summaryrefslogtreecommitdiffstats
path: root/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_queue.c
diff options
context:
space:
mode:
authorpjd <pjd@FreeBSD.org>2011-02-27 19:41:40 +0000
committerpjd <pjd@FreeBSD.org>2011-02-27 19:41:40 +0000
commit1b03c5bf41222b723415638f03e00ed12cac076a (patch)
treeef515cadc08bf427e4d3f1360199ec9827b1596b /sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_queue.c
parentc67d387baf03726323703774b1b320235fb1f24b (diff)
downloadFreeBSD-src-1b03c5bf41222b723415638f03e00ed12cac076a.zip
FreeBSD-src-1b03c5bf41222b723415638f03e00ed12cac076a.tar.gz
Finally... Import the latest open-source ZFS version - (SPA) 28.
Few new things available from now on: - Data deduplication. - Triple parity RAIDZ (RAIDZ3). - zfs diff. - zpool split. - Snapshot holds. - zpool import -F. Allows to rewind corrupted pool to earlier transaction group. - Possibility to import pool in read-only mode. MFC after: 1 month
Diffstat (limited to 'sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_queue.c')
-rw-r--r--sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_queue.c137
1 files changed, 118 insertions, 19 deletions
diff --git a/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_queue.c b/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_queue.c
index de3f1db..b44f3b2 100644
--- a/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_queue.c
+++ b/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_queue.c
@@ -24,7 +24,6 @@
*/
#include <sys/zfs_context.h>
-#include <sys/spa.h>
#include <sys/vdev_impl.h>
#include <sys/zio.h>
#include <sys/avl.h>
@@ -41,37 +40,48 @@
int zfs_vdev_max_pending = 10;
int zfs_vdev_min_pending = 4;
-/* deadline = pri + (LBOLT >> time_shift) */
+/* deadline = pri + ddi_get_lbolt64() >> time_shift) */
int zfs_vdev_time_shift = 6;
/* exponential I/O issue ramp-up rate */
int zfs_vdev_ramp_rate = 2;
/*
- * To reduce IOPs, we aggregate small adjacent i/os into one large i/o.
- * For read i/os, we also aggregate across small adjacency gaps.
+ * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
+ * For read I/Os, we also aggregate across small adjacency gaps; for writes
+ * we include spans of optional I/Os to aid aggregation at the disk even when
+ * they aren't able to help us aggregate at this level.
*/
int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE;
int zfs_vdev_read_gap_limit = 32 << 10;
+int zfs_vdev_write_gap_limit = 4 << 10;
SYSCTL_DECL(_vfs_zfs_vdev);
TUNABLE_INT("vfs.zfs.vdev.max_pending", &zfs_vdev_max_pending);
-SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, max_pending, CTLFLAG_RDTUN,
+SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, max_pending, CTLFLAG_RW,
&zfs_vdev_max_pending, 0, "Maximum I/O requests pending on each device");
TUNABLE_INT("vfs.zfs.vdev.min_pending", &zfs_vdev_min_pending);
-SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, min_pending, CTLFLAG_RDTUN,
+SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, min_pending, CTLFLAG_RW,
&zfs_vdev_min_pending, 0,
"Initial number of I/O requests pending to each device");
TUNABLE_INT("vfs.zfs.vdev.time_shift", &zfs_vdev_time_shift);
-SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, time_shift, CTLFLAG_RDTUN,
+SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, time_shift, CTLFLAG_RW,
&zfs_vdev_time_shift, 0, "Used for calculating I/O request deadline");
TUNABLE_INT("vfs.zfs.vdev.ramp_rate", &zfs_vdev_ramp_rate);
-SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, ramp_rate, CTLFLAG_RDTUN,
+SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, ramp_rate, CTLFLAG_RW,
&zfs_vdev_ramp_rate, 0, "Exponential I/O issue ramp-up rate");
TUNABLE_INT("vfs.zfs.vdev.aggregation_limit", &zfs_vdev_aggregation_limit);
-SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, aggregation_limit, CTLFLAG_RDTUN,
+SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, aggregation_limit, CTLFLAG_RW,
&zfs_vdev_aggregation_limit, 0,
"I/O requests are aggregated up to this size");
+TUNABLE_INT("vfs.zfs.vdev.read_gap_limit", &zfs_vdev_read_gap_limit);
+SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, read_gap_limit, CTLFLAG_RW,
+ &zfs_vdev_read_gap_limit, 0,
+ "Acceptable gap between two reads being aggregated");
+TUNABLE_INT("vfs.zfs.vdev.write_gap_limit", &zfs_vdev_write_gap_limit);
+SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, write_gap_limit, CTLFLAG_RW,
+ &zfs_vdev_write_gap_limit, 0,
+ "Acceptable gap between two writes being aggregated");
/*
* Virtual device vector for disk I/O scheduling.
@@ -191,12 +201,14 @@ vdev_queue_agg_io_done(zio_t *aio)
static zio_t *
vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
{
- zio_t *fio, *lio, *aio, *dio, *nio;
+ zio_t *fio, *lio, *aio, *dio, *nio, *mio;
avl_tree_t *t;
int flags;
uint64_t maxspan = zfs_vdev_aggregation_limit;
uint64_t maxgap;
+ int stretch;
+again:
ASSERT(MUTEX_HELD(&vq->vq_lock));
if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit ||
@@ -211,21 +223,88 @@ vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) {
/*
- * We can aggregate I/Os that are adjacent and of the
- * same flavor, as expressed by the AGG_INHERIT flags.
- * The latter is necessary so that certain attributes
- * of the I/O, such as whether it's a normal I/O or a
- * scrub/resilver, can be preserved in the aggregate.
+ * We can aggregate I/Os that are sufficiently adjacent and of
+ * the same flavor, as expressed by the AGG_INHERIT flags.
+ * The latter requirement is necessary so that certain
+ * attributes of the I/O, such as whether it's a normal I/O
+ * or a scrub/resilver, can be preserved in the aggregate.
+ * We can include optional I/Os, but don't allow them
+ * to begin a range as they add no benefit in that situation.
+ */
+
+ /*
+ * We keep track of the last non-optional I/O.
+ */
+ mio = (fio->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : fio;
+
+ /*
+ * Walk backwards through sufficiently contiguous I/Os
+ * recording the last non-option I/O.
*/
while ((dio = AVL_PREV(t, fio)) != NULL &&
(dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
- IO_SPAN(dio, lio) <= maxspan && IO_GAP(dio, fio) <= maxgap)
+ IO_SPAN(dio, lio) <= maxspan &&
+ IO_GAP(dio, fio) <= maxgap) {
fio = dio;
+ if (mio == NULL && !(fio->io_flags & ZIO_FLAG_OPTIONAL))
+ mio = fio;
+ }
+ /*
+ * Skip any initial optional I/Os.
+ */
+ while ((fio->io_flags & ZIO_FLAG_OPTIONAL) && fio != lio) {
+ fio = AVL_NEXT(t, fio);
+ ASSERT(fio != NULL);
+ }
+
+ /*
+ * Walk forward through sufficiently contiguous I/Os.
+ */
while ((dio = AVL_NEXT(t, lio)) != NULL &&
(dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
- IO_SPAN(fio, dio) <= maxspan && IO_GAP(lio, dio) <= maxgap)
+ IO_SPAN(fio, dio) <= maxspan &&
+ IO_GAP(lio, dio) <= maxgap) {
lio = dio;
+ if (!(lio->io_flags & ZIO_FLAG_OPTIONAL))
+ mio = lio;
+ }
+
+ /*
+ * Now that we've established the range of the I/O aggregation
+ * we must decide what to do with trailing optional I/Os.
+ * For reads, there's nothing to do. While we are unable to
+ * aggregate further, it's possible that a trailing optional
+ * I/O would allow the underlying device to aggregate with
+ * subsequent I/Os. We must therefore determine if the next
+ * non-optional I/O is close enough to make aggregation
+ * worthwhile.
+ */
+ stretch = B_FALSE;
+ if (t != &vq->vq_read_tree && mio != NULL) {
+ nio = lio;
+ while ((dio = AVL_NEXT(t, nio)) != NULL &&
+ IO_GAP(nio, dio) == 0 &&
+ IO_GAP(mio, dio) <= zfs_vdev_write_gap_limit) {
+ nio = dio;
+ if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
+ stretch = B_TRUE;
+ break;
+ }
+ }
+ }
+
+ if (stretch) {
+ /* This may be a no-op. */
+ VERIFY((dio = AVL_NEXT(t, lio)) != NULL);
+ dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
+ } else {
+ while (lio != mio && lio != fio) {
+ ASSERT(lio->io_flags & ZIO_FLAG_OPTIONAL);
+ lio = AVL_PREV(t, lio);
+ ASSERT(lio != NULL);
+ }
+ }
}
if (fio != lio) {
@@ -244,10 +323,15 @@ vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
ASSERT(dio->io_type == aio->io_type);
ASSERT(dio->io_vdev_tree == t);
- if (dio->io_type == ZIO_TYPE_WRITE)
+ if (dio->io_flags & ZIO_FLAG_NODATA) {
+ ASSERT(dio->io_type == ZIO_TYPE_WRITE);
+ bzero((char *)aio->io_data + (dio->io_offset -
+ aio->io_offset), dio->io_size);
+ } else if (dio->io_type == ZIO_TYPE_WRITE) {
bcopy(dio->io_data, (char *)aio->io_data +
(dio->io_offset - aio->io_offset),
dio->io_size);
+ }
zio_add_child(dio, aio);
vdev_queue_io_remove(vq, dio);
@@ -263,6 +347,20 @@ vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
ASSERT(fio->io_vdev_tree == t);
vdev_queue_io_remove(vq, fio);
+ /*
+ * If the I/O is or was optional and therefore has no data, we need to
+ * simply discard it. We need to drop the vdev queue's lock to avoid a
+ * deadlock that we could encounter since this I/O will complete
+ * immediately.
+ */
+ if (fio->io_flags & ZIO_FLAG_NODATA) {
+ mutex_exit(&vq->vq_lock);
+ zio_vdev_io_bypass(fio);
+ zio_execute(fio);
+ mutex_enter(&vq->vq_lock);
+ goto again;
+ }
+
avl_add(&vq->vq_pending_tree, fio);
return (fio);
@@ -288,7 +386,8 @@ vdev_queue_io(zio_t *zio)
mutex_enter(&vq->vq_lock);
- zio->io_deadline = (lbolt64 >> zfs_vdev_time_shift) + zio->io_priority;
+ zio->io_deadline = (ddi_get_lbolt64() >> zfs_vdev_time_shift) +
+ zio->io_priority;
vdev_queue_io_add(vq, zio);
OpenPOWER on IntegriCloud