summaryrefslogtreecommitdiffstats
path: root/sys/cddl
diff options
context:
space:
mode:
authordfr <dfr@FreeBSD.org>2009-05-16 10:48:20 +0000
committerdfr <dfr@FreeBSD.org>2009-05-16 10:48:20 +0000
commit0db82eb221e9574622750dca324185ba332817e7 (patch)
tree665b606a01d251f40ccea34ac4fb9b2951d292bc /sys/cddl
parentcefe1bb18749d1b1c2254d934bdd56d96d96364d (diff)
downloadFreeBSD-src-0db82eb221e9574622750dca324185ba332817e7.zip
FreeBSD-src-0db82eb221e9574622750dca324185ba332817e7.tar.gz
Add support for booting from raidz1 and raidz2 pools.
Diffstat (limited to 'sys/cddl')
-rw-r--r--sys/cddl/boot/zfs/README2
-rw-r--r--sys/cddl/boot/zfs/zfsimpl.h11
-rw-r--r--sys/cddl/boot/zfs/zfssubr.c732
3 files changed, 742 insertions, 3 deletions
diff --git a/sys/cddl/boot/zfs/README b/sys/cddl/boot/zfs/README
index 4b62181..d36e02e 100644
--- a/sys/cddl/boot/zfs/README
+++ b/sys/cddl/boot/zfs/README
@@ -6,7 +6,7 @@ are used by the ZFS bootstrap:
fletcher.c checksum support
sha256.c checksum support
lzjb.c compression support
- zfssubr.c mostly checksum and compression support
+ zfssubr.c checksum, compression and raidz support
zfsimpl.h mostly describing the physical layout
The files fletcher.c, lzjb.c and sha256.c are largely identical to the
diff --git a/sys/cddl/boot/zfs/zfsimpl.h b/sys/cddl/boot/zfs/zfsimpl.h
index 7796d8e..a0b7b72 100644
--- a/sys/cddl/boot/zfs/zfsimpl.h
+++ b/sys/cddl/boot/zfs/zfsimpl.h
@@ -1137,7 +1137,10 @@ typedef struct znode_phys {
* In-core vdev representation.
*/
struct vdev;
-typedef int vdev_read_t(struct vdev *vdev, void *priv, off_t offset, void *buf, size_t bytes);
+typedef int vdev_phys_read_t(struct vdev *vdev, void *priv,
+ off_t offset, void *buf, size_t bytes);
+typedef int vdev_read_t(struct vdev *vdev, const blkptr_t *bp,
+ void *buf, off_t offset, size_t bytes);
typedef STAILQ_HEAD(vdev_list, vdev) vdev_list_t;
@@ -1148,8 +1151,12 @@ typedef struct vdev {
char *v_name; /* vdev name */
uint64_t v_guid; /* vdev guid */
int v_id; /* index in parent */
+ int v_ashift; /* offset to block shift */
+ int v_nparity; /* # parity for raidz */
+ int v_nchildren; /* # children */
vdev_state_t v_state; /* current state */
- vdev_read_t *v_read; /* function to read from this vdev */
+ vdev_phys_read_t *v_phys_read; /* read from raw leaf vdev */
+ vdev_read_t *v_read; /* read from vdev */
void *v_read_priv; /* private data for read function */
} vdev_t;
diff --git a/sys/cddl/boot/zfs/zfssubr.c b/sys/cddl/boot/zfs/zfssubr.c
index 40bb863..fb4444f 100644
--- a/sys/cddl/boot/zfs/zfssubr.c
+++ b/sys/cddl/boot/zfs/zfssubr.c
@@ -191,3 +191,735 @@ zap_hash(uint64_t salt, const char *name)
return (crc);
}
+
+static char *zfs_alloc_temp(size_t sz);
+
+typedef struct raidz_col {
+ uint64_t rc_devidx; /* child device index for I/O */
+ uint64_t rc_offset; /* device offset */
+ uint64_t rc_size; /* I/O size */
+ void *rc_data; /* I/O data */
+ int rc_error; /* I/O error for this device */
+ uint8_t rc_tried; /* Did we attempt this I/O column? */
+ uint8_t rc_skipped; /* Did we skip this I/O column? */
+} raidz_col_t;
+
+#define VDEV_RAIDZ_P 0
+#define VDEV_RAIDZ_Q 1
+
+static void
+vdev_raidz_reconstruct_p(raidz_col_t *cols, int nparity, int acols, int x)
+{
+ uint64_t *dst, *src, xcount, ccount, count, i;
+ int c;
+
+ xcount = cols[x].rc_size / sizeof (src[0]);
+ //ASSERT(xcount <= cols[VDEV_RAIDZ_P].rc_size / sizeof (src[0]));
+ //ASSERT(xcount > 0);
+
+ src = cols[VDEV_RAIDZ_P].rc_data;
+ dst = cols[x].rc_data;
+ for (i = 0; i < xcount; i++, dst++, src++) {
+ *dst = *src;
+ }
+
+ for (c = nparity; c < acols; c++) {
+ src = cols[c].rc_data;
+ dst = cols[x].rc_data;
+
+ if (c == x)
+ continue;
+
+ ccount = cols[c].rc_size / sizeof (src[0]);
+ count = MIN(ccount, xcount);
+
+ for (i = 0; i < count; i++, dst++, src++) {
+ *dst ^= *src;
+ }
+ }
+}
+
+/*
+ * These two tables represent powers and logs of 2 in the Galois field defined
+ * above. These values were computed by repeatedly multiplying by 2 as above.
+ */
+static const uint8_t vdev_raidz_pow2[256] = {
+ 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
+ 0x1d, 0x3a, 0x74, 0xe8, 0xcd, 0x87, 0x13, 0x26,
+ 0x4c, 0x98, 0x2d, 0x5a, 0xb4, 0x75, 0xea, 0xc9,
+ 0x8f, 0x03, 0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0,
+ 0x9d, 0x27, 0x4e, 0x9c, 0x25, 0x4a, 0x94, 0x35,
+ 0x6a, 0xd4, 0xb5, 0x77, 0xee, 0xc1, 0x9f, 0x23,
+ 0x46, 0x8c, 0x05, 0x0a, 0x14, 0x28, 0x50, 0xa0,
+ 0x5d, 0xba, 0x69, 0xd2, 0xb9, 0x6f, 0xde, 0xa1,
+ 0x5f, 0xbe, 0x61, 0xc2, 0x99, 0x2f, 0x5e, 0xbc,
+ 0x65, 0xca, 0x89, 0x0f, 0x1e, 0x3c, 0x78, 0xf0,
+ 0xfd, 0xe7, 0xd3, 0xbb, 0x6b, 0xd6, 0xb1, 0x7f,
+ 0xfe, 0xe1, 0xdf, 0xa3, 0x5b, 0xb6, 0x71, 0xe2,
+ 0xd9, 0xaf, 0x43, 0x86, 0x11, 0x22, 0x44, 0x88,
+ 0x0d, 0x1a, 0x34, 0x68, 0xd0, 0xbd, 0x67, 0xce,
+ 0x81, 0x1f, 0x3e, 0x7c, 0xf8, 0xed, 0xc7, 0x93,
+ 0x3b, 0x76, 0xec, 0xc5, 0x97, 0x33, 0x66, 0xcc,
+ 0x85, 0x17, 0x2e, 0x5c, 0xb8, 0x6d, 0xda, 0xa9,
+ 0x4f, 0x9e, 0x21, 0x42, 0x84, 0x15, 0x2a, 0x54,
+ 0xa8, 0x4d, 0x9a, 0x29, 0x52, 0xa4, 0x55, 0xaa,
+ 0x49, 0x92, 0x39, 0x72, 0xe4, 0xd5, 0xb7, 0x73,
+ 0xe6, 0xd1, 0xbf, 0x63, 0xc6, 0x91, 0x3f, 0x7e,
+ 0xfc, 0xe5, 0xd7, 0xb3, 0x7b, 0xf6, 0xf1, 0xff,
+ 0xe3, 0xdb, 0xab, 0x4b, 0x96, 0x31, 0x62, 0xc4,
+ 0x95, 0x37, 0x6e, 0xdc, 0xa5, 0x57, 0xae, 0x41,
+ 0x82, 0x19, 0x32, 0x64, 0xc8, 0x8d, 0x07, 0x0e,
+ 0x1c, 0x38, 0x70, 0xe0, 0xdd, 0xa7, 0x53, 0xa6,
+ 0x51, 0xa2, 0x59, 0xb2, 0x79, 0xf2, 0xf9, 0xef,
+ 0xc3, 0x9b, 0x2b, 0x56, 0xac, 0x45, 0x8a, 0x09,
+ 0x12, 0x24, 0x48, 0x90, 0x3d, 0x7a, 0xf4, 0xf5,
+ 0xf7, 0xf3, 0xfb, 0xeb, 0xcb, 0x8b, 0x0b, 0x16,
+ 0x2c, 0x58, 0xb0, 0x7d, 0xfa, 0xe9, 0xcf, 0x83,
+ 0x1b, 0x36, 0x6c, 0xd8, 0xad, 0x47, 0x8e, 0x01
+};
+static const uint8_t vdev_raidz_log2[256] = {
+ 0x00, 0x00, 0x01, 0x19, 0x02, 0x32, 0x1a, 0xc6,
+ 0x03, 0xdf, 0x33, 0xee, 0x1b, 0x68, 0xc7, 0x4b,
+ 0x04, 0x64, 0xe0, 0x0e, 0x34, 0x8d, 0xef, 0x81,
+ 0x1c, 0xc1, 0x69, 0xf8, 0xc8, 0x08, 0x4c, 0x71,
+ 0x05, 0x8a, 0x65, 0x2f, 0xe1, 0x24, 0x0f, 0x21,
+ 0x35, 0x93, 0x8e, 0xda, 0xf0, 0x12, 0x82, 0x45,
+ 0x1d, 0xb5, 0xc2, 0x7d, 0x6a, 0x27, 0xf9, 0xb9,
+ 0xc9, 0x9a, 0x09, 0x78, 0x4d, 0xe4, 0x72, 0xa6,
+ 0x06, 0xbf, 0x8b, 0x62, 0x66, 0xdd, 0x30, 0xfd,
+ 0xe2, 0x98, 0x25, 0xb3, 0x10, 0x91, 0x22, 0x88,
+ 0x36, 0xd0, 0x94, 0xce, 0x8f, 0x96, 0xdb, 0xbd,
+ 0xf1, 0xd2, 0x13, 0x5c, 0x83, 0x38, 0x46, 0x40,
+ 0x1e, 0x42, 0xb6, 0xa3, 0xc3, 0x48, 0x7e, 0x6e,
+ 0x6b, 0x3a, 0x28, 0x54, 0xfa, 0x85, 0xba, 0x3d,
+ 0xca, 0x5e, 0x9b, 0x9f, 0x0a, 0x15, 0x79, 0x2b,
+ 0x4e, 0xd4, 0xe5, 0xac, 0x73, 0xf3, 0xa7, 0x57,
+ 0x07, 0x70, 0xc0, 0xf7, 0x8c, 0x80, 0x63, 0x0d,
+ 0x67, 0x4a, 0xde, 0xed, 0x31, 0xc5, 0xfe, 0x18,
+ 0xe3, 0xa5, 0x99, 0x77, 0x26, 0xb8, 0xb4, 0x7c,
+ 0x11, 0x44, 0x92, 0xd9, 0x23, 0x20, 0x89, 0x2e,
+ 0x37, 0x3f, 0xd1, 0x5b, 0x95, 0xbc, 0xcf, 0xcd,
+ 0x90, 0x87, 0x97, 0xb2, 0xdc, 0xfc, 0xbe, 0x61,
+ 0xf2, 0x56, 0xd3, 0xab, 0x14, 0x2a, 0x5d, 0x9e,
+ 0x84, 0x3c, 0x39, 0x53, 0x47, 0x6d, 0x41, 0xa2,
+ 0x1f, 0x2d, 0x43, 0xd8, 0xb7, 0x7b, 0xa4, 0x76,
+ 0xc4, 0x17, 0x49, 0xec, 0x7f, 0x0c, 0x6f, 0xf6,
+ 0x6c, 0xa1, 0x3b, 0x52, 0x29, 0x9d, 0x55, 0xaa,
+ 0xfb, 0x60, 0x86, 0xb1, 0xbb, 0xcc, 0x3e, 0x5a,
+ 0xcb, 0x59, 0x5f, 0xb0, 0x9c, 0xa9, 0xa0, 0x51,
+ 0x0b, 0xf5, 0x16, 0xeb, 0x7a, 0x75, 0x2c, 0xd7,
+ 0x4f, 0xae, 0xd5, 0xe9, 0xe6, 0xe7, 0xad, 0xe8,
+ 0x74, 0xd6, 0xf4, 0xea, 0xa8, 0x50, 0x58, 0xaf,
+};
+
+/*
+ * Multiply a given number by 2 raised to the given power.
+ */
+static uint8_t
+vdev_raidz_exp2(uint8_t a, int exp)
+{
+ if (a == 0)
+ return (0);
+
+ //ASSERT(exp >= 0);
+ //ASSERT(vdev_raidz_log2[a] > 0 || a == 1);
+
+ exp += vdev_raidz_log2[a];
+ if (exp > 255)
+ exp -= 255;
+
+ return (vdev_raidz_pow2[exp]);
+}
+
+static void
+vdev_raidz_generate_parity_pq(raidz_col_t *cols, int nparity, int acols)
+{
+ uint64_t *q, *p, *src, pcount, ccount, mask, i;
+ int c;
+
+ pcount = cols[VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
+ //ASSERT(cols[VDEV_RAIDZ_P].rc_size == cols[VDEV_RAIDZ_Q].rc_size);
+
+ for (c = nparity; c < acols; c++) {
+ src = cols[c].rc_data;
+ p = cols[VDEV_RAIDZ_P].rc_data;
+ q = cols[VDEV_RAIDZ_Q].rc_data;
+ ccount = cols[c].rc_size / sizeof (src[0]);
+
+ if (c == nparity) {
+ //ASSERT(ccount == pcount || ccount == 0);
+ for (i = 0; i < ccount; i++, p++, q++, src++) {
+ *q = *src;
+ *p = *src;
+ }
+ for (; i < pcount; i++, p++, q++, src++) {
+ *q = 0;
+ *p = 0;
+ }
+ } else {
+ //ASSERT(ccount <= pcount);
+
+ /*
+ * Rather than multiplying each byte
+ * individually (as described above), we are
+ * able to handle 8 at once by generating a
+ * mask based on the high bit in each byte and
+ * using that to conditionally XOR in 0x1d.
+ */
+ for (i = 0; i < ccount; i++, p++, q++, src++) {
+ mask = *q & 0x8080808080808080ULL;
+ mask = (mask << 1) - (mask >> 7);
+ *q = ((*q << 1) & 0xfefefefefefefefeULL) ^
+ (mask & 0x1d1d1d1d1d1d1d1dULL);
+ *q ^= *src;
+ *p ^= *src;
+ }
+
+ /*
+ * Treat short columns as though they are full of 0s.
+ */
+ for (; i < pcount; i++, q++) {
+ mask = *q & 0x8080808080808080ULL;
+ mask = (mask << 1) - (mask >> 7);
+ *q = ((*q << 1) & 0xfefefefefefefefeULL) ^
+ (mask & 0x1d1d1d1d1d1d1d1dULL);
+ }
+ }
+ }
+}
+
+static void
+vdev_raidz_reconstruct_q(raidz_col_t *cols, int nparity, int acols, int x)
+{
+ uint64_t *dst, *src, xcount, ccount, count, mask, i;
+ uint8_t *b;
+ int c, j, exp;
+
+ xcount = cols[x].rc_size / sizeof (src[0]);
+ //ASSERT(xcount <= cols[VDEV_RAIDZ_Q].rc_size / sizeof (src[0]));
+
+ for (c = nparity; c < acols; c++) {
+ src = cols[c].rc_data;
+ dst = cols[x].rc_data;
+
+ if (c == x)
+ ccount = 0;
+ else
+ ccount = cols[c].rc_size / sizeof (src[0]);
+
+ count = MIN(ccount, xcount);
+
+ if (c == nparity) {
+ for (i = 0; i < count; i++, dst++, src++) {
+ *dst = *src;
+ }
+ for (; i < xcount; i++, dst++) {
+ *dst = 0;
+ }
+
+ } else {
+ /*
+ * For an explanation of this, see the comment in
+ * vdev_raidz_generate_parity_pq() above.
+ */
+ for (i = 0; i < count; i++, dst++, src++) {
+ mask = *dst & 0x8080808080808080ULL;
+ mask = (mask << 1) - (mask >> 7);
+ *dst = ((*dst << 1) & 0xfefefefefefefefeULL) ^
+ (mask & 0x1d1d1d1d1d1d1d1dULL);
+ *dst ^= *src;
+ }
+
+ for (; i < xcount; i++, dst++) {
+ mask = *dst & 0x8080808080808080ULL;
+ mask = (mask << 1) - (mask >> 7);
+ *dst = ((*dst << 1) & 0xfefefefefefefefeULL) ^
+ (mask & 0x1d1d1d1d1d1d1d1dULL);
+ }
+ }
+ }
+
+ src = cols[VDEV_RAIDZ_Q].rc_data;
+ dst = cols[x].rc_data;
+ exp = 255 - (acols - 1 - x);
+
+ for (i = 0; i < xcount; i++, dst++, src++) {
+ *dst ^= *src;
+ for (j = 0, b = (uint8_t *)dst; j < 8; j++, b++) {
+ *b = vdev_raidz_exp2(*b, exp);
+ }
+ }
+}
+
+
+static void
+vdev_raidz_reconstruct_pq(raidz_col_t *cols, int nparity, int acols,
+ int x, int y)
+{
+ uint8_t *p, *q, *pxy, *qxy, *xd, *yd, tmp, a, b, aexp, bexp;
+ void *pdata, *qdata;
+ uint64_t xsize, ysize, i;
+
+ //ASSERT(x < y);
+ //ASSERT(x >= nparity);
+ //ASSERT(y < acols);
+
+ //ASSERT(cols[x].rc_size >= cols[y].rc_size);
+
+ /*
+ * Move the parity data aside -- we're going to compute parity as
+ * though columns x and y were full of zeros -- Pxy and Qxy. We want to
+ * reuse the parity generation mechanism without trashing the actual
+ * parity so we make those columns appear to be full of zeros by
+ * setting their lengths to zero.
+ */
+ pdata = cols[VDEV_RAIDZ_P].rc_data;
+ qdata = cols[VDEV_RAIDZ_Q].rc_data;
+ xsize = cols[x].rc_size;
+ ysize = cols[y].rc_size;
+
+ cols[VDEV_RAIDZ_P].rc_data =
+ zfs_alloc_temp(cols[VDEV_RAIDZ_P].rc_size);
+ cols[VDEV_RAIDZ_Q].rc_data =
+ zfs_alloc_temp(cols[VDEV_RAIDZ_Q].rc_size);
+ cols[x].rc_size = 0;
+ cols[y].rc_size = 0;
+
+ vdev_raidz_generate_parity_pq(cols, nparity, acols);
+
+ cols[x].rc_size = xsize;
+ cols[y].rc_size = ysize;
+
+ p = pdata;
+ q = qdata;
+ pxy = cols[VDEV_RAIDZ_P].rc_data;
+ qxy = cols[VDEV_RAIDZ_Q].rc_data;
+ xd = cols[x].rc_data;
+ yd = cols[y].rc_data;
+
+ /*
+ * We now have:
+ * Pxy = P + D_x + D_y
+ * Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y
+ *
+ * We can then solve for D_x:
+ * D_x = A * (P + Pxy) + B * (Q + Qxy)
+ * where
+ * A = 2^(x - y) * (2^(x - y) + 1)^-1
+ * B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1
+ *
+ * With D_x in hand, we can easily solve for D_y:
+ * D_y = P + Pxy + D_x
+ */
+
+ a = vdev_raidz_pow2[255 + x - y];
+ b = vdev_raidz_pow2[255 - (acols - 1 - x)];
+ tmp = 255 - vdev_raidz_log2[a ^ 1];
+
+ aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)];
+ bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)];
+
+ for (i = 0; i < xsize; i++, p++, q++, pxy++, qxy++, xd++, yd++) {
+ *xd = vdev_raidz_exp2(*p ^ *pxy, aexp) ^
+ vdev_raidz_exp2(*q ^ *qxy, bexp);
+
+ if (i < ysize)
+ *yd = *p ^ *pxy ^ *xd;
+ }
+
+ /*
+ * Restore the saved parity data.
+ */
+ cols[VDEV_RAIDZ_P].rc_data = pdata;
+ cols[VDEV_RAIDZ_Q].rc_data = qdata;
+}
+
+static int
+vdev_raidz_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
+ off_t offset, size_t bytes)
+{
+ size_t psize = BP_GET_PSIZE(bp);
+ vdev_t *kid;
+ int unit_shift = vdev->v_ashift;
+ int dcols = vdev->v_nchildren;
+ int nparity = vdev->v_nparity;
+ int missingdata, missingparity;
+ int parity_errors, data_errors, unexpected_errors, total_errors;
+ int parity_untried;
+ uint64_t b = offset >> unit_shift;
+ uint64_t s = psize >> unit_shift;
+ uint64_t f = b % dcols;
+ uint64_t o = (b / dcols) << unit_shift;
+ int q, r, c, c1, bc, col, acols, coff, devidx, asize, n;
+ static raidz_col_t cols[16];
+ raidz_col_t *rc, *rc1;
+
+ q = s / (dcols - nparity);
+ r = s - q * (dcols - nparity);
+ bc = (r == 0 ? 0 : r + nparity);
+
+ acols = (q == 0 ? bc : dcols);
+ asize = 0;
+
+ for (c = 0; c < acols; c++) {
+ col = f + c;
+ coff = o;
+ if (col >= dcols) {
+ col -= dcols;
+ coff += 1ULL << unit_shift;
+ }
+ cols[c].rc_devidx = col;
+ cols[c].rc_offset = coff;
+ cols[c].rc_size = (q + (c < bc)) << unit_shift;
+ cols[c].rc_data = NULL;
+ cols[c].rc_error = 0;
+ cols[c].rc_tried = 0;
+ cols[c].rc_skipped = 0;
+ asize += cols[c].rc_size;
+ }
+
+ asize = roundup(asize, (nparity + 1) << unit_shift);
+
+ for (c = 0; c < nparity; c++) {
+ cols[c].rc_data = zfs_alloc_temp(cols[c].rc_size);
+ }
+
+ cols[c].rc_data = buf;
+
+ for (c = c + 1; c < acols; c++)
+ cols[c].rc_data = (char *)cols[c - 1].rc_data +
+ cols[c - 1].rc_size;
+
+ /*
+ * If all data stored spans all columns, there's a danger that
+ * parity will always be on the same device and, since parity
+ * isn't read during normal operation, that that device's I/O
+ * bandwidth won't be used effectively. We therefore switch
+ * the parity every 1MB.
+ *
+ * ... at least that was, ostensibly, the theory. As a
+ * practical matter unless we juggle the parity between all
+ * devices evenly, we won't see any benefit. Further,
+ * occasional writes that aren't a multiple of the LCM of the
+ * number of children and the minimum stripe width are
+ * sufficient to avoid pessimal behavior. Unfortunately, this
+ * decision created an implicit on-disk format requirement
+ * that we need to support for all eternity, but only for
+ * single-parity RAID-Z.
+ */
+ //ASSERT(acols >= 2);
+ //ASSERT(cols[0].rc_size == cols[1].rc_size);
+
+ if (nparity == 1 && (offset & (1ULL << 20))) {
+ devidx = cols[0].rc_devidx;
+ o = cols[0].rc_offset;
+ cols[0].rc_devidx = cols[1].rc_devidx;
+ cols[0].rc_offset = cols[1].rc_offset;
+ cols[1].rc_devidx = devidx;
+ cols[1].rc_offset = o;
+ }
+
+ /*
+ * Iterate over the columns in reverse order so that we hit
+ * the parity last -- any errors along the way will force us
+ * to read the parity data.
+ */
+ missingdata = 0;
+ missingparity = 0;
+ for (c = acols - 1; c >= 0; c--) {
+ rc = &cols[c];
+ devidx = rc->rc_devidx;
+ STAILQ_FOREACH(kid, &vdev->v_children, v_childlink)
+ if (kid->v_id == devidx)
+ break;
+ if (kid == NULL || kid->v_state != VDEV_STATE_HEALTHY) {
+ if (c >= nparity)
+ missingdata++;
+ else
+ missingparity++;
+ rc->rc_error = ENXIO;
+ rc->rc_tried = 1; /* don't even try */
+ rc->rc_skipped = 1;
+ continue;
+ }
+#if 0
+ /*
+ * Too hard for the bootcode
+ */
+ if (vdev_dtl_contains(&cvd->vdev_dtl_map, bp->blk_birth, 1)) {
+ if (c >= nparity)
+ rm->rm_missingdata++;
+ else
+ rm->rm_missingparity++;
+ rc->rc_error = ESTALE;
+ rc->rc_skipped = 1;
+ continue;
+ }
+#endif
+ if (c >= nparity || missingdata > 0) {
+ if (rc->rc_data)
+ rc->rc_error = kid->v_read(kid, NULL,
+ rc->rc_data, rc->rc_offset, rc->rc_size);
+ else
+ rc->rc_error = ENXIO;
+ rc->rc_tried = 1;
+ rc->rc_skipped = 0;
+ }
+ }
+
+reconstruct:
+ parity_errors = 0;
+ data_errors = 0;
+ unexpected_errors = 0;
+ total_errors = 0;
+ parity_untried = 0;
+ for (c = 0; c < acols; c++) {
+ rc = &cols[c];
+
+ if (rc->rc_error) {
+ if (c < nparity)
+ parity_errors++;
+ else
+ data_errors++;
+
+ if (!rc->rc_skipped)
+ unexpected_errors++;
+
+ total_errors++;
+ } else if (c < nparity && !rc->rc_tried) {
+ parity_untried++;
+ }
+ }
+
+ /*
+ * There are three potential phases for a read:
+ * 1. produce valid data from the columns read
+ * 2. read all disks and try again
+ * 3. perform combinatorial reconstruction
+ *
+ * Each phase is progressively both more expensive and less
+ * likely to occur. If we encounter more errors than we can
+ * repair or all phases fail, we have no choice but to return
+ * an error.
+ */
+
+ /*
+ * If the number of errors we saw was correctable -- less than
+ * or equal to the number of parity disks read -- attempt to
+ * produce data that has a valid checksum. Naturally, this
+ * case applies in the absence of any errors.
+ */
+ if (total_errors <= nparity - parity_untried) {
+ switch (data_errors) {
+ case 0:
+ if (zio_checksum_error(bp, buf) == 0)
+ return (0);
+ break;
+
+ case 1:
+ /*
+ * We either attempt to read all the parity columns or
+ * none of them. If we didn't try to read parity, we
+ * wouldn't be here in the correctable case. There must
+ * also have been fewer parity errors than parity
+ * columns or, again, we wouldn't be in this code path.
+ */
+ //ASSERT(parity_untried == 0);
+ //ASSERT(parity_errors < nparity);
+
+ /*
+ * Find the column that reported the error.
+ */
+ for (c = nparity; c < acols; c++) {
+ rc = &cols[c];
+ if (rc->rc_error != 0)
+ break;
+ }
+ //ASSERT(c != acols);
+ //ASSERT(!rc->rc_skipped || rc->rc_error == ENXIO || rc->rc_error == ESTALE);
+
+ if (cols[VDEV_RAIDZ_P].rc_error == 0) {
+ vdev_raidz_reconstruct_p(cols, nparity,
+ acols, c);
+ } else {
+ //ASSERT(nparity > 1);
+ vdev_raidz_reconstruct_q(cols, nparity,
+ acols, c);
+ }
+
+ if (zio_checksum_error(bp, buf) == 0)
+ return (0);
+ break;
+
+ case 2:
+ /*
+ * Two data column errors require double parity.
+ */
+ //ASSERT(nparity == 2);
+
+ /*
+ * Find the two columns that reported errors.
+ */
+ for (c = nparity; c < acols; c++) {
+ rc = &cols[c];
+ if (rc->rc_error != 0)
+ break;
+ }
+ //ASSERT(c != acols);
+ //ASSERT(!rc->rc_skipped || rc->rc_error == ENXIO || rc->rc_error == ESTALE);
+
+ for (c1 = c++; c < acols; c++) {
+ rc = &cols[c];
+ if (rc->rc_error != 0)
+ break;
+ }
+ //ASSERT(c != acols);
+ //ASSERT(!rc->rc_skipped || rc->rc_error == ENXIO || rc->rc_error == ESTALE);
+
+ vdev_raidz_reconstruct_pq(cols, nparity, acols,
+ c1, c);
+
+ if (zio_checksum_error(bp, buf) == 0)
+ return (0);
+ break;
+
+ default:
+ break;
+ //ASSERT(nparity <= 2);
+ //ASSERT(0);
+ }
+ }
+
+ /*
+ * This isn't a typical situation -- either we got a read
+ * error or a child silently returned bad data. Read every
+ * block so we can try again with as much data and parity as
+ * we can track down. If we've already been through once
+ * before, all children will be marked as tried so we'll
+ * proceed to combinatorial reconstruction.
+ */
+ n = 0;
+ for (c = 0; c < acols; c++) {
+ rc = &cols[c];
+ if (rc->rc_tried)
+ continue;
+
+ devidx = rc->rc_devidx;
+ STAILQ_FOREACH(kid, &vdev->v_children, v_childlink)
+ if (kid->v_id == devidx)
+ break;
+ if (kid == NULL || kid->v_state != VDEV_STATE_HEALTHY) {
+ rc->rc_error = ENXIO;
+ rc->rc_tried = 1; /* don't even try */
+ rc->rc_skipped = 1;
+ continue;
+ }
+ if (rc->rc_data)
+ rc->rc_error = kid->v_read(kid, NULL,
+ rc->rc_data, rc->rc_offset, rc->rc_size);
+ else
+ rc->rc_error = ENXIO;
+ if (rc->rc_error == 0)
+ n++;
+ rc->rc_tried = 1;
+ rc->rc_skipped = 0;
+ }
+
+ /*
+ * If we managed to read anything more, retry the
+ * reconstruction.
+ */
+ if (n)
+ goto reconstruct;
+
+ /*
+ * At this point we've attempted to reconstruct the data given the
+ * errors we detected, and we've attempted to read all columns. There
+ * must, therefore, be one or more additional problems -- silent errors
+ * resulting in invalid data rather than explicit I/O errors resulting
+ * in absent data. Before we attempt combinatorial reconstruction make
+ * sure we have a chance of coming up with the right answer.
+ */
+ if (total_errors >= nparity) {
+ return (EIO);
+ }
+
+ asize = 0;
+ for (c = 0; c < acols; c++) {
+ rc = &cols[c];
+ if (rc->rc_size > asize)
+ asize = rc->rc_size;
+ }
+ if (cols[VDEV_RAIDZ_P].rc_error == 0) {
+ /*
+ * Attempt to reconstruct the data from parity P.
+ */
+ void *orig;
+ orig = zfs_alloc_temp(asize);
+ for (c = nparity; c < acols; c++) {
+ rc = &cols[c];
+
+ memcpy(orig, rc->rc_data, rc->rc_size);
+ vdev_raidz_reconstruct_p(cols, nparity, acols, c);
+
+ if (zio_checksum_error(bp, buf) == 0)
+ return (0);
+
+ memcpy(rc->rc_data, orig, rc->rc_size);
+ }
+ }
+
+ if (nparity > 1 && cols[VDEV_RAIDZ_Q].rc_error == 0) {
+ /*
+ * Attempt to reconstruct the data from parity Q.
+ */
+ void *orig;
+ orig = zfs_alloc_temp(asize);
+ for (c = nparity; c < acols; c++) {
+ rc = &cols[c];
+
+ memcpy(orig, rc->rc_data, rc->rc_size);
+ vdev_raidz_reconstruct_q(cols, nparity, acols, c);
+
+ if (zio_checksum_error(bp, buf) == 0)
+ return (0);
+
+ memcpy(rc->rc_data, orig, rc->rc_size);
+ }
+ }
+
+ if (nparity > 1 &&
+ cols[VDEV_RAIDZ_P].rc_error == 0 &&
+ cols[VDEV_RAIDZ_Q].rc_error == 0) {
+ /*
+ * Attempt to reconstruct the data from both P and Q.
+ */
+ void *orig, *orig1;
+ orig = zfs_alloc_temp(asize);
+ orig1 = zfs_alloc_temp(asize);
+ for (c = nparity; c < acols - 1; c++) {
+ rc = &cols[c];
+
+ memcpy(orig, rc->rc_data, rc->rc_size);
+
+ for (c1 = c + 1; c1 < acols; c1++) {
+ rc1 = &cols[c1];
+
+ memcpy(orig1, rc1->rc_data, rc1->rc_size);
+
+ vdev_raidz_reconstruct_pq(cols, nparity,
+ acols, c, c1);
+
+ if (zio_checksum_error(bp, buf) == 0)
+ return (0);
+
+ memcpy(rc1->rc_data, orig1, rc1->rc_size);
+ }
+
+ memcpy(rc->rc_data, orig, rc->rc_size);
+ }
+ }
+
+ return (EIO);
+}
+
OpenPOWER on IntegriCloud