stats.cexterr; + + /* Tx Errors */ + ifp->if_oerrors = adapter->stats.ecol + + adapter->stats.latecol + adapter->watchdog_events; +} + + +/********************************************************************** + * + * This routine is called only when em_display_debug_stats is enabled. + * This routine provides a way to take a look at important statistics + * maintained by the driver and hardware. + * + **********************************************************************/ +static void +em_print_debug_info(struct adapter *adapter) +{ + device_t dev = adapter->dev; + u8 *hw_addr = adapter->hw.hw_addr; + + device_printf(dev, "Adapter hardware address = %p \n", hw_addr); + device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n", + E1000_READ_REG(&adapter->hw, E1000_CTRL), + E1000_READ_REG(&adapter->hw, E1000_RCTL)); + device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n", + ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\ + (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) ); + device_printf(dev, "Flow control watermarks high = %d low = %d\n", + adapter->hw.fc.high_water, + adapter->hw.fc.low_water); + device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n", + E1000_READ_REG(&adapter->hw, E1000_TIDV), + E1000_READ_REG(&adapter->hw, E1000_TADV)); + device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n", + E1000_READ_REG(&adapter->hw, E1000_RDTR), + E1000_READ_REG(&adapter->hw, E1000_RADV)); + device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n", + (long long)adapter->tx_fifo_wrk_cnt, + (long long)adapter->tx_fifo_reset_cnt); + device_printf(dev, "hw tdh = %d, hw tdt = %d\n", + E1000_READ_REG(&adapter->hw, E1000_TDH(0)), + E1000_READ_REG(&adapter->hw, E1000_TDT(0))); + device_printf(dev, "hw rdh = %d, hw rdt = %d\n", + E1000_READ_REG(&adapter->hw, E1000_RDH(0)), + E1000_READ_REG(&adapter->hw, E1000_RDT(0))); + device_printf(dev, "Num Tx descriptors avail = %d\n", + adapter->num_tx_desc_avail); + device_printf(dev, "Tx Descriptors not avail1 = %ld\n", + adapter->no_tx_desc_avail1); + device_printf(dev, "Tx Descriptors not avail2 = %ld\n", + adapter->no_tx_desc_avail2); + device_printf(dev, "Std mbuf failed = %ld\n", + adapter->mbuf_alloc_failed); + device_printf(dev, "Std mbuf cluster failed = %ld\n", + adapter->mbuf_cluster_failed); + device_printf(dev, "Driver dropped packets = %ld\n", + adapter->dropped_pkts); + device_printf(dev, "Driver tx dma failure in encap = %ld\n", + adapter->no_tx_dma_setup); +} + +static void +em_print_hw_stats(struct adapter *adapter) +{ + device_t dev = adapter->dev; + + device_printf(dev, "Excessive collisions = %lld\n", + (long long)adapter->stats.ecol); +#if (DEBUG_HW > 0) /* Dont output these errors normally */ + device_printf(dev, "Symbol errors = %lld\n", + (long long)adapter->stats.symerrs); +#endif + device_printf(dev, "Sequence errors = %lld\n", + (long long)adapter->stats.sec); + device_printf(dev, "Defer count = %lld\n", + (long long)adapter->stats.dc); + device_printf(dev, "Missed Packets = %lld\n", + (long long)adapter->stats.mpc); + device_printf(dev, "Receive No Buffers = %lld\n", + (long long)adapter->stats.rnbc); + /* RLEC is inaccurate on some hardware, calculate our own. */ + device_printf(dev, "Receive Length Errors = %lld\n", + ((long long)adapter->stats.roc + (long long)adapter->stats.ruc)); + device_printf(dev, "Receive errors = %lld\n", + (long long)adapter->stats.rxerrc); + device_printf(dev, "Crc errors = %lld\n", + (long long)adapter->stats.crcerrs); + device_printf(dev, "Alignment errors = %lld\n", + (long long)adapter->stats.algnerrc); + device_printf(dev, "Collision/Carrier extension errors = %lld\n", + (long long)adapter->stats.cexterr); + device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns); + device_printf(dev, "watchdog timeouts = %ld\n", + adapter->watchdog_events); + device_printf(dev, "RX MSIX IRQ = %ld TX MSIX IRQ = %ld" + " LINK MSIX IRQ = %ld\n", adapter->rx_irq, + adapter->tx_irq , adapter->link_irq); + device_printf(dev, "XON Rcvd = %lld\n", + (long long)adapter->stats.xonrxc); + device_printf(dev, "XON Xmtd = %lld\n", + (long long)adapter->stats.xontxc); + device_printf(dev, "XOFF Rcvd = %lld\n", + (long long)adapter->stats.xoffrxc); + device_printf(dev, "XOFF Xmtd = %lld\n", + (long long)adapter->stats.xofftxc); + device_printf(dev, "Good Packets Rcvd = %lld\n", + (long long)adapter->stats.gprc); + device_printf(dev, "Good Packets Xmtd = %lld\n", + (long long)adapter->stats.gptc); + device_printf(dev, "TSO Contexts Xmtd = %lld\n", + (long long)adapter->stats.tsctc); + device_printf(dev, "TSO Contexts Failed = %lld\n", + (long long)adapter->stats.tsctfc); +} + +/********************************************************************** + * + * This routine provides a way to dump out the adapter eeprom, + * often a useful debug/service tool. This only dumps the first + * 32 words, stuff that matters is in that extent. + * + **********************************************************************/ +static void +em_print_nvm_info(struct adapter *adapter) +{ + u16 eeprom_data; + int i, j, row = 0; + + /* Its a bit crude, but it gets the job done */ + printf("\nInterface EEPROM Dump:\n"); + printf("Offset\n0x0000 "); + for (i = 0, j = 0; i < 32; i++, j++) { + if (j == 8) { /* Make the offset block */ + j = 0; ++row; + printf("\n0x00%x0 ",row); + } + e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data); + printf("%04x ", eeprom_data); + } + printf("\n"); +} + +static int +em_sysctl_debug_info(SYSCTL_HANDLER_ARGS) +{ + struct adapter *adapter; + int error; + int result; + + result = -1; + error = sysctl_handle_int(oidp, &result, 0, req); + + if (error || !req->newptr) + return (error); + + if (result == 1) { + adapter = (struct adapter *)arg1; + em_print_debug_info(adapter); + } + /* + * This value will cause a hex dump of the + * first 32 16-bit words of the EEPROM to + * the screen. + */ + if (result == 2) { + adapter = (struct adapter *)arg1; + em_print_nvm_info(adapter); + } + + return (error); +} + + +static int +em_sysctl_stats(SYSCTL_HANDLER_ARGS) +{ + struct adapter *adapter; + int error; + int result; + + result = -1; + error = sysctl_handle_int(oidp, &result, 0, req); + + if (error || !req->newptr) + return (error); + + if (result == 1) { + adapter = (struct adapter *)arg1; + em_print_hw_stats(adapter); + } + + return (error); +} + +static int +em_sysctl_int_delay(SYSCTL_HANDLER_ARGS) +{ + struct em_int_delay_info *info; + struct adapter *adapter; + u32 regval; + int error; + int usecs; + int ticks; + + info = (struct em_int_delay_info *)arg1; + usecs = info->value; + error = sysctl_handle_int(oidp, &usecs, 0, req); + if (error != 0 || req->newptr == NULL) + return (error); + if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535)) + return (EINVAL); + info->value = usecs; + ticks = EM_USECS_TO_TICKS(usecs); + + adapter = info->adapter; + + EM_CORE_LOCK(adapter); + regval = E1000_READ_OFFSET(&adapter->hw, info->offset); + regval = (regval & ~0xffff) | (ticks & 0xffff); + /* Handle a few special cases. */ + switch (info->offset) { + case E1000_RDTR: + break; + case E1000_TIDV: + if (ticks == 0) { + adapter->txd_cmd &= ~E1000_TXD_CMD_IDE; + /* Don't write 0 into the TIDV register. */ + regval++; + } else + adapter->txd_cmd |= E1000_TXD_CMD_IDE; + break; + } + E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval); + EM_CORE_UNLOCK(adapter); + return (0); +} + +static void +em_add_int_delay_sysctl(struct adapter *adapter, const char *name, + const char *description, struct em_int_delay_info *info, + int offset, int value) +{ + info->adapter = adapter; + info->offset = offset; + info->value = value; + SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev), + SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)), + OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, + info, 0, em_sysctl_int_delay, "I", description); +} + +#ifndef EM_LEGACY_IRQ +static void +em_add_rx_process_limit(struct adapter *adapter, const char *name, + const char *description, int *limit, int value) +{ + *limit = value; + SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev), + SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)), + OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description); +} +#endif + +#ifdef EM_TIMESYNC +/* + * Initialize the Time Sync Feature + */ +static int +em_tsync_init(struct adapter *adapter) +{ + device_t dev = adapter->dev; + u32 tx_ctl, rx_ctl; + + + E1000_WRITE_REG(&adapter->hw, E1000_TIMINCA, (1<<24) | + 20833/PICOSECS_PER_TICK); + + adapter->last_stamp = E1000_READ_REG(&adapter->hw, E1000_SYSTIML); + adapter->last_stamp |= (u64)E1000_READ_REG(&adapter->hw, + E1000_SYSTIMH) << 32ULL; + + /* Enable the TX side */ + tx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCTXCTL); + tx_ctl |= 0x10; + E1000_WRITE_REG(&adapter->hw, E1000_TSYNCTXCTL, tx_ctl); + E1000_WRITE_FLUSH(&adapter->hw); + + tx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCTXCTL); + if ((tx_ctl & 0x10) == 0) { + device_printf(dev, "Failed to enable TX timestamping\n"); + return (ENXIO); + } + + /* Enable RX */ + rx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCRXCTL); + rx_ctl |= 0x10; /* Enable the feature */ + rx_ctl |= 0x0a; /* This value turns on Ver 1 and 2 */ + E1000_WRITE_REG(&adapter->hw, E1000_TSYNCRXCTL, rx_ctl); + + /* + * Ethertype Stamping (Ethertype = 0x88F7) + */ + E1000_WRITE_REG(&adapter->hw, E1000_RXMTRL, htonl(0x440088f7)); + + /* + * Source Port Queue Filter Setup: + * this is for UDP port filtering + */ + E1000_WRITE_REG(&adapter->hw, E1000_RXUDP, htons(TSYNC_PORT)); + /* Protocol = UDP, enable Timestamp, and filter on source/protocol */ + + E1000_WRITE_FLUSH(&adapter->hw); + + rx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCRXCTL); + if ((rx_ctl & 0x10) == 0) { + device_printf(dev, "Failed to enable RX timestamping\n"); + return (ENXIO); + } + + device_printf(dev, "IEEE 1588 Precision Time Protocol enabled\n"); + + return (0); +} + +/* + * Disable the Time Sync Feature + */ +static void +em_tsync_disable(struct adapter *adapter) +{ + u32 tx_ctl, rx_ctl; + + tx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCTXCTL); + tx_ctl &= ~0x10; + E1000_WRITE_REG(&adapter->hw, E1000_TSYNCTXCTL, tx_ctl); + E1000_WRITE_FLUSH(&adapter->hw); + + /* Invalidate TX Timestamp */ + E1000_READ_REG(&adapter->hw, E1000_TXSTMPH); + + tx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCTXCTL); + if (tx_ctl & 0x10) + HW_DEBUGOUT("Failed to disable TX timestamping\n"); + + rx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCRXCTL); + rx_ctl &= ~0x10; + + E1000_WRITE_REG(&adapter->hw, E1000_TSYNCRXCTL, rx_ctl); + E1000_WRITE_FLUSH(&adapter->hw); + + /* Invalidate RX Timestamp */ + E1000_READ_REG(&adapter->hw, E1000_RXSATRH); + + rx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCRXCTL); + if (rx_ctl & 0x10) + HW_DEBUGOUT("Failed to disable RX timestamping\n"); + + return; +} +#endif /* EM_TIMESYNC */ diff --git a/sys/dev/e1000/if_em.h b/sys/dev/e1000/if_em.h new file mode 100644 index 0000000..8fa2a43 --- /dev/null +++ b/sys/dev/e1000/if_em.h @@ -0,0 +1,489 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + + +#ifndef _EM_H_DEFINED_ +#define _EM_H_DEFINED_ + +/* Tunables */ + +/* + * EM_TXD: Maximum number of Transmit Descriptors + * Valid Range: 80-256 for 82542 and 82543-based adapters + * 80-4096 for others + * Default Value: 256 + * This value is the number of transmit descriptors allocated by the driver. + * Increasing this value allows the driver to queue more transmits. Each + * descriptor is 16 bytes. + * Since TDLEN should be multiple of 128bytes, the number of transmit + * desscriptors should meet the following condition. + * (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0 + */ +#define EM_MIN_TXD 80 +#define EM_MAX_TXD_82543 256 +#define EM_MAX_TXD 4096 +#define EM_DEFAULT_TXD EM_MAX_TXD_82543 + +/* + * EM_RXD - Maximum number of receive Descriptors + * Valid Range: 80-256 for 82542 and 82543-based adapters + * 80-4096 for others + * Default Value: 256 + * This value is the number of receive descriptors allocated by the driver. + * Increasing this value allows the driver to buffer more incoming packets. + * Each descriptor is 16 bytes. A receive buffer is also allocated for each + * descriptor. The maximum MTU size is 16110. + * Since TDLEN should be multiple of 128bytes, the number of transmit + * desscriptors should meet the following condition. + * (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0 + */ +#define EM_MIN_RXD 80 +#define EM_MAX_RXD_82543 256 +#define EM_MAX_RXD 4096 +#define EM_DEFAULT_RXD EM_MAX_RXD_82543 + +/* + * EM_TIDV - Transmit Interrupt Delay Value + * Valid Range: 0-65535 (0=off) + * Default Value: 64 + * This value delays the generation of transmit interrupts in units of + * 1.024 microseconds. Transmit interrupt reduction can improve CPU + * efficiency if properly tuned for specific network traffic. If the + * system is reporting dropped transmits, this value may be set too high + * causing the driver to run out of available transmit descriptors. + */ +#define EM_TIDV 64 + +/* + * EM_TADV - Transmit Absolute Interrupt Delay Value + * (Not valid for 82542/82543/82544) + * Valid Range: 0-65535 (0=off) + * Default Value: 64 + * This value, in units of 1.024 microseconds, limits the delay in which a + * transmit interrupt is generated. Useful only if EM_TIDV is non-zero, + * this value ensures that an interrupt is generated after the initial + * packet is sent on the wire within the set amount of time. Proper tuning, + * along with EM_TIDV, may improve traffic throughput in specific + * network conditions. + */ +#define EM_TADV 64 + +/* + * EM_RDTR - Receive Interrupt Delay Timer (Packet Timer) + * Valid Range: 0-65535 (0=off) + * Default Value: 0 + * This value delays the generation of receive interrupts in units of 1.024 + * microseconds. Receive interrupt reduction can improve CPU efficiency if + * properly tuned for specific network traffic. Increasing this value adds + * extra latency to frame reception and can end up decreasing the throughput + * of TCP traffic. If the system is reporting dropped receives, this value + * may be set too high, causing the driver to run out of available receive + * descriptors. + * + * CAUTION: When setting EM_RDTR to a value other than 0, adapters + * may hang (stop transmitting) under certain network conditions. + * If this occurs a WATCHDOG message is logged in the system + * event log. In addition, the controller is automatically reset, + * restoring the network connection. To eliminate the potential + * for the hang ensure that EM_RDTR is set to 0. + */ +#define EM_RDTR 0 + +/* + * Receive Interrupt Absolute Delay Timer (Not valid for 82542/82543/82544) + * Valid Range: 0-65535 (0=off) + * Default Value: 64 + * This value, in units of 1.024 microseconds, limits the delay in which a + * receive interrupt is generated. Useful only if EM_RDTR is non-zero, + * this value ensures that an interrupt is generated after the initial + * packet is received within the set amount of time. Proper tuning, + * along with EM_RDTR, may improve traffic throughput in specific network + * conditions. + */ +#define EM_RADV 64 + +/* + * This parameter controls the duration of transmit watchdog timer. + */ +#define EM_TX_TIMEOUT 5 + +/* + * This parameter controls when the driver calls the routine to reclaim + * transmit descriptors. + */ +#define EM_TX_CLEANUP_THRESHOLD (adapter->num_tx_desc / 8) +#define EM_TX_OP_THRESHOLD (adapter->num_tx_desc / 32) + +/* + * This parameter controls whether or not autonegotation is enabled. + * 0 - Disable autonegotiation + * 1 - Enable autonegotiation + */ +#define DO_AUTO_NEG 1 + +/* + * This parameter control whether or not the driver will wait for + * autonegotiation to complete. + * 1 - Wait for autonegotiation to complete + * 0 - Don't wait for autonegotiation to complete + */ +#define WAIT_FOR_AUTO_NEG_DEFAULT 0 + +/* Tunables -- End */ + +#define AUTONEG_ADV_DEFAULT (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ + ADVERTISE_100_HALF | ADVERTISE_100_FULL | \ + ADVERTISE_1000_FULL) + +#define AUTO_ALL_MODES 0 + +/* PHY master/slave setting */ +#define EM_MASTER_SLAVE e1000_ms_hw_default + +/* + * Micellaneous constants + */ +#define EM_VENDOR_ID 0x8086 +#define EM_FLASH 0x0014 + +#define EM_JUMBO_PBA 0x00000028 +#define EM_DEFAULT_PBA 0x00000030 +#define EM_SMARTSPEED_DOWNSHIFT 3 +#define EM_SMARTSPEED_MAX 15 +#define EM_MAX_INTR 10 + +#define MAX_NUM_MULTICAST_ADDRESSES 128 +#define PCI_ANY_ID (~0U) +#define ETHER_ALIGN 2 +#define EM_FC_PAUSE_TIME 0x0680 +#define EM_EEPROM_APME 0x400; + +/* Code compatilbility between 6 and 7 */ +#ifndef ETHER_BPF_MTAP +#define ETHER_BPF_MTAP BPF_MTAP +#endif + +/* + * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be + * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary. This will + * also optimize cache line size effect. H/W supports up to cache line size 128. + */ +#define EM_DBA_ALIGN 128 + +#define SPEED_MODE_BIT (1<<21) /* On PCI-E MACs only */ + +/* PCI Config defines */ +#define EM_BAR_TYPE(v) ((v) & EM_BAR_TYPE_MASK) +#define EM_BAR_TYPE_MASK 0x00000001 +#define EM_BAR_TYPE_MMEM 0x00000000 +#define EM_BAR_TYPE_IO 0x00000001 +#define EM_BAR_TYPE_FLASH 0x0014 +#define EM_BAR_MEM_TYPE(v) ((v) & EM_BAR_MEM_TYPE_MASK) +#define EM_BAR_MEM_TYPE_MASK 0x00000006 +#define EM_BAR_MEM_TYPE_32BIT 0x00000000 +#define EM_BAR_MEM_TYPE_64BIT 0x00000004 +#define EM_MSIX_BAR 3 /* On 82575 */ + +/* Defines for printing debug information */ +#define DEBUG_INIT 0 +#define DEBUG_IOCTL 0 +#define DEBUG_HW 0 + +#define INIT_DEBUGOUT(S) if (DEBUG_INIT) printf(S "\n") +#define INIT_DEBUGOUT1(S, A) if (DEBUG_INIT) printf(S "\n", A) +#define INIT_DEBUGOUT2(S, A, B) if (DEBUG_INIT) printf(S "\n", A, B) +#define IOCTL_DEBUGOUT(S) if (DEBUG_IOCTL) printf(S "\n") +#define IOCTL_DEBUGOUT1(S, A) if (DEBUG_IOCTL) printf(S "\n", A) +#define IOCTL_DEBUGOUT2(S, A, B) if (DEBUG_IOCTL) printf(S "\n", A, B) +#define HW_DEBUGOUT(S) if (DEBUG_HW) printf(S "\n") +#define HW_DEBUGOUT1(S, A) if (DEBUG_HW) printf(S "\n", A) +#define HW_DEBUGOUT2(S, A, B) if (DEBUG_HW) printf(S "\n", A, B) + +#define EM_MAX_SCATTER 64 +#define EM_TSO_SIZE (65535 + sizeof(struct ether_vlan_header)) +#define EM_TSO_SEG_SIZE 4096 /* Max dma segment size */ +#define EM_MSIX_MASK 0x01F00000 /* For 82574 use */ +#define ETH_ZLEN 60 +#define ETH_ADDR_LEN 6 +#define CSUM_OFFLOAD 7 /* Offload bits in mbuf flag */ + +/* + * 82574 has a nonstandard address for EIAC + * and since its only used in MSIX, and in + * the em driver only 82574 uses MSIX we can + * solve it just using this define. + */ +#define EM_EIAC 0x000DC + +/* Used in for 82547 10Mb Half workaround */ +#define EM_PBA_BYTES_SHIFT 0xA +#define EM_TX_HEAD_ADDR_SHIFT 7 +#define EM_PBA_TX_MASK 0xFFFF0000 +#define EM_FIFO_HDR 0x10 +#define EM_82547_PKT_THRESH 0x3e0 + +#ifdef EM_TIMESYNC +/* Precision Time Sync (IEEE 1588) defines */ +#define ETHERTYPE_IEEE1588 0x88F7 +#define PICOSECS_PER_TICK 20833 +#define TSYNC_PORT 319 /* UDP port for the protocol */ + +/* TIMESYNC IOCTL defines */ +#define EM_TIMESYNC_READTS _IOWR('i', 127, struct em_tsync_read) + +/* Used in the READTS IOCTL */ +struct em_tsync_read { + int read_current_time; + struct timespec system_time; + u64 network_time; + u64 rx_stamp; + u64 tx_stamp; + u16 seqid; + unsigned char srcid[6]; + int rx_valid; + int tx_valid; +}; + +#endif /* EM_TIMESYNC */ + +struct adapter; + +struct em_int_delay_info { + struct adapter *adapter; /* Back-pointer to the adapter struct */ + int offset; /* Register offset to read/write */ + int value; /* Current value in usecs */ +}; + +/* + * Bus dma allocation structure used by + * e1000_dma_malloc and e1000_dma_free. + */ +struct em_dma_alloc { + bus_addr_t dma_paddr; + caddr_t dma_vaddr; + bus_dma_tag_t dma_tag; + bus_dmamap_t dma_map; + bus_dma_segment_t dma_seg; + int dma_nseg; +}; + +/* Our adapter structure */ +struct adapter { + struct ifnet *ifp; + struct e1000_hw hw; + + /* FreeBSD operating-system-specific structures. */ + struct e1000_osdep osdep; + struct device *dev; + + struct resource *memory; + struct resource *flash; + struct resource *msix; + + struct resource *ioport; + int io_rid; + + /* 82574 uses 3 int vectors */ + struct resource *res[3]; + void *tag[3]; + int rid[3]; + + struct ifmedia media; + struct callout timer; + struct callout tx_fifo_timer; + int watchdog_timer; + int msi; + int if_flags; + int max_frame_size; + int min_frame_size; + struct mtx core_mtx; + struct mtx tx_mtx; + struct mtx rx_mtx; + int em_insert_vlan_header; + + /* Task for FAST handling */ + struct task link_task; + struct task rxtx_task; + struct task rx_task; + struct task tx_task; + struct taskqueue *tq; /* private task queue */ + + /* Management and WOL features */ + int wol; + int has_manage; + + /* Info about the board itself */ + uint8_t link_active; + uint16_t link_speed; + uint16_t link_duplex; + uint32_t smartspeed; + struct em_int_delay_info tx_int_delay; + struct em_int_delay_info tx_abs_int_delay; + struct em_int_delay_info rx_int_delay; + struct em_int_delay_info rx_abs_int_delay; + + /* + * Transmit definitions + * + * We have an array of num_tx_desc descriptors (handled + * by the controller) paired with an array of tx_buffers + * (at tx_buffer_area). + * The index of the next available descriptor is next_avail_tx_desc. + * The number of remaining tx_desc is num_tx_desc_avail. + */ + struct em_dma_alloc txdma; /* bus_dma glue for tx desc */ + struct e1000_tx_desc *tx_desc_base; + uint32_t next_avail_tx_desc; + uint32_t next_tx_to_clean; + volatile uint16_t num_tx_desc_avail; + uint16_t num_tx_desc; + uint32_t txd_cmd; + struct em_buffer *tx_buffer_area; + bus_dma_tag_t txtag; /* dma tag for tx */ + uint32_t tx_tso; /* last tx was tso */ + + /* + * Receive definitions + * + * we have an array of num_rx_desc rx_desc (handled by the + * controller), and paired with an array of rx_buffers + * (at rx_buffer_area). + * The next pair to check on receive is at offset next_rx_desc_to_check + */ + struct em_dma_alloc rxdma; /* bus_dma glue for rx desc */ + struct e1000_rx_desc *rx_desc_base; + uint32_t next_rx_desc_to_check; + uint32_t rx_buffer_len; + uint16_t num_rx_desc; + int rx_process_limit; + struct em_buffer *rx_buffer_area; + bus_dma_tag_t rxtag; + bus_dmamap_t rx_sparemap; + + /* + * First/last mbuf pointers, for + * collecting multisegment RX packets. + */ + struct mbuf *fmp; + struct mbuf *lmp; + + /* Misc stats maintained by the driver */ + unsigned long dropped_pkts; + unsigned long mbuf_alloc_failed; + unsigned long mbuf_cluster_failed; + unsigned long no_tx_desc_avail1; + unsigned long no_tx_desc_avail2; + unsigned long no_tx_map_avail; + unsigned long no_tx_dma_setup; + unsigned long watchdog_events; + unsigned long rx_overruns; + unsigned long rx_irq; + unsigned long tx_irq; + unsigned long link_irq; + + /* 82547 workaround */ + uint32_t tx_fifo_size; + uint32_t tx_fifo_head; + uint32_t tx_fifo_head_addr; + uint64_t tx_fifo_reset_cnt; + uint64_t tx_fifo_wrk_cnt; + uint32_t tx_head_addr; + + /* For 82544 PCIX Workaround */ + boolean_t pcix_82544; + boolean_t in_detach; + +#ifdef EM_TIMESYNC + u64 last_stamp; + u64 last_sec; + u32 last_ns; +#endif + + struct e1000_hw_stats stats; +}; + +/* ****************************************************************************** + * vendor_info_array + * + * This array contains the list of Subvendor/Subdevice IDs on which the driver + * should load. + * + * ******************************************************************************/ +typedef struct _em_vendor_info_t { + unsigned int vendor_id; + unsigned int device_id; + unsigned int subvendor_id; + unsigned int subdevice_id; + unsigned int index; +} em_vendor_info_t; + + +struct em_buffer { + int next_eop; /* Index of the desc to watch */ + struct mbuf *m_head; + bus_dmamap_t map; /* bus_dma map for packet */ +}; + +/* For 82544 PCIX Workaround */ +typedef struct _ADDRESS_LENGTH_PAIR +{ + uint64_t address; + uint32_t length; +} ADDRESS_LENGTH_PAIR, *PADDRESS_LENGTH_PAIR; + +typedef struct _DESCRIPTOR_PAIR +{ + ADDRESS_LENGTH_PAIR descriptor[4]; + uint32_t elements; +} DESC_ARRAY, *PDESC_ARRAY; + +#define EM_CORE_LOCK_INIT(_sc, _name) \ + mtx_init(&(_sc)->core_mtx, _name, "EM Core Lock", MTX_DEF) +#define EM_TX_LOCK_INIT(_sc, _name) \ + mtx_init(&(_sc)->tx_mtx, _name, "EM TX Lock", MTX_DEF) +#define EM_RX_LOCK_INIT(_sc, _name) \ + mtx_init(&(_sc)->rx_mtx, _name, "EM RX Lock", MTX_DEF) +#define EM_CORE_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->core_mtx) +#define EM_TX_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->tx_mtx) +#define EM_RX_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->rx_mtx) +#define EM_CORE_LOCK(_sc) mtx_lock(&(_sc)->core_mtx) +#define EM_TX_LOCK(_sc) mtx_lock(&(_sc)->tx_mtx) +#define EM_RX_LOCK(_sc) mtx_lock(&(_sc)->rx_mtx) +#define EM_CORE_UNLOCK(_sc) mtx_unlock(&(_sc)->core_mtx) +#define EM_TX_UNLOCK(_sc) mtx_unlock(&(_sc)->tx_mtx) +#define EM_RX_UNLOCK(_sc) mtx_unlock(&(_sc)->rx_mtx) +#define EM_CORE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->core_mtx, MA_OWNED) +#define EM_TX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->tx_mtx, MA_OWNED) + +#endif /* _EM_H_DEFINED_ */ diff --git a/sys/dev/e1000/if_igb.c b/sys/dev/e1000/if_igb.c new file mode 100644 index 0000000..338a89f --- /dev/null +++ b/sys/dev/e1000/if_igb.c @@ -0,0 +1,4809 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifdef HAVE_KERNEL_OPTION_HEADERS +#include "opt_device_polling.h" +#endif + +#include <sys/param.h> +#include <sys/systm.h> +#include <sys/bus.h> +#include <sys/endian.h> +#include <sys/kernel.h> +#include <sys/kthread.h> +#include <sys/malloc.h> +#include <sys/mbuf.h> +#include <sys/module.h> +#include <sys/rman.h> +#include <sys/socket.h> +#include <sys/sockio.h> +#include <sys/sysctl.h> +#include <sys/taskqueue.h> +#include <sys/eventhandler.h> +#include <sys/pcpu.h> +#ifdef IGB_TIMESYNC +#include <sys/ioccom.h> +#include <sys/time.h> +#endif +#include <machine/bus.h> +#include <machine/resource.h> + +#include <net/bpf.h> +#include <net/ethernet.h> +#include <net/if.h> +#include <net/if_arp.h> +#include <net/if_dl.h> +#include <net/if_media.h> + +#include <net/if_types.h> +#include <net/if_vlan_var.h> + +#include <netinet/in_systm.h> +#include <netinet/in.h> +#include <netinet/if_ether.h> +#include <netinet/ip.h> +#include <netinet/ip6.h> +#include <netinet/tcp.h> +#include <netinet/udp.h> + +#include <machine/in_cksum.h> +#include <dev/pci/pcivar.h> +#include <dev/pci/pcireg.h> + +#include "tcp_lro.h" +#include "e1000_api.h" +#include "e1000_82575.h" +#include "if_igb.h" + +/********************************************************************* + * Set this to one to display debug statistics + *********************************************************************/ +int igb_display_debug_stats = 0; + +/********************************************************************* + * Driver version: + *********************************************************************/ +char igb_driver_version[] = "version - 1.3.0"; + + +/********************************************************************* + * PCI Device ID Table + * + * Used by probe to select devices to load on + * Last field stores an index into e1000_strings + * Last entry must be all 0s + * + * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index } + *********************************************************************/ + +static igb_vendor_info_t igb_vendor_info_array[] = +{ + { 0x8086, E1000_DEV_ID_82575EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, + PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, + PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82576, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82576_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82576_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0}, + /* required last entry */ + { 0, 0, 0, 0, 0} +}; + +/********************************************************************* + * Table of branding strings for all supported NICs. + *********************************************************************/ + +static char *igb_strings[] = { + "Intel(R) PRO/1000 Network Connection" +}; + +/********************************************************************* + * Function prototypes + *********************************************************************/ +static int igb_probe(device_t); +static int igb_attach(device_t); +static int igb_detach(device_t); +static int igb_shutdown(device_t); +static int igb_suspend(device_t); +static int igb_resume(device_t); +static void igb_start(struct ifnet *); +static void igb_start_locked(struct tx_ring *, struct ifnet *ifp); +static int igb_ioctl(struct ifnet *, u_long, caddr_t); +static void igb_watchdog(struct adapter *); +static void igb_init(void *); +static void igb_init_locked(struct adapter *); +static void igb_stop(void *); +static void igb_media_status(struct ifnet *, struct ifmediareq *); +static int igb_media_change(struct ifnet *); +static void igb_identify_hardware(struct adapter *); +static int igb_allocate_pci_resources(struct adapter *); +static int igb_allocate_msix(struct adapter *); +static int igb_allocate_legacy(struct adapter *); +static int igb_setup_msix(struct adapter *); +static void igb_free_pci_resources(struct adapter *); +static void igb_local_timer(void *); +static int igb_hardware_init(struct adapter *); +static void igb_setup_interface(device_t, struct adapter *); +static int igb_allocate_queues(struct adapter *); +static void igb_configure_queues(struct adapter *); + +static int igb_allocate_transmit_buffers(struct tx_ring *); +static void igb_setup_transmit_structures(struct adapter *); +static void igb_setup_transmit_ring(struct tx_ring *); +static void igb_initialize_transmit_units(struct adapter *); +static void igb_free_transmit_structures(struct adapter *); +static void igb_free_transmit_buffers(struct tx_ring *); + +static int igb_allocate_receive_buffers(struct rx_ring *); +static int igb_setup_receive_structures(struct adapter *); +static int igb_setup_receive_ring(struct rx_ring *); +static void igb_initialize_receive_units(struct adapter *); +static void igb_free_receive_structures(struct adapter *); +static void igb_free_receive_buffers(struct rx_ring *); + +static void igb_enable_intr(struct adapter *); +static void igb_disable_intr(struct adapter *); +static void igb_update_stats_counters(struct adapter *); +static bool igb_txeof(struct tx_ring *); +static bool igb_rxeof(struct rx_ring *, int); +#ifndef __NO_STRICT_ALIGNMENT +static int igb_fixup_rx(struct rx_ring *); +#endif +static void igb_rx_checksum(u32, struct mbuf *); +static int igb_tx_ctx_setup(struct tx_ring *, struct mbuf *); +static bool igb_tso_setup(struct tx_ring *, struct mbuf *, u32 *); +static void igb_set_promisc(struct adapter *); +static void igb_disable_promisc(struct adapter *); +static void igb_set_multi(struct adapter *); +static void igb_print_hw_stats(struct adapter *); +static void igb_update_link_status(struct adapter *); +static int igb_get_buf(struct rx_ring *, int); +#ifdef IGB_HW_VLAN_SUPPORT +static void igb_register_vlan(void *, struct ifnet *, u16); +static void igb_unregister_vlan(void *, struct ifnet *, u16); +#endif +static int igb_xmit(struct tx_ring *, struct mbuf **); +static int igb_dma_malloc(struct adapter *, bus_size_t, + struct igb_dma_alloc *, int); +static void igb_dma_free(struct adapter *, struct igb_dma_alloc *); +static void igb_print_debug_info(struct adapter *); +static void igb_print_nvm_info(struct adapter *); +static int igb_is_valid_ether_addr(u8 *); +static int igb_sysctl_stats(SYSCTL_HANDLER_ARGS); +static int igb_sysctl_debug_info(SYSCTL_HANDLER_ARGS); +static int igb_sysctl_int_delay(SYSCTL_HANDLER_ARGS); +static void igb_add_int_delay_sysctl(struct adapter *, const char *, + const char *, struct igb_int_delay_info *, int, int); +/* Management and WOL Support */ +static void igb_init_manageability(struct adapter *); +static void igb_release_manageability(struct adapter *); +static void igb_get_hw_control(struct adapter *); +static void igb_release_hw_control(struct adapter *); +static void igb_enable_wakeup(device_t); + +#ifdef IGB_TIMESYNC +/* Precision Time sync support */ +static int igb_tsync_init(struct adapter *); +static void igb_tsync_disable(struct adapter *); +#endif + +static int igb_irq_fast(void *); +static void igb_add_rx_process_limit(struct adapter *, const char *, + const char *, int *, int); +static void igb_handle_rxtx(void *context, int pending); +static void igb_handle_tx(void *context, int pending); +static void igb_handle_rx(void *context, int pending); +static void igb_handle_link(void *context, int pending); + +/* These are MSIX only irq handlers */ +static void igb_msix_rx(void *); +static void igb_msix_tx(void *); +static void igb_msix_link(void *); + +#ifdef DEVICE_POLLING +static poll_handler_t igb_poll; +#endif + +/********************************************************************* + * FreeBSD Device Interface Entry Points + *********************************************************************/ + +static device_method_t igb_methods[] = { + /* Device interface */ + DEVMETHOD(device_probe, igb_probe), + DEVMETHOD(device_attach, igb_attach), + DEVMETHOD(device_detach, igb_detach), + DEVMETHOD(device_shutdown, igb_shutdown), + DEVMETHOD(device_suspend, igb_suspend), + DEVMETHOD(device_resume, igb_resume), + {0, 0} +}; + +static driver_t igb_driver = { + "igb", igb_methods, sizeof(struct adapter), +}; + +static devclass_t igb_devclass; +DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0); +MODULE_DEPEND(igb, pci, 1, 1, 1); +MODULE_DEPEND(igb, ether, 1, 1, 1); + +/********************************************************************* + * Tunable default values. + *********************************************************************/ + +#define IGB_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000) +#define IGB_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024) +#define M_TSO_LEN 66 + +/* Allow common code without TSO */ +#ifndef CSUM_TSO +#define CSUM_TSO 0 +#endif + +static int igb_tx_int_delay_dflt = IGB_TICKS_TO_USECS(IGB_TIDV); +static int igb_rx_int_delay_dflt = IGB_TICKS_TO_USECS(IGB_RDTR); +static int igb_tx_abs_int_delay_dflt = IGB_TICKS_TO_USECS(IGB_TADV); +static int igb_rx_abs_int_delay_dflt = IGB_TICKS_TO_USECS(IGB_RADV); +static int igb_rxd = IGB_DEFAULT_RXD; +static int igb_txd = IGB_DEFAULT_TXD; +static int igb_smart_pwr_down = FALSE; +TUNABLE_INT("hw.igb.tx_int_delay", &igb_tx_int_delay_dflt); +TUNABLE_INT("hw.igb.rx_int_delay", &igb_rx_int_delay_dflt); +TUNABLE_INT("hw.igb.tx_abs_int_delay", &igb_tx_abs_int_delay_dflt); +TUNABLE_INT("hw.igb.rx_abs_int_delay", &igb_rx_abs_int_delay_dflt); +TUNABLE_INT("hw.igb.rxd", &igb_rxd); +TUNABLE_INT("hw.igb.txd", &igb_txd); +TUNABLE_INT("hw.igb.smart_pwr_down", &igb_smart_pwr_down); + +/* +** IF YOU CHANGE THESE: be sure and change IGB_MSIX_VEC in +** if_igb.h to match. These can be autoconfigured if set to +** 0, it will then be based on number of cpus. +*/ +static int igb_tx_queues = 1; +static int igb_rx_queues = 1; +TUNABLE_INT("hw.igb.tx_queues", &igb_tx_queues); +TUNABLE_INT("hw.igb.rx_queues", &igb_rx_queues); + +/* How many packets rxeof tries to clean at a time */ +static int igb_rx_process_limit = 100; +TUNABLE_INT("hw.igb.rx_process_limit", &igb_rx_process_limit); + +/* Flow control setting - default to none */ +static int igb_fc_setting = 0; +TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting); + +/* + * Should the driver do LRO on the RX end + * this can be toggled on the fly, but the + * interface must be reset (down/up) for it + * to take effect. + */ +static int igb_enable_lro = 1; +TUNABLE_INT("hw.igb.enable_lro", &igb_enable_lro); + +extern int mp_ncpus; +/********************************************************************* + * Device identification routine + * + * igb_probe determines if the driver should be loaded on + * adapter based on PCI vendor/device id of the adapter. + * + * return BUS_PROBE_DEFAULT on success, positive on failure + *********************************************************************/ + +static int +igb_probe(device_t dev) +{ + char adapter_name[60]; + uint16_t pci_vendor_id = 0; + uint16_t pci_device_id = 0; + uint16_t pci_subvendor_id = 0; + uint16_t pci_subdevice_id = 0; + igb_vendor_info_t *ent; + + INIT_DEBUGOUT("igb_probe: begin"); + + pci_vendor_id = pci_get_vendor(dev); + if (pci_vendor_id != IGB_VENDOR_ID) + return (ENXIO); + + pci_device_id = pci_get_device(dev); + pci_subvendor_id = pci_get_subvendor(dev); + pci_subdevice_id = pci_get_subdevice(dev); + + ent = igb_vendor_info_array; + while (ent->vendor_id != 0) { + if ((pci_vendor_id == ent->vendor_id) && + (pci_device_id == ent->device_id) && + + ((pci_subvendor_id == ent->subvendor_id) || + (ent->subvendor_id == PCI_ANY_ID)) && + + ((pci_subdevice_id == ent->subdevice_id) || + (ent->subdevice_id == PCI_ANY_ID))) { + sprintf(adapter_name, "%s %s", + igb_strings[ent->index], + igb_driver_version); + device_set_desc_copy(dev, adapter_name); + return (BUS_PROBE_DEFAULT); + } + ent++; + } + + return (ENXIO); +} + +/********************************************************************* + * Device initialization routine + * + * The attach entry point is called when the driver is being loaded. + * This routine identifies the type of hardware, allocates all resources + * and initializes the hardware. + * + * return 0 on success, positive on failure + *********************************************************************/ + +static int +igb_attach(device_t dev) +{ + struct adapter *adapter; + int error = 0; + u16 eeprom_data; + + INIT_DEBUGOUT("igb_attach: begin"); + + adapter = device_get_softc(dev); + adapter->dev = adapter->osdep.dev = dev; + IGB_CORE_LOCK_INIT(adapter, device_get_nameunit(dev)); + + /* SYSCTL stuff */ + SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), + SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), + OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, + igb_sysctl_debug_info, "I", "Debug Information"); + + SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), + SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), + OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, + igb_sysctl_stats, "I", "Statistics"); + + SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev), + SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)), + OID_AUTO, "fc", CTLTYPE_INT|CTLFLAG_RW, + &igb_fc_setting, 0, "Flow Control"); + + callout_init_mtx(&adapter->timer, &adapter->core_mtx, 0); + + /* Determine hardware and mac info */ + igb_identify_hardware(adapter); + + /* Setup PCI resources */ + if (igb_allocate_pci_resources(adapter)) { + device_printf(dev, "Allocation of PCI resources failed\n"); + error = ENXIO; + goto err_pci; + } + + /* Do Shared Code initialization */ + if (e1000_setup_init_funcs(&adapter->hw, TRUE)) { + device_printf(dev, "Setup of Shared code failed\n"); + error = ENXIO; + goto err_pci; + } + + e1000_get_bus_info(&adapter->hw); + + /* Set up some sysctls for the tunable interrupt delays */ + igb_add_int_delay_sysctl(adapter, "rx_int_delay", + "receive interrupt delay in usecs", &adapter->rx_int_delay, + E1000_REGISTER(&adapter->hw, E1000_RDTR), igb_rx_int_delay_dflt); + igb_add_int_delay_sysctl(adapter, "tx_int_delay", + "transmit interrupt delay in usecs", &adapter->tx_int_delay, + E1000_REGISTER(&adapter->hw, E1000_TIDV), igb_tx_int_delay_dflt); + igb_add_int_delay_sysctl(adapter, "rx_abs_int_delay", + "receive interrupt delay limit in usecs", + &adapter->rx_abs_int_delay, + E1000_REGISTER(&adapter->hw, E1000_RADV), + igb_rx_abs_int_delay_dflt); + igb_add_int_delay_sysctl(adapter, "tx_abs_int_delay", + "transmit interrupt delay limit in usecs", + &adapter->tx_abs_int_delay, + E1000_REGISTER(&adapter->hw, E1000_TADV), + igb_tx_abs_int_delay_dflt); + + /* Sysctls for limiting the amount of work done in the taskqueue */ + igb_add_rx_process_limit(adapter, "rx_processing_limit", + "max number of rx packets to process", &adapter->rx_process_limit, + igb_rx_process_limit); + + /* + * Validate number of transmit and receive descriptors. It + * must not exceed hardware maximum, and must be multiple + * of E1000_DBA_ALIGN. + */ + if (((igb_txd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN) != 0 || + (igb_txd > IGB_MAX_TXD) || (igb_txd < IGB_MIN_TXD)) { + device_printf(dev, "Using %d TX descriptors instead of %d!\n", + IGB_DEFAULT_TXD, igb_txd); + adapter->num_tx_desc = IGB_DEFAULT_TXD; + } else + adapter->num_tx_desc = igb_txd; + if (((igb_rxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN) != 0 || + (igb_rxd > IGB_MAX_RXD) || (igb_rxd < IGB_MIN_RXD)) { + device_printf(dev, "Using %d RX descriptors instead of %d!\n", + IGB_DEFAULT_RXD, igb_rxd); + adapter->num_rx_desc = IGB_DEFAULT_RXD; + } else + adapter->num_rx_desc = igb_rxd; + + adapter->hw.mac.autoneg = DO_AUTO_NEG; + adapter->hw.phy.autoneg_wait_to_complete = FALSE; + adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; + adapter->rx_buffer_len = 2048; + + /* Copper options */ + if (adapter->hw.phy.media_type == e1000_media_type_copper) { + adapter->hw.phy.mdix = AUTO_ALL_MODES; + adapter->hw.phy.disable_polarity_correction = FALSE; + adapter->hw.phy.ms_type = IGB_MASTER_SLAVE; + } + + /* + * Set the frame limits assuming + * standard ethernet sized frames. + */ + adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE; + adapter->min_frame_size = ETH_ZLEN + ETHERNET_FCS_SIZE; + + /* + * This controls when hardware reports transmit completion + * status. + */ + adapter->hw.mac.report_tx_early = 1; + + /* + ** Allocate and Setup Queues + */ + if (igb_allocate_queues(adapter)) { + error = ENOMEM; + goto err_hw_init; + } + + /* Make sure we have a good EEPROM before we read from it */ + if (e1000_validate_nvm_checksum(&adapter->hw) < 0) { + /* + ** Some PCI-E parts fail the first check due to + ** the link being in sleep state, call it again, + ** if it fails a second time its a real issue. + */ + if (e1000_validate_nvm_checksum(&adapter->hw) < 0) { + device_printf(dev, + "The EEPROM Checksum Is Not Valid\n"); + error = EIO; + goto err_late; + } + } + + /* Initialize the hardware */ + if (igb_hardware_init(adapter)) { + device_printf(dev, "Unable to initialize the hardware\n"); + error = EIO; + goto err_late; + } + + /* Copy the permanent MAC address out of the EEPROM */ + if (e1000_read_mac_addr(&adapter->hw) < 0) { + device_printf(dev, "EEPROM read error while reading MAC" + " address\n"); + error = EIO; + goto err_late; + } + + if (!igb_is_valid_ether_addr(adapter->hw.mac.addr)) { + device_printf(dev, "Invalid MAC address\n"); + error = EIO; + goto err_late; + } + + /* + ** Configure Interrupts + */ + if (adapter->msix > 1) /* MSIX */ + error = igb_allocate_msix(adapter); + else /* MSI or Legacy */ + error = igb_allocate_legacy(adapter); + if (error) + goto err_late; + + /* Setup OS specific network interface */ + igb_setup_interface(dev, adapter); + + /* Initialize statistics */ + igb_update_stats_counters(adapter); + + adapter->hw.mac.get_link_status = 1; + igb_update_link_status(adapter); + + /* Indicate SOL/IDER usage */ + if (e1000_check_reset_block(&adapter->hw)) + device_printf(dev, + "PHY reset is blocked due to SOL/IDER session.\n"); + + /* Determine if we have to control management hardware */ + adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw); + + /* + * Setup Wake-on-Lan + */ + /* APME bit in EEPROM is mapped to WUC.APME */ + eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC) & E1000_WUC_APME; + if (eeprom_data) + adapter->wol = E1000_WUFC_MAG; + +#ifdef IGB_HW_VLAN_SUPPORT + /* Register for VLAN events */ + adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config, + igb_register_vlan, 0, EVENTHANDLER_PRI_FIRST); + adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig, + igb_unregister_vlan, 0, EVENTHANDLER_PRI_FIRST); +#endif + + /* Tell the stack that the interface is not active */ + adapter->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); + + INIT_DEBUGOUT("igb_attach: end"); + + return (0); + +err_late: + igb_free_transmit_structures(adapter); + igb_free_receive_structures(adapter); + igb_release_hw_control(adapter); +err_hw_init: + e1000_remove_device(&adapter->hw); +err_pci: + igb_free_pci_resources(adapter); + IGB_CORE_LOCK_DESTROY(adapter); + + return (error); +} + +/********************************************************************* + * Device removal routine + * + * The detach entry point is called when the driver is being removed. + * This routine stops the adapter and deallocates all the resources + * that were allocated for driver operation. + * + * return 0 on success, positive on failure + *********************************************************************/ + +static int +igb_detach(device_t dev) +{ + struct adapter *adapter = device_get_softc(dev); + struct ifnet *ifp = adapter->ifp; + + INIT_DEBUGOUT("igb_detach: begin"); + + /* Make sure VLANS are not using driver */ + if (adapter->ifp->if_vlantrunk != NULL) { + device_printf(dev,"Vlan in use, detach first\n"); + return (EBUSY); + } + +#ifdef DEVICE_POLLING + if (ifp->if_capenable & IFCAP_POLLING) + ether_poll_deregister(ifp); +#endif + + IGB_CORE_LOCK(adapter); + adapter->in_detach = 1; + igb_stop(adapter); + IGB_CORE_UNLOCK(adapter); + + e1000_phy_hw_reset(&adapter->hw); + + /* Give control back to firmware */ + igb_release_manageability(adapter); + igb_release_hw_control(adapter); + + if (adapter->wol) { + E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN); + E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol); + igb_enable_wakeup(dev); + } + +#ifdef IGB_HW_VLAN_SUPPORT + /* Unregister VLAN events */ + if (adapter->vlan_attach != NULL) + EVENTHANDLER_DEREGISTER(vlan_config, adapter->vlan_attach); + if (adapter->vlan_detach != NULL) + EVENTHANDLER_DEREGISTER(vlan_unconfig, adapter->vlan_detach); +#endif + + ether_ifdetach(adapter->ifp); + + callout_drain(&adapter->timer); + + e1000_remove_device(&adapter->hw); + igb_free_pci_resources(adapter); + bus_generic_detach(dev); + if_free(ifp); + + igb_free_transmit_structures(adapter); + igb_free_receive_structures(adapter); + + IGB_CORE_LOCK_DESTROY(adapter); + + return (0); +} + +/********************************************************************* + * + * Shutdown entry point + * + **********************************************************************/ + +static int +igb_shutdown(device_t dev) +{ + return igb_suspend(dev); +} + +/* + * Suspend/resume device methods. + */ +static int +igb_suspend(device_t dev) +{ + struct adapter *adapter = device_get_softc(dev); + + IGB_CORE_LOCK(adapter); + + igb_stop(adapter); + + igb_release_manageability(adapter); + igb_release_hw_control(adapter); + + if (adapter->wol) { + E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN); + E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol); + igb_enable_wakeup(dev); + } + + IGB_CORE_UNLOCK(adapter); + + return bus_generic_suspend(dev); +} + +static int +igb_resume(device_t dev) +{ + struct adapter *adapter = device_get_softc(dev); + struct ifnet *ifp = adapter->ifp; + + IGB_CORE_LOCK(adapter); + igb_init_locked(adapter); + igb_init_manageability(adapter); + + if ((ifp->if_flags & IFF_UP) && + (ifp->if_drv_flags & IFF_DRV_RUNNING)) + igb_start(ifp); + + IGB_CORE_UNLOCK(adapter); + + return bus_generic_resume(dev); +} + + +/********************************************************************* + * Transmit entry point + * + * igb_start is called by the stack to initiate a transmit. + * The driver will remain in this routine as long as there are + * packets to transmit and transmit resources are available. + * In case resources are not available stack is notified and + * the packet is requeued. + **********************************************************************/ + +static void +igb_start_locked(struct tx_ring *txr, struct ifnet *ifp) +{ + struct adapter *adapter = ifp->if_softc; + struct mbuf *m_head; + + IGB_TX_LOCK_ASSERT(txr); + + if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) != + IFF_DRV_RUNNING) + return; + if (!adapter->link_active) + return; + + while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { + + IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); + if (m_head == NULL) + break; + /* + * Encapsulation can modify our pointer, and or make it + * NULL on failure. In that event, we can't requeue. + */ + if (igb_xmit(txr, &m_head)) { + if (m_head == NULL) + break; + ifp->if_drv_flags |= IFF_DRV_OACTIVE; + IFQ_DRV_PREPEND(&ifp->if_snd, m_head); + break; + } + + /* Send a copy of the frame to the BPF listener */ + ETHER_BPF_MTAP(ifp, m_head); + + /* Set timeout in case hardware has problems transmitting. */ + txr->watchdog_timer = IGB_TX_TIMEOUT; + } +} + +static void +igb_start(struct ifnet *ifp) +{ + struct adapter *adapter = ifp->if_softc; + struct tx_ring *txr; + u32 queue = 0; + + /* + ** This is really just here for testing + ** TX multiqueue, ultimately what is + ** needed is the flow support in the stack + ** and appropriate logic here to deal with + ** it. -jfv + */ + if (adapter->num_tx_queues > 1) + queue = (curcpu % adapter->num_tx_queues); + + txr = &adapter->tx_rings[queue]; + if (ifp->if_drv_flags & IFF_DRV_RUNNING) { + IGB_TX_LOCK(txr); + igb_start_locked(txr, ifp); + IGB_TX_UNLOCK(txr); + } +} + +/********************************************************************* + * Ioctl entry point + * + * igb_ioctl is called when the user wants to configure the + * interface. + * + * return 0 on success, positive on failure + **********************************************************************/ + +static int +igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data) +{ + struct adapter *adapter = ifp->if_softc; + struct ifreq *ifr = (struct ifreq *)data; + struct ifaddr *ifa = (struct ifaddr *)data; + int error = 0; + + if (adapter->in_detach) + return (error); + + switch (command) { + case SIOCSIFADDR: + if (ifa->ifa_addr->sa_family == AF_INET) { + /* + * XXX + * Since resetting hardware takes a very long time + * and results in link renegotiation we only + * initialize the hardware only when it is absolutely + * required. + */ + ifp->if_flags |= IFF_UP; + if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { + IGB_CORE_LOCK(adapter); + igb_init_locked(adapter); + IGB_CORE_UNLOCK(adapter); + } + arp_ifinit(ifp, ifa); + } else + error = ether_ioctl(ifp, command, data); + break; + case SIOCSIFMTU: + { + int max_frame_size; + + IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)"); + + IGB_CORE_LOCK(adapter); + max_frame_size = 9234; + if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN - + ETHER_CRC_LEN) { + IGB_CORE_UNLOCK(adapter); + error = EINVAL; + break; + } + + ifp->if_mtu = ifr->ifr_mtu; + adapter->max_frame_size = + ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; + igb_init_locked(adapter); + IGB_CORE_UNLOCK(adapter); + break; + } + case SIOCSIFFLAGS: + IOCTL_DEBUGOUT("ioctl rcv'd:\ + SIOCSIFFLAGS (Set Interface Flags)"); + IGB_CORE_LOCK(adapter); + if (ifp->if_flags & IFF_UP) { + if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) { + if ((ifp->if_flags ^ adapter->if_flags) & + (IFF_PROMISC | IFF_ALLMULTI)) { + igb_disable_promisc(adapter); + igb_set_promisc(adapter); + } + } else + igb_init_locked(adapter); + } else + if (ifp->if_drv_flags & IFF_DRV_RUNNING) + igb_stop(adapter); + adapter->if_flags = ifp->if_flags; + IGB_CORE_UNLOCK(adapter); + break; + case SIOCADDMULTI: + case SIOCDELMULTI: + IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI"); + if (ifp->if_drv_flags & IFF_DRV_RUNNING) { + IGB_CORE_LOCK(adapter); + igb_disable_intr(adapter); + igb_set_multi(adapter); +#ifdef DEVICE_POLLING + if (!(ifp->if_capenable & IFCAP_POLLING)) +#endif + igb_enable_intr(adapter); + IGB_CORE_UNLOCK(adapter); + } + break; + case SIOCSIFMEDIA: + /* Check SOL/IDER usage */ + IGB_CORE_LOCK(adapter); + if (e1000_check_reset_block(&adapter->hw)) { + IGB_CORE_UNLOCK(adapter); + device_printf(adapter->dev, "Media change is" + " blocked due to SOL/IDER session.\n"); + break; + } + IGB_CORE_UNLOCK(adapter); + case SIOCGIFMEDIA: + IOCTL_DEBUGOUT("ioctl rcv'd: \ + SIOCxIFMEDIA (Get/Set Interface Media)"); + error = ifmedia_ioctl(ifp, ifr, &adapter->media, command); + break; + case SIOCSIFCAP: + { + int mask, reinit; + + IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)"); + reinit = 0; + mask = ifr->ifr_reqcap ^ ifp->if_capenable; +#ifdef DEVICE_POLLING + if (mask & IFCAP_POLLING) { + if (ifr->ifr_reqcap & IFCAP_POLLING) { + error = ether_poll_register(igb_poll, ifp); + if (error) + return (error); + IGB_CORE_LOCK(adapter); + igb_disable_intr(adapter); + ifp->if_capenable |= IFCAP_POLLING; + IGB_CORE_UNLOCK(adapter); + } else { + error = ether_poll_deregister(ifp); + /* Enable interrupt even in error case */ + IGB_CORE_LOCK(adapter); + igb_enable_intr(adapter); + ifp->if_capenable &= ~IFCAP_POLLING; + IGB_CORE_UNLOCK(adapter); + } + } +#endif + if (mask & IFCAP_HWCSUM) { + ifp->if_capenable ^= IFCAP_HWCSUM; + reinit = 1; + } + if (mask & IFCAP_TSO4) { + ifp->if_capenable ^= IFCAP_TSO4; + reinit = 1; + } + if (mask & IFCAP_VLAN_HWTAGGING) { + ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; + reinit = 1; + } + if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING)) + igb_init(adapter); + VLAN_CAPABILITIES(ifp); + break; + } + +#ifdef IGB_TIMESYNC + /* + ** IOCTL support for Precision Time (IEEE 1588) Support + */ + case IGB_TIMESYNC_READTS: + { + u32 rx_ctl, tx_ctl; + struct igb_tsync_read *tdata; + + tdata = (struct igb_tsync_read *) ifr->ifr_data; + + if (tdata->read_current_time) { + getnanotime(&tdata->system_time); + tdata->network_time = E1000_READ_REG(&adapter->hw, + E1000_SYSTIML); + tdata->network_time |= + (u64)E1000_READ_REG(&adapter->hw, + E1000_SYSTIMH ) << 32; + } + + rx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCRXCTL); + tx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCTXCTL); + + if (rx_ctl & 0x1) { + u32 tmp; + unsigned char *tmp_cp; + + tdata->rx_valid = 1; + tdata->rx_stamp = E1000_READ_REG(&adapter->hw, E1000_RXSTMPL); + tdata->rx_stamp |= (u64)E1000_READ_REG(&adapter->hw, + E1000_RXSTMPH) << 32; + + tmp = E1000_READ_REG(&adapter->hw, E1000_RXSATRL); + tmp_cp = (unsigned char *) &tmp; + tdata->srcid[0] = tmp_cp[0]; + tdata->srcid[1] = tmp_cp[1]; + tdata->srcid[2] = tmp_cp[2]; + tdata->srcid[3] = tmp_cp[3]; + tmp = E1000_READ_REG(&adapter->hw, E1000_RXSATRH); + tmp_cp = (unsigned char *) &tmp; + tdata->srcid[4] = tmp_cp[0]; + tdata->srcid[5] = tmp_cp[1]; + tdata->seqid = tmp >> 16; + tdata->seqid = htons(tdata->seqid); + } else + tdata->rx_valid = 0; + + if (tx_ctl & 0x1) { + tdata->tx_valid = 1; + tdata->tx_stamp = E1000_READ_REG(&adapter->hw, E1000_TXSTMPL); + tdata->tx_stamp |= (u64) E1000_READ_REG(&adapter->hw, + E1000_TXSTMPH) << 32; + } else + tdata->tx_valid = 0; + + return (0); + } +#endif /* IGB_TIMESYNC */ + + default: + error = ether_ioctl(ifp, command, data); + break; + } + + return (error); +} + +/********************************************************************* + * Watchdog timer: + * + * This routine is called from the local timer every second. + * As long as transmit descriptors are being cleaned the value + * is non-zero and we do nothing. Reaching 0 indicates a tx hang + * and we then reset the device. + * + **********************************************************************/ + +static void +igb_watchdog(struct adapter *adapter) +{ + struct tx_ring *txr = adapter->tx_rings; + bool tx_hang = FALSE; + + IGB_CORE_LOCK_ASSERT(adapter); + + /* + ** The timer is set to 5 every time start() queues a packet. + ** Then txeof keeps resetting it as long as it cleans at + ** least one descriptor. + ** Finally, anytime all descriptors are clean the timer is + ** set to 0. + ** + ** With TX Multiqueue we need to check every queue's timer, + ** if any time out we do the reset. + */ + for (int i = 0; i < adapter->num_tx_queues; i++, txr++) { + IGB_TX_LOCK(txr); + if (txr->watchdog_timer == 0 || + (--txr->watchdog_timer)) { + IGB_TX_UNLOCK(txr); + continue; + } else { + tx_hang = TRUE; + IGB_TX_UNLOCK(txr); + break; + } + } + if (tx_hang == FALSE) + return; + + /* If we are in this routine because of pause frames, then + * don't reset the hardware. + */ + if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & + E1000_STATUS_TXOFF) { + txr = adapter->tx_rings; /* reset pointer */ + for (int i = 0; i < adapter->num_tx_queues; i++, txr++) { + IGB_TX_LOCK(txr); + txr->watchdog_timer = IGB_TX_TIMEOUT; + IGB_TX_UNLOCK(txr); + } + return; + } + + if (e1000_check_for_link(&adapter->hw) == 0) + device_printf(adapter->dev, "watchdog timeout -- resetting\n"); + + for (int i = 0; i < adapter->num_tx_queues; i++, txr++) { + device_printf(adapter->dev, "Queue(%d) tdh = %d, tdt = %d\n", + i, E1000_READ_REG(&adapter->hw, E1000_TDH(i)), + E1000_READ_REG(&adapter->hw, E1000_TDT(i))); + device_printf(adapter->dev, "Queue(%d) desc avail = %d," + " Next Desc to Clean = %d\n", i, txr->tx_avail, + txr->next_to_clean); + } + + adapter->ifp->if_drv_flags &= ~IFF_DRV_RUNNING; + adapter->watchdog_events++; + + igb_init_locked(adapter); +} + +/********************************************************************* + * Init entry point + * + * This routine is used in two ways. It is used by the stack as + * init entry point in network interface structure. It is also used + * by the driver as a hw/sw initialization routine to get to a + * consistent state. + * + * return 0 on success, positive on failure + **********************************************************************/ + +static void +igb_init_locked(struct adapter *adapter) +{ + struct ifnet *ifp = adapter->ifp; + device_t dev = adapter->dev; + u32 pba = 0; + + INIT_DEBUGOUT("igb_init: begin"); + + IGB_CORE_LOCK_ASSERT(adapter); + + igb_stop(adapter); + + /* + * Packet Buffer Allocation (PBA) + * Writing PBA sets the receive portion of the buffer + * the remainder is used for the transmit buffer. + */ + if (adapter->hw.mac.type == e1000_82575) { + INIT_DEBUGOUT1("igb_init: pba=%dK",pba); + pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ + E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba); + } + + /* Get the latest mac address, User can use a LAA */ + bcopy(IF_LLADDR(adapter->ifp), adapter->hw.mac.addr, + ETHER_ADDR_LEN); + + /* Put the address into the Receive Address Array */ + e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); + + /* Initialize the hardware */ + if (igb_hardware_init(adapter)) { + device_printf(dev, "Unable to initialize the hardware\n"); + return; + } + igb_update_link_status(adapter); + + E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN); + +#ifndef IGB_HW_VLAN_SUPPORT + /* New register interface replaces this but + waiting on kernel support to be added */ + if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) { + u32 ctrl; + ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); + ctrl |= E1000_CTRL_VME; + E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); + } +#endif + + /* Set hardware offload abilities */ + ifp->if_hwassist = 0; + if (ifp->if_capenable & IFCAP_TXCSUM) + ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP); + if (ifp->if_capenable & IFCAP_TSO4) + ifp->if_hwassist |= CSUM_TSO; + + /* Configure for OS presence */ + igb_init_manageability(adapter); + + /* Prepare transmit descriptors and buffers */ + igb_setup_transmit_structures(adapter); + igb_initialize_transmit_units(adapter); + + /* Setup Multicast table */ + igb_set_multi(adapter); + + /* Prepare receive descriptors and buffers */ + if (igb_setup_receive_structures(adapter)) { + device_printf(dev, "Could not setup receive structures\n"); + igb_stop(adapter); + return; + } + igb_initialize_receive_units(adapter); + + /* Don't lose promiscuous settings */ + igb_set_promisc(adapter); + + ifp->if_drv_flags |= IFF_DRV_RUNNING; + ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; + + callout_reset(&adapter->timer, hz, igb_local_timer, adapter); + e1000_clear_hw_cntrs_base_generic(&adapter->hw); + + if (adapter->msix > 1) /* Set up queue routing */ + igb_configure_queues(adapter); + else + E1000_WRITE_REG(&adapter->hw, E1000_EITR(0), DEFAULT_ITR); + +#ifdef DEVICE_POLLING + /* + * Only enable interrupts if we are not polling, make sure + * they are off otherwise. + */ + if (ifp->if_capenable & IFCAP_POLLING) + igb_disable_intr(adapter); + else +#endif /* DEVICE_POLLING */ + { + /* this clears any pending interrupts */ + E1000_READ_REG(&adapter->hw, E1000_ICR); + igb_enable_intr(adapter); + E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC); + } + +#ifdef IGB_TIMESYNC + /* Initialize IEEE 1588 Time sync if available */ + if (adapter->hw.mac.type == e1000_82576) + igb_tsync_init(adapter); +#endif + + /* Don't reset the phy next time init gets called */ + adapter->hw.phy.reset_disable = TRUE; +} + +static void +igb_init(void *arg) +{ + struct adapter *adapter = arg; + + IGB_CORE_LOCK(adapter); + igb_init_locked(adapter); + IGB_CORE_UNLOCK(adapter); +} + + +#ifdef DEVICE_POLLING +/********************************************************************* + * + * Legacy polling routine + * + *********************************************************************/ +static void +igb_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) +{ + struct adapter *adapter = ifp->if_softc; + struct rx_ring *rxr = adapter->rx_rings; + struct tx_ring *txr = adapter->tx_rings; + uint32_t reg_icr; + + IGB_CORE_LOCK(adapter); + if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { + IGB_CORE_UNLOCK(adapter); + return; + } + + if (cmd == POLL_AND_CHECK_STATUS) { + reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); + if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { + callout_stop(&adapter->timer); + adapter->hw.mac.get_link_status = 1; + igb_update_link_status(adapter); + callout_reset(&adapter->timer, hz, + igb_local_timer, adapter); + } + } + igb_rxeof(rxr, count); + IGB_CORE_UNLOCK(adapter); + + /* With polling we cannot do multiqueue */ + IGB_TX_LOCK(txr); + igb_txeof(txr); + + if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) + igb_start_locked(txr, ifp); + IGB_TX_UNLOCK(txr); +} +#endif /* DEVICE_POLLING */ + + +static void +igb_handle_link(void *context, int pending) +{ + struct adapter *adapter = context; + struct ifnet *ifp; + + ifp = adapter->ifp; + + if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) + return; + + IGB_CORE_LOCK(adapter); + callout_stop(&adapter->timer); + igb_update_link_status(adapter); + callout_reset(&adapter->timer, hz, igb_local_timer, adapter); + IGB_CORE_UNLOCK(adapter); +} + +static void +igb_handle_rxtx(void *context, int pending) +{ + struct adapter *adapter = context; + struct tx_ring *txr = adapter->tx_rings; + struct rx_ring *rxr = adapter->rx_rings; + struct ifnet *ifp; + + ifp = adapter->ifp; + + if (ifp->if_drv_flags & IFF_DRV_RUNNING) { + if (igb_rxeof(rxr, adapter->rx_process_limit) != 0) + taskqueue_enqueue(adapter->tq, &adapter->rxtx_task); + IGB_TX_LOCK(txr); + igb_txeof(txr); + + if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) + igb_start_locked(txr, ifp); + IGB_TX_UNLOCK(txr); + } + + igb_enable_intr(adapter); +} + +static void +igb_handle_rx(void *context, int pending) +{ + struct rx_ring *rxr = context; + struct adapter *adapter = rxr->adapter; + struct ifnet *ifp = adapter->ifp; + + if (ifp->if_drv_flags & IFF_DRV_RUNNING) + if (igb_rxeof(rxr, adapter->rx_process_limit) != 0) + /* More to clean, schedule another task */ + taskqueue_enqueue(adapter->tq, &rxr->rx_task); + +} + +static void +igb_handle_tx(void *context, int pending) +{ + struct tx_ring *txr = context; + struct adapter *adapter = txr->adapter; + struct ifnet *ifp = adapter->ifp; + + if (ifp->if_drv_flags & IFF_DRV_RUNNING) { + IGB_TX_LOCK(txr); + igb_txeof(txr); + if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) + igb_start_locked(txr, ifp); + IGB_TX_UNLOCK(txr); + } +} + + +/********************************************************************* + * + * MSI/Legacy Deferred + * Interrupt Service routine + * + *********************************************************************/ +static int +igb_irq_fast(void *arg) +{ + struct adapter *adapter = arg; + struct ifnet *ifp = adapter->ifp; + uint32_t reg_icr; + + /* Should not happen, but... */ + if (ifp->if_capenable & IFCAP_POLLING) + return FILTER_STRAY; + + reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); + + /* Hot eject? */ + if (reg_icr == 0xffffffff) + return FILTER_STRAY; + + /* Definitely not our interrupt. */ + if (reg_icr == 0x0) + return FILTER_STRAY; + + if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0) + return FILTER_STRAY; + + /* + * Mask interrupts until the taskqueue is finished running. This is + * cheap, just assume that it is needed. This also works around the + * MSI message reordering errata on certain systems. + */ + igb_disable_intr(adapter); + taskqueue_enqueue(adapter->tq, &adapter->rxtx_task); + + /* Link status change */ + if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { + adapter->hw.mac.get_link_status = 1; + taskqueue_enqueue(adapter->tq, &adapter->link_task); + } + + if (reg_icr & E1000_ICR_RXO) + adapter->rx_overruns++; + return FILTER_HANDLED; +} + + +/********************************************************************* + * + * MSIX TX Interrupt Service routine + * + **********************************************************************/ + +static void +igb_msix_tx(void *arg) +{ + struct tx_ring *txr = arg; + struct adapter *adapter = txr->adapter; + struct ifnet *ifp = adapter->ifp; + + ++txr->tx_irq; + if (ifp->if_drv_flags & IFF_DRV_RUNNING) { + IGB_TX_LOCK(txr); + igb_txeof(txr); + IGB_TX_UNLOCK(txr); + taskqueue_enqueue(adapter->tq, &txr->tx_task); + } + /* Reenable this interrupt */ + E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txr->eims); + return; +} + +/********************************************************************* + * + * MSIX RX Interrupt Service routine + * + **********************************************************************/ + +static void +igb_msix_rx(void *arg) +{ + struct rx_ring *rxr = arg; + struct adapter *adapter = rxr->adapter; + struct ifnet *ifp = adapter->ifp; + + ++rxr->rx_irq; + if (ifp->if_drv_flags & IFF_DRV_RUNNING) + if (igb_rxeof(rxr, adapter->rx_process_limit) != 0) + taskqueue_enqueue(adapter->tq, &rxr->rx_task); + /* Reenable this interrupt */ + E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxr->eims); + return; +} + +/********************************************************************* + * + * MSIX Link Interrupt Service routine + * + **********************************************************************/ + +static void +igb_msix_link(void *arg) +{ + struct adapter *adapter = arg; + u32 icr; + + ++adapter->link_irq; + icr = E1000_READ_REG(&adapter->hw, E1000_ICR); + if (!(icr & E1000_ICR_LSC)) + goto spurious; + adapter->hw.mac.get_link_status = 1; + taskqueue_enqueue(adapter->tq, &adapter->link_task); + +spurious: + /* Rearm */ + E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC); + E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask); + return; +} + + +/********************************************************************* + * + * Media Ioctl callback + * + * This routine is called whenever the user queries the status of + * the interface using ifconfig. + * + **********************************************************************/ +static void +igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) +{ + struct adapter *adapter = ifp->if_softc; + u_char fiber_type = IFM_1000_SX; + + INIT_DEBUGOUT("igb_media_status: begin"); + + IGB_CORE_LOCK(adapter); + igb_update_link_status(adapter); + + ifmr->ifm_status = IFM_AVALID; + ifmr->ifm_active = IFM_ETHER; + + if (!adapter->link_active) { + IGB_CORE_UNLOCK(adapter); + return; + } + + ifmr->ifm_status |= IFM_ACTIVE; + + if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || + (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) + ifmr->ifm_active |= fiber_type | IFM_FDX; + else { + switch (adapter->link_speed) { + case 10: + ifmr->ifm_active |= IFM_10_T; + break; + case 100: + ifmr->ifm_active |= IFM_100_TX; + break; + case 1000: + ifmr->ifm_active |= IFM_1000_T; + break; + } + if (adapter->link_duplex == FULL_DUPLEX) + ifmr->ifm_active |= IFM_FDX; + else + ifmr->ifm_active |= IFM_HDX; + } + IGB_CORE_UNLOCK(adapter); +} + +/********************************************************************* + * + * Media Ioctl callback + * + * This routine is called when the user changes speed/duplex using + * media/mediopt option with ifconfig. + * + **********************************************************************/ +static int +igb_media_change(struct ifnet *ifp) +{ + struct adapter *adapter = ifp->if_softc; + struct ifmedia *ifm = &adapter->media; + + INIT_DEBUGOUT("igb_media_change: begin"); + + if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) + return (EINVAL); + + IGB_CORE_LOCK(adapter); + switch (IFM_SUBTYPE(ifm->ifm_media)) { + case IFM_AUTO: + adapter->hw.mac.autoneg = DO_AUTO_NEG; + adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; + break; + case IFM_1000_LX: + case IFM_1000_SX: + case IFM_1000_T: + adapter->hw.mac.autoneg = DO_AUTO_NEG; + adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; + break; + case IFM_100_TX: + adapter->hw.mac.autoneg = FALSE; + adapter->hw.phy.autoneg_advertised = 0; + if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) + adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL; + else + adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF; + break; + case IFM_10_T: + adapter->hw.mac.autoneg = FALSE; + adapter->hw.phy.autoneg_advertised = 0; + if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) + adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL; + else + adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF; + break; + default: + device_printf(adapter->dev, "Unsupported media type\n"); + } + + /* As the speed/duplex settings my have changed we need to + * reset the PHY. + */ + adapter->hw.phy.reset_disable = FALSE; + + igb_init_locked(adapter); + IGB_CORE_UNLOCK(adapter); + + return (0); +} + + +/********************************************************************* + * + * This routine maps the mbufs to Advanced TX descriptors. + * used by the 82575 adapter. + * + **********************************************************************/ + +static int +igb_xmit(struct tx_ring *txr, struct mbuf **m_headp) +{ + struct adapter *adapter = txr->adapter; + bus_dma_segment_t segs[IGB_MAX_SCATTER]; + bus_dmamap_t map; + struct igb_buffer *tx_buffer, *tx_buffer_mapped; + union e1000_adv_tx_desc *txd = NULL; + struct mbuf *m_head; + u32 olinfo_status = 0, cmd_type_len = 0; + int nsegs, i, j, error, first, last = 0; + u32 hdrlen = 0, offload = 0; + + m_head = *m_headp; + + + /* Set basic descriptor constants */ + cmd_type_len |= E1000_ADVTXD_DTYP_DATA; + cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT; + if (m_head->m_flags & M_VLANTAG) + cmd_type_len |= E1000_ADVTXD_DCMD_VLE; + + /* + * Force a cleanup if number of TX descriptors + * available hits the threshold + */ + if (txr->tx_avail <= IGB_TX_CLEANUP_THRESHOLD) { + igb_txeof(txr); + /* Now do we at least have a minimal? */ + if (txr->tx_avail <= IGB_TX_OP_THRESHOLD) { + txr->no_desc_avail++; + return (ENOBUFS); + } + } + + /* + * Map the packet for DMA. + * + * Capture the first descriptor index, + * this descriptor will have the index + * of the EOP which is the only one that + * now gets a DONE bit writeback. + */ + first = txr->next_avail_desc; + tx_buffer = &txr->tx_buffers[first]; + tx_buffer_mapped = tx_buffer; + map = tx_buffer->map; + + error = bus_dmamap_load_mbuf_sg(txr->txtag, map, + *m_headp, segs, &nsegs, BUS_DMA_NOWAIT); + + if (error == EFBIG) { + struct mbuf *m; + + m = m_defrag(*m_headp, M_DONTWAIT); + if (m == NULL) { + adapter->mbuf_alloc_failed++; + m_freem(*m_headp); + *m_headp = NULL; + return (ENOBUFS); + } + *m_headp = m; + + /* Try it again */ + error = bus_dmamap_load_mbuf_sg(txr->txtag, map, + *m_headp, segs, &nsegs, BUS_DMA_NOWAIT); + + if (error == ENOMEM) { + adapter->no_tx_dma_setup++; + return (error); + } else if (error != 0) { + adapter->no_tx_dma_setup++; + m_freem(*m_headp); + *m_headp = NULL; + return (error); + } + } else if (error == ENOMEM) { + adapter->no_tx_dma_setup++; + return (error); + } else if (error != 0) { + adapter->no_tx_dma_setup++; + m_freem(*m_headp); + *m_headp = NULL; + return (error); + } + + /* Check again to be sure we have enough descriptors */ + if (nsegs > (txr->tx_avail - 2)) { + txr->no_desc_avail++; + bus_dmamap_unload(txr->txtag, map); + return (ENOBUFS); + } + m_head = *m_headp; + + /* + * Set up the context descriptor: + * used when any hardware offload is done. + * This includes CSUM, VLAN, and TSO. It + * will use the first descriptor. + */ + if (m_head->m_pkthdr.csum_flags & CSUM_TSO) { + if (igb_tso_setup(txr, m_head, &hdrlen)) { + cmd_type_len |= E1000_ADVTXD_DCMD_TSE; + olinfo_status |= E1000_TXD_POPTS_IXSM << 8; + olinfo_status |= E1000_TXD_POPTS_TXSM << 8; + } else + return (ENXIO); + } else + /* Do all other context descriptor setup */ + offload = igb_tx_ctx_setup(txr, m_head); + if (offload == TRUE) + olinfo_status |= E1000_TXD_POPTS_TXSM << 8; +#ifdef IGB_TIMESYNC + if (offload == IGB_TIMESTAMP) + cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP; +#endif + /* Calculate payload length */ + olinfo_status |= ((m_head->m_pkthdr.len - hdrlen) + << E1000_ADVTXD_PAYLEN_SHIFT); + + /* Set up our transmit descriptors */ + i = txr->next_avail_desc; + for (j = 0; j < nsegs; j++) { + bus_size_t seg_len; + bus_addr_t seg_addr; + + tx_buffer = &txr->tx_buffers[i]; + txd = (union e1000_adv_tx_desc *)&txr->tx_base[i]; + seg_addr = segs[j].ds_addr; + seg_len = segs[j].ds_len; + + txd->read.buffer_addr = htole64(seg_addr); + txd->read.cmd_type_len = htole32( + adapter->txd_cmd | cmd_type_len | seg_len); + txd->read.olinfo_status = htole32(olinfo_status); + last = i; + if (++i == adapter->num_tx_desc) + i = 0; + tx_buffer->m_head = NULL; + tx_buffer->next_eop = -1; + } + + txr->next_avail_desc = i; + txr->tx_avail -= nsegs; + + tx_buffer->m_head = m_head; + tx_buffer_mapped->map = tx_buffer->map; + tx_buffer->map = map; + bus_dmamap_sync(txr->txtag, map, BUS_DMASYNC_PREWRITE); + + /* + * Last Descriptor of Packet + * needs End Of Packet (EOP) + * and Report Status (RS) + */ + txd->read.cmd_type_len |= + htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS); + /* + * Keep track in the first buffer which + * descriptor will be written back + */ + tx_buffer = &txr->tx_buffers[first]; + tx_buffer->next_eop = last; + + /* + * Advance the Transmit Descriptor Tail (TDT), this tells the E1000 + * that this frame is available to transmit. + */ + bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, + BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); + E1000_WRITE_REG(&adapter->hw, E1000_TDT(txr->me), i); + ++txr->tx_packets; + + return (0); + +} + +static void +igb_set_promisc(struct adapter *adapter) +{ + struct ifnet *ifp = adapter->ifp; + uint32_t reg_rctl; + + reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); + + if (ifp->if_flags & IFF_PROMISC) { + reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); + E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); + } else if (ifp->if_flags & IFF_ALLMULTI) { + reg_rctl |= E1000_RCTL_MPE; + reg_rctl &= ~E1000_RCTL_UPE; + E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); + } +} + +static void +igb_disable_promisc(struct adapter *adapter) +{ + uint32_t reg_rctl; + + reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); + + reg_rctl &= (~E1000_RCTL_UPE); + reg_rctl &= (~E1000_RCTL_MPE); + E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); +} + + +/********************************************************************* + * Multicast Update + * + * This routine is called whenever multicast address list is updated. + * + **********************************************************************/ + +static void +igb_set_multi(struct adapter *adapter) +{ + struct ifnet *ifp = adapter->ifp; + struct ifmultiaddr *ifma; + uint32_t reg_rctl = 0; + uint8_t mta[512]; /* Largest MTS is 4096 bits */ + int mcnt = 0; + + IOCTL_DEBUGOUT("igb_set_multi: begin"); + + IF_ADDR_LOCK(ifp); + TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { + if (ifma->ifma_addr->sa_family != AF_LINK) + continue; + + if (mcnt == MAX_NUM_MULTICAST_ADDRESSES) + break; + + bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), + &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN); + mcnt++; + } + IF_ADDR_UNLOCK(ifp); + + if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) { + reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); + reg_rctl |= E1000_RCTL_MPE; + E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); + } else + e1000_update_mc_addr_list(&adapter->hw, mta, + mcnt, 1, adapter->hw.mac.rar_entry_count); +} + + +/********************************************************************* + * Timer routine + * + * This routine checks for link status and updates statistics. + * + **********************************************************************/ + +static void +igb_local_timer(void *arg) +{ + struct adapter *adapter = arg; + struct ifnet *ifp = adapter->ifp; + + IGB_CORE_LOCK_ASSERT(adapter); + + igb_update_link_status(adapter); + igb_update_stats_counters(adapter); + + if (igb_display_debug_stats && ifp->if_drv_flags & IFF_DRV_RUNNING) + igb_print_hw_stats(adapter); + + /* + * Each second we check the watchdog to + * protect against hardware hangs. + */ + igb_watchdog(adapter); + + callout_reset(&adapter->timer, hz, igb_local_timer, adapter); + +} + +static void +igb_update_link_status(struct adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + struct ifnet *ifp = adapter->ifp; + device_t dev = adapter->dev; + struct tx_ring *txr = adapter->tx_rings; + u32 link_check = 0; + + /* Get the cached link value or read for real */ + switch (hw->phy.media_type) { + case e1000_media_type_copper: + if (hw->mac.get_link_status) { + /* Do the work to read phy */ + e1000_check_for_link(hw); + link_check = !hw->mac.get_link_status; + } else + link_check = TRUE; + break; + case e1000_media_type_fiber: + e1000_check_for_link(hw); + link_check = (E1000_READ_REG(hw, E1000_STATUS) & + E1000_STATUS_LU); + break; + case e1000_media_type_internal_serdes: + e1000_check_for_link(hw); + link_check = adapter->hw.mac.serdes_has_link; + break; + default: + case e1000_media_type_unknown: + break; + } + + /* Now we check if a transition has happened */ + if (link_check && (adapter->link_active == 0)) { + e1000_get_speed_and_duplex(&adapter->hw, + &adapter->link_speed, &adapter->link_duplex); + if (bootverbose) + device_printf(dev, "Link is up %d Mbps %s\n", + adapter->link_speed, + ((adapter->link_duplex == FULL_DUPLEX) ? + "Full Duplex" : "Half Duplex")); + adapter->link_active = 1; + ifp->if_baudrate = adapter->link_speed * 1000000; + if_link_state_change(ifp, LINK_STATE_UP); + } else if (!link_check && (adapter->link_active == 1)) { + ifp->if_baudrate = adapter->link_speed = 0; + adapter->link_duplex = 0; + if (bootverbose) + device_printf(dev, "Link is Down\n"); + adapter->link_active = 0; + if_link_state_change(ifp, LINK_STATE_DOWN); + /* Turn off watchdogs */ + for (int i = 0; i < adapter->num_tx_queues; i++, txr++) + txr->watchdog_timer = FALSE; + } +} + +/********************************************************************* + * + * This routine disables all traffic on the adapter by issuing a + * global reset on the MAC and deallocates TX/RX buffers. + * + **********************************************************************/ + +static void +igb_stop(void *arg) +{ + struct adapter *adapter = arg; + struct ifnet *ifp = adapter->ifp; + + IGB_CORE_LOCK_ASSERT(adapter); + + INIT_DEBUGOUT("igb_stop: begin"); + + igb_disable_intr(adapter); + + callout_stop(&adapter->timer); + + /* Tell the stack that the interface is no longer active */ + ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); + +#ifdef IGB_TIMESYNC + /* Disable IEEE 1588 Time sync */ + if (adapter->hw.mac.type == e1000_82576) + igb_tsync_disable(adapter); +#endif + + e1000_reset_hw(&adapter->hw); + E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0); +} + + +/********************************************************************* + * + * Determine hardware revision. + * + **********************************************************************/ +static void +igb_identify_hardware(struct adapter *adapter) +{ + device_t dev = adapter->dev; + + /* Make sure our PCI config space has the necessary stuff set */ + adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2); + if (!((adapter->hw.bus.pci_cmd_word & PCIM_CMD_BUSMASTEREN) && + (adapter->hw.bus.pci_cmd_word & PCIM_CMD_MEMEN))) { + device_printf(dev, "Memory Access and/or Bus Master bits " + "were not set!\n"); + adapter->hw.bus.pci_cmd_word |= + (PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN); + pci_write_config(dev, PCIR_COMMAND, + adapter->hw.bus.pci_cmd_word, 2); + } + + /* Save off the information about this board */ + adapter->hw.vendor_id = pci_get_vendor(dev); + adapter->hw.device_id = pci_get_device(dev); + adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1); + adapter->hw.subsystem_vendor_id = + pci_read_config(dev, PCIR_SUBVEND_0, 2); + adapter->hw.subsystem_device_id = + pci_read_config(dev, PCIR_SUBDEV_0, 2); + + /* Do Shared Code Init and Setup */ + if (e1000_set_mac_type(&adapter->hw)) { + device_printf(dev, "Setup init failure\n"); + return; + } +} + +static int +igb_allocate_pci_resources(struct adapter *adapter) +{ + device_t dev = adapter->dev; + int rid, error = 0; + + rid = PCIR_BAR(0); + adapter->pci_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, + &rid, RF_ACTIVE); + if (adapter->pci_mem == NULL) { + device_printf(dev, "Unable to allocate bus resource: memory\n"); + return (ENXIO); + } + adapter->osdep.mem_bus_space_tag = + rman_get_bustag(adapter->pci_mem); + adapter->osdep.mem_bus_space_handle = + rman_get_bushandle(adapter->pci_mem); + adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle; + + /* + ** Init the resource arrays + */ + for (int i = 0; i < IGB_MSIX_VEC; i++) { + adapter->rid[i] = i + 1; /* MSI/X RID starts at 1 */ + adapter->tag[i] = NULL; + adapter->res[i] = NULL; + } + + adapter->num_tx_queues = 1; /* Defaults for Legacy or MSI */ + adapter->num_rx_queues = 1; + + /* This will setup either MSI/X or MSI */ + adapter->msix = igb_setup_msix(adapter); + + adapter->hw.back = &adapter->osdep; + + return (error); +} + +/********************************************************************* + * + * Setup the Legacy or MSI Interrupt handler + * + **********************************************************************/ +static int +igb_allocate_legacy(struct adapter *adapter) +{ + device_t dev = adapter->dev; + int error; + + /* Turn off all interrupts */ + E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff); + + /* Legacy RID at 0 */ + if (adapter->msix == 0) + adapter->rid[0] = 0; + + /* We allocate a single interrupt resource */ + adapter->res[0] = bus_alloc_resource_any(dev, + SYS_RES_IRQ, &adapter->rid[0], RF_SHAREABLE | RF_ACTIVE); + if (adapter->res[0] == NULL) { + device_printf(dev, "Unable to allocate bus resource: " + "interrupt\n"); + return (ENXIO); + } + + /* + * Try allocating a fast interrupt and the associated deferred + * processing contexts. + */ + TASK_INIT(&adapter->rxtx_task, 0, igb_handle_rxtx, adapter); + TASK_INIT(&adapter->link_task, 0, igb_handle_link, adapter); + adapter->tq = taskqueue_create_fast("igb_taskq", M_NOWAIT, + taskqueue_thread_enqueue, &adapter->tq); + taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s taskq", + device_get_nameunit(adapter->dev)); + if ((error = bus_setup_intr(dev, adapter->res[0], + INTR_TYPE_NET | INTR_MPSAFE, igb_irq_fast, NULL, adapter, + &adapter->tag[0])) != 0) { + device_printf(dev, "Failed to register fast interrupt " + "handler: %d\n", error); + taskqueue_free(adapter->tq); + adapter->tq = NULL; + return (error); + } + + return (0); +} + + +/********************************************************************* + * + * Setup the MSIX Interrupt handlers: + * + **********************************************************************/ +static int +igb_allocate_msix(struct adapter *adapter) +{ + device_t dev = adapter->dev; + struct tx_ring *txr = adapter->tx_rings; + struct rx_ring *rxr = adapter->rx_rings; + int error, vector = 0; + + /* + * Setup the interrupt handlers + */ + + /* TX Setup */ + for (int i = 0; i < adapter->num_tx_queues; i++, vector++, txr++) { + adapter->res[vector] = bus_alloc_resource_any(dev, + SYS_RES_IRQ, &adapter->rid[vector], + RF_SHAREABLE | RF_ACTIVE); + if (adapter->res[vector] == NULL) { + device_printf(dev, + "Unable to allocate bus resource: " + "MSIX TX Interrupt\n"); + return (ENXIO); + } + error = bus_setup_intr(dev, adapter->res[vector], + INTR_TYPE_NET | INTR_MPSAFE, NULL, igb_msix_tx, + txr, &adapter->tag[vector]); + if (error) { + adapter->res[vector] = NULL; + device_printf(dev, "Failed to register TX handler"); + return (error); + } + /* Make tasklet for deferred handling - one per queue */ + TASK_INIT(&txr->tx_task, 0, igb_handle_tx, txr); + if (adapter->hw.mac.type == e1000_82575) { + txr->eims = E1000_EICR_TX_QUEUE0 << i; + /* MSIXBM registers start at 0 */ + txr->msix = adapter->rid[vector] - 1; + } else { + txr->eims = 1 << vector; + txr->msix = vector; + } + } + + /* RX Setup */ + for (int i = 0; i < adapter->num_rx_queues; i++, vector++, rxr++) { + adapter->res[vector] = bus_alloc_resource_any(dev, + SYS_RES_IRQ, &adapter->rid[vector], + RF_SHAREABLE | RF_ACTIVE); + if (adapter->res[vector] == NULL) { + device_printf(dev, + "Unable to allocate bus resource: " + "MSIX RX Interrupt\n"); + return (ENXIO); + } + error = bus_setup_intr(dev, adapter->res[vector], + INTR_TYPE_NET | INTR_MPSAFE, NULL, igb_msix_rx, + rxr, &adapter->tag[vector]); + if (error) { + adapter->res[vector] = NULL; + device_printf(dev, "Failed to register RX handler"); + return (error); + } + TASK_INIT(&rxr->rx_task, 0, igb_handle_rx, rxr); + if (adapter->hw.mac.type == e1000_82575) { + rxr->eims = E1000_EICR_RX_QUEUE0 << i; + rxr->msix = adapter->rid[vector] - 1; + } else { + rxr->eims = 1 << vector; + rxr->msix = vector; + } + } + + /* And Link */ + adapter->res[vector] = bus_alloc_resource_any(dev, + SYS_RES_IRQ, &adapter->rid[vector], + RF_SHAREABLE | RF_ACTIVE); + if (adapter->res[vector] == NULL) { + device_printf(dev, + "Unable to allocate bus resource: " + "MSIX Link Interrupt\n"); + return (ENXIO); + } + if ((error = bus_setup_intr(dev, adapter->res[vector], + INTR_TYPE_NET | INTR_MPSAFE, NULL, igb_msix_link, + adapter, &adapter->tag[vector])) != 0) { + device_printf(dev, "Failed to register Link handler"); + return (error); + } + if (adapter->hw.mac.type == e1000_82575) + adapter->linkvec = adapter->rid[vector] - 1; + else + adapter->linkvec = vector; + + /* Make tasklet for deferred link interrupt handling */ + TASK_INIT(&adapter->link_task, 0, igb_handle_link, adapter); + + adapter->tq = taskqueue_create_fast("igb_taskq", M_NOWAIT, + taskqueue_thread_enqueue, &adapter->tq); + taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s taskq", + device_get_nameunit(adapter->dev)); + + return (0); +} + +static void +igb_configure_queues(struct adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + struct tx_ring *txr; + struct rx_ring *rxr; + + /* Turn on MSIX */ + /* + ** 82576 uses IVARs to route MSI/X + ** interrupts, its not very intuitive, + ** study the code carefully :) + */ + if (adapter->hw.mac.type == e1000_82576) { + u32 ivar = 0; + /* First turn on the capability */ + E1000_WRITE_REG(hw, E1000_GPIE, + E1000_GPIE_MSIX_MODE | + E1000_GPIE_EIAME | + E1000_GPIE_PBA | E1000_GPIE_NSICR); + /* Set the MSIX interrupt rate. */ + for (int i = 0; i < IGB_MSIX_VEC; i++) + E1000_WRITE_REG(&adapter->hw, + E1000_EITR(i), DEFAULT_ITR); + /* RX */ + for (int i = 0; i < adapter->num_rx_queues; i++) { + u32 index = i & 0x7; /* Each IVAR has two entries */ + ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); + rxr = &adapter->rx_rings[i]; + if (i < 8) { + ivar &= 0xFFFFFF00; + ivar |= rxr->msix | E1000_IVAR_VALID; + } else { + ivar &= 0xFF00FFFF; + ivar |= (rxr->msix | E1000_IVAR_VALID) << 16; + } + E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); + adapter->eims_mask |= rxr->eims; + } + /* TX */ + for (int i = 0; i < adapter->num_tx_queues; i++) { + u32 index = i & 0x7; /* Each IVAR has two entries */ + ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); + txr = &adapter->tx_rings[i]; + if (i < 8) { + ivar &= 0xFFFF00FF; + ivar |= (txr->msix | E1000_IVAR_VALID) << 8; + } else { + ivar &= 0x00FFFFFF; + ivar |= (txr->msix | E1000_IVAR_VALID) << 24; + } + E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); + adapter->eims_mask |= txr->eims; + } + + /* And for the link interrupt */ + ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8; + adapter->link_mask = 1 << adapter->linkvec; + adapter->eims_mask |= adapter->link_mask; + E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); + } else + { /* 82575 */ + int tmp; + + /* enable MSI-X PBA support*/ + tmp = E1000_READ_REG(hw, E1000_CTRL_EXT); + tmp |= E1000_CTRL_EXT_PBA_CLR; + /* Auto-Mask interrupts upon ICR read. */ + tmp |= E1000_CTRL_EXT_EIAME; + tmp |= E1000_CTRL_EXT_IRCA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp); + + /* Set the interrupt throttling rate. */ + for (int i = 0; i < IGB_MSIX_VEC; i++) + E1000_WRITE_REG(&adapter->hw, + E1000_EITR(i), DEFAULT_ITR); + + /* TX */ + for (int i = 0; i < adapter->num_tx_queues; i++) { + txr = &adapter->tx_rings[i]; + E1000_WRITE_REG(hw, E1000_MSIXBM(txr->msix), + txr->eims); + adapter->eims_mask |= txr->eims; + } + + /* RX */ + for (int i = 0; i < adapter->num_rx_queues; i++) { + rxr = &adapter->rx_rings[i]; + E1000_WRITE_REG(hw, E1000_MSIXBM(rxr->msix), + rxr->eims); + adapter->eims_mask |= rxr->eims; + } + + /* Link */ + E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec), + E1000_EIMS_OTHER); + adapter->link_mask |= E1000_EIMS_OTHER; + adapter->eims_mask |= adapter->link_mask; + } + return; +} + + +static void +igb_free_pci_resources(struct adapter *adapter) +{ + device_t dev = adapter->dev; + + /* Make sure the for loop below runs once */ + if (adapter->msix == 0) + adapter->msix = 1; + + /* + * First release all the interrupt resources: + * notice that since these are just kept + * in an array we can do the same logic + * whether its MSIX or just legacy. + */ + for (int i = 0; i < adapter->msix; i++) { + if (adapter->tag[i] != NULL) { + bus_teardown_intr(dev, adapter->res[i], + adapter->tag[i]); + adapter->tag[i] = NULL; + } + if (adapter->res[i] != NULL) { + bus_release_resource(dev, SYS_RES_IRQ, + adapter->rid[i], adapter->res[i]); + } + } + + if (adapter->msix) + pci_release_msi(dev); + + if (adapter->msix_mem != NULL) + bus_release_resource(dev, SYS_RES_MEMORY, + PCIR_BAR(IGB_MSIX_BAR), adapter->msix_mem); + + if (adapter->pci_mem != NULL) + bus_release_resource(dev, SYS_RES_MEMORY, + PCIR_BAR(0), adapter->pci_mem); + +} + +/* + * Setup Either MSI/X or MSI + */ +static int +igb_setup_msix(struct adapter *adapter) +{ + device_t dev = adapter->dev; + int rid, want, queues, msgs; + + /* First try MSI/X */ + rid = PCIR_BAR(IGB_MSIX_BAR); + adapter->msix_mem = bus_alloc_resource_any(dev, + SYS_RES_MEMORY, &rid, RF_ACTIVE); + if (!adapter->msix_mem) { + /* May not be enabled */ + device_printf(adapter->dev, + "Unable to map MSIX table \n"); + goto msi; + } + + msgs = pci_msix_count(dev); + if (msgs == 0) { /* system has msix disabled */ + bus_release_resource(dev, SYS_RES_MEMORY, + PCIR_BAR(IGB_MSIX_BAR), adapter->msix_mem); + adapter->msix_mem = NULL; + goto msi; + } + + /* Limit by the number set in header */ + if (msgs > IGB_MSIX_VEC) + msgs = IGB_MSIX_VEC; + + /* Figure out a reasonable auto config value */ + queues = (mp_ncpus > ((msgs-1)/2)) ? (msgs-1)/2 : mp_ncpus; + + if (igb_tx_queues == 0) + igb_tx_queues = queues; + if (igb_rx_queues == 0) + igb_rx_queues = queues; + want = igb_tx_queues + igb_rx_queues + 1; + if (msgs >= want) + msgs = want; + else { + device_printf(adapter->dev, + "MSIX Configuration Problem, " + "%d vectors configured, but %d queues wanted!\n", + msgs, want); + return (ENXIO); + } + if ((msgs) && pci_alloc_msix(dev, &msgs) == 0) { + device_printf(adapter->dev, + "Using MSIX interrupts with %d vectors\n", msgs); + adapter->num_tx_queues = igb_tx_queues; + adapter->num_rx_queues = igb_rx_queues; + return (msgs); + } +msi: + msgs = pci_msi_count(dev); + if (msgs == 1 && pci_alloc_msi(dev, &msgs) == 0) + device_printf(adapter->dev,"Using MSI interrupt\n"); + return (msgs); +} + +/********************************************************************* + * + * Initialize the hardware to a configuration + * as specified by the adapter structure. + * + **********************************************************************/ +static int +igb_hardware_init(struct adapter *adapter) +{ + device_t dev = adapter->dev; + u32 rx_buffer_size; + + INIT_DEBUGOUT("igb_hardware_init: begin"); + + /* Issue a global reset */ + e1000_reset_hw(&adapter->hw); + + /* Let the firmware know the OS is in control */ + igb_get_hw_control(adapter); + + /* + * These parameters control the automatic generation (Tx) and + * response (Rx) to Ethernet PAUSE frames. + * - High water mark should allow for at least two frames to be + * received after sending an XOFF. + * - Low water mark works best when it is very near the high water mark. + * This allows the receiver to restart by sending XON when it has + * drained a bit. Here we use an arbitary value of 1500 which will + * restart after one full frame is pulled from the buffer. There + * could be several smaller frames in the buffer and if so they will + * not trigger the XON until their total number reduces the buffer + * by 1500. + * - The pause time is fairly large at 1000 x 512ns = 512 usec. + */ + if (adapter->hw.mac.type == e1000_82576) + rx_buffer_size = ((E1000_READ_REG(&adapter->hw, + E1000_RXPBS) & 0xffff) << 10 ); + else + rx_buffer_size = ((E1000_READ_REG(&adapter->hw, + E1000_PBA) & 0xffff) << 10 ); + + adapter->hw.fc.high_water = rx_buffer_size - + roundup2(adapter->max_frame_size, 1024); + adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500; + + adapter->hw.fc.pause_time = IGB_FC_PAUSE_TIME; + adapter->hw.fc.send_xon = TRUE; + + /* Set Flow control, use the tunable location if sane */ + if ((igb_fc_setting >= 0) || (igb_fc_setting < 4)) + adapter->hw.fc.type = igb_fc_setting; + else + adapter->hw.fc.type = e1000_fc_none; + + if (e1000_init_hw(&adapter->hw) < 0) { + device_printf(dev, "Hardware Initialization Failed\n"); + return (EIO); + } + + e1000_check_for_link(&adapter->hw); + + return (0); +} + +/********************************************************************* + * + * Setup networking device structure and register an interface. + * + **********************************************************************/ +static void +igb_setup_interface(device_t dev, struct adapter *adapter) +{ + struct ifnet *ifp; + + INIT_DEBUGOUT("igb_setup_interface: begin"); + + ifp = adapter->ifp = if_alloc(IFT_ETHER); + if (ifp == NULL) + panic("%s: can not if_alloc()", device_get_nameunit(dev)); + if_initname(ifp, device_get_name(dev), device_get_unit(dev)); + ifp->if_mtu = ETHERMTU; + ifp->if_init = igb_init; + ifp->if_softc = adapter; + ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; + ifp->if_ioctl = igb_ioctl; + ifp->if_start = igb_start; + IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1); + ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1; + IFQ_SET_READY(&ifp->if_snd); + + ether_ifattach(ifp, adapter->hw.mac.addr); + + ifp->if_capabilities = ifp->if_capenable = 0; + + ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM; + ifp->if_capabilities |= IFCAP_TSO4; + ifp->if_capenable = ifp->if_capabilities; + + /* + * Tell the upper layer(s) we support long frames. + */ + ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); + ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU; + ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU; + +#ifdef DEVICE_POLLING + if (adapter->msix > 1) + device_printf(adapter->dev, "POLLING not supported with MSIX\n"); + else + ifp->if_capabilities |= IFCAP_POLLING; +#endif + + /* + * Specify the media types supported by this adapter and register + * callbacks to update media and link information + */ + ifmedia_init(&adapter->media, IFM_IMASK, + igb_media_change, igb_media_status); + if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || + (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) { + ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_SX | IFM_FDX, + 0, NULL); + ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_SX, 0, NULL); + } else { + ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL); + ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, + 0, NULL); + ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX, + 0, NULL); + ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, + 0, NULL); + if (adapter->hw.phy.type != e1000_phy_ife) { + ifmedia_add(&adapter->media, + IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); + ifmedia_add(&adapter->media, + IFM_ETHER | IFM_1000_T, 0, NULL); + } + } + ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL); + ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO); +} + + +/* + * Manage DMA'able memory. + */ +static void +igb_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) +{ + if (error) + return; + *(bus_addr_t *) arg = segs[0].ds_addr; +} + +static int +igb_dma_malloc(struct adapter *adapter, bus_size_t size, + struct igb_dma_alloc *dma, int mapflags) +{ + int error; + + error = bus_dma_tag_create(bus_get_dma_tag(adapter->dev), /* parent */ + IGB_DBA_ALIGN, 0, /* alignment, bounds */ + BUS_SPACE_MAXADDR, /* lowaddr */ + BUS_SPACE_MAXADDR, /* highaddr */ + NULL, NULL, /* filter, filterarg */ + size, /* maxsize */ + 1, /* nsegments */ + size, /* maxsegsize */ + 0, /* flags */ + NULL, /* lockfunc */ + NULL, /* lockarg */ + &dma->dma_tag); + if (error) { + device_printf(adapter->dev, + "%s: bus_dma_tag_create failed: %d\n", + __func__, error); + goto fail_0; + } + + error = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr, + BUS_DMA_NOWAIT, &dma->dma_map); + if (error) { + device_printf(adapter->dev, + "%s: bus_dmamem_alloc(%ju) failed: %d\n", + __func__, (uintmax_t)size, error); + goto fail_2; + } + + dma->dma_paddr = 0; + error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, + size, igb_dmamap_cb, &dma->dma_paddr, mapflags | BUS_DMA_NOWAIT); + if (error || dma->dma_paddr == 0) { + device_printf(adapter->dev, + "%s: bus_dmamap_load failed: %d\n", + __func__, error); + goto fail_3; + } + + return (0); + +fail_3: + bus_dmamap_unload(dma->dma_tag, dma->dma_map); +fail_2: + bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); + bus_dma_tag_destroy(dma->dma_tag); +fail_0: + dma->dma_map = NULL; + dma->dma_tag = NULL; + + return (error); +} + +static void +igb_dma_free(struct adapter *adapter, struct igb_dma_alloc *dma) +{ + if (dma->dma_tag == NULL) + return; + if (dma->dma_map != NULL) { + bus_dmamap_sync(dma->dma_tag, dma->dma_map, + BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); + bus_dmamap_unload(dma->dma_tag, dma->dma_map); + bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); + dma->dma_map = NULL; + } + bus_dma_tag_destroy(dma->dma_tag); + dma->dma_tag = NULL; +} + + +/********************************************************************* + * + * Allocate memory for the transmit and receive rings, and then + * the descriptors associated with each, called only once at attach. + * + **********************************************************************/ +static int +igb_allocate_queues(struct adapter *adapter) +{ + device_t dev = adapter->dev; + struct tx_ring *txr; + struct rx_ring *rxr; + int rsize, tsize, error = E1000_SUCCESS; + int txconf = 0, rxconf = 0; + char name_string[16]; + + /* First allocate the TX ring struct memory */ + if (!(adapter->tx_rings = + (struct tx_ring *) malloc(sizeof(struct tx_ring) * + adapter->num_tx_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { + device_printf(dev, "Unable to allocate TX ring memory\n"); + error = ENOMEM; + goto fail; + } + txr = adapter->tx_rings; + + /* Next allocate the RX */ + if (!(adapter->rx_rings = + (struct rx_ring *) malloc(sizeof(struct rx_ring) * + adapter->num_rx_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { + device_printf(dev, "Unable to allocate RX ring memory\n"); + error = ENOMEM; + goto rx_fail; + } + rxr = adapter->rx_rings; + + tsize = roundup2(adapter->num_tx_desc * + sizeof(union e1000_adv_tx_desc), IGB_DBA_ALIGN); + /* + * Now set up the TX queues, txconf is needed to handle the + * possibility that things fail midcourse and we need to + * undo memory gracefully + */ + for (int i = 0; i < adapter->num_tx_queues; i++, txconf++) { + /* Set up some basics */ + txr = &adapter->tx_rings[i]; + txr->adapter = adapter; + txr->me = i; + + /* Initialize the TX lock */ + snprintf(name_string, sizeof(name_string), "%s:tx(%d)", + device_get_nameunit(dev), txr->me); + mtx_init(&txr->tx_mtx, name_string, NULL, MTX_DEF); + + if (igb_dma_malloc(adapter, tsize, + &txr->txdma, BUS_DMA_NOWAIT)) { + device_printf(dev, + "Unable to allocate TX Descriptor memory\n"); + error = ENOMEM; + goto err_tx_desc; + } + txr->tx_base = (struct e1000_tx_desc *)txr->txdma.dma_vaddr; + bzero((void *)txr->tx_base, tsize); + + /* Now allocate transmit buffers for the ring */ + if (igb_allocate_transmit_buffers(txr)) { + device_printf(dev, + "Critical Failure setting up transmit buffers\n"); + error = ENOMEM; + goto err_tx_desc; + } + + } + + /* + * Next the RX queues... + */ + rsize = roundup2(adapter->num_rx_desc * + sizeof(union e1000_adv_rx_desc), IGB_DBA_ALIGN); + for (int i = 0; i < adapter->num_rx_queues; i++, rxconf++) { + rxr = &adapter->rx_rings[i]; + rxr->adapter = adapter; + rxr->me = i; + + /* Initialize the RX lock */ + snprintf(name_string, sizeof(name_string), "%s:rx(%d)", + device_get_nameunit(dev), txr->me); + mtx_init(&rxr->rx_mtx, name_string, NULL, MTX_DEF); + + if (igb_dma_malloc(adapter, rsize, + &rxr->rxdma, BUS_DMA_NOWAIT)) { + device_printf(dev, + "Unable to allocate RxDescriptor memory\n"); + error = ENOMEM; + goto err_rx_desc; + } + rxr->rx_base = (union e1000_adv_rx_desc *)rxr->rxdma.dma_vaddr; + bzero((void *)rxr->rx_base, rsize); + + /* Allocate receive buffers for the ring*/ + if (igb_allocate_receive_buffers(rxr)) { + device_printf(dev, + "Critical Failure setting up receive buffers\n"); + error = ENOMEM; + goto err_rx_desc; + } + } + + return (0); + +err_rx_desc: + for (rxr = adapter->rx_rings; rxconf > 0; rxr++, rxconf--) + igb_dma_free(adapter, &rxr->rxdma); +err_tx_desc: + for (txr = adapter->tx_rings; txconf > 0; txr++, txconf--) + igb_dma_free(adapter, &txr->txdma); + free(adapter->rx_rings, M_DEVBUF); +rx_fail: + free(adapter->tx_rings, M_DEVBUF); +fail: + return (error); +} + +/********************************************************************* + * + * Allocate memory for tx_buffer structures. The tx_buffer stores all + * the information needed to transmit a packet on the wire. This is + * called only once at attach, setup is done every reset. + * + **********************************************************************/ +static int +igb_allocate_transmit_buffers(struct tx_ring *txr) +{ + struct adapter *adapter = txr->adapter; + device_t dev = adapter->dev; + struct igb_buffer *txbuf; + int error, i; + + /* + * Setup DMA descriptor areas. + */ + if ((error = bus_dma_tag_create(NULL, /* parent */ + PAGE_SIZE, 0, /* alignment, bounds */ + BUS_SPACE_MAXADDR, /* lowaddr */ + BUS_SPACE_MAXADDR, /* highaddr */ + NULL, NULL, /* filter, filterarg */ + IGB_TSO_SIZE, /* maxsize */ + IGB_MAX_SCATTER, /* nsegments */ + PAGE_SIZE, /* maxsegsize */ + 0, /* flags */ + NULL, /* lockfunc */ + NULL, /* lockfuncarg */ + &txr->txtag))) { + device_printf(dev,"Unable to allocate TX DMA tag\n"); + goto fail; + } + + if (!(txr->tx_buffers = + (struct igb_buffer *) malloc(sizeof(struct igb_buffer) * + adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO))) { + device_printf(dev, "Unable to allocate tx_buffer memory\n"); + error = ENOMEM; + goto fail; + } + + /* Create the descriptor buffer dma maps */ + txbuf = txr->tx_buffers; + for (i = 0; i < adapter->num_tx_desc; i++, txbuf++) { + error = bus_dmamap_create(txr->txtag, 0, &txbuf->map); + if (error != 0) { + device_printf(dev, "Unable to create TX DMA map\n"); + goto fail; + } + } + + return 0; +fail: + /* We free all, it handles case where we are in the middle */ + igb_free_transmit_structures(adapter); + return (error); +} + +/********************************************************************* + * + * Initialize a transmit ring. + * + **********************************************************************/ +static void +igb_setup_transmit_ring(struct tx_ring *txr) +{ + struct adapter *adapter = txr->adapter; + struct igb_buffer *txbuf; + int i; + + /* Clear the old ring contents */ + bzero((void *)txr->tx_base, + (sizeof(union e1000_adv_tx_desc)) * adapter->num_tx_desc); + /* Reset indices */ + txr->next_avail_desc = 0; + txr->next_to_clean = 0; + + /* Free any existing tx buffers. */ + txbuf = txr->tx_buffers; + for (i = 0; i < adapter->num_tx_desc; i++, txbuf++) { + if (txbuf->m_head != NULL) { + bus_dmamap_sync(txr->txtag, txbuf->map, + BUS_DMASYNC_POSTWRITE); + bus_dmamap_unload(txr->txtag, txbuf->map); + m_freem(txbuf->m_head); + txbuf->m_head = NULL; + } + /* clear the watch index */ + txbuf->next_eop = -1; + } + + /* Set number of descriptors available */ + txr->tx_avail = adapter->num_tx_desc; + + bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, + BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); + +} + +/********************************************************************* + * + * Initialize all transmit rings. + * + **********************************************************************/ +static void +igb_setup_transmit_structures(struct adapter *adapter) +{ + struct tx_ring *txr = adapter->tx_rings; + + for (int i = 0; i < adapter->num_tx_queues; i++, txr++) + igb_setup_transmit_ring(txr); + + return; +} + +/********************************************************************* + * + * Enable transmit unit. + * + **********************************************************************/ +static void +igb_initialize_transmit_units(struct adapter *adapter) +{ + struct tx_ring *txr = adapter->tx_rings; + u32 tctl, txdctl, tipg = 0; + + INIT_DEBUGOUT("igb_initialize_transmit_units: begin"); + + /* Setup the Base and Length of the Tx Descriptor Rings */ + for (int i = 0; i < adapter->num_tx_queues; i++, txr++) { + u64 bus_addr = txr->txdma.dma_paddr; + + E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(i), + adapter->num_tx_desc * sizeof(struct e1000_tx_desc)); + E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(i), + (uint32_t)(bus_addr >> 32)); + E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(i), + (uint32_t)bus_addr); + + /* Setup the HW Tx Head and Tail descriptor pointers */ + E1000_WRITE_REG(&adapter->hw, E1000_TDT(i), 0); + E1000_WRITE_REG(&adapter->hw, E1000_TDH(i), 0); + + HW_DEBUGOUT2("Base = %x, Length = %x\n", + E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)), + E1000_READ_REG(&adapter->hw, E1000_TDLEN(i))); + + /* Setup Transmit Descriptor Base Settings */ + adapter->txd_cmd = E1000_TXD_CMD_IFCS; + + txdctl = E1000_READ_REG(&adapter->hw, E1000_TXDCTL(i)); + txdctl |= E1000_TXDCTL_QUEUE_ENABLE; + E1000_WRITE_REG(&adapter->hw, E1000_TXDCTL(i), txdctl); + } + + /* Set the default values for the Tx Inter Packet Gap timer */ + if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || + (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) + tipg = DEFAULT_82543_TIPG_IPGT_FIBER; + else + tipg = DEFAULT_82543_TIPG_IPGT_COPPER; + + tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; + tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; + + E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg); + E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value); + E1000_WRITE_REG(&adapter->hw, E1000_TADV, adapter->tx_abs_int_delay.value); + + /* Program the Transmit Control Register */ + tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL); + tctl &= ~E1000_TCTL_CT; + tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | + (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); + + /* This write will effectively turn on the transmit unit. */ + E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl); + +} + +/********************************************************************* + * + * Free all transmit rings. + * + **********************************************************************/ +static void +igb_free_transmit_structures(struct adapter *adapter) +{ + struct tx_ring *txr = adapter->tx_rings; + + for (int i = 0; i < adapter->num_tx_queues; i++, txr++) { + IGB_TX_LOCK(txr); + igb_free_transmit_buffers(txr); + igb_dma_free(adapter, &txr->txdma); + IGB_TX_UNLOCK(txr); + IGB_TX_LOCK_DESTROY(txr); + } + free(adapter->tx_rings, M_DEVBUF); +} + +/********************************************************************* + * + * Free transmit ring related data structures. + * + **********************************************************************/ +static void +igb_free_transmit_buffers(struct tx_ring *txr) +{ + struct adapter *adapter = txr->adapter; + struct igb_buffer *tx_buffer; + int i; + + INIT_DEBUGOUT("free_transmit_ring: begin"); + + if (txr->tx_buffers == NULL) + return; + + tx_buffer = txr->tx_buffers; + for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) { + if (tx_buffer->m_head != NULL) { + bus_dmamap_sync(txr->txtag, tx_buffer->map, + BUS_DMASYNC_POSTWRITE); + bus_dmamap_unload(txr->txtag, + tx_buffer->map); + m_freem(tx_buffer->m_head); + tx_buffer->m_head = NULL; + if (tx_buffer->map != NULL) { + bus_dmamap_destroy(txr->txtag, + tx_buffer->map); + tx_buffer->map = NULL; + } + } else if (tx_buffer->map != NULL) { + bus_dmamap_unload(txr->txtag, + tx_buffer->map); + bus_dmamap_destroy(txr->txtag, + tx_buffer->map); + tx_buffer->map = NULL; + } + } + + if (txr->tx_buffers != NULL) { + free(txr->tx_buffers, M_DEVBUF); + txr->tx_buffers = NULL; + } + if (txr->txtag != NULL) { + bus_dma_tag_destroy(txr->txtag); + txr->txtag = NULL; + } + return; +} + +/********************************************************************** + * + * Setup work for hardware segmentation offload (TSO) on + * adapters using advanced tx descriptors (82575) + * + **********************************************************************/ +static boolean_t +igb_tso_setup(struct tx_ring *txr, struct mbuf *mp, u32 *hdrlen) +{ + struct adapter *adapter = txr->adapter; + struct e1000_adv_tx_context_desc *TXD; + struct igb_buffer *tx_buffer; + u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0; + u32 mss_l4len_idx = 0; + u16 vtag = 0; + int ctxd, ehdrlen, ip_hlen, tcp_hlen; + struct ether_vlan_header *eh; + struct ip *ip; + struct tcphdr *th; + + + /* + * Determine where frame payload starts. + * Jump over vlan headers if already present + */ + eh = mtod(mp, struct ether_vlan_header *); + if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) + ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; + else + ehdrlen = ETHER_HDR_LEN; + + /* Ensure we have at least the IP+TCP header in the first mbuf. */ + if (mp->m_len < ehdrlen + sizeof(struct ip) + sizeof(struct tcphdr)) + return FALSE; + + /* Only supports IPV4 for now */ + ctxd = txr->next_avail_desc; + tx_buffer = &txr->tx_buffers[ctxd]; + TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[ctxd]; + + ip = (struct ip *)(mp->m_data + ehdrlen); + if (ip->ip_p != IPPROTO_TCP) + return FALSE; /* 0 */ + ip->ip_sum = 0; + ip_hlen = ip->ip_hl << 2; + th = (struct tcphdr *)((caddr_t)ip + ip_hlen); + th->th_sum = in_pseudo(ip->ip_src.s_addr, + ip->ip_dst.s_addr, htons(IPPROTO_TCP)); + tcp_hlen = th->th_off << 2; + /* + * Calculate header length, this is used + * in the transmit desc in igb_xmit + */ + *hdrlen = ehdrlen + ip_hlen + tcp_hlen; + + /* VLAN MACLEN IPLEN */ + if (mp->m_flags & M_VLANTAG) { + vtag = htole16(mp->m_pkthdr.ether_vtag); + vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT); + } + + vlan_macip_lens |= (ehdrlen << E1000_ADVTXD_MACLEN_SHIFT); + vlan_macip_lens |= ip_hlen; + TXD->vlan_macip_lens |= htole32(vlan_macip_lens); + + /* ADV DTYPE TUCMD */ + type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT; + type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP; + type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4; + TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl); + + /* MSS L4LEN IDX */ + mss_l4len_idx |= (mp->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT); + mss_l4len_idx |= (tcp_hlen << E1000_ADVTXD_L4LEN_SHIFT); + TXD->mss_l4len_idx = htole32(mss_l4len_idx); + + TXD->seqnum_seed = htole32(0); + tx_buffer->m_head = NULL; + tx_buffer->next_eop = -1; + + if (++ctxd == adapter->num_tx_desc) + ctxd = 0; + + txr->tx_avail--; + txr->next_avail_desc = ctxd; + return TRUE; +} + + +/********************************************************************* + * + * Context Descriptor setup for VLAN or CSUM + * + **********************************************************************/ + +static int +igb_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp) +{ + struct adapter *adapter = txr->adapter; + struct e1000_adv_tx_context_desc *TXD; + struct igb_buffer *tx_buffer; + uint32_t vlan_macip_lens = 0, type_tucmd_mlhl = 0; + struct ether_vlan_header *eh; + struct ip *ip = NULL; + struct ip6_hdr *ip6; + int ehdrlen, ip_hlen = 0; + u16 etype; + u8 ipproto = 0; + bool offload = TRUE; + u16 vtag = 0; + + int ctxd = txr->next_avail_desc; + tx_buffer = &txr->tx_buffers[ctxd]; + TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[ctxd]; + + if ((mp->m_pkthdr.csum_flags & CSUM_OFFLOAD) == 0) + offload = FALSE; /* Only here to handle VLANs */ + /* + ** In advanced descriptors the vlan tag must + ** be placed into the descriptor itself. + */ + if (mp->m_flags & M_VLANTAG) { + vtag = htole16(mp->m_pkthdr.ether_vtag); + vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT); + } else if (offload == FALSE) + return FALSE; + /* + * Determine where frame payload starts. + * Jump over vlan headers if already present, + * helpful for QinQ too. + */ + eh = mtod(mp, struct ether_vlan_header *); + if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { + etype = ntohs(eh->evl_proto); + ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; + } else { + etype = ntohs(eh->evl_encap_proto); + ehdrlen = ETHER_HDR_LEN; + } + + /* Set the ether header length */ + vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT; + + switch (etype) { + case ETHERTYPE_IP: + ip = (struct ip *)(mp->m_data + ehdrlen); + ip_hlen = ip->ip_hl << 2; + if (mp->m_len < ehdrlen + ip_hlen) { + offload = FALSE; + break; + } + ipproto = ip->ip_p; + type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4; + break; + case ETHERTYPE_IPV6: + ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen); + ip_hlen = sizeof(struct ip6_hdr); + if (mp->m_len < ehdrlen + ip_hlen) + return FALSE; /* failure */ + ipproto = ip6->ip6_nxt; + type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6; + break; +#ifdef IGB_TIMESYNC + case ETHERTYPE_IEEE1588: + offload = IGB_TIMESTAMP; + break; +#endif + default: + offload = FALSE; + break; + } + + vlan_macip_lens |= ip_hlen; + type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT; + + switch (ipproto) { + case IPPROTO_TCP: + if (mp->m_pkthdr.csum_flags & CSUM_TCP) + type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP; + break; + case IPPROTO_UDP: + { +#ifdef IGB_TIMESYNC + void *hdr = (caddr_t) ip + ip_hlen; + struct udphdr *uh = (struct udphdr *)hdr; + + if (uh->uh_dport == htons(TSYNC_PORT)) + offload = IGB_TIMESTAMP; +#endif + if (mp->m_pkthdr.csum_flags & CSUM_UDP) + type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP; + break; + } + default: + offload = FALSE; + break; + } + + /* Now copy bits into descriptor */ + TXD->vlan_macip_lens |= htole32(vlan_macip_lens); + TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl); + TXD->seqnum_seed = htole32(0); + TXD->mss_l4len_idx = htole32(0); + + tx_buffer->m_head = NULL; + tx_buffer->next_eop = -1; + + /* We've consumed the first desc, adjust counters */ + if (++ctxd == adapter->num_tx_desc) + ctxd = 0; + txr->next_avail_desc = ctxd; + --txr->tx_avail; + + return (offload); +} + + +/********************************************************************** + * + * Examine each tx_buffer in the used queue. If the hardware is done + * processing the packet then free associated resources. The + * tx_buffer is put back on the free queue. + * + * TRUE return means there's work in the ring to clean, FALSE its empty. + **********************************************************************/ +static bool +igb_txeof(struct tx_ring *txr) +{ + struct adapter *adapter = txr->adapter; + int first, last, done, num_avail; + struct igb_buffer *tx_buffer; + struct e1000_tx_desc *tx_desc, *eop_desc; + struct ifnet *ifp = adapter->ifp; + + IGB_TX_LOCK_ASSERT(txr); + + if (txr->tx_avail == adapter->num_tx_desc) + return FALSE; + + num_avail = txr->tx_avail; + first = txr->next_to_clean; + tx_desc = &txr->tx_base[first]; + tx_buffer = &txr->tx_buffers[first]; + last = tx_buffer->next_eop; + eop_desc = &txr->tx_base[last]; + + /* + * What this does is get the index of the + * first descriptor AFTER the EOP of the + * first packet, that way we can do the + * simple comparison on the inner while loop. + */ + if (++last == adapter->num_tx_desc) + last = 0; + done = last; + + bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, + BUS_DMASYNC_POSTREAD); + + while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) { + /* We clean the range of the packet */ + while (first != done) { + tx_desc->upper.data = 0; + tx_desc->lower.data = 0; + tx_desc->buffer_addr = 0; + num_avail++; + + if (tx_buffer->m_head) { + ifp->if_opackets++; + bus_dmamap_sync(txr->txtag, + tx_buffer->map, + BUS_DMASYNC_POSTWRITE); + bus_dmamap_unload(txr->txtag, + tx_buffer->map); + + m_freem(tx_buffer->m_head); + tx_buffer->m_head = NULL; + } + tx_buffer->next_eop = -1; + + if (++first == adapter->num_tx_desc) + first = 0; + + tx_buffer = &txr->tx_buffers[first]; + tx_desc = &txr->tx_base[first]; + } + /* See if we can continue to the next packet */ + last = tx_buffer->next_eop; + if (last != -1) { + eop_desc = &txr->tx_base[last]; + /* Get new done point */ + if (++last == adapter->num_tx_desc) last = 0; + done = last; + } else + break; + } + bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, + BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); + + txr->next_to_clean = first; + + /* + * If we have enough room, clear IFF_DRV_OACTIVE to tell the stack + * that it is OK to send packets. + * If there are no pending descriptors, clear the timeout. Otherwise, + * if some descriptors have been freed, restart the timeout. + */ + if (num_avail > IGB_TX_CLEANUP_THRESHOLD) { + ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; + /* All clean, turn off the timer */ + if (num_avail == adapter->num_tx_desc) { + txr->watchdog_timer = 0; + txr->tx_avail = num_avail; + return FALSE; + } + /* Some cleaned, reset the timer */ + else if (num_avail != txr->tx_avail) + txr->watchdog_timer = IGB_TX_TIMEOUT; + } + txr->tx_avail = num_avail; + return TRUE; +} + + +/********************************************************************* + * + * Get a buffer from system mbuf buffer pool. + * + **********************************************************************/ +static int +igb_get_buf(struct rx_ring *rxr, int i) +{ + struct adapter *adapter = rxr->adapter; + struct mbuf *m; + bus_dma_segment_t segs[1]; + bus_dmamap_t map; + struct igb_buffer *rx_buffer; + int error, nsegs; + + m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); + if (m == NULL) { + adapter->mbuf_cluster_failed++; + return (ENOBUFS); + } + m->m_len = m->m_pkthdr.len = MCLBYTES; + + if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN)) + m_adj(m, ETHER_ALIGN); + + /* + * Using memory from the mbuf cluster pool, invoke the + * bus_dma machinery to arrange the memory mapping. + */ + error = bus_dmamap_load_mbuf_sg(rxr->rxtag, + rxr->rx_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT); + if (error != 0) { + m_free(m); + return (error); + } + + /* If nsegs is wrong then the stack is corrupt. */ + KASSERT(nsegs == 1, ("Too many segments returned!")); + + rx_buffer = &rxr->rx_buffers[i]; + if (rx_buffer->m_head != NULL) + bus_dmamap_unload(rxr->rxtag, rx_buffer->map); + + map = rx_buffer->map; + rx_buffer->map = rxr->rx_spare_map; + rxr->rx_spare_map = map; + bus_dmamap_sync(rxr->rxtag, rx_buffer->map, BUS_DMASYNC_PREREAD); + rx_buffer->m_head = m; + + rxr->rx_base[i].read.pkt_addr = htole64(segs[0].ds_addr); + return (0); +} + + +/********************************************************************* + * + * Allocate memory for rx_buffer structures. Since we use one + * rx_buffer per received packet, the maximum number of rx_buffer's + * that we'll need is equal to the number of receive descriptors + * that we've allocated. + * + **********************************************************************/ +static int +igb_allocate_receive_buffers(struct rx_ring *rxr) +{ + struct adapter *adapter = rxr->adapter; + device_t dev = adapter->dev; + struct igb_buffer *rxbuf; + int i, bsize, error; + + bsize = sizeof(struct igb_buffer) * adapter->num_rx_desc; + if (!(rxr->rx_buffers = + (struct igb_buffer *) malloc(bsize, + M_DEVBUF, M_NOWAIT | M_ZERO))) { + device_printf(dev, "Unable to allocate rx_buffer memory\n"); + error = ENOMEM; + goto fail; + } + + if ((error = bus_dma_tag_create(NULL, /* parent */ + PAGE_SIZE, 0, /* alignment, bounds */ + BUS_SPACE_MAXADDR, /* lowaddr */ + BUS_SPACE_MAXADDR, /* highaddr */ + NULL, NULL, /* filter, filterarg */ + MCLBYTES, /* maxsize */ + 1, /* nsegments */ + MCLBYTES, /* maxsegsize */ + 0, /* flags */ + NULL, /* lockfunc */ + NULL, /* lockfuncarg */ + &rxr->rxtag))) { + device_printf(dev, "Unable to create RX Small DMA tag\n"); + goto fail; + } + + /* Create the spare map (used by getbuf) */ + error = bus_dmamap_create(rxr->rxtag, BUS_DMA_NOWAIT, + &rxr->rx_spare_map); + if (error) { + device_printf(dev, "%s: bus_dmamap_create failed: %d\n", + __func__, error); + goto fail; + } + + for (i = 0; i < adapter->num_rx_desc; i++, rxbuf++) { + rxbuf = &rxr->rx_buffers[i]; + error = bus_dmamap_create(rxr->rxtag, + BUS_DMA_NOWAIT, &rxbuf->map); + if (error) { + device_printf(dev, "Unable to create Small RX DMA map\n"); + goto fail; + } + } + + return (0); + +fail: + /* Frees all, but can handle partial completion */ + igb_free_receive_structures(adapter); + return (error); +} + +/********************************************************************* + * + * Initialize a receive ring and its buffers. + * + **********************************************************************/ +static int +igb_setup_receive_ring(struct rx_ring *rxr) +{ + struct adapter *adapter; + device_t dev; + struct igb_buffer *rxbuf; + struct lro_ctrl *lro = &rxr->lro; + int j, rsize; + + adapter = rxr->adapter; + dev = adapter->dev; + rsize = roundup2(adapter->num_rx_desc * + sizeof(union e1000_adv_rx_desc), 4096); + /* Clear the ring contents */ + bzero((void *)rxr->rx_base, rsize); + + /* + ** Free current RX buffers: the size buffer + ** that is loaded is indicated by the buffer + ** bigbuf value. + */ + for (int i = 0; i < adapter->num_rx_desc; i++) { + rxbuf = &rxr->rx_buffers[i]; + if (rxbuf->m_head != NULL) { + bus_dmamap_sync(rxr->rxtag, rxbuf->map, + BUS_DMASYNC_POSTREAD); + bus_dmamap_unload(rxr->rxtag, rxbuf->map); + m_freem(rxbuf->m_head); + rxbuf->m_head = NULL; + } + } + + for (j = 0; j < adapter->num_rx_desc; j++) { + if (igb_get_buf(rxr, j) == ENOBUFS) { + rxr->rx_buffers[j].m_head = NULL; + rxr->rx_base[j].read.pkt_addr = 0; + goto fail; + } + } + + /* Setup our descriptor indices */ + rxr->next_to_check = 0; + rxr->last_cleaned = 0; + + bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, + BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); + + /* Now set up the LRO interface */ + if (igb_enable_lro) { + int err = tcp_lro_init(lro); + if (err) { + device_printf(dev,"LRO Initialization failed!\n"); + goto fail; + } + device_printf(dev,"RX LRO Initialized\n"); + lro->ifp = adapter->ifp; + } + + return (0); +fail: + /* + * We need to clean up any buffers allocated so far + * 'j' is the failing index, decrement it to get the + * last success. + */ + for (--j; j < 0; j--) { + rxbuf = &rxr->rx_buffers[j]; + if (rxbuf->m_head != NULL) { + bus_dmamap_sync(rxr->rxtag, rxbuf->map, + BUS_DMASYNC_POSTREAD); + bus_dmamap_unload(rxr->rxtag, rxbuf->map); + m_freem(rxbuf->m_head); + rxbuf->m_head = NULL; + } + } + return (ENOBUFS); +} + +/********************************************************************* + * + * Initialize all receive rings. + * + **********************************************************************/ +static int +igb_setup_receive_structures(struct adapter *adapter) +{ + struct rx_ring *rxr = adapter->rx_rings; + int i, j; + + for (i = 0; i < adapter->num_rx_queues; i++, rxr++) + if (igb_setup_receive_ring(rxr)) + goto fail; + + return (0); +fail: + /* + * Free RX buffers allocated so far, we will only handle + * the rings that completed, the failing case will have + * cleaned up for itself. The value of 'i' will be the + * failed ring so we must pre-decrement it. + */ + rxr = adapter->rx_rings; + for (--i; i > 0; i--, rxr++) { + for (j = 0; j < adapter->num_rx_desc; j++) { + struct igb_buffer *rxbuf; + rxbuf = &rxr->rx_buffers[j]; + if (rxbuf->m_head != NULL) { + bus_dmamap_sync(rxr->rxtag, rxbuf->map, + BUS_DMASYNC_POSTREAD); + bus_dmamap_unload(rxr->rxtag, rxbuf->map); + m_freem(rxbuf->m_head); + rxbuf->m_head = NULL; + } + } + } + + return (ENOBUFS); +} + +/********************************************************************* + * + * Enable receive unit. + * + **********************************************************************/ +static void +igb_initialize_receive_units(struct adapter *adapter) +{ + struct rx_ring *rxr = adapter->rx_rings; + struct ifnet *ifp = adapter->ifp; + u32 rctl, rxcsum, psize; + + INIT_DEBUGOUT("igb_initialize_receive_unit: begin"); + + /* + * Make sure receives are disabled while setting + * up the descriptor ring + */ + rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); + E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); + + E1000_WRITE_REG(&adapter->hw, E1000_RADV, + adapter->rx_abs_int_delay.value); + + /* Setup the Base and Length of the Rx Descriptor Rings */ + for (int i = 0; i < adapter->num_rx_queues; i++, rxr++) { + u64 bus_addr = rxr->rxdma.dma_paddr; + u32 rxdctl, srrctl; + + E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(i), + adapter->num_rx_desc * sizeof(struct e1000_rx_desc)); + E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(i), + (uint32_t)(bus_addr >> 32)); + E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(i), + (uint32_t)bus_addr); + /* Use Advanced Descriptor type */ + srrctl = E1000_READ_REG(&adapter->hw, E1000_SRRCTL(i)); + srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; + E1000_WRITE_REG(&adapter->hw, E1000_SRRCTL(i), srrctl); + /* Enable this Queue */ + rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(i)); + rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; + rxdctl &= 0xFFF00000; + rxdctl |= IGB_RX_PTHRESH; + rxdctl |= IGB_RX_HTHRESH << 8; + rxdctl |= IGB_RX_WTHRESH << 16; + E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(i), rxdctl); + } + + /* + ** Setup for RX MultiQueue + */ + if (adapter->num_rx_queues >1) { + u32 random[10], mrqc, shift = 0; + union igb_reta { + u32 dword; + u8 bytes[4]; + } reta; + + arc4rand(&random, sizeof(random), 0); + if (adapter->hw.mac.type == e1000_82575) + shift = 6; + /* Warning FM follows */ + for (int i = 0; i < 128; i++) { + reta.bytes[i & 3] = + (i % adapter->num_rx_queues) << shift; + if ((i & 3) == 3) + E1000_WRITE_REG(&adapter->hw, + E1000_RETA(i & ~3), reta.dword); + } + /* Now fill in hash table */ + mrqc = E1000_MRQC_ENABLE_RSS_4Q; + for (int i = 0; i < 10; i++) + E1000_WRITE_REG_ARRAY(&adapter->hw, + E1000_RSSRK(0), i, random[i]); + + mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | + E1000_MRQC_RSS_FIELD_IPV4_TCP); + mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 | + E1000_MRQC_RSS_FIELD_IPV6_TCP); + mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP | + E1000_MRQC_RSS_FIELD_IPV6_UDP); + mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX | + E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); + + E1000_WRITE_REG(&adapter->hw, E1000_MRQC, mrqc); + + /* + ** NOTE: Receive Full-Packet Checksum Offload + ** is mutually exclusive with Multiqueue. However + ** this is not the same as TCP/IP checksums which + ** still work. + */ + rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM); + rxcsum |= E1000_RXCSUM_PCSD; + E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum); + } else if (ifp->if_capenable & IFCAP_RXCSUM) { + rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM); + rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL); + E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum); + } + + /* Setup the Receive Control Register */ + rctl &= ~(3 << E1000_RCTL_MO_SHIFT); + rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | + E1000_RCTL_RDMTS_HALF | + (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); + + /* Make sure VLAN Filters are off */ + rctl &= ~E1000_RCTL_VFE; + + rctl &= ~E1000_RCTL_SBP; + + switch (adapter->rx_buffer_len) { + default: + case 2048: + rctl |= E1000_RCTL_SZ_2048; + break; + case 4096: + rctl |= E1000_RCTL_SZ_4096 | + E1000_RCTL_BSEX | E1000_RCTL_LPE; + break; + case 8192: + rctl |= E1000_RCTL_SZ_8192 | + E1000_RCTL_BSEX | E1000_RCTL_LPE; + break; + case 16384: + rctl |= E1000_RCTL_SZ_16384 | + E1000_RCTL_BSEX | E1000_RCTL_LPE; + break; + } + + if (ifp->if_mtu > ETHERMTU) { + /* Set maximum packet len */ + psize = adapter->max_frame_size; + /* are we on a vlan? */ + if (adapter->ifp->if_vlantrunk != NULL) + psize += VLAN_TAG_SIZE; + E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize); + rctl |= E1000_RCTL_LPE; + } else + rctl &= ~E1000_RCTL_LPE; + + /* Enable Receives */ + E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl); + + /* + * Setup the HW Rx Head and Tail Descriptor Pointers + * - needs to be after enable + */ + for (int i = 0; i < adapter->num_rx_queues; i++) { + E1000_WRITE_REG(&adapter->hw, E1000_RDH(i), 0); + E1000_WRITE_REG(&adapter->hw, E1000_RDT(i), + adapter->num_rx_desc - 1); + } + return; +} + +/********************************************************************* + * + * Free receive rings. + * + **********************************************************************/ +static void +igb_free_receive_structures(struct adapter *adapter) +{ + struct rx_ring *rxr = adapter->rx_rings; + + for (int i = 0; i < adapter->num_rx_queues; i++, rxr++) { + struct lro_ctrl *lro = &rxr->lro; + igb_free_receive_buffers(rxr); + tcp_lro_free(lro); + igb_dma_free(adapter, &rxr->rxdma); + } + + free(adapter->rx_rings, M_DEVBUF); +} + +/********************************************************************* + * + * Free receive ring data structures. + * + **********************************************************************/ +static void +igb_free_receive_buffers(struct rx_ring *rxr) +{ + struct adapter *adapter = rxr->adapter; + struct igb_buffer *rx_buffer; + + INIT_DEBUGOUT("free_receive_structures: begin"); + + if (rxr->rx_spare_map) { + bus_dmamap_destroy(rxr->rxtag, rxr->rx_spare_map); + rxr->rx_spare_map = NULL; + } + + /* Cleanup any existing buffers */ + if (rxr->rx_buffers != NULL) { + rx_buffer = &rxr->rx_buffers[0]; + for (int i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) { + if (rx_buffer->m_head != NULL) { + bus_dmamap_sync(rxr->rxtag, rx_buffer->map, + BUS_DMASYNC_POSTREAD); + bus_dmamap_unload(rxr->rxtag, + rx_buffer->map); + m_freem(rx_buffer->m_head); + rx_buffer->m_head = NULL; + } else if (rx_buffer->map != NULL) + bus_dmamap_unload(rxr->rxtag, + rx_buffer->map); + if (rx_buffer->map != NULL) { + bus_dmamap_destroy(rxr->rxtag, + rx_buffer->map); + rx_buffer->map = NULL; + } + } + } + + if (rxr->rx_buffers != NULL) { + free(rxr->rx_buffers, M_DEVBUF); + rxr->rx_buffers = NULL; + } + + if (rxr->rxtag != NULL) { + bus_dma_tag_destroy(rxr->rxtag); + rxr->rxtag = NULL; + } +} +/********************************************************************* + * + * This routine executes in interrupt context. It replenishes + * the mbufs in the descriptor and sends data which has been + * dma'ed into host memory to upper layer. + * + * We loop at most count times if count is > 0, or until done if + * count < 0. + * + * Return TRUE if all clean, FALSE otherwise + *********************************************************************/ +static bool +igb_rxeof(struct rx_ring *rxr, int count) +{ + struct adapter *adapter = rxr->adapter; + struct ifnet *ifp; + struct lro_ctrl *lro = &rxr->lro; + struct lro_entry *queued; + struct mbuf *mp; + uint8_t accept_frame = 0; + uint8_t eop = 0; + uint16_t len, desc_len, prev_len_adj; + int i; + u32 staterr; + union e1000_adv_rx_desc *cur; + + IGB_RX_LOCK(rxr); + ifp = adapter->ifp; + i = rxr->next_to_check; + cur = &rxr->rx_base[i]; + staterr = cur->wb.upper.status_error; + + bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, + BUS_DMASYNC_POSTREAD); + + if (!(staterr & E1000_RXD_STAT_DD)) { + IGB_RX_UNLOCK(rxr); + return FALSE; + } + + while ((staterr & E1000_RXD_STAT_DD) && + (count != 0) && + (ifp->if_drv_flags & IFF_DRV_RUNNING)) { + struct mbuf *m = NULL; + + mp = rxr->rx_buffers[i].m_head; + /* + * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT + * needs to access the last received byte in the mbuf. + */ + bus_dmamap_sync(rxr->rxtag, rxr->rx_buffers[i].map, + BUS_DMASYNC_POSTREAD); + + accept_frame = 1; + prev_len_adj = 0; + desc_len = le16toh(cur->wb.upper.length); + if (staterr & E1000_RXD_STAT_EOP) { + count--; + eop = 1; + if (desc_len < ETHER_CRC_LEN) { + len = 0; + prev_len_adj = ETHER_CRC_LEN - desc_len; + } else + len = desc_len - ETHER_CRC_LEN; + } else { + eop = 0; + len = desc_len; + } + + if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { + u32 pkt_len = desc_len; + + if (rxr->fmp != NULL) + pkt_len += rxr->fmp->m_pkthdr.len; + + accept_frame = 0; + } + + if (accept_frame) { + if (igb_get_buf(rxr, i) != 0) { + ifp->if_iqdrops++; + goto discard; + } + + /* Assign correct length to the current fragment */ + mp->m_len = len; + + if (rxr->fmp == NULL) { + mp->m_pkthdr.len = len; + rxr->fmp = mp; /* Store the first mbuf */ + rxr->lmp = mp; + } else { + /* Chain mbuf's together */ + mp->m_flags &= ~M_PKTHDR; + /* + * Adjust length of previous mbuf in chain if + * we received less than 4 bytes in the last + * descriptor. + */ + if (prev_len_adj > 0) { + rxr->lmp->m_len -= prev_len_adj; + rxr->fmp->m_pkthdr.len -= + prev_len_adj; + } + rxr->lmp->m_next = mp; + rxr->lmp = rxr->lmp->m_next; + rxr->fmp->m_pkthdr.len += len; + } + + if (eop) { + rxr->fmp->m_pkthdr.rcvif = ifp; + ifp->if_ipackets++; + rxr->rx_packets++; + rxr->rx_bytes += rxr->fmp->m_pkthdr.len; + + igb_rx_checksum(staterr, rxr->fmp); +#ifndef __NO_STRICT_ALIGNMENT + if (adapter->max_frame_size > + (MCLBYTES - ETHER_ALIGN) && + igb_fixup_rx(rxr) != 0) + goto skip; +#endif + if (staterr & E1000_RXD_STAT_VP) { + rxr->fmp->m_pkthdr.ether_vtag = + le16toh(cur->wb.upper.vlan); + rxr->fmp->m_flags |= M_VLANTAG; + } +#ifndef __NO_STRICT_ALIGNMENT +skip: +#endif + m = rxr->fmp; + rxr->fmp = NULL; + rxr->lmp = NULL; + } + } else { + ifp->if_ierrors++; +discard: + /* Reuse loaded DMA map and just update mbuf chain */ + mp = rxr->rx_buffers[i].m_head; + mp->m_len = mp->m_pkthdr.len = MCLBYTES; + mp->m_data = mp->m_ext.ext_buf; + mp->m_next = NULL; + if (adapter->max_frame_size <= + (MCLBYTES - ETHER_ALIGN)) + m_adj(mp, ETHER_ALIGN); + if (rxr->fmp != NULL) { + m_freem(rxr->fmp); + rxr->fmp = NULL; + rxr->lmp = NULL; + } + m = NULL; + } + + /* Zero out the receive descriptors status. */ + cur->wb.upper.status_error = 0; + bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, + BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); + + rxr->last_cleaned = i; /* For updating tail */ + + /* Advance our pointers to the next descriptor. */ + if (++i == adapter->num_rx_desc) + i = 0; + + if (m != NULL) { + rxr->next_to_check = i; + /* Use LRO if possible */ + if ((!lro->lro_cnt) || (tcp_lro_rx(lro, m, 0))) { + /* Pass up to the stack */ + IGB_RX_UNLOCK(rxr); + (*ifp->if_input)(ifp, m); + IGB_RX_LOCK(rxr); + i = rxr->next_to_check; + } + } + /* Get the next descriptor */ + cur = &rxr->rx_base[i]; + staterr = cur->wb.upper.status_error; + } + rxr->next_to_check = i; + + /* Advance the E1000's Receive Queue #0 "Tail Pointer". */ + E1000_WRITE_REG(&adapter->hw, E1000_RDT(rxr->me), rxr->last_cleaned); + IGB_RX_UNLOCK(rxr); + + /* + ** Flush any outstanding LRO work + ** this may call into the stack and + ** must not hold a driver lock. + */ + while(!SLIST_EMPTY(&lro->lro_active)) { + queued = SLIST_FIRST(&lro->lro_active); + SLIST_REMOVE_HEAD(&lro->lro_active, next); + tcp_lro_flush(lro, queued); + } + + if (!((staterr) & E1000_RXD_STAT_DD)) + return FALSE; + + return TRUE; +} + +#ifndef __NO_STRICT_ALIGNMENT +/* + * When jumbo frames are enabled we should realign entire payload on + * architecures with strict alignment. This is serious design mistake of 8254x + * as it nullifies DMA operations. 8254x just allows RX buffer size to be + * 2048/4096/8192/16384. What we really want is 2048 - ETHER_ALIGN to align its + * payload. On architecures without strict alignment restrictions 8254x still + * performs unaligned memory access which would reduce the performance too. + * To avoid copying over an entire frame to align, we allocate a new mbuf and + * copy ethernet header to the new mbuf. The new mbuf is prepended into the + * existing mbuf chain. + * + * Be aware, best performance of the 8254x is achived only when jumbo frame is + * not used at all on architectures with strict alignment. + */ +static int +igb_fixup_rx(struct rx_ring *rxr) +{ + struct adapter *adapter = rxr->adapter; + struct mbuf *m, *n; + int error; + + error = 0; + m = rxr->fmp; + if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) { + bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len); + m->m_data += ETHER_HDR_LEN; + } else { + MGETHDR(n, M_DONTWAIT, MT_DATA); + if (n != NULL) { + bcopy(m->m_data, n->m_data, ETHER_HDR_LEN); + m->m_data += ETHER_HDR_LEN; + m->m_len -= ETHER_HDR_LEN; + n->m_len = ETHER_HDR_LEN; + M_MOVE_PKTHDR(n, m); + n->m_next = m; + rxr->fmp = n; + } else { + adapter->dropped_pkts++; + m_freem(rxr->fmp); + rxr->fmp = NULL; + error = ENOMEM; + } + } + + return (error); +} +#endif + +/********************************************************************* + * + * Verify that the hardware indicated that the checksum is valid. + * Inform the stack about the status of checksum so that stack + * doesn't spend time verifying the checksum. + * + *********************************************************************/ +static void +igb_rx_checksum(u32 staterr, struct mbuf *mp) +{ + u16 status = (u16)staterr; + u8 errors = (u8) (staterr >> 24); + + /* Ignore Checksum bit is set */ + if (status & E1000_RXD_STAT_IXSM) { + mp->m_pkthdr.csum_flags = 0; + return; + } + + if (status & E1000_RXD_STAT_IPCS) { + /* Did it pass? */ + if (!(errors & E1000_RXD_ERR_IPE)) { + /* IP Checksum Good */ + mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED; + mp->m_pkthdr.csum_flags |= CSUM_IP_VALID; + + } else + mp->m_pkthdr.csum_flags = 0; + } + + if (status & E1000_RXD_STAT_TCPCS) { + /* Did it pass? */ + if (!(errors & E1000_RXD_ERR_TCPE)) { + mp->m_pkthdr.csum_flags |= + (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); + mp->m_pkthdr.csum_data = htons(0xffff); + } + } + return; +} + +#ifdef IGB_HW_VLAN_SUPPORT +/* + * This routine is run via an vlan + * config EVENT + */ +static void +igb_register_vlan(void *unused, struct ifnet *ifp, u16 vtag) +{ + struct adapter *adapter = ifp->if_softc; + u32 ctrl, rctl, index, vfta; + + ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); + ctrl |= E1000_CTRL_VME; + E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); + + /* Setup for Hardware Filter */ + rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); + rctl |= E1000_RCTL_VFE; + rctl &= ~E1000_RCTL_CFIEN; + E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl); + + /* Make entry in the hardware filter table */ + index = ((vtag >> 5) & 0x7F); + vfta = E1000_READ_REG_ARRAY(&adapter->hw, E1000_VFTA, index); + vfta |= (1 << (vtag & 0x1F)); + E1000_WRITE_REG_ARRAY(&adapter->hw, E1000_VFTA, index, vfta); + + /* Update the frame size */ + E1000_WRITE_REG(&adapter->hw, E1000_RLPML, + adapter->max_frame_size + VLAN_TAG_SIZE); + +} + +/* + * This routine is run via an vlan + * unconfig EVENT + */ +static void +igb_unregister_vlan(void *unused, struct ifnet *ifp, u16 vtag) +{ + struct adapter *adapter = ifp->if_softc; + u32 index, vfta; + + /* Remove entry in the hardware filter table */ + index = ((vtag >> 5) & 0x7F); + vfta = E1000_READ_REG_ARRAY(&adapter->hw, E1000_VFTA, index); + vfta &= ~(1 << (vtag & 0x1F)); + E1000_WRITE_REG_ARRAY(&adapter->hw, E1000_VFTA, index, vfta); + /* Have all vlans unregistered? */ + if (adapter->ifp->if_vlantrunk == NULL) { + u32 rctl; + /* Turn off the filter table */ + rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); + rctl &= ~E1000_RCTL_VFE; + rctl |= E1000_RCTL_CFIEN; + E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl); + /* Reset the frame size */ + E1000_WRITE_REG(&adapter->hw, E1000_RLPML, + adapter->max_frame_size); + } +} +#endif /* IGB_HW_VLAN_SUPPORT */ + +static void +igb_enable_intr(struct adapter *adapter) +{ + /* With RSS set up what to auto clear */ + if (adapter->msix_mem) { + E1000_WRITE_REG(&adapter->hw, E1000_EIAC, + adapter->eims_mask); + E1000_WRITE_REG(&adapter->hw, E1000_EIAM, + adapter->eims_mask); + E1000_WRITE_REG(&adapter->hw, E1000_EIMS, + adapter->eims_mask); + E1000_WRITE_REG(&adapter->hw, E1000_IMS, + E1000_IMS_LSC); + } else { + E1000_WRITE_REG(&adapter->hw, E1000_IMS, + IMS_ENABLE_MASK); + } + E1000_WRITE_FLUSH(&adapter->hw); + + return; +} + +static void +igb_disable_intr(struct adapter *adapter) +{ + if (adapter->msix_mem) { + E1000_WRITE_REG(&adapter->hw, E1000_EIMC, ~0); + E1000_WRITE_REG(&adapter->hw, E1000_EIAC, 0); + } + E1000_WRITE_REG(&adapter->hw, E1000_IMC, ~0); + E1000_WRITE_FLUSH(&adapter->hw); + return; +} + +/* + * Bit of a misnomer, what this really means is + * to enable OS management of the system... aka + * to disable special hardware management features + */ +static void +igb_init_manageability(struct adapter *adapter) +{ + /* A shared code workaround */ +#define E1000_82542_MANC2H E1000_MANC2H + if (adapter->has_manage) { + int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H); + int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); + + /* disable hardware interception of ARP */ + manc &= ~(E1000_MANC_ARP_EN); + + /* enable receiving management packets to the host */ + manc |= E1000_MANC_EN_MNG2HOST; +#define E1000_MNG2HOST_PORT_623 (1 << 5) +#define E1000_MNG2HOST_PORT_664 (1 << 6) + manc2h |= E1000_MNG2HOST_PORT_623; + manc2h |= E1000_MNG2HOST_PORT_664; + E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h); + + E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); + } +} + +/* + * Give control back to hardware management + * controller if there is one. + */ +static void +igb_release_manageability(struct adapter *adapter) +{ + if (adapter->has_manage) { + int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); + + /* re-enable hardware interception of ARP */ + manc |= E1000_MANC_ARP_EN; + manc &= ~E1000_MANC_EN_MNG2HOST; + + E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); + } +} + +/* + * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. + * For ASF and Pass Through versions of f/w this means that + * the driver is loaded. + * + */ +static void +igb_get_hw_control(struct adapter *adapter) +{ + u32 ctrl_ext; + + /* Let firmware know the driver has taken over */ + ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); + E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, + ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); +} + +/* + * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. + * For ASF and Pass Through versions of f/w this means that the + * driver is no longer loaded. + * + */ +static void +igb_release_hw_control(struct adapter *adapter) +{ + u32 ctrl_ext; + + /* Let firmware taken over control of h/w */ + ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); + E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, + ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); +} + +static int +igb_is_valid_ether_addr(uint8_t *addr) +{ + char zero_addr[6] = { 0, 0, 0, 0, 0, 0 }; + + if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) { + return (FALSE); + } + + return (TRUE); +} + + +/* + * Enable PCI Wake On Lan capability + */ +void +igb_enable_wakeup(device_t dev) +{ + u16 cap, status; + u8 id; + + /* First find the capabilities pointer*/ + cap = pci_read_config(dev, PCIR_CAP_PTR, 2); + /* Read the PM Capabilities */ + id = pci_read_config(dev, cap, 1); + if (id != PCIY_PMG) /* Something wrong */ + return; + /* OK, we have the power capabilities, so + now get the status register */ + cap += PCIR_POWER_STATUS; + status = pci_read_config(dev, cap, 2); + status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; + pci_write_config(dev, cap, status, 2); + return; +} + + +/********************************************************************** + * + * Update the board statistics counters. + * + **********************************************************************/ +static void +igb_update_stats_counters(struct adapter *adapter) +{ + struct ifnet *ifp; + + if(adapter->hw.phy.media_type == e1000_media_type_copper || + (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) { + adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS); + adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC); + } + adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS); + adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC); + adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC); + adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL); + + adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC); + adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL); + adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC); + adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC); + adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC); + adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC); + adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC); + adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC); + adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC); + adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC); + adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64); + adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127); + adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255); + adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511); + adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023); + adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522); + adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC); + adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC); + adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC); + adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC); + + /* For the 64-bit byte counters the low dword must be read first. */ + /* Both registers clear on the read of the high dword */ + + adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH); + adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH); + + adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC); + adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC); + adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC); + adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC); + adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC); + + adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH); + adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH); + + adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR); + adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT); + adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64); + adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127); + adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255); + adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511); + adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023); + adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522); + adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC); + adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC); + + adapter->stats.algnerrc += + E1000_READ_REG(&adapter->hw, E1000_ALGNERRC); + adapter->stats.rxerrc += + E1000_READ_REG(&adapter->hw, E1000_RXERRC); + adapter->stats.tncrs += + E1000_READ_REG(&adapter->hw, E1000_TNCRS); + adapter->stats.cexterr += + E1000_READ_REG(&adapter->hw, E1000_CEXTERR); + adapter->stats.tsctc += + E1000_READ_REG(&adapter->hw, E1000_TSCTC); + adapter->stats.tsctfc += + E1000_READ_REG(&adapter->hw, E1000_TSCTFC); + ifp = adapter->ifp; + + ifp->if_collisions = adapter->stats.colc; + + /* Rx Errors */ + ifp->if_ierrors = adapter->dropped_pkts + adapter->stats.rxerrc + + adapter->stats.crcerrs + adapter->stats.algnerrc + + adapter->stats.ruc + adapter->stats.roc + + adapter->stats.mpc + adapter->stats.cexterr; + + /* Tx Errors */ + ifp->if_oerrors = adapter->stats.ecol + + adapter->stats.latecol + adapter->watchdog_events; +} + + +/********************************************************************** + * + * This routine is called only when igb_display_debug_stats is enabled. + * This routine provides a way to take a look at important statistics + * maintained by the driver and hardware. + * + **********************************************************************/ +static void +igb_print_debug_info(struct adapter *adapter) +{ + device_t dev = adapter->dev; + struct rx_ring *rxr = adapter->rx_rings; + struct tx_ring *txr = adapter->tx_rings; + uint8_t *hw_addr = adapter->hw.hw_addr; + + device_printf(dev, "Adapter hardware address = %p \n", hw_addr); + device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n", + E1000_READ_REG(&adapter->hw, E1000_CTRL), + E1000_READ_REG(&adapter->hw, E1000_RCTL)); + +#if (DEBUG_HW > 0) /* Dont output these errors normally */ + device_printf(dev, "IMS = 0x%x EIMS = 0x%x \n", + E1000_READ_REG(&adapter->hw, E1000_IMS), + E1000_READ_REG(&adapter->hw, E1000_EIMS)); +#endif + + device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n", + ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\ + (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) ); + device_printf(dev, "Flow control watermarks high = %d low = %d\n", + adapter->hw.fc.high_water, + adapter->hw.fc.low_water); + device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n", + E1000_READ_REG(&adapter->hw, E1000_TIDV), + E1000_READ_REG(&adapter->hw, E1000_TADV)); + device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n", + E1000_READ_REG(&adapter->hw, E1000_RDTR), + E1000_READ_REG(&adapter->hw, E1000_RADV)); + + for (int i = 0; i < adapter->num_tx_queues; i++, txr++) { + device_printf(dev, "Queue(%d) tdh = %d, tdt = %d\n", i, + E1000_READ_REG(&adapter->hw, E1000_TDH(i)), + E1000_READ_REG(&adapter->hw, E1000_TDT(i))); + device_printf(dev, "no descriptors avail event = %lu\n", + txr->no_desc_avail); + device_printf(dev, "TX(%d) MSIX IRQ Handled = %lld\n", txr->me, + (long long)txr->tx_irq); + device_printf(dev, "TX(%d) Packets sent = %lld\n", txr->me, + (long long)txr->tx_packets); + } + + for (int i = 0; i < adapter->num_rx_queues; i++, rxr++) { + struct lro_ctrl *lro = &rxr->lro; + device_printf(dev, "Queue(%d) rdh = %d, rdt = %d\n", i, + E1000_READ_REG(&adapter->hw, E1000_RDH(i)), + E1000_READ_REG(&adapter->hw, E1000_RDT(i))); + device_printf(dev, "RX(%d) Packets received = %lld\n", rxr->me, + (long long)rxr->rx_packets); + device_printf(dev, "RX(%d) Byte count = %lld\n", rxr->me, + (long long)rxr->rx_bytes); + device_printf(dev, "RX(%d) MSIX IRQ Handled = %lld\n", rxr->me, + (long long)rxr->rx_irq); + device_printf(dev,"RX(%d) LRO Queued= %d\n", + rxr->me, lro->lro_queued); + device_printf(dev,"RX(%d) LRO Flushed= %d\n", + rxr->me, lro->lro_flushed); + } + + device_printf(dev, "LINK MSIX IRQ Handled = %u\n", adapter->link_irq); + + device_printf(dev, "Std mbuf failed = %ld\n", + adapter->mbuf_alloc_failed); + device_printf(dev, "Std mbuf cluster failed = %ld\n", + adapter->mbuf_cluster_failed); + device_printf(dev, "Driver dropped packets = %ld\n", + adapter->dropped_pkts); + device_printf(dev, "Driver tx dma failure in xmit = %ld\n", + adapter->no_tx_dma_setup); +} + +static void +igb_print_hw_stats(struct adapter *adapter) +{ + device_t dev = adapter->dev; + + device_printf(dev, "Excessive collisions = %lld\n", + (long long)adapter->stats.ecol); +#if (DEBUG_HW > 0) /* Dont output these errors normally */ + device_printf(dev, "Symbol errors = %lld\n", + (long long)adapter->stats.symerrs); +#endif + device_printf(dev, "Sequence errors = %lld\n", + (long long)adapter->stats.sec); + device_printf(dev, "Defer count = %lld\n", + (long long)adapter->stats.dc); + device_printf(dev, "Missed Packets = %lld\n", + (long long)adapter->stats.mpc); + device_printf(dev, "Receive No Buffers = %lld\n", + (long long)adapter->stats.rnbc); + /* RLEC is inaccurate on some hardware, calculate our own. */ + device_printf(dev, "Receive Length Errors = %lld\n", + ((long long)adapter->stats.roc + (long long)adapter->stats.ruc)); + device_printf(dev, "Receive errors = %lld\n", + (long long)adapter->stats.rxerrc); + device_printf(dev, "Crc errors = %lld\n", + (long long)adapter->stats.crcerrs); + device_printf(dev, "Alignment errors = %lld\n", + (long long)adapter->stats.algnerrc); + /* On 82575 these are collision counts */ + device_printf(dev, "Collision/Carrier extension errors = %lld\n", + (long long)adapter->stats.cexterr); + device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns); + device_printf(dev, "watchdog timeouts = %ld\n", + adapter->watchdog_events); + device_printf(dev, "XON Rcvd = %lld\n", + (long long)adapter->stats.xonrxc); + device_printf(dev, "XON Xmtd = %lld\n", + (long long)adapter->stats.xontxc); + device_printf(dev, "XOFF Rcvd = %lld\n", + (long long)adapter->stats.xoffrxc); + device_printf(dev, "XOFF Xmtd = %lld\n", + (long long)adapter->stats.xofftxc); + device_printf(dev, "Good Packets Rcvd = %lld\n", + (long long)adapter->stats.gprc); + device_printf(dev, "Good Packets Xmtd = %lld\n", + (long long)adapter->stats.gptc); + device_printf(dev, "TSO Contexts Xmtd = %lld\n", + (long long)adapter->stats.tsctc); + device_printf(dev, "TSO Contexts Failed = %lld\n", + (long long)adapter->stats.tsctfc); +} + +/********************************************************************** + * + * This routine provides a way to dump out the adapter eeprom, + * often a useful debug/service tool. This only dumps the first + * 32 words, stuff that matters is in that extent. + * + **********************************************************************/ +static void +igb_print_nvm_info(struct adapter *adapter) +{ + u16 eeprom_data; + int i, j, row = 0; + + /* Its a bit crude, but it gets the job done */ + printf("\nInterface EEPROM Dump:\n"); + printf("Offset\n0x0000 "); + for (i = 0, j = 0; i < 32; i++, j++) { + if (j == 8) { /* Make the offset block */ + j = 0; ++row; + printf("\n0x00%x0 ",row); + } + e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data); + printf("%04x ", eeprom_data); + } + printf("\n"); +} + +static int +igb_sysctl_debug_info(SYSCTL_HANDLER_ARGS) +{ + struct adapter *adapter; + int error; + int result; + + result = -1; + error = sysctl_handle_int(oidp, &result, 0, req); + + if (error || !req->newptr) + return (error); + + if (result == 1) { + adapter = (struct adapter *)arg1; + igb_print_debug_info(adapter); + } + /* + * This value will cause a hex dump of the + * first 32 16-bit words of the EEPROM to + * the screen. + */ + if (result == 2) { + adapter = (struct adapter *)arg1; + igb_print_nvm_info(adapter); + } + + return (error); +} + + +static int +igb_sysctl_stats(SYSCTL_HANDLER_ARGS) +{ + struct adapter *adapter; + int error; + int result; + + result = -1; + error = sysctl_handle_int(oidp, &result, 0, req); + + if (error || !req->newptr) + return (error); + + if (result == 1) { + adapter = (struct adapter *)arg1; + igb_print_hw_stats(adapter); + } + + return (error); +} + +static int +igb_sysctl_int_delay(SYSCTL_HANDLER_ARGS) +{ + struct igb_int_delay_info *info; + struct adapter *adapter; + uint32_t regval; + int error; + int usecs; + int ticks; + + info = (struct igb_int_delay_info *)arg1; + usecs = info->value; + error = sysctl_handle_int(oidp, &usecs, 0, req); + if (error != 0 || req->newptr == NULL) + return (error); + if (usecs < 0 || usecs > IGB_TICKS_TO_USECS(65535)) + return (EINVAL); + info->value = usecs; + ticks = IGB_USECS_TO_TICKS(usecs); + + adapter = info->adapter; + + IGB_CORE_LOCK(adapter); + regval = E1000_READ_OFFSET(&adapter->hw, info->offset); + regval = (regval & ~0xffff) | (ticks & 0xffff); + /* Handle a few special cases. */ + switch (info->offset) { + case E1000_RDTR: + break; + case E1000_TIDV: + if (ticks == 0) { + adapter->txd_cmd &= ~E1000_TXD_CMD_IDE; + /* Don't write 0 into the TIDV register. */ + regval++; + } else + if (adapter->hw.mac.type < e1000_82575) + adapter->txd_cmd |= E1000_TXD_CMD_IDE; + break; + } + E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval); + IGB_CORE_UNLOCK(adapter); + return (0); +} + +static void +igb_add_int_delay_sysctl(struct adapter *adapter, const char *name, + const char *description, struct igb_int_delay_info *info, + int offset, int value) +{ + info->adapter = adapter; + info->offset = offset; + info->value = value; + SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev), + SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)), + OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, + info, 0, igb_sysctl_int_delay, "I", description); +} + +static void +igb_add_rx_process_limit(struct adapter *adapter, const char *name, + const char *description, int *limit, int value) +{ + *limit = value; + SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev), + SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)), + OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description); +} + +#ifdef IGB_TIMESYNC +/* + * Initialize the Time Sync Feature + */ +static int +igb_tsync_init(struct adapter *adapter) +{ + device_t dev = adapter->dev; + u32 tx_ctl, rx_ctl, val; + + + E1000_WRITE_REG(&adapter->hw, E1000_TIMINCA, (1<<24) | + 20833/PICOSECS_PER_TICK); + + adapter->last_stamp = E1000_READ_REG(&adapter->hw, E1000_SYSTIML); + adapter->last_stamp |= (u64)E1000_READ_REG(&adapter->hw, + E1000_SYSTIMH) << 32ULL; + + /* Enable the TX side */ + tx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCTXCTL); + tx_ctl |= 0x10; + E1000_WRITE_REG(&adapter->hw, E1000_TSYNCTXCTL, tx_ctl); + E1000_WRITE_FLUSH(&adapter->hw); + + tx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCTXCTL); + if ((tx_ctl & 0x10) == 0) { + device_printf(dev, "Failed to enable TX timestamping\n"); + return (ENXIO); + } + + /* Enable RX */ + rx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCRXCTL); + rx_ctl |= 0x10; /* Enable the feature */ + rx_ctl |= 0x04; /* This value turns on Ver 1 and 2 */ + E1000_WRITE_REG(&adapter->hw, E1000_TSYNCRXCTL, rx_ctl); + + /* + * Ethertype Filter Queue Filter[0][15:0] = 0x88F7 (Ethertype) + * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter) + * Ethertype Filter Queue Filter[0][31] = 0x1 (Enable Timestamping) + */ + E1000_WRITE_REG(&adapter->hw, E1000_ETQF(0), 0x440088f7); + E1000_WRITE_REG(&adapter->hw, E1000_TSYNCRXCFG, 0x0); + + /* + * Source Port Queue Filter Setup: + * this is for UDP port filtering + */ + E1000_WRITE_REG(&adapter->hw, E1000_SPQF(0), TSYNC_PORT); + /* Protocol = UDP, enable Timestamp, and filter on source/protocol */ + val = (0x11 | (1 << 27) | (6 << 28)); + E1000_WRITE_REG(&adapter->hw, E1000_FTQF(0), val); + + E1000_WRITE_FLUSH(&adapter->hw); + + rx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCRXCTL); + if ((rx_ctl & 0x10) == 0) { + device_printf(dev, "Failed to enable RX timestamping\n"); + return (ENXIO); + } + + device_printf(dev, "IEEE 1588 Precision Time Protocol enabled\n"); + + return (0); +} + +/* + * Disable the Time Sync Feature + */ +static void +igb_tsync_disable(struct adapter *adapter) +{ + u32 tx_ctl, rx_ctl; + + tx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCTXCTL); + tx_ctl &= ~0x10; + E1000_WRITE_REG(&adapter->hw, E1000_TSYNCTXCTL, tx_ctl); + E1000_WRITE_FLUSH(&adapter->hw); + + /* Invalidate TX Timestamp */ + E1000_READ_REG(&adapter->hw, E1000_TXSTMPH); + + tx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCTXCTL); + if (tx_ctl & 0x10) + HW_DEBUGOUT("Failed to disable TX timestamping\n"); + + rx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCRXCTL); + rx_ctl &= ~0x10; + + E1000_WRITE_REG(&adapter->hw, E1000_TSYNCRXCTL, rx_ctl); + E1000_WRITE_FLUSH(&adapter->hw); + + /* Invalidate RX Timestamp */ + E1000_READ_REG(&adapter->hw, E1000_RXSATRH); + + rx_ctl = E1000_READ_REG(&adapter->hw, E1000_TSYNCRXCTL); + if (rx_ctl & 0x10) + HW_DEBUGOUT("Failed to disable RX timestamping\n"); + + return; +} + +#endif /* IGB_TIMESYNC */ diff --git a/sys/dev/e1000/if_igb.h b/sys/dev/e1000/if_igb.h new file mode 100644 index 0000000..b6fbdb8 --- /dev/null +++ b/sys/dev/e1000/if_igb.h @@ -0,0 +1,460 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _IGB_H_DEFINED_ +#define _IGB_H_DEFINED_ + +/* Tunables */ + +/* + * IGB_TXD: Maximum number of Transmit Descriptors + * + * This value is the number of transmit descriptors allocated by the driver. + * Increasing this value allows the driver to queue more transmits. Each + * descriptor is 16 bytes. + * Since TDLEN should be multiple of 128bytes, the number of transmit + * desscriptors should meet the following condition. + * (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0 + */ +#define IGB_MIN_TXD 80 +#define IGB_DEFAULT_TXD 256 +#define IGB_MAX_TXD 4096 + +/* + * IGB_RXD: Maximum number of Transmit Descriptors + * + * This value is the number of receive descriptors allocated by the driver. + * Increasing this value allows the driver to buffer more incoming packets. + * Each descriptor is 16 bytes. A receive buffer is also allocated for each + * descriptor. The maximum MTU size is 16110. + * Since TDLEN should be multiple of 128bytes, the number of transmit + * desscriptors should meet the following condition. + * (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0 + */ +#define IGB_MIN_RXD 80 +#define IGB_DEFAULT_RXD 256 +#define IGB_MAX_RXD 4096 + +/* + * IGB_TIDV - Transmit Interrupt Delay Value + * Valid Range: 0-65535 (0=off) + * Default Value: 64 + * This value delays the generation of transmit interrupts in units of + * 1.024 microseconds. Transmit interrupt reduction can improve CPU + * efficiency if properly tuned for specific network traffic. If the + * system is reporting dropped transmits, this value may be set too high + * causing the driver to run out of available transmit descriptors. + */ +#define IGB_TIDV 64 + +/* + * IGB_TADV - Transmit Absolute Interrupt Delay Value + * Valid Range: 0-65535 (0=off) + * Default Value: 64 + * This value, in units of 1.024 microseconds, limits the delay in which a + * transmit interrupt is generated. Useful only if IGB_TIDV is non-zero, + * this value ensures that an interrupt is generated after the initial + * packet is sent on the wire within the set amount of time. Proper tuning, + * along with IGB_TIDV, may improve traffic throughput in specific + * network conditions. + */ +#define IGB_TADV 64 + +/* + * IGB_RDTR - Receive Interrupt Delay Timer (Packet Timer) + * Valid Range: 0-65535 (0=off) + * Default Value: 0 + * This value delays the generation of receive interrupts in units of 1.024 + * microseconds. Receive interrupt reduction can improve CPU efficiency if + * properly tuned for specific network traffic. Increasing this value adds + * extra latency to frame reception and can end up decreasing the throughput + * of TCP traffic. If the system is reporting dropped receives, this value + * may be set too high, causing the driver to run out of available receive + * descriptors. + * + * CAUTION: When setting IGB_RDTR to a value other than 0, adapters + * may hang (stop transmitting) under certain network conditions. + * If this occurs a WATCHDOG message is logged in the system + * event log. In addition, the controller is automatically reset, + * restoring the network connection. To eliminate the potential + * for the hang ensure that IGB_RDTR is set to 0. + */ +#define IGB_RDTR 0 + +/* + * Receive Interrupt Absolute Delay Timer (Not valid for 82542/82543/82544) + * Valid Range: 0-65535 (0=off) + * Default Value: 64 + * This value, in units of 1.024 microseconds, limits the delay in which a + * receive interrupt is generated. Useful only if IGB_RDTR is non-zero, + * this value ensures that an interrupt is generated after the initial + * packet is received within the set amount of time. Proper tuning, + * along with IGB_RDTR, may improve traffic throughput in specific network + * conditions. + */ +#define IGB_RADV 64 + +/* + * This parameter controls the duration of transmit watchdog timer. + */ +#define IGB_TX_TIMEOUT 5 /* set to 5 seconds */ + +/* + * This parameter controls when the driver calls the routine to reclaim + * transmit descriptors. + */ +#define IGB_TX_CLEANUP_THRESHOLD (adapter->num_tx_desc / 8) +#define IGB_TX_OP_THRESHOLD (adapter->num_tx_desc / 32) + +/* + * This parameter controls whether or not autonegotation is enabled. + * 0 - Disable autonegotiation + * 1 - Enable autonegotiation + */ +#define DO_AUTO_NEG 1 + +/* + * This parameter control whether or not the driver will wait for + * autonegotiation to complete. + * 1 - Wait for autonegotiation to complete + * 0 - Don't wait for autonegotiation to complete + */ +#define WAIT_FOR_AUTO_NEG_DEFAULT 0 + +/* Tunables -- End */ + +#define AUTONEG_ADV_DEFAULT (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ + ADVERTISE_100_HALF | ADVERTISE_100_FULL | \ + ADVERTISE_1000_FULL) + +#define AUTO_ALL_MODES 0 + +/* PHY master/slave setting */ +#define IGB_MASTER_SLAVE e1000_ms_hw_default + +/* + * Micellaneous constants + */ +#define IGB_VENDOR_ID 0x8086 + +#define IGB_JUMBO_PBA 0x00000028 +#define IGB_DEFAULT_PBA 0x00000030 +#define IGB_SMARTSPEED_DOWNSHIFT 3 +#define IGB_SMARTSPEED_MAX 15 +#define IGB_MAX_INTR 10 +#define IGB_RX_PTHRESH 16 +#define IGB_RX_HTHRESH 8 +#define IGB_RX_WTHRESH 1 + +#define MAX_NUM_MULTICAST_ADDRESSES 128 +#define PCI_ANY_ID (~0U) +#define ETHER_ALIGN 2 +#define IGB_TX_BUFFER_SIZE ((uint32_t) 1514) +#define IGB_FC_PAUSE_TIME 0x0680 +#define IGB_EEPROM_APME 0x400; + +#define MAX_INTS_PER_SEC 8000 +#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256) + +/* Code compatilbility between 6 and 7 */ +#ifndef ETHER_BPF_MTAP +#define ETHER_BPF_MTAP BPF_MTAP +#endif + +/* + * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be + * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary. This will + * also optimize cache line size effect. H/W supports up to cache line size 128. + */ +#define IGB_DBA_ALIGN 128 + +#define SPEED_MODE_BIT (1<<21) /* On PCI-E MACs only */ + +/* PCI Config defines */ +#define IGB_MSIX_BAR 3 + +/* +** This is the total number of MSIX vectors you wish +** to use, it also controls the size of resources. +** The 82575 has a total of 10, 82576 has 25. Set this +** to the real amount you need to streamline data storage. +*/ +#define IGB_MSIX_VEC 5 /* MSIX vectors configured */ + +/* Defines for printing debug information */ +#define DEBUG_INIT 0 +#define DEBUG_IOCTL 0 +#define DEBUG_HW 0 + +#define INIT_DEBUGOUT(S) if (DEBUG_INIT) printf(S "\n") +#define INIT_DEBUGOUT1(S, A) if (DEBUG_INIT) printf(S "\n", A) +#define INIT_DEBUGOUT2(S, A, B) if (DEBUG_INIT) printf(S "\n", A, B) +#define IOCTL_DEBUGOUT(S) if (DEBUG_IOCTL) printf(S "\n") +#define IOCTL_DEBUGOUT1(S, A) if (DEBUG_IOCTL) printf(S "\n", A) +#define IOCTL_DEBUGOUT2(S, A, B) if (DEBUG_IOCTL) printf(S "\n", A, B) +#define HW_DEBUGOUT(S) if (DEBUG_HW) printf(S "\n") +#define HW_DEBUGOUT1(S, A) if (DEBUG_HW) printf(S "\n", A) +#define HW_DEBUGOUT2(S, A, B) if (DEBUG_HW) printf(S "\n", A, B) + +#define IGB_MAX_SCATTER 64 +#define IGB_TSO_SIZE (65535 + sizeof(struct ether_vlan_header)) +#define IGB_TSO_SEG_SIZE 4096 /* Max dma segment size */ +#define ETH_ZLEN 60 +#define ETH_ADDR_LEN 6 +#define CSUM_OFFLOAD 7 /* Offload bits in mbuf flag */ + +#ifdef IGB_TIMESYNC +/* Precision Time Sync (IEEE 1588) defines */ +#define ETHERTYPE_IEEE1588 0x88F7 +#define PICOSECS_PER_TICK 20833 +#define TSYNC_PORT 319 /* UDP port for the protocol */ + +/* TIMESYNC IOCTL defines */ +#define IGB_TIMESYNC_READTS _IOWR('i', 127, struct igb_tsync_read) +#define IGB_TIMESTAMP 5 /* A unique return value */ + +/* Used in the READTS IOCTL */ +struct igb_tsync_read { + int read_current_time; + struct timespec system_time; + u64 network_time; + u64 rx_stamp; + u64 tx_stamp; + u16 seqid; + unsigned char srcid[6]; + int rx_valid; + int tx_valid; +}; + +#endif /* IGB_TIMESYNC */ + +struct adapter; /* forward reference */ + +struct igb_int_delay_info { + struct adapter *adapter; /* Back-pointer to the adapter struct */ + int offset; /* Register offset to read/write */ + int value; /* Current value in usecs */ +}; + +/* + * Bus dma allocation structure used by + * e1000_dma_malloc and e1000_dma_free. + */ +struct igb_dma_alloc { + bus_addr_t dma_paddr; + caddr_t dma_vaddr; + bus_dma_tag_t dma_tag; + bus_dmamap_t dma_map; + bus_dma_segment_t dma_seg; + int dma_nseg; +}; + + +/* + * Transmit ring: one per tx queue + */ +struct tx_ring { + struct adapter *adapter; + u32 me; + u32 msix; /* This ring's MSIX vector */ + u32 eims; /* This ring's EIMS bit */ + struct mtx tx_mtx; + struct igb_dma_alloc txdma; /* bus_dma glue for tx desc */ + struct e1000_tx_desc *tx_base; + struct task tx_task; /* cleanup tasklet */ + u32 next_avail_desc; + u32 next_to_clean; + volatile u16 tx_avail; + struct igb_buffer *tx_buffers; + bus_dma_tag_t txtag; /* dma tag for tx */ + u32 watchdog_timer; + u64 no_desc_avail; + u64 tx_irq; + u64 tx_packets; +}; + +/* + * Receive ring: one per rx queue + */ +struct rx_ring { + struct adapter *adapter; + u32 me; + u32 msix; /* This ring's MSIX vector */ + u32 eims; /* This ring's EIMS bit */ + struct igb_dma_alloc rxdma; /* bus_dma glue for tx desc */ + union e1000_adv_rx_desc *rx_base; + struct lro_ctrl lro; + struct task rx_task; /* cleanup tasklet */ + struct mtx rx_mtx; + u32 last_cleaned; + u32 next_to_check; + struct igb_buffer *rx_buffers; + bus_dma_tag_t rxtag; /* dma tag for tx */ + bus_dmamap_t rx_spare_map; + /* + * First/last mbuf pointers, for + * collecting multisegment RX packets. + */ + struct mbuf *fmp; + struct mbuf *lmp; + /* Soft stats */ + u64 rx_irq; + u64 rx_packets; + u64 rx_bytes; +}; + +struct adapter { + struct ifnet *ifp; + struct e1000_hw hw; + + /* FreeBSD operating-system-specific structures. */ + struct e1000_osdep osdep; + struct device *dev; + + struct resource *pci_mem; + struct resource *msix_mem; + struct resource *res[IGB_MSIX_VEC]; + void *tag[IGB_MSIX_VEC]; + int rid[IGB_MSIX_VEC]; + u32 eims_mask; + + int linkvec; + int link_mask; + int link_irq; + + struct ifmedia media; + struct callout timer; + int msix; /* total vectors allocated */ + int if_flags; + int max_frame_size; + int min_frame_size; + struct mtx core_mtx; + int igb_insert_vlan_header; + struct task link_task; + struct task rxtx_task; + struct taskqueue *tq; /* private task queue */ +#ifdef IGB_HW_VLAN_SUPPORT + eventhandler_tag vlan_attach; + eventhandler_tag vlan_detach; +#endif + /* Management and WOL features */ + int wol; + int has_manage; + + /* Info about the board itself */ + u8 link_active; + u16 link_speed; + u16 link_duplex; + u32 smartspeed; + struct igb_int_delay_info tx_int_delay; + struct igb_int_delay_info tx_abs_int_delay; + struct igb_int_delay_info rx_int_delay; + struct igb_int_delay_info rx_abs_int_delay; + + /* + * Transmit rings + */ + struct tx_ring *tx_rings; + u16 num_tx_desc; + u16 num_tx_queues; + u32 txd_cmd; + + /* + * Receive rings + */ + struct rx_ring *rx_rings; + u16 num_rx_desc; + u16 num_rx_queues; + int rx_process_limit; + u32 rx_buffer_len; + + /* Misc stats maintained by the driver */ + unsigned long dropped_pkts; + unsigned long mbuf_alloc_failed; + unsigned long mbuf_cluster_failed; + unsigned long no_tx_map_avail; + unsigned long no_tx_dma_setup; + unsigned long watchdog_events; + unsigned long rx_overruns; + + boolean_t in_detach; + +#ifdef IGB_TIMESYNC + u64 last_stamp; + u64 last_sec; + u32 last_ns; +#endif + + struct e1000_hw_stats stats; +}; + +/* ****************************************************************************** + * vendor_info_array + * + * This array contains the list of Subvendor/Subdevice IDs on which the driver + * should load. + * + * ******************************************************************************/ +typedef struct _igb_vendor_info_t { + unsigned int vendor_id; + unsigned int device_id; + unsigned int subvendor_id; + unsigned int subdevice_id; + unsigned int index; +} igb_vendor_info_t; + + +struct igb_buffer { + int next_eop; /* Index of the desc to watch */ + struct mbuf *m_head; + bus_dmamap_t map; /* bus_dma map for packet */ +}; + +#define IGB_CORE_LOCK_INIT(_sc, _name) \ + mtx_init(&(_sc)->core_mtx, _name, "IGB Core Lock", MTX_DEF) +#define IGB_CORE_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->core_mtx) +#define IGB_TX_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->tx_mtx) +#define IGB_RX_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->rx_mtx) +#define IGB_CORE_LOCK(_sc) mtx_lock(&(_sc)->core_mtx) +#define IGB_TX_LOCK(_sc) mtx_lock(&(_sc)->tx_mtx) +#define IGB_RX_LOCK(_sc) mtx_lock(&(_sc)->rx_mtx) +#define IGB_CORE_UNLOCK(_sc) mtx_unlock(&(_sc)->core_mtx) +#define IGB_TX_UNLOCK(_sc) mtx_unlock(&(_sc)->tx_mtx) +#define IGB_RX_UNLOCK(_sc) mtx_unlock(&(_sc)->rx_mtx) +#define IGB_CORE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->core_mtx, MA_OWNED) +#define IGB_TX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->tx_mtx, MA_OWNED) + +#endif /* _IGB_H_DEFINED_ */ + + |