summaryrefslogtreecommitdiffstats
path: root/sys/dev/ath/ath_hal/ar5211/ar5211_reset.c
diff options
context:
space:
mode:
authorsam <sam@FreeBSD.org>2008-12-01 16:43:08 +0000
committersam <sam@FreeBSD.org>2008-12-01 16:43:08 +0000
commit7a794e0b9d34863d33a89f93cdc66827a2760925 (patch)
tree705ca36f03c4c9e53452783c2b4ccf8675a0b604 /sys/dev/ath/ath_hal/ar5211/ar5211_reset.c
parentcbc4e4d96d7b67978d6be592b8f8c3ee70cff337 (diff)
parent0f12a1aa4ac17efd5b11cb750591af1d3bb9d72d (diff)
downloadFreeBSD-src-7a794e0b9d34863d33a89f93cdc66827a2760925.zip
FreeBSD-src-7a794e0b9d34863d33a89f93cdc66827a2760925.tar.gz
import ath hal
Diffstat (limited to 'sys/dev/ath/ath_hal/ar5211/ar5211_reset.c')
-rw-r--r--sys/dev/ath/ath_hal/ar5211/ar5211_reset.c2138
1 files changed, 2138 insertions, 0 deletions
diff --git a/sys/dev/ath/ath_hal/ar5211/ar5211_reset.c b/sys/dev/ath/ath_hal/ar5211/ar5211_reset.c
new file mode 100644
index 0000000..6646a4d
--- /dev/null
+++ b/sys/dev/ath/ath_hal/ar5211/ar5211_reset.c
@@ -0,0 +1,2138 @@
+/*
+ * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
+ * Copyright (c) 2002-2006 Atheros Communications, Inc.
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ * $Id: ar5211_reset.c,v 1.9 2008/11/27 22:29:52 sam Exp $
+ */
+#include "opt_ah.h"
+
+/*
+ * Chips specific device attachment and device info collection
+ * Connects Init Reg Vectors, EEPROM Data, and device Functions.
+ */
+#include "ah.h"
+#include "ah_internal.h"
+#include "ah_devid.h"
+
+#include "ar5211/ar5211.h"
+#include "ar5211/ar5211reg.h"
+#include "ar5211/ar5211phy.h"
+
+#include "ah_eeprom_v3.h"
+
+/* Add static register initialization vectors */
+#include "ar5211/boss.ini"
+
+/*
+ * Structure to hold 11b tuning information for Beanie/Sombrero
+ * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
+ */
+typedef struct {
+ uint32_t refClkSel; /* reference clock, 1 for 16 MHz */
+ uint32_t channelSelect; /* P[7:4]S[3:0] bits */
+ uint16_t channel5111; /* 11a channel for 5111 */
+} CHAN_INFO_2GHZ;
+
+#define CI_2GHZ_INDEX_CORRECTION 19
+const static CHAN_INFO_2GHZ chan2GHzData[] = {
+ { 1, 0x46, 96 }, /* 2312 -19 */
+ { 1, 0x46, 97 }, /* 2317 -18 */
+ { 1, 0x46, 98 }, /* 2322 -17 */
+ { 1, 0x46, 99 }, /* 2327 -16 */
+ { 1, 0x46, 100 }, /* 2332 -15 */
+ { 1, 0x46, 101 }, /* 2337 -14 */
+ { 1, 0x46, 102 }, /* 2342 -13 */
+ { 1, 0x46, 103 }, /* 2347 -12 */
+ { 1, 0x46, 104 }, /* 2352 -11 */
+ { 1, 0x46, 105 }, /* 2357 -10 */
+ { 1, 0x46, 106 }, /* 2362 -9 */
+ { 1, 0x46, 107 }, /* 2367 -8 */
+ { 1, 0x46, 108 }, /* 2372 -7 */
+ /* index -6 to 0 are pad to make this a nolookup table */
+ { 1, 0x46, 116 }, /* -6 */
+ { 1, 0x46, 116 }, /* -5 */
+ { 1, 0x46, 116 }, /* -4 */
+ { 1, 0x46, 116 }, /* -3 */
+ { 1, 0x46, 116 }, /* -2 */
+ { 1, 0x46, 116 }, /* -1 */
+ { 1, 0x46, 116 }, /* 0 */
+ { 1, 0x46, 116 }, /* 2412 1 */
+ { 1, 0x46, 117 }, /* 2417 2 */
+ { 1, 0x46, 118 }, /* 2422 3 */
+ { 1, 0x46, 119 }, /* 2427 4 */
+ { 1, 0x46, 120 }, /* 2432 5 */
+ { 1, 0x46, 121 }, /* 2437 6 */
+ { 1, 0x46, 122 }, /* 2442 7 */
+ { 1, 0x46, 123 }, /* 2447 8 */
+ { 1, 0x46, 124 }, /* 2452 9 */
+ { 1, 0x46, 125 }, /* 2457 10 */
+ { 1, 0x46, 126 }, /* 2462 11 */
+ { 1, 0x46, 127 }, /* 2467 12 */
+ { 1, 0x46, 128 }, /* 2472 13 */
+ { 1, 0x44, 124 }, /* 2484 14 */
+ { 1, 0x46, 136 }, /* 2512 15 */
+ { 1, 0x46, 140 }, /* 2532 16 */
+ { 1, 0x46, 144 }, /* 2552 17 */
+ { 1, 0x46, 148 }, /* 2572 18 */
+ { 1, 0x46, 152 }, /* 2592 19 */
+ { 1, 0x46, 156 }, /* 2612 20 */
+ { 1, 0x46, 160 }, /* 2632 21 */
+ { 1, 0x46, 164 }, /* 2652 22 */
+ { 1, 0x46, 168 }, /* 2672 23 */
+ { 1, 0x46, 172 }, /* 2692 24 */
+ { 1, 0x46, 176 }, /* 2712 25 */
+ { 1, 0x46, 180 } /* 2732 26 */
+};
+
+/* Power timeouts in usec to wait for chip to wake-up. */
+#define POWER_UP_TIME 2000
+
+#define DELAY_PLL_SETTLE 300 /* 300 us */
+#define DELAY_BASE_ACTIVATE 100 /* 100 us */
+
+#define NUM_RATES 8
+
+static HAL_BOOL ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask);
+static HAL_BOOL ar5211SetChannel(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
+static int16_t ar5211RunNoiseFloor(struct ath_hal *,
+ uint8_t runTime, int16_t startingNF);
+static HAL_BOOL ar5211IsNfGood(struct ath_hal *, HAL_CHANNEL_INTERNAL *chan);
+static HAL_BOOL ar5211SetRf6and7(struct ath_hal *, HAL_CHANNEL *chan);
+static HAL_BOOL ar5211SetBoardValues(struct ath_hal *, HAL_CHANNEL *chan);
+static void ar5211SetPowerTable(struct ath_hal *,
+ PCDACS_EEPROM *pSrcStruct, uint16_t channel);
+static void ar5211SetRateTable(struct ath_hal *,
+ RD_EDGES_POWER *pRdEdgesPower, TRGT_POWER_INFO *pPowerInfo,
+ uint16_t numChannels, HAL_CHANNEL *chan);
+static uint16_t ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
+ const PCDACS_EEPROM *pSrcStruct);
+static HAL_BOOL ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
+ const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
+static uint16_t ar5211GetInterpolatedValue(uint16_t target,
+ uint16_t srcLeft, uint16_t srcRight,
+ uint16_t targetLeft, uint16_t targetRight, HAL_BOOL scaleUp);
+static void ar5211GetLowerUpperValues(uint16_t value,
+ const uint16_t *pList, uint16_t listSize,
+ uint16_t *pLowerValue, uint16_t *pUpperValue);
+static void ar5211GetLowerUpperPcdacs(uint16_t pcdac,
+ uint16_t channel, const PCDACS_EEPROM *pSrcStruct,
+ uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
+
+static void ar5211SetRfgain(struct ath_hal *, const GAIN_VALUES *);;
+static void ar5211RequestRfgain(struct ath_hal *);
+static HAL_BOOL ar5211InvalidGainReadback(struct ath_hal *, GAIN_VALUES *);
+static HAL_BOOL ar5211IsGainAdjustNeeded(struct ath_hal *, const GAIN_VALUES *);
+static int32_t ar5211AdjustGain(struct ath_hal *, GAIN_VALUES *);
+static void ar5211SetOperatingMode(struct ath_hal *, int opmode);
+
+/*
+ * Places the device in and out of reset and then places sane
+ * values in the registers based on EEPROM config, initialization
+ * vectors (as determined by the mode), and station configuration
+ *
+ * bChannelChange is used to preserve DMA/PCU registers across
+ * a HW Reset during channel change.
+ */
+HAL_BOOL
+ar5211Reset(struct ath_hal *ah, HAL_OPMODE opmode,
+ HAL_CHANNEL *chan, HAL_BOOL bChannelChange, HAL_STATUS *status)
+{
+uint32_t softLedCfg, softLedState;
+#define N(a) (sizeof (a) /sizeof (a[0]))
+#define FAIL(_code) do { ecode = _code; goto bad; } while (0)
+ struct ath_hal_5211 *ahp = AH5211(ah);
+ HAL_CHANNEL_INTERNAL *ichan;
+ uint32_t i, ledstate;
+ HAL_STATUS ecode;
+ int q;
+
+ uint32_t data, synthDelay;
+ uint32_t macStaId1;
+ uint16_t modesIndex = 0, freqIndex = 0;
+ uint32_t saveFrameSeqCount[AR_NUM_DCU];
+ uint32_t saveTsfLow = 0, saveTsfHigh = 0;
+ uint32_t saveDefAntenna;
+
+ HALDEBUG(ah, HAL_DEBUG_RESET,
+ "%s: opmode %u channel %u/0x%x %s channel\n",
+ __func__, opmode, chan->channel, chan->channelFlags,
+ bChannelChange ? "change" : "same");
+
+ OS_MARK(ah, AH_MARK_RESET, bChannelChange);
+#define IS(_c,_f) (((_c)->channelFlags & _f) || 0)
+ if ((IS(chan, CHANNEL_2GHZ) ^ IS(chan,CHANNEL_5GHZ)) == 0) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n",
+ __func__, chan->channel, chan->channelFlags);
+ FAIL(HAL_EINVAL);
+ }
+ if ((IS(chan, CHANNEL_OFDM) ^ IS(chan, CHANNEL_CCK)) == 0) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: invalid channel %u/0x%x; not marked as OFDM or CCK\n",
+ __func__, chan->channel, chan->channelFlags);
+ FAIL(HAL_EINVAL);
+ }
+#undef IS
+ /*
+ * Map public channel to private.
+ */
+ ichan = ath_hal_checkchannel(ah, chan);
+ if (ichan == AH_NULL) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: invalid channel %u/0x%x; no mapping\n",
+ __func__, chan->channel, chan->channelFlags);
+ FAIL(HAL_EINVAL);
+ }
+ switch (opmode) {
+ case HAL_M_STA:
+ case HAL_M_IBSS:
+ case HAL_M_HOSTAP:
+ case HAL_M_MONITOR:
+ break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: invalid operating mode %u\n", __func__, opmode);
+ FAIL(HAL_EINVAL);
+ break;
+ }
+ HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
+
+ /* Preserve certain DMA hardware registers on a channel change */
+ if (bChannelChange) {
+ /*
+ * Need to save/restore the TSF because of an issue
+ * that accelerates the TSF during a chip reset.
+ *
+ * We could use system timer routines to more
+ * accurately restore the TSF, but
+ * 1. Timer routines on certain platforms are
+ * not accurate enough (e.g. 1 ms resolution).
+ * 2. It would still not be accurate.
+ *
+ * The most important aspect of this workaround,
+ * is that, after reset, the TSF is behind
+ * other STAs TSFs. This will allow the STA to
+ * properly resynchronize its TSF in adhoc mode.
+ */
+ saveTsfLow = OS_REG_READ(ah, AR_TSF_L32);
+ saveTsfHigh = OS_REG_READ(ah, AR_TSF_U32);
+
+ /* Read frame sequence count */
+ if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
+ saveFrameSeqCount[0] = OS_REG_READ(ah, AR_D0_SEQNUM);
+ } else {
+ for (i = 0; i < AR_NUM_DCU; i++)
+ saveFrameSeqCount[i] = OS_REG_READ(ah, AR_DSEQNUM(i));
+ }
+ if (!(ichan->privFlags & CHANNEL_DFS))
+ ichan->privFlags &= ~CHANNEL_INTERFERENCE;
+ chan->channelFlags = ichan->channelFlags;
+ chan->privFlags = ichan->privFlags;
+ }
+
+ /*
+ * Preserve the antenna on a channel change
+ */
+ saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
+ if (saveDefAntenna == 0)
+ saveDefAntenna = 1;
+
+ /* Save hardware flag before chip reset clears the register */
+ macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
+
+ /* Save led state from pci config register */
+ ledstate = OS_REG_READ(ah, AR_PCICFG) &
+ (AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
+ AR_PCICFG_LEDSLOW);
+ softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
+ softLedState = OS_REG_READ(ah, AR_GPIODO);
+
+ if (!ar5211ChipReset(ah, chan->channelFlags)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
+ FAIL(HAL_EIO);
+ }
+
+ /* Setup the indices for the next set of register array writes */
+ switch (chan->channelFlags & CHANNEL_ALL) {
+ case CHANNEL_A:
+ modesIndex = 1;
+ freqIndex = 1;
+ break;
+ case CHANNEL_T:
+ modesIndex = 2;
+ freqIndex = 1;
+ break;
+ case CHANNEL_B:
+ modesIndex = 3;
+ freqIndex = 2;
+ break;
+ case CHANNEL_PUREG:
+ modesIndex = 4;
+ freqIndex = 2;
+ break;
+ default:
+ /* Ah, a new wireless mode */
+ HALASSERT(0);
+ break;
+ }
+
+ /* Set correct Baseband to analog shift setting to access analog chips. */
+ if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
+ OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000007);
+ } else {
+ OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000047);
+ }
+
+ /* Write parameters specific to AR5211 */
+ if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
+ if (IS_CHAN_2GHZ(chan) &&
+ AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1) {
+ HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+ uint32_t ob2GHz, db2GHz;
+
+ if (IS_CHAN_CCK(chan)) {
+ ob2GHz = ee->ee_ob2GHz[0];
+ db2GHz = ee->ee_db2GHz[0];
+ } else {
+ ob2GHz = ee->ee_ob2GHz[1];
+ db2GHz = ee->ee_db2GHz[1];
+ }
+ ob2GHz = ath_hal_reverseBits(ob2GHz, 3);
+ db2GHz = ath_hal_reverseBits(db2GHz, 3);
+ ar5211Mode2_4[25][freqIndex] =
+ (ar5211Mode2_4[25][freqIndex] & ~0xC0) |
+ ((ob2GHz << 6) & 0xC0);
+ ar5211Mode2_4[26][freqIndex] =
+ (ar5211Mode2_4[26][freqIndex] & ~0x0F) |
+ (((ob2GHz >> 2) & 0x1) |
+ ((db2GHz << 1) & 0x0E));
+ }
+ for (i = 0; i < N(ar5211Mode2_4); i++)
+ OS_REG_WRITE(ah, ar5211Mode2_4[i][0],
+ ar5211Mode2_4[i][freqIndex]);
+ }
+
+ /* Write the analog registers 6 and 7 before other config */
+ ar5211SetRf6and7(ah, chan);
+
+ /* Write registers that vary across all modes */
+ for (i = 0; i < N(ar5211Modes); i++)
+ OS_REG_WRITE(ah, ar5211Modes[i][0], ar5211Modes[i][modesIndex]);
+
+ /* Write RFGain Parameters that differ between 2.4 and 5 GHz */
+ for (i = 0; i < N(ar5211BB_RfGain); i++)
+ OS_REG_WRITE(ah, ar5211BB_RfGain[i][0], ar5211BB_RfGain[i][freqIndex]);
+
+ /* Write Common Array Parameters */
+ for (i = 0; i < N(ar5211Common); i++) {
+ uint32_t reg = ar5211Common[i][0];
+ /* On channel change, don't reset the PCU registers */
+ if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
+ OS_REG_WRITE(ah, reg, ar5211Common[i][1]);
+ }
+
+ /* Fix pre-AR5211 register values, this includes AR5311s. */
+ if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
+ /*
+ * The TX and RX latency values have changed locations
+ * within the USEC register in AR5211. Since they're
+ * set via the .ini, for both AR5211 and AR5311, they
+ * are written properly here for AR5311.
+ */
+ data = OS_REG_READ(ah, AR_USEC);
+ /* Must be 0 for proper write in AR5311 */
+ HALASSERT((data & 0x00700000) == 0);
+ OS_REG_WRITE(ah, AR_USEC,
+ (data & (AR_USEC_M | AR_USEC_32_M | AR5311_USEC_TX_LAT_M)) |
+ ((29 << AR5311_USEC_RX_LAT_S) & AR5311_USEC_RX_LAT_M));
+ /* The following registers exist only on AR5311. */
+ OS_REG_WRITE(ah, AR5311_QDCLKGATE, 0);
+
+ /* Set proper ADC & DAC delays for AR5311. */
+ OS_REG_WRITE(ah, 0x00009878, 0x00000008);
+
+ /* Enable the PCU FIFO corruption ECO on AR5311. */
+ OS_REG_WRITE(ah, AR_DIAG_SW,
+ OS_REG_READ(ah, AR_DIAG_SW) | AR5311_DIAG_SW_USE_ECO);
+ }
+
+ /* Restore certain DMA hardware registers on a channel change */
+ if (bChannelChange) {
+ /* Restore TSF */
+ OS_REG_WRITE(ah, AR_TSF_L32, saveTsfLow);
+ OS_REG_WRITE(ah, AR_TSF_U32, saveTsfHigh);
+
+ if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
+ OS_REG_WRITE(ah, AR_D0_SEQNUM, saveFrameSeqCount[0]);
+ } else {
+ for (i = 0; i < AR_NUM_DCU; i++)
+ OS_REG_WRITE(ah, AR_DSEQNUM(i), saveFrameSeqCount[i]);
+ }
+ }
+
+ OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
+ OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
+ | macStaId1
+ );
+ ar5211SetOperatingMode(ah, opmode);
+
+ /* Restore previous led state */
+ OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
+ OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
+ OS_REG_WRITE(ah, AR_GPIODO, softLedState);
+
+ /* Restore previous antenna */
+ OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
+
+ OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
+ OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
+
+ /* Restore bmiss rssi & count thresholds */
+ OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
+
+ OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
+
+ /*
+ * for pre-Production Oahu only.
+ * Disable clock gating in all DMA blocks. Helps when using
+ * 11B and AES but results in higher power consumption.
+ */
+ if (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_OAHU &&
+ AH_PRIVATE(ah)->ah_macRev < AR_SREV_OAHU_PROD) {
+ OS_REG_WRITE(ah, AR_CFG,
+ OS_REG_READ(ah, AR_CFG) | AR_CFG_CLK_GATE_DIS);
+ }
+
+ /* Setup the transmit power values. */
+ if (!ar5211SetTransmitPower(ah, chan)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: error init'ing transmit power\n", __func__);
+ FAIL(HAL_EIO);
+ }
+
+ /*
+ * Configurable OFDM spoofing for 11n compatibility; used
+ * only when operating in station mode.
+ */
+ if (opmode != HAL_M_HOSTAP &&
+ (AH_PRIVATE(ah)->ah_11nCompat & HAL_DIAG_11N_SERVICES) != 0) {
+ /* NB: override the .ini setting */
+ OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
+ AR_PHY_FRAME_CTL_ERR_SERV,
+ MS(AH_PRIVATE(ah)->ah_11nCompat, HAL_DIAG_11N_SERVICES)&1);
+ }
+
+ /* Setup board specific options for EEPROM version 3 */
+ ar5211SetBoardValues(ah, chan);
+
+ if (!ar5211SetChannel(ah, ichan)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
+ __func__);
+ FAIL(HAL_EIO);
+ }
+
+ /* Activate the PHY */
+ if (AH_PRIVATE(ah)->ah_devid == AR5211_FPGA11B && IS_CHAN_2GHZ(chan))
+ OS_REG_WRITE(ah, 0xd808, 0x502); /* required for FPGA */
+ OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
+
+ /*
+ * Wait for the frequency synth to settle (synth goes on
+ * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
+ * Value is in 100ns increments.
+ */
+ data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_M;
+ if (IS_CHAN_CCK(chan)) {
+ synthDelay = (4 * data) / 22;
+ } else {
+ synthDelay = data / 10;
+ }
+ /*
+ * There is an issue if the AP starts the calibration before
+ * the baseband timeout completes. This could result in the
+ * rxclear false triggering. Add an extra delay to ensure this
+ * this does not happen.
+ */
+ OS_DELAY(synthDelay + DELAY_BASE_ACTIVATE);
+
+ /* Calibrate the AGC and wait for completion. */
+ OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
+ OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);
+ (void) ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0);
+
+ /* Perform noise floor and set status */
+ if (!ar5211CalNoiseFloor(ah, ichan)) {
+ if (!IS_CHAN_CCK(chan))
+ chan->channelFlags |= CHANNEL_CW_INT;
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: noise floor calibration failed\n", __func__);
+ FAIL(HAL_EIO);
+ }
+
+ /* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
+ if (ahp->ah_calibrationTime != 0) {
+ OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4,
+ AR_PHY_TIMING_CTRL4_DO_IQCAL | (INIT_IQCAL_LOG_COUNT_MAX << AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX_S));
+ ahp->ah_bIQCalibration = AH_TRUE;
+ }
+
+ /* set 1:1 QCU to DCU mapping for all queues */
+ for (q = 0; q < AR_NUM_DCU; q++)
+ OS_REG_WRITE(ah, AR_DQCUMASK(q), 1<<q);
+
+ for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
+ ar5211ResetTxQueue(ah, q);
+
+ /* Setup QCU0 transmit interrupt masks (TX_ERR, TX_OK, TX_DESC, TX_URN) */
+ OS_REG_WRITE(ah, AR_IMR_S0,
+ (AR_IMR_S0_QCU_TXOK & AR_QCU_0) |
+ (AR_IMR_S0_QCU_TXDESC & (AR_QCU_0<<AR_IMR_S0_QCU_TXDESC_S)));
+ OS_REG_WRITE(ah, AR_IMR_S1, (AR_IMR_S1_QCU_TXERR & AR_QCU_0));
+ OS_REG_WRITE(ah, AR_IMR_S2, (AR_IMR_S2_QCU_TXURN & AR_QCU_0));
+
+ /*
+ * GBL_EIFS must always be written after writing
+ * to any QCUMASK register.
+ */
+ OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, OS_REG_READ(ah, AR_D_GBL_IFS_EIFS));
+
+ /* Now set up the Interrupt Mask Register and save it for future use */
+ OS_REG_WRITE(ah, AR_IMR, INIT_INTERRUPT_MASK);
+ ahp->ah_maskReg = INIT_INTERRUPT_MASK;
+
+ /* Enable bus error interrupts */
+ OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) |
+ AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
+
+ /* Enable interrupts specific to AP */
+ if (opmode == HAL_M_HOSTAP) {
+ OS_REG_WRITE(ah, AR_IMR, OS_REG_READ(ah, AR_IMR) | AR_IMR_MIB);
+ ahp->ah_maskReg |= AR_IMR_MIB;
+ }
+
+ if (AH_PRIVATE(ah)->ah_rfkillEnabled)
+ ar5211EnableRfKill(ah);
+
+ /*
+ * Writing to AR_BEACON will start timers. Hence it should
+ * be the last register to be written. Do not reset tsf, do
+ * not enable beacons at this point, but preserve other values
+ * like beaconInterval.
+ */
+ OS_REG_WRITE(ah, AR_BEACON,
+ (OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
+
+ /* Restore user-specified slot time and timeouts */
+ if (ahp->ah_sifstime != (u_int) -1)
+ ar5211SetSifsTime(ah, ahp->ah_sifstime);
+ if (ahp->ah_slottime != (u_int) -1)
+ ar5211SetSlotTime(ah, ahp->ah_slottime);
+ if (ahp->ah_acktimeout != (u_int) -1)
+ ar5211SetAckTimeout(ah, ahp->ah_acktimeout);
+ if (ahp->ah_ctstimeout != (u_int) -1)
+ ar5211SetCTSTimeout(ah, ahp->ah_ctstimeout);
+ if (AH_PRIVATE(ah)->ah_diagreg != 0)
+ OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
+
+ AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
+
+ HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
+
+ return AH_TRUE;
+bad:
+ if (*status)
+ *status = ecode;
+ return AH_FALSE;
+#undef FAIL
+#undef N
+}
+
+/*
+ * Places the PHY and Radio chips into reset. A full reset
+ * must be called to leave this state. The PCI/MAC/PCU are
+ * not placed into reset as we must receive interrupt to
+ * re-enable the hardware.
+ */
+HAL_BOOL
+ar5211PhyDisable(struct ath_hal *ah)
+{
+ return ar5211SetResetReg(ah, AR_RC_BB);
+}
+
+/*
+ * Places all of hardware into reset
+ */
+HAL_BOOL
+ar5211Disable(struct ath_hal *ah)
+{
+ if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
+ return AH_FALSE;
+ /*
+ * Reset the HW - PCI must be reset after the rest of the
+ * device has been reset.
+ */
+ if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
+ return AH_FALSE;
+ OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
+
+ return AH_TRUE;
+}
+
+/*
+ * Places the hardware into reset and then pulls it out of reset
+ *
+ * Only write the PLL if we're changing to or from CCK mode
+ *
+ * Attach calls with channelFlags = 0, as the coldreset should have
+ * us in the correct mode and we cannot check the hwchannel flags.
+ */
+HAL_BOOL
+ar5211ChipReset(struct ath_hal *ah, uint16_t channelFlags)
+{
+ if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
+ return AH_FALSE;
+
+ /* Set CCK and Turbo modes correctly */
+ switch (channelFlags & CHANNEL_ALL) {
+ case CHANNEL_2GHZ|CHANNEL_CCK:
+ case CHANNEL_2GHZ|CHANNEL_CCK|CHANNEL_TURBO:
+ OS_REG_WRITE(ah, AR_PHY_TURBO, 0);
+ OS_REG_WRITE(ah, AR5211_PHY_MODE,
+ AR5211_PHY_MODE_CCK | AR5211_PHY_MODE_RF2GHZ);
+ OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_44);
+ /* Wait for the PLL to settle */
+ OS_DELAY(DELAY_PLL_SETTLE);
+ break;
+ case CHANNEL_2GHZ|CHANNEL_OFDM:
+ case CHANNEL_2GHZ|CHANNEL_OFDM|CHANNEL_TURBO:
+ OS_REG_WRITE(ah, AR_PHY_TURBO, 0);
+ if (AH_PRIVATE(ah)->ah_devid == AR5211_DEVID) {
+ OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_40);
+ OS_DELAY(DELAY_PLL_SETTLE);
+ OS_REG_WRITE(ah, AR5211_PHY_MODE,
+ AR5211_PHY_MODE_OFDM | AR5211_PHY_MODE_RF2GHZ);
+ }
+ break;
+ case CHANNEL_A:
+ case CHANNEL_T:
+ if (channelFlags & CHANNEL_TURBO) {
+ OS_REG_WRITE(ah, AR_PHY_TURBO,
+ AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT);
+ } else { /* 5 GHZ OFDM Mode */
+ OS_REG_WRITE(ah, AR_PHY_TURBO, 0);
+ }
+ if (AH_PRIVATE(ah)->ah_devid == AR5211_DEVID) {
+ OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_40);
+ OS_DELAY(DELAY_PLL_SETTLE);
+ OS_REG_WRITE(ah, AR5211_PHY_MODE,
+ AR5211_PHY_MODE_OFDM | AR5211_PHY_MODE_RF5GHZ);
+ }
+ break;
+ }
+ /* NB: else no flags set - must be attach calling - do nothing */
+
+ /*
+ * Reset the HW - PCI must be reset after the rest of the
+ * device has been reset
+ */
+ if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
+ return AH_FALSE;
+ OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
+
+ /* Bring out of sleep mode (AGAIN) */
+ if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
+ return AH_FALSE;
+
+ /* Clear warm reset register */
+ return ar5211SetResetReg(ah, 0);
+}
+
+/*
+ * Recalibrate the lower PHY chips to account for temperature/environment
+ * changes.
+ */
+HAL_BOOL
+ar5211PerCalibrationN(struct ath_hal *ah, HAL_CHANNEL *chan, u_int chainMask,
+ HAL_BOOL longCal, HAL_BOOL *isCalDone)
+{
+ struct ath_hal_5211 *ahp = AH5211(ah);
+ HAL_CHANNEL_INTERNAL *ichan;
+ int32_t qCoff, qCoffDenom;
+ uint32_t data;
+ int32_t iqCorrMeas;
+ int32_t iCoff, iCoffDenom;
+ uint32_t powerMeasQ, powerMeasI;
+
+ ichan = ath_hal_checkchannel(ah, chan);
+ if (ichan == AH_NULL) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: invalid channel %u/0x%x; no mapping\n",
+ __func__, chan->channel, chan->channelFlags);
+ return AH_FALSE;
+ }
+ /* IQ calibration in progress. Check to see if it has finished. */
+ if (ahp->ah_bIQCalibration &&
+ !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
+ /* IQ Calibration has finished. */
+ ahp->ah_bIQCalibration = AH_FALSE;
+
+ /* Read calibration results. */
+ powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
+ powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
+ iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
+
+ /*
+ * Prescale these values to remove 64-bit operation requirement at the loss
+ * of a little precision.
+ */
+ iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
+ qCoffDenom = powerMeasQ / 64;
+
+ /* Protect against divide-by-0. */
+ if (iCoffDenom != 0 && qCoffDenom != 0) {
+ iCoff = (-iqCorrMeas) / iCoffDenom;
+ /* IQCORR_Q_I_COFF is a signed 6 bit number */
+ iCoff = iCoff & 0x3f;
+
+ qCoff = ((int32_t)powerMeasI / qCoffDenom) - 64;
+ /* IQCORR_Q_Q_COFF is a signed 5 bit number */
+ qCoff = qCoff & 0x1f;
+
+ HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasI = 0x%08x\n",
+ powerMeasI);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasQ = 0x%08x\n",
+ powerMeasQ);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL, "iqCorrMeas = 0x%08x\n",
+ iqCorrMeas);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL, "iCoff = %d\n",
+ iCoff);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL, "qCoff = %d\n",
+ qCoff);
+
+ /* Write IQ */
+ data = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) |
+ AR_PHY_TIMING_CTRL4_IQCORR_ENABLE |
+ (((uint32_t)iCoff) << AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF_S) |
+ ((uint32_t)qCoff);
+ OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, data);
+ }
+ }
+ *isCalDone = !ahp->ah_bIQCalibration;
+
+ if (longCal) {
+ /* Perform noise floor and set status */
+ if (!ar5211IsNfGood(ah, ichan)) {
+ /* report up and clear internal state */
+ chan->channelFlags |= CHANNEL_CW_INT;
+ ichan->channelFlags &= ~CHANNEL_CW_INT;
+ return AH_FALSE;
+ }
+ if (!ar5211CalNoiseFloor(ah, ichan)) {
+ /*
+ * Delay 5ms before retrying the noise floor
+ * just to make sure, as we are in an error
+ * condition here.
+ */
+ OS_DELAY(5000);
+ if (!ar5211CalNoiseFloor(ah, ichan)) {
+ if (!IS_CHAN_CCK(chan))
+ chan->channelFlags |= CHANNEL_CW_INT;
+ return AH_FALSE;
+ }
+ }
+ ar5211RequestRfgain(ah);
+ }
+ return AH_TRUE;
+}
+
+HAL_BOOL
+ar5211PerCalibration(struct ath_hal *ah, HAL_CHANNEL *chan, HAL_BOOL *isIQdone)
+{
+ return ar5211PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
+}
+
+HAL_BOOL
+ar5211ResetCalValid(struct ath_hal *ah, HAL_CHANNEL *chan)
+{
+ /* XXX */
+ return AH_TRUE;
+}
+
+/*
+ * Writes the given reset bit mask into the reset register
+ */
+static HAL_BOOL
+ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask)
+{
+ uint32_t mask = resetMask ? resetMask : ~0;
+ HAL_BOOL rt;
+
+ (void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
+ OS_REG_WRITE(ah, AR_RC, resetMask);
+
+ /* need to wait at least 128 clocks when reseting PCI before read */
+ OS_DELAY(15);
+
+ resetMask &= AR_RC_MAC | AR_RC_BB;
+ mask &= AR_RC_MAC | AR_RC_BB;
+ rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
+ if ((resetMask & AR_RC_MAC) == 0) {
+ if (isBigEndian()) {
+ /*
+ * Set CFG, little-endian for register
+ * and descriptor accesses.
+ */
+ mask = INIT_CONFIG_STATUS |
+ AR_CFG_SWTD | AR_CFG_SWRD | AR_CFG_SWRG;
+ OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
+ } else
+ OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
+ }
+ return rt;
+}
+
+/*
+ * Takes the MHz channel value and sets the Channel value
+ *
+ * ASSUMES: Writes enabled to analog bus before AGC is active
+ * or by disabling the AGC.
+ */
+static HAL_BOOL
+ar5211SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
+{
+ uint32_t refClk, reg32, data2111;
+ int16_t chan5111, chanIEEE;
+
+ chanIEEE = ath_hal_mhz2ieee(ah, chan->channel, chan->channelFlags);
+ if (IS_CHAN_2GHZ(chan)) {
+ const CHAN_INFO_2GHZ* ci =
+ &chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
+
+ data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
+ << 5)
+ | (ci->refClkSel << 4);
+ chan5111 = ci->channel5111;
+ } else {
+ data2111 = 0;
+ chan5111 = chanIEEE;
+ }
+
+ /* Rest of the code is common for 5 GHz and 2.4 GHz. */
+ if (chan5111 >= 145 || (chan5111 & 0x1)) {
+ reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xFF;
+ refClk = 1;
+ } else {
+ reg32 = ath_hal_reverseBits(((chan5111 - 24) / 2), 8) & 0xFF;
+ refClk = 0;
+ }
+
+ reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
+ OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
+ reg32 >>= 8;
+ OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
+
+ AH_PRIVATE(ah)->ah_curchan = chan;
+ return AH_TRUE;
+}
+
+static int16_t
+ar5211GetNoiseFloor(struct ath_hal *ah)
+{
+ int16_t nf;
+
+ nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
+ if (nf & 0x100)
+ nf = 0 - ((nf ^ 0x1ff) + 1);
+ return nf;
+}
+
+/*
+ * Peform the noisefloor calibration for the length of time set
+ * in runTime (valid values 1 to 7)
+ *
+ * Returns: The NF value at the end of the given time (or 0 for failure)
+ */
+int16_t
+ar5211RunNoiseFloor(struct ath_hal *ah, uint8_t runTime, int16_t startingNF)
+{
+ int i, searchTime;
+
+ HALASSERT(runTime <= 7);
+
+ /* Setup noise floor run time and starting value */
+ OS_REG_WRITE(ah, AR_PHY(25),
+ (OS_REG_READ(ah, AR_PHY(25)) & ~0xFFF) |
+ ((runTime << 9) & 0xE00) | (startingNF & 0x1FF));
+ /* Calibrate the noise floor */
+ OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
+ OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF);
+
+ /* Compute the required amount of searchTime needed to finish NF */
+ if (runTime == 0) {
+ /* 8 search windows * 6.4us each */
+ searchTime = 8 * 7;
+ } else {
+ /* 512 * runtime search windows * 6.4us each */
+ searchTime = (runTime * 512) * 7;
+ }
+
+ /*
+ * Do not read noise floor until it has been updated
+ *
+ * As a guesstimate - we may only get 1/60th the time on
+ * the air to see search windows in a heavily congested
+ * network (40 us every 2400 us of time)
+ */
+ for (i = 0; i < 60; i++) {
+ if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0)
+ break;
+ OS_DELAY(searchTime);
+ }
+ if (i >= 60) {
+ HALDEBUG(ah, HAL_DEBUG_NFCAL,
+ "NF with runTime %d failed to end on channel %d\n",
+ runTime, AH_PRIVATE(ah)->ah_curchan->channel);
+ HALDEBUG(ah, HAL_DEBUG_NFCAL,
+ " PHY NF Reg state: 0x%x\n",
+ OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
+ HALDEBUG(ah, HAL_DEBUG_NFCAL,
+ " PHY Active Reg state: 0x%x\n",
+ OS_REG_READ(ah, AR_PHY_ACTIVE));
+ return 0;
+ }
+
+ return ar5211GetNoiseFloor(ah);
+}
+
+static HAL_BOOL
+getNoiseFloorThresh(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, int16_t *nft)
+{
+ HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+
+ switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
+ case CHANNEL_A:
+ *nft = ee->ee_noiseFloorThresh[0];
+ break;
+ case CHANNEL_CCK|CHANNEL_2GHZ:
+ *nft = ee->ee_noiseFloorThresh[1];
+ break;
+ case CHANNEL_OFDM|CHANNEL_2GHZ:
+ *nft = ee->ee_noiseFloorThresh[2];
+ break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
+ __func__, chan->channelFlags);
+ return AH_FALSE;
+ }
+ return AH_TRUE;
+}
+
+/*
+ * Read the NF and check it against the noise floor threshhold
+ *
+ * Returns: TRUE if the NF is good
+ */
+static HAL_BOOL
+ar5211IsNfGood(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
+{
+ int16_t nf, nfThresh;
+
+ if (!getNoiseFloorThresh(ah, chan, &nfThresh))
+ return AH_FALSE;
+ if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF)
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: NF did not complete in calibration window\n", __func__);
+ nf = ar5211GetNoiseFloor(ah);
+ if (nf > nfThresh) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: noise floor failed; detected %u, threshold %u\n",
+ __func__, nf, nfThresh);
+ /*
+ * NB: Don't discriminate 2.4 vs 5Ghz, if this
+ * happens it indicates a problem regardless
+ * of the band.
+ */
+ chan->channelFlags |= CHANNEL_CW_INT;
+ }
+ chan->rawNoiseFloor = nf;
+ return (nf <= nfThresh);
+}
+
+/*
+ * Peform the noisefloor calibration and check for any constant channel
+ * interference.
+ *
+ * NOTE: preAR5211 have a lengthy carrier wave detection process - hence
+ * it is if'ed for MKK regulatory domain only.
+ *
+ * Returns: TRUE for a successful noise floor calibration; else FALSE
+ */
+HAL_BOOL
+ar5211CalNoiseFloor(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
+{
+#define N(a) (sizeof (a) / sizeof (a[0]))
+ /* Check for Carrier Wave interference in MKK regulatory zone */
+ if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU &&
+ ath_hal_getnfcheckrequired(ah, (HAL_CHANNEL *) chan)) {
+ static const uint8_t runtime[3] = { 0, 2, 7 };
+ int16_t nf, nfThresh;
+ int i;
+
+ if (!getNoiseFloorThresh(ah, chan, &nfThresh))
+ return AH_FALSE;
+ /*
+ * Run a quick noise floor that will hopefully
+ * complete (decrease delay time).
+ */
+ for (i = 0; i < N(runtime); i++) {
+ nf = ar5211RunNoiseFloor(ah, runtime[i], 0);
+ if (nf > nfThresh) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: run failed with %u > threshold %u "
+ "(runtime %u)\n", __func__,
+ nf, nfThresh, runtime[i]);
+ chan->rawNoiseFloor = 0;
+ } else
+ chan->rawNoiseFloor = nf;
+ }
+ return (i <= N(runtime));
+ } else {
+ /* Calibrate the noise floor */
+ OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
+ OS_REG_READ(ah, AR_PHY_AGC_CONTROL) |
+ AR_PHY_AGC_CONTROL_NF);
+ }
+ return AH_TRUE;
+#undef N
+}
+
+/*
+ * Adjust NF based on statistical values for 5GHz frequencies.
+ */
+int16_t
+ar5211GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
+{
+ static const struct {
+ uint16_t freqLow;
+ int16_t adjust;
+ } adjust5111[] = {
+ { 5790, 11 }, /* NB: ordered high -> low */
+ { 5730, 10 },
+ { 5690, 9 },
+ { 5660, 8 },
+ { 5610, 7 },
+ { 5530, 5 },
+ { 5450, 4 },
+ { 5379, 2 },
+ { 5209, 0 }, /* XXX? bogus but doesn't matter */
+ { 0, 1 },
+ };
+ int i;
+
+ for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
+ ;
+ /* NB: placeholder for 5111's less severe requirement */
+ return adjust5111[i].adjust / 3;
+}
+
+/*
+ * Reads EEPROM header info from device structure and programs
+ * analog registers 6 and 7
+ *
+ * REQUIRES: Access to the analog device
+ */
+static HAL_BOOL
+ar5211SetRf6and7(struct ath_hal *ah, HAL_CHANNEL *chan)
+{
+#define N(a) (sizeof (a) / sizeof (a[0]))
+ HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+ struct ath_hal_5211 *ahp = AH5211(ah);
+ uint16_t rfXpdGain, rfPloSel, rfPwdXpd;
+ uint16_t tempOB, tempDB;
+ uint16_t freqIndex;
+ int i;
+
+ freqIndex = (chan->channelFlags & CHANNEL_2GHZ) ? 2 : 1;
+
+ /*
+ * TODO: This array mode correspondes with the index used
+ * during the read.
+ * For readability, this should be changed to an enum or #define
+ */
+ switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
+ case CHANNEL_A:
+ if (chan->channel > 4000 && chan->channel < 5260) {
+ tempOB = ee->ee_ob1;
+ tempDB = ee->ee_db1;
+ } else if (chan->channel >= 5260 && chan->channel < 5500) {
+ tempOB = ee->ee_ob2;
+ tempDB = ee->ee_db2;
+ } else if (chan->channel >= 5500 && chan->channel < 5725) {
+ tempOB = ee->ee_ob3;
+ tempDB = ee->ee_db3;
+ } else if (chan->channel >= 5725) {
+ tempOB = ee->ee_ob4;
+ tempDB = ee->ee_db4;
+ } else {
+ /* XXX panic?? */
+ tempOB = tempDB = 0;
+ }
+
+ rfXpdGain = ee->ee_xgain[0];
+ rfPloSel = ee->ee_xpd[0];
+ rfPwdXpd = !ee->ee_xpd[0];
+
+ ar5211Rf6n7[5][freqIndex] =
+ (ar5211Rf6n7[5][freqIndex] & ~0x10000000) |
+ (ee->ee_cornerCal.pd84<< 28);
+ ar5211Rf6n7[6][freqIndex] =
+ (ar5211Rf6n7[6][freqIndex] & ~0x04000000) |
+ (ee->ee_cornerCal.pd90 << 26);
+ ar5211Rf6n7[21][freqIndex] =
+ (ar5211Rf6n7[21][freqIndex] & ~0x08) |
+ (ee->ee_cornerCal.gSel << 3);
+ break;
+ case CHANNEL_CCK|CHANNEL_2GHZ:
+ tempOB = ee->ee_obFor24;
+ tempDB = ee->ee_dbFor24;
+ rfXpdGain = ee->ee_xgain[1];
+ rfPloSel = ee->ee_xpd[1];
+ rfPwdXpd = !ee->ee_xpd[1];
+ break;
+ case CHANNEL_OFDM|CHANNEL_2GHZ:
+ tempOB = ee->ee_obFor24g;
+ tempDB = ee->ee_dbFor24g;
+ rfXpdGain = ee->ee_xgain[2];
+ rfPloSel = ee->ee_xpd[2];
+ rfPwdXpd = !ee->ee_xpd[2];
+ break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
+ __func__, chan->channelFlags);
+ return AH_FALSE;
+ }
+
+ HALASSERT(1 <= tempOB && tempOB <= 5);
+ HALASSERT(1 <= tempDB && tempDB <= 5);
+
+ /* Set rfXpdGain and rfPwdXpd */
+ ar5211Rf6n7[11][freqIndex] = (ar5211Rf6n7[11][freqIndex] & ~0xC0) |
+ (((ath_hal_reverseBits(rfXpdGain, 4) << 7) | (rfPwdXpd << 6)) & 0xC0);
+ ar5211Rf6n7[12][freqIndex] = (ar5211Rf6n7[12][freqIndex] & ~0x07) |
+ ((ath_hal_reverseBits(rfXpdGain, 4) >> 1) & 0x07);
+
+ /* Set OB */
+ ar5211Rf6n7[12][freqIndex] = (ar5211Rf6n7[12][freqIndex] & ~0x80) |
+ ((ath_hal_reverseBits(tempOB, 3) << 7) & 0x80);
+ ar5211Rf6n7[13][freqIndex] = (ar5211Rf6n7[13][freqIndex] & ~0x03) |
+ ((ath_hal_reverseBits(tempOB, 3) >> 1) & 0x03);
+
+ /* Set DB */
+ ar5211Rf6n7[13][freqIndex] = (ar5211Rf6n7[13][freqIndex] & ~0x1C) |
+ ((ath_hal_reverseBits(tempDB, 3) << 2) & 0x1C);
+
+ /* Set rfPloSel */
+ ar5211Rf6n7[17][freqIndex] = (ar5211Rf6n7[17][freqIndex] & ~0x08) |
+ ((rfPloSel << 3) & 0x08);
+
+ /* Write the Rf registers 6 & 7 */
+ for (i = 0; i < N(ar5211Rf6n7); i++)
+ OS_REG_WRITE(ah, ar5211Rf6n7[i][0], ar5211Rf6n7[i][freqIndex]);
+
+ /* Now that we have reprogrammed rfgain value, clear the flag. */
+ ahp->ah_rfgainState = RFGAIN_INACTIVE;
+
+ return AH_TRUE;
+#undef N
+}
+
+HAL_BOOL
+ar5211SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
+ const HAL_CHANNEL *chan)
+{
+#define ANT_SWITCH_TABLE1 0x9960
+#define ANT_SWITCH_TABLE2 0x9964
+ HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+ struct ath_hal_5211 *ahp = AH5211(ah);
+ uint32_t antSwitchA, antSwitchB;
+ int ix;
+
+ switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
+ case CHANNEL_A: ix = 0; break;
+ case CHANNEL_B: ix = 1; break;
+ case CHANNEL_PUREG: ix = 2; break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
+ __func__, chan->channelFlags);
+ return AH_FALSE;
+ }
+
+ antSwitchA = ee->ee_antennaControl[1][ix]
+ | (ee->ee_antennaControl[2][ix] << 6)
+ | (ee->ee_antennaControl[3][ix] << 12)
+ | (ee->ee_antennaControl[4][ix] << 18)
+ | (ee->ee_antennaControl[5][ix] << 24)
+ ;
+ antSwitchB = ee->ee_antennaControl[6][ix]
+ | (ee->ee_antennaControl[7][ix] << 6)
+ | (ee->ee_antennaControl[8][ix] << 12)
+ | (ee->ee_antennaControl[9][ix] << 18)
+ | (ee->ee_antennaControl[10][ix] << 24)
+ ;
+ /*
+ * For fixed antenna, give the same setting for both switch banks
+ */
+ switch (settings) {
+ case HAL_ANT_FIXED_A:
+ antSwitchB = antSwitchA;
+ break;
+ case HAL_ANT_FIXED_B:
+ antSwitchA = antSwitchB;
+ break;
+ case HAL_ANT_VARIABLE:
+ break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
+ __func__, settings);
+ return AH_FALSE;
+ }
+ ahp->ah_diversityControl = settings;
+
+ OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
+ OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
+
+ return AH_TRUE;
+#undef ANT_SWITCH_TABLE1
+#undef ANT_SWITCH_TABLE2
+}
+
+/*
+ * Reads EEPROM header info and programs the device for correct operation
+ * given the channel value
+ */
+static HAL_BOOL
+ar5211SetBoardValues(struct ath_hal *ah, HAL_CHANNEL *chan)
+{
+ HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+ struct ath_hal_5211 *ahp = AH5211(ah);
+ int arrayMode, falseDectectBackoff;
+
+ switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
+ case CHANNEL_A:
+ arrayMode = 0;
+ OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
+ AR_PHY_FRAME_CTL_TX_CLIP, ee->ee_cornerCal.clip);
+ break;
+ case CHANNEL_CCK|CHANNEL_2GHZ:
+ arrayMode = 1;
+ break;
+ case CHANNEL_OFDM|CHANNEL_2GHZ:
+ arrayMode = 2;
+ break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
+ __func__, chan->channelFlags);
+ return AH_FALSE;
+ }
+
+ /* Set the antenna register(s) correctly for the chip revision */
+ if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
+ OS_REG_WRITE(ah, AR_PHY(68),
+ (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) | 0x3);
+ } else {
+ OS_REG_WRITE(ah, AR_PHY(68),
+ (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFC06) |
+ (ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
+
+ ar5211SetAntennaSwitchInternal(ah,
+ ahp->ah_diversityControl, chan);
+
+ /* Set the Noise Floor Thresh on ar5211 devices */
+ OS_REG_WRITE(ah, AR_PHY_BASE + (90 << 2),
+ (ee->ee_noiseFloorThresh[arrayMode] & 0x1FF) | (1<<9));
+ }
+ OS_REG_WRITE(ah, AR_PHY_BASE + (17 << 2),
+ (OS_REG_READ(ah, AR_PHY_BASE + (17 << 2)) & 0xFFFFC07F) |
+ ((ee->ee_switchSettling[arrayMode] << 7) & 0x3F80));
+ OS_REG_WRITE(ah, AR_PHY_BASE + (18 << 2),
+ (OS_REG_READ(ah, AR_PHY_BASE + (18 << 2)) & 0xFFFC0FFF) |
+ ((ee->ee_txrxAtten[arrayMode] << 12) & 0x3F000));
+ OS_REG_WRITE(ah, AR_PHY_BASE + (20 << 2),
+ (OS_REG_READ(ah, AR_PHY_BASE + (20 << 2)) & 0xFFFF0000) |
+ ((ee->ee_pgaDesiredSize[arrayMode] << 8) & 0xFF00) |
+ (ee->ee_adcDesiredSize[arrayMode] & 0x00FF));
+ OS_REG_WRITE(ah, AR_PHY_BASE + (13 << 2),
+ (ee->ee_txEndToXPAOff[arrayMode] << 24) |
+ (ee->ee_txEndToXPAOff[arrayMode] << 16) |
+ (ee->ee_txFrameToXPAOn[arrayMode] << 8) |
+ ee->ee_txFrameToXPAOn[arrayMode]);
+ OS_REG_WRITE(ah, AR_PHY_BASE + (10 << 2),
+ (OS_REG_READ(ah, AR_PHY_BASE + (10 << 2)) & 0xFFFF00FF) |
+ (ee->ee_txEndToXLNAOn[arrayMode] << 8));
+ OS_REG_WRITE(ah, AR_PHY_BASE + (25 << 2),
+ (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) & 0xFFF80FFF) |
+ ((ee->ee_thresh62[arrayMode] << 12) & 0x7F000));
+
+#define NO_FALSE_DETECT_BACKOFF 2
+#define CB22_FALSE_DETECT_BACKOFF 6
+ /*
+ * False detect backoff - suspected 32 MHz spur causes
+ * false detects in OFDM, causing Tx Hangs. Decrease
+ * weak signal sensitivity for this card.
+ */
+ falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
+ if (AH_PRIVATE(ah)->ah_eeversion < AR_EEPROM_VER3_3) {
+ if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
+ IS_CHAN_OFDM(chan))
+ falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
+ } else {
+ uint32_t remainder = chan->channel % 32;
+
+ if (remainder && (remainder < 10 || remainder > 22))
+ falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
+ }
+ OS_REG_WRITE(ah, 0x9924,
+ (OS_REG_READ(ah, 0x9924) & 0xFFFFFF01)
+ | ((falseDectectBackoff << 1) & 0xF7));
+
+ return AH_TRUE;
+#undef NO_FALSE_DETECT_BACKOFF
+#undef CB22_FALSE_DETECT_BACKOFF
+}
+
+/*
+ * Set the limit on the overall output power. Used for dynamic
+ * transmit power control and the like.
+ *
+ * NOTE: The power is passed in is in units of 0.5 dBm.
+ */
+HAL_BOOL
+ar5211SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
+{
+
+ AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, limit);
+ return AH_TRUE;
+}
+
+/*
+ * Sets the transmit power in the baseband for the given
+ * operating channel and mode.
+ */
+HAL_BOOL
+ar5211SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL *chan)
+{
+ HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+ TRGT_POWER_INFO *pi;
+ RD_EDGES_POWER *rep;
+ PCDACS_EEPROM eepromPcdacs;
+ u_int nchan, cfgCtl;
+ int i;
+
+ /* setup the pcdac struct to point to the correct info, based on mode */
+ switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
+ case CHANNEL_A:
+ eepromPcdacs.numChannels = ee->ee_numChannels11a;
+ eepromPcdacs.pChannelList= ee->ee_channels11a;
+ eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
+ nchan = ee->ee_numTargetPwr_11a;
+ pi = ee->ee_trgtPwr_11a;
+ break;
+ case CHANNEL_OFDM|CHANNEL_2GHZ:
+ eepromPcdacs.numChannels = ee->ee_numChannels2_4;
+ eepromPcdacs.pChannelList= ee->ee_channels11g;
+ eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
+ nchan = ee->ee_numTargetPwr_11g;
+ pi = ee->ee_trgtPwr_11g;
+ break;
+ case CHANNEL_CCK|CHANNEL_2GHZ:
+ eepromPcdacs.numChannels = ee->ee_numChannels2_4;
+ eepromPcdacs.pChannelList= ee->ee_channels11b;
+ eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
+ nchan = ee->ee_numTargetPwr_11b;
+ pi = ee->ee_trgtPwr_11b;
+ break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
+ __func__, chan->channelFlags);
+ return AH_FALSE;
+ }
+
+ ar5211SetPowerTable(ah, &eepromPcdacs, chan->channel);
+
+ rep = AH_NULL;
+ /* Match CTL to EEPROM value */
+ cfgCtl = ath_hal_getctl(ah, chan);
+ for (i = 0; i < ee->ee_numCtls; i++)
+ if (ee->ee_ctl[i] != 0 && ee->ee_ctl[i] == cfgCtl) {
+ rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
+ break;
+ }
+ ar5211SetRateTable(ah, rep, pi, nchan, chan);
+
+ return AH_TRUE;
+}
+
+/*
+ * Read the transmit power levels from the structures taken
+ * from EEPROM. Interpolate read transmit power values for
+ * this channel. Organize the transmit power values into a
+ * table for writing into the hardware.
+ */
+void
+ar5211SetPowerTable(struct ath_hal *ah, PCDACS_EEPROM *pSrcStruct, uint16_t channel)
+{
+ static FULL_PCDAC_STRUCT pcdacStruct;
+ static uint16_t pcdacTable[PWR_TABLE_SIZE];
+
+ uint16_t i, j;
+ uint16_t *pPcdacValues;
+ int16_t *pScaledUpDbm;
+ int16_t minScaledPwr;
+ int16_t maxScaledPwr;
+ int16_t pwr;
+ uint16_t pcdacMin = 0;
+ uint16_t pcdacMax = 63;
+ uint16_t pcdacTableIndex;
+ uint16_t scaledPcdac;
+ uint32_t addr;
+ uint32_t temp32;
+
+ OS_MEMZERO(&pcdacStruct, sizeof(FULL_PCDAC_STRUCT));
+ OS_MEMZERO(pcdacTable, sizeof(uint16_t) * PWR_TABLE_SIZE);
+ pPcdacValues = pcdacStruct.PcdacValues;
+ pScaledUpDbm = pcdacStruct.PwrValues;
+
+ /* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
+ for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
+ pPcdacValues[j] = i;
+
+ pcdacStruct.numPcdacValues = j;
+ pcdacStruct.pcdacMin = PCDAC_START;
+ pcdacStruct.pcdacMax = PCDAC_STOP;
+
+ /* Fill out the power values for this channel */
+ for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
+ pScaledUpDbm[j] = ar5211GetScaledPower(channel, pPcdacValues[j], pSrcStruct);
+
+ /* Now scale the pcdac values to fit in the 64 entry power table */
+ minScaledPwr = pScaledUpDbm[0];
+ maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
+
+ /* find minimum and make monotonic */
+ for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
+ if (minScaledPwr >= pScaledUpDbm[j]) {
+ minScaledPwr = pScaledUpDbm[j];
+ pcdacMin = j;
+ }
+ /*
+ * Make the full_hsh monotonically increasing otherwise
+ * interpolation algorithm will get fooled gotta start
+ * working from the top, hence i = 63 - j.
+ */
+ i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
+ if (i == 0)
+ break;
+ if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
+ /*
+ * It could be a glitch, so make the power for
+ * this pcdac the same as the power from the
+ * next highest pcdac.
+ */
+ pScaledUpDbm[i - 1] = pScaledUpDbm[i];
+ }
+ }
+
+ for (j = 0; j < pcdacStruct.numPcdacValues; j++)
+ if (maxScaledPwr < pScaledUpDbm[j]) {
+ maxScaledPwr = pScaledUpDbm[j];
+ pcdacMax = j;
+ }
+
+ /* Find the first power level with a pcdac */
+ pwr = (uint16_t)(PWR_STEP * ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
+
+ /* Write all the first pcdac entries based off the pcdacMin */
+ pcdacTableIndex = 0;
+ for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++)
+ pcdacTable[pcdacTableIndex++] = pcdacMin;
+
+ i = 0;
+ while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1]) {
+ pwr += PWR_STEP;
+ /* stop if dbM > max_power_possible */
+ while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
+ (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
+ i++;
+ /* scale by 2 and add 1 to enable round up or down as needed */
+ scaledPcdac = (uint16_t)(ar5211GetInterpolatedValue(pwr,
+ pScaledUpDbm[i], pScaledUpDbm[i+1],
+ (uint16_t)(pPcdacValues[i] * 2),
+ (uint16_t)(pPcdacValues[i+1] * 2), 0) + 1);
+
+ pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
+ if (pcdacTable[pcdacTableIndex] > pcdacMax)
+ pcdacTable[pcdacTableIndex] = pcdacMax;
+ pcdacTableIndex++;
+ }
+
+ /* Write all the last pcdac entries based off the last valid pcdac */
+ while (pcdacTableIndex < PWR_TABLE_SIZE) {
+ pcdacTable[pcdacTableIndex] = pcdacTable[pcdacTableIndex - 1];
+ pcdacTableIndex++;
+ }
+
+ /* Finally, write the power values into the baseband power table */
+ addr = AR_PHY_BASE + (608 << 2);
+ for (i = 0; i < 32; i++) {
+ temp32 = 0xffff & ((pcdacTable[2 * i + 1] << 8) | 0xff);
+ temp32 = (temp32 << 16) | (0xffff & ((pcdacTable[2 * i] << 8) | 0xff));
+ OS_REG_WRITE(ah, addr, temp32);
+ addr += 4;
+ }
+
+}
+
+/*
+ * Set the transmit power in the baseband for the given
+ * operating channel and mode.
+ */
+void
+ar5211SetRateTable(struct ath_hal *ah, RD_EDGES_POWER *pRdEdgesPower,
+ TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
+ HAL_CHANNEL *chan)
+{
+ HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+ struct ath_hal_5211 *ahp = AH5211(ah);
+ static uint16_t ratesArray[NUM_RATES];
+ static const uint16_t tpcScaleReductionTable[5] =
+ { 0, 3, 6, 9, MAX_RATE_POWER };
+
+ uint16_t *pRatesPower;
+ uint16_t lowerChannel, lowerIndex=0, lowerPower=0;
+ uint16_t upperChannel, upperIndex=0, upperPower=0;
+ uint16_t twiceMaxEdgePower=63;
+ uint16_t twicePower = 0;
+ uint16_t i, numEdges;
+ uint16_t tempChannelList[NUM_EDGES]; /* temp array for holding edge channels */
+ uint16_t twiceMaxRDPower;
+ int16_t scaledPower = 0; /* for gcc -O2 */
+ uint16_t mask = 0x3f;
+ HAL_BOOL paPreDEnable = 0;
+ int8_t twiceAntennaGain, twiceAntennaReduction = 0;
+
+ pRatesPower = ratesArray;
+ twiceMaxRDPower = chan->maxRegTxPower * 2;
+
+ if (IS_CHAN_5GHZ(chan)) {
+ twiceAntennaGain = ee->ee_antennaGainMax[0];
+ } else {
+ twiceAntennaGain = ee->ee_antennaGainMax[1];
+ }
+
+ twiceAntennaReduction = ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
+
+ if (pRdEdgesPower) {
+ /* Get the edge power */
+ for (i = 0; i < NUM_EDGES; i++) {
+ if (pRdEdgesPower[i].rdEdge == 0)
+ break;
+ tempChannelList[i] = pRdEdgesPower[i].rdEdge;
+ }
+ numEdges = i;
+
+ ar5211GetLowerUpperValues(chan->channel, tempChannelList,
+ numEdges, &lowerChannel, &upperChannel);
+ /* Get the index for this channel */
+ for (i = 0; i < numEdges; i++)
+ if (lowerChannel == tempChannelList[i])
+ break;
+ HALASSERT(i != numEdges);
+
+ if ((lowerChannel == upperChannel &&
+ lowerChannel == chan->channel) ||
+ pRdEdgesPower[i].flag) {
+ twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
+ HALASSERT(twiceMaxEdgePower > 0);
+ }
+ }
+
+ /* extrapolate the power values for the test Groups */
+ for (i = 0; i < numChannels; i++)
+ tempChannelList[i] = pPowerInfo[i].testChannel;
+
+ ar5211GetLowerUpperValues(chan->channel, tempChannelList,
+ numChannels, &lowerChannel, &upperChannel);
+
+ /* get the index for the channel */
+ for (i = 0; i < numChannels; i++) {
+ if (lowerChannel == tempChannelList[i])
+ lowerIndex = i;
+ if (upperChannel == tempChannelList[i]) {
+ upperIndex = i;
+ break;
+ }
+ }
+
+ for (i = 0; i < NUM_RATES; i++) {
+ if (IS_CHAN_OFDM(chan)) {
+ /* power for rates 6,9,12,18,24 is all the same */
+ if (i < 5) {
+ lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
+ upperPower = pPowerInfo[upperIndex].twicePwr6_24;
+ } else if (i == 5) {
+ lowerPower = pPowerInfo[lowerIndex].twicePwr36;
+ upperPower = pPowerInfo[upperIndex].twicePwr36;
+ } else if (i == 6) {
+ lowerPower = pPowerInfo[lowerIndex].twicePwr48;
+ upperPower = pPowerInfo[upperIndex].twicePwr48;
+ } else if (i == 7) {
+ lowerPower = pPowerInfo[lowerIndex].twicePwr54;
+ upperPower = pPowerInfo[upperIndex].twicePwr54;
+ }
+ } else {
+ switch (i) {
+ case 0:
+ case 1:
+ lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
+ upperPower = pPowerInfo[upperIndex].twicePwr6_24;
+ break;
+ case 2:
+ case 3:
+ lowerPower = pPowerInfo[lowerIndex].twicePwr36;
+ upperPower = pPowerInfo[upperIndex].twicePwr36;
+ break;
+ case 4:
+ case 5:
+ lowerPower = pPowerInfo[lowerIndex].twicePwr48;
+ upperPower = pPowerInfo[upperIndex].twicePwr48;
+ break;
+ case 6:
+ case 7:
+ lowerPower = pPowerInfo[lowerIndex].twicePwr54;
+ upperPower = pPowerInfo[upperIndex].twicePwr54;
+ break;
+ }
+ }
+
+ twicePower = ar5211GetInterpolatedValue(chan->channel,
+ lowerChannel, upperChannel, lowerPower, upperPower, 0);
+
+ /* Reduce power by band edge restrictions */
+ twicePower = AH_MIN(twicePower, twiceMaxEdgePower);
+
+ /*
+ * If turbo is set, reduce power to keep power
+ * consumption under 2 Watts. Note that we always do
+ * this unless specially configured. Then we limit
+ * power only for non-AP operation.
+ */
+ if (IS_CHAN_TURBO(chan) &&
+ AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1
+#ifdef AH_ENABLE_AP_SUPPORT
+ && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
+#endif
+ ) {
+ twicePower = AH_MIN(twicePower, ee->ee_turbo2WMaxPower5);
+ }
+
+ /* Reduce power by max regulatory domain allowed restrictions */
+ pRatesPower[i] = AH_MIN(twicePower, twiceMaxRDPower - twiceAntennaReduction);
+
+ /* Use 6 Mb power level for transmit power scaling reduction */
+ /* We don't want to reduce higher rates if its not needed */
+ if (i == 0) {
+ scaledPower = pRatesPower[0] -
+ (tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2);
+ if (scaledPower < 1)
+ scaledPower = 1;
+ }
+
+ pRatesPower[i] = AH_MIN(pRatesPower[i], scaledPower);
+ }
+
+ /* Record txPower at Rate 6 for info gathering */
+ ahp->ah_tx6PowerInHalfDbm = pRatesPower[0];
+
+#ifdef AH_DEBUG
+ HALDEBUG(ah, HAL_DEBUG_RESET,
+ "%s: final output power setting %d MHz:\n",
+ __func__, chan->channel);
+ HALDEBUG(ah, HAL_DEBUG_RESET,
+ "6 Mb %d dBm, MaxRD: %d dBm, MaxEdge %d dBm\n",
+ scaledPower / 2, twiceMaxRDPower / 2, twiceMaxEdgePower / 2);
+ HALDEBUG(ah, HAL_DEBUG_RESET, "TPC Scale %d dBm - Ant Red %d dBm\n",
+ tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2,
+ twiceAntennaReduction / 2);
+ if (IS_CHAN_TURBO(chan) &&
+ AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1)
+ HALDEBUG(ah, HAL_DEBUG_RESET, "Max Turbo %d dBm\n",
+ ee->ee_turbo2WMaxPower5);
+ HALDEBUG(ah, HAL_DEBUG_RESET,
+ " %2d | %2d | %2d | %2d | %2d | %2d | %2d | %2d dBm\n",
+ pRatesPower[0] / 2, pRatesPower[1] / 2, pRatesPower[2] / 2,
+ pRatesPower[3] / 2, pRatesPower[4] / 2, pRatesPower[5] / 2,
+ pRatesPower[6] / 2, pRatesPower[7] / 2);
+#endif /* AH_DEBUG */
+
+ /* Write the power table into the hardware */
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
+ ((paPreDEnable & 1)<< 30) | ((pRatesPower[3] & mask) << 24) |
+ ((paPreDEnable & 1)<< 22) | ((pRatesPower[2] & mask) << 16) |
+ ((paPreDEnable & 1)<< 14) | ((pRatesPower[1] & mask) << 8) |
+ ((paPreDEnable & 1)<< 6 ) | (pRatesPower[0] & mask));
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
+ ((paPreDEnable & 1)<< 30) | ((pRatesPower[7] & mask) << 24) |
+ ((paPreDEnable & 1)<< 22) | ((pRatesPower[6] & mask) << 16) |
+ ((paPreDEnable & 1)<< 14) | ((pRatesPower[5] & mask) << 8) |
+ ((paPreDEnable & 1)<< 6 ) | (pRatesPower[4] & mask));
+
+ /* set max power to the power value at rate 6 */
+ ar5211SetTxPowerLimit(ah, pRatesPower[0]);
+
+ AH_PRIVATE(ah)->ah_maxPowerLevel = pRatesPower[0];
+}
+
+/*
+ * Get or interpolate the pcdac value from the calibrated data
+ */
+uint16_t
+ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue, const PCDACS_EEPROM *pSrcStruct)
+{
+ uint16_t powerValue;
+ uint16_t lFreq, rFreq; /* left and right frequency values */
+ uint16_t llPcdac, ulPcdac; /* lower and upper left pcdac values */
+ uint16_t lrPcdac, urPcdac; /* lower and upper right pcdac values */
+ uint16_t lPwr, uPwr; /* lower and upper temp pwr values */
+ uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
+
+ if (ar5211FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue))
+ /* value was copied from srcStruct */
+ return powerValue;
+
+ ar5211GetLowerUpperValues(channel, pSrcStruct->pChannelList,
+ pSrcStruct->numChannels, &lFreq, &rFreq);
+ ar5211GetLowerUpperPcdacs(pcdacValue, lFreq, pSrcStruct,
+ &llPcdac, &ulPcdac);
+ ar5211GetLowerUpperPcdacs(pcdacValue, rFreq, pSrcStruct,
+ &lrPcdac, &urPcdac);
+
+ /* get the power index for the pcdac value */
+ ar5211FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
+ ar5211FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
+ lScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
+ llPcdac, ulPcdac, lPwr, uPwr, 0);
+
+ ar5211FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
+ ar5211FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
+ rScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
+ lrPcdac, urPcdac, lPwr, uPwr, 0);
+
+ return ar5211GetInterpolatedValue(channel, lFreq, rFreq,
+ lScaledPwr, rScaledPwr, 0);
+}
+
+/*
+ * Find the value from the calibrated source data struct
+ */
+HAL_BOOL
+ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
+ const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
+{
+ const DATA_PER_CHANNEL *pChannelData;
+ const uint16_t *pPcdac;
+ uint16_t i, j;
+
+ pChannelData = pSrcStruct->pDataPerChannel;
+ for (i = 0; i < pSrcStruct->numChannels; i++ ) {
+ if (pChannelData->channelValue == channel) {
+ pPcdac = pChannelData->PcdacValues;
+ for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
+ if (*pPcdac == pcdacValue) {
+ *powerValue = pChannelData->PwrValues[j];
+ return AH_TRUE;
+ }
+ pPcdac++;
+ }
+ }
+ pChannelData++;
+ }
+ return AH_FALSE;
+}
+
+/*
+ * Returns interpolated or the scaled up interpolated value
+ */
+uint16_t
+ar5211GetInterpolatedValue(uint16_t target,
+ uint16_t srcLeft, uint16_t srcRight,
+ uint16_t targetLeft, uint16_t targetRight,
+ HAL_BOOL scaleUp)
+{
+ uint16_t rv;
+ int16_t lRatio;
+ uint16_t scaleValue = EEP_SCALE;
+
+ /* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
+ if ((targetLeft * targetRight) == 0)
+ return 0;
+ if (scaleUp)
+ scaleValue = 1;
+
+ if (srcRight != srcLeft) {
+ /*
+ * Note the ratio always need to be scaled,
+ * since it will be a fraction.
+ */
+ lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
+ if (lRatio < 0) {
+ /* Return as Left target if value would be negative */
+ rv = targetLeft * (scaleUp ? EEP_SCALE : 1);
+ } else if (lRatio > EEP_SCALE) {
+ /* Return as Right target if Ratio is greater than 100% (SCALE) */
+ rv = targetRight * (scaleUp ? EEP_SCALE : 1);
+ } else {
+ rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
+ targetLeft) / scaleValue;
+ }
+ } else {
+ rv = targetLeft;
+ if (scaleUp)
+ rv *= EEP_SCALE;
+ }
+ return rv;
+}
+
+/*
+ * Look for value being within 0.1 of the search values
+ * however, NDIS can't do float calculations, so multiply everything
+ * up by EEP_SCALE so can do integer arithmatic
+ *
+ * INPUT value -value to search for
+ * INPUT pList -ptr to the list to search
+ * INPUT listSize -number of entries in list
+ * OUTPUT pLowerValue -return the lower value
+ * OUTPUT pUpperValue -return the upper value
+ */
+void
+ar5211GetLowerUpperValues(uint16_t value,
+ const uint16_t *pList, uint16_t listSize,
+ uint16_t *pLowerValue, uint16_t *pUpperValue)
+{
+ const uint16_t listEndValue = *(pList + listSize - 1);
+ uint32_t target = value * EEP_SCALE;
+ int i;
+
+ /*
+ * See if value is lower than the first value in the list
+ * if so return first value
+ */
+ if (target < (uint32_t)(*pList * EEP_SCALE - EEP_DELTA)) {
+ *pLowerValue = *pList;
+ *pUpperValue = *pList;
+ return;
+ }
+
+ /*
+ * See if value is greater than last value in list
+ * if so return last value
+ */
+ if (target > (uint32_t)(listEndValue * EEP_SCALE + EEP_DELTA)) {
+ *pLowerValue = listEndValue;
+ *pUpperValue = listEndValue;
+ return;
+ }
+
+ /* look for value being near or between 2 values in list */
+ for (i = 0; i < listSize; i++) {
+ /*
+ * If value is close to the current value of the list
+ * then target is not between values, it is one of the values
+ */
+ if (abs(pList[i] * EEP_SCALE - (int32_t) target) < EEP_DELTA) {
+ *pLowerValue = pList[i];
+ *pUpperValue = pList[i];
+ return;
+ }
+
+ /*
+ * Look for value being between current value and next value
+ * if so return these 2 values
+ */
+ if (target < (uint32_t)(pList[i + 1] * EEP_SCALE - EEP_DELTA)) {
+ *pLowerValue = pList[i];
+ *pUpperValue = pList[i + 1];
+ return;
+ }
+ }
+}
+
+/*
+ * Get the upper and lower pcdac given the channel and the pcdac
+ * used in the search
+ */
+void
+ar5211GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
+ const PCDACS_EEPROM *pSrcStruct,
+ uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
+{
+ const DATA_PER_CHANNEL *pChannelData;
+ int i;
+
+ /* Find the channel information */
+ pChannelData = pSrcStruct->pDataPerChannel;
+ for (i = 0; i < pSrcStruct->numChannels; i++) {
+ if (pChannelData->channelValue == channel)
+ break;
+ pChannelData++;
+ }
+ ar5211GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
+ pChannelData->numPcdacValues, pLowerPcdac, pUpperPcdac);
+}
+
+#define DYN_ADJ_UP_MARGIN 15
+#define DYN_ADJ_LO_MARGIN 20
+
+static const GAIN_OPTIMIZATION_LADDER gainLadder = {
+ 9, /* numStepsInLadder */
+ 4, /* defaultStepNum */
+ { { {4, 1, 1, 1}, 6, "FG8"},
+ { {4, 0, 1, 1}, 4, "FG7"},
+ { {3, 1, 1, 1}, 3, "FG6"},
+ { {4, 0, 0, 1}, 1, "FG5"},
+ { {4, 1, 1, 0}, 0, "FG4"}, /* noJack */
+ { {4, 0, 1, 0}, -2, "FG3"}, /* halfJack */
+ { {3, 1, 1, 0}, -3, "FG2"}, /* clip3 */
+ { {4, 0, 0, 0}, -4, "FG1"}, /* noJack */
+ { {2, 1, 1, 0}, -6, "FG0"} /* clip2 */
+ }
+};
+
+/*
+ * Initialize the gain structure to good values
+ */
+void
+ar5211InitializeGainValues(struct ath_hal *ah)
+{
+ struct ath_hal_5211 *ahp = AH5211(ah);
+ GAIN_VALUES *gv = &ahp->ah_gainValues;
+
+ /* initialize gain optimization values */
+ gv->currStepNum = gainLadder.defaultStepNum;
+ gv->currStep = &gainLadder.optStep[gainLadder.defaultStepNum];
+ gv->active = AH_TRUE;
+ gv->loTrig = 20;
+ gv->hiTrig = 35;
+}
+
+static HAL_BOOL
+ar5211InvalidGainReadback(struct ath_hal *ah, GAIN_VALUES *gv)
+{
+ HAL_CHANNEL_INTERNAL *chan = AH_PRIVATE(ah)->ah_curchan;
+ uint32_t gStep, g;
+ uint32_t L1, L2, L3, L4;
+
+ if (IS_CHAN_CCK(chan)) {
+ gStep = 0x18;
+ L1 = 0;
+ L2 = gStep + 4;
+ L3 = 0x40;
+ L4 = L3 + 50;
+
+ gv->loTrig = L1;
+ gv->hiTrig = L4+5;
+ } else {
+ gStep = 0x3f;
+ L1 = 0;
+ L2 = 50;
+ L3 = L1;
+ L4 = L3 + 50;
+
+ gv->loTrig = L1 + DYN_ADJ_LO_MARGIN;
+ gv->hiTrig = L4 - DYN_ADJ_UP_MARGIN;
+ }
+ g = gv->currGain;
+
+ return !((g >= L1 && g<= L2) || (g >= L3 && g <= L4));
+}
+
+/*
+ * Enable the probe gain check on the next packet
+ */
+static void
+ar5211RequestRfgain(struct ath_hal *ah)
+{
+ struct ath_hal_5211 *ahp = AH5211(ah);
+
+ /* Enable the gain readback probe */
+ OS_REG_WRITE(ah, AR_PHY_PAPD_PROBE,
+ SM(ahp->ah_tx6PowerInHalfDbm, AR_PHY_PAPD_PROBE_POWERTX)
+ | AR_PHY_PAPD_PROBE_NEXT_TX);
+
+ ahp->ah_rfgainState = HAL_RFGAIN_READ_REQUESTED;
+}
+
+/*
+ * Exported call to check for a recent gain reading and return
+ * the current state of the thermal calibration gain engine.
+ */
+HAL_RFGAIN
+ar5211GetRfgain(struct ath_hal *ah)
+{
+ struct ath_hal_5211 *ahp = AH5211(ah);
+ GAIN_VALUES *gv = &ahp->ah_gainValues;
+ uint32_t rddata;
+
+ if (!gv->active)
+ return HAL_RFGAIN_INACTIVE;
+
+ if (ahp->ah_rfgainState == HAL_RFGAIN_READ_REQUESTED) {
+ /* Caller had asked to setup a new reading. Check it. */
+ rddata = OS_REG_READ(ah, AR_PHY_PAPD_PROBE);
+
+ if ((rddata & AR_PHY_PAPD_PROBE_NEXT_TX) == 0) {
+ /* bit got cleared, we have a new reading. */
+ gv->currGain = rddata >> AR_PHY_PAPD_PROBE_GAINF_S;
+ /* inactive by default */
+ ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
+
+ if (!ar5211InvalidGainReadback(ah, gv) &&
+ ar5211IsGainAdjustNeeded(ah, gv) &&
+ ar5211AdjustGain(ah, gv) > 0) {
+ /*
+ * Change needed. Copy ladder info
+ * into eeprom info.
+ */
+ ar5211SetRfgain(ah, gv);
+ ahp->ah_rfgainState = HAL_RFGAIN_NEED_CHANGE;
+ }
+ }
+ }
+ return ahp->ah_rfgainState;
+}
+
+/*
+ * Check to see if our readback gain level sits within the linear
+ * region of our current variable attenuation window
+ */
+static HAL_BOOL
+ar5211IsGainAdjustNeeded(struct ath_hal *ah, const GAIN_VALUES *gv)
+{
+ return (gv->currGain <= gv->loTrig || gv->currGain >= gv->hiTrig);
+}
+
+/*
+ * Move the rabbit ears in the correct direction.
+ */
+static int32_t
+ar5211AdjustGain(struct ath_hal *ah, GAIN_VALUES *gv)
+{
+ /* return > 0 for valid adjustments. */
+ if (!gv->active)
+ return -1;
+
+ gv->currStep = &gainLadder.optStep[gv->currStepNum];
+ if (gv->currGain >= gv->hiTrig) {
+ if (gv->currStepNum == 0) {
+ HALDEBUG(ah, HAL_DEBUG_RFPARAM,
+ "%s: Max gain limit.\n", __func__);
+ return -1;
+ }
+ HALDEBUG(ah, HAL_DEBUG_RFPARAM,
+ "%s: Adding gain: currG=%d [%s] --> ",
+ __func__, gv->currGain, gv->currStep->stepName);
+ gv->targetGain = gv->currGain;
+ while (gv->targetGain >= gv->hiTrig && gv->currStepNum > 0) {
+ gv->targetGain -= 2 * (gainLadder.optStep[--(gv->currStepNum)].stepGain -
+ gv->currStep->stepGain);
+ gv->currStep = &gainLadder.optStep[gv->currStepNum];
+ }
+ HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
+ gv->targetGain, gv->currStep->stepName);
+ return 1;
+ }
+ if (gv->currGain <= gv->loTrig) {
+ if (gv->currStepNum == gainLadder.numStepsInLadder-1) {
+ HALDEBUG(ah, HAL_DEBUG_RFPARAM,
+ "%s: Min gain limit.\n", __func__);
+ return -2;
+ }
+ HALDEBUG(ah, HAL_DEBUG_RFPARAM,
+ "%s: Deducting gain: currG=%d [%s] --> ",
+ __func__, gv->currGain, gv->currStep->stepName);
+ gv->targetGain = gv->currGain;
+ while (gv->targetGain <= gv->loTrig &&
+ gv->currStepNum < (gainLadder.numStepsInLadder - 1)) {
+ gv->targetGain -= 2 *
+ (gainLadder.optStep[++(gv->currStepNum)].stepGain - gv->currStep->stepGain);
+ gv->currStep = &gainLadder.optStep[gv->currStepNum];
+ }
+ HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
+ gv->targetGain, gv->currStep->stepName);
+ return 2;
+ }
+ return 0; /* caller didn't call needAdjGain first */
+}
+
+/*
+ * Adjust the 5GHz EEPROM information with the desired calibration values.
+ */
+static void
+ar5211SetRfgain(struct ath_hal *ah, const GAIN_VALUES *gv)
+{
+ HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+
+ if (!gv->active)
+ return;
+ ee->ee_cornerCal.clip = gv->currStep->paramVal[0]; /* bb_tx_clip */
+ ee->ee_cornerCal.pd90 = gv->currStep->paramVal[1]; /* rf_pwd_90 */
+ ee->ee_cornerCal.pd84 = gv->currStep->paramVal[2]; /* rf_pwd_84 */
+ ee->ee_cornerCal.gSel = gv->currStep->paramVal[3]; /* rf_rfgainsel */
+}
+
+static void
+ar5211SetOperatingMode(struct ath_hal *ah, int opmode)
+{
+ struct ath_hal_5211 *ahp = AH5211(ah);
+ uint32_t val;
+
+ val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
+ switch (opmode) {
+ case HAL_M_HOSTAP:
+ OS_REG_WRITE(ah, AR_STA_ID1, val
+ | AR_STA_ID1_STA_AP
+ | AR_STA_ID1_RTS_USE_DEF
+ | ahp->ah_staId1Defaults);
+ break;
+ case HAL_M_IBSS:
+ OS_REG_WRITE(ah, AR_STA_ID1, val
+ | AR_STA_ID1_ADHOC
+ | AR_STA_ID1_DESC_ANTENNA
+ | ahp->ah_staId1Defaults);
+ break;
+ case HAL_M_STA:
+ case HAL_M_MONITOR:
+ OS_REG_WRITE(ah, AR_STA_ID1, val
+ | AR_STA_ID1_DEFAULT_ANTENNA
+ | ahp->ah_staId1Defaults);
+ break;
+ }
+}
+
+void
+ar5211SetPCUConfig(struct ath_hal *ah)
+{
+ ar5211SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
+}
OpenPOWER on IntegriCloud