summaryrefslogtreecommitdiffstats
path: root/sys/contrib/octeon-sdk/cvmx-nand.h
diff options
context:
space:
mode:
authorjmallett <jmallett@FreeBSD.org>2010-07-20 07:19:43 +0000
committerjmallett <jmallett@FreeBSD.org>2010-07-20 07:19:43 +0000
commit4948f4b8d566f7868120bc7a4ca589e591f02907 (patch)
tree6a1615beb550260d7a4efb6a7ce469f5261103ce /sys/contrib/octeon-sdk/cvmx-nand.h
parent34462ac1dd736012f6a3627fb6fdebaba982cc6c (diff)
parent54dae90bed3e3a707509d32c2bd64dc7ea9b1b46 (diff)
downloadFreeBSD-src-4948f4b8d566f7868120bc7a4ca589e591f02907.zip
FreeBSD-src-4948f4b8d566f7868120bc7a4ca589e591f02907.tar.gz
Import the Cavium Simple Executive from the Cavium Octeon SDK. The Simple
Executive is a library that can be used by standalone applications and kernels to abstract access to Octeon SoC and board-specific hardware and facilities. The FreeBSD port to Octeon will be updated to use this where possible.
Diffstat (limited to 'sys/contrib/octeon-sdk/cvmx-nand.h')
-rw-r--r--sys/contrib/octeon-sdk/cvmx-nand.h675
1 files changed, 675 insertions, 0 deletions
diff --git a/sys/contrib/octeon-sdk/cvmx-nand.h b/sys/contrib/octeon-sdk/cvmx-nand.h
new file mode 100644
index 0000000..8ca4f9a
--- /dev/null
+++ b/sys/contrib/octeon-sdk/cvmx-nand.h
@@ -0,0 +1,675 @@
+/***********************license start***************
+ * Copyright (c) 2003-2008 Cavium Networks (support@cavium.com). All rights
+ * reserved.
+ *
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * * Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer in the documentation and/or other materials provided
+ * with the distribution.
+ *
+ * * Neither the name of Cavium Networks nor the names of
+ * its contributors may be used to endorse or promote products
+ * derived from this software without specific prior written
+ * permission.
+ *
+ * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
+ * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS
+ * OR WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH
+ * RESPECT TO THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY
+ * REPRESENTATION OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT
+ * DEFECTS, AND CAVIUM SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES
+ * OF TITLE, MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR
+ * PURPOSE, LACK OF VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET
+ * POSSESSION OR CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT
+ * OF USE OR PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
+ *
+ *
+ * For any questions regarding licensing please contact marketing@caviumnetworks.com
+ *
+ ***********************license end**************************************/
+
+
+
+
+
+
+/**
+ * @file
+ *
+ * This header defines the CVMX interface to the NAND flash controller. The
+ * basic operations common to all NAND devices are supported by this API, but
+ * many more advanced functions are not support. The low level hardware supports
+ * all types of transactions, but this API only implements the must commonly
+ * used operations. This API performs no locking, so it is the responsibility of
+ * the caller to make sure only one thread of execution is accessing the NAND
+ * controller at a time. Most applications should not use this API directly but
+ * instead use a flash logical layer supplied through a secondary system. For
+ * example, the Linux MTD layer provides a driver for running JFFS2 on top of
+ * NAND flash.
+ *
+ * <h2>Selecting the NAND Chip</h2>
+ *
+ * Octeon's NAND controller assumes a single NAND chip is connected to a boot
+ * bus chip select. Throughout this API, NAND chips are referred to by the chip
+ * select they are connected to (0-7). Chip select 0 will only be a NAND chip
+ * when you are booting from NAND flash.
+ *
+ * <h2>NAND Addressing</h2>
+ *
+ * Various functions in cvmx-nand use addresses to index into NAND flash. All
+ * functions us a uniform address translation scheme to map the passed address
+ * into a NAND block, page, and column. In NAND flash a page represents the
+ * basic unit of reads and writes. Each page contains a power of two number of
+ * bytes and some number of extra out of band (OOB) bytes. A fixed number of
+ * pages fit into each NAND block. Here is the mapping of bits in the cvmx-nand
+ * address to the NAND hardware:
+ * <pre>
+ * 63 56 48 40 32 24 16 8 0
+ * +-------+-------+-------+-------+-------+-------+-------+------+
+ * | 64 bit cvmx-nand nand_address|
+ * +------------------------------------------------+----+--------+
+ * | block |page| column |
+ * +-------+-------+-------+-------+-------+--------+----+--------+
+ * 63 56 48 40 32 24 16 8 0
+ * </pre>
+ * Basically the block, page, and column addresses are packet together. Before
+ * being sent out the NAND pins for addressing the column is padded out to an
+ * even number of bytes. This means that column address are 2 bytes, or 2
+ * address cycles, for page sizes between 512 and 65536 bytes. Page sizes
+ * between 128KB and 16MB would use 3 column address cycles. NAND device
+ * normally either have 32 or 64 pages per block, needing either 5 or 6 address
+ * bits respectively. This means you have 10 bits for block address using 4
+ * address cycles, or 18 for 5 address cycles. Using the cvmx-nand addressing
+ * scheme, it is not possible to directly index the OOB data. Instead you can
+ * access it by reading or writing more data than the normal page size would
+ * allow. Logically the OOB data is appended onto the the page data. For
+ * example, this means that a read of 65 bytes from a column address of 0x7ff
+ * would yield byte 2047 of the page and then 64 bytes of OOB data.
+ *
+ * <hr>$Revision: 35726 $<hr>
+ */
+
+#ifndef __CVMX_NAND_H__
+#define __CVMX_NAND_H__
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
+/* Block size for boot ECC */
+#define CVMX_NAND_BOOT_ECC_BLOCK_SIZE (256)
+/* ECC bytes for each block */
+#define CVMX_NAND_BOOT_ECC_ECC_SIZE (8)
+
+/**
+ * Flags to be passed to the initialize function
+ */
+typedef enum
+{
+ CVMX_NAND_INITIALIZE_FLAGS_16BIT = 1<<0,
+ CVMX_NAND_INITIALIZE_FLAGS_DONT_PROBE = 1<<1,
+ CVMX_NAND_INITIALIZE_FLAGS_DEBUG = 1<<15,
+} cvmx_nand_initialize_flags_t;
+
+/**
+ * Return codes from NAND functions
+ */
+typedef enum
+{
+ CVMX_NAND_SUCCESS = 0,
+ CVMX_NAND_NO_MEMORY = -1,
+ CVMX_NAND_BUSY = -2,
+ CVMX_NAND_INVALID_PARAM = -3,
+ CVMX_NAND_TIMEOUT = -4,
+} cvmx_nand_status_t;
+
+/**
+ * NAND NOP command definition
+ */
+typedef struct
+{
+ uint64_t reserved_64_127 : 64;
+ uint64_t reserved_4_63 : 60;
+ uint64_t zero : 4;
+} cvmx_nand_cmd_nop_t;
+
+/**
+ * NAND SET_TM_PAR command definition
+ */
+typedef struct
+{
+ uint64_t reserved_64_127 : 64;
+ uint64_t tim_par7 : 8;
+ uint64_t tim_par6 : 8;
+ uint64_t tim_par5 : 8;
+ uint64_t tim_par4 : 8;
+ uint64_t tim_par3 : 8;
+ uint64_t tim_par2 : 8;
+ uint64_t tim_par1 : 8;
+ uint64_t tim_mult : 4;
+ uint64_t one : 4;
+} cvmx_nand_cmd_set_tm_par_t;
+
+/**
+ * NAND WAIT command definition
+ */
+typedef struct
+{
+ uint64_t reserved_64_127 : 64;
+ uint64_t reserved_11_63 : 53;
+ uint64_t n : 3;
+ uint64_t reserved_5_7 : 3;
+ uint64_t r_b : 1;
+ uint64_t two : 4;
+} cvmx_nand_cmd_wait_t;
+
+/**
+ * NAND CHIP_EN command definition
+ */
+typedef struct
+{
+ uint64_t reserved_64_127 : 64;
+ uint64_t reserved_10_63 : 54;
+ uint64_t width : 2;
+ uint64_t one : 1;
+ uint64_t chip : 3;
+ uint64_t three : 4;
+} cvmx_nand_cmd_chip_en_t;
+
+/**
+ * NAND CHIP_DIS command definition
+ */
+typedef struct
+{
+ uint64_t reserved_64_127 : 64;
+ uint64_t reserved_4_63 : 60;
+ uint64_t three : 4;
+} cvmx_nand_cmd_chip_dis_t;
+
+/**
+ * NAND CLE command definition
+ */
+typedef struct
+{
+ uint64_t reserved_64_127 : 64;
+ uint64_t reserved_25_63 : 39;
+ uint64_t clen3 : 3;
+ uint64_t clen2 : 3;
+ uint64_t clen1 : 3;
+ uint64_t cmd_data : 8;
+ uint64_t reserved_4_7 : 4;
+ uint64_t four : 4;
+} cvmx_nand_cmd_cle_t;
+
+/**
+ * NAND ALE command definition
+ */
+typedef struct
+{
+ uint64_t reserved_96_127 : 32;
+ uint64_t adr_bytes_h : 32;
+ uint64_t adr_bytes_l : 32;
+ uint64_t reserved_28_31 : 4;
+ uint64_t alen4 : 3;
+ uint64_t alen3 : 3;
+ uint64_t alen2 : 3;
+ uint64_t alen1 : 3;
+ uint64_t reserved_12_15 : 4;
+ uint64_t adr_byte_num : 4;
+ uint64_t reserved_4_7 : 4;
+ uint64_t five : 4;
+} cvmx_nand_cmd_ale_t;
+
+/**
+ * NAND WR command definition
+ */
+typedef struct
+{
+ uint64_t reserved_64_127 : 64;
+ uint64_t reserved_31_63 : 34;
+ uint64_t wrn2 : 3;
+ uint64_t wrn1 : 3;
+ uint64_t reserved_20_24 : 4;
+ uint64_t data_bytes : 16;
+ uint64_t eight : 4;
+} cvmx_nand_cmd_wr_t;
+
+/**
+ * NAND RD command definition
+ */
+typedef struct
+{
+ uint64_t reserved_64_127 : 64;
+ uint64_t reserved_32_63 : 32;
+ uint64_t rdn4 : 3;
+ uint64_t rdn3 : 3;
+ uint64_t rdn2 : 3;
+ uint64_t rdn1 : 3;
+ uint64_t data_bytes : 16;
+ uint64_t nine : 4;
+} cvmx_nand_cmd_rd_t;
+
+/**
+ * NAND RD_EDO command definition
+ */
+typedef struct
+{
+ uint64_t reserved_64_127 : 64;
+ uint64_t reserved_32_63 : 32;
+ uint64_t rdn4 : 3;
+ uint64_t rdn3 : 3;
+ uint64_t rdn2 : 3;
+ uint64_t rdn1 : 3;
+ uint64_t data_bytes : 16;
+ uint64_t ten : 4;
+} cvmx_nand_cmd_rd_edo_t;
+
+/**
+ * NAND WAIT_STATUS command definition
+ */
+typedef struct
+{
+ uint64_t rdn4 : 3;
+ uint64_t rdn3 : 3;
+ uint64_t rdn2 : 3;
+ uint64_t rdn1 : 3;
+ uint64_t comp_byte : 8;
+ uint64_t and_mask : 8;
+ uint64_t nine : 4;
+ uint64_t reserved_28_95 : 64;
+ uint64_t clen4 : 3;
+ uint64_t clen3 : 3;
+ uint64_t clen2 : 3;
+ uint64_t clen1 : 3;
+ uint64_t data : 8;
+ uint64_t reserved_4_7 : 4;
+ uint64_t eleven : 4;
+} cvmx_nand_cmd_wait_status_t;
+
+/**
+ * NAND WAIT_STATUS_ALE command definition
+ */
+typedef struct
+{
+ uint64_t rdn4 : 3;
+ uint64_t rdn3 : 3;
+ uint64_t rdn2 : 3;
+ uint64_t rdn1 : 3;
+ uint64_t comp_byte : 8;
+ uint64_t and_mask : 8;
+ uint64_t nine : 4;
+ uint64_t adr_bytes : 32;
+ uint64_t reserved_60_63 : 4;
+ uint64_t alen4 : 3;
+ uint64_t alen3 : 3;
+ uint64_t alen2 : 3;
+ uint64_t alen1 : 3;
+ uint64_t reserved_44_47 : 4;
+ uint64_t adr_byte_num : 4;
+ uint64_t five : 4;
+ uint64_t reserved_25_31 : 7;
+ uint64_t clen3 : 3;
+ uint64_t clen2 : 3;
+ uint64_t clen1 : 3;
+ uint64_t data : 8;
+ uint64_t reserved_4_7 : 4;
+ uint64_t eleven : 4;
+} cvmx_nand_cmd_wait_status_ale_t;
+
+/**
+ * NAND BUS_ACQ command definition
+ */
+typedef struct
+{
+ uint64_t reserved_64_127 : 64;
+ uint64_t reserved_8_63 : 56;
+ uint64_t one : 4;
+ uint64_t fifteen : 4;
+} cvmx_nand_cmd_bus_acq_t;
+
+/**
+ * NAND BUS_REL command definition
+ */
+typedef struct
+{
+ uint64_t reserved_64_127 : 64;
+ uint64_t reserved_8_63 : 56;
+ uint64_t zero : 4;
+ uint64_t fifteen : 4;
+} cvmx_nand_cmd_bus_rel_t;
+
+/**
+ * NAND command union of all possible commands
+ */
+typedef union
+{
+ uint64_t u64[2];
+ cvmx_nand_cmd_nop_t nop;
+ cvmx_nand_cmd_set_tm_par_t set_tm_par;
+ cvmx_nand_cmd_wait_t wait;
+ cvmx_nand_cmd_chip_en_t chip_en;
+ cvmx_nand_cmd_chip_dis_t chip_dis;
+ cvmx_nand_cmd_cle_t cle;
+ cvmx_nand_cmd_ale_t ale;
+ cvmx_nand_cmd_rd_t rd;
+ cvmx_nand_cmd_rd_edo_t rd_edo;
+ cvmx_nand_cmd_wr_t wr;
+ cvmx_nand_cmd_wait_status_t wait_status;
+ cvmx_nand_cmd_wait_status_ale_t wait_status_ale;
+ cvmx_nand_cmd_bus_acq_t bus_acq;
+ cvmx_nand_cmd_bus_rel_t bus_rel;
+ struct
+ {
+ uint64_t reserved_64_127: 64;
+ uint64_t reserved_4_63 : 60;
+ uint64_t op_code : 4;
+ } s;
+} cvmx_nand_cmd_t;
+
+
+typedef struct __attribute__ ((packed))
+{
+ char onfi[4]; /**< Bytes 0-3: The ASCII characters 'O', 'N', 'F', 'I' */
+ uint16_t revision_number; /**< Bytes 4-5: ONFI revision number
+ - 2-15 Reserved (0)
+ - 1 1 = supports ONFI version 1.0
+ - 0 Reserved (0) */
+ uint16_t features; /**< Bytes 6-7: Features supported
+ - 5-15 Reserved (0)
+ - 4 1 = supports odd to even page Copyback
+ - 3 1 = supports interleaved operations
+ - 2 1 = supports non-sequential page programming
+ - 1 1 = supports multiple LUN operations
+ - 0 1 = supports 16-bit data bus width */
+ uint16_t optional_commands; /**< Bytes 8-9: Optional commands supported
+ - 6-15 Reserved (0)
+ - 5 1 = supports Read Unique ID
+ - 4 1 = supports Copyback
+ - 3 1 = supports Read Status Enhanced
+ - 2 1 = supports Get Features and Set Features
+ - 1 1 = supports Read Cache commands
+ - 0 1 = supports Page Cache Program command */
+ uint8_t reserved_10_31[22]; /**< Bytes 10-31: Reserved */
+
+ char manufacturer[12]; /**< Bytes 32-43: Device manufacturer (12 ASCII characters) */
+ char model[20]; /**< Bytes 40-63: Device model (20 ASCII characters) */
+ uint8_t jedec_id; /**< Byte 64: JEDEC manufacturer ID */
+ uint16_t date_code; /**< Byte 65-66: Date code */
+ uint8_t reserved_67_79[13]; /**< Bytes 67-79: Reserved */
+
+ uint32_t page_data_bytes; /**< Bytes 80-83: Number of data bytes per page */
+ uint16_t page_spare_bytes; /**< Bytes 84-85: Number of spare bytes per page */
+ uint32_t partial_page_data_bytes; /**< Bytes 86-89: Number of data bytes per partial page */
+ uint16_t partial_page_spare_bytes; /**< Bytes 90-91: Number of spare bytes per partial page */
+ uint32_t pages_per_block; /**< Bytes 92-95: Number of pages per block */
+ uint32_t blocks_per_lun; /**< Bytes 96-99: Number of blocks per logical unit (LUN) */
+ uint8_t number_lun; /**< Byte 100: Number of logical units (LUNs) */
+ uint8_t address_cycles; /**< Byte 101: Number of address cycles
+ - 4-7 Column address cycles
+ - 0-3 Row address cycles */
+ uint8_t bits_per_cell; /**< Byte 102: Number of bits per cell */
+ uint16_t bad_block_per_lun; /**< Bytes 103-104: Bad blocks maximum per LUN */
+ uint16_t block_endurance; /**< Bytes 105-106: Block endurance */
+ uint8_t good_blocks; /**< Byte 107: Guaranteed valid blocks at beginning of target */
+ uint16_t good_block_endurance; /**< Bytes 108-109: Block endurance for guaranteed valid blocks */
+ uint8_t programs_per_page; /**< Byte 110: Number of programs per page */
+ uint8_t partial_program_attrib; /**< Byte 111: Partial programming attributes
+ - 5-7 Reserved
+ - 4 1 = partial page layout is partial page data followed by partial page spare
+ - 1-3 Reserved
+ - 0 1 = partial page programming has constraints */
+ uint8_t bits_ecc; /**< Byte 112: Number of bits ECC correctability */
+ uint8_t interleaved_address_bits; /**< Byte 113: Number of interleaved address bits
+ - 4-7 Reserved (0)
+ - 0-3 Number of interleaved address bits */
+ uint8_t interleaved_attrib; /**< Byte 114: Interleaved operation attributes
+ - 4-7 Reserved (0)
+ - 3 Address restrictions for program cache
+ - 2 1 = program cache supported
+ - 1 1 = no block address restrictions
+ - 0 Overlapped / concurrent interleaving support */
+ uint8_t reserved_115_127[13]; /**< Bytes 115-127: Reserved (0) */
+
+ uint8_t pin_capacitance; /**< Byte 128: I/O pin capacitance */
+ uint16_t timing_mode; /**< Byte 129-130: Timing mode support
+ - 6-15 Reserved (0)
+ - 5 1 = supports timing mode 5
+ - 4 1 = supports timing mode 4
+ - 3 1 = supports timing mode 3
+ - 2 1 = supports timing mode 2
+ - 1 1 = supports timing mode 1
+ - 0 1 = supports timing mode 0, shall be 1 */
+ uint16_t cache_timing_mode; /**< Byte 131-132: Program cache timing mode support
+ - 6-15 Reserved (0)
+ - 5 1 = supports timing mode 5
+ - 4 1 = supports timing mode 4
+ - 3 1 = supports timing mode 3
+ - 2 1 = supports timing mode 2
+ - 1 1 = supports timing mode 1
+ - 0 1 = supports timing mode 0 */
+ uint16_t t_prog; /**< Byte 133-134: Maximum page program time (us) */
+ uint16_t t_bers; /**< Byte 135-136: Maximum block erase time (us) */
+ uint16_t t_r; /**< Byte 137-148: Maximum page read time (us) */
+ uint16_t t_ccs; /**< Byte 139-140: Minimum change column setup time (ns) */
+ uint8_t reserved_141_163[23]; /**< Byte 141-163: Reserved (0) */
+
+ uint16_t vendor_revision; /**< Byte 164-165: Vendor specific Revision number */
+ uint8_t vendor_specific[88]; /**< Byte 166-253: Vendor specific */
+ uint16_t crc; /**< Byte 254-255: Integrity CRC */
+} cvmx_nand_onfi_param_page_t;
+
+
+/**
+ * Called to initialize the NAND controller for use. Note that
+ * you must be running out of L2 or memory and not NAND before
+ * calling this function.
+ *
+ * @param flags Optional initialization flags
+ * @param active_chips
+ * Each bit in this parameter represents a chip select that might
+ * contain NAND flash. Any chip select present in this bitmask may
+ * be connected to NAND. It is normally safe to pass 0xff here and
+ * let the API probe all 8 chip selects.
+ *
+ * @return Zero on success, a negative cvmx_nand_status_t error code on failure
+ */
+extern cvmx_nand_status_t cvmx_nand_initialize(cvmx_nand_initialize_flags_t flags, int active_chips);
+
+
+/**
+ * Call to shutdown the NAND controller after all transactions
+ * are done. In most setups this will never be called.
+ *
+ * @return Zero on success, a negative cvmx_nand_status_t error code on failure
+ */
+extern cvmx_nand_status_t cvmx_nand_shutdown(void);
+
+
+/**
+ * Returns a bitmask representing the chip selects that are
+ * connected to NAND chips. This can be called after the
+ * initialize to determine the actual number of NAND chips
+ * found. Each bit in the response coresponds to a chip select.
+ *
+ * @return Zero if no NAND chips were found. Otherwise a bit is set for
+ * each chip select (1<<chip).
+ */
+extern int cvmx_nand_get_active_chips(void);
+
+
+/**
+ * Override the timing parameters for a NAND chip
+ *
+ * @param chip Chip select to override
+ * @param tim_mult
+ * @param tim_par
+ * @param clen
+ * @param alen
+ * @param rdn
+ * @param wrn
+ *
+ * @return Zero on success, a negative cvmx_nand_status_t error code on failure
+ */
+extern cvmx_nand_status_t cvmx_nand_set_timing(int chip, int tim_mult, int tim_par[7], int clen[4], int alen[4], int rdn[4], int wrn[2]);
+
+
+/**
+ * Submit a command to the NAND command queue. Generally this
+ * will not be used directly. Instead most programs will use the other
+ * higher level NAND functions.
+ *
+ * @param cmd Command to submit
+ *
+ * @return Zero on success, a negative cvmx_nand_status_t error code on failure
+ */
+extern cvmx_nand_status_t cvmx_nand_submit(cvmx_nand_cmd_t cmd);
+
+/**
+ * Read a page from NAND. If the buffer has room, the out of band
+ * data will be included.
+ *
+ * @param chip Chip select for NAND flash
+ * @param nand_address
+ * Location in NAND to read. See description in file comment
+ * @param buffer_address
+ * Physical address to store the result at
+ * @param buffer_length
+ * Number of bytes to read
+ *
+ * @return Bytes read on success, a negative cvmx_nand_status_t error code on failure
+ */
+extern int cvmx_nand_page_read(int chip, uint64_t nand_address, uint64_t buffer_address, int buffer_length);
+
+/**
+ * Write a page to NAND. The buffer must contain the entire page
+ * including the out of band data.
+ *
+ * @param chip Chip select for NAND flash
+ * @param nand_address
+ * Location in NAND to write. See description in file comment
+ * @param buffer_address
+ * Physical address to read the data from
+ *
+ * @return Zero on success, a negative cvmx_nand_status_t error code on failure
+ */
+extern cvmx_nand_status_t cvmx_nand_page_write(int chip, uint64_t nand_address, uint64_t buffer_address);
+
+/**
+ * Erase a NAND block. A single block contains multiple pages.
+ *
+ * @param chip Chip select for NAND flash
+ * @param nand_address
+ * Location in NAND to erase. See description in file comment
+ *
+ * @return Zero on success, a negative cvmx_nand_status_t error code on failure
+ */
+extern cvmx_nand_status_t cvmx_nand_block_erase(int chip, uint64_t nand_address);
+
+/**
+ * Read the NAND ID information
+ *
+ * @param chip Chip select for NAND flash
+ * @param nand_address
+ * NAND address to read ID from. Usually this is either 0x0 or 0x20.
+ * @param buffer_address
+ * Physical address to store data in
+ * @param buffer_length
+ * Length of the buffer. Usually this is 4 bytes
+ *
+ * @return Bytes read on success, a negative cvmx_nand_status_t error code on failure
+ */
+extern int cvmx_nand_read_id(int chip, uint64_t nand_address, uint64_t buffer_address, int buffer_length);
+
+/**
+ * Read the NAND parameter page
+ *
+ * @param chip Chip select for NAND flash
+ * @param buffer_address
+ * Physical address to store data in
+ * @param buffer_length
+ * Length of the buffer. Usually this is 4 bytes
+ *
+ * @return Bytes read on success, a negative cvmx_nand_status_t error code on failure
+ */
+extern int cvmx_nand_read_param_page(int chip, uint64_t buffer_address, int buffer_length);
+
+/**
+ * Get the status of the NAND flash
+ *
+ * @param chip Chip select for NAND flash
+ *
+ * @return NAND status or a negative cvmx_nand_status_t error code on failure
+ */
+extern int cvmx_nand_get_status(int chip);
+
+/**
+ * Get the page size, excluding out of band data. This function
+ * will return zero for chip selects not connected to NAND.
+ *
+ * @param chip Chip select for NAND flash
+ *
+ * @return Page size in bytes or a negative cvmx_nand_status_t error code on failure
+ */
+extern int cvmx_nand_get_page_size(int chip);
+
+/**
+ * Get the OOB size.
+ *
+ * @param chip Chip select for NAND flash
+ *
+ * @return OOB in bytes or a negative cvmx_nand_status_t error code on failure
+ */
+extern int cvmx_nand_get_oob_size(int chip);
+
+/**
+ * Get the number of pages per NAND block
+ *
+ * @param chip Chip select for NAND flash
+ *
+ * @return Numboer of pages in each block or a negative cvmx_nand_status_t error code on failure
+ */
+extern int cvmx_nand_get_pages_per_block(int chip);
+
+/**
+ * Get the number of blocks in the NAND flash
+ *
+ * @param chip Chip select for NAND flash
+ *
+ * @return Number of blocks or a negative cvmx_nand_status_t error code on failure
+ */
+extern int cvmx_nand_get_blocks(int chip);
+
+/**
+ * Reset the NAND flash
+ *
+ * @param chip Chip select for NAND flash
+ *
+ * @return Zero on success, a negative cvmx_nand_status_t error code on failure
+ */
+extern cvmx_nand_status_t cvmx_nand_reset(int chip);
+
+/**
+ * This function computes the Octeon specific ECC data used by the NAND boot
+ * feature.
+ *
+ * @param block pointer to 256 bytes of data
+ * @param eccp pointer to where 8 bytes of ECC data will be stored
+ */
+extern void cvmx_nand_compute_boot_ecc(unsigned char *block, unsigned char *eccp);
+
+
+extern int cvmx_nand_correct_boot_ecc(uint8_t *block);
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __CVMX_NAND_H__ */
OpenPOWER on IntegriCloud