summaryrefslogtreecommitdiffstats
path: root/lib
diff options
context:
space:
mode:
authorrdivacky <rdivacky@FreeBSD.org>2010-01-15 15:37:28 +0000
committerrdivacky <rdivacky@FreeBSD.org>2010-01-15 15:37:28 +0000
commit3fba7d16b41dfbefe3b1be6bc0ab94c017728f79 (patch)
treebe5a687969f682edded4aa6f13594ffd9aa9030e /lib
parenta16c51cee9225a354c999dd1076d5dba2aa79807 (diff)
downloadFreeBSD-src-3fba7d16b41dfbefe3b1be6bc0ab94c017728f79.zip
FreeBSD-src-3fba7d16b41dfbefe3b1be6bc0ab94c017728f79.tar.gz
Update LLVM to 93512.
Diffstat (limited to 'lib')
-rw-r--r--lib/Analysis/AliasAnalysis.cpp11
-rw-r--r--lib/Analysis/Analysis.cpp8
-rw-r--r--lib/Analysis/ConstantFolding.cpp23
-rw-r--r--lib/Analysis/DbgInfoPrinter.cpp59
-rw-r--r--lib/Analysis/DebugInfo.cpp164
-rw-r--r--lib/Analysis/IVUsers.cpp5
-rw-r--r--lib/Analysis/InlineCost.cpp40
-rw-r--r--lib/Analysis/LoopInfo.cpp5
-rw-r--r--lib/Analysis/ScalarEvolution.cpp22
-rw-r--r--lib/Analysis/ValueTracking.cpp28
-rw-r--r--lib/AsmParser/LLParser.cpp211
-rw-r--r--lib/AsmParser/LLParser.h20
-rw-r--r--lib/Bitcode/Reader/BitReader.cpp27
-rw-r--r--lib/Bitcode/Reader/BitcodeReader.cpp36
-rw-r--r--lib/Bitcode/Writer/BitcodeWriter.cpp47
-rw-r--r--lib/Bitcode/Writer/ValueEnumerator.cpp62
-rw-r--r--lib/Bitcode/Writer/ValueEnumerator.h4
-rw-r--r--lib/CodeGen/AggressiveAntiDepBreaker.cpp159
-rw-r--r--lib/CodeGen/AggressiveAntiDepBreaker.h28
-rw-r--r--lib/CodeGen/AsmPrinter/AsmPrinter.cpp328
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfDebug.cpp178
-rw-r--r--lib/CodeGen/CMakeLists.txt3
-rw-r--r--lib/CodeGen/CriticalAntiDepBreaker.cpp30
-rw-r--r--lib/CodeGen/CriticalAntiDepBreaker.h8
-rw-r--r--lib/CodeGen/DeadMachineInstructionElim.cpp2
-rw-r--r--lib/CodeGen/ELFCodeEmitter.cpp2
-rw-r--r--lib/CodeGen/ELFWriter.cpp2
-rw-r--r--lib/CodeGen/ExactHazardRecognizer.cpp14
-rw-r--r--lib/CodeGen/GCMetadata.cpp3
-rw-r--r--lib/CodeGen/GCStrategy.cpp3
-rw-r--r--lib/CodeGen/IfConversion.cpp28
-rw-r--r--lib/CodeGen/IntrinsicLowering.cpp10
-rw-r--r--lib/CodeGen/LLVMTargetMachine.cpp21
-rw-r--r--lib/CodeGen/LiveInterval.cpp7
-rw-r--r--lib/CodeGen/LiveIntervalAnalysis.cpp94
-rw-r--r--lib/CodeGen/LiveVariables.cpp22
-rw-r--r--lib/CodeGen/LowerSubregs.cpp26
-rw-r--r--lib/CodeGen/MachOWriter.cpp5
-rw-r--r--lib/CodeGen/MachineBasicBlock.cpp3
-rw-r--r--lib/CodeGen/MachineFunction.cpp9
-rw-r--r--lib/CodeGen/MachineInstr.cpp20
-rw-r--r--lib/CodeGen/MachineLICM.cpp24
-rw-r--r--lib/CodeGen/MachineLoopInfo.cpp5
-rw-r--r--lib/CodeGen/MachineSSAUpdater.cpp4
-rw-r--r--lib/CodeGen/MachineSink.cpp8
-rw-r--r--lib/CodeGen/MachineVerifier.cpp112
-rw-r--r--lib/CodeGen/OptimizeExts.cpp185
-rw-r--r--lib/CodeGen/PBQP/AnnotatedGraph.h2
-rw-r--r--lib/CodeGen/PBQP/ExhaustiveSolver.h2
-rw-r--r--lib/CodeGen/PBQP/GraphBase.h2
-rw-r--r--lib/CodeGen/PBQP/HeuristicSolver.h2
-rw-r--r--lib/CodeGen/PBQP/Heuristics/Briggs.h2
-rw-r--r--lib/CodeGen/PBQP/PBQPMath.h2
-rw-r--r--lib/CodeGen/PBQP/SimpleGraph.h2
-rw-r--r--lib/CodeGen/PBQP/Solution.h2
-rw-r--r--lib/CodeGen/PBQP/Solver.h2
-rw-r--r--lib/CodeGen/PHIElimination.cpp6
-rw-r--r--lib/CodeGen/PostRASchedulerList.cpp26
-rw-r--r--lib/CodeGen/PreAllocSplitting.cpp67
-rw-r--r--lib/CodeGen/ProcessImplicitDefs.cpp2
-rw-r--r--lib/CodeGen/RegAllocLinearScan.cpp64
-rw-r--r--lib/CodeGen/RegAllocLocal.cpp34
-rw-r--r--lib/CodeGen/RegAllocPBQP.cpp14
-rw-r--r--lib/CodeGen/ScheduleDAG.cpp80
-rw-r--r--lib/CodeGen/SelectionDAG/CallingConvLower.cpp13
-rw-r--r--lib/CodeGen/SelectionDAG/DAGCombiner.cpp300
-rw-r--r--lib/CodeGen/SelectionDAG/FastISel.cpp34
-rw-r--r--lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp2
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeDAG.cpp15
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp28
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp24
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeTypes.cpp42
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeTypes.h3
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp5
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp117
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp16
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp12
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp40
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp8
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAG.cpp62
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp50
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h12
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp225
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGPrinter.cpp2
-rw-r--r--lib/CodeGen/SelectionDAG/TargetLowering.cpp74
-rw-r--r--lib/CodeGen/ShrinkWrapping.cpp74
-rw-r--r--lib/CodeGen/SimpleRegisterCoalescing.cpp127
-rw-r--r--lib/CodeGen/SjLjEHPrepare.cpp9
-rw-r--r--lib/CodeGen/SlotIndexes.cpp12
-rw-r--r--lib/CodeGen/Spiller.cpp16
-rw-r--r--lib/CodeGen/StackProtector.cpp2
-rw-r--r--lib/CodeGen/StackSlotColoring.cpp26
-rw-r--r--lib/CodeGen/StrongPHIElimination.cpp12
-rw-r--r--lib/CodeGen/TailDuplication.cpp39
-rw-r--r--lib/CodeGen/TargetInstrInfoImpl.cpp7
-rw-r--r--lib/CodeGen/TwoAddressInstructionPass.cpp24
-rw-r--r--lib/CodeGen/VirtRegMap.cpp2
-rw-r--r--lib/CodeGen/VirtRegRewriter.cpp144
-rw-r--r--lib/ExecutionEngine/ExecutionEngine.cpp44
-rw-r--r--lib/ExecutionEngine/ExecutionEngineBindings.cpp34
-rw-r--r--lib/ExecutionEngine/Interpreter/Execution.cpp78
-rw-r--r--lib/ExecutionEngine/JIT/JIT.cpp11
-rw-r--r--lib/ExecutionEngine/JIT/JITEmitter.cpp60
-rw-r--r--lib/ExecutionEngine/JIT/JITMemoryManager.cpp2
-rw-r--r--lib/ExecutionEngine/JIT/OProfileJITEventListener.cpp16
-rw-r--r--lib/Linker/LinkModules.cpp34
-rw-r--r--lib/MC/MCExpr.cpp5
-rw-r--r--lib/MC/MCInst.cpp9
-rw-r--r--lib/MC/MCSectionELF.cpp7
-rw-r--r--lib/MC/MCSymbol.cpp14
-rw-r--r--lib/MC/MCValue.cpp3
-rw-r--r--lib/Support/APInt.cpp68
-rw-r--r--lib/Support/CommandLine.cpp8
-rw-r--r--lib/Support/ConstantRange.cpp3
-rw-r--r--lib/Support/ErrorHandling.cpp9
-rw-r--r--lib/Support/FormattedStream.cpp8
-rw-r--r--lib/Support/Statistic.cpp3
-rw-r--r--lib/Support/StringExtras.cpp59
-rw-r--r--lib/Support/StringRef.cpp25
-rw-r--r--lib/Support/Timer.cpp3
-rw-r--r--lib/Support/Twine.cpp15
-rw-r--r--lib/System/Win32/DynamicLibrary.inc42
-rw-r--r--lib/Target/ARM/ARMBaseInstrInfo.cpp67
-rw-r--r--lib/Target/ARM/ARMBaseInstrInfo.h2
-rw-r--r--lib/Target/ARM/ARMBaseRegisterInfo.cpp15
-rw-r--r--lib/Target/ARM/ARMISelDAGToDAG.cpp321
-rw-r--r--lib/Target/ARM/ARMISelLowering.cpp23
-rw-r--r--lib/Target/ARM/ARMInstrInfo.td4
-rw-r--r--lib/Target/ARM/ARMInstrThumb.td33
-rw-r--r--lib/Target/ARM/ARMInstrThumb2.td2
-rw-r--r--lib/Target/ARM/ARMLoadStoreOptimizer.cpp12
-rw-r--r--lib/Target/ARM/ARMRegisterInfo.td13
-rw-r--r--lib/Target/ARM/AsmParser/ARMAsmParser.cpp39
-rw-r--r--lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp27
-rw-r--r--lib/Target/Alpha/AlphaISelDAGToDAG.cpp26
-rw-r--r--lib/Target/Blackfin/AsmPrinter/BlackfinAsmPrinter.cpp9
-rw-r--r--lib/Target/Blackfin/BlackfinISelDAGToDAG.cpp11
-rw-r--r--lib/Target/CBackend/CBackend.cpp38
-rw-r--r--lib/Target/CellSPU/SPUISelDAGToDAG.cpp171
-rw-r--r--lib/Target/MSP430/MSP430ISelDAGToDAG.cpp67
-rw-r--r--lib/Target/MSP430/MSP430ISelLowering.cpp13
-rw-r--r--lib/Target/MSP430/MSP430InstrInfo.td40
-rw-r--r--lib/Target/Mips/MipsISelDAGToDAG.cpp75
-rw-r--r--lib/Target/PIC16/PIC16ISelDAGToDAG.cpp4
-rw-r--r--lib/Target/PIC16/PIC16ISelDAGToDAG.h4
-rw-r--r--lib/Target/PowerPC/AsmPrinter/PPCAsmPrinter.cpp122
-rw-r--r--lib/Target/PowerPC/PPCISelDAGToDAG.cpp36
-rw-r--r--lib/Target/PowerPC/PPCInstrInfo.td8
-rw-r--r--lib/Target/PowerPC/PPCJITInfo.cpp2
-rw-r--r--lib/Target/PowerPC/PPCMCAsmInfo.cpp1
-rw-r--r--lib/Target/PowerPC/README.txt33
-rw-r--r--lib/Target/README.txt48
-rw-r--r--lib/Target/Sparc/SparcISelDAGToDAG.cpp19
-rw-r--r--lib/Target/SubtargetFeature.cpp3
-rw-r--r--lib/Target/SystemZ/SystemZISelDAGToDAG.cpp115
-rw-r--r--lib/Target/Target.cpp2
-rw-r--r--lib/Target/TargetLoweringObjectFile.cpp34
-rw-r--r--lib/Target/X86/AsmParser/X86AsmParser.cpp36
-rw-r--r--lib/Target/X86/AsmPrinter/X86AsmPrinter.cpp66
-rw-r--r--lib/Target/X86/AsmPrinter/X86MCInstLower.cpp28
-rw-r--r--lib/Target/X86/README-SSE.txt20
-rw-r--r--lib/Target/X86/README.txt83
-rw-r--r--lib/Target/X86/X86.td4
-rw-r--r--lib/Target/X86/X86CodeEmitter.cpp20
-rw-r--r--lib/Target/X86/X86FastISel.cpp16
-rw-r--r--lib/Target/X86/X86FloatingPoint.cpp16
-rw-r--r--lib/Target/X86/X86ISelDAGToDAG.cpp157
-rw-r--r--lib/Target/X86/X86ISelLowering.cpp241
-rw-r--r--lib/Target/X86/X86Instr64bit.td94
-rw-r--r--lib/Target/X86/X86InstrInfo.cpp73
-rw-r--r--lib/Target/X86/X86InstrInfo.h10
-rw-r--r--lib/Target/X86/X86InstrInfo.td75
-rw-r--r--lib/Target/X86/X86InstrSSE.td10
-rw-r--r--lib/Target/X86/X86JITInfo.cpp2
-rw-r--r--lib/Target/X86/X86RegisterInfo.cpp9
-rw-r--r--lib/Target/X86/X86Subtarget.cpp3
-rw-r--r--lib/Target/X86/X86Subtarget.h7
-rw-r--r--lib/Target/XCore/XCoreISelDAGToDAG.cpp31
-rw-r--r--lib/Transforms/IPO/ArgumentPromotion.cpp10
-rw-r--r--lib/Transforms/IPO/DeadArgumentElimination.cpp18
-rw-r--r--lib/Transforms/IPO/FunctionAttrs.cpp66
-rw-r--r--lib/Transforms/IPO/GlobalOpt.cpp93
-rw-r--r--lib/Transforms/IPO/Inliner.cpp22
-rw-r--r--lib/Transforms/IPO/Internalize.cpp6
-rw-r--r--lib/Transforms/IPO/MergeFunctions.cpp8
-rw-r--r--lib/Transforms/IPO/PartialInlining.cpp2
-rw-r--r--lib/Transforms/IPO/StructRetPromotion.cpp11
-rw-r--r--lib/Transforms/InstCombine/CMakeLists.txt17
-rw-r--r--lib/Transforms/InstCombine/InstCombine.h349
-rw-r--r--lib/Transforms/InstCombine/InstCombineAddSub.cpp740
-rw-r--r--lib/Transforms/InstCombine/InstCombineAndOrXor.cpp1990
-rw-r--r--lib/Transforms/InstCombine/InstCombineCalls.cpp1142
-rw-r--r--lib/Transforms/InstCombine/InstCombineCasts.cpp1301
-rw-r--r--lib/Transforms/InstCombine/InstCombineCompares.cpp2475
-rw-r--r--lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp613
-rw-r--r--lib/Transforms/InstCombine/InstCombineMulDivRem.cpp695
-rw-r--r--lib/Transforms/InstCombine/InstCombinePHI.cpp841
-rw-r--r--lib/Transforms/InstCombine/InstCombineSelect.cpp703
-rw-r--r--lib/Transforms/InstCombine/InstCombineShifts.cpp427
-rw-r--r--lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp1106
-rw-r--r--lib/Transforms/InstCombine/InstCombineVectorOps.cpp560
-rw-r--r--lib/Transforms/InstCombine/InstCombineWorklist.h105
-rw-r--r--lib/Transforms/InstCombine/InstructionCombining.cpp1274
-rw-r--r--lib/Transforms/InstCombine/Makefile15
-rw-r--r--lib/Transforms/Instrumentation/BlockProfiling.cpp128
-rw-r--r--lib/Transforms/Instrumentation/CMakeLists.txt2
-rw-r--r--lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp4
-rw-r--r--lib/Transforms/Instrumentation/ProfilingUtils.cpp2
-rw-r--r--lib/Transforms/Instrumentation/RSProfiling.cpp662
-rw-r--r--lib/Transforms/Instrumentation/RSProfiling.h31
-rw-r--r--lib/Transforms/Makefile2
-rw-r--r--lib/Transforms/Scalar/ABCD.cpp2
-rw-r--r--lib/Transforms/Scalar/ADCE.cpp3
-rw-r--r--lib/Transforms/Scalar/CMakeLists.txt1
-rw-r--r--lib/Transforms/Scalar/CodeGenPrepare.cpp12
-rw-r--r--lib/Transforms/Scalar/DeadStoreElimination.cpp84
-rw-r--r--lib/Transforms/Scalar/GVN.cpp44
-rw-r--r--lib/Transforms/Scalar/IndVarSimplify.cpp10
-rw-r--r--lib/Transforms/Scalar/InstructionCombining.cpp13736
-rw-r--r--lib/Transforms/Scalar/JumpThreading.cpp255
-rw-r--r--lib/Transforms/Scalar/LICM.cpp10
-rw-r--r--lib/Transforms/Scalar/LoopIndexSplit.cpp4
-rw-r--r--lib/Transforms/Scalar/LoopStrengthReduce.cpp2
-rw-r--r--lib/Transforms/Scalar/LoopUnrollPass.cpp12
-rw-r--r--lib/Transforms/Scalar/LoopUnswitch.cpp26
-rw-r--r--lib/Transforms/Scalar/MemCpyOptimizer.cpp13
-rw-r--r--lib/Transforms/Scalar/Reassociate.cpp48
-rw-r--r--lib/Transforms/Scalar/SCCP.cpp42
-rw-r--r--lib/Transforms/Scalar/SCCVN.cpp3
-rw-r--r--lib/Transforms/Scalar/ScalarReplAggregates.cpp18
-rw-r--r--lib/Transforms/Scalar/SimplifyCFGPass.cpp7
-rw-r--r--lib/Transforms/Scalar/SimplifyLibCalls.cpp85
-rw-r--r--lib/Transforms/Scalar/TailDuplication.cpp6
-rw-r--r--lib/Transforms/Utils/AddrModeMatcher.cpp5
-rw-r--r--lib/Transforms/Utils/BasicBlockUtils.cpp22
-rw-r--r--lib/Transforms/Utils/BasicInliner.cpp10
-rw-r--r--lib/Transforms/Utils/CloneFunction.cpp16
-rw-r--r--lib/Transforms/Utils/CloneLoop.cpp4
-rw-r--r--lib/Transforms/Utils/CodeExtractor.cpp41
-rw-r--r--lib/Transforms/Utils/InlineFunction.cpp45
-rw-r--r--lib/Transforms/Utils/InstructionNamer.cpp4
-rw-r--r--lib/Transforms/Utils/Local.cpp56
-rw-r--r--lib/Transforms/Utils/LoopUnroll.cpp22
-rw-r--r--lib/Transforms/Utils/LowerInvoke.cpp2
-rw-r--r--lib/Transforms/Utils/LowerSwitch.cpp10
-rw-r--r--lib/Transforms/Utils/PromoteMemoryToRegister.cpp4
-rw-r--r--lib/Transforms/Utils/SSAUpdater.cpp4
-rw-r--r--lib/Transforms/Utils/SSI.cpp2
-rw-r--r--lib/Transforms/Utils/SimplifyCFG.cpp37
-rw-r--r--lib/Transforms/Utils/UnifyFunctionExitNodes.cpp2
-rw-r--r--lib/VMCore/AsmWriter.cpp34
-rw-r--r--lib/VMCore/Attributes.cpp7
-rw-r--r--lib/VMCore/AutoUpgrade.cpp59
-rw-r--r--lib/VMCore/ConstantFold.cpp12
-rw-r--r--lib/VMCore/Constants.cpp28
-rw-r--r--lib/VMCore/ConstantsContext.h2
-rw-r--r--lib/VMCore/Core.cpp68
-rw-r--r--lib/VMCore/Function.cpp2
-rw-r--r--lib/VMCore/InlineAsm.cpp2
-rw-r--r--lib/VMCore/Instruction.cpp35
-rw-r--r--lib/VMCore/Instructions.cpp29
-rw-r--r--lib/VMCore/IntrinsicInst.cpp26
-rw-r--r--lib/VMCore/Mangler.cpp200
-rw-r--r--lib/VMCore/Metadata.cpp212
-rw-r--r--lib/VMCore/Module.cpp24
-rw-r--r--lib/VMCore/Pass.cpp5
-rw-r--r--lib/VMCore/PassManager.cpp67
-rw-r--r--lib/VMCore/PrintModulePass.cpp5
-rw-r--r--lib/VMCore/Type.cpp31
-rw-r--r--lib/VMCore/TypeSymbolTable.cpp21
-rw-r--r--lib/VMCore/TypesContext.h6
-rw-r--r--lib/VMCore/Value.cpp32
-rw-r--r--lib/VMCore/ValueSymbolTable.cpp20
-rw-r--r--lib/VMCore/Verifier.cpp18
274 files changed, 19422 insertions, 18656 deletions
diff --git a/lib/Analysis/AliasAnalysis.cpp b/lib/Analysis/AliasAnalysis.cpp
index dee9b53..371dcaf 100644
--- a/lib/Analysis/AliasAnalysis.cpp
+++ b/lib/Analysis/AliasAnalysis.cpp
@@ -116,13 +116,16 @@ AliasAnalysis::getModRefBehavior(Function *F,
return DoesNotAccessMemory;
if (F->onlyReadsMemory())
return OnlyReadsMemory;
- if (unsigned id = F->getIntrinsicID()) {
+ if (unsigned id = F->getIntrinsicID())
+ return getModRefBehavior(id);
+ }
+ return UnknownModRefBehavior;
+}
+
+AliasAnalysis::ModRefBehavior AliasAnalysis::getModRefBehavior(unsigned iid) {
#define GET_INTRINSIC_MODREF_BEHAVIOR
#include "llvm/Intrinsics.gen"
#undef GET_INTRINSIC_MODREF_BEHAVIOR
- }
- }
- return UnknownModRefBehavior;
}
AliasAnalysis::ModRefResult
diff --git a/lib/Analysis/Analysis.cpp b/lib/Analysis/Analysis.cpp
index f8cb323..398dec7 100644
--- a/lib/Analysis/Analysis.cpp
+++ b/lib/Analysis/Analysis.cpp
@@ -13,11 +13,11 @@
using namespace llvm;
-int LLVMVerifyModule(LLVMModuleRef M, LLVMVerifierFailureAction Action,
- char **OutMessages) {
+LLVMBool LLVMVerifyModule(LLVMModuleRef M, LLVMVerifierFailureAction Action,
+ char **OutMessages) {
std::string Messages;
- int Result = verifyModule(*unwrap(M),
+ LLVMBool Result = verifyModule(*unwrap(M),
static_cast<VerifierFailureAction>(Action),
OutMessages? &Messages : 0);
@@ -27,7 +27,7 @@ int LLVMVerifyModule(LLVMModuleRef M, LLVMVerifierFailureAction Action,
return Result;
}
-int LLVMVerifyFunction(LLVMValueRef Fn, LLVMVerifierFailureAction Action) {
+LLVMBool LLVMVerifyFunction(LLVMValueRef Fn, LLVMVerifierFailureAction Action) {
return verifyFunction(*unwrap<Function>(Fn),
static_cast<VerifierFailureAction>(Action));
}
diff --git a/lib/Analysis/ConstantFolding.cpp b/lib/Analysis/ConstantFolding.cpp
index eaf90d0..4ae8859 100644
--- a/lib/Analysis/ConstantFolding.cpp
+++ b/lib/Analysis/ConstantFolding.cpp
@@ -398,8 +398,8 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
BytesLoaded, TD))
return 0;
- APInt ResultVal(IntType->getBitWidth(), 0);
- for (unsigned i = 0; i != BytesLoaded; ++i) {
+ APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
+ for (unsigned i = 1; i != BytesLoaded; ++i) {
ResultVal <<= 8;
ResultVal |= APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1-i]);
}
@@ -718,14 +718,13 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
switch (Opcode) {
default: return 0;
+ case Instruction::ICmp:
+ case Instruction::FCmp: assert(0 && "Invalid for compares");
case Instruction::Call:
if (Function *F = dyn_cast<Function>(Ops[0]))
if (canConstantFoldCallTo(F))
return ConstantFoldCall(F, Ops+1, NumOps-1);
return 0;
- case Instruction::ICmp:
- case Instruction::FCmp:
- llvm_unreachable("This function is invalid for compares: no predicate specified");
case Instruction::PtrToInt:
// If the input is a inttoptr, eliminate the pair. This requires knowing
// the width of a pointer, so it can't be done in ConstantExpr::getCast.
@@ -877,6 +876,20 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
CE1->getOperand(0), TD);
}
}
+
+ // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
+ // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
+ if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
+ CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
+ Constant *LHS =
+ ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,TD);
+ Constant *RHS =
+ ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,TD);
+ unsigned OpC =
+ Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
+ Constant *Ops[] = { LHS, RHS };
+ return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, 2, TD);
+ }
}
return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
diff --git a/lib/Analysis/DbgInfoPrinter.cpp b/lib/Analysis/DbgInfoPrinter.cpp
index 7d72b38..3532b05 100644
--- a/lib/Analysis/DbgInfoPrinter.cpp
+++ b/lib/Analysis/DbgInfoPrinter.cpp
@@ -37,8 +37,6 @@ PrintDirectory("print-fullpath",
namespace {
class PrintDbgInfo : public FunctionPass {
raw_ostream &Out;
- void printStopPoint(const DbgStopPointInst *DSI);
- void printFuncStart(const DbgFuncStartInst *FS);
void printVariableDeclaration(const Value *V);
public:
static char ID; // Pass identification
@@ -74,27 +72,6 @@ void PrintDbgInfo::printVariableDeclaration(const Value *V) {
Out << File << ":" << LineNo << "\n";
}
-void PrintDbgInfo::printStopPoint(const DbgStopPointInst *DSI) {
- if (PrintDirectory)
- if (MDString *Str = dyn_cast<MDString>(DSI->getDirectory()))
- Out << Str->getString() << '/';
-
- if (MDString *Str = dyn_cast<MDString>(DSI->getFileName()))
- Out << Str->getString();
- Out << ':' << DSI->getLine();
-
- if (unsigned Col = DSI->getColumn())
- Out << ':' << Col;
-}
-
-void PrintDbgInfo::printFuncStart(const DbgFuncStartInst *FS) {
- DISubprogram Subprogram(FS->getSubprogram());
- Out << "; fully qualified function name: " << Subprogram.getDisplayName()
- << " return type: " << Subprogram.getReturnTypeName()
- << " at line " << Subprogram.getLineNumber()
- << "\n\n";
-}
-
bool PrintDbgInfo::runOnFunction(Function &F) {
if (F.isDeclaration())
return false;
@@ -108,57 +85,21 @@ bool PrintDbgInfo::runOnFunction(Function &F) {
// Skip dead blocks.
continue;
- const DbgStopPointInst *DSI = findBBStopPoint(BB);
Out << BB->getName();
Out << ":";
- if (DSI) {
- Out << "; (";
- printStopPoint(DSI);
- Out << ")";
- }
-
Out << "\n";
- // A dbgstoppoint's information is valid until we encounter a new one.
- const DbgStopPointInst *LastDSP = DSI;
- bool Printed = DSI != 0;
for (BasicBlock::const_iterator i = BB->begin(), e = BB->end();
i != e; ++i) {
- if (isa<DbgInfoIntrinsic>(i)) {
- if ((DSI = dyn_cast<DbgStopPointInst>(i))) {
- if (DSI->getContext() == LastDSP->getContext() &&
- DSI->getLineValue() == LastDSP->getLineValue() &&
- DSI->getColumnValue() == LastDSP->getColumnValue())
- // Don't print same location twice.
- continue;
-
- LastDSP = cast<DbgStopPointInst>(i);
-
- // Don't print consecutive stoppoints, use a flag to know which one we
- // printed.
- Printed = false;
- } else if (const DbgFuncStartInst *FS = dyn_cast<DbgFuncStartInst>(i)) {
- printFuncStart(FS);
- }
- } else {
- if (!Printed && LastDSP) {
- Out << "; ";
- printStopPoint(LastDSP);
- Out << "\n";
- Printed = true;
- }
- Out << *i << '\n';
printVariableDeclaration(i);
if (const User *U = dyn_cast<User>(i)) {
for(unsigned i=0;i<U->getNumOperands();i++)
printVariableDeclaration(U->getOperand(i));
}
- }
}
}
-
return false;
}
diff --git a/lib/Analysis/DebugInfo.cpp b/lib/Analysis/DebugInfo.cpp
index de2d839..59ba807 100644
--- a/lib/Analysis/DebugInfo.cpp
+++ b/lib/Analysis/DebugInfo.cpp
@@ -599,9 +599,7 @@ void DIVariable::dump() const {
//===----------------------------------------------------------------------===//
DIFactory::DIFactory(Module &m)
- : M(m), VMContext(M.getContext()), DeclareFn(0) {
- EmptyStructPtr = PointerType::getUnqual(StructType::get(VMContext));
-}
+ : M(m), VMContext(M.getContext()), DeclareFn(0) {}
Constant *DIFactory::GetTagConstant(unsigned TAG) {
assert((TAG & LLVMDebugVersionMask) == 0 &&
@@ -1033,58 +1031,52 @@ DILocation DIFactory::CreateLocation(unsigned LineNo, unsigned ColumnNo,
/// InsertDeclare - Insert a new llvm.dbg.declare intrinsic call.
Instruction *DIFactory::InsertDeclare(Value *Storage, DIVariable D,
- Instruction *InsertBefore) {
- // Cast the storage to a {}* for the call to llvm.dbg.declare.
- Storage = new BitCastInst(Storage, EmptyStructPtr, "", InsertBefore);
-
+ Instruction *InsertBefore) {
if (!DeclareFn)
DeclareFn = Intrinsic::getDeclaration(&M, Intrinsic::dbg_declare);
- Value *Args[] = { Storage, D.getNode() };
+ Value *Elts[] = { Storage };
+ Value *Args[] = { MDNode::get(Storage->getContext(), Elts, 1), D.getNode() };
return CallInst::Create(DeclareFn, Args, Args+2, "", InsertBefore);
}
/// InsertDeclare - Insert a new llvm.dbg.declare intrinsic call.
Instruction *DIFactory::InsertDeclare(Value *Storage, DIVariable D,
- BasicBlock *InsertAtEnd) {
- // Cast the storage to a {}* for the call to llvm.dbg.declare.
- Storage = new BitCastInst(Storage, EmptyStructPtr, "", InsertAtEnd);
-
+ BasicBlock *InsertAtEnd) {
if (!DeclareFn)
DeclareFn = Intrinsic::getDeclaration(&M, Intrinsic::dbg_declare);
- Value *Args[] = { Storage, D.getNode() };
+ Value *Elts[] = { Storage };
+ Value *Args[] = { MDNode::get(Storage->getContext(), Elts, 1), D.getNode() };
return CallInst::Create(DeclareFn, Args, Args+2, "", InsertAtEnd);
}
/// InsertDbgValueIntrinsic - Insert a new llvm.dbg.value intrinsic call.
-Instruction *DIFactory::InsertDbgValueIntrinsic(Value *V, Value *Offset,
+Instruction *DIFactory::InsertDbgValueIntrinsic(Value *V, uint64_t Offset,
DIVariable D,
Instruction *InsertBefore) {
assert(V && "no value passed to dbg.value");
- assert(Offset->getType() == Type::getInt64Ty(V->getContext()) &&
- "offset must be i64");
if (!ValueFn)
ValueFn = Intrinsic::getDeclaration(&M, Intrinsic::dbg_value);
Value *Elts[] = { V };
- Value *Args[] = { MDNode::get(V->getContext(), Elts, 1), Offset,
+ Value *Args[] = { MDNode::get(V->getContext(), Elts, 1),
+ ConstantInt::get(Type::getInt64Ty(V->getContext()), Offset),
D.getNode() };
return CallInst::Create(ValueFn, Args, Args+3, "", InsertBefore);
}
/// InsertDbgValueIntrinsic - Insert a new llvm.dbg.value intrinsic call.
-Instruction *DIFactory::InsertDbgValueIntrinsic(Value *V, Value *Offset,
+Instruction *DIFactory::InsertDbgValueIntrinsic(Value *V, uint64_t Offset,
DIVariable D,
BasicBlock *InsertAtEnd) {
assert(V && "no value passed to dbg.value");
- assert(Offset->getType() == Type::getInt64Ty(V->getContext()) &&
- "offset must be i64");
if (!ValueFn)
ValueFn = Intrinsic::getDeclaration(&M, Intrinsic::dbg_value);
Value *Elts[] = { V };
- Value *Args[] = { MDNode::get(V->getContext(), Elts, 1), Offset,
+ Value *Args[] = { MDNode::get(V->getContext(), Elts, 1),
+ ConstantInt::get(Type::getInt64Ty(V->getContext()), Offset),
D.getNode() };
return CallInst::Create(ValueFn, Args, Args+3, "", InsertAtEnd);
}
@@ -1242,52 +1234,6 @@ bool DebugInfoFinder::addSubprogram(DISubprogram SP) {
return true;
}
-/// findStopPoint - Find the stoppoint coressponding to this instruction, that
-/// is the stoppoint that dominates this instruction.
-const DbgStopPointInst *llvm::findStopPoint(const Instruction *Inst) {
- if (const DbgStopPointInst *DSI = dyn_cast<DbgStopPointInst>(Inst))
- return DSI;
-
- const BasicBlock *BB = Inst->getParent();
- BasicBlock::const_iterator I = Inst, B;
- while (BB) {
- B = BB->begin();
-
- // A BB consisting only of a terminator can't have a stoppoint.
- while (I != B) {
- --I;
- if (const DbgStopPointInst *DSI = dyn_cast<DbgStopPointInst>(I))
- return DSI;
- }
-
- // This BB didn't have a stoppoint: if there is only one predecessor, look
- // for a stoppoint there. We could use getIDom(), but that would require
- // dominator info.
- BB = I->getParent()->getUniquePredecessor();
- if (BB)
- I = BB->getTerminator();
- }
-
- return 0;
-}
-
-/// findBBStopPoint - Find the stoppoint corresponding to first real
-/// (non-debug intrinsic) instruction in this Basic Block, and return the
-/// stoppoint for it.
-const DbgStopPointInst *llvm::findBBStopPoint(const BasicBlock *BB) {
- for(BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- if (const DbgStopPointInst *DSI = dyn_cast<DbgStopPointInst>(I))
- return DSI;
-
- // Fallback to looking for stoppoint of unique predecessor. Useful if this
- // BB contains no stoppoints, but unique predecessor does.
- BB = BB->getUniquePredecessor();
- if (BB)
- return findStopPoint(BB->getTerminator());
-
- return 0;
-}
-
Value *llvm::findDbgGlobalDeclare(GlobalVariable *V) {
const Module *M = V->getParent();
NamedMDNode *NMD = M->getNamedMetadata("llvm.dbg.gv");
@@ -1306,25 +1252,24 @@ Value *llvm::findDbgGlobalDeclare(GlobalVariable *V) {
/// Finds the llvm.dbg.declare intrinsic corresponding to this value if any.
/// It looks through pointer casts too.
-const DbgDeclareInst *llvm::findDbgDeclare(const Value *V, bool stripCasts) {
- if (stripCasts) {
- V = V->stripPointerCasts();
-
- // Look for the bitcast.
- for (Value::use_const_iterator I = V->use_begin(), E =V->use_end();
- I != E; ++I)
- if (isa<BitCastInst>(I)) {
- const DbgDeclareInst *DDI = findDbgDeclare(*I, false);
- if (DDI) return DDI;
- }
+const DbgDeclareInst *llvm::findDbgDeclare(const Value *V) {
+ V = V->stripPointerCasts();
+
+ if (!isa<Instruction>(V) && !isa<Argument>(V))
return 0;
- }
-
- // Find llvm.dbg.declare among uses of the instruction.
- for (Value::use_const_iterator I = V->use_begin(), E =V->use_end();
- I != E; ++I)
- if (const DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I))
- return DDI;
+
+ const Function *F = NULL;
+ if (const Instruction *I = dyn_cast<Instruction>(V))
+ F = I->getParent()->getParent();
+ else if (const Argument *A = dyn_cast<Argument>(V))
+ F = A->getParent();
+
+ for (Function::const_iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
+ for (BasicBlock::const_iterator BI = (*FI).begin(), BE = (*FI).end();
+ BI != BE; ++BI)
+ if (const DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
+ if (DDI->getAddress() == V)
+ return DDI;
return 0;
}
@@ -1372,29 +1317,6 @@ bool llvm::getLocationInfo(const Value *V, std::string &DisplayName,
}
/// ExtractDebugLocation - Extract debug location information
-/// from llvm.dbg.stoppoint intrinsic.
-DebugLoc llvm::ExtractDebugLocation(DbgStopPointInst &SPI,
- DebugLocTracker &DebugLocInfo) {
- DebugLoc DL;
- Value *Context = SPI.getContext();
-
- // If this location is already tracked then use it.
- DebugLocTuple Tuple(cast<MDNode>(Context), NULL, SPI.getLine(),
- SPI.getColumn());
- DenseMap<DebugLocTuple, unsigned>::iterator II
- = DebugLocInfo.DebugIdMap.find(Tuple);
- if (II != DebugLocInfo.DebugIdMap.end())
- return DebugLoc::get(II->second);
-
- // Add a new location entry.
- unsigned Id = DebugLocInfo.DebugLocations.size();
- DebugLocInfo.DebugLocations.push_back(Tuple);
- DebugLocInfo.DebugIdMap[Tuple] = Id;
-
- return DebugLoc::get(Id);
-}
-
-/// ExtractDebugLocation - Extract debug location information
/// from DILocation.
DebugLoc llvm::ExtractDebugLocation(DILocation &Loc,
DebugLocTracker &DebugLocInfo) {
@@ -1419,32 +1341,6 @@ DebugLoc llvm::ExtractDebugLocation(DILocation &Loc,
return DebugLoc::get(Id);
}
-/// ExtractDebugLocation - Extract debug location information
-/// from llvm.dbg.func_start intrinsic.
-DebugLoc llvm::ExtractDebugLocation(DbgFuncStartInst &FSI,
- DebugLocTracker &DebugLocInfo) {
- DebugLoc DL;
- Value *SP = FSI.getSubprogram();
-
- DISubprogram Subprogram(cast<MDNode>(SP));
- unsigned Line = Subprogram.getLineNumber();
- DICompileUnit CU(Subprogram.getCompileUnit());
-
- // If this location is already tracked then use it.
- DebugLocTuple Tuple(CU.getNode(), NULL, Line, /* Column */ 0);
- DenseMap<DebugLocTuple, unsigned>::iterator II
- = DebugLocInfo.DebugIdMap.find(Tuple);
- if (II != DebugLocInfo.DebugIdMap.end())
- return DebugLoc::get(II->second);
-
- // Add a new location entry.
- unsigned Id = DebugLocInfo.DebugLocations.size();
- DebugLocInfo.DebugLocations.push_back(Tuple);
- DebugLocInfo.DebugIdMap[Tuple] = Id;
-
- return DebugLoc::get(Id);
-}
-
/// getDISubprogram - Find subprogram that is enclosing this scope.
DISubprogram llvm::getDISubprogram(MDNode *Scope) {
DIDescriptor D(Scope);
diff --git a/lib/Analysis/IVUsers.cpp b/lib/Analysis/IVUsers.cpp
index df9e31c..26c0c9e 100644
--- a/lib/Analysis/IVUsers.cpp
+++ b/lib/Analysis/IVUsers.cpp
@@ -128,8 +128,9 @@ static bool getSCEVStartAndStride(const SCEV *&SH, Loop *L, Loop *UseLoop,
if (!AddRecStride->properlyDominates(Header, DT))
return false;
- DEBUG(dbgs() << "[" << L->getHeader()->getName()
- << "] Variable stride: " << *AddRec << "\n");
+ DEBUG(dbgs() << "[";
+ WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
+ dbgs() << "] Variable stride: " << *AddRec << "\n");
}
Stride = AddRecStride;
diff --git a/lib/Analysis/InlineCost.cpp b/lib/Analysis/InlineCost.cpp
index bd9377b..651c918 100644
--- a/lib/Analysis/InlineCost.cpp
+++ b/lib/Analysis/InlineCost.cpp
@@ -102,6 +102,37 @@ unsigned InlineCostAnalyzer::FunctionInfo::
return Reduction;
}
+// callIsSmall - If a call is likely to lower to a single target instruction, or
+// is otherwise deemed small return true.
+// TODO: Perhaps calls like memcpy, strcpy, etc?
+static bool callIsSmall(const Function *F) {
+ if (!F) return false;
+
+ if (F->hasLocalLinkage()) return false;
+
+ if (!F->hasName()) return false;
+
+ StringRef Name = F->getName();
+
+ // These will all likely lower to a single selection DAG node.
+ if (Name == "copysign" || Name == "copysignf" ||
+ Name == "fabs" || Name == "fabsf" || Name == "fabsl" ||
+ Name == "sin" || Name == "sinf" || Name == "sinl" ||
+ Name == "cos" || Name == "cosf" || Name == "cosl" ||
+ Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl" )
+ return true;
+
+ // These are all likely to be optimized into something smaller.
+ if (Name == "pow" || Name == "powf" || Name == "powl" ||
+ Name == "exp2" || Name == "exp2l" || Name == "exp2f" ||
+ Name == "floor" || Name == "floorf" || Name == "ceil" ||
+ Name == "round" || Name == "ffs" || Name == "ffsl" ||
+ Name == "abs" || Name == "labs" || Name == "llabs")
+ return true;
+
+ return false;
+}
+
/// analyzeBasicBlock - Fill in the current structure with information gleaned
/// from the specified block.
void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB) {
@@ -129,7 +160,7 @@ void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB) {
// Calls often compile into many machine instructions. Bump up their
// cost to reflect this.
- if (!isa<IntrinsicInst>(II))
+ if (!isa<IntrinsicInst>(II) && !callIsSmall(CS.getCalledFunction()))
NumInsts += InlineConstants::CallPenalty;
}
@@ -141,11 +172,16 @@ void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB) {
if (isa<ExtractElementInst>(II) || isa<VectorType>(II->getType()))
++NumVectorInsts;
- // Noop casts, including ptr <-> int, don't count.
if (const CastInst *CI = dyn_cast<CastInst>(II)) {
+ // Noop casts, including ptr <-> int, don't count.
if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) ||
isa<PtrToIntInst>(CI))
continue;
+ // Result of a cmp instruction is often extended (to be used by other
+ // cmp instructions, logical or return instructions). These are usually
+ // nop on most sane targets.
+ if (isa<CmpInst>(CI->getOperand(0)))
+ continue;
} else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(II)){
// If a GEP has all constant indices, it will probably be folded with
// a load/store.
diff --git a/lib/Analysis/LoopInfo.cpp b/lib/Analysis/LoopInfo.cpp
index 5d31c11..453af5a 100644
--- a/lib/Analysis/LoopInfo.cpp
+++ b/lib/Analysis/LoopInfo.cpp
@@ -21,6 +21,7 @@
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <algorithm>
@@ -385,6 +386,10 @@ BasicBlock *Loop::getUniqueExitBlock() const {
return 0;
}
+void Loop::dump() const {
+ print(dbgs());
+}
+
//===----------------------------------------------------------------------===//
// LoopInfo implementation
//
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
index 17dc686..4d85ce4 100644
--- a/lib/Analysis/ScalarEvolution.cpp
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -316,7 +316,9 @@ void SCEVAddRecExpr::print(raw_ostream &OS) const {
OS << "{" << *Operands[0];
for (unsigned i = 1, e = Operands.size(); i != e; ++i)
OS << ",+," << *Operands[i];
- OS << "}<" << L->getHeader()->getName() + ">";
+ OS << "}<";
+ WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
+ OS << ">";
}
void SCEVFieldOffsetExpr::print(raw_ostream &OS) const {
@@ -5193,7 +5195,9 @@ static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
PrintLoopInfo(OS, SE, *I);
- OS << "Loop " << L->getHeader()->getName() << ": ";
+ OS << "Loop ";
+ WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
+ OS << ": ";
SmallVector<BasicBlock *, 8> ExitBlocks;
L->getExitBlocks(ExitBlocks);
@@ -5206,8 +5210,10 @@ static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
OS << "Unpredictable backedge-taken count. ";
}
- OS << "\n";
- OS << "Loop " << L->getHeader()->getName() << ": ";
+ OS << "\n"
+ "Loop ";
+ WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
+ OS << ": ";
if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
@@ -5227,7 +5233,9 @@ void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
// const isn't dangerous.
ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
- OS << "Classifying expressions for: " << F->getName() << "\n";
+ OS << "Classifying expressions for: ";
+ WriteAsOperand(OS, F, /*PrintType=*/false);
+ OS << "\n";
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
if (isSCEVable(I->getType())) {
OS << *I << '\n';
@@ -5256,7 +5264,9 @@ void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
OS << "\n";
}
- OS << "Determining loop execution counts for: " << F->getName() << "\n";
+ OS << "Determining loop execution counts for: ";
+ WriteAsOperand(OS, F, /*PrintType=*/false);
+ OS << "\n";
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
PrintLoopInfo(OS, &SE, *I);
}
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp
index acd3119..91e5bc3 100644
--- a/lib/Analysis/ValueTracking.cpp
+++ b/lib/Analysis/ValueTracking.cpp
@@ -726,8 +726,7 @@ unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
if (Tmp2 == 1) return 1;
- return std::min(Tmp, Tmp2)-1;
- break;
+ return std::min(Tmp, Tmp2)-1;
case Instruction::Sub:
Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
@@ -757,8 +756,24 @@ unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
// is, at worst, one more bit than the inputs.
Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
if (Tmp == 1) return 1; // Early out.
- return std::min(Tmp, Tmp2)-1;
- break;
+ return std::min(Tmp, Tmp2)-1;
+
+ case Instruction::PHI: {
+ PHINode *PN = cast<PHINode>(U);
+ // Don't analyze large in-degree PHIs.
+ if (PN->getNumIncomingValues() > 4) break;
+
+ // Take the minimum of all incoming values. This can't infinitely loop
+ // because of our depth threshold.
+ Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
+ for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
+ if (Tmp == 1) return Tmp;
+ Tmp = std::min(Tmp,
+ ComputeNumSignBits(PN->getIncomingValue(1), TD, Depth+1));
+ }
+ return Tmp;
+ }
+
case Instruction::Trunc:
// FIXME: it's tricky to do anything useful for this, but it is an important
// case for targets like X86.
@@ -1348,7 +1363,7 @@ bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
// Make sure the index-ee is a pointer to array of i8.
const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
- if (AT == 0 || AT->getElementType() != Type::getInt8Ty(V->getContext()))
+ if (AT == 0 || !AT->getElementType()->isInteger(8))
return false;
// Check to make sure that the first operand of the GEP is an integer and
@@ -1387,8 +1402,7 @@ bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
// Must be a Constant Array
ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
- if (Array == 0 ||
- Array->getType()->getElementType() != Type::getInt8Ty(V->getContext()))
+ if (Array == 0 || !Array->getType()->getElementType()->isInteger(8))
return false;
// Get the number of elements in the array
diff --git a/lib/AsmParser/LLParser.cpp b/lib/AsmParser/LLParser.cpp
index 15a9832..e4039ab 100644
--- a/lib/AsmParser/LLParser.cpp
+++ b/lib/AsmParser/LLParser.cpp
@@ -510,12 +510,17 @@ bool LLParser::ParseNamedMetadata() {
ParseToken(lltok::lbrace, "Expected '{' here"))
return true;
- SmallVector<MetadataBase *, 8> Elts;
+ SmallVector<MDNode *, 8> Elts;
do {
+ // Null is a special case since it is typeless.
+ if (EatIfPresent(lltok::kw_null)) {
+ Elts.push_back(0);
+ continue;
+ }
+
if (ParseToken(lltok::exclaim, "Expected '!' here"))
return true;
- // FIXME: This rejects MDStrings. Are they legal in an named MDNode or not?
MDNode *N = 0;
if (ParseMDNodeID(N)) return true;
Elts.push_back(N);
@@ -543,7 +548,7 @@ bool LLParser::ParseStandaloneMetadata() {
ParseType(Ty, TyLoc) ||
ParseToken(lltok::exclaim, "Expected '!' here") ||
ParseToken(lltok::lbrace, "Expected '{' here") ||
- ParseMDNodeVector(Elts) ||
+ ParseMDNodeVector(Elts, NULL) ||
ParseToken(lltok::rbrace, "expected end of metadata node"))
return true;
@@ -1715,8 +1720,7 @@ Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
}
// Don't make placeholders with invalid type.
- if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
- Ty != Type::getLabelTy(F.getContext())) {
+ if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && !Ty->isLabelTy()) {
P.Error(Loc, "invalid use of a non-first-class type");
return 0;
}
@@ -1757,8 +1761,7 @@ Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
return 0;
}
- if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
- Ty != Type::getLabelTy(F.getContext())) {
+ if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && !Ty->isLabelTy()) {
P.Error(Loc, "invalid use of a non-first-class type");
return 0;
}
@@ -1881,8 +1884,10 @@ BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
/// ParseValID - Parse an abstract value that doesn't necessarily have a
/// type implied. For example, if we parse "4" we don't know what integer type
/// it has. The value will later be combined with its type and checked for
-/// sanity.
-bool LLParser::ParseValID(ValID &ID) {
+/// sanity. PFS is used to convert function-local operands of metadata (since
+/// metadata operands are not just parsed here but also converted to values).
+/// PFS can be null when we are not parsing metadata values inside a function.
+bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
ID.Loc = Lex.getLoc();
switch (Lex.getKind()) {
default: return TokError("expected value token");
@@ -1908,7 +1913,7 @@ bool LLParser::ParseValID(ValID &ID) {
if (EatIfPresent(lltok::lbrace)) {
SmallVector<Value*, 16> Elts;
- if (ParseMDNodeVector(Elts) ||
+ if (ParseMDNodeVector(Elts, PFS) ||
ParseToken(lltok::rbrace, "expected end of metadata node"))
return true;
@@ -2353,30 +2358,85 @@ bool LLParser::ParseValID(ValID &ID) {
}
/// ParseGlobalValue - Parse a global value with the specified type.
-bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
- V = 0;
+bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&C) {
+ C = 0;
ValID ID;
- return ParseValID(ID) ||
- ConvertGlobalValIDToValue(Ty, ID, V);
+ Value *V = NULL;
+ bool Parsed = ParseValID(ID) ||
+ ConvertValIDToValue(Ty, ID, V, NULL);
+ if (V && !(C = dyn_cast<Constant>(V)))
+ return Error(ID.Loc, "global values must be constants");
+ return Parsed;
+}
+
+bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
+ PATypeHolder Type(Type::getVoidTy(Context));
+ return ParseType(Type) ||
+ ParseGlobalValue(Type, V);
+}
+
+/// ParseGlobalValueVector
+/// ::= /*empty*/
+/// ::= TypeAndValue (',' TypeAndValue)*
+bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
+ // Empty list.
+ if (Lex.getKind() == lltok::rbrace ||
+ Lex.getKind() == lltok::rsquare ||
+ Lex.getKind() == lltok::greater ||
+ Lex.getKind() == lltok::rparen)
+ return false;
+
+ Constant *C;
+ if (ParseGlobalTypeAndValue(C)) return true;
+ Elts.push_back(C);
+
+ while (EatIfPresent(lltok::comma)) {
+ if (ParseGlobalTypeAndValue(C)) return true;
+ Elts.push_back(C);
+ }
+
+ return false;
}
-/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
-/// constant.
-bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
- Constant *&V) {
+
+//===----------------------------------------------------------------------===//
+// Function Parsing.
+//===----------------------------------------------------------------------===//
+
+bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
+ PerFunctionState *PFS) {
if (isa<FunctionType>(Ty))
return Error(ID.Loc, "functions are not values, refer to them as pointers");
switch (ID.Kind) {
default: llvm_unreachable("Unknown ValID!");
- case ValID::t_MDNode:
- case ValID::t_MDString:
- return Error(ID.Loc, "invalid use of metadata");
case ValID::t_LocalID:
+ if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
+ V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
+ return (V == 0);
case ValID::t_LocalName:
- return Error(ID.Loc, "invalid use of function-local name");
- case ValID::t_InlineAsm:
- return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
+ if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
+ V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
+ return (V == 0);
+ case ValID::t_InlineAsm: {
+ const PointerType *PTy = dyn_cast<PointerType>(Ty);
+ const FunctionType *FTy =
+ PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
+ if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
+ return Error(ID.Loc, "invalid type for inline asm constraint string");
+ V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
+ return false;
+ }
+ case ValID::t_MDNode:
+ if (!Ty->isMetadataTy())
+ return Error(ID.Loc, "metadata value must have metadata type");
+ V = ID.MDNodeVal;
+ return false;
+ case ValID::t_MDString:
+ if (!Ty->isMetadataTy())
+ return Error(ID.Loc, "metadata value must have metadata type");
+ V = ID.MDStringVal;
+ return false;
case ValID::t_GlobalName:
V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
return V == 0;
@@ -2440,90 +2500,11 @@ bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
}
}
-/// ConvertGlobalOrMetadataValIDToValue - Apply a type to a ValID to get a fully
-/// resolved constant or metadata value.
-bool LLParser::ConvertGlobalOrMetadataValIDToValue(const Type *Ty, ValID &ID,
- Value *&V) {
- switch (ID.Kind) {
- case ValID::t_MDNode:
- if (!Ty->isMetadataTy())
- return Error(ID.Loc, "metadata value must have metadata type");
- V = ID.MDNodeVal;
- return false;
- case ValID::t_MDString:
- if (!Ty->isMetadataTy())
- return Error(ID.Loc, "metadata value must have metadata type");
- V = ID.MDStringVal;
- return false;
- default:
- Constant *C;
- if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
- V = C;
- return false;
- }
-}
-
-
-bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
- PATypeHolder Type(Type::getVoidTy(Context));
- return ParseType(Type) ||
- ParseGlobalValue(Type, V);
-}
-
-/// ParseGlobalValueVector
-/// ::= /*empty*/
-/// ::= TypeAndValue (',' TypeAndValue)*
-bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
- // Empty list.
- if (Lex.getKind() == lltok::rbrace ||
- Lex.getKind() == lltok::rsquare ||
- Lex.getKind() == lltok::greater ||
- Lex.getKind() == lltok::rparen)
- return false;
-
- Constant *C;
- if (ParseGlobalTypeAndValue(C)) return true;
- Elts.push_back(C);
-
- while (EatIfPresent(lltok::comma)) {
- if (ParseGlobalTypeAndValue(C)) return true;
- Elts.push_back(C);
- }
-
- return false;
-}
-
-
-//===----------------------------------------------------------------------===//
-// Function Parsing.
-//===----------------------------------------------------------------------===//
-
-bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
- PerFunctionState &PFS) {
- switch (ID.Kind) {
- case ValID::t_LocalID: V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc); break;
- case ValID::t_LocalName: V = PFS.GetVal(ID.StrVal, Ty, ID.Loc); break;
- case ValID::t_InlineAsm: {
- const PointerType *PTy = dyn_cast<PointerType>(Ty);
- const FunctionType *FTy =
- PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
- if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
- return Error(ID.Loc, "invalid type for inline asm constraint string");
- V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
- return false;
- }
- default:
- return ConvertGlobalOrMetadataValIDToValue(Ty, ID, V);
- }
-
- return V == 0;
-}
-
bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
V = 0;
ValID ID;
- return ParseValID(ID) ||
- ConvertValIDToValue(Ty, ID, V, PFS);
+ return ParseValID(ID, &PFS) ||
+ ConvertValIDToValue(Ty, ID, V, &PFS);
}
bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
@@ -2663,8 +2644,7 @@ bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
- if (PAL.paramHasAttr(1, Attribute::StructRet) &&
- RetType != Type::getVoidTy(Context))
+ if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
return Error(RetTypeLoc, "functions with 'sret' argument must return void");
const FunctionType *FT =
@@ -2766,6 +2746,10 @@ bool LLParser::ParseFunctionBody(Function &Fn) {
PerFunctionState PFS(*this, Fn, FunctionNumber);
+ // We need at least one basic block.
+ if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_end)
+ return TokError("function body requires at least one basic block");
+
while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
if (ParseBasicBlock(PFS)) return true;
@@ -3232,7 +3216,7 @@ bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
// Look up the callee.
Value *Callee;
- if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
+ if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
// FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
// function attributes.
@@ -3578,7 +3562,7 @@ bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
// Look up the callee.
Value *Callee;
- if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
+ if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
// FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
// function attributes.
@@ -3660,7 +3644,7 @@ int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
}
}
- if (Size && Size->getType() != Type::getInt32Ty(Context))
+ if (Size && !Size->getType()->isInteger(32))
return Error(SizeLoc, "element count must be i32");
if (isAlloca) {
@@ -3840,7 +3824,8 @@ int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
/// ::= Element (',' Element)*
/// Element
/// ::= 'null' | TypeAndValue
-bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
+bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
+ PerFunctionState *PFS) {
do {
// Null is a special case since it is typeless.
if (EatIfPresent(lltok::kw_null)) {
@@ -3851,8 +3836,8 @@ bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
Value *V = 0;
PATypeHolder Ty(Type::getVoidTy(Context));
ValID ID;
- if (ParseType(Ty) || ParseValID(ID) ||
- ConvertGlobalOrMetadataValIDToValue(Ty, ID, V))
+ if (ParseType(Ty) || ParseValID(ID, PFS) ||
+ ConvertValIDToValue(Ty, ID, V, PFS))
return true;
Elts.push_back(V);
diff --git a/lib/AsmParser/LLParser.h b/lib/AsmParser/LLParser.h
index 803832f..bea0593 100644
--- a/lib/AsmParser/LLParser.h
+++ b/lib/AsmParser/LLParser.h
@@ -216,17 +216,6 @@ namespace llvm {
bool ParseFunctionType(PATypeHolder &Result);
PATypeHolder HandleUpRefs(const Type *Ty);
- // Constants.
- bool ParseValID(ValID &ID);
- bool ConvertGlobalValIDToValue(const Type *Ty, ValID &ID, Constant *&V);
- bool ConvertGlobalOrMetadataValIDToValue(const Type *Ty, ValID &ID,
- Value *&V);
- bool ParseGlobalValue(const Type *Ty, Constant *&V);
- bool ParseGlobalTypeAndValue(Constant *&V);
- bool ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts);
- bool ParseMDNodeVector(SmallVectorImpl<Value*> &);
-
-
// Function Semantic Analysis.
class PerFunctionState {
LLParser &P;
@@ -270,7 +259,7 @@ namespace llvm {
};
bool ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
- PerFunctionState &PFS);
+ PerFunctionState *PFS);
bool ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS);
bool ParseValue(const Type *Ty, Value *&V, LocTy &Loc,
@@ -301,6 +290,13 @@ namespace llvm {
bool ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
PerFunctionState &PFS);
+ // Constant Parsing.
+ bool ParseValID(ValID &ID, PerFunctionState *PFS = NULL);
+ bool ParseGlobalValue(const Type *Ty, Constant *&V);
+ bool ParseGlobalTypeAndValue(Constant *&V);
+ bool ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts);
+ bool ParseMDNodeVector(SmallVectorImpl<Value*> &, PerFunctionState *PFS);
+
// Function Parsing.
struct ArgInfo {
LocTy Loc;
diff --git a/lib/Bitcode/Reader/BitReader.cpp b/lib/Bitcode/Reader/BitReader.cpp
index f513d41..32b97e8 100644
--- a/lib/Bitcode/Reader/BitReader.cpp
+++ b/lib/Bitcode/Reader/BitReader.cpp
@@ -18,9 +18,9 @@ using namespace llvm;
/* Builds a module from the bitcode in the specified memory buffer, returning a
reference to the module via the OutModule parameter. Returns 0 on success.
- Optionally returns a human-readable error message via OutMessage. */
-int LLVMParseBitcode(LLVMMemoryBufferRef MemBuf,
- LLVMModuleRef *OutModule, char **OutMessage) {
+ Optionally returns a human-readable error message via OutMessage. */
+LLVMBool LLVMParseBitcode(LLVMMemoryBufferRef MemBuf,
+ LLVMModuleRef *OutModule, char **OutMessage) {
std::string Message;
*OutModule = wrap(ParseBitcodeFile(unwrap(MemBuf), getGlobalContext(),
@@ -34,9 +34,10 @@ int LLVMParseBitcode(LLVMMemoryBufferRef MemBuf,
return 0;
}
-int LLVMParseBitcodeInContext(LLVMContextRef ContextRef,
- LLVMMemoryBufferRef MemBuf,
- LLVMModuleRef *OutModule, char **OutMessage) {
+LLVMBool LLVMParseBitcodeInContext(LLVMContextRef ContextRef,
+ LLVMMemoryBufferRef MemBuf,
+ LLVMModuleRef *OutModule,
+ char **OutMessage) {
std::string Message;
*OutModule = wrap(ParseBitcodeFile(unwrap(MemBuf), *unwrap(ContextRef),
@@ -53,9 +54,9 @@ int LLVMParseBitcodeInContext(LLVMContextRef ContextRef,
/* Reads a module from the specified path, returning via the OutModule parameter
a module provider which performs lazy deserialization. Returns 0 on success.
Optionally returns a human-readable error message via OutMessage. */
-int LLVMGetBitcodeModuleProvider(LLVMMemoryBufferRef MemBuf,
- LLVMModuleProviderRef *OutMP,
- char **OutMessage) {
+LLVMBool LLVMGetBitcodeModuleProvider(LLVMMemoryBufferRef MemBuf,
+ LLVMModuleProviderRef *OutMP,
+ char **OutMessage) {
std::string Message;
*OutMP = wrap(getBitcodeModuleProvider(unwrap(MemBuf), getGlobalContext(),
@@ -70,10 +71,10 @@ int LLVMGetBitcodeModuleProvider(LLVMMemoryBufferRef MemBuf,
return 0;
}
-int LLVMGetBitcodeModuleProviderInContext(LLVMContextRef ContextRef,
- LLVMMemoryBufferRef MemBuf,
- LLVMModuleProviderRef *OutMP,
- char **OutMessage) {
+LLVMBool LLVMGetBitcodeModuleProviderInContext(LLVMContextRef ContextRef,
+ LLVMMemoryBufferRef MemBuf,
+ LLVMModuleProviderRef *OutMP,
+ char **OutMessage) {
std::string Message;
*OutMP = wrap(getBitcodeModuleProvider(unwrap(MemBuf), *unwrap(ContextRef),
diff --git a/lib/Bitcode/Reader/BitcodeReader.cpp b/lib/Bitcode/Reader/BitcodeReader.cpp
index 7dffafa..aabbc90 100644
--- a/lib/Bitcode/Reader/BitcodeReader.cpp
+++ b/lib/Bitcode/Reader/BitcodeReader.cpp
@@ -737,7 +737,7 @@ bool BitcodeReader::ParseValueSymbolTable() {
}
bool BitcodeReader::ParseMetadata() {
- unsigned NextValueNo = MDValueList.size();
+ unsigned NextMDValueNo = MDValueList.size();
if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
return Error("Malformed block record");
@@ -766,6 +766,7 @@ bool BitcodeReader::ParseMetadata() {
continue;
}
+ bool IsFunctionLocal = false;
// Read a record.
Record.clear();
switch (Stream.ReadRecord(Code, Record)) {
@@ -787,17 +788,25 @@ bool BitcodeReader::ParseMetadata() {
// Read named metadata elements.
unsigned Size = Record.size();
- SmallVector<MetadataBase*, 8> Elts;
+ SmallVector<MDNode *, 8> Elts;
for (unsigned i = 0; i != Size; ++i) {
- Value *MD = MDValueList.getValueFwdRef(Record[i]);
- if (MetadataBase *B = dyn_cast<MetadataBase>(MD))
- Elts.push_back(B);
+ if (Record[i] == ~0U) {
+ Elts.push_back(NULL);
+ continue;
+ }
+ MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
+ if (MD == 0)
+ return Error("Malformed metadata record");
+ Elts.push_back(MD);
}
Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
Elts.size(), TheModule);
- MDValueList.AssignValue(V, NextValueNo++);
+ MDValueList.AssignValue(V, NextMDValueNo++);
break;
}
+ case bitc::METADATA_FN_NODE:
+ IsFunctionLocal = true;
+ // fall-through
case bitc::METADATA_NODE: {
if (Record.empty() || Record.size() % 2 == 1)
return Error("Invalid METADATA_NODE record");
@@ -808,13 +817,15 @@ bool BitcodeReader::ParseMetadata() {
const Type *Ty = getTypeByID(Record[i], false);
if (Ty->isMetadataTy())
Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
- else if (Ty != Type::getVoidTy(Context))
+ else if (!Ty->isVoidTy())
Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
else
Elts.push_back(NULL);
}
- Value *V = MDNode::get(Context, &Elts[0], Elts.size());
- MDValueList.AssignValue(V, NextValueNo++);
+ Value *V = MDNode::getWhenValsUnresolved(Context, &Elts[0], Elts.size(),
+ IsFunctionLocal);
+ IsFunctionLocal = false;
+ MDValueList.AssignValue(V, NextMDValueNo++);
break;
}
case bitc::METADATA_STRING: {
@@ -825,7 +836,7 @@ bool BitcodeReader::ParseMetadata() {
String[i] = Record[i];
Value *V = MDString::get(Context,
StringRef(String.data(), String.size()));
- MDValueList.AssignValue(V, NextValueNo++);
+ MDValueList.AssignValue(V, NextMDValueNo++);
break;
}
case bitc::METADATA_KIND: {
@@ -1646,6 +1657,9 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
case bitc::METADATA_ATTACHMENT_ID:
if (ParseMetadataAttachment()) return true;
break;
+ case bitc::METADATA_BLOCK_ID:
+ if (ParseMetadata()) return true;
+ break;
}
continue;
}
@@ -2238,7 +2252,7 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
}
// Non-void values get registered in the value table for future use.
- if (I && I->getType() != Type::getVoidTy(Context))
+ if (I && !I->getType()->isVoidTy())
ValueList.AssignValue(I, NextValueNo++);
}
diff --git a/lib/Bitcode/Writer/BitcodeWriter.cpp b/lib/Bitcode/Writer/BitcodeWriter.cpp
index c78a30e..5a4a1b2 100644
--- a/lib/Bitcode/Writer/BitcodeWriter.cpp
+++ b/lib/Bitcode/Writer/BitcodeWriter.cpp
@@ -484,7 +484,9 @@ static void WriteMDNode(const MDNode *N,
Record.push_back(0);
}
}
- Stream.EmitRecord(bitc::METADATA_NODE, Record, 0);
+ unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
+ bitc::METADATA_NODE;
+ Stream.EmitRecord(MDCode, Record, 0);
Record.clear();
}
@@ -497,11 +499,13 @@ static void WriteModuleMetadata(const ValueEnumerator &VE,
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
- if (!StartedMetadataBlock) {
- Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
- StartedMetadataBlock = true;
+ if (!N->isFunctionLocal()) {
+ if (!StartedMetadataBlock) {
+ Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+ StartedMetadataBlock = true;
+ }
+ WriteMDNode(N, VE, Stream, Record);
}
- WriteMDNode(N, VE, Stream, Record);
} else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
if (!StartedMetadataBlock) {
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
@@ -528,10 +532,9 @@ static void WriteModuleMetadata(const ValueEnumerator &VE,
}
// Write name.
- std::string Str = NMD->getNameStr();
- const char *StrBegin = Str.c_str();
- for (unsigned i = 0, e = Str.length(); i != e; ++i)
- Record.push_back(StrBegin[i]);
+ StringRef Str = NMD->getName();
+ for (unsigned i = 0, e = Str.size(); i != e; ++i)
+ Record.push_back(Str[i]);
Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
Record.clear();
@@ -540,7 +543,7 @@ static void WriteModuleMetadata(const ValueEnumerator &VE,
if (NMD->getOperand(i))
Record.push_back(VE.getValueID(NMD->getOperand(i)));
else
- Record.push_back(0);
+ Record.push_back(~0U);
}
Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
Record.clear();
@@ -551,6 +554,27 @@ static void WriteModuleMetadata(const ValueEnumerator &VE,
Stream.ExitBlock();
}
+static void WriteFunctionLocalMetadata(const Function &F,
+ const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ bool StartedMetadataBlock = false;
+ SmallVector<uint64_t, 64> Record;
+ const ValueEnumerator::ValueList &Vals = VE.getMDValues();
+
+ for (unsigned i = 0, e = Vals.size(); i != e; ++i)
+ if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first))
+ if (N->getFunction() == &F) {
+ if (!StartedMetadataBlock) {
+ Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+ StartedMetadataBlock = true;
+ }
+ WriteMDNode(N, VE, Stream, Record);
+ }
+
+ if (StartedMetadataBlock)
+ Stream.ExitBlock();
+}
+
static void WriteMetadataAttachment(const Function &F,
const ValueEnumerator &VE,
BitstreamWriter &Stream) {
@@ -1194,6 +1218,9 @@ static void WriteFunction(const Function &F, ValueEnumerator &VE,
VE.getFunctionConstantRange(CstStart, CstEnd);
WriteConstants(CstStart, CstEnd, VE, Stream, false);
+ // If there is function-local metadata, emit it now.
+ WriteFunctionLocalMetadata(F, VE, Stream);
+
// Keep a running idea of what the instruction ID is.
unsigned InstID = CstEnd;
diff --git a/lib/Bitcode/Writer/ValueEnumerator.cpp b/lib/Bitcode/Writer/ValueEnumerator.cpp
index d8128db..cb139e5 100644
--- a/lib/Bitcode/Writer/ValueEnumerator.cpp
+++ b/lib/Bitcode/Writer/ValueEnumerator.cpp
@@ -74,9 +74,10 @@ ValueEnumerator::ValueEnumerator(const Module *M) {
// Enumerate types used by the type symbol table.
EnumerateTypeSymbolTable(M->getTypeSymbolTable());
- // Insert constants that are named at module level into the slot pool so that
- // the module symbol table can refer to them...
+ // Insert constants and metadata that are named at module level into the slot
+ // pool so that the module symbol table can refer to them...
EnumerateValueSymbolTable(M->getValueSymbolTable());
+ EnumerateMDSymbolTable(M->getMDSymbolTable());
SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
@@ -90,8 +91,13 @@ ValueEnumerator::ValueEnumerator(const Module *M) {
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
- OI != E; ++OI)
+ OI != E; ++OI) {
+ if (MDNode *MD = dyn_cast<MDNode>(*OI))
+ if (MD->isFunctionLocal())
+ // These will get enumerated during function-incorporation.
+ continue;
EnumerateOperandType(*OI);
+ }
EnumerateType(I->getType());
if (const CallInst *CI = dyn_cast<CallInst>(I))
EnumerateAttributes(CI->getAttributes());
@@ -196,6 +202,33 @@ void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
EnumerateValue(VI->getValue());
}
+/// EnumerateMDSymbolTable - Insert all of the values in the specified metadata
+/// table.
+void ValueEnumerator::EnumerateMDSymbolTable(const MDSymbolTable &MST) {
+ for (MDSymbolTable::const_iterator MI = MST.begin(), ME = MST.end();
+ MI != ME; ++MI)
+ EnumerateValue(MI->getValue());
+}
+
+void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
+ // Check to see if it's already in!
+ unsigned &MDValueID = MDValueMap[MD];
+ if (MDValueID) {
+ // Increment use count.
+ MDValues[MDValueID-1].second++;
+ return;
+ }
+
+ // Enumerate the type of this value.
+ EnumerateType(MD->getType());
+
+ for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
+ if (MDNode *E = MD->getOperand(i))
+ EnumerateValue(E);
+ MDValues.push_back(std::make_pair(MD, 1U));
+ MDValueMap[MD] = Values.size();
+}
+
void ValueEnumerator::EnumerateMetadata(const MetadataBase *MD) {
// Check to see if it's already in!
unsigned &MDValueID = MDValueMap[MD];
@@ -212,7 +245,7 @@ void ValueEnumerator::EnumerateMetadata(const MetadataBase *MD) {
MDValues.push_back(std::make_pair(MD, 1U));
MDValueMap[MD] = MDValues.size();
MDValueID = MDValues.size();
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
if (Value *V = N->getOperand(i))
EnumerateValue(V);
else
@@ -221,14 +254,6 @@ void ValueEnumerator::EnumerateMetadata(const MetadataBase *MD) {
return;
}
- if (const NamedMDNode *N = dyn_cast<NamedMDNode>(MD)) {
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
- EnumerateValue(N->getOperand(i));
- MDValues.push_back(std::make_pair(MD, 1U));
- MDValueMap[MD] = Values.size();
- return;
- }
-
// Add the value.
assert(isa<MDString>(MD) && "Unknown metadata kind");
MDValues.push_back(std::make_pair(MD, 1U));
@@ -239,6 +264,8 @@ void ValueEnumerator::EnumerateValue(const Value *V) {
assert(!V->getType()->isVoidTy() && "Can't insert void values!");
if (const MetadataBase *MB = dyn_cast<MetadataBase>(V))
return EnumerateMetadata(MB);
+ else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(V))
+ return EnumerateNamedMDNode(NMD);
// Check to see if it's already in!
unsigned &ValueID = ValueMap[V];
@@ -309,6 +336,7 @@ void ValueEnumerator::EnumerateType(const Type *Ty) {
// walk through it, enumerating the types of the constant.
void ValueEnumerator::EnumerateOperandType(const Value *V) {
EnumerateType(V->getType());
+
if (const Constant *C = dyn_cast<Constant>(V)) {
// If this constant is already enumerated, ignore it, we know its type must
// be enumerated.
@@ -382,7 +410,15 @@ void ValueEnumerator::incorporateFunction(const Function &F) {
// Add all of the instructions.
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
- if (I->getType() != Type::getVoidTy(F.getContext()))
+ for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
+ OI != E; ++OI) {
+ if (MDNode *MD = dyn_cast<MDNode>(*OI))
+ if (!MD->isFunctionLocal())
+ // These were already enumerated during ValueEnumerator creation.
+ continue;
+ EnumerateOperandType(*OI);
+ }
+ if (!I->getType()->isVoidTy())
EnumerateValue(I);
}
}
diff --git a/lib/Bitcode/Writer/ValueEnumerator.h b/lib/Bitcode/Writer/ValueEnumerator.h
index 3c83e35..c50fe9c 100644
--- a/lib/Bitcode/Writer/ValueEnumerator.h
+++ b/lib/Bitcode/Writer/ValueEnumerator.h
@@ -27,9 +27,11 @@ class BasicBlock;
class Function;
class Module;
class MetadataBase;
+class NamedMDNode;
class AttrListPtr;
class TypeSymbolTable;
class ValueSymbolTable;
+class MDSymbolTable;
class ValueEnumerator {
public:
@@ -126,6 +128,7 @@ private:
void OptimizeConstants(unsigned CstStart, unsigned CstEnd);
void EnumerateMetadata(const MetadataBase *MD);
+ void EnumerateNamedMDNode(const NamedMDNode *NMD);
void EnumerateValue(const Value *V);
void EnumerateType(const Type *T);
void EnumerateOperandType(const Value *V);
@@ -133,6 +136,7 @@ private:
void EnumerateTypeSymbolTable(const TypeSymbolTable &ST);
void EnumerateValueSymbolTable(const ValueSymbolTable &ST);
+ void EnumerateMDSymbolTable(const MDSymbolTable &ST);
};
} // End llvm namespace
diff --git a/lib/CodeGen/AggressiveAntiDepBreaker.cpp b/lib/CodeGen/AggressiveAntiDepBreaker.cpp
index 761fbc6..ca1f4a3 100644
--- a/lib/CodeGen/AggressiveAntiDepBreaker.cpp
+++ b/lib/CodeGen/AggressiveAntiDepBreaker.cpp
@@ -1,4 +1,4 @@
-//===----- AggressiveAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
+//===----- AggressiveAntiDepBreaker.cpp - Anti-dep breaker ----------------===//
//
// The LLVM Compiler Infrastructure
//
@@ -77,18 +77,18 @@ unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2)
{
assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!");
assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!");
-
+
// find group for each register
unsigned Group1 = GetGroup(Reg1);
unsigned Group2 = GetGroup(Reg2);
-
+
// if either group is 0, then that must become the parent
unsigned Parent = (Group1 == 0) ? Group1 : Group2;
unsigned Other = (Parent == Group1) ? Group2 : Group1;
GroupNodes.at(Other) = Parent;
return Parent;
}
-
+
unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg)
{
// Create a new GroupNode for Reg. Reg's existing GroupNode must
@@ -111,7 +111,7 @@ bool AggressiveAntiDepState::IsLive(unsigned Reg)
AggressiveAntiDepBreaker::
AggressiveAntiDepBreaker(MachineFunction& MFi,
- TargetSubtarget::RegClassVector& CriticalPathRCs) :
+ TargetSubtarget::RegClassVector& CriticalPathRCs) :
AntiDepBreaker(), MF(MFi),
MRI(MF.getRegInfo()),
TRI(MF.getTarget().getRegisterInfo()),
@@ -126,9 +126,9 @@ AggressiveAntiDepBreaker(MachineFunction& MFi,
else
CriticalPathSet |= CPSet;
}
-
+
DEBUG(dbgs() << "AntiDep Critical-Path Registers:");
- DEBUG(for (int r = CriticalPathSet.find_first(); r != -1;
+ DEBUG(for (int r = CriticalPathSet.find_first(); r != -1;
r = CriticalPathSet.find_next(r))
dbgs() << " " << TRI->getName(r));
DEBUG(dbgs() << '\n');
@@ -232,10 +232,11 @@ void AggressiveAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
// schedule region).
if (State->IsLive(Reg)) {
DEBUG(if (State->GetGroup(Reg) != 0)
- dbgs() << " " << TRI->getName(Reg) << "=g" <<
+ dbgs() << " " << TRI->getName(Reg) << "=g" <<
State->GetGroup(Reg) << "->g0(region live-out)");
State->UnionGroups(Reg, 0);
- } else if ((DefIndices[Reg] < InsertPosIndex) && (DefIndices[Reg] >= Count)) {
+ } else if ((DefIndices[Reg] < InsertPosIndex)
+ && (DefIndices[Reg] >= Count)) {
DefIndices[Reg] = Count;
}
}
@@ -266,7 +267,7 @@ void AggressiveAntiDepBreaker::GetPassthruRegs(MachineInstr *MI,
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
- if ((MO.isDef() && MI->isRegTiedToUseOperand(i)) ||
+ if ((MO.isDef() && MI->isRegTiedToUseOperand(i)) ||
IsImplicitDefUse(MI, MO)) {
const unsigned Reg = MO.getReg();
PassthruRegs.insert(Reg);
@@ -320,11 +321,12 @@ static SUnit *CriticalPathStep(SUnit *SU) {
}
void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx,
- const char *tag, const char *header,
+ const char *tag,
+ const char *header,
const char *footer) {
unsigned *KillIndices = State->GetKillIndices();
unsigned *DefIndices = State->GetDefIndices();
- std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
+ std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
RegRefs = State->GetRegRefs();
if (!State->IsLive(Reg)) {
@@ -355,10 +357,12 @@ void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx,
DEBUG(if ((header == NULL) && (footer != NULL)) dbgs() << footer);
}
-void AggressiveAntiDepBreaker::PrescanInstruction(MachineInstr *MI, unsigned Count,
- std::set<unsigned>& PassthruRegs) {
+void AggressiveAntiDepBreaker::PrescanInstruction(MachineInstr *MI,
+ unsigned Count,
+ std::set<unsigned>& PassthruRegs)
+{
unsigned *DefIndices = State->GetDefIndices();
- std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
+ std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
RegRefs = State->GetRegRefs();
// Handle dead defs by simulating a last-use of the register just
@@ -371,7 +375,7 @@ void AggressiveAntiDepBreaker::PrescanInstruction(MachineInstr *MI, unsigned Cou
if (!MO.isReg() || !MO.isDef()) continue;
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
-
+
HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n");
}
@@ -382,7 +386,7 @@ void AggressiveAntiDepBreaker::PrescanInstruction(MachineInstr *MI, unsigned Cou
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
- DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" << State->GetGroup(Reg));
+ DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" << State->GetGroup(Reg));
// If MI's defs have a special allocation requirement, don't allow
// any def registers to be changed. Also assume all registers
@@ -398,11 +402,11 @@ void AggressiveAntiDepBreaker::PrescanInstruction(MachineInstr *MI, unsigned Cou
unsigned AliasReg = *Alias;
if (State->IsLive(AliasReg)) {
State->UnionGroups(Reg, AliasReg);
- DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via " <<
+ DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via " <<
TRI->getName(AliasReg) << ")");
}
}
-
+
// Note register reference...
const TargetRegisterClass *RC = NULL;
if (i < MI->getDesc().getNumOperands())
@@ -438,7 +442,7 @@ void AggressiveAntiDepBreaker::PrescanInstruction(MachineInstr *MI, unsigned Cou
void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr *MI,
unsigned Count) {
DEBUG(dbgs() << "\tUse Groups:");
- std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
+ std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
RegRefs = State->GetRegRefs();
// Scan the register uses for this instruction and update
@@ -448,9 +452,9 @@ void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr *MI,
if (!MO.isReg() || !MO.isUse()) continue;
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
-
- DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" <<
- State->GetGroup(Reg));
+
+ DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" <<
+ State->GetGroup(Reg));
// It wasn't previously live but now it is, this is a kill. Forget
// the previous live-range information and start a new live-range
@@ -472,7 +476,7 @@ void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr *MI,
AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
RegRefs.insert(std::make_pair(Reg, RR));
}
-
+
DEBUG(dbgs() << '\n');
// Form a group of all defs and uses of a KILL instruction to ensure
@@ -486,7 +490,7 @@ void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr *MI,
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
-
+
if (FirstReg != 0) {
DEBUG(dbgs() << "=" << TRI->getName(Reg));
State->UnionGroups(FirstReg, Reg);
@@ -495,7 +499,7 @@ void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr *MI,
FirstReg = Reg;
}
}
-
+
DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n');
}
}
@@ -507,13 +511,14 @@ BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) {
// Check all references that need rewriting for Reg. For each, use
// the corresponding register class to narrow the set of registers
// that are appropriate for renaming.
- std::pair<std::multimap<unsigned,
+ std::pair<std::multimap<unsigned,
AggressiveAntiDepState::RegisterReference>::iterator,
std::multimap<unsigned,
AggressiveAntiDepState::RegisterReference>::iterator>
Range = State->GetRegRefs().equal_range(Reg);
- for (std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>::iterator
- Q = Range.first, QE = Range.second; Q != QE; ++Q) {
+ for (std::multimap<unsigned,
+ AggressiveAntiDepState::RegisterReference>::iterator Q = Range.first,
+ QE = Range.second; Q != QE; ++Q) {
const TargetRegisterClass *RC = Q->second.RC;
if (RC == NULL) continue;
@@ -527,9 +532,9 @@ BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) {
DEBUG(dbgs() << " " << RC->getName());
}
-
+
return BV;
-}
+}
bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
unsigned AntiDepGroupIndex,
@@ -537,7 +542,7 @@ bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
std::map<unsigned, unsigned> &RenameMap) {
unsigned *KillIndices = State->GetKillIndices();
unsigned *DefIndices = State->GetDefIndices();
- std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
+ std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
RegRefs = State->GetRegRefs();
// Collect all referenced registers in the same group as
@@ -552,7 +557,8 @@ bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
// Find the "superest" register in the group. At the same time,
// collect the BitVector of registers that can be used to rename
// each register.
- DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex << ":\n");
+ DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex
+ << ":\n");
std::map<unsigned, BitVector> RenameRegisterMap;
unsigned SuperReg = 0;
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
@@ -563,7 +569,7 @@ bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
// If Reg has any references, then collect possible rename regs
if (RegRefs.count(Reg) > 0) {
DEBUG(dbgs() << "\t\t" << TRI->getName(Reg) << ":");
-
+
BitVector BV = GetRenameRegisters(Reg);
RenameRegisterMap.insert(std::pair<unsigned, BitVector>(Reg, BV));
@@ -590,7 +596,7 @@ bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
static int renamecnt = 0;
if (renamecnt++ % DebugDiv != DebugMod)
return false;
-
+
dbgs() << "*** Performing rename " << TRI->getName(SuperReg) <<
" for debug ***\n";
}
@@ -600,9 +606,9 @@ bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
// order. If that register is available, and the corresponding
// registers are available for the other group subregisters, then we
// can use those registers to rename.
- const TargetRegisterClass *SuperRC =
+ const TargetRegisterClass *SuperRC =
TRI->getPhysicalRegisterRegClass(SuperReg, MVT::Other);
-
+
const TargetRegisterClass::iterator RB = SuperRC->allocation_order_begin(MF);
const TargetRegisterClass::iterator RE = SuperRC->allocation_order_end(MF);
if (RB == RE) {
@@ -624,7 +630,7 @@ bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
const unsigned NewSuperReg = *R;
// Don't replace a register with itself.
if (NewSuperReg == SuperReg) continue;
-
+
DEBUG(dbgs() << " [" << TRI->getName(NewSuperReg) << ':');
RenameMap.clear();
@@ -643,7 +649,7 @@ bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
}
DEBUG(dbgs() << " " << TRI->getName(NewReg));
-
+
// Check if Reg can be renamed to NewReg.
BitVector BV = RenameRegisterMap[Reg];
if (!BV.test(NewReg)) {
@@ -663,7 +669,8 @@ bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
for (const unsigned *Alias = TRI->getAliasSet(NewReg);
*Alias; ++Alias) {
unsigned AliasReg = *Alias;
- if (State->IsLive(AliasReg) || (KillIndices[Reg] > DefIndices[AliasReg])) {
+ if (State->IsLive(AliasReg) ||
+ (KillIndices[Reg] > DefIndices[AliasReg])) {
DEBUG(dbgs() << "(alias " << TRI->getName(AliasReg) << " live)");
found = true;
break;
@@ -672,11 +679,11 @@ bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
if (found)
goto next_super_reg;
}
-
+
// Record that 'Reg' can be renamed to 'NewReg'.
RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg));
}
-
+
// If we fall-out here, then every register in the group can be
// renamed, as recorded in RenameMap.
RenameOrder.erase(SuperRC);
@@ -704,13 +711,13 @@ unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
unsigned InsertPosIndex) {
unsigned *KillIndices = State->GetKillIndices();
unsigned *DefIndices = State->GetDefIndices();
- std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
+ std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
RegRefs = State->GetRegRefs();
// The code below assumes that there is at least one instruction,
// so just duck out immediately if the block is empty.
if (SUnits.empty()) return 0;
-
+
// For each regclass the next register to use for renaming.
RenameOrderType RenameOrder;
@@ -729,17 +736,17 @@ unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
if (CriticalPathSet.any()) {
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
SUnit *SU = &SUnits[i];
- if (!CriticalPathSU ||
- ((SU->getDepth() + SU->Latency) >
+ if (!CriticalPathSU ||
+ ((SU->getDepth() + SU->Latency) >
(CriticalPathSU->getDepth() + CriticalPathSU->Latency))) {
CriticalPathSU = SU;
}
}
-
+
CriticalPathMI = CriticalPathSU->getInstr();
}
-#ifndef NDEBUG
+#ifndef NDEBUG
DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n");
DEBUG(dbgs() << "Available regs:");
for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
@@ -766,7 +773,7 @@ unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
// Process the defs in MI...
PrescanInstruction(MI, Count, PassthruRegs);
-
+
// The dependence edges that represent anti- and output-
// dependencies that are candidates for breaking.
std::vector<SDep*> Edges;
@@ -779,7 +786,7 @@ unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
if (MI == CriticalPathMI) {
CriticalPathSU = CriticalPathStep(CriticalPathSU);
CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : 0;
- } else {
+ } else {
ExcludeRegs = &CriticalPathSet;
}
@@ -790,14 +797,14 @@ unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
for (unsigned i = 0, e = Edges.size(); i != e; ++i) {
SDep *Edge = Edges[i];
SUnit *NextSU = Edge->getSUnit();
-
+
if ((Edge->getKind() != SDep::Anti) &&
(Edge->getKind() != SDep::Output)) continue;
-
+
unsigned AntiDepReg = Edge->getReg();
DEBUG(dbgs() << "\tAntidep reg: " << TRI->getName(AntiDepReg));
assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
-
+
if (!AllocatableSet.test(AntiDepReg)) {
// Don't break anti-dependencies on non-allocatable registers.
DEBUG(dbgs() << " (non-allocatable)\n");
@@ -816,12 +823,13 @@ unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
} else {
// No anti-dep breaking for implicit deps
MachineOperand *AntiDepOp = MI->findRegisterDefOperand(AntiDepReg);
- assert(AntiDepOp != NULL && "Can't find index for defined register operand");
+ assert(AntiDepOp != NULL &&
+ "Can't find index for defined register operand");
if ((AntiDepOp == NULL) || AntiDepOp->isImplicit()) {
DEBUG(dbgs() << " (implicit)\n");
continue;
}
-
+
// If the SUnit has other dependencies on the SUnit that
// it anti-depends on, don't bother breaking the
// anti-dependency since those edges would prevent such
@@ -847,58 +855,59 @@ unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
DEBUG(dbgs() << " (real dependency)\n");
AntiDepReg = 0;
break;
- } else if ((P->getSUnit() != NextSU) &&
- (P->getKind() == SDep::Data) &&
+ } else if ((P->getSUnit() != NextSU) &&
+ (P->getKind() == SDep::Data) &&
(P->getReg() == AntiDepReg)) {
DEBUG(dbgs() << " (other dependency)\n");
AntiDepReg = 0;
break;
}
}
-
+
if (AntiDepReg == 0) continue;
}
-
+
assert(AntiDepReg != 0);
if (AntiDepReg == 0) continue;
-
+
// Determine AntiDepReg's register group.
const unsigned GroupIndex = State->GetGroup(AntiDepReg);
if (GroupIndex == 0) {
DEBUG(dbgs() << " (zero group)\n");
continue;
}
-
+
DEBUG(dbgs() << '\n');
-
+
// Look for a suitable register to use to break the anti-dependence.
std::map<unsigned, unsigned> RenameMap;
if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) {
DEBUG(dbgs() << "\tBreaking anti-dependence edge on "
<< TRI->getName(AntiDepReg) << ":");
-
+
// Handle each group register...
for (std::map<unsigned, unsigned>::iterator
S = RenameMap.begin(), E = RenameMap.end(); S != E; ++S) {
unsigned CurrReg = S->first;
unsigned NewReg = S->second;
-
- DEBUG(dbgs() << " " << TRI->getName(CurrReg) << "->" <<
- TRI->getName(NewReg) << "(" <<
+
+ DEBUG(dbgs() << " " << TRI->getName(CurrReg) << "->" <<
+ TRI->getName(NewReg) << "(" <<
RegRefs.count(CurrReg) << " refs)");
-
+
// Update the references to the old register CurrReg to
// refer to the new register NewReg.
- std::pair<std::multimap<unsigned,
- AggressiveAntiDepState::RegisterReference>::iterator,
+ std::pair<std::multimap<unsigned,
+ AggressiveAntiDepState::RegisterReference>::iterator,
std::multimap<unsigned,
- AggressiveAntiDepState::RegisterReference>::iterator>
+ AggressiveAntiDepState::RegisterReference>::iterator>
Range = RegRefs.equal_range(CurrReg);
- for (std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>::iterator
+ for (std::multimap<unsigned,
+ AggressiveAntiDepState::RegisterReference>::iterator
Q = Range.first, QE = Range.second; Q != QE; ++Q) {
Q->second.Operand->setReg(NewReg);
}
-
+
// We just went back in time and modified history; the
// liveness information for CurrReg is now inconsistent. Set
// the state as if it were dead.
@@ -906,7 +915,7 @@ unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
RegRefs.erase(NewReg);
DefIndices[NewReg] = DefIndices[CurrReg];
KillIndices[NewReg] = KillIndices[CurrReg];
-
+
State->UnionGroups(CurrReg, 0);
RegRefs.erase(CurrReg);
DefIndices[CurrReg] = KillIndices[CurrReg];
@@ -915,7 +924,7 @@ unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
(DefIndices[CurrReg] == ~0u)) &&
"Kill and Def maps aren't consistent for AntiDepReg!");
}
-
+
++Broken;
DEBUG(dbgs() << '\n');
}
@@ -924,6 +933,6 @@ unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
ScanInstruction(MI, Count);
}
-
+
return Broken;
}
diff --git a/lib/CodeGen/AggressiveAntiDepBreaker.h b/lib/CodeGen/AggressiveAntiDepBreaker.h
index d385a21..a62d68c 100644
--- a/lib/CodeGen/AggressiveAntiDepBreaker.h
+++ b/lib/CodeGen/AggressiveAntiDepBreaker.h
@@ -30,7 +30,7 @@
#include <map>
namespace llvm {
- /// Class AggressiveAntiDepState
+ /// Class AggressiveAntiDepState
/// Contains all the state necessary for anti-dep breaking.
class AggressiveAntiDepState {
public:
@@ -54,27 +54,27 @@ namespace llvm {
/// is the parent of a group, or point to another node to indicate
/// that it is a member of the same group as that node.
std::vector<unsigned> GroupNodes;
-
+
/// GroupNodeIndices - For each register, the index of the GroupNode
/// currently representing the group that the register belongs to.
/// Register 0 is always represented by the 0 group, a group
/// composed of registers that are not eligible for anti-aliasing.
unsigned GroupNodeIndices[TargetRegisterInfo::FirstVirtualRegister];
-
+
/// RegRefs - Map registers to all their references within a live range.
std::multimap<unsigned, RegisterReference> RegRefs;
-
+
/// KillIndices - The index of the most recent kill (proceding bottom-up),
/// or ~0u if the register is not live.
unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
-
+
/// DefIndices - The index of the most recent complete def (proceding bottom
/// up), or ~0u if the register is live.
unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
public:
AggressiveAntiDepState(const unsigned TargetRegs, MachineBasicBlock *BB);
-
+
/// GetKillIndices - Return the kill indices.
unsigned *GetKillIndices() { return KillIndices; }
@@ -87,13 +87,14 @@ namespace llvm {
// GetGroup - Get the group for a register. The returned value is
// the index of the GroupNode representing the group.
unsigned GetGroup(unsigned Reg);
-
+
// GetGroupRegs - Return a vector of the registers belonging to a
// group. If RegRefs is non-NULL then only included referenced registers.
void GetGroupRegs(
unsigned Group,
std::vector<unsigned> &Regs,
- std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs);
+ std::multimap<unsigned,
+ AggressiveAntiDepState::RegisterReference> *RegRefs);
// UnionGroups - Union Reg1's and Reg2's groups to form a new
// group. Return the index of the GroupNode representing the
@@ -110,7 +111,7 @@ namespace llvm {
};
- /// Class AggressiveAntiDepBreaker
+ /// Class AggressiveAntiDepBreaker
class AggressiveAntiDepBreaker : public AntiDepBreaker {
MachineFunction& MF;
MachineRegisterInfo &MRI;
@@ -130,14 +131,15 @@ namespace llvm {
AggressiveAntiDepState *State;
public:
- AggressiveAntiDepBreaker(MachineFunction& MFi,
+ AggressiveAntiDepBreaker(MachineFunction& MFi,
TargetSubtarget::RegClassVector& CriticalPathRCs);
~AggressiveAntiDepBreaker();
-
+
/// Start - Initialize anti-dep breaking for a new basic block.
void StartBlock(MachineBasicBlock *BB);
- /// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
+ /// BreakAntiDependencies - Identifiy anti-dependencies along the critical
+ /// path
/// of the ScheduleDAG and break them by renaming registers.
///
unsigned BreakAntiDependencies(std::vector<SUnit>& SUnits,
@@ -160,7 +162,7 @@ namespace llvm {
/// IsImplicitDefUse - Return true if MO represents a register
/// that is both implicitly used and defined in MI
bool IsImplicitDefUse(MachineInstr *MI, MachineOperand& MO);
-
+
/// GetPassthruRegs - If MI implicitly def/uses a register, then
/// return that register and all subregisters.
void GetPassthruRegs(MachineInstr *MI, std::set<unsigned>& PassthruRegs);
diff --git a/lib/CodeGen/AsmPrinter/AsmPrinter.cpp b/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
index 6b24e24..876f628 100644
--- a/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
+++ b/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
@@ -807,124 +807,145 @@ void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
// Print out the specified constant, without a storage class. Only the
// constants valid in constant expressions can occur here.
void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
- if (CV->isNullValue() || isa<UndefValue>(CV))
+ if (CV->isNullValue() || isa<UndefValue>(CV)) {
O << '0';
- else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
+ return;
+ }
+
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
O << CI->getZExtValue();
- } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
+ return;
+ }
+
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
// This is a constant address for a global variable or function. Use the
// name of the variable or function as the address value.
O << Mang->getMangledName(GV);
- } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
+ return;
+ }
+
+ if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
+ GetBlockAddressSymbol(BA)->print(O, MAI);
+ return;
+ }
+
+ const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
+ if (CE == 0) {
+ llvm_unreachable("Unknown constant value!");
+ O << '0';
+ return;
+ }
+
+ switch (CE->getOpcode()) {
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ default:
+ llvm_unreachable("FIXME: Don't support this constant cast expr");
+ case Instruction::GetElementPtr: {
+ // generate a symbolic expression for the byte address
const TargetData *TD = TM.getTargetData();
- unsigned Opcode = CE->getOpcode();
- switch (Opcode) {
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- llvm_unreachable("FIXME: Don't support this constant cast expr");
- case Instruction::GetElementPtr: {
- // generate a symbolic expression for the byte address
- const Constant *ptrVal = CE->getOperand(0);
- SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
- if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
- idxVec.size())) {
- // Truncate/sext the offset to the pointer size.
- if (TD->getPointerSizeInBits() != 64) {
- int SExtAmount = 64-TD->getPointerSizeInBits();
- Offset = (Offset << SExtAmount) >> SExtAmount;
- }
-
- if (Offset)
- O << '(';
- EmitConstantValueOnly(ptrVal);
- if (Offset > 0)
- O << ") + " << Offset;
- else if (Offset < 0)
- O << ") - " << -Offset;
- } else {
- EmitConstantValueOnly(ptrVal);
- }
- break;
+ const Constant *ptrVal = CE->getOperand(0);
+ SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
+ int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
+ idxVec.size());
+ if (Offset == 0)
+ return EmitConstantValueOnly(ptrVal);
+
+ // Truncate/sext the offset to the pointer size.
+ if (TD->getPointerSizeInBits() != 64) {
+ int SExtAmount = 64-TD->getPointerSizeInBits();
+ Offset = (Offset << SExtAmount) >> SExtAmount;
}
- case Instruction::BitCast:
- return EmitConstantValueOnly(CE->getOperand(0));
-
- case Instruction::IntToPtr: {
- // Handle casts to pointers by changing them into casts to the appropriate
- // integer type. This promotes constant folding and simplifies this code.
- Constant *Op = CE->getOperand(0);
- Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
- false/*ZExt*/);
+
+ if (Offset)
+ O << '(';
+ EmitConstantValueOnly(ptrVal);
+ if (Offset > 0)
+ O << ") + " << Offset;
+ else
+ O << ") - " << -Offset;
+ return;
+ }
+ case Instruction::BitCast:
+ return EmitConstantValueOnly(CE->getOperand(0));
+
+ case Instruction::IntToPtr: {
+ // Handle casts to pointers by changing them into casts to the appropriate
+ // integer type. This promotes constant folding and simplifies this code.
+ const TargetData *TD = TM.getTargetData();
+ Constant *Op = CE->getOperand(0);
+ Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
+ false/*ZExt*/);
+ return EmitConstantValueOnly(Op);
+ }
+
+ case Instruction::PtrToInt: {
+ // Support only foldable casts to/from pointers that can be eliminated by
+ // changing the pointer to the appropriately sized integer type.
+ Constant *Op = CE->getOperand(0);
+ const Type *Ty = CE->getType();
+ const TargetData *TD = TM.getTargetData();
+
+ // We can emit the pointer value into this slot if the slot is an
+ // integer slot greater or equal to the size of the pointer.
+ if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
return EmitConstantValueOnly(Op);
- }
-
+
+ O << "((";
+ EmitConstantValueOnly(Op);
+ APInt ptrMask =
+ APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
+
+ SmallString<40> S;
+ ptrMask.toStringUnsigned(S);
+ O << ") & " << S.str() << ')';
+ return;
+ }
- case Instruction::PtrToInt: {
- // Support only foldable casts to/from pointers that can be eliminated by
- // changing the pointer to the appropriately sized integer type.
- Constant *Op = CE->getOperand(0);
- const Type *Ty = CE->getType();
-
- // We can emit the pointer value into this slot if the slot is an
- // integer slot greater or equal to the size of the pointer.
- if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
- return EmitConstantValueOnly(Op);
-
- O << "((";
- EmitConstantValueOnly(Op);
- APInt ptrMask =
- APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
+ case Instruction::Trunc:
+ // We emit the value and depend on the assembler to truncate the generated
+ // expression properly. This is important for differences between
+ // blockaddress labels. Since the two labels are in the same function, it
+ // is reasonable to treat their delta as a 32-bit value.
+ return EmitConstantValueOnly(CE->getOperand(0));
- SmallString<40> S;
- ptrMask.toStringUnsigned(S);
- O << ") & " << S.str() << ')';
- break;
- }
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ O << '(';
+ EmitConstantValueOnly(CE->getOperand(0));
+ O << ')';
+ switch (CE->getOpcode()) {
case Instruction::Add:
+ O << " + ";
+ break;
case Instruction::Sub:
+ O << " - ";
+ break;
case Instruction::And:
+ O << " & ";
+ break;
case Instruction::Or:
+ O << " | ";
+ break;
case Instruction::Xor:
- O << '(';
- EmitConstantValueOnly(CE->getOperand(0));
- O << ')';
- switch (Opcode) {
- case Instruction::Add:
- O << " + ";
- break;
- case Instruction::Sub:
- O << " - ";
- break;
- case Instruction::And:
- O << " & ";
- break;
- case Instruction::Or:
- O << " | ";
- break;
- case Instruction::Xor:
- O << " ^ ";
- break;
- default:
- break;
- }
- O << '(';
- EmitConstantValueOnly(CE->getOperand(1));
- O << ')';
- break;
+ O << " ^ ";
+ break;
default:
- llvm_unreachable("Unsupported operator!");
+ break;
}
- } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
- GetBlockAddressSymbol(BA)->print(O, MAI);
- } else {
- llvm_unreachable("Unknown constant value!");
+ O << '(';
+ EmitConstantValueOnly(CE->getOperand(1));
+ O << ')';
+ break;
}
}
@@ -1225,8 +1246,7 @@ void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
unsigned AddrSpace) {
const TargetData *TD = TM.getTargetData();
unsigned BitWidth = CI->getBitWidth();
- assert(isPowerOf2_32(BitWidth) &&
- "Non-power-of-2-sized integers not handled!");
+ assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
// We don't expect assemblers to support integer data directives
// for more than 64 bits, so we emit the data in at most 64-bit
@@ -1239,39 +1259,34 @@ void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
else
Val = RawData[i];
- if (MAI->getData64bitsDirective(AddrSpace))
+ if (MAI->getData64bitsDirective(AddrSpace)) {
O << MAI->getData64bitsDirective(AddrSpace) << Val << '\n';
- else if (TD->isBigEndian()) {
- O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
- if (VerboseAsm) {
- O.PadToColumn(MAI->getCommentColumn());
- O << MAI->getCommentString()
- << " most significant half of i64 " << Val;
- }
- O << '\n';
- O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
- if (VerboseAsm) {
- O.PadToColumn(MAI->getCommentColumn());
- O << MAI->getCommentString()
- << " least significant half of i64 " << Val;
- }
- O << '\n';
- } else {
- O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
- if (VerboseAsm) {
- O.PadToColumn(MAI->getCommentColumn());
- O << MAI->getCommentString()
- << " least significant half of i64 " << Val;
- }
- O << '\n';
- O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
- if (VerboseAsm) {
- O.PadToColumn(MAI->getCommentColumn());
- O << MAI->getCommentString()
- << " most significant half of i64 " << Val;
- }
- O << '\n';
+ continue;
}
+
+ // Emit two 32-bit chunks, order depends on endianness.
+ unsigned FirstChunk = unsigned(Val), SecondChunk = unsigned(Val >> 32);
+ const char *FirstName = " least", *SecondName = " most";
+ if (TD->isBigEndian()) {
+ std::swap(FirstChunk, SecondChunk);
+ std::swap(FirstName, SecondName);
+ }
+
+ O << MAI->getData32bitsDirective(AddrSpace) << FirstChunk;
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << FirstName << " significant half of i64 " << Val;
+ }
+ O << '\n';
+
+ O << MAI->getData32bitsDirective(AddrSpace) << SecondChunk;
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << SecondName << " significant half of i64 " << Val;
+ }
+ O << '\n';
}
}
@@ -1284,22 +1299,39 @@ void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
if (CV->isNullValue() || isa<UndefValue>(CV)) {
EmitZeros(Size, AddrSpace);
return;
- } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
+ }
+
+ if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
EmitGlobalConstantArray(CVA , AddrSpace);
return;
- } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
+ }
+
+ if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
EmitGlobalConstantStruct(CVS, AddrSpace);
return;
- } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+ }
+
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
EmitGlobalConstantFP(CFP, AddrSpace);
return;
- } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
+ }
+
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
+ // If we can directly emit an 8-byte constant, do it.
+ if (Size == 8)
+ if (const char *Data64Dir = MAI->getData64bitsDirective(AddrSpace)) {
+ O << Data64Dir << CI->getZExtValue() << '\n';
+ return;
+ }
+
// Small integers are handled below; large integers are handled here.
if (Size > 4) {
EmitGlobalConstantLargeInt(CI, AddrSpace);
return;
}
- } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
+ }
+
+ if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
EmitGlobalConstantVector(CP);
return;
}
@@ -1617,7 +1649,7 @@ void AsmPrinter::printLabel(unsigned Id) const {
/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
/// instruction, using the specified assembler variant. Targets should
-/// overried this to format as appropriate.
+/// override this to format as appropriate.
bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode) {
// Target doesn't support this yet!
@@ -1645,15 +1677,17 @@ MCSymbol *AsmPrinter::GetBlockAddressSymbol(const Function *F,
// This code must use the function name itself, and not the function number,
// since it must be possible to generate the label name from within other
// functions.
- std::string FuncName = Mang->getMangledName(F);
+ SmallString<60> FnName;
+ Mang->getNameWithPrefix(FnName, F, false);
- SmallString<60> Name;
- raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BA"
- << FuncName.size() << '_' << FuncName << '_'
- << Mang->makeNameProper(BB->getName())
- << Suffix;
+ // FIXME: THIS IS BROKEN IF THE LLVM BASIC BLOCK DOESN'T HAVE A NAME!
+ SmallString<60> NameResult;
+ Mang->getNameWithPrefix(NameResult,
+ StringRef("BA") + Twine((unsigned)FnName.size()) +
+ "_" + FnName.str() + "_" + BB->getName() + Suffix,
+ Mangler::Private);
- return OutContext.GetOrCreateSymbol(Name.str());
+ return OutContext.GetOrCreateSymbol(NameResult.str());
}
MCSymbol *AsmPrinter::GetMBBSymbol(unsigned MBBID) const {
diff --git a/lib/CodeGen/AsmPrinter/DwarfDebug.cpp b/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
index 8a3ceb6..15f37ae 100644
--- a/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
+++ b/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
@@ -212,19 +212,30 @@ public:
///
void addVariable(DbgVariable *V) { Variables.push_back(V); }
- void fixInstructionMarkers() {
+ void fixInstructionMarkers(DenseMap<const MachineInstr *,
+ unsigned> &MIIndexMap) {
assert (getFirstInsn() && "First instruction is missing!");
- if (getLastInsn())
- return;
-
- // If a scope does not have an instruction to mark an end then use
- // the end of last child scope.
+
+ // Use the end of last child scope as end of this scope.
SmallVector<DbgScope *, 4> &Scopes = getScopes();
- assert (!Scopes.empty() && "Inner most scope does not have last insn!");
- DbgScope *L = Scopes.back();
- if (!L->getLastInsn())
- L->fixInstructionMarkers();
- setLastInsn(L->getLastInsn());
+ const MachineInstr *LastInsn = getFirstInsn();
+ unsigned LIndex = 0;
+ if (Scopes.empty()) {
+ assert (getLastInsn() && "Inner most scope does not have last insn!");
+ return;
+ }
+ for (SmallVector<DbgScope *, 4>::iterator SI = Scopes.begin(),
+ SE = Scopes.end(); SI != SE; ++SI) {
+ DbgScope *DS = *SI;
+ DS->fixInstructionMarkers(MIIndexMap);
+ const MachineInstr *DSLastInsn = DS->getLastInsn();
+ unsigned DSI = MIIndexMap[DSLastInsn];
+ if (DSI > LIndex) {
+ LastInsn = DSLastInsn;
+ LIndex = DSI;
+ }
+ }
+ setLastInsn(LastInsn);
}
#ifndef NDEBUG
@@ -1021,6 +1032,16 @@ DIE *DwarfDebug::constructEnumTypeDIE(DIEnumerator *ETy) {
return Enumerator;
}
+/// getRealLinkageName - If special LLVM prefix that is used to inform the asm
+/// printer to not emit usual symbol prefix before the symbol name is used then
+/// return linkage name after skipping this special LLVM prefix.
+static StringRef getRealLinkageName(StringRef LinkageName) {
+ char One = '\1';
+ if (LinkageName.startswith(StringRef(&One, 1)))
+ return LinkageName.substr(1);
+ return LinkageName;
+}
+
/// createGlobalVariableDIE - Create new DIE using GV.
DIE *DwarfDebug::createGlobalVariableDIE(const DIGlobalVariable &GV) {
// If the global variable was optmized out then no need to create debug info
@@ -1033,16 +1054,10 @@ DIE *DwarfDebug::createGlobalVariableDIE(const DIGlobalVariable &GV) {
GV.getDisplayName());
StringRef LinkageName = GV.getLinkageName();
- if (!LinkageName.empty()) {
- // Skip special LLVM prefix that is used to inform the asm printer to not
- // emit usual symbol prefix before the symbol name. This happens for
- // Objective-C symbol names and symbol whose name is replaced using GCC's
- // __asm__ attribute.
- if (LinkageName[0] == 1)
- LinkageName = LinkageName.substr(1);
+ if (!LinkageName.empty())
addString(GVDie, dwarf::DW_AT_MIPS_linkage_name, dwarf::DW_FORM_string,
- LinkageName);
- }
+ getRealLinkageName(LinkageName));
+
addType(GVDie, GV.getType());
if (!GV.isLocalToUnit())
addUInt(GVDie, dwarf::DW_AT_external, dwarf::DW_FORM_flag, 1);
@@ -1074,10 +1089,9 @@ DIE *DwarfDebug::createMemberDIE(const DIDerivedType &DT) {
addUInt(MemberDie, dwarf::DW_AT_bit_size, 0, DT.getSizeInBits());
uint64_t Offset = DT.getOffsetInBits();
- uint64_t FieldOffset = Offset;
uint64_t AlignMask = ~(DT.getAlignInBits() - 1);
uint64_t HiMark = (Offset + FieldSize) & AlignMask;
- FieldOffset = (HiMark - FieldSize);
+ uint64_t FieldOffset = (HiMark - FieldSize);
Offset -= FieldOffset;
// Maybe we need to work from the other end.
@@ -1119,16 +1133,10 @@ DIE *DwarfDebug::createSubprogramDIE(const DISubprogram &SP, bool MakeDecl) {
addString(SPDie, dwarf::DW_AT_name, dwarf::DW_FORM_string, SP.getName());
StringRef LinkageName = SP.getLinkageName();
- if (!LinkageName.empty()) {
- // Skip special LLVM prefix that is used to inform the asm printer to not
- // emit usual symbol prefix before the symbol name. This happens for
- // Objective-C symbol names and symbol whose name is replaced using GCC's
- // __asm__ attribute.
- if (LinkageName[0] == 1)
- LinkageName = LinkageName.substr(1);
+ if (!LinkageName.empty())
addString(SPDie, dwarf::DW_AT_MIPS_linkage_name, dwarf::DW_FORM_string,
- LinkageName);
- }
+ getRealLinkageName(LinkageName));
+
addSourceLine(SPDie, &SP);
// Add prototyped tag, if C or ObjC.
@@ -1382,7 +1390,8 @@ DIE *DwarfDebug::constructInlinedScopeDIE(DbgScope *Scope) {
I->second.push_back(std::make_pair(StartID, ScopeDIE));
StringPool.insert(InlinedSP.getName());
- StringPool.insert(InlinedSP.getLinkageName());
+ StringPool.insert(getRealLinkageName(InlinedSP.getLinkageName()));
+
DILocation DL(Scope->getInlinedAt());
addUInt(ScopeDIE, dwarf::DW_AT_call_file, 0, ModuleCU->getID());
addUInt(ScopeDIE, dwarf::DW_AT_call_line, 0, DL.getLineNumber());
@@ -1644,8 +1653,11 @@ void DwarfDebug::constructGlobalVariableDIE(MDNode *N) {
ModuleCU->insertDIE(N, VariableDie);
// Add to context owner.
- if (DI_GV.isDefinition()
- && !DI_GV.getContext().isCompileUnit()) {
+ DIDescriptor GVContext = DI_GV.getContext();
+ // Do not create specification DIE if context is either compile unit
+ // or a subprogram.
+ if (DI_GV.isDefinition() && !GVContext.isCompileUnit()
+ && !GVContext.isSubprogram()) {
// Create specification DIE.
DIE *VariableSpecDIE = new DIE(dwarf::DW_TAG_variable);
addDIEEntry(VariableSpecDIE, dwarf::DW_AT_specification,
@@ -1663,7 +1675,7 @@ void DwarfDebug::constructGlobalVariableDIE(MDNode *N) {
Asm->Mang->getMangledName(DI_GV.getGlobal()));
addBlock(VariableDie, dwarf::DW_AT_location, 0, Block);
}
- addToContextOwner(VariableDie, DI_GV.getContext());
+ addToContextOwner(VariableDie, GVContext);
// Expose as global. FIXME - need to check external flag.
ModuleCU->addGlobal(DI_GV.getName(), VariableDie);
@@ -1804,7 +1816,8 @@ void DwarfDebug::endModule() {
DIE *NDie = ModuleCU->getDIE(N);
if (!NDie) continue;
addDIEEntry(SPDie, dwarf::DW_AT_containing_type, dwarf::DW_FORM_ref4, NDie);
- addDIEEntry(NDie, dwarf::DW_AT_containing_type, dwarf::DW_FORM_ref4, NDie);
+ // FIXME - This is not the correct approach.
+ // addDIEEntry(NDie, dwarf::DW_AT_containing_type, dwarf::DW_FORM_ref4, NDie);
}
// Standard sections final addresses.
@@ -1976,12 +1989,15 @@ bool DwarfDebug::extractScopeInformation(MachineFunction *MF) {
if (!DbgScopeMap.empty())
return false;
+ DenseMap<const MachineInstr *, unsigned> MIIndexMap;
+ unsigned MIIndex = 0;
// Scan each instruction and create scopes. First build working set of scopes.
for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
I != E; ++I) {
for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
II != IE; ++II) {
const MachineInstr *MInsn = II;
+ MIIndexMap[MInsn] = MIIndex++;
DebugLoc DL = MInsn->getDebugLoc();
if (DL.isUnknown()) continue;
DebugLocTuple DLT = MF->getDebugLocTuple(DL);
@@ -2014,16 +2030,10 @@ bool DwarfDebug::extractScopeInformation(MachineFunction *MF) {
}
}
- // If a scope's last instruction is not set then use its child scope's
- // last instruction as this scope's last instrunction.
- for (ValueMap<MDNode *, DbgScope *>::iterator DI = DbgScopeMap.begin(),
- DE = DbgScopeMap.end(); DI != DE; ++DI) {
- if (DI->second->isAbstractScope())
- continue;
- assert (DI->second->getFirstInsn() && "Invalid first instruction!");
- DI->second->fixInstructionMarkers();
- assert (DI->second->getLastInsn() && "Invalid last instruction!");
- }
+ if (!CurrentFnDbgScope)
+ return false;
+
+ CurrentFnDbgScope->fixInstructionMarkers(MIIndexMap);
// Each scope has first instruction and last instruction to mark beginning
// and end of a scope respectively. Create an inverse map that list scopes
@@ -2105,38 +2115,41 @@ void DwarfDebug::endFunction(MachineFunction *MF) {
if (DbgScopeMap.empty())
return;
- // Define end label for subprogram.
- EmitLabel("func_end", SubprogramCount);
-
- // Get function line info.
- if (!Lines.empty()) {
- // Get section line info.
- unsigned ID = SectionMap.insert(Asm->getCurrentSection());
- if (SectionSourceLines.size() < ID) SectionSourceLines.resize(ID);
- std::vector<SrcLineInfo> &SectionLineInfos = SectionSourceLines[ID-1];
- // Append the function info to section info.
- SectionLineInfos.insert(SectionLineInfos.end(),
- Lines.begin(), Lines.end());
+ if (CurrentFnDbgScope) {
+ // Define end label for subprogram.
+ EmitLabel("func_end", SubprogramCount);
+
+ // Get function line info.
+ if (!Lines.empty()) {
+ // Get section line info.
+ unsigned ID = SectionMap.insert(Asm->getCurrentSection());
+ if (SectionSourceLines.size() < ID) SectionSourceLines.resize(ID);
+ std::vector<SrcLineInfo> &SectionLineInfos = SectionSourceLines[ID-1];
+ // Append the function info to section info.
+ SectionLineInfos.insert(SectionLineInfos.end(),
+ Lines.begin(), Lines.end());
+ }
+
+ // Construct abstract scopes.
+ for (SmallVector<DbgScope *, 4>::iterator AI = AbstractScopesList.begin(),
+ AE = AbstractScopesList.end(); AI != AE; ++AI)
+ constructScopeDIE(*AI);
+
+ constructScopeDIE(CurrentFnDbgScope);
+
+ DebugFrames.push_back(FunctionDebugFrameInfo(SubprogramCount,
+ MMI->getFrameMoves()));
}
- // Construct abstract scopes.
- for (SmallVector<DbgScope *, 4>::iterator AI = AbstractScopesList.begin(),
- AE = AbstractScopesList.end(); AI != AE; ++AI)
- constructScopeDIE(*AI);
-
- constructScopeDIE(CurrentFnDbgScope);
-
- DebugFrames.push_back(FunctionDebugFrameInfo(SubprogramCount,
- MMI->getFrameMoves()));
-
// Clear debug info
- CurrentFnDbgScope = NULL;
- DbgScopeMap.clear();
- DbgScopeBeginMap.clear();
- DbgScopeEndMap.clear();
- ConcreteScopes.clear();
- AbstractScopesList.clear();
-
+ if (CurrentFnDbgScope) {
+ CurrentFnDbgScope = NULL;
+ DbgScopeMap.clear();
+ DbgScopeBeginMap.clear();
+ DbgScopeEndMap.clear();
+ ConcreteScopes.clear();
+ AbstractScopesList.clear();
+ }
Lines.clear();
if (TimePassesIsEnabled)
@@ -2908,8 +2921,6 @@ void DwarfDebug::emitDebugInlineInfo() {
for (SmallVector<MDNode *, 4>::iterator I = InlinedSPNodes.begin(),
E = InlinedSPNodes.end(); I != E; ++I) {
-// for (ValueMap<MDNode *, SmallVector<InlineInfoLabels, 4> >::iterator
- // I = InlineInfo.begin(), E = InlineInfo.end(); I != E; ++I) {
MDNode *Node = *I;
ValueMap<MDNode *, SmallVector<InlineInfoLabels, 4> >::iterator II
= InlineInfo.find(Node);
@@ -2920,20 +2931,11 @@ void DwarfDebug::emitDebugInlineInfo() {
if (LName.empty())
Asm->EmitString(Name);
- else {
- // Skip special LLVM prefix that is used to inform the asm printer to not
- // emit usual symbol prefix before the symbol name. This happens for
- // Objective-C symbol names and symbol whose name is replaced using GCC's
- // __asm__ attribute.
- if (LName[0] == 1)
- LName = LName.substr(1);
-// Asm->EmitString(LName);
+ else
EmitSectionOffset("string", "section_str",
- StringPool.idFor(LName), false, true);
+ StringPool.idFor(getRealLinkageName(LName)), false, true);
- }
Asm->EOL("MIPS linkage name");
-// Asm->EmitString(Name);
EmitSectionOffset("string", "section_str",
StringPool.idFor(Name), false, true);
Asm->EOL("Function name");
diff --git a/lib/CodeGen/CMakeLists.txt b/lib/CodeGen/CMakeLists.txt
index 7a969f0..6bc808c 100644
--- a/lib/CodeGen/CMakeLists.txt
+++ b/lib/CodeGen/CMakeLists.txt
@@ -35,12 +35,13 @@ add_llvm_library(LLVMCodeGen
MachineModuleInfoImpls.cpp
MachinePassRegistry.cpp
MachineRegisterInfo.cpp
- MachineSink.cpp
MachineSSAUpdater.cpp
+ MachineSink.cpp
MachineVerifier.cpp
MaxStackAlignment.cpp
ObjectCodeEmitter.cpp
OcamlGC.cpp
+ OptimizeExts.cpp
PHIElimination.cpp
Passes.cpp
PostRASchedulerList.cpp
diff --git a/lib/CodeGen/CriticalAntiDepBreaker.cpp b/lib/CodeGen/CriticalAntiDepBreaker.cpp
index 3c7961c2..056e2d5 100644
--- a/lib/CodeGen/CriticalAntiDepBreaker.cpp
+++ b/lib/CodeGen/CriticalAntiDepBreaker.cpp
@@ -288,9 +288,11 @@ void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
}
unsigned
-CriticalAntiDepBreaker::findSuitableFreeRegister(unsigned AntiDepReg,
+CriticalAntiDepBreaker::findSuitableFreeRegister(MachineInstr *MI,
+ unsigned AntiDepReg,
unsigned LastNewReg,
- const TargetRegisterClass *RC) {
+ const TargetRegisterClass *RC)
+{
for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
RE = RC->allocation_order_end(MF); R != RE; ++R) {
unsigned NewReg = *R;
@@ -300,12 +302,16 @@ CriticalAntiDepBreaker::findSuitableFreeRegister(unsigned AntiDepReg,
// an anti-dependence with this AntiDepReg, because that would
// re-introduce that anti-dependence.
if (NewReg == LastNewReg) continue;
+ // If the instruction already has a def of the NewReg, it's not suitable.
+ // For example, Instruction with multiple definitions can result in this
+ // condition.
+ if (MI->modifiesRegister(NewReg, TRI)) continue;
// If NewReg is dead and NewReg's most recent def is not before
// AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
- assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
- "Kill and Def maps aren't consistent for AntiDepReg!");
- assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
- "Kill and Def maps aren't consistent for NewReg!");
+ assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
+ && "Kill and Def maps aren't consistent for AntiDepReg!");
+ assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
+ && "Kill and Def maps aren't consistent for NewReg!");
if (KillIndices[NewReg] != ~0u ||
Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
KillIndices[AntiDepReg] > DefIndices[NewReg])
@@ -336,14 +342,14 @@ BreakAntiDependencies(std::vector<SUnit>& SUnits,
#ifndef NDEBUG
{
- DEBUG(errs() << "Critical path has total latency "
+ DEBUG(dbgs() << "Critical path has total latency "
<< (Max->getDepth() + Max->Latency) << "\n");
- DEBUG(errs() << "Available regs:");
+ DEBUG(dbgs() << "Available regs:");
for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
if (KillIndices[Reg] == ~0u)
- DEBUG(errs() << " " << TRI->getName(Reg));
+ DEBUG(dbgs() << " " << TRI->getName(Reg));
}
- DEBUG(errs() << '\n');
+ DEBUG(dbgs() << '\n');
}
#endif
@@ -495,10 +501,10 @@ BreakAntiDependencies(std::vector<SUnit>& SUnits,
// TODO: Instead of picking the first free register, consider which might
// be the best.
if (AntiDepReg != 0) {
- if (unsigned NewReg = findSuitableFreeRegister(AntiDepReg,
+ if (unsigned NewReg = findSuitableFreeRegister(MI, AntiDepReg,
LastNewReg[AntiDepReg],
RC)) {
- DEBUG(errs() << "Breaking anti-dependence edge on "
+ DEBUG(dbgs() << "Breaking anti-dependence edge on "
<< TRI->getName(AntiDepReg)
<< " with " << RegRefs.count(AntiDepReg) << " references"
<< " using " << TRI->getName(NewReg) << "!\n");
diff --git a/lib/CodeGen/CriticalAntiDepBreaker.h b/lib/CodeGen/CriticalAntiDepBreaker.h
index 496888d..9e8db02 100644
--- a/lib/CodeGen/CriticalAntiDepBreaker.h
+++ b/lib/CodeGen/CriticalAntiDepBreaker.h
@@ -64,11 +64,12 @@ namespace llvm {
public:
CriticalAntiDepBreaker(MachineFunction& MFi);
~CriticalAntiDepBreaker();
-
+
/// Start - Initialize anti-dep breaking for a new basic block.
void StartBlock(MachineBasicBlock *BB);
- /// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
+ /// BreakAntiDependencies - Identifiy anti-dependencies along the critical
+ /// path
/// of the ScheduleDAG and break them by renaming registers.
///
unsigned BreakAntiDependencies(std::vector<SUnit>& SUnits,
@@ -87,7 +88,8 @@ namespace llvm {
private:
void PrescanInstruction(MachineInstr *MI);
void ScanInstruction(MachineInstr *MI, unsigned Count);
- unsigned findSuitableFreeRegister(unsigned AntiDepReg,
+ unsigned findSuitableFreeRegister(MachineInstr *MI,
+ unsigned AntiDepReg,
unsigned LastNewReg,
const TargetRegisterClass *);
};
diff --git a/lib/CodeGen/DeadMachineInstructionElim.cpp b/lib/CodeGen/DeadMachineInstructionElim.cpp
index 07a5d38..0982eab 100644
--- a/lib/CodeGen/DeadMachineInstructionElim.cpp
+++ b/lib/CodeGen/DeadMachineInstructionElim.cpp
@@ -109,7 +109,7 @@ bool DeadMachineInstructionElim::runOnMachineFunction(MachineFunction &MF) {
// If the instruction is dead, delete it!
if (isDead(MI)) {
- DEBUG(errs() << "DeadMachineInstructionElim: DELETING: " << *MI);
+ DEBUG(dbgs() << "DeadMachineInstructionElim: DELETING: " << *MI);
AnyChanges = true;
MI->eraseFromParent();
MIE = MBB->rend();
diff --git a/lib/CodeGen/ELFCodeEmitter.cpp b/lib/CodeGen/ELFCodeEmitter.cpp
index a6429f7..11a85a0 100644
--- a/lib/CodeGen/ELFCodeEmitter.cpp
+++ b/lib/CodeGen/ELFCodeEmitter.cpp
@@ -37,7 +37,7 @@ namespace llvm {
/// startFunction - This callback is invoked when a new machine function is
/// about to be emitted.
void ELFCodeEmitter::startFunction(MachineFunction &MF) {
- DEBUG(errs() << "processing function: "
+ DEBUG(dbgs() << "processing function: "
<< MF.getFunction()->getName() << "\n");
// Get the ELF Section that this function belongs in.
diff --git a/lib/CodeGen/ELFWriter.cpp b/lib/CodeGen/ELFWriter.cpp
index 3e1ee11..5e5f589 100644
--- a/lib/CodeGen/ELFWriter.cpp
+++ b/lib/CodeGen/ELFWriter.cpp
@@ -1076,7 +1076,7 @@ void ELFWriter::OutputSectionsAndSectionTable() {
// Emit all of sections to the file and build the section header table.
for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) {
ELFSection &S = *(*I);
- DEBUG(errs() << "SectionIdx: " << S.SectionIdx << ", Name: " << S.getName()
+ DEBUG(dbgs() << "SectionIdx: " << S.SectionIdx << ", Name: " << S.getName()
<< ", Size: " << S.Size << ", Offset: " << S.Offset
<< ", SectionData Size: " << S.size() << "\n");
diff --git a/lib/CodeGen/ExactHazardRecognizer.cpp b/lib/CodeGen/ExactHazardRecognizer.cpp
index 36925b1..266c74c 100644
--- a/lib/CodeGen/ExactHazardRecognizer.cpp
+++ b/lib/CodeGen/ExactHazardRecognizer.cpp
@@ -48,7 +48,7 @@ ExactHazardRecognizer(const InstrItineraryData &LItinData) :
Scoreboard = new unsigned[ScoreboardDepth];
ScoreboardHead = 0;
- DEBUG(errs() << "Using exact hazard recognizer: ScoreboardDepth = "
+ DEBUG(dbgs() << "Using exact hazard recognizer: ScoreboardDepth = "
<< ScoreboardDepth << '\n');
}
@@ -66,7 +66,7 @@ unsigned ExactHazardRecognizer::getFutureIndex(unsigned offset) {
}
void ExactHazardRecognizer::dumpScoreboard() {
- errs() << "Scoreboard:\n";
+ dbgs() << "Scoreboard:\n";
unsigned last = ScoreboardDepth - 1;
while ((last > 0) && (Scoreboard[getFutureIndex(last)] == 0))
@@ -74,10 +74,10 @@ void ExactHazardRecognizer::dumpScoreboard() {
for (unsigned i = 0; i <= last; i++) {
unsigned FUs = Scoreboard[getFutureIndex(i)];
- errs() << "\t";
+ dbgs() << "\t";
for (int j = 31; j >= 0; j--)
- errs() << ((FUs & (1 << j)) ? '1' : '0');
- errs() << '\n';
+ dbgs() << ((FUs & (1 << j)) ? '1' : '0');
+ dbgs() << '\n';
}
}
@@ -102,8 +102,8 @@ ExactHazardRecognizer::HazardType ExactHazardRecognizer::getHazardType(SUnit *SU
unsigned index = getFutureIndex(cycle + i);
unsigned freeUnits = IS->getUnits() & ~Scoreboard[index];
if (!freeUnits) {
- DEBUG(errs() << "*** Hazard in cycle " << (cycle + i) << ", ");
- DEBUG(errs() << "SU(" << SU->NodeNum << "): ");
+ DEBUG(dbgs() << "*** Hazard in cycle " << (cycle + i) << ", ");
+ DEBUG(dbgs() << "SU(" << SU->NodeNum << "): ");
DEBUG(SU->getInstr()->dump());
return Hazard;
}
diff --git a/lib/CodeGen/GCMetadata.cpp b/lib/CodeGen/GCMetadata.cpp
index 4d25dcc..055172b 100644
--- a/lib/CodeGen/GCMetadata.cpp
+++ b/lib/CodeGen/GCMetadata.cpp
@@ -17,6 +17,7 @@
#include "llvm/Pass.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Function.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -92,7 +93,7 @@ GCStrategy *GCModuleInfo::getOrCreateStrategy(const Module *M,
}
}
- errs() << "unsupported GC: " << Name << "\n";
+ dbgs() << "unsupported GC: " << Name << "\n";
llvm_unreachable(0);
}
diff --git a/lib/CodeGen/GCStrategy.cpp b/lib/CodeGen/GCStrategy.cpp
index 6e0bde6..79b2986 100644
--- a/lib/CodeGen/GCStrategy.cpp
+++ b/lib/CodeGen/GCStrategy.cpp
@@ -27,6 +27,7 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
@@ -109,7 +110,7 @@ GCStrategy::~GCStrategy() {
bool GCStrategy::initializeCustomLowering(Module &M) { return false; }
bool GCStrategy::performCustomLowering(Function &F) {
- errs() << "gc " << getName() << " must override performCustomLowering.\n";
+ dbgs() << "gc " << getName() << " must override performCustomLowering.\n";
llvm_unreachable(0);
return 0;
}
diff --git a/lib/CodeGen/IfConversion.cpp b/lib/CodeGen/IfConversion.cpp
index c23d707..c61fd17 100644
--- a/lib/CodeGen/IfConversion.cpp
+++ b/lib/CodeGen/IfConversion.cpp
@@ -229,14 +229,14 @@ bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
TII = MF.getTarget().getInstrInfo();
if (!TII) return false;
- DEBUG(errs() << "\nIfcvt: function (" << ++FnNum << ") \'"
+ DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
<< MF.getFunction()->getName() << "\'");
if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
- DEBUG(errs() << " skipped\n");
+ DEBUG(dbgs() << " skipped\n");
return false;
}
- DEBUG(errs() << "\n");
+ DEBUG(dbgs() << "\n");
MF.RenumberBlocks();
BBAnalysis.resize(MF.getNumBlockIDs());
@@ -281,13 +281,13 @@ bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
case ICSimpleFalse: {
bool isFalse = Kind == ICSimpleFalse;
if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
- DEBUG(errs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ? " false" :"")
+ DEBUG(dbgs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ? " false" :"")
<< "): BB#" << BBI.BB->getNumber() << " ("
<< ((Kind == ICSimpleFalse)
? BBI.FalseBB->getNumber()
: BBI.TrueBB->getNumber()) << ") ");
RetVal = IfConvertSimple(BBI, Kind);
- DEBUG(errs() << (RetVal ? "succeeded!" : "failed!") << "\n");
+ DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
if (RetVal) {
if (isFalse) NumSimpleFalse++;
else NumSimple++;
@@ -304,16 +304,16 @@ bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
if (DisableTriangleR && !isFalse && isRev) break;
if (DisableTriangleF && isFalse && !isRev) break;
if (DisableTriangleFR && isFalse && isRev) break;
- DEBUG(errs() << "Ifcvt (Triangle");
+ DEBUG(dbgs() << "Ifcvt (Triangle");
if (isFalse)
- DEBUG(errs() << " false");
+ DEBUG(dbgs() << " false");
if (isRev)
- DEBUG(errs() << " rev");
- DEBUG(errs() << "): BB#" << BBI.BB->getNumber() << " (T:"
+ DEBUG(dbgs() << " rev");
+ DEBUG(dbgs() << "): BB#" << BBI.BB->getNumber() << " (T:"
<< BBI.TrueBB->getNumber() << ",F:"
<< BBI.FalseBB->getNumber() << ") ");
RetVal = IfConvertTriangle(BBI, Kind);
- DEBUG(errs() << (RetVal ? "succeeded!" : "failed!") << "\n");
+ DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
if (RetVal) {
if (isFalse) {
if (isRev) NumTriangleFRev++;
@@ -327,11 +327,11 @@ bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
}
case ICDiamond: {
if (DisableDiamond) break;
- DEBUG(errs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:"
+ DEBUG(dbgs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:"
<< BBI.TrueBB->getNumber() << ",F:"
<< BBI.FalseBB->getNumber() << ") ");
RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2);
- DEBUG(errs() << (RetVal ? "succeeded!" : "failed!") << "\n");
+ DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
if (RetVal) NumDiamonds++;
break;
}
@@ -1141,7 +1141,7 @@ void IfConverter::PredicateBlock(BBInfo &BBI,
continue;
if (!TII->PredicateInstruction(I, Cond)) {
#ifndef NDEBUG
- errs() << "Unable to predicate " << *I << "!\n";
+ dbgs() << "Unable to predicate " << *I << "!\n";
#endif
llvm_unreachable(0);
}
@@ -1177,7 +1177,7 @@ void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
if (!isPredicated)
if (!TII->PredicateInstruction(MI, Cond)) {
#ifndef NDEBUG
- errs() << "Unable to predicate " << *I << "!\n";
+ dbgs() << "Unable to predicate " << *I << "!\n";
#endif
llvm_unreachable(0);
}
diff --git a/lib/CodeGen/IntrinsicLowering.cpp b/lib/CodeGen/IntrinsicLowering.cpp
index 8a3bd0b..9997a48 100644
--- a/lib/CodeGen/IntrinsicLowering.cpp
+++ b/lib/CodeGen/IntrinsicLowering.cpp
@@ -349,12 +349,12 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
case Intrinsic::setjmp: {
Value *V = ReplaceCallWith("setjmp", CI, CI->op_begin() + 1, CI->op_end(),
Type::getInt32Ty(Context));
- if (CI->getType() != Type::getVoidTy(Context))
+ if (!CI->getType()->isVoidTy())
CI->replaceAllUsesWith(V);
break;
}
case Intrinsic::sigsetjmp:
- if (CI->getType() != Type::getVoidTy(Context))
+ if (!CI->getType()->isVoidTy())
CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
break;
@@ -427,10 +427,6 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
break;
}
- case Intrinsic::dbg_stoppoint:
- case Intrinsic::dbg_region_start:
- case Intrinsic::dbg_region_end:
- case Intrinsic::dbg_func_start:
case Intrinsic::dbg_declare:
break; // Simply strip out debugging intrinsics
@@ -512,7 +508,7 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
}
case Intrinsic::flt_rounds:
// Lower to "round to the nearest"
- if (CI->getType() != Type::getVoidTy(Context))
+ if (!CI->getType()->isVoidTy())
CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 1));
break;
case Intrinsic::invariant_start:
diff --git a/lib/CodeGen/LLVMTargetMachine.cpp b/lib/CodeGen/LLVMTargetMachine.cpp
index d5fd051..2b5fd2c 100644
--- a/lib/CodeGen/LLVMTargetMachine.cpp
+++ b/lib/CodeGen/LLVMTargetMachine.cpp
@@ -24,6 +24,7 @@
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/FormattedStream.h"
using namespace llvm;
@@ -61,6 +62,7 @@ static cl::opt<bool> VerifyMachineCode("verify-machineinstrs", cl::Hidden,
cl::desc("Verify generated machine code"),
cl::init(getenv("LLVM_VERIFY_MACHINEINSTRS")!=NULL));
+
// Enable or disable FastISel. Both options are needed, because
// FastISel is enabled by default with -fast, and we wish to be
// able to enable or disable fast-isel independently from -O0.
@@ -246,7 +248,7 @@ static void printAndVerify(PassManagerBase &PM,
const char *Banner,
bool allowDoubleDefs = false) {
if (PrintMachineCode)
- PM.add(createMachineFunctionPrinterPass(errs(), Banner));
+ PM.add(createMachineFunctionPrinterPass(dbgs(), Banner));
if (VerifyMachineCode)
PM.add(createMachineVerifierPass(allowDoubleDefs));
@@ -269,7 +271,7 @@ bool LLVMTargetMachine::addCommonCodeGenPasses(PassManagerBase &PM,
if (OptLevel != CodeGenOpt::None && !DisableLSR) {
PM.add(createLoopStrengthReducePass(getTargetLowering()));
if (PrintLSR)
- PM.add(createPrintFunctionPass("\n\n*** Code after LSR ***\n", &errs()));
+ PM.add(createPrintFunctionPass("\n\n*** Code after LSR ***\n", &dbgs()));
}
// Turn exception handling constructs into something the code generators can
@@ -278,8 +280,13 @@ bool LLVMTargetMachine::addCommonCodeGenPasses(PassManagerBase &PM,
{
case ExceptionHandling::SjLj:
// SjLj piggy-backs on dwarf for this bit. The cleanups done apply to both
- PM.add(createDwarfEHPass(getTargetLowering(), OptLevel==CodeGenOpt::None));
+ // Dwarf EH prepare needs to be run after SjLj prepare. Otherwise,
+ // catch info can get misplaced when a selector ends up more than one block
+ // removed from the parent invoke(s). This could happen when a landing
+ // pad is shared by multiple invokes and is also a target of a normal
+ // edge from elsewhere.
PM.add(createSjLjEHPass(getTargetLowering()));
+ PM.add(createDwarfEHPass(getTargetLowering(), OptLevel==CodeGenOpt::None));
break;
case ExceptionHandling::Dwarf:
PM.add(createDwarfEHPass(getTargetLowering(), OptLevel==CodeGenOpt::None));
@@ -302,7 +309,7 @@ bool LLVMTargetMachine::addCommonCodeGenPasses(PassManagerBase &PM,
if (PrintISelInput)
PM.add(createPrintFunctionPass("\n\n"
"*** Final LLVM Code input to ISel ***\n",
- &errs()));
+ &dbgs()));
// Standard Lower-Level Passes.
@@ -323,6 +330,7 @@ bool LLVMTargetMachine::addCommonCodeGenPasses(PassManagerBase &PM,
/* allowDoubleDefs= */ true);
if (OptLevel != CodeGenOpt::None) {
+ PM.add(createOptimizeExtsPass());
if (!DisableMachineLICM)
PM.add(createMachineLICMPass());
if (!DisableMachineSink)
@@ -335,7 +343,8 @@ bool LLVMTargetMachine::addCommonCodeGenPasses(PassManagerBase &PM,
if (OptLevel != CodeGenOpt::None &&
!DisableTailDuplicate && PreAllocTailDup) {
PM.add(createTailDuplicatePass(true));
- printAndVerify(PM, "After Pre-RegAlloc TailDuplicate");
+ printAndVerify(PM, "After Pre-RegAlloc TailDuplicate",
+ /* allowDoubleDefs= */ true);
}
// Run pre-ra passes.
@@ -391,7 +400,7 @@ bool LLVMTargetMachine::addCommonCodeGenPasses(PassManagerBase &PM,
PM.add(createGCMachineCodeAnalysisPass());
if (PrintGCInfo)
- PM.add(createGCInfoPrinter(errs()));
+ PM.add(createGCInfoPrinter(dbgs()));
if (OptLevel != CodeGenOpt::None && !DisableCodePlace) {
PM.add(createCodePlacementOptPass());
diff --git a/lib/CodeGen/LiveInterval.cpp b/lib/CodeGen/LiveInterval.cpp
index cc286aa..e207f60 100644
--- a/lib/CodeGen/LiveInterval.cpp
+++ b/lib/CodeGen/LiveInterval.cpp
@@ -10,7 +10,7 @@
// This file implements the LiveRange and LiveInterval classes. Given some
// numbering of each the machine instructions an interval [i, j) is said to be a
// live interval for register v if there is no instruction with number j' > j
-// such that v is live at j' abd there is no instruction with number i' < i such
+// such that v is live at j' and there is no instruction with number i' < i such
// that v is live at i'. In this implementation intervals can have holes,
// i.e. an interval might look like [1,20), [50,65), [1000,1001). Each
// individual range is represented as an instance of LiveRange, and the whole
@@ -24,6 +24,7 @@
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <algorithm>
@@ -813,7 +814,7 @@ raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange &LR) {
}
void LiveRange::dump() const {
- errs() << *this << "\n";
+ dbgs() << *this << "\n";
}
void LiveInterval::print(raw_ostream &OS, const TargetRegisterInfo *TRI) const {
@@ -872,7 +873,7 @@ void LiveInterval::print(raw_ostream &OS, const TargetRegisterInfo *TRI) const {
}
void LiveInterval::dump() const {
- errs() << *this << "\n";
+ dbgs() << *this << "\n";
}
diff --git a/lib/CodeGen/LiveIntervalAnalysis.cpp b/lib/CodeGen/LiveIntervalAnalysis.cpp
index 452f872..e0e2ec8 100644
--- a/lib/CodeGen/LiveIntervalAnalysis.cpp
+++ b/lib/CodeGen/LiveIntervalAnalysis.cpp
@@ -146,7 +146,7 @@ void LiveIntervals::printInstrs(raw_ostream &OS) const {
}
void LiveIntervals::dumpInstrs() const {
- printInstrs(errs());
+ printInstrs(dbgs());
}
bool LiveIntervals::conflictsWithPhysReg(const LiveInterval &li,
@@ -253,9 +253,9 @@ bool LiveIntervals::conflictsWithPhysRegRef(LiveInterval &li,
#ifndef NDEBUG
static void printRegName(unsigned reg, const TargetRegisterInfo* tri_) {
if (TargetRegisterInfo::isPhysicalRegister(reg))
- errs() << tri_->getName(reg);
+ dbgs() << tri_->getName(reg);
else
- errs() << "%reg" << reg;
+ dbgs() << "%reg" << reg;
}
#endif
@@ -266,7 +266,7 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
unsigned MOIdx,
LiveInterval &interval) {
DEBUG({
- errs() << "\t\tregister: ";
+ dbgs() << "\t\tregister: ";
printRegName(interval.reg, tri_);
});
@@ -314,7 +314,7 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
"Shouldn't be alive across any blocks!");
LiveRange LR(defIndex, killIdx, ValNo);
interval.addRange(LR);
- DEBUG(errs() << " +" << LR << "\n");
+ DEBUG(dbgs() << " +" << LR << "\n");
ValNo->addKill(killIdx);
return;
}
@@ -325,7 +325,7 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
// live into some number of blocks, but gets killed. Start by adding a
// range that goes from this definition to the end of the defining block.
LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo);
- DEBUG(errs() << " +" << NewLR);
+ DEBUG(dbgs() << " +" << NewLR);
interval.addRange(NewLR);
// Iterate over all of the blocks that the variable is completely
@@ -336,7 +336,7 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
MachineBasicBlock *aliveBlock = mf_->getBlockNumbered(*I);
LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), ValNo);
interval.addRange(LR);
- DEBUG(errs() << " +" << LR);
+ DEBUG(dbgs() << " +" << LR);
}
// Finally, this virtual register is live from the start of any killing
@@ -348,7 +348,7 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
LiveRange LR(getMBBStartIdx(Kill->getParent()), killIdx, ValNo);
interval.addRange(LR);
ValNo->addKill(killIdx);
- DEBUG(errs() << " +" << LR);
+ DEBUG(dbgs() << " +" << LR);
}
} else {
@@ -393,7 +393,7 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
// Add the new live interval which replaces the range for the input copy.
LiveRange LR(DefIndex, RedefIndex, ValNo);
- DEBUG(errs() << " replace range with " << LR);
+ DEBUG(dbgs() << " replace range with " << LR);
interval.addRange(LR);
ValNo->addKill(RedefIndex);
@@ -404,8 +404,8 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
OldValNo));
DEBUG({
- errs() << " RESULT: ";
- interval.print(errs(), tri_);
+ dbgs() << " RESULT: ";
+ interval.print(dbgs(), tri_);
});
} else {
// Otherwise, this must be because of phi elimination. If this is the
@@ -422,8 +422,8 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
SlotIndex Start = getMBBStartIdx(Killer->getParent());
SlotIndex End = getInstructionIndex(Killer).getDefIndex();
DEBUG({
- errs() << "\n\t\trenaming [" << Start << "," << End << "] in: ";
- interval.print(errs(), tri_);
+ dbgs() << "\n\t\trenaming [" << Start << "," << End << "] in: ";
+ interval.print(dbgs(), tri_);
});
interval.removeRange(Start, End);
@@ -442,8 +442,8 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
VNI->addKill(indexes_->getTerminatorGap(killMBB));
VNI->setHasPHIKill(true);
DEBUG({
- errs() << " RESULT: ";
- interval.print(errs(), tri_);
+ dbgs() << " RESULT: ";
+ interval.print(dbgs(), tri_);
});
}
@@ -469,11 +469,11 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
interval.addRange(LR);
ValNo->addKill(indexes_->getTerminatorGap(mbb));
ValNo->setHasPHIKill(true);
- DEBUG(errs() << " +" << LR);
+ DEBUG(dbgs() << " +" << LR);
}
}
- DEBUG(errs() << '\n');
+ DEBUG(dbgs() << '\n');
}
void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
@@ -485,7 +485,7 @@ void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
// A physical register cannot be live across basic block, so its
// lifetime must end somewhere in its defining basic block.
DEBUG({
- errs() << "\t\tregister: ";
+ dbgs() << "\t\tregister: ";
printRegName(interval.reg, tri_);
});
@@ -502,7 +502,7 @@ void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
// For earlyclobbers, the defSlot was pushed back one; the extra
// advance below compensates.
if (MO.isDead()) {
- DEBUG(errs() << " dead");
+ DEBUG(dbgs() << " dead");
end = start.getStoreIndex();
goto exit;
}
@@ -517,7 +517,7 @@ void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
baseIndex = indexes_->getNextNonNullIndex(baseIndex);
if (mi->killsRegister(interval.reg, tri_)) {
- DEBUG(errs() << " killed");
+ DEBUG(dbgs() << " killed");
end = baseIndex.getDefIndex();
goto exit;
} else {
@@ -531,7 +531,7 @@ void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
// Then the register is essentially dead at the instruction that defines
// it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)
- DEBUG(errs() << " dead");
+ DEBUG(dbgs() << " dead");
end = start.getStoreIndex();
}
goto exit;
@@ -560,7 +560,7 @@ exit:
LiveRange LR(start, end, ValNo);
interval.addRange(LR);
LR.valno->addKill(end);
- DEBUG(errs() << " +" << LR << '\n');
+ DEBUG(dbgs() << " +" << LR << '\n');
}
void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
@@ -595,7 +595,7 @@ void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
SlotIndex MIIdx,
LiveInterval &interval, bool isAlias) {
DEBUG({
- errs() << "\t\tlivein register: ";
+ dbgs() << "\t\tlivein register: ";
printRegName(interval.reg, tri_);
});
@@ -612,7 +612,7 @@ void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
while (mi != MBB->end()) {
if (mi->killsRegister(interval.reg, tri_)) {
- DEBUG(errs() << " killed");
+ DEBUG(dbgs() << " killed");
end = baseIndex.getDefIndex();
SeenDefUse = true;
break;
@@ -621,7 +621,7 @@ void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
// Then the register is essentially dead at the instruction that defines
// it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)
- DEBUG(errs() << " dead");
+ DEBUG(dbgs() << " dead");
end = start.getStoreIndex();
SeenDefUse = true;
break;
@@ -636,10 +636,10 @@ void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
// Live-in register might not be used at all.
if (!SeenDefUse) {
if (isAlias) {
- DEBUG(errs() << " dead");
+ DEBUG(dbgs() << " dead");
end = MIIdx.getStoreIndex();
} else {
- DEBUG(errs() << " live through");
+ DEBUG(dbgs() << " live through");
end = baseIndex;
}
}
@@ -652,7 +652,7 @@ void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
interval.addRange(LR);
LR.valno->addKill(end);
- DEBUG(errs() << " +" << LR << '\n');
+ DEBUG(dbgs() << " +" << LR << '\n');
}
/// computeIntervals - computes the live intervals for virtual
@@ -660,7 +660,7 @@ void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
/// live interval is an interval [i, j) where 1 <= i <= j < N for
/// which a variable is live
void LiveIntervals::computeIntervals() {
- DEBUG(errs() << "********** COMPUTING LIVE INTERVALS **********\n"
+ DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n"
<< "********** Function: "
<< ((Value*)mf_->getFunction())->getName() << '\n');
@@ -670,7 +670,7 @@ void LiveIntervals::computeIntervals() {
MachineBasicBlock *MBB = MBBI;
// Track the index of the current machine instr.
SlotIndex MIIndex = getMBBStartIdx(MBB);
- DEBUG(errs() << MBB->getName() << ":\n");
+ DEBUG(dbgs() << MBB->getName() << ":\n");
MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
@@ -690,7 +690,7 @@ void LiveIntervals::computeIntervals() {
MIIndex = indexes_->getNextNonNullIndex(MIIndex);
for (; MI != miEnd; ++MI) {
- DEBUG(errs() << MIIndex << "\t" << *MI);
+ DEBUG(dbgs() << MIIndex << "\t" << *MI);
// Handle defs.
for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
@@ -1055,7 +1055,7 @@ rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
// If this is the rematerializable definition MI itself and
// all of its uses are rematerialized, simply delete it.
if (MI == ReMatOrigDefMI && CanDelete) {
- DEBUG(errs() << "\t\t\t\tErasing re-materlizable def: "
+ DEBUG(dbgs() << "\t\t\t\tErasing re-materlizable def: "
<< MI << '\n');
RemoveMachineInstrFromMaps(MI);
vrm.RemoveMachineInstrFromMaps(MI);
@@ -1208,28 +1208,28 @@ rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
if (CreatedNewVReg) {
LiveRange LR(index.getLoadIndex(), index.getDefIndex(),
nI.getNextValue(SlotIndex(), 0, false, VNInfoAllocator));
- DEBUG(errs() << " +" << LR);
+ DEBUG(dbgs() << " +" << LR);
nI.addRange(LR);
} else {
// Extend the split live interval to this def / use.
SlotIndex End = index.getDefIndex();
LiveRange LR(nI.ranges[nI.ranges.size()-1].end, End,
nI.getValNumInfo(nI.getNumValNums()-1));
- DEBUG(errs() << " +" << LR);
+ DEBUG(dbgs() << " +" << LR);
nI.addRange(LR);
}
}
if (HasDef) {
LiveRange LR(index.getDefIndex(), index.getStoreIndex(),
nI.getNextValue(SlotIndex(), 0, false, VNInfoAllocator));
- DEBUG(errs() << " +" << LR);
+ DEBUG(dbgs() << " +" << LR);
nI.addRange(LR);
}
DEBUG({
- errs() << "\t\t\t\tAdded new interval: ";
- nI.print(errs(), tri_);
- errs() << '\n';
+ dbgs() << "\t\t\t\tAdded new interval: ";
+ nI.print(dbgs(), tri_);
+ dbgs() << '\n';
});
}
return CanFold;
@@ -1557,9 +1557,9 @@ addIntervalsForSpillsFast(const LiveInterval &li,
"attempt to spill already spilled interval!");
DEBUG({
- errs() << "\t\t\t\tadding intervals for spills for interval: ";
+ dbgs() << "\t\t\t\tadding intervals for spills for interval: ";
li.dump();
- errs() << '\n';
+ dbgs() << '\n';
});
const TargetRegisterClass* rc = mri_->getRegClass(li.reg);
@@ -1610,7 +1610,7 @@ addIntervalsForSpillsFast(const LiveInterval &li,
LiveRange LR(index.getLoadIndex(), index.getUseIndex(),
nI.getNextValue(SlotIndex(), 0, false,
getVNInfoAllocator()));
- DEBUG(errs() << " +" << LR);
+ DEBUG(dbgs() << " +" << LR);
nI.addRange(LR);
vrm.addRestorePoint(NewVReg, MI);
}
@@ -1618,7 +1618,7 @@ addIntervalsForSpillsFast(const LiveInterval &li,
LiveRange LR(index.getDefIndex(), index.getStoreIndex(),
nI.getNextValue(SlotIndex(), 0, false,
getVNInfoAllocator()));
- DEBUG(errs() << " +" << LR);
+ DEBUG(dbgs() << " +" << LR);
nI.addRange(LR);
vrm.addSpillPoint(NewVReg, true, MI);
}
@@ -1626,9 +1626,9 @@ addIntervalsForSpillsFast(const LiveInterval &li,
added.push_back(&nI);
DEBUG({
- errs() << "\t\t\t\tadded new interval: ";
+ dbgs() << "\t\t\t\tadded new interval: ";
nI.dump();
- errs() << '\n';
+ dbgs() << '\n';
});
}
@@ -1651,9 +1651,9 @@ addIntervalsForSpills(const LiveInterval &li,
"attempt to spill already spilled interval!");
DEBUG({
- errs() << "\t\t\t\tadding intervals for spills for interval: ";
- li.print(errs(), tri_);
- errs() << '\n';
+ dbgs() << "\t\t\t\tadding intervals for spills for interval: ";
+ li.print(dbgs(), tri_);
+ dbgs() << '\n';
});
// Each bit specify whether a spill is required in the MBB.
diff --git a/lib/CodeGen/LiveVariables.cpp b/lib/CodeGen/LiveVariables.cpp
index 3c88e37..b44a220 100644
--- a/lib/CodeGen/LiveVariables.cpp
+++ b/lib/CodeGen/LiveVariables.cpp
@@ -30,6 +30,7 @@
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
@@ -59,17 +60,17 @@ LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const {
}
void LiveVariables::VarInfo::dump() const {
- errs() << " Alive in blocks: ";
+ dbgs() << " Alive in blocks: ";
for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
E = AliveBlocks.end(); I != E; ++I)
- errs() << *I << ", ";
- errs() << "\n Killed by:";
+ dbgs() << *I << ", ";
+ dbgs() << "\n Killed by:";
if (Kills.empty())
- errs() << " No instructions.\n";
+ dbgs() << " No instructions.\n";
else {
for (unsigned i = 0, e = Kills.size(); i != e; ++i)
- errs() << "\n #" << i << ": " << *Kills[i];
- errs() << "\n";
+ dbgs() << "\n #" << i << ": " << *Kills[i];
+ dbgs() << "\n";
}
}
@@ -289,7 +290,6 @@ MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) {
MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
- MachineInstr *LastPartDef = 0;
unsigned LastPartDefDist = 0;
for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
unsigned SubReg = *SubRegs; ++SubRegs) {
@@ -298,13 +298,9 @@ MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) {
// There was a def of this sub-register in between. This is a partial
// def, keep track of the last one.
unsigned Dist = DistanceMap[Def];
- if (Dist > LastPartDefDist) {
+ if (Dist > LastPartDefDist)
LastPartDefDist = Dist;
- LastPartDef = Def;
- }
- continue;
- }
- if (MachineInstr *Use = PhysRegUse[SubReg]) {
+ } else if (MachineInstr *Use = PhysRegUse[SubReg]) {
unsigned Dist = DistanceMap[Use];
if (Dist > LastRefOrPartRefDist) {
LastRefOrPartRefDist = Dist;
diff --git a/lib/CodeGen/LowerSubregs.cpp b/lib/CodeGen/LowerSubregs.cpp
index 80eb6cd..1121d9b 100644
--- a/lib/CodeGen/LowerSubregs.cpp
+++ b/lib/CodeGen/LowerSubregs.cpp
@@ -122,7 +122,7 @@ bool LowerSubregsInstructionPass::LowerExtract(MachineInstr *MI) {
"Extract destination must be in a physical register");
assert(SrcReg && "invalid subregister index for register");
- DEBUG(errs() << "subreg: CONVERTING: " << *MI);
+ DEBUG(dbgs() << "subreg: CONVERTING: " << *MI);
if (SrcReg == DstReg) {
// No need to insert an identity copy instruction.
@@ -131,11 +131,11 @@ bool LowerSubregsInstructionPass::LowerExtract(MachineInstr *MI) {
// instruction with KILL.
MI->setDesc(TII->get(TargetInstrInfo::KILL));
MI->RemoveOperand(2); // SubIdx
- DEBUG(errs() << "subreg: replace by: " << *MI);
+ DEBUG(dbgs() << "subreg: replace by: " << *MI);
return true;
}
- DEBUG(errs() << "subreg: eliminated!");
+ DEBUG(dbgs() << "subreg: eliminated!");
} else {
// Insert copy
const TargetRegisterClass *TRCS = TRI->getPhysicalRegisterRegClass(DstReg);
@@ -150,11 +150,11 @@ bool LowerSubregsInstructionPass::LowerExtract(MachineInstr *MI) {
TransferKillFlag(MI, SuperReg, TRI, true);
DEBUG({
MachineBasicBlock::iterator dMI = MI;
- errs() << "subreg: " << *(--dMI);
+ dbgs() << "subreg: " << *(--dMI);
});
}
- DEBUG(errs() << '\n');
+ DEBUG(dbgs() << '\n');
MBB->erase(MI);
return true;
}
@@ -179,7 +179,7 @@ bool LowerSubregsInstructionPass::LowerSubregToReg(MachineInstr *MI) {
assert(TargetRegisterInfo::isPhysicalRegister(InsReg) &&
"Inserted value must be in a physical register");
- DEBUG(errs() << "subreg: CONVERTING: " << *MI);
+ DEBUG(dbgs() << "subreg: CONVERTING: " << *MI);
if (DstSubReg == InsReg && InsSIdx == 0) {
// No need to insert an identify copy instruction.
@@ -188,7 +188,7 @@ bool LowerSubregsInstructionPass::LowerSubregToReg(MachineInstr *MI) {
// %RAX<def> = SUBREG_TO_REG 0, %EAX:3<kill>, 3
// The first def is defining RAX, not EAX so the top bits were not
// zero extended.
- DEBUG(errs() << "subreg: eliminated!");
+ DEBUG(dbgs() << "subreg: eliminated!");
} else {
// Insert sub-register copy
const TargetRegisterClass *TRC0= TRI->getPhysicalRegisterRegClass(DstSubReg);
@@ -203,11 +203,11 @@ bool LowerSubregsInstructionPass::LowerSubregToReg(MachineInstr *MI) {
TransferKillFlag(MI, InsReg, TRI);
DEBUG({
MachineBasicBlock::iterator dMI = MI;
- errs() << "subreg: " << *(--dMI);
+ dbgs() << "subreg: " << *(--dMI);
});
}
- DEBUG(errs() << '\n');
+ DEBUG(dbgs() << '\n');
MBB->erase(MI);
return true;
}
@@ -235,7 +235,7 @@ bool LowerSubregsInstructionPass::LowerInsert(MachineInstr *MI) {
assert(TargetRegisterInfo::isPhysicalRegister(InsReg) &&
"Inserted value must be in a physical register");
- DEBUG(errs() << "subreg: CONVERTING: " << *MI);
+ DEBUG(dbgs() << "subreg: CONVERTING: " << *MI);
if (DstSubReg == InsReg) {
// No need to insert an identity copy instruction. If the SrcReg was
@@ -248,7 +248,7 @@ bool LowerSubregsInstructionPass::LowerInsert(MachineInstr *MI) {
else
MIB.addReg(InsReg, RegState::Kill);
} else {
- DEBUG(errs() << "subreg: eliminated!\n");
+ DEBUG(dbgs() << "subreg: eliminated!\n");
MBB->erase(MI);
return true;
}
@@ -288,7 +288,7 @@ bool LowerSubregsInstructionPass::LowerInsert(MachineInstr *MI) {
DEBUG({
MachineBasicBlock::iterator dMI = MI;
- errs() << "subreg: " << *(--dMI) << "\n";
+ dbgs() << "subreg: " << *(--dMI) << "\n";
});
MBB->erase(MI);
@@ -299,7 +299,7 @@ bool LowerSubregsInstructionPass::LowerInsert(MachineInstr *MI) {
/// copies.
///
bool LowerSubregsInstructionPass::runOnMachineFunction(MachineFunction &MF) {
- DEBUG(errs() << "Machine Function\n"
+ DEBUG(dbgs() << "Machine Function\n"
<< "********** LOWERING SUBREG INSTRS **********\n"
<< "********** Function: "
<< MF.getFunction()->getName() << '\n');
diff --git a/lib/CodeGen/MachOWriter.cpp b/lib/CodeGen/MachOWriter.cpp
index 73b15ed..337eab1 100644
--- a/lib/CodeGen/MachOWriter.cpp
+++ b/lib/CodeGen/MachOWriter.cpp
@@ -33,6 +33,7 @@
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetMachOWriterInfo.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/OutputBuffer.h"
#include "llvm/Support/ErrorHandling.h"
@@ -634,7 +635,7 @@ void MachOWriter::InitMem(const Constant *C, uintptr_t Offset,
}
case Instruction::Add:
default:
- errs() << "ConstantExpr not handled as global var init: " << *CE <<"\n";
+ dbgs() << "ConstantExpr not handled as global var init: " << *CE <<"\n";
llvm_unreachable(0);
}
} else if (PC->getType()->isSingleValueType()) {
@@ -732,7 +733,7 @@ void MachOWriter::InitMem(const Constant *C, uintptr_t Offset,
WorkList.push_back(CPair(CPS->getOperand(i),
PA+SL->getElementOffset(i)));
} else {
- errs() << "Bad Type: " << *PC->getType() << "\n";
+ dbgs() << "Bad Type: " << *PC->getType() << "\n";
llvm_unreachable("Unknown constant type to initialize memory with!");
}
}
diff --git a/lib/CodeGen/MachineBasicBlock.cpp b/lib/CodeGen/MachineBasicBlock.cpp
index 74a0d57..e2ce642 100644
--- a/lib/CodeGen/MachineBasicBlock.cpp
+++ b/lib/CodeGen/MachineBasicBlock.cpp
@@ -19,6 +19,7 @@
#include "llvm/Target/TargetInstrDesc.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/LeakDetector.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Assembly/Writer.h"
@@ -158,7 +159,7 @@ bool MachineBasicBlock::isOnlyReachableByFallthrough() const {
}
void MachineBasicBlock::dump() const {
- print(errs());
+ print(dbgs());
}
static inline void OutputReg(raw_ostream &os, unsigned RegNo,
diff --git a/lib/CodeGen/MachineFunction.cpp b/lib/CodeGen/MachineFunction.cpp
index dd6fd7e..ae9451c 100644
--- a/lib/CodeGen/MachineFunction.cpp
+++ b/lib/CodeGen/MachineFunction.cpp
@@ -26,6 +26,7 @@
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
@@ -299,7 +300,7 @@ MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
}
void MachineFunction::dump() const {
- print(errs());
+ print(dbgs());
}
void MachineFunction::print(raw_ostream &OS) const {
@@ -519,7 +520,7 @@ void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{
}
void MachineFrameInfo::dump(const MachineFunction &MF) const {
- print(MF, errs());
+ print(MF, dbgs());
}
//===----------------------------------------------------------------------===//
@@ -579,7 +580,7 @@ void MachineJumpTableInfo::print(raw_ostream &OS) const {
OS << '\n';
}
-void MachineJumpTableInfo::dump() const { print(errs()); }
+void MachineJumpTableInfo::dump() const { print(dbgs()); }
//===----------------------------------------------------------------------===//
@@ -702,4 +703,4 @@ void MachineConstantPool::print(raw_ostream &OS) const {
}
}
-void MachineConstantPool::dump() const { print(errs()); }
+void MachineConstantPool::dump() const { print(dbgs()); }
diff --git a/lib/CodeGen/MachineInstr.cpp b/lib/CodeGen/MachineInstr.cpp
index a761c2d..cf3e3e1 100644
--- a/lib/CodeGen/MachineInstr.cpp
+++ b/lib/CodeGen/MachineInstr.cpp
@@ -28,11 +28,13 @@
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/DebugInfo.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LeakDetector.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/FoldingSet.h"
+#include "llvm/Metadata.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
@@ -277,10 +279,15 @@ void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
OS << '>';
break;
case MachineOperand::MO_BlockAddress:
- OS << "<";
+ OS << '<';
WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
OS << '>';
break;
+ case MachineOperand::MO_Metadata:
+ OS << '<';
+ WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
+ OS << '>';
+ break;
default:
llvm_unreachable("Unrecognized operand type");
}
@@ -1094,7 +1101,7 @@ unsigned MachineInstr::isConstantValuePHI() const {
}
void MachineInstr::dump() const {
- errs() << " " << *this;
+ dbgs() << " " << *this;
}
void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
@@ -1313,3 +1320,12 @@ bool MachineInstr::addRegisterDead(unsigned IncomingReg,
true /*IsDead*/));
return true;
}
+
+void MachineInstr::addRegisterDefined(unsigned IncomingReg,
+ const TargetRegisterInfo *RegInfo) {
+ MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
+ if (!MO || MO->getSubReg())
+ addOperand(MachineOperand::CreateReg(IncomingReg,
+ true /*IsDef*/,
+ true /*IsImp*/));
+}
diff --git a/lib/CodeGen/MachineLICM.cpp b/lib/CodeGen/MachineLICM.cpp
index 0a57ea1..ffcc8ab 100644
--- a/lib/CodeGen/MachineLICM.cpp
+++ b/lib/CodeGen/MachineLICM.cpp
@@ -161,7 +161,7 @@ static bool LoopIsOuterMostWithPreheader(MachineLoop *CurLoop) {
/// loop.
///
bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
- DEBUG(errs() << "******** Machine LICM ********\n");
+ DEBUG(dbgs() << "******** Machine LICM ********\n");
Changed = FirstInLoop = false;
MCP = MF.getConstantPool();
@@ -253,28 +253,28 @@ bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
}
DEBUG({
- errs() << "--- Checking if we can hoist " << I;
+ dbgs() << "--- Checking if we can hoist " << I;
if (I.getDesc().getImplicitUses()) {
- errs() << " * Instruction has implicit uses:\n";
+ dbgs() << " * Instruction has implicit uses:\n";
const TargetRegisterInfo *TRI = TM->getRegisterInfo();
for (const unsigned *ImpUses = I.getDesc().getImplicitUses();
*ImpUses; ++ImpUses)
- errs() << " -> " << TRI->getName(*ImpUses) << "\n";
+ dbgs() << " -> " << TRI->getName(*ImpUses) << "\n";
}
if (I.getDesc().getImplicitDefs()) {
- errs() << " * Instruction has implicit defines:\n";
+ dbgs() << " * Instruction has implicit defines:\n";
const TargetRegisterInfo *TRI = TM->getRegisterInfo();
for (const unsigned *ImpDefs = I.getDesc().getImplicitDefs();
*ImpDefs; ++ImpDefs)
- errs() << " -> " << TRI->getName(*ImpDefs) << "\n";
+ dbgs() << " -> " << TRI->getName(*ImpDefs) << "\n";
}
});
if (I.getDesc().getImplicitDefs() || I.getDesc().getImplicitUses()) {
- DEBUG(errs() << "Cannot hoist with implicit defines or uses\n");
+ DEBUG(dbgs() << "Cannot hoist with implicit defines or uses\n");
return false;
}
@@ -479,7 +479,7 @@ bool MachineLICM::EliminateCSE(MachineInstr *MI,
return false;
if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
- DEBUG(errs() << "CSEing " << *MI << " with " << *Dup);
+ DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef())
@@ -506,14 +506,14 @@ void MachineLICM::Hoist(MachineInstr *MI) {
// Now move the instructions to the predecessor, inserting it before any
// terminator instructions.
DEBUG({
- errs() << "Hoisting " << *MI;
+ dbgs() << "Hoisting " << *MI;
if (CurPreheader->getBasicBlock())
- errs() << " to MachineBasicBlock "
+ dbgs() << " to MachineBasicBlock "
<< CurPreheader->getName();
if (MI->getParent()->getBasicBlock())
- errs() << " from MachineBasicBlock "
+ dbgs() << " from MachineBasicBlock "
<< MI->getParent()->getName();
- errs() << "\n";
+ dbgs() << "\n";
});
// If this is the first instruction being hoisted to the preheader,
diff --git a/lib/CodeGen/MachineLoopInfo.cpp b/lib/CodeGen/MachineLoopInfo.cpp
index d561a5b..269538b 100644
--- a/lib/CodeGen/MachineLoopInfo.cpp
+++ b/lib/CodeGen/MachineLoopInfo.cpp
@@ -17,6 +17,7 @@
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/Passes.h"
+#include "llvm/Support/Debug.h"
using namespace llvm;
namespace llvm {
@@ -73,3 +74,7 @@ MachineBasicBlock *MachineLoop::getBottomBlock() {
}
return BotMBB;
}
+
+void MachineLoop::dump() const {
+ print(dbgs());
+}
diff --git a/lib/CodeGen/MachineSSAUpdater.cpp b/lib/CodeGen/MachineSSAUpdater.cpp
index 292096f..467ea5d 100644
--- a/lib/CodeGen/MachineSSAUpdater.cpp
+++ b/lib/CodeGen/MachineSSAUpdater.cpp
@@ -210,7 +210,7 @@ unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) {
// If the client wants to know about all new instructions, tell it.
if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
- DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n");
+ DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
return InsertedPHI->getOperand(0).getReg();
}
@@ -383,7 +383,7 @@ unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){
InsertedPHI->eraseFromParent();
InsertedVal = ConstVal;
} else {
- DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n");
+ DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
// If the client wants to know about all new instructions, tell it.
if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
diff --git a/lib/CodeGen/MachineSink.cpp b/lib/CodeGen/MachineSink.cpp
index e040738..c177e3c 100644
--- a/lib/CodeGen/MachineSink.cpp
+++ b/lib/CodeGen/MachineSink.cpp
@@ -90,7 +90,7 @@ bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
}
bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
- DEBUG(errs() << "******** Machine Sinking ********\n");
+ DEBUG(dbgs() << "******** Machine Sinking ********\n");
const TargetMachine &TM = MF.getTarget();
TII = TM.getInstrInfo();
@@ -255,15 +255,15 @@ bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
if (MI->getParent() == SuccToSinkTo)
return false;
- DEBUG(errs() << "Sink instr " << *MI);
- DEBUG(errs() << "to block " << *SuccToSinkTo);
+ DEBUG(dbgs() << "Sink instr " << *MI);
+ DEBUG(dbgs() << "to block " << *SuccToSinkTo);
// If the block has multiple predecessors, this would introduce computation on
// a path that it doesn't already exist. We could split the critical edge,
// but for now we just punt.
// FIXME: Split critical edges if not backedges.
if (SuccToSinkTo->pred_size() > 1) {
- DEBUG(errs() << " *** PUNTING: Critical edge found\n");
+ DEBUG(dbgs() << " *** PUNTING: Critical edge found\n");
return false;
}
diff --git a/lib/CodeGen/MachineVerifier.cpp b/lib/CodeGen/MachineVerifier.cpp
index 0772319..584c21b 100644
--- a/lib/CodeGen/MachineVerifier.cpp
+++ b/lib/CodeGen/MachineVerifier.cpp
@@ -190,8 +190,7 @@ namespace {
void report(const char *msg, const MachineOperand *MO, unsigned MONum);
void markReachable(const MachineBasicBlock *MBB);
- void calcMaxRegsPassed();
- void calcMinRegsPassed();
+ void calcRegsPassed();
void checkPHIOps(const MachineBasicBlock *MBB);
void calcRegsRequired();
@@ -710,7 +709,7 @@ MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
// Calculate the largest possible vregsPassed sets. These are the registers that
// can pass through an MBB live, but may not be live every time. It is assumed
// that all vregsPassed sets are empty before the call.
-void MachineVerifier::calcMaxRegsPassed() {
+void MachineVerifier::calcRegsPassed() {
// First push live-out regs to successors' vregsPassed. Remember the MBBs that
// have any vregsPassed.
DenseSet<const MachineBasicBlock*> todo;
@@ -745,45 +744,9 @@ void MachineVerifier::calcMaxRegsPassed() {
}
}
-// Calculate the minimum vregsPassed set. These are the registers that always
-// pass live through an MBB. The calculation assumes that calcMaxRegsPassed has
-// been called earlier.
-void MachineVerifier::calcMinRegsPassed() {
- DenseSet<const MachineBasicBlock*> todo;
- for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
- MFI != MFE; ++MFI)
- todo.insert(MFI);
-
- while (!todo.empty()) {
- const MachineBasicBlock *MBB = *todo.begin();
- todo.erase(MBB);
- BBInfo &MInfo = MBBInfoMap[MBB];
-
- // Remove entries from vRegsPassed that are not live out from all
- // reachable predecessors.
- RegSet dead;
- for (RegSet::iterator I = MInfo.vregsPassed.begin(),
- E = MInfo.vregsPassed.end(); I != E; ++I) {
- for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
- PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
- BBInfo &PrInfo = MBBInfoMap[*PrI];
- if (PrInfo.reachable && !PrInfo.isLiveOut(*I)) {
- dead.insert(*I);
- break;
- }
- }
- }
- // If any regs removed, we need to recheck successors.
- if (!dead.empty()) {
- set_subtract(MInfo.vregsPassed, dead);
- todo.insert(MBB->succ_begin(), MBB->succ_end());
- }
- }
-}
-
// Calculate the set of virtual registers that must be passed through each basic
// block in order to satisfy the requirements of successor blocks. This is very
-// similar to calcMaxRegsPassed, only backwards.
+// similar to calcRegsPassed, only backwards.
void MachineVerifier::calcRegsRequired() {
// First push live-in regs to predecessors' vregsRequired.
DenseSet<const MachineBasicBlock*> todo;
@@ -817,7 +780,7 @@ void MachineVerifier::calcRegsRequired() {
}
// Check PHI instructions at the beginning of MBB. It is assumed that
-// calcMinRegsPassed has been run so BBInfo::isLiveOut is valid.
+// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) {
@@ -848,9 +811,8 @@ void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
}
void MachineVerifier::visitMachineFunctionAfter() {
- calcMaxRegsPassed();
+ calcRegsPassed();
- // With the maximal set of vregsPassed we can verify dead-in registers.
for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
MFI != MFE; ++MFI) {
BBInfo &MInfo = MBBInfoMap[MFI];
@@ -859,31 +821,16 @@ void MachineVerifier::visitMachineFunctionAfter() {
if (!MInfo.reachable)
continue;
- for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(),
- PrE = MFI->pred_end(); PrI != PrE; ++PrI) {
- BBInfo &PrInfo = MBBInfoMap[*PrI];
- if (!PrInfo.reachable)
- continue;
-
- // Verify physical live-ins. EH landing pads have magic live-ins so we
- // ignore them.
- if (!MFI->isLandingPad()) {
- for (MachineBasicBlock::const_livein_iterator I = MFI->livein_begin(),
- E = MFI->livein_end(); I != E; ++I) {
- if (TargetRegisterInfo::isPhysicalRegister(*I) &&
- !isReserved (*I) && !PrInfo.isLiveOut(*I)) {
- report("Live-in physical register is not live-out from predecessor",
- MFI);
- *OS << "Register " << TRI->getName(*I)
- << " is not live-out from BB#" << (*PrI)->getNumber()
- << ".\n";
- }
- }
- }
+ checkPHIOps(MFI);
+ // Verify dead-in virtual registers.
+ if (!allowVirtDoubleDefs) {
+ for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(),
+ PrE = MFI->pred_end(); PrI != PrE; ++PrI) {
+ BBInfo &PrInfo = MBBInfoMap[*PrI];
+ if (!PrInfo.reachable)
+ continue;
- // Verify dead-in virtual registers.
- if (!allowVirtDoubleDefs) {
for (RegMap::iterator I = MInfo.vregsDeadIn.begin(),
E = MInfo.vregsDeadIn.end(); I != E; ++I) {
// DeadIn register must be in neither regsLiveOut or vregsPassed of
@@ -899,39 +846,6 @@ void MachineVerifier::visitMachineFunctionAfter() {
}
}
- calcMinRegsPassed();
-
- // With the minimal set of vregsPassed we can verify live-in virtual
- // registers, including PHI instructions.
- for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
- MFI != MFE; ++MFI) {
- BBInfo &MInfo = MBBInfoMap[MFI];
-
- // Skip unreachable MBBs.
- if (!MInfo.reachable)
- continue;
-
- checkPHIOps(MFI);
-
- for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(),
- PrE = MFI->pred_end(); PrI != PrE; ++PrI) {
- BBInfo &PrInfo = MBBInfoMap[*PrI];
- if (!PrInfo.reachable)
- continue;
-
- for (RegMap::iterator I = MInfo.vregsLiveIn.begin(),
- E = MInfo.vregsLiveIn.end(); I != E; ++I) {
- if (!PrInfo.isLiveOut(I->first)) {
- report("Used virtual register is not live-in", I->second);
- *OS << "Register %reg" << I->first
- << " is not live-out from predecessor MBB #"
- << (*PrI)->getNumber()
- << ".\n";
- }
- }
- }
- }
-
// Now check LiveVariables info if available
if (LiveVars) {
calcRegsRequired();
diff --git a/lib/CodeGen/OptimizeExts.cpp b/lib/CodeGen/OptimizeExts.cpp
new file mode 100644
index 0000000..625ff89
--- /dev/null
+++ b/lib/CodeGen/OptimizeExts.cpp
@@ -0,0 +1,185 @@
+//===-- OptimizeExts.cpp - Optimize sign / zero extension instrs -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass performs optimization of sign / zero extension instructions. It
+// may be extended to handle other instructions of similar property.
+//
+// On some targets, some instructions, e.g. X86 sign / zero extension, may
+// leave the source value in the lower part of the result. This pass will
+// replace (some) uses of the pre-extension value with uses of the sub-register
+// of the results.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "ext-opt"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+using namespace llvm;
+
+static cl::opt<bool> Aggressive("aggressive-ext-opt", cl::Hidden,
+ cl::desc("Aggressive extension optimization"));
+
+STATISTIC(NumReuse, "Number of extension results reused");
+
+namespace {
+ class OptimizeExts : public MachineFunctionPass {
+ const TargetMachine *TM;
+ const TargetInstrInfo *TII;
+ MachineRegisterInfo *MRI;
+ MachineDominatorTree *DT; // Machine dominator tree
+
+ public:
+ static char ID; // Pass identification
+ OptimizeExts() : MachineFunctionPass(&ID) {}
+
+ virtual bool runOnMachineFunction(MachineFunction &MF);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ if (Aggressive) {
+ AU.addRequired<MachineDominatorTree>();
+ AU.addPreserved<MachineDominatorTree>();
+ }
+ }
+
+ private:
+ bool OptimizeInstr(MachineInstr *MI, MachineBasicBlock *MBB,
+ SmallPtrSet<MachineInstr*, 8> &LocalMIs);
+ };
+}
+
+char OptimizeExts::ID = 0;
+static RegisterPass<OptimizeExts>
+X("opt-exts", "Optimize sign / zero extensions");
+
+FunctionPass *llvm::createOptimizeExtsPass() { return new OptimizeExts(); }
+
+/// OptimizeInstr - If instruction is a copy-like instruction, i.e. it reads
+/// a single register and writes a single register and it does not modify
+/// the source, and if the source value is preserved as a sub-register of
+/// the result, then replace all reachable uses of the source with the subreg
+/// of the result.
+bool OptimizeExts::OptimizeInstr(MachineInstr *MI, MachineBasicBlock *MBB,
+ SmallPtrSet<MachineInstr*, 8> &LocalMIs) {
+ bool Changed = false;
+ LocalMIs.insert(MI);
+
+ unsigned SrcReg, DstReg, SubIdx;
+ if (TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx)) {
+ if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
+ TargetRegisterInfo::isPhysicalRegister(SrcReg))
+ return false;
+
+ MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg);
+ if (++UI == MRI->use_end())
+ // No other uses.
+ return false;
+
+ // Ok, the source has other uses. See if we can replace the other uses
+ // with use of the result of the extension.
+ SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
+ UI = MRI->use_begin(DstReg);
+ for (MachineRegisterInfo::use_iterator UE = MRI->use_end(); UI != UE;
+ ++UI)
+ ReachedBBs.insert(UI->getParent());
+
+ bool ExtendLife = true;
+ // Uses that are in the same BB of uses of the result of the instruction.
+ SmallVector<MachineOperand*, 8> Uses;
+ // Uses that the result of the instruction can reach.
+ SmallVector<MachineOperand*, 8> ExtendedUses;
+
+ UI = MRI->use_begin(SrcReg);
+ for (MachineRegisterInfo::use_iterator UE = MRI->use_end(); UI != UE;
+ ++UI) {
+ MachineOperand &UseMO = UI.getOperand();
+ MachineInstr *UseMI = &*UI;
+ if (UseMI == MI)
+ continue;
+ if (UseMI->getOpcode() == TargetInstrInfo::PHI) {
+ ExtendLife = false;
+ continue;
+ }
+
+ MachineBasicBlock *UseMBB = UseMI->getParent();
+ if (UseMBB == MBB) {
+ // Local uses that come after the extension.
+ if (!LocalMIs.count(UseMI))
+ Uses.push_back(&UseMO);
+ } else if (ReachedBBs.count(UseMBB))
+ // Non-local uses where the result of extension is used. Always
+ // replace these unless it's a PHI.
+ Uses.push_back(&UseMO);
+ else if (Aggressive && DT->dominates(MBB, UseMBB))
+ // We may want to extend live range of the extension result in order
+ // to replace these uses.
+ ExtendedUses.push_back(&UseMO);
+ else {
+ // Both will be live out of the def MBB anyway. Don't extend live
+ // range of the extension result.
+ ExtendLife = false;
+ break;
+ }
+ }
+
+ if (ExtendLife && !ExtendedUses.empty())
+ // Ok, we'll extend the liveness of the extension result.
+ std::copy(ExtendedUses.begin(), ExtendedUses.end(),
+ std::back_inserter(Uses));
+
+ // Now replace all uses.
+ if (!Uses.empty()) {
+ const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
+ for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
+ MachineOperand *UseMO = Uses[i];
+ MachineInstr *UseMI = UseMO->getParent();
+ MachineBasicBlock *UseMBB = UseMI->getParent();
+ unsigned NewVR = MRI->createVirtualRegister(RC);
+ BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
+ TII->get(TargetInstrInfo::EXTRACT_SUBREG), NewVR)
+ .addReg(DstReg).addImm(SubIdx);
+ UseMO->setReg(NewVR);
+ ++NumReuse;
+ Changed = true;
+ }
+ }
+ }
+
+ return Changed;
+}
+
+bool OptimizeExts::runOnMachineFunction(MachineFunction &MF) {
+ TM = &MF.getTarget();
+ TII = TM->getInstrInfo();
+ MRI = &MF.getRegInfo();
+ DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : 0;
+
+ bool Changed = false;
+
+ SmallPtrSet<MachineInstr*, 8> LocalMIs;
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
+ MachineBasicBlock *MBB = &*I;
+ LocalMIs.clear();
+ for (MachineBasicBlock::iterator MII = I->begin(), ME = I->end(); MII != ME;
+ ++MII) {
+ MachineInstr *MI = &*MII;
+ Changed |= OptimizeInstr(MI, MBB, LocalMIs);
+ }
+ }
+
+ return Changed;
+}
diff --git a/lib/CodeGen/PBQP/AnnotatedGraph.h b/lib/CodeGen/PBQP/AnnotatedGraph.h
index a47dce9..738dea0 100644
--- a/lib/CodeGen/PBQP/AnnotatedGraph.h
+++ b/lib/CodeGen/PBQP/AnnotatedGraph.h
@@ -1,4 +1,4 @@
-//===-- AnnotatedGraph.h - Annotated PBQP Graph ----------------*- C++ --*-===//
+//===-- AnnotatedGraph.h - Annotated PBQP Graph -----------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
diff --git a/lib/CodeGen/PBQP/ExhaustiveSolver.h b/lib/CodeGen/PBQP/ExhaustiveSolver.h
index b2f2e6f..35ec4f1 100644
--- a/lib/CodeGen/PBQP/ExhaustiveSolver.h
+++ b/lib/CodeGen/PBQP/ExhaustiveSolver.h
@@ -1,4 +1,4 @@
-//===-- ExhaustiveSolver.h - Brute Force PBQP Solver -----------*- C++ --*-===//
+//===-- ExhaustiveSolver.h - Brute Force PBQP Solver ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
diff --git a/lib/CodeGen/PBQP/GraphBase.h b/lib/CodeGen/PBQP/GraphBase.h
index 0c7493b..becd98a 100644
--- a/lib/CodeGen/PBQP/GraphBase.h
+++ b/lib/CodeGen/PBQP/GraphBase.h
@@ -1,4 +1,4 @@
-//===-- GraphBase.h - Abstract Base PBQP Graph -----------------*- C++ --*-===//
+//===-- GraphBase.h - Abstract Base PBQP Graph ------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
diff --git a/lib/CodeGen/PBQP/HeuristicSolver.h b/lib/CodeGen/PBQP/HeuristicSolver.h
index 1670877..f78a58a 100644
--- a/lib/CodeGen/PBQP/HeuristicSolver.h
+++ b/lib/CodeGen/PBQP/HeuristicSolver.h
@@ -1,4 +1,4 @@
-//===-- HeuristicSolver.h - Heuristic PBQP Solver --------------*- C++ --*-===//
+//===-- HeuristicSolver.h - Heuristic PBQP Solver ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
diff --git a/lib/CodeGen/PBQP/Heuristics/Briggs.h b/lib/CodeGen/PBQP/Heuristics/Briggs.h
index 3ac9e70..1228f65 100644
--- a/lib/CodeGen/PBQP/Heuristics/Briggs.h
+++ b/lib/CodeGen/PBQP/Heuristics/Briggs.h
@@ -1,4 +1,4 @@
-//===-- Briggs.h --- Briggs Heuristic for PBQP -----------------*- C++ --*-===//
+//===-- Briggs.h --- Briggs Heuristic for PBQP ------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
diff --git a/lib/CodeGen/PBQP/PBQPMath.h b/lib/CodeGen/PBQP/PBQPMath.h
index 11f4b4b..20737a2 100644
--- a/lib/CodeGen/PBQP/PBQPMath.h
+++ b/lib/CodeGen/PBQP/PBQPMath.h
@@ -1,4 +1,4 @@
-//===-- PBQPMath.h - PBQP Vector and Matrix classes ------------*- C++ --*-===//
+//===-- PBQPMath.h - PBQP Vector and Matrix classes -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
diff --git a/lib/CodeGen/PBQP/SimpleGraph.h b/lib/CodeGen/PBQP/SimpleGraph.h
index 1ca9cae..13e63ce 100644
--- a/lib/CodeGen/PBQP/SimpleGraph.h
+++ b/lib/CodeGen/PBQP/SimpleGraph.h
@@ -1,4 +1,4 @@
-//===-- SimpleGraph.h - Simple PBQP Graph ----------------------*- C++ --*-===//
+//===-- SimpleGraph.h - Simple PBQP Graph -----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
diff --git a/lib/CodeGen/PBQP/Solution.h b/lib/CodeGen/PBQP/Solution.h
index c91e2fa..aee684d 100644
--- a/lib/CodeGen/PBQP/Solution.h
+++ b/lib/CodeGen/PBQP/Solution.h
@@ -1,4 +1,4 @@
-//===-- Solution.h ------- PBQP Solution -----------------------*- C++ --*-===//
+//===-- Solution.h ------- PBQP Solution ------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
diff --git a/lib/CodeGen/PBQP/Solver.h b/lib/CodeGen/PBQP/Solver.h
index a9c5f83..a445de8 100644
--- a/lib/CodeGen/PBQP/Solver.h
+++ b/lib/CodeGen/PBQP/Solver.h
@@ -1,4 +1,4 @@
-//===-- Solver.h ------- PBQP solver interface -----------------*- C++ --*-===//
+//===-- Solver.h ------- PBQP solver interface ------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
diff --git a/lib/CodeGen/PHIElimination.cpp b/lib/CodeGen/PHIElimination.cpp
index 58c3dec..365df30 100644
--- a/lib/CodeGen/PHIElimination.cpp
+++ b/lib/CodeGen/PHIElimination.cpp
@@ -207,7 +207,7 @@ void llvm::PHIElimination::LowerAtomicPHINode(
IncomingReg = entry;
reusedIncoming = true;
++NumReused;
- DEBUG(errs() << "Reusing %reg" << IncomingReg << " for " << *MPhi);
+ DEBUG(dbgs() << "Reusing %reg" << IncomingReg << " for " << *MPhi);
} else {
entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
}
@@ -234,7 +234,7 @@ void llvm::PHIElimination::LowerAtomicPHINode(
// AfterPHIsIt, so it appears before the current PHICopy.
if (reusedIncoming)
if (MachineInstr *OldKill = VI.findKill(&MBB)) {
- DEBUG(errs() << "Remove old kill from " << *OldKill);
+ DEBUG(dbgs() << "Remove old kill from " << *OldKill);
LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
DEBUG(MBB.dump());
}
@@ -421,7 +421,7 @@ MachineBasicBlock *PHIElimination::SplitCriticalEdge(MachineBasicBlock *A,
MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
MF->insert(llvm::next(MachineFunction::iterator(A)), NMBB);
- DEBUG(errs() << "PHIElimination splitting critical edge:"
+ DEBUG(dbgs() << "PHIElimination splitting critical edge:"
" BB#" << A->getNumber()
<< " -- BB#" << NMBB->getNumber()
<< " -- BB#" << B->getNumber() << '\n');
diff --git a/lib/CodeGen/PostRASchedulerList.cpp b/lib/CodeGen/PostRASchedulerList.cpp
index 79be295..f43395f 100644
--- a/lib/CodeGen/PostRASchedulerList.cpp
+++ b/lib/CodeGen/PostRASchedulerList.cpp
@@ -233,7 +233,7 @@ bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
TargetSubtarget::ANTIDEP_NONE;
}
- DEBUG(errs() << "PostRAScheduler\n");
+ DEBUG(dbgs() << "PostRAScheduler\n");
const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
@@ -258,7 +258,7 @@ bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
static int bbcnt = 0;
if (bbcnt++ % DebugDiv != DebugMod)
continue;
- errs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() <<
+ dbgs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() <<
":BB#" << MBB->getNumber() << " ***\n";
}
#endif
@@ -342,7 +342,7 @@ void SchedulePostRATDList::Schedule() {
}
}
- DEBUG(errs() << "********** List Scheduling **********\n");
+ DEBUG(dbgs() << "********** List Scheduling **********\n");
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
SUnits[su].dumpAll(this));
@@ -448,7 +448,7 @@ bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
/// incorrect by instruction reordering.
///
void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
- DEBUG(errs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
+ DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
std::set<unsigned> killedRegs;
BitVector ReservedRegs = TRI->getReservedRegs(MF);
@@ -511,7 +511,7 @@ void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
}
if (MO.isKill() != kill) {
- DEBUG(errs() << "Fixing " << MO << " in ");
+ DEBUG(dbgs() << "Fixing " << MO << " in ");
// Warning: ToggleKillFlag may invalidate MO.
ToggleKillFlag(MI, MO);
DEBUG(MI->dump());
@@ -549,9 +549,9 @@ void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
#ifndef NDEBUG
if (SuccSU->NumPredsLeft == 0) {
- errs() << "*** Scheduling failed! ***\n";
+ dbgs() << "*** Scheduling failed! ***\n";
SuccSU->dump(this);
- errs() << " has been released too many times!\n";
+ dbgs() << " has been released too many times!\n";
llvm_unreachable(0);
}
#endif
@@ -580,7 +580,7 @@ void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
- DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
+ DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
DEBUG(SU->dump(this));
Sequence.push_back(SU);
@@ -640,11 +640,11 @@ void SchedulePostRATDList::ListScheduleTopDown() {
MinDepth = PendingQueue[i]->getDepth();
}
- DEBUG(errs() << "\n*** Examining Available\n";
+ DEBUG(dbgs() << "\n*** Examining Available\n";
LatencyPriorityQueue q = AvailableQueue;
while (!q.empty()) {
SUnit *su = q.pop();
- errs() << "Height " << su->getHeight() << ": ";
+ dbgs() << "Height " << su->getHeight() << ": ";
su->dump(this);
});
@@ -689,19 +689,19 @@ void SchedulePostRATDList::ListScheduleTopDown() {
}
} else {
if (CycleHasInsts) {
- DEBUG(errs() << "*** Finished cycle " << CurCycle << '\n');
+ DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
HazardRec->AdvanceCycle();
} else if (!HasNoopHazards) {
// Otherwise, we have a pipeline stall, but no other problem,
// just advance the current cycle and try again.
- DEBUG(errs() << "*** Stall in cycle " << CurCycle << '\n');
+ DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
HazardRec->AdvanceCycle();
++NumStalls;
} else {
// Otherwise, we have no instructions to issue and we have instructions
// that will fault if we don't do this right. This is the case for
// processors without pipeline interlocks and other cases.
- DEBUG(errs() << "*** Emitting noop in cycle " << CurCycle << '\n');
+ DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
HazardRec->EmitNoop();
Sequence.push_back(0); // NULL here means noop
++NumNoops;
diff --git a/lib/CodeGen/PreAllocSplitting.cpp b/lib/CodeGen/PreAllocSplitting.cpp
index 1c5222c..8cbc8c2 100644
--- a/lib/CodeGen/PreAllocSplitting.cpp
+++ b/lib/CodeGen/PreAllocSplitting.cpp
@@ -481,32 +481,21 @@ PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
// Search for the use in this block that precedes the instruction we care
// about, going to the fallback case if we don't find it.
- if (UseI == MBB->begin())
- return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
- Uses, NewVNs, LiveOut, Phis,
- IsTopLevel, IsIntraBlock);
-
MachineBasicBlock::iterator Walker = UseI;
- --Walker;
bool found = false;
while (Walker != MBB->begin()) {
+ --Walker;
if (BlockUses.count(Walker)) {
found = true;
break;
}
- --Walker;
- }
-
- // Must check begin() too.
- if (!found) {
- if (BlockUses.count(Walker))
- found = true;
- else
- return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
- Uses, NewVNs, LiveOut, Phis,
- IsTopLevel, IsIntraBlock);
}
+ if (!found)
+ return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
+ Uses, NewVNs, LiveOut, Phis,
+ IsTopLevel, IsIntraBlock);
+
SlotIndex UseIndex = LIs->getInstructionIndex(Walker);
UseIndex = UseIndex.getUseIndex();
SlotIndex EndIndex;
@@ -533,17 +522,11 @@ PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
// This case is basically a merging of the two preceding case, with the
// special note that checking for defs must take precedence over checking
// for uses, because of two-address instructions.
-
- if (UseI == MBB->begin())
- return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses,
- NewVNs, LiveOut, Phis,
- IsTopLevel, IsIntraBlock);
-
MachineBasicBlock::iterator Walker = UseI;
- --Walker;
bool foundDef = false;
bool foundUse = false;
while (Walker != MBB->begin()) {
+ --Walker;
if (BlockDefs.count(Walker)) {
foundDef = true;
break;
@@ -551,21 +534,13 @@ PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
foundUse = true;
break;
}
- --Walker;
- }
-
- // Must check begin() too.
- if (!foundDef && !foundUse) {
- if (BlockDefs.count(Walker))
- foundDef = true;
- else if (BlockUses.count(Walker))
- foundUse = true;
- else
- return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
- Uses, NewVNs, LiveOut, Phis,
- IsTopLevel, IsIntraBlock);
}
+ if (!foundDef && !foundUse)
+ return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
+ Uses, NewVNs, LiveOut, Phis,
+ IsTopLevel, IsIntraBlock);
+
SlotIndex StartIndex = LIs->getInstructionIndex(Walker);
StartIndex = foundDef ? StartIndex.getDefIndex() : StartIndex.getUseIndex();
SlotIndex EndIndex;
@@ -1022,7 +997,7 @@ MachineInstr* PreAllocSplitting::FoldRestore(unsigned vreg,
/// so it would not cross the barrier that's being processed. Shrink wrap
/// (minimize) the live interval to the last uses.
bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
- DEBUG(errs() << "Pre-alloc splitting " << LI->reg << " for " << *Barrier
+ DEBUG(dbgs() << "Pre-alloc splitting " << LI->reg << " for " << *Barrier
<< " result: ");
CurrLI = LI;
@@ -1039,7 +1014,7 @@ bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
// If this would create a new join point, do not split.
if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent())) {
- DEBUG(errs() << "FAILED (would create a new join point).\n");
+ DEBUG(dbgs() << "FAILED (would create a new join point).\n");
return false;
}
@@ -1056,13 +1031,13 @@ bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
MachineBasicBlock::iterator RestorePt =
findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB);
if (RestorePt == BarrierMBB->end()) {
- DEBUG(errs() << "FAILED (could not find a suitable restore point).\n");
+ DEBUG(dbgs() << "FAILED (could not find a suitable restore point).\n");
return false;
}
if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI))
if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt, RefsInMBB)) {
- DEBUG(errs() << "success (remat).\n");
+ DEBUG(dbgs() << "success (remat).\n");
return true;
}
@@ -1081,7 +1056,7 @@ bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
MachineBasicBlock::iterator SpillPt =
findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB);
if (SpillPt == BarrierMBB->begin()) {
- DEBUG(errs() << "FAILED (could not find a suitable spill point).\n");
+ DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
return false; // No gap to insert spill.
}
// Add spill.
@@ -1096,7 +1071,7 @@ bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
// If it's already split, just restore the value. There is no need to spill
// the def again.
if (!DefMI) {
- DEBUG(errs() << "FAILED (def is dead).\n");
+ DEBUG(dbgs() << "FAILED (def is dead).\n");
return false; // Def is dead. Do nothing.
}
@@ -1111,13 +1086,13 @@ bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI,
RefsInMBB);
if (SpillPt == DefMBB->begin()) {
- DEBUG(errs() << "FAILED (could not find a suitable spill point).\n");
+ DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
return false; // No gap to insert spill.
}
} else {
SpillPt = llvm::next(MachineBasicBlock::iterator(DefMI));
if (SpillPt == DefMBB->end()) {
- DEBUG(errs() << "FAILED (could not find a suitable spill point).\n");
+ DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
return false; // No gap to insert spill.
}
}
@@ -1160,7 +1135,7 @@ bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
}
++NumSplits;
- DEBUG(errs() << "success.\n");
+ DEBUG(dbgs() << "success.\n");
return true;
}
diff --git a/lib/CodeGen/ProcessImplicitDefs.cpp b/lib/CodeGen/ProcessImplicitDefs.cpp
index c9a33d8..a00f450 100644
--- a/lib/CodeGen/ProcessImplicitDefs.cpp
+++ b/lib/CodeGen/ProcessImplicitDefs.cpp
@@ -61,7 +61,7 @@ bool ProcessImplicitDefs::CanTurnIntoImplicitDef(MachineInstr *MI,
/// implicit_def defs and their uses.
bool ProcessImplicitDefs::runOnMachineFunction(MachineFunction &fn) {
- DEBUG(errs() << "********** PROCESS IMPLICIT DEFS **********\n"
+ DEBUG(dbgs() << "********** PROCESS IMPLICIT DEFS **********\n"
<< "********** Function: "
<< ((Value*)fn.getFunction())->getName() << '\n');
diff --git a/lib/CodeGen/RegAllocLinearScan.cpp b/lib/CodeGen/RegAllocLinearScan.cpp
index 9e97d89..8e44a57 100644
--- a/lib/CodeGen/RegAllocLinearScan.cpp
+++ b/lib/CodeGen/RegAllocLinearScan.cpp
@@ -277,7 +277,7 @@ namespace {
bool Error = false;
for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) {
if (regUse_[i] != 0) {
- errs() << tri_->getName(i) << " is still in use!\n";
+ dbgs() << tri_->getName(i) << " is still in use!\n";
Error = true;
}
}
@@ -344,16 +344,16 @@ namespace {
void printIntervals(const char* const str, ItTy i, ItTy e) const {
DEBUG({
if (str)
- errs() << str << " intervals:\n";
+ dbgs() << str << " intervals:\n";
for (; i != e; ++i) {
- errs() << "\t" << *i->first << " -> ";
+ dbgs() << "\t" << *i->first << " -> ";
unsigned reg = i->first->reg;
if (TargetRegisterInfo::isVirtualRegister(reg))
reg = vrm_->getPhys(reg);
- errs() << tri_->getName(reg) << '\n';
+ dbgs() << tri_->getName(reg) << '\n';
}
});
}
@@ -455,7 +455,7 @@ unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
return Reg;
// Try to coalesce.
- DEBUG(errs() << "Coalescing: " << cur << " -> " << tri_->getName(CandReg)
+ DEBUG(dbgs() << "Coalescing: " << cur << " -> " << tri_->getName(CandReg)
<< '\n');
vrm_->clearVirt(cur.reg);
vrm_->assignVirt2Phys(cur.reg, CandReg);
@@ -544,7 +544,7 @@ void RALinScan::initIntervalSets()
void RALinScan::linearScan() {
// linear scan algorithm
DEBUG({
- errs() << "********** LINEAR SCAN **********\n"
+ dbgs() << "********** LINEAR SCAN **********\n"
<< "********** Function: "
<< mf_->getFunction()->getName() << '\n';
printIntervals("fixed", fixed_.begin(), fixed_.end());
@@ -555,7 +555,7 @@ void RALinScan::linearScan() {
LiveInterval* cur = unhandled_.top();
unhandled_.pop();
++NumIters;
- DEBUG(errs() << "\n*** CURRENT ***: " << *cur << '\n');
+ DEBUG(dbgs() << "\n*** CURRENT ***: " << *cur << '\n');
assert(!cur->empty() && "Empty interval in unhandled set.");
@@ -580,7 +580,7 @@ void RALinScan::linearScan() {
while (!active_.empty()) {
IntervalPtr &IP = active_.back();
unsigned reg = IP.first->reg;
- DEBUG(errs() << "\tinterval " << *IP.first << " expired\n");
+ DEBUG(dbgs() << "\tinterval " << *IP.first << " expired\n");
assert(TargetRegisterInfo::isVirtualRegister(reg) &&
"Can only allocate virtual registers!");
reg = vrm_->getPhys(reg);
@@ -592,7 +592,7 @@ void RALinScan::linearScan() {
DEBUG({
for (IntervalPtrs::reverse_iterator
i = inactive_.rbegin(); i != inactive_.rend(); ++i)
- errs() << "\tinterval " << *i->first << " expired\n";
+ dbgs() << "\tinterval " << *i->first << " expired\n";
});
inactive_.clear();
@@ -628,7 +628,7 @@ void RALinScan::linearScan() {
}
}
- DEBUG(errs() << *vrm_);
+ DEBUG(dbgs() << *vrm_);
// Look for physical registers that end up not being allocated even though
// register allocator had to spill other registers in its register class.
@@ -642,7 +642,7 @@ void RALinScan::linearScan() {
/// to the inactive list.
void RALinScan::processActiveIntervals(SlotIndex CurPoint)
{
- DEBUG(errs() << "\tprocessing active intervals:\n");
+ DEBUG(dbgs() << "\tprocessing active intervals:\n");
for (unsigned i = 0, e = active_.size(); i != e; ++i) {
LiveInterval *Interval = active_[i].first;
@@ -652,7 +652,7 @@ void RALinScan::processActiveIntervals(SlotIndex CurPoint)
IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
if (IntervalPos == Interval->end()) { // Remove expired intervals.
- DEBUG(errs() << "\t\tinterval " << *Interval << " expired\n");
+ DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
assert(TargetRegisterInfo::isVirtualRegister(reg) &&
"Can only allocate virtual registers!");
reg = vrm_->getPhys(reg);
@@ -665,7 +665,7 @@ void RALinScan::processActiveIntervals(SlotIndex CurPoint)
} else if (IntervalPos->start > CurPoint) {
// Move inactive intervals to inactive list.
- DEBUG(errs() << "\t\tinterval " << *Interval << " inactive\n");
+ DEBUG(dbgs() << "\t\tinterval " << *Interval << " inactive\n");
assert(TargetRegisterInfo::isVirtualRegister(reg) &&
"Can only allocate virtual registers!");
reg = vrm_->getPhys(reg);
@@ -688,7 +688,7 @@ void RALinScan::processActiveIntervals(SlotIndex CurPoint)
/// ones to the active list.
void RALinScan::processInactiveIntervals(SlotIndex CurPoint)
{
- DEBUG(errs() << "\tprocessing inactive intervals:\n");
+ DEBUG(dbgs() << "\tprocessing inactive intervals:\n");
for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
LiveInterval *Interval = inactive_[i].first;
@@ -698,7 +698,7 @@ void RALinScan::processInactiveIntervals(SlotIndex CurPoint)
IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
if (IntervalPos == Interval->end()) { // remove expired intervals.
- DEBUG(errs() << "\t\tinterval " << *Interval << " expired\n");
+ DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
// Pop off the end of the list.
inactive_[i] = inactive_.back();
@@ -706,7 +706,7 @@ void RALinScan::processInactiveIntervals(SlotIndex CurPoint)
--i; --e;
} else if (IntervalPos->start <= CurPoint) {
// move re-activated intervals in active list
- DEBUG(errs() << "\t\tinterval " << *Interval << " active\n");
+ DEBUG(dbgs() << "\t\tinterval " << *Interval << " active\n");
assert(TargetRegisterInfo::isVirtualRegister(reg) &&
"Can only allocate virtual registers!");
reg = vrm_->getPhys(reg);
@@ -834,10 +834,10 @@ void RALinScan::findIntervalsToSpill(LiveInterval *cur,
SmallVector<LiveInterval*, 8> SLIs[3];
DEBUG({
- errs() << "\tConsidering " << NumCands << " candidates: ";
+ dbgs() << "\tConsidering " << NumCands << " candidates: ";
for (unsigned i = 0; i != NumCands; ++i)
- errs() << tri_->getName(Candidates[i].first) << " ";
- errs() << "\n";
+ dbgs() << tri_->getName(Candidates[i].first) << " ";
+ dbgs() << "\n";
});
// Calculate the number of conflicts of each candidate.
@@ -950,7 +950,7 @@ namespace {
/// assignRegOrStackSlotAtInterval - assign a register if one is available, or
/// spill.
void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
- DEBUG(errs() << "\tallocating current interval: ");
+ DEBUG(dbgs() << "\tallocating current interval: ");
// This is an implicitly defined live interval, just assign any register.
const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
@@ -958,7 +958,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
unsigned physReg = vrm_->getRegAllocPref(cur->reg);
if (!physReg)
physReg = *RC->allocation_order_begin(*mf_);
- DEBUG(errs() << tri_->getName(physReg) << '\n');
+ DEBUG(dbgs() << tri_->getName(physReg) << '\n');
// Note the register is not really in use.
vrm_->assignVirt2Phys(cur->reg, physReg);
return;
@@ -1092,7 +1092,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
// the free physical register and add this interval to the active
// list.
if (physReg) {
- DEBUG(errs() << tri_->getName(physReg) << '\n');
+ DEBUG(dbgs() << tri_->getName(physReg) << '\n');
vrm_->assignVirt2Phys(cur->reg, physReg);
addRegUse(physReg);
active_.push_back(std::make_pair(cur, cur->begin()));
@@ -1108,7 +1108,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
}
return;
}
- DEBUG(errs() << "no free registers\n");
+ DEBUG(dbgs() << "no free registers\n");
// Compile the spill weights into an array that is better for scanning.
std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
@@ -1126,7 +1126,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
}
- DEBUG(errs() << "\tassigning stack slot at interval "<< *cur << ":\n");
+ DEBUG(dbgs() << "\tassigning stack slot at interval "<< *cur << ":\n");
// Find a register to spill.
float minWeight = HUGE_VALF;
@@ -1196,10 +1196,10 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
}
DEBUG({
- errs() << "\t\tregister(s) with min weight(s): ";
+ dbgs() << "\t\tregister(s) with min weight(s): ";
for (unsigned i = 0; i != LastCandidate; ++i)
- errs() << tri_->getName(RegsWeights[i].first)
+ dbgs() << tri_->getName(RegsWeights[i].first)
<< " (" << RegsWeights[i].second << ")\n";
});
@@ -1207,7 +1207,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
// add any added intervals back to unhandled, and restart
// linearscan.
if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
- DEBUG(errs() << "\t\t\tspilling(c): " << *cur << '\n');
+ DEBUG(dbgs() << "\t\t\tspilling(c): " << *cur << '\n');
SmallVector<LiveInterval*, 8> spillIs;
std::vector<LiveInterval*> added;
@@ -1285,7 +1285,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
while (!spillIs.empty()) {
LiveInterval *sli = spillIs.back();
spillIs.pop_back();
- DEBUG(errs() << "\t\t\tspilling(a): " << *sli << '\n');
+ DEBUG(dbgs() << "\t\t\tspilling(a): " << *sli << '\n');
if (sli->beginIndex() < earliestStart)
earliestStart = sli->beginIndex();
@@ -1296,7 +1296,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
spilled.insert(sli->reg);
}
- DEBUG(errs() << "\t\trolling back to: " << earliestStart << '\n');
+ DEBUG(dbgs() << "\t\trolling back to: " << earliestStart << '\n');
// Scan handled in reverse order up to the earliest start of a
// spilled live interval and undo each one, restoring the state of
@@ -1306,7 +1306,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
// If this interval starts before t we are done.
if (!i->empty() && i->beginIndex() < earliestStart)
break;
- DEBUG(errs() << "\t\t\tundo changes for: " << *i << '\n');
+ DEBUG(dbgs() << "\t\t\tundo changes for: " << *i << '\n');
handled_.pop_back();
// When undoing a live interval allocation we must know if it is active or
@@ -1356,7 +1356,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
LiveInterval *HI = handled_[i];
if (!HI->expiredAt(earliestStart) &&
HI->expiredAt(cur->beginIndex())) {
- DEBUG(errs() << "\t\t\tundo changes for: " << *HI << '\n');
+ DEBUG(dbgs() << "\t\t\tundo changes for: " << *HI << '\n');
active_.push_back(std::make_pair(HI, HI->begin()));
assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
addRegUse(vrm_->getPhys(HI->reg));
@@ -1492,7 +1492,7 @@ unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
// available first.
unsigned Preference = vrm_->getRegAllocPref(cur->reg);
if (Preference) {
- DEBUG(errs() << "(preferred: " << tri_->getName(Preference) << ") ");
+ DEBUG(dbgs() << "(preferred: " << tri_->getName(Preference) << ") ");
if (isRegAvail(Preference) &&
RC->contains(Preference))
return Preference;
diff --git a/lib/CodeGen/RegAllocLocal.cpp b/lib/CodeGen/RegAllocLocal.cpp
index aea5cff..cbb5826 100644
--- a/lib/CodeGen/RegAllocLocal.cpp
+++ b/lib/CodeGen/RegAllocLocal.cpp
@@ -296,11 +296,11 @@ void RALocal::spillVirtReg(MachineBasicBlock &MBB,
assert(VirtReg && "Spilling a physical register is illegal!"
" Must not have appropriate kill for the register or use exists beyond"
" the intended one.");
- DEBUG(errs() << " Spilling register " << TRI->getName(PhysReg)
+ DEBUG(dbgs() << " Spilling register " << TRI->getName(PhysReg)
<< " containing %reg" << VirtReg);
if (!isVirtRegModified(VirtReg)) {
- DEBUG(errs() << " which has not been modified, so no store necessary!");
+ DEBUG(dbgs() << " which has not been modified, so no store necessary!");
std::pair<MachineInstr*, unsigned> &LastUse = getVirtRegLastUse(VirtReg);
if (LastUse.first)
LastUse.first->getOperand(LastUse.second).setIsKill();
@@ -310,7 +310,7 @@ void RALocal::spillVirtReg(MachineBasicBlock &MBB,
// modified.
const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
int FrameIndex = getStackSpaceFor(VirtReg, RC);
- DEBUG(errs() << " to stack slot #" << FrameIndex);
+ DEBUG(dbgs() << " to stack slot #" << FrameIndex);
// If the instruction reads the register that's spilled, (e.g. this can
// happen if it is a move to a physical register), then the spill
// instruction is not a kill.
@@ -321,7 +321,7 @@ void RALocal::spillVirtReg(MachineBasicBlock &MBB,
getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available
- DEBUG(errs() << '\n');
+ DEBUG(dbgs() << '\n');
removePhysReg(PhysReg);
}
@@ -516,7 +516,7 @@ MachineInstr *RALocal::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
markVirtRegModified(VirtReg, false); // Note that this reg was just reloaded
- DEBUG(errs() << " Reloading %reg" << VirtReg << " into "
+ DEBUG(dbgs() << " Reloading %reg" << VirtReg << " into "
<< TRI->getName(PhysReg) << "\n");
// Add move instruction(s)
@@ -725,7 +725,7 @@ void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
DEBUG({
const BasicBlock *LBB = MBB.getBasicBlock();
if (LBB)
- errs() << "\nStarting RegAlloc of BB: " << LBB->getName();
+ dbgs() << "\nStarting RegAlloc of BB: " << LBB->getName();
});
// Add live-in registers as active.
@@ -752,13 +752,13 @@ void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
MachineInstr *MI = MII++;
const TargetInstrDesc &TID = MI->getDesc();
DEBUG({
- errs() << "\nStarting RegAlloc of: " << *MI;
- errs() << " Regs have values: ";
+ dbgs() << "\nStarting RegAlloc of: " << *MI;
+ dbgs() << " Regs have values: ";
for (unsigned i = 0; i != TRI->getNumRegs(); ++i)
if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
- errs() << "[" << TRI->getName(i)
+ dbgs() << "[" << TRI->getName(i)
<< ",%reg" << PhysRegsUsed[i] << "] ";
- errs() << '\n';
+ dbgs() << '\n';
});
// Determine whether this is a copy instruction. The cases where the
@@ -809,7 +809,7 @@ void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
markVirtRegModified(DestVirtReg);
getVirtRegLastUse(DestVirtReg) =
std::make_pair((MachineInstr*)0, 0);
- DEBUG(errs() << " Assigning " << TRI->getName(DestPhysReg)
+ DEBUG(dbgs() << " Assigning " << TRI->getName(DestPhysReg)
<< " to %reg" << DestVirtReg << "\n");
MO.setReg(DestPhysReg); // Assign the earlyclobber register
} else {
@@ -876,13 +876,13 @@ void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
}
if (PhysReg) {
- DEBUG(errs() << " Last use of " << TRI->getName(PhysReg)
+ DEBUG(dbgs() << " Last use of " << TRI->getName(PhysReg)
<< "[%reg" << VirtReg <<"], removing it from live set\n");
removePhysReg(PhysReg);
for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
*SubRegs; ++SubRegs) {
if (PhysRegsUsed[*SubRegs] != -2) {
- DEBUG(errs() << " Last use of "
+ DEBUG(dbgs() << " Last use of "
<< TRI->getName(*SubRegs) << "[%reg" << VirtReg
<<"], removing it from live set\n");
removePhysReg(*SubRegs);
@@ -978,7 +978,7 @@ void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
MF->getRegInfo().setPhysRegUsed(DestPhysReg);
markVirtRegModified(DestVirtReg);
getVirtRegLastUse(DestVirtReg) = std::make_pair((MachineInstr*)0, 0);
- DEBUG(errs() << " Assigning " << TRI->getName(DestPhysReg)
+ DEBUG(dbgs() << " Assigning " << TRI->getName(DestPhysReg)
<< " to %reg" << DestVirtReg << "\n");
MO.setReg(DestPhysReg); // Assign the output register
}
@@ -1001,14 +1001,14 @@ void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
}
if (PhysReg) {
- DEBUG(errs() << " Register " << TRI->getName(PhysReg)
+ DEBUG(dbgs() << " Register " << TRI->getName(PhysReg)
<< " [%reg" << VirtReg
<< "] is never used, removing it from live set\n");
removePhysReg(PhysReg);
for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
*AliasSet; ++AliasSet) {
if (PhysRegsUsed[*AliasSet] != -2) {
- DEBUG(errs() << " Register " << TRI->getName(*AliasSet)
+ DEBUG(dbgs() << " Register " << TRI->getName(*AliasSet)
<< " [%reg" << *AliasSet
<< "] is never used, removing it from live set\n");
removePhysReg(*AliasSet);
@@ -1058,7 +1058,7 @@ void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
/// runOnMachineFunction - Register allocate the whole function
///
bool RALocal::runOnMachineFunction(MachineFunction &Fn) {
- DEBUG(errs() << "Machine Function\n");
+ DEBUG(dbgs() << "Machine Function\n");
MF = &Fn;
TM = &Fn.getTarget();
TRI = TM->getRegisterInfo();
diff --git a/lib/CodeGen/RegAllocPBQP.cpp b/lib/CodeGen/RegAllocPBQP.cpp
index c2014a7..fc59653 100644
--- a/lib/CodeGen/RegAllocPBQP.cpp
+++ b/lib/CodeGen/RegAllocPBQP.cpp
@@ -717,7 +717,7 @@ bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
// Get the physical reg, subtracting 1 to account for the spill option.
unsigned physReg = allowedSets[node][allocSelection - 1];
- DEBUG(errs() << "VREG " << virtReg << " -> "
+ DEBUG(dbgs() << "VREG " << virtReg << " -> "
<< tri->getName(physReg) << "\n");
assert(physReg != 0);
@@ -741,7 +741,7 @@ bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
addStackInterval(spillInterval, mri);
(void) oldSpillWeight;
- DEBUG(errs() << "VREG " << virtReg << " -> SPILLED (Cost: "
+ DEBUG(dbgs() << "VREG " << virtReg << " -> SPILLED (Cost: "
<< oldSpillWeight << ", New vregs: ");
// Copy any newly inserted live intervals into the list of regs to
@@ -752,12 +752,12 @@ bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
assert(!(*itr)->empty() && "Empty spill range.");
- DEBUG(errs() << (*itr)->reg << " ");
+ DEBUG(dbgs() << (*itr)->reg << " ");
vregIntervalsToAlloc.insert(*itr);
}
- DEBUG(errs() << ")\n");
+ DEBUG(dbgs() << ")\n");
// We need another round if spill intervals were added.
anotherRoundNeeded |= !newSpills.empty();
@@ -849,7 +849,7 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
vrm = &getAnalysis<VirtRegMap>();
- DEBUG(errs() << "PBQP2 Register Allocating for " << mf->getFunction()->getName() << "\n");
+ DEBUG(dbgs() << "PBQP2 Register Allocating for " << mf->getFunction()->getName() << "\n");
// Allocator main loop:
//
@@ -874,7 +874,7 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
unsigned round = 0;
while (!pbqpAllocComplete) {
- DEBUG(errs() << " PBQP Regalloc round " << round << ":\n");
+ DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n");
PBQP::SimpleGraph problem = constructPBQPProblem();
PBQP::HeuristicSolver<PBQP::Heuristics::Briggs> solver;
@@ -896,7 +896,7 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
node2LI.clear();
allowedSets.clear();
- DEBUG(errs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
+ DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
// Run rewriter
std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
diff --git a/lib/CodeGen/ScheduleDAG.cpp b/lib/CodeGen/ScheduleDAG.cpp
index 71693d2..1f3e295 100644
--- a/lib/CodeGen/ScheduleDAG.cpp
+++ b/lib/CodeGen/ScheduleDAG.cpp
@@ -41,7 +41,7 @@ void ScheduleDAG::dumpSchedule() const {
if (SUnit *SU = Sequence[i])
SU->dump(this);
else
- errs() << "**** NOOP ****\n";
+ dbgs() << "**** NOOP ****\n";
}
}
@@ -61,9 +61,9 @@ void ScheduleDAG::Run(MachineBasicBlock *bb,
Schedule();
DEBUG({
- errs() << "*** Final schedule ***\n";
+ dbgs() << "*** Final schedule ***\n";
dumpSchedule();
- errs() << '\n';
+ dbgs() << '\n';
});
}
@@ -271,58 +271,58 @@ void SUnit::ComputeHeight() {
/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
/// a group of nodes flagged together.
void SUnit::dump(const ScheduleDAG *G) const {
- errs() << "SU(" << NodeNum << "): ";
+ dbgs() << "SU(" << NodeNum << "): ";
G->dumpNode(this);
}
void SUnit::dumpAll(const ScheduleDAG *G) const {
dump(G);
- errs() << " # preds left : " << NumPredsLeft << "\n";
- errs() << " # succs left : " << NumSuccsLeft << "\n";
- errs() << " Latency : " << Latency << "\n";
- errs() << " Depth : " << Depth << "\n";
- errs() << " Height : " << Height << "\n";
+ dbgs() << " # preds left : " << NumPredsLeft << "\n";
+ dbgs() << " # succs left : " << NumSuccsLeft << "\n";
+ dbgs() << " Latency : " << Latency << "\n";
+ dbgs() << " Depth : " << Depth << "\n";
+ dbgs() << " Height : " << Height << "\n";
if (Preds.size() != 0) {
- errs() << " Predecessors:\n";
+ dbgs() << " Predecessors:\n";
for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
I != E; ++I) {
- errs() << " ";
+ dbgs() << " ";
switch (I->getKind()) {
- case SDep::Data: errs() << "val "; break;
- case SDep::Anti: errs() << "anti"; break;
- case SDep::Output: errs() << "out "; break;
- case SDep::Order: errs() << "ch "; break;
+ case SDep::Data: dbgs() << "val "; break;
+ case SDep::Anti: dbgs() << "anti"; break;
+ case SDep::Output: dbgs() << "out "; break;
+ case SDep::Order: dbgs() << "ch "; break;
}
- errs() << "#";
- errs() << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
+ dbgs() << "#";
+ dbgs() << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
if (I->isArtificial())
- errs() << " *";
- errs() << ": Latency=" << I->getLatency();
- errs() << "\n";
+ dbgs() << " *";
+ dbgs() << ": Latency=" << I->getLatency();
+ dbgs() << "\n";
}
}
if (Succs.size() != 0) {
- errs() << " Successors:\n";
+ dbgs() << " Successors:\n";
for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
I != E; ++I) {
- errs() << " ";
+ dbgs() << " ";
switch (I->getKind()) {
- case SDep::Data: errs() << "val "; break;
- case SDep::Anti: errs() << "anti"; break;
- case SDep::Output: errs() << "out "; break;
- case SDep::Order: errs() << "ch "; break;
+ case SDep::Data: dbgs() << "val "; break;
+ case SDep::Anti: dbgs() << "anti"; break;
+ case SDep::Output: dbgs() << "out "; break;
+ case SDep::Order: dbgs() << "ch "; break;
}
- errs() << "#";
- errs() << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
+ dbgs() << "#";
+ dbgs() << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
if (I->isArtificial())
- errs() << " *";
- errs() << ": Latency=" << I->getLatency();
- errs() << "\n";
+ dbgs() << " *";
+ dbgs() << ": Latency=" << I->getLatency();
+ dbgs() << "\n";
}
}
- errs() << "\n";
+ dbgs() << "\n";
}
#ifndef NDEBUG
@@ -340,35 +340,35 @@ void ScheduleDAG::VerifySchedule(bool isBottomUp) {
continue;
}
if (!AnyNotSched)
- errs() << "*** Scheduling failed! ***\n";
+ dbgs() << "*** Scheduling failed! ***\n";
SUnits[i].dump(this);
- errs() << "has not been scheduled!\n";
+ dbgs() << "has not been scheduled!\n";
AnyNotSched = true;
}
if (SUnits[i].isScheduled &&
(isBottomUp ? SUnits[i].getHeight() : SUnits[i].getDepth()) >
unsigned(INT_MAX)) {
if (!AnyNotSched)
- errs() << "*** Scheduling failed! ***\n";
+ dbgs() << "*** Scheduling failed! ***\n";
SUnits[i].dump(this);
- errs() << "has an unexpected "
+ dbgs() << "has an unexpected "
<< (isBottomUp ? "Height" : "Depth") << " value!\n";
AnyNotSched = true;
}
if (isBottomUp) {
if (SUnits[i].NumSuccsLeft != 0) {
if (!AnyNotSched)
- errs() << "*** Scheduling failed! ***\n";
+ dbgs() << "*** Scheduling failed! ***\n";
SUnits[i].dump(this);
- errs() << "has successors left!\n";
+ dbgs() << "has successors left!\n";
AnyNotSched = true;
}
} else {
if (SUnits[i].NumPredsLeft != 0) {
if (!AnyNotSched)
- errs() << "*** Scheduling failed! ***\n";
+ dbgs() << "*** Scheduling failed! ***\n";
SUnits[i].dump(this);
- errs() << "has predecessors left!\n";
+ dbgs() << "has predecessors left!\n";
AnyNotSched = true;
}
}
diff --git a/lib/CodeGen/SelectionDAG/CallingConvLower.cpp b/lib/CodeGen/SelectionDAG/CallingConvLower.cpp
index 38839c4..4e6c1fc 100644
--- a/lib/CodeGen/SelectionDAG/CallingConvLower.cpp
+++ b/lib/CodeGen/SelectionDAG/CallingConvLower.cpp
@@ -13,6 +13,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegisterInfo.h"
@@ -69,7 +70,7 @@ CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
#ifndef NDEBUG
- errs() << "Formal argument #" << i << " has unhandled type "
+ dbgs() << "Formal argument #" << i << " has unhandled type "
<< ArgVT.getEVTString();
#endif
llvm_unreachable(0);
@@ -102,7 +103,7 @@ void CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) {
#ifndef NDEBUG
- errs() << "Return operand #" << i << " has unhandled type "
+ dbgs() << "Return operand #" << i << " has unhandled type "
<< VT.getEVTString();
#endif
llvm_unreachable(0);
@@ -121,7 +122,7 @@ void CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
#ifndef NDEBUG
- errs() << "Call operand #" << i << " has unhandled type "
+ dbgs() << "Call operand #" << i << " has unhandled type "
<< ArgVT.getEVTString();
#endif
llvm_unreachable(0);
@@ -140,7 +141,7 @@ void CCState::AnalyzeCallOperands(SmallVectorImpl<EVT> &ArgVTs,
ISD::ArgFlagsTy ArgFlags = Flags[i];
if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
#ifndef NDEBUG
- errs() << "Call operand #" << i << " has unhandled type "
+ dbgs() << "Call operand #" << i << " has unhandled type "
<< ArgVT.getEVTString();
#endif
llvm_unreachable(0);
@@ -157,7 +158,7 @@ void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
ISD::ArgFlagsTy Flags = Ins[i].Flags;
if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) {
#ifndef NDEBUG
- errs() << "Call result #" << i << " has unhandled type "
+ dbgs() << "Call result #" << i << " has unhandled type "
<< VT.getEVTString();
#endif
llvm_unreachable(0);
@@ -170,7 +171,7 @@ void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
void CCState::AnalyzeCallResult(EVT VT, CCAssignFn Fn) {
if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) {
#ifndef NDEBUG
- errs() << "Call result has unhandled type "
+ dbgs() << "Call result has unhandled type "
<< VT.getEVTString();
#endif
llvm_unreachable(0);
diff --git a/lib/CodeGen/SelectionDAG/DAGCombiner.cpp b/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
index e6aa14c..549527c 100644
--- a/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
+++ b/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
@@ -541,11 +541,11 @@ SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
bool AddTo) {
assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
++NodesCombined;
- DEBUG(errs() << "\nReplacing.1 ";
+ DEBUG(dbgs() << "\nReplacing.1 ";
N->dump(&DAG);
- errs() << "\nWith: ";
+ dbgs() << "\nWith: ";
To[0].getNode()->dump(&DAG);
- errs() << " and " << NumTo-1 << " other values\n";
+ dbgs() << " and " << NumTo-1 << " other values\n";
for (unsigned i = 0, e = NumTo; i != e; ++i)
assert((!To[i].getNode() ||
N->getValueType(i) == To[i].getValueType()) &&
@@ -619,11 +619,11 @@ bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
// Replace the old value with the new one.
++NodesCombined;
- DEBUG(errs() << "\nReplacing.2 ";
+ DEBUG(dbgs() << "\nReplacing.2 ";
TLO.Old.getNode()->dump(&DAG);
- errs() << "\nWith: ";
+ dbgs() << "\nWith: ";
TLO.New.getNode()->dump(&DAG);
- errs() << '\n');
+ dbgs() << '\n');
CommitTargetLoweringOpt(TLO);
return true;
@@ -689,11 +689,11 @@ void DAGCombiner::Run(CombineLevel AtLevel) {
RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
"Node was deleted but visit returned new node!");
- DEBUG(errs() << "\nReplacing.3 ";
+ DEBUG(dbgs() << "\nReplacing.3 ";
N->dump(&DAG);
- errs() << "\nWith: ";
+ dbgs() << "\nWith: ";
RV.getNode()->dump(&DAG);
- errs() << '\n');
+ dbgs() << '\n');
WorkListRemover DeadNodes(*this);
if (N->getNumValues() == RV.getNode()->getNumValues())
DAG.ReplaceAllUsesWith(N, RV.getNode(), &DeadNodes);
@@ -1684,22 +1684,25 @@ SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
EVT VT = N0.getValueType();
assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
+ // Bail early if none of these transforms apply.
+ if (N0.getNode()->getNumOperands() == 0) return SDValue();
+
// For each of OP in AND/OR/XOR:
// fold (OP (zext x), (zext y)) -> (zext (OP x, y))
// fold (OP (sext x), (sext y)) -> (sext (OP x, y))
// fold (OP (aext x), (aext y)) -> (aext (OP x, y))
- // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
+ // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
//
// do not sink logical op inside of a vector extend, since it may combine
// into a vsetcc.
- if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
+ EVT Op0VT = N0.getOperand(0).getValueType();
+ if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
+ N0.getOpcode() == ISD::ANY_EXTEND ||
N0.getOpcode() == ISD::SIGN_EXTEND ||
- (N0.getOpcode() == ISD::TRUNCATE &&
- !TLI.isTruncateFree(N0.getOperand(0).getValueType(), VT))) &&
+ (N0.getOpcode() == ISD::TRUNCATE && TLI.isTypeLegal(Op0VT))) &&
!VT.isVector() &&
- N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() &&
- (!LegalOperations ||
- TLI.isOperationLegal(N->getOpcode(), N0.getOperand(0).getValueType()))) {
+ Op0VT == N1.getOperand(0).getValueType() &&
+ (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
N0.getOperand(0).getValueType(),
N0.getOperand(0), N1.getOperand(0));
@@ -1839,6 +1842,7 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
if (!VT.isVector() &&
SimplifyDemandedBits(SDValue(N, 0)))
return SDValue(N, 0);
+
// fold (zext_inreg (extload x)) -> (zextload x)
if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
@@ -1885,48 +1889,69 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
// fold (and (load x), 255) -> (zextload x, i8)
// fold (and (extload x, i16), 255) -> (zextload x, i8)
- if (N1C && N0.getOpcode() == ISD::LOAD) {
- LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+ // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
+ if (N1C && (N0.getOpcode() == ISD::LOAD ||
+ (N0.getOpcode() == ISD::ANY_EXTEND &&
+ N0.getOperand(0).getOpcode() == ISD::LOAD))) {
+ bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
+ LoadSDNode *LN0 = HasAnyExt
+ ? cast<LoadSDNode>(N0.getOperand(0))
+ : cast<LoadSDNode>(N0);
if (LN0->getExtensionType() != ISD::SEXTLOAD &&
- LN0->isUnindexed() && N0.hasOneUse() &&
- // Do not change the width of a volatile load.
- !LN0->isVolatile()) {
- EVT ExtVT = MVT::Other;
+ LN0->isUnindexed() && N0.hasOneUse() && LN0->hasOneUse()) {
uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
- if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue()))
- ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
-
- EVT LoadedVT = LN0->getMemoryVT();
-
- // Do not generate loads of non-round integer types since these can
- // be expensive (and would be wrong if the type is not byte sized).
- if (ExtVT != MVT::Other && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
- (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
- EVT PtrType = N0.getOperand(1).getValueType();
-
- // For big endian targets, we need to add an offset to the pointer to
- // load the correct bytes. For little endian systems, we merely need to
- // read fewer bytes from the same pointer.
- unsigned LVTStoreBytes = LoadedVT.getStoreSize();
- unsigned EVTStoreBytes = ExtVT.getStoreSize();
- unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
- unsigned Alignment = LN0->getAlignment();
- SDValue NewPtr = LN0->getBasePtr();
-
- if (TLI.isBigEndian()) {
- NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType,
- NewPtr, DAG.getConstant(PtrOff, PtrType));
- Alignment = MinAlign(Alignment, PtrOff);
+ if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
+ EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
+ EVT LoadedVT = LN0->getMemoryVT();
+
+ if (ExtVT == LoadedVT &&
+ (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
+ EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
+
+ SDValue NewLoad =
+ DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
+ LN0->getChain(), LN0->getBasePtr(),
+ LN0->getSrcValue(), LN0->getSrcValueOffset(),
+ ExtVT, LN0->isVolatile(), LN0->getAlignment());
+ AddToWorkList(N);
+ CombineTo(LN0, NewLoad, NewLoad.getValue(1));
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
+
+ // Do not change the width of a volatile load.
+ // Do not generate loads of non-round integer types since these can
+ // be expensive (and would be wrong if the type is not byte sized).
+ if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
+ (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
+ EVT PtrType = LN0->getOperand(1).getValueType();
+
+ unsigned Alignment = LN0->getAlignment();
+ SDValue NewPtr = LN0->getBasePtr();
+
+ // For big endian targets, we need to add an offset to the pointer
+ // to load the correct bytes. For little endian systems, we merely
+ // need to read fewer bytes from the same pointer.
+ if (TLI.isBigEndian()) {
+ unsigned LVTStoreBytes = LoadedVT.getStoreSize();
+ unsigned EVTStoreBytes = ExtVT.getStoreSize();
+ unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
+ NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType,
+ NewPtr, DAG.getConstant(PtrOff, PtrType));
+ Alignment = MinAlign(Alignment, PtrOff);
+ }
- AddToWorkList(NewPtr.getNode());
- SDValue Load =
- DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), VT, LN0->getChain(),
- NewPtr, LN0->getSrcValue(), LN0->getSrcValueOffset(),
- ExtVT, LN0->isVolatile(), Alignment);
- AddToWorkList(N);
- CombineTo(N0.getNode(), Load, Load.getValue(1));
- return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ AddToWorkList(NewPtr.getNode());
+
+ EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
+ SDValue Load =
+ DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
+ LN0->getChain(), NewPtr,
+ LN0->getSrcValue(), LN0->getSrcValueOffset(),
+ ExtVT, LN0->isVolatile(), Alignment);
+ AddToWorkList(N);
+ CombineTo(LN0, Load, Load.getValue(1));
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
}
}
}
@@ -2555,10 +2580,14 @@ SDValue DAGCombiner::visitSRA(SDNode *N) {
// sext_inreg.
if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
- EVT EVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
- if ((!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT)))
+ EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
+ if (VT.isVector())
+ ExtVT = EVT::getVectorVT(*DAG.getContext(),
+ ExtVT, VT.getVectorNumElements());
+ if ((!LegalOperations ||
+ TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
- N0.getOperand(0), DAG.getValueType(EVT));
+ N0.getOperand(0), DAG.getValueType(ExtVT));
}
// fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
@@ -2778,9 +2807,17 @@ SDValue DAGCombiner::visitSRL(SDNode *N) {
// However when after the source operand of SRL is optimized into AND, the SRL
// itself may not be optimized further. Look for it and add the BRCOND into
// the worklist.
- if (N->hasOneUse() &&
- N->use_begin()->getOpcode() == ISD::BRCOND)
- AddToWorkList(*N->use_begin());
+ if (N->hasOneUse()) {
+ SDNode *Use = *N->use_begin();
+ if (Use->getOpcode() == ISD::BRCOND)
+ AddToWorkList(Use);
+ else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
+ // Also look pass the truncate.
+ Use = *Use->use_begin();
+ if (Use->getOpcode() == ISD::BRCOND)
+ AddToWorkList(Use);
+ }
+ }
return SDValue();
}
@@ -3034,9 +3071,9 @@ SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
// See if the value being truncated is already sign extended. If so, just
// eliminate the trunc/sext pair.
SDValue Op = N0.getOperand(0);
- unsigned OpBits = Op.getValueType().getSizeInBits();
- unsigned MidBits = N0.getValueType().getSizeInBits();
- unsigned DestBits = VT.getSizeInBits();
+ unsigned OpBits = Op.getValueType().getScalarType().getSizeInBits();
+ unsigned MidBits = N0.getValueType().getScalarType().getSizeInBits();
+ unsigned DestBits = VT.getScalarType().getSizeInBits();
unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
if (OpBits == DestBits) {
@@ -3059,12 +3096,12 @@ SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
// fold (sext (truncate x)) -> (sextinreg x).
if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
N0.getValueType())) {
- if (Op.getValueType().bitsLT(VT))
+ if (OpBits < DestBits)
Op = DAG.getNode(ISD::ANY_EXTEND, N0.getDebugLoc(), VT, Op);
- else if (Op.getValueType().bitsGT(VT))
+ else if (OpBits > DestBits)
Op = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), VT, Op);
return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, Op,
- DAG.getValueType(N0.getValueType().getScalarType()));
+ DAG.getValueType(N0.getValueType()));
}
}
@@ -3198,7 +3235,10 @@ SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
// fold (zext (truncate x)) -> (and x, mask)
if (N0.getOpcode() == ISD::TRUNCATE &&
- (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
+ (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) &&
+ (!TLI.isTruncateFree(N0.getOperand(0).getValueType(),
+ N0.getValueType()) ||
+ !TLI.isZExtFree(N0.getValueType(), VT))) {
SDValue Op = N0.getOperand(0);
if (Op.getValueType().bitsLT(VT)) {
Op = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, Op);
@@ -3322,7 +3362,9 @@ SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
DebugLoc dl = N->getDebugLoc();
return DAG.getNode(N0.getOpcode(), dl, VT,
DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0.getOperand(0)),
- DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0.getOperand(1)));
+ DAG.getNode(ISD::ZERO_EXTEND, dl,
+ N0.getOperand(1).getValueType(),
+ N0.getOperand(1)));
}
return SDValue();
@@ -3512,7 +3554,7 @@ SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
if (VT.isVector())
return SDValue();
- // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
+ // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
// extended to VT.
if (Opc == ISD::SIGN_EXTEND_INREG) {
ExtType = ISD::SEXTLOAD;
@@ -3586,7 +3628,7 @@ SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
EVT VT = N->getValueType(0);
EVT EVT = cast<VTSDNode>(N1)->getVT();
unsigned VTBits = VT.getScalarType().getSizeInBits();
- unsigned EVTBits = EVT.getSizeInBits();
+ unsigned EVTBits = EVT.getScalarType().getSizeInBits();
// fold (sext_in_reg c1) -> c1
if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
@@ -3702,7 +3744,7 @@ SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
else
// if the source and dest are the same type, we can drop both the extend
- // and the truncate
+ // and the truncate.
return N0.getOperand(0);
}
@@ -4513,6 +4555,13 @@ SDValue DAGCombiner::visitBRCOND(SDNode *N) {
N1.getOperand(0), N1.getOperand(1), N2);
}
+ SDNode *Trunc = 0;
+ if (N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) {
+ // Look pass truncate.
+ Trunc = N1.getNode();
+ N1 = N1.getOperand(0);
+ }
+
if (N1.hasOneUse() && N1.getOpcode() == ISD::SRL) {
// Match this pattern so that we can generate simpler code:
//
@@ -4524,7 +4573,7 @@ SDValue DAGCombiner::visitBRCOND(SDNode *N) {
// into
//
// %a = ...
- // %b = and %a, 2
+ // %b = and i32 %a, 2
// %c = setcc eq %b, 0
// brcond %c ...
//
@@ -4535,7 +4584,6 @@ SDValue DAGCombiner::visitBRCOND(SDNode *N) {
SDValue Op1 = N1.getOperand(1);
if (Op0.getOpcode() == ISD::AND &&
- Op0.hasOneUse() &&
Op1.getOpcode() == ISD::Constant) {
SDValue AndOp1 = Op0.getOperand(1);
@@ -4550,12 +4598,21 @@ SDValue DAGCombiner::visitBRCOND(SDNode *N) {
Op0, DAG.getConstant(0, Op0.getValueType()),
ISD::SETNE);
+ SDValue NewBRCond = DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
+ MVT::Other, Chain, SetCC, N2);
+ // Don't add the new BRCond into the worklist or else SimplifySelectCC
+ // will convert it back to (X & C1) >> C2.
+ CombineTo(N, NewBRCond, false);
+ // Truncate is dead.
+ if (Trunc) {
+ removeFromWorkList(Trunc);
+ DAG.DeleteNode(Trunc);
+ }
// Replace the uses of SRL with SETCC
DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
removeFromWorkList(N1.getNode());
DAG.DeleteNode(N1.getNode());
- return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
- MVT::Other, Chain, SetCC, N2);
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
}
}
}
@@ -4692,11 +4749,11 @@ bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
BasePtr, Offset, AM);
++PreIndexedNodes;
++NodesCombined;
- DEBUG(errs() << "\nReplacing.4 ";
+ DEBUG(dbgs() << "\nReplacing.4 ";
N->dump(&DAG);
- errs() << "\nWith: ";
+ dbgs() << "\nWith: ";
Result.getNode()->dump(&DAG);
- errs() << '\n');
+ dbgs() << '\n');
WorkListRemover DeadNodes(*this);
if (isLoad) {
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0),
@@ -4826,11 +4883,11 @@ bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
BasePtr, Offset, AM);
++PostIndexedNodes;
++NodesCombined;
- DEBUG(errs() << "\nReplacing.5 ";
+ DEBUG(dbgs() << "\nReplacing.5 ";
N->dump(&DAG);
- errs() << "\nWith: ";
+ dbgs() << "\nWith: ";
Result.getNode()->dump(&DAG);
- errs() << '\n');
+ dbgs() << '\n');
WorkListRemover DeadNodes(*this);
if (isLoad) {
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0),
@@ -4889,11 +4946,11 @@ SDValue DAGCombiner::visitLOAD(SDNode *N) {
// v3 = add v2, c
// Now we replace use of chain2 with chain1. This makes the second load
// isomorphic to the one we are deleting, and thus makes this load live.
- DEBUG(errs() << "\nReplacing.6 ";
+ DEBUG(dbgs() << "\nReplacing.6 ";
N->dump(&DAG);
- errs() << "\nWith chain: ";
+ dbgs() << "\nWith chain: ";
Chain.getNode()->dump(&DAG);
- errs() << "\n");
+ dbgs() << "\n");
WorkListRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain, &DeadNodes);
@@ -4909,11 +4966,11 @@ SDValue DAGCombiner::visitLOAD(SDNode *N) {
assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
SDValue Undef = DAG.getUNDEF(N->getValueType(0));
- DEBUG(errs() << "\nReplacing.6 ";
+ DEBUG(dbgs() << "\nReplacing.6 ";
N->dump(&DAG);
- errs() << "\nWith: ";
+ dbgs() << "\nWith: ";
Undef.getNode()->dump(&DAG);
- errs() << " and 2 other values\n");
+ dbgs() << " and 2 other values\n");
WorkListRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef, &DeadNodes);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
@@ -5738,35 +5795,48 @@ bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
if (LLD->getMemoryVT() == RLD->getMemoryVT()) {
// FIXME: this discards src value information. This is
// over-conservative. It would be beneficial to be able to remember
- // both potential memory locations.
+ // both potential memory locations. Since we are discarding
+ // src value info, don't do the transformation if the memory
+ // locations are not in the default address space.
+ unsigned LLDAddrSpace = 0, RLDAddrSpace = 0;
+ if (const Value *LLDVal = LLD->getMemOperand()->getValue()) {
+ if (const PointerType *PT = dyn_cast<PointerType>(LLDVal->getType()))
+ LLDAddrSpace = PT->getAddressSpace();
+ }
+ if (const Value *RLDVal = RLD->getMemOperand()->getValue()) {
+ if (const PointerType *PT = dyn_cast<PointerType>(RLDVal->getType()))
+ RLDAddrSpace = PT->getAddressSpace();
+ }
SDValue Addr;
- if (TheSelect->getOpcode() == ISD::SELECT) {
- // Check that the condition doesn't reach either load. If so, folding
- // this will induce a cycle into the DAG.
- if ((!LLD->hasAnyUseOfValue(1) ||
- !LLD->isPredecessorOf(TheSelect->getOperand(0).getNode())) &&
- (!RLD->hasAnyUseOfValue(1) ||
- !RLD->isPredecessorOf(TheSelect->getOperand(0).getNode()))) {
- Addr = DAG.getNode(ISD::SELECT, TheSelect->getDebugLoc(),
- LLD->getBasePtr().getValueType(),
- TheSelect->getOperand(0), LLD->getBasePtr(),
- RLD->getBasePtr());
- }
- } else {
- // Check that the condition doesn't reach either load. If so, folding
- // this will induce a cycle into the DAG.
- if ((!LLD->hasAnyUseOfValue(1) ||
- (!LLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) &&
- !LLD->isPredecessorOf(TheSelect->getOperand(1).getNode()))) &&
- (!RLD->hasAnyUseOfValue(1) ||
- (!RLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) &&
- !RLD->isPredecessorOf(TheSelect->getOperand(1).getNode())))) {
- Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(),
- LLD->getBasePtr().getValueType(),
- TheSelect->getOperand(0),
- TheSelect->getOperand(1),
- LLD->getBasePtr(), RLD->getBasePtr(),
- TheSelect->getOperand(4));
+ if (LLDAddrSpace == 0 && RLDAddrSpace == 0) {
+ if (TheSelect->getOpcode() == ISD::SELECT) {
+ // Check that the condition doesn't reach either load. If so, folding
+ // this will induce a cycle into the DAG.
+ if ((!LLD->hasAnyUseOfValue(1) ||
+ !LLD->isPredecessorOf(TheSelect->getOperand(0).getNode())) &&
+ (!RLD->hasAnyUseOfValue(1) ||
+ !RLD->isPredecessorOf(TheSelect->getOperand(0).getNode()))) {
+ Addr = DAG.getNode(ISD::SELECT, TheSelect->getDebugLoc(),
+ LLD->getBasePtr().getValueType(),
+ TheSelect->getOperand(0), LLD->getBasePtr(),
+ RLD->getBasePtr());
+ }
+ } else {
+ // Check that the condition doesn't reach either load. If so, folding
+ // this will induce a cycle into the DAG.
+ if ((!LLD->hasAnyUseOfValue(1) ||
+ (!LLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) &&
+ !LLD->isPredecessorOf(TheSelect->getOperand(1).getNode()))) &&
+ (!RLD->hasAnyUseOfValue(1) ||
+ (!RLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) &&
+ !RLD->isPredecessorOf(TheSelect->getOperand(1).getNode())))) {
+ Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(),
+ LLD->getBasePtr().getValueType(),
+ TheSelect->getOperand(0),
+ TheSelect->getOperand(1),
+ LLD->getBasePtr(), RLD->getBasePtr(),
+ TheSelect->getOperand(4));
+ }
}
}
diff --git a/lib/CodeGen/SelectionDAG/FastISel.cpp b/lib/CodeGen/SelectionDAG/FastISel.cpp
index 33694f2..09fd657 100644
--- a/lib/CodeGen/SelectionDAG/FastISel.cpp
+++ b/lib/CodeGen/SelectionDAG/FastISel.cpp
@@ -78,7 +78,7 @@ unsigned FastISel::getRegForValue(Value *V) {
// Look up the value to see if we already have a register for it. We
// cache values defined by Instructions across blocks, and other values
// only locally. This is because Instructions already have the SSA
- // def-dominatess-use requirement enforced.
+ // def-dominates-use requirement enforced.
if (ValueMap.count(V))
return ValueMap[V];
unsigned Reg = LocalValueMap[V];
@@ -188,7 +188,7 @@ unsigned FastISel::getRegForGEPIndex(Value *Idx) {
/// SelectBinaryOp - Select and emit code for a binary operator instruction,
/// which has an opcode which directly corresponds to the given ISD opcode.
///
-bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
+bool FastISel::SelectBinaryOp(User *I, unsigned ISDOpcode) {
EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
if (VT == MVT::Other || !VT.isSimple())
// Unhandled type. Halt "fast" selection and bail.
@@ -325,12 +325,6 @@ bool FastISel::SelectCall(User *I) {
unsigned IID = F->getIntrinsicID();
switch (IID) {
default: break;
- case Intrinsic::dbg_stoppoint:
- case Intrinsic::dbg_region_start:
- case Intrinsic::dbg_region_end:
- case Intrinsic::dbg_func_start:
- // FIXME - Remove this instructions once the dust settles.
- return true;
case Intrinsic::dbg_declare: {
DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
if (!DIDescriptor::ValidDebugInfo(DI->getVariable(), CodeGenOpt::None)||!DW
@@ -338,8 +332,6 @@ bool FastISel::SelectCall(User *I) {
return true;
Value *Address = DI->getAddress();
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
- Address = BCI->getOperand(0);
AllocaInst *AI = dyn_cast<AllocaInst>(Address);
// Don't handle byval struct arguments or VLAs, for example.
if (!AI) break;
@@ -424,7 +416,7 @@ bool FastISel::SelectCall(User *I) {
return false;
}
-bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
+bool FastISel::SelectCast(User *I, unsigned Opcode) {
EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
EVT DstVT = TLI.getValueType(I->getType());
@@ -742,44 +734,44 @@ FastISel::FastISel(MachineFunction &mf,
FastISel::~FastISel() {}
unsigned FastISel::FastEmit_(MVT, MVT,
- ISD::NodeType) {
+ unsigned) {
return 0;
}
unsigned FastISel::FastEmit_r(MVT, MVT,
- ISD::NodeType, unsigned /*Op0*/) {
+ unsigned, unsigned /*Op0*/) {
return 0;
}
unsigned FastISel::FastEmit_rr(MVT, MVT,
- ISD::NodeType, unsigned /*Op0*/,
+ unsigned, unsigned /*Op0*/,
unsigned /*Op0*/) {
return 0;
}
-unsigned FastISel::FastEmit_i(MVT, MVT, ISD::NodeType, uint64_t /*Imm*/) {
+unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
return 0;
}
unsigned FastISel::FastEmit_f(MVT, MVT,
- ISD::NodeType, ConstantFP * /*FPImm*/) {
+ unsigned, ConstantFP * /*FPImm*/) {
return 0;
}
unsigned FastISel::FastEmit_ri(MVT, MVT,
- ISD::NodeType, unsigned /*Op0*/,
+ unsigned, unsigned /*Op0*/,
uint64_t /*Imm*/) {
return 0;
}
unsigned FastISel::FastEmit_rf(MVT, MVT,
- ISD::NodeType, unsigned /*Op0*/,
+ unsigned, unsigned /*Op0*/,
ConstantFP * /*FPImm*/) {
return 0;
}
unsigned FastISel::FastEmit_rri(MVT, MVT,
- ISD::NodeType,
+ unsigned,
unsigned /*Op0*/, unsigned /*Op1*/,
uint64_t /*Imm*/) {
return 0;
@@ -789,7 +781,7 @@ unsigned FastISel::FastEmit_rri(MVT, MVT,
/// to emit an instruction with an immediate operand using FastEmit_ri.
/// If that fails, it materializes the immediate into a register and try
/// FastEmit_rr instead.
-unsigned FastISel::FastEmit_ri_(MVT VT, ISD::NodeType Opcode,
+unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
unsigned Op0, uint64_t Imm,
MVT ImmType) {
// First check if immediate type is legal. If not, we can't use the ri form.
@@ -806,7 +798,7 @@ unsigned FastISel::FastEmit_ri_(MVT VT, ISD::NodeType Opcode,
/// to emit an instruction with a floating-point immediate operand using
/// FastEmit_rf. If that fails, it materializes the immediate into a register
/// and try FastEmit_rr instead.
-unsigned FastISel::FastEmit_rf_(MVT VT, ISD::NodeType Opcode,
+unsigned FastISel::FastEmit_rf_(MVT VT, unsigned Opcode,
unsigned Op0, ConstantFP *FPImm,
MVT ImmType) {
// First check if immediate type is legal. If not, we can't use the rf form.
diff --git a/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp b/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
index e3b25c2..4868c9e 100644
--- a/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
+++ b/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
@@ -113,7 +113,7 @@ void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
return;
}
// Interpret void as zero return values.
- if (Ty == Type::getVoidTy(Ty->getContext()))
+ if (Ty->isVoidTy())
return;
// Base case: we can get an EVT for this LLVM IR type.
ValueVTs.push_back(TLI.getValueType(Ty));
diff --git a/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp b/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
index 474d833..5e3f58a 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
@@ -32,6 +32,7 @@
#include "llvm/GlobalVariable.h"
#include "llvm/LLVMContext.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
@@ -950,9 +951,9 @@ SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
switch (Node->getOpcode()) {
default:
#ifndef NDEBUG
- errs() << "NODE: ";
- Node->dump(&DAG);
- errs() << "\n";
+ dbgs() << "NODE: ";
+ Node->dump( &DAG);
+ dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to legalize this operator!");
@@ -2292,12 +2293,10 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
EVT VT = Node->getValueType(0);
EVT ShiftAmountTy = TLI.getShiftAmountTy();
- if (VT.isVector()) {
+ if (VT.isVector())
ShiftAmountTy = VT;
- VT = VT.getVectorElementType();
- }
- unsigned BitsDiff = VT.getSizeInBits() -
- ExtraVT.getSizeInBits();
+ unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
+ ExtraVT.getScalarType().getSizeInBits();
SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
Node->getOperand(0), ShiftCst);
diff --git a/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp b/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
index 2831617..4f0fce7 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
@@ -43,15 +43,15 @@ static RTLIB::Libcall GetFPLibCall(EVT VT,
//===----------------------------------------------------------------------===//
void DAGTypeLegalizer::SoftenFloatResult(SDNode *N, unsigned ResNo) {
- DEBUG(errs() << "Soften float result " << ResNo << ": "; N->dump(&DAG);
- errs() << "\n");
+ DEBUG(dbgs() << "Soften float result " << ResNo << ": "; N->dump(&DAG);
+ dbgs() << "\n");
SDValue R = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- errs() << "SoftenFloatResult #" << ResNo << ": ";
- N->dump(&DAG); errs() << "\n";
+ dbgs() << "SoftenFloatResult #" << ResNo << ": ";
+ N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to soften the result of this operator!");
@@ -531,15 +531,15 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP(SDNode *N) {
//===----------------------------------------------------------------------===//
bool DAGTypeLegalizer::SoftenFloatOperand(SDNode *N, unsigned OpNo) {
- DEBUG(errs() << "Soften float operand " << OpNo << ": "; N->dump(&DAG);
- errs() << "\n");
+ DEBUG(dbgs() << "Soften float operand " << OpNo << ": "; N->dump(&DAG);
+ dbgs() << "\n");
SDValue Res = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- errs() << "SoftenFloatOperand Op #" << OpNo << ": ";
- N->dump(&DAG); errs() << "\n";
+ dbgs() << "SoftenFloatOperand Op #" << OpNo << ": ";
+ N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to soften this operator's operand!");
@@ -768,7 +768,7 @@ SDValue DAGTypeLegalizer::SoftenFloatOp_STORE(SDNode *N, unsigned OpNo) {
/// have invalid operands or may have other results that need promotion, we just
/// know that (at least) one result needs expansion.
void DAGTypeLegalizer::ExpandFloatResult(SDNode *N, unsigned ResNo) {
- DEBUG(errs() << "Expand float result: "; N->dump(&DAG); errs() << "\n");
+ DEBUG(dbgs() << "Expand float result: "; N->dump(&DAG); dbgs() << "\n");
SDValue Lo, Hi;
Lo = Hi = SDValue();
@@ -779,8 +779,8 @@ void DAGTypeLegalizer::ExpandFloatResult(SDNode *N, unsigned ResNo) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- errs() << "ExpandFloatResult #" << ResNo << ": ";
- N->dump(&DAG); errs() << "\n";
+ dbgs() << "ExpandFloatResult #" << ResNo << ": ";
+ N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to expand the result of this operator!");
@@ -1167,7 +1167,7 @@ void DAGTypeLegalizer::ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo,
/// types of the node are known to be legal, but other operands of the node may
/// need promotion or expansion as well as the specified one.
bool DAGTypeLegalizer::ExpandFloatOperand(SDNode *N, unsigned OpNo) {
- DEBUG(errs() << "Expand float operand: "; N->dump(&DAG); errs() << "\n");
+ DEBUG(dbgs() << "Expand float operand: "; N->dump(&DAG); dbgs() << "\n");
SDValue Res = SDValue();
if (TLI.getOperationAction(N->getOpcode(), N->getOperand(OpNo).getValueType())
@@ -1178,8 +1178,8 @@ bool DAGTypeLegalizer::ExpandFloatOperand(SDNode *N, unsigned OpNo) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- errs() << "ExpandFloatOperand Op #" << OpNo << ": ";
- N->dump(&DAG); errs() << "\n";
+ dbgs() << "ExpandFloatOperand Op #" << OpNo << ": ";
+ N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to expand this operator's operand!");
diff --git a/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp b/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp
index bd3b97a..9932cf4 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp
@@ -33,7 +33,7 @@ using namespace llvm;
/// may also have invalid operands or may have other results that need
/// expansion, we just know that (at least) one result needs promotion.
void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
- DEBUG(errs() << "Promote integer result: "; N->dump(&DAG); errs() << "\n");
+ DEBUG(dbgs() << "Promote integer result: "; N->dump(&DAG); dbgs() << "\n");
SDValue Res = SDValue();
// See if the target wants to custom expand this node.
@@ -43,8 +43,8 @@ void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- errs() << "PromoteIntegerResult #" << ResNo << ": ";
- N->dump(&DAG); errs() << "\n";
+ dbgs() << "PromoteIntegerResult #" << ResNo << ": ";
+ N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to promote this operator!");
case ISD::AssertSext: Res = PromoteIntRes_AssertSext(N); break;
@@ -599,7 +599,7 @@ SDValue DAGTypeLegalizer::PromoteIntRes_XMULO(SDNode *N, unsigned ResNo) {
/// result types of the node are known to be legal, but other operands of the
/// node may need promotion or expansion as well as the specified one.
bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
- DEBUG(errs() << "Promote integer operand: "; N->dump(&DAG); errs() << "\n");
+ DEBUG(dbgs() << "Promote integer operand: "; N->dump(&DAG); dbgs() << "\n");
SDValue Res = SDValue();
if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
@@ -608,8 +608,8 @@ bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- errs() << "PromoteIntegerOperand Op #" << OpNo << ": ";
- N->dump(&DAG); errs() << "\n";
+ dbgs() << "PromoteIntegerOperand Op #" << OpNo << ": ";
+ N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to promote this operator's operand!");
@@ -910,7 +910,7 @@ SDValue DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) {
/// have invalid operands or may have other results that need promotion, we just
/// know that (at least) one result needs expansion.
void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) {
- DEBUG(errs() << "Expand integer result: "; N->dump(&DAG); errs() << "\n");
+ DEBUG(dbgs() << "Expand integer result: "; N->dump(&DAG); dbgs() << "\n");
SDValue Lo, Hi;
Lo = Hi = SDValue();
@@ -921,8 +921,8 @@ void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- errs() << "ExpandIntegerResult #" << ResNo << ": ";
- N->dump(&DAG); errs() << "\n";
+ dbgs() << "ExpandIntegerResult #" << ResNo << ": ";
+ N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to expand the result of this operator!");
@@ -1965,7 +1965,7 @@ void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N,
/// result types of the node are known to be legal, but other operands of the
/// node may need promotion or expansion as well as the specified one.
bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) {
- DEBUG(errs() << "Expand integer operand: "; N->dump(&DAG); errs() << "\n");
+ DEBUG(dbgs() << "Expand integer operand: "; N->dump(&DAG); dbgs() << "\n");
SDValue Res = SDValue();
if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
@@ -1974,8 +1974,8 @@ bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- errs() << "ExpandIntegerOperand Op #" << OpNo << ": ";
- N->dump(&DAG); errs() << "\n";
+ dbgs() << "ExpandIntegerOperand Op #" << OpNo << ": ";
+ N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to expand this operator's operand!");
diff --git a/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp b/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
index d9efd4f..37f36a3 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
@@ -123,42 +123,42 @@ void DAGTypeLegalizer::PerformExpensiveChecks() {
// another node that has not been seen by the LegalizeTypes machinery.
if ((I->getNodeId() == NewNode && Mapped > 1) ||
(I->getNodeId() != NewNode && Mapped != 0)) {
- errs() << "Unprocessed value in a map!";
+ dbgs() << "Unprocessed value in a map!";
Failed = true;
}
} else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(I)) {
if (Mapped > 1) {
- errs() << "Value with legal type was transformed!";
+ dbgs() << "Value with legal type was transformed!";
Failed = true;
}
} else {
if (Mapped == 0) {
- errs() << "Processed value not in any map!";
+ dbgs() << "Processed value not in any map!";
Failed = true;
} else if (Mapped & (Mapped - 1)) {
- errs() << "Value in multiple maps!";
+ dbgs() << "Value in multiple maps!";
Failed = true;
}
}
if (Failed) {
if (Mapped & 1)
- errs() << " ReplacedValues";
+ dbgs() << " ReplacedValues";
if (Mapped & 2)
- errs() << " PromotedIntegers";
+ dbgs() << " PromotedIntegers";
if (Mapped & 4)
- errs() << " SoftenedFloats";
+ dbgs() << " SoftenedFloats";
if (Mapped & 8)
- errs() << " ScalarizedVectors";
+ dbgs() << " ScalarizedVectors";
if (Mapped & 16)
- errs() << " ExpandedIntegers";
+ dbgs() << " ExpandedIntegers";
if (Mapped & 32)
- errs() << " ExpandedFloats";
+ dbgs() << " ExpandedFloats";
if (Mapped & 64)
- errs() << " SplitVectors";
+ dbgs() << " SplitVectors";
if (Mapped & 128)
- errs() << " WidenedVectors";
- errs() << "\n";
+ dbgs() << " WidenedVectors";
+ dbgs() << "\n";
llvm_unreachable(0);
}
}
@@ -342,7 +342,7 @@ ScanOperands:
}
if (i == NumOperands) {
- DEBUG(errs() << "Legally typed node: "; N->dump(&DAG); errs() << "\n");
+ DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG); dbgs() << "\n");
}
}
NodeDone:
@@ -411,7 +411,7 @@ NodeDone:
if (!IgnoreNodeResults(I))
for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
if (!isTypeLegal(I->getValueType(i))) {
- errs() << "Result type " << i << " illegal!\n";
+ dbgs() << "Result type " << i << " illegal!\n";
Failed = true;
}
@@ -419,24 +419,24 @@ NodeDone:
for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
if (!IgnoreNodeResults(I->getOperand(i).getNode()) &&
!isTypeLegal(I->getOperand(i).getValueType())) {
- errs() << "Operand type " << i << " illegal!\n";
+ dbgs() << "Operand type " << i << " illegal!\n";
Failed = true;
}
if (I->getNodeId() != Processed) {
if (I->getNodeId() == NewNode)
- errs() << "New node not analyzed?\n";
+ dbgs() << "New node not analyzed?\n";
else if (I->getNodeId() == Unanalyzed)
- errs() << "Unanalyzed node not noticed?\n";
+ dbgs() << "Unanalyzed node not noticed?\n";
else if (I->getNodeId() > 0)
- errs() << "Operand not processed?\n";
+ dbgs() << "Operand not processed?\n";
else if (I->getNodeId() == ReadyToProcess)
- errs() << "Not added to worklist?\n";
+ dbgs() << "Not added to worklist?\n";
Failed = true;
}
if (Failed) {
- I->dump(&DAG); errs() << "\n";
+ I->dump(&DAG); dbgs() << "\n";
llvm_unreachable(0);
}
}
diff --git a/lib/CodeGen/SelectionDAG/LegalizeTypes.h b/lib/CodeGen/SelectionDAG/LegalizeTypes.h
index c35f7ad..b5dbd41 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeTypes.h
+++ b/lib/CodeGen/SelectionDAG/LegalizeTypes.h
@@ -509,6 +509,7 @@ private:
void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
SDValue ScalarizeVecRes_BinOp(SDNode *N);
SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
+ SDValue ScalarizeVecRes_InregOp(SDNode *N);
SDValue ScalarizeVecRes_BIT_CONVERT(SDNode *N);
SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
@@ -550,6 +551,7 @@ private:
void SplitVectorResult(SDNode *N, unsigned OpNo);
void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
+ void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
@@ -615,6 +617,7 @@ private:
SDValue WidenVecRes_Convert(SDNode *N);
SDValue WidenVecRes_Shift(SDNode *N);
SDValue WidenVecRes_Unary(SDNode *N);
+ SDValue WidenVecRes_InregOp(SDNode *N);
// Widen Vector Operand.
bool WidenVectorOperand(SDNode *N, unsigned ResNo);
diff --git a/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp b/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
index 2625245..b5f84c0 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
@@ -179,9 +179,12 @@ SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
case ISD::FRINT:
case ISD::FNEARBYINT:
case ISD::FFLOOR:
- case ISD::SIGN_EXTEND_INREG:
QueryType = Node->getValueType(0);
break;
+ case ISD::SIGN_EXTEND_INREG:
+ case ISD::FP_ROUND_INREG:
+ QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
+ break;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
QueryType = Node->getOperand(0).getValueType();
diff --git a/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp b/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp
index cf67ab9..808bac7 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp
@@ -32,17 +32,17 @@ using namespace llvm;
//===----------------------------------------------------------------------===//
void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
- DEBUG(errs() << "Scalarize node result " << ResNo << ": ";
+ DEBUG(dbgs() << "Scalarize node result " << ResNo << ": ";
N->dump(&DAG);
- errs() << "\n");
+ dbgs() << "\n");
SDValue R = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- errs() << "ScalarizeVectorResult #" << ResNo << ": ";
+ dbgs() << "ScalarizeVectorResult #" << ResNo << ": ";
N->dump(&DAG);
- errs() << "\n";
+ dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to scalarize the result of this operator!");
@@ -50,11 +50,12 @@ void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
case ISD::BUILD_VECTOR: R = N->getOperand(0); break;
case ISD::CONVERT_RNDSAT: R = ScalarizeVecRes_CONVERT_RNDSAT(N); break;
case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
+ case ISD::FP_ROUND_INREG: R = ScalarizeVecRes_InregOp(N); break;
case ISD::FPOWI: R = ScalarizeVecRes_FPOWI(N); break;
case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
case ISD::LOAD: R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
case ISD::SCALAR_TO_VECTOR: R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
- case ISD::SIGN_EXTEND_INREG: R = ScalarizeVecRes_SIGN_EXTEND_INREG(N); break;
+ case ISD::SIGN_EXTEND_INREG: R = ScalarizeVecRes_InregOp(N); break;
case ISD::SELECT: R = ScalarizeVecRes_SELECT(N); break;
case ISD::SELECT_CC: R = ScalarizeVecRes_SELECT_CC(N); break;
case ISD::SETCC: R = ScalarizeVecRes_SETCC(N); break;
@@ -186,6 +187,14 @@ SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
return DAG.getNode(N->getOpcode(), N->getDebugLoc(), DestVT, Op);
}
+SDValue DAGTypeLegalizer::ScalarizeVecRes_InregOp(SDNode *N) {
+ EVT EltVT = N->getValueType(0).getVectorElementType();
+ EVT ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT().getVectorElementType();
+ SDValue LHS = GetScalarizedVector(N->getOperand(0));
+ return DAG.getNode(N->getOpcode(), N->getDebugLoc(), EltVT,
+ LHS, DAG.getValueType(ExtVT));
+}
+
SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
// If the operand is wider than the vector element type then it is implicitly
// truncated. Make that explicit here.
@@ -196,13 +205,6 @@ SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
return InOp;
}
-SDValue DAGTypeLegalizer::ScalarizeVecRes_SIGN_EXTEND_INREG(SDNode *N) {
- EVT EltVT = N->getValueType(0).getVectorElementType();
- SDValue LHS = GetScalarizedVector(N->getOperand(0));
- return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), EltVT,
- LHS, N->getOperand(1));
-}
-
SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
SDValue LHS = GetScalarizedVector(N->getOperand(1));
return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
@@ -278,18 +280,18 @@ SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
//===----------------------------------------------------------------------===//
bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
- DEBUG(errs() << "Scalarize node operand " << OpNo << ": ";
+ DEBUG(dbgs() << "Scalarize node operand " << OpNo << ": ";
N->dump(&DAG);
- errs() << "\n");
+ dbgs() << "\n");
SDValue Res = SDValue();
if (Res.getNode() == 0) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- errs() << "ScalarizeVectorOperand Op #" << OpNo << ": ";
+ dbgs() << "ScalarizeVectorOperand Op #" << OpNo << ": ";
N->dump(&DAG);
- errs() << "\n";
+ dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to scalarize this operator's operand!");
case ISD::BIT_CONVERT:
@@ -382,17 +384,17 @@ SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
/// legalization, we just know that (at least) one result needs vector
/// splitting.
void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
- DEBUG(errs() << "Split node result: ";
+ DEBUG(dbgs() << "Split node result: ";
N->dump(&DAG);
- errs() << "\n");
+ dbgs() << "\n");
SDValue Lo, Hi;
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- errs() << "SplitVectorResult #" << ResNo << ": ";
+ dbgs() << "SplitVectorResult #" << ResNo << ": ";
N->dump(&DAG);
- errs() << "\n";
+ dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to split the result of this operator!");
@@ -406,10 +408,11 @@ void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
case ISD::CONCAT_VECTORS: SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
case ISD::CONVERT_RNDSAT: SplitVecRes_CONVERT_RNDSAT(N, Lo, Hi); break;
case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break;
+ case ISD::FP_ROUND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break;
case ISD::FPOWI: SplitVecRes_FPOWI(N, Lo, Hi); break;
case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
case ISD::SCALAR_TO_VECTOR: SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break;
- case ISD::SIGN_EXTEND_INREG: SplitVecRes_SIGN_EXTEND_INREG(N, Lo, Hi); break;
+ case ISD::SIGN_EXTEND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break;
case ISD::LOAD:
SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);
break;
@@ -654,6 +657,21 @@ void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo,
Hi = DAG.getNode(ISD::FPOWI, dl, Hi.getValueType(), Hi, N->getOperand(1));
}
+void DAGTypeLegalizer::SplitVecRes_InregOp(SDNode *N, SDValue &Lo,
+ SDValue &Hi) {
+ SDValue LHSLo, LHSHi;
+ GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
+ DebugLoc dl = N->getDebugLoc();
+
+ EVT LoVT, HiVT;
+ GetSplitDestVTs(cast<VTSDNode>(N->getOperand(1))->getVT(), LoVT, HiVT);
+
+ Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo,
+ DAG.getValueType(LoVT));
+ Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi,
+ DAG.getValueType(HiVT));
+}
+
void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue Vec = N->getOperand(0);
@@ -709,18 +727,6 @@ void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
Hi = DAG.getUNDEF(HiVT);
}
-void DAGTypeLegalizer::SplitVecRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo,
- SDValue &Hi) {
- SDValue LHSLo, LHSHi;
- GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
- DebugLoc dl = N->getDebugLoc();
-
- Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo,
- N->getOperand(1));
- Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi,
- N->getOperand(1));
-}
-
void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
SDValue &Hi) {
assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
@@ -945,18 +951,18 @@ void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N,
/// result types of the node are known to be legal, but other operands of the
/// node may need legalization as well as the specified one.
bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
- DEBUG(errs() << "Split node operand: ";
+ DEBUG(dbgs() << "Split node operand: ";
N->dump(&DAG);
- errs() << "\n");
+ dbgs() << "\n");
SDValue Res = SDValue();
if (Res.getNode() == 0) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- errs() << "SplitVectorOperand Op #" << OpNo << ": ";
+ dbgs() << "SplitVectorOperand Op #" << OpNo << ": ";
N->dump(&DAG);
- errs() << "\n";
+ dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to split this operator's operand!");
@@ -1136,9 +1142,9 @@ SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
//===----------------------------------------------------------------------===//
void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
- DEBUG(errs() << "Widen node result " << ResNo << ": ";
+ DEBUG(dbgs() << "Widen node result " << ResNo << ": ";
N->dump(&DAG);
- errs() << "\n");
+ dbgs() << "\n");
// See if the target wants to custom widen this node.
if (CustomWidenLowerNode(N, N->getValueType(ResNo)))
@@ -1148,9 +1154,9 @@ void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- errs() << "WidenVectorResult #" << ResNo << ": ";
+ dbgs() << "WidenVectorResult #" << ResNo << ": ";
N->dump(&DAG);
- errs() << "\n";
+ dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to widen the result of this operator!");
@@ -1159,10 +1165,11 @@ void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
case ISD::CONCAT_VECTORS: Res = WidenVecRes_CONCAT_VECTORS(N); break;
case ISD::CONVERT_RNDSAT: Res = WidenVecRes_CONVERT_RNDSAT(N); break;
case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break;
+ case ISD::FP_ROUND_INREG: Res = WidenVecRes_InregOp(N); break;
case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break;
case ISD::LOAD: Res = WidenVecRes_LOAD(N); break;
case ISD::SCALAR_TO_VECTOR: Res = WidenVecRes_SCALAR_TO_VECTOR(N); break;
- case ISD::SIGN_EXTEND_INREG: Res = WidenVecRes_SIGN_EXTEND_INREG(N); break;
+ case ISD::SIGN_EXTEND_INREG: Res = WidenVecRes_InregOp(N); break;
case ISD::SELECT: Res = WidenVecRes_SELECT(N); break;
case ISD::SELECT_CC: Res = WidenVecRes_SELECT_CC(N); break;
case ISD::UNDEF: Res = WidenVecRes_UNDEF(N); break;
@@ -1331,6 +1338,17 @@ SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) {
return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp);
}
+SDValue DAGTypeLegalizer::WidenVecRes_InregOp(SDNode *N) {
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
+ cast<VTSDNode>(N->getOperand(1))->getVT()
+ .getVectorElementType(),
+ WidenVT.getVectorNumElements());
+ SDValue WidenLHS = GetWidenedVector(N->getOperand(0));
+ return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
+ WidenVT, WidenLHS, DAG.getValueType(ExtVT));
+}
+
SDValue DAGTypeLegalizer::WidenVecRes_BIT_CONVERT(SDNode *N) {
SDValue InOp = N->getOperand(0);
EVT InVT = InOp.getValueType();
@@ -1713,13 +1731,6 @@ SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) {
WidenVT, N->getOperand(0));
}
-SDValue DAGTypeLegalizer::WidenVecRes_SIGN_EXTEND_INREG(SDNode *N) {
- EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
- SDValue WidenLHS = GetWidenedVector(N->getOperand(0));
- return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(),
- WidenVT, WidenLHS, N->getOperand(1));
-}
-
SDValue DAGTypeLegalizer::WidenVecRes_SELECT(SDNode *N) {
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned WidenNumElts = WidenVT.getVectorNumElements();
@@ -1806,17 +1817,17 @@ SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) {
// Widen Vector Operand
//===----------------------------------------------------------------------===//
bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned ResNo) {
- DEBUG(errs() << "Widen node operand " << ResNo << ": ";
+ DEBUG(dbgs() << "Widen node operand " << ResNo << ": ";
N->dump(&DAG);
- errs() << "\n");
+ dbgs() << "\n");
SDValue Res = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- errs() << "WidenVectorOperand op #" << ResNo << ": ";
+ dbgs() << "WidenVectorOperand op #" << ResNo << ": ";
N->dump(&DAG);
- errs() << "\n";
+ dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to widen this operator's operand!");
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp
index 4045a34..0c3c974c 100644
--- a/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp
@@ -109,7 +109,7 @@ private:
/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGFast::Schedule() {
- DEBUG(errs() << "********** List Scheduling **********\n");
+ DEBUG(dbgs() << "********** List Scheduling **********\n");
NumLiveRegs = 0;
LiveRegDefs.resize(TRI->getNumRegs(), NULL);
@@ -136,9 +136,9 @@ void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
#ifndef NDEBUG
if (PredSU->NumSuccsLeft == 0) {
- errs() << "*** Scheduling failed! ***\n";
+ dbgs() << "*** Scheduling failed! ***\n";
PredSU->dump(this);
- errs() << " has been released too many times!\n";
+ dbgs() << " has been released too many times!\n";
llvm_unreachable(0);
}
#endif
@@ -175,7 +175,7 @@ void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
/// count of its predecessors. If a predecessor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
- DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
+ DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
DEBUG(SU->dump(this));
assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
@@ -233,7 +233,7 @@ SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
return NULL;
- DEBUG(errs() << "Unfolding SU # " << SU->NodeNum << "\n");
+ DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
assert(NewNodes.size() == 2 && "Expected a load folding node!");
N = NewNodes[1];
@@ -343,7 +343,7 @@ SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
SU = NewSU;
}
- DEBUG(errs() << "Duplicating SU # " << SU->NodeNum << "\n");
+ DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
NewSU = Clone(SU);
// New SUnit has the exact same predecessors.
@@ -550,7 +550,7 @@ void ScheduleDAGFast::ListScheduleBottomUp() {
// Issue copies, these can be expensive cross register class copies.
SmallVector<SUnit*, 2> Copies;
InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
- DEBUG(errs() << "Adding an edge from SU # " << TrySU->NodeNum
+ DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
<< " to SU #" << Copies.front()->NodeNum << "\n");
AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
/*Reg=*/0, /*isNormalMemory=*/false,
@@ -558,7 +558,7 @@ void ScheduleDAGFast::ListScheduleBottomUp() {
NewDef = Copies.back();
}
- DEBUG(errs() << "Adding an edge from SU # " << NewDef->NodeNum
+ DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
<< " to SU #" << TrySU->NodeNum << "\n");
LiveRegDefs[Reg] = NewDef;
AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp
index faf21f7..b92a672 100644
--- a/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp
@@ -87,7 +87,7 @@ private:
/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGList::Schedule() {
- DEBUG(errs() << "********** List Scheduling **********\n");
+ DEBUG(dbgs() << "********** List Scheduling **********\n");
// Build the scheduling graph.
BuildSchedGraph(NULL);
@@ -110,9 +110,9 @@ void ScheduleDAGList::ReleaseSucc(SUnit *SU, const SDep &D) {
#ifndef NDEBUG
if (SuccSU->NumPredsLeft == 0) {
- errs() << "*** Scheduling failed! ***\n";
+ dbgs() << "*** Scheduling failed! ***\n";
SuccSU->dump(this);
- errs() << " has been released too many times!\n";
+ dbgs() << " has been released too many times!\n";
llvm_unreachable(0);
}
#endif
@@ -141,7 +141,7 @@ void ScheduleDAGList::ReleaseSuccessors(SUnit *SU) {
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
- DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
+ DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
DEBUG(SU->dump(this));
Sequence.push_back(SU);
@@ -233,7 +233,7 @@ void ScheduleDAGList::ListScheduleTopDown() {
} else if (!HasNoopHazards) {
// Otherwise, we have a pipeline stall, but no other problem, just advance
// the current cycle and try again.
- DEBUG(errs() << "*** Advancing cycle, no work to do\n");
+ DEBUG(dbgs() << "*** Advancing cycle, no work to do\n");
HazardRec->AdvanceCycle();
++NumStalls;
++CurCycle;
@@ -241,7 +241,7 @@ void ScheduleDAGList::ListScheduleTopDown() {
// Otherwise, we have no instructions to issue and we have instructions
// that will fault if we don't do this right. This is the case for
// processors without pipeline interlocks and other cases.
- DEBUG(errs() << "*** Emitting noop\n");
+ DEBUG(dbgs() << "*** Emitting noop\n");
HazardRec->EmitNoop();
Sequence.push_back(0); // NULL here means noop
++NumNoops;
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
index 7e1015a..1ad7919 100644
--- a/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
@@ -164,7 +164,7 @@ private:
/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGRRList::Schedule() {
- DEBUG(errs() << "********** List Scheduling **********\n");
+ DEBUG(dbgs() << "********** List Scheduling **********\n");
NumLiveRegs = 0;
LiveRegDefs.resize(TRI->getNumRegs(), NULL);
@@ -199,9 +199,9 @@ void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
#ifndef NDEBUG
if (PredSU->NumSuccsLeft == 0) {
- errs() << "*** Scheduling failed! ***\n";
+ dbgs() << "*** Scheduling failed! ***\n";
PredSU->dump(this);
- errs() << " has been released too many times!\n";
+ dbgs() << " has been released too many times!\n";
llvm_unreachable(0);
}
#endif
@@ -238,7 +238,7 @@ void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
/// count of its predecessors. If a predecessor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
- DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
+ DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
DEBUG(SU->dump(this));
assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
@@ -284,7 +284,7 @@ void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
/// its predecessor states to reflect the change.
void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
- DEBUG(errs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
+ DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
DEBUG(SU->dump(this));
AvailableQueue->UnscheduledNode(SU);
@@ -371,7 +371,7 @@ SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
return NULL;
- DEBUG(errs() << "Unfolding SU # " << SU->NodeNum << "\n");
+ DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
assert(NewNodes.size() == 2 && "Expected a load folding node!");
N = NewNodes[1];
@@ -490,7 +490,7 @@ SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
SU = NewSU;
}
- DEBUG(errs() << "Duplicating SU # " << SU->NodeNum << "\n");
+ DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
NewSU = CreateClone(SU);
// New SUnit has the exact same predecessors.
@@ -771,7 +771,7 @@ void ScheduleDAGRRList::ListScheduleBottomUp() {
// Issue copies, these can be expensive cross register class copies.
SmallVector<SUnit*, 2> Copies;
InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
- DEBUG(errs() << "Adding an edge from SU #" << TrySU->NodeNum
+ DEBUG(dbgs() << "Adding an edge from SU #" << TrySU->NodeNum
<< " to SU #" << Copies.front()->NodeNum << "\n");
AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
/*Reg=*/0, /*isNormalMemory=*/false,
@@ -780,7 +780,7 @@ void ScheduleDAGRRList::ListScheduleBottomUp() {
NewDef = Copies.back();
}
- DEBUG(errs() << "Adding an edge from SU #" << NewDef->NodeNum
+ DEBUG(dbgs() << "Adding an edge from SU #" << NewDef->NodeNum
<< " to SU #" << TrySU->NodeNum << "\n");
LiveRegDefs[Reg] = NewDef;
AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
@@ -827,9 +827,9 @@ void ScheduleDAGRRList::ReleaseSucc(SUnit *SU, const SDep *SuccEdge) {
#ifndef NDEBUG
if (SuccSU->NumPredsLeft == 0) {
- errs() << "*** Scheduling failed! ***\n";
+ dbgs() << "*** Scheduling failed! ***\n";
SuccSU->dump(this);
- errs() << " has been released too many times!\n";
+ dbgs() << " has been released too many times!\n";
llvm_unreachable(0);
}
#endif
@@ -858,7 +858,7 @@ void ScheduleDAGRRList::ReleaseSuccessors(SUnit *SU) {
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
- DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
+ DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
DEBUG(SU->dump(this));
assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
@@ -1038,6 +1038,10 @@ namespace {
return 0;
return SethiUllmanNumbers[SU->NodeNum];
}
+
+ unsigned getNodeOrdering(const SUnit *SU) const {
+ return scheduleDAG->DAG->GetOrdering(SU->getNode());
+ }
unsigned size() const { return Queue.size(); }
@@ -1120,6 +1124,14 @@ static unsigned calcMaxScratches(const SUnit *SU) {
// Bottom up
bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
+ unsigned LOrder = SPQ->getNodeOrdering(left);
+ unsigned ROrder = SPQ->getNodeOrdering(right);
+
+ // Prefer an ordering where the lower the non-zero order number, the higher
+ // the preference.
+ if ((LOrder || ROrder) && LOrder != ROrder)
+ return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
+
unsigned LPriority = SPQ->getNodePriority(left);
unsigned RPriority = SPQ->getNodePriority(right);
if (LPriority != RPriority)
@@ -1329,7 +1341,7 @@ void RegReductionPriorityQueue<SF>::PrescheduleNodesWithMultipleUses() {
// Ok, the transformation is safe and the heuristics suggest it is
// profitable. Update the graph.
- DEBUG(errs() << "Prescheduling SU # " << SU->NodeNum
+ DEBUG(dbgs() << "Prescheduling SU # " << SU->NodeNum
<< " next to PredSU # " << PredSU->NodeNum
<< " to guide scheduling in the presence of multiple uses\n");
for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
@@ -1419,7 +1431,7 @@ void RegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
(hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
(!SU->isCommutable && SuccSU->isCommutable)) &&
!scheduleDAG->IsReachable(SuccSU, SU)) {
- DEBUG(errs() << "Adding a pseudo-two-addr edge from SU # "
+ DEBUG(dbgs() << "Adding a pseudo-two-addr edge from SU # "
<< SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/0,
/*Reg=*/0, /*isNormalMemory=*/false,
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
index d53de34..aaaa2b3 100644
--- a/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
@@ -253,19 +253,19 @@ void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
if (!SU->getNode()) {
- errs() << "PHYS REG COPY\n";
+ dbgs() << "PHYS REG COPY\n";
return;
}
SU->getNode()->dump(DAG);
- errs() << "\n";
+ dbgs() << "\n";
SmallVector<SDNode *, 4> FlaggedNodes;
for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode())
FlaggedNodes.push_back(N);
while (!FlaggedNodes.empty()) {
- errs() << " ";
+ dbgs() << " ";
FlaggedNodes.back()->dump(DAG);
- errs() << "\n";
+ dbgs() << "\n";
FlaggedNodes.pop_back();
}
}
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
index 77301b0..cb1a0d6 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
@@ -36,6 +36,7 @@
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
@@ -644,7 +645,7 @@ bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
!N->isMachineOpcode() && !doNotCSE(N)) {
N->dump(this);
- errs() << "\n";
+ dbgs() << "\n";
llvm_unreachable("Node is not in map!");
}
#endif
@@ -1740,7 +1741,7 @@ void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
return;
case ISD::SIGN_EXTEND_INREG: {
EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- unsigned EBits = EVT.getSizeInBits();
+ unsigned EBits = EVT.getScalarType().getSizeInBits();
// Sign extension. Compute the demanded bits in the result that are not
// present in the input.
@@ -1785,7 +1786,7 @@ void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
if (ISD::isZEXTLoad(Op.getNode())) {
LoadSDNode *LD = cast<LoadSDNode>(Op);
EVT VT = LD->getMemoryVT();
- unsigned MemBits = VT.getSizeInBits();
+ unsigned MemBits = VT.getScalarType().getSizeInBits();
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
}
return;
@@ -2024,7 +2025,8 @@ unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
case ISD::SIGN_EXTEND_INREG:
// Max of the input and what this extends.
- Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
+ Tmp =
+ cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
Tmp = VTBits-Tmp+1;
Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
@@ -2168,10 +2170,10 @@ unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
switch (ExtType) {
default: break;
case ISD::SEXTLOAD: // '17' bits known
- Tmp = LD->getMemoryVT().getSizeInBits();
+ Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
return VTBits-Tmp+1;
case ISD::ZEXTLOAD: // '16' bits known
- Tmp = LD->getMemoryVT().getSizeInBits();
+ Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
return VTBits-Tmp;
}
}
@@ -2655,12 +2657,20 @@ SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
// size of the value, the shift/rotate count is guaranteed to be zero.
if (VT == MVT::i1)
return N1;
+ if (N2C && N2C->isNullValue())
+ return N1;
break;
case ISD::FP_ROUND_INREG: {
EVT EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg round!");
assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
"Cannot FP_ROUND_INREG integer types");
+ assert(EVT.isVector() == VT.isVector() &&
+ "FP_ROUND_INREG type should be vector iff the operand "
+ "type is vector!");
+ assert((!EVT.isVector() ||
+ EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
+ "Vector element counts must match in FP_ROUND_INREG");
assert(EVT.bitsLE(VT) && "Not rounding down!");
if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
break;
@@ -2690,15 +2700,18 @@ SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
assert(VT == N1.getValueType() && "Not an inreg extend!");
assert(VT.isInteger() && EVT.isInteger() &&
"Cannot *_EXTEND_INREG FP types");
- assert(!EVT.isVector() &&
- "SIGN_EXTEND_INREG type should be the vector element type rather "
- "than the vector type!");
- assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
+ assert(EVT.isVector() == VT.isVector() &&
+ "SIGN_EXTEND_INREG type should be vector iff the operand "
+ "type is vector!");
+ assert((!EVT.isVector() ||
+ EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
+ "Vector element counts must match in SIGN_EXTEND_INREG");
+ assert(EVT.bitsLE(VT) && "Not extending!");
if (EVT == VT) return N1; // Not actually extending
if (N1C) {
APInt Val = N1C->getAPIntValue();
- unsigned FromBits = EVT.getSizeInBits();
+ unsigned FromBits = EVT.getScalarType().getSizeInBits();
Val <<= Val.getBitWidth()-FromBits;
Val = Val.ashr(Val.getBitWidth()-FromBits);
return getConstant(Val, VT);
@@ -4106,7 +4119,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
// If the and is only masking out bits that cannot effect the shift,
// eliminate the and.
- unsigned NumBits = VT.getSizeInBits()*2;
+ unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
}
@@ -5713,7 +5726,7 @@ std::string ISD::ArgFlagsTy::getArgFlagsString() {
void SDNode::dump() const { dump(0); }
void SDNode::dump(const SelectionDAG *G) const {
- print(errs(), G);
+ print(dbgs(), G);
}
void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
@@ -5885,12 +5898,12 @@ static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
if (N->getOperand(i).getNode()->hasOneUse())
DumpNodes(N->getOperand(i).getNode(), indent+2, G);
else
- errs() << "\n" << std::string(indent+2, ' ')
- << (void*)N->getOperand(i).getNode() << ": <multiple use>";
+ dbgs() << "\n" << std::string(indent+2, ' ')
+ << (void*)N->getOperand(i).getNode() << ": <multiple use>";
- errs() << "\n";
- errs().indent(indent);
+ dbgs() << "\n";
+ dbgs().indent(indent);
N->dump(G);
}
@@ -5943,6 +5956,13 @@ SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
getShiftAmountOperand(Operands[1])));
break;
+ case ISD::SIGN_EXTEND_INREG:
+ case ISD::FP_ROUND_INREG: {
+ EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
+ Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
+ Operands[0],
+ getValueType(ExtVT)));
+ }
}
}
@@ -6048,7 +6068,7 @@ unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
}
void SelectionDAG::dump() const {
- errs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
+ dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
I != E; ++I) {
@@ -6059,7 +6079,7 @@ void SelectionDAG::dump() const {
if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
- errs() << "\n\n";
+ dbgs() << "\n\n";
}
void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
@@ -6106,12 +6126,12 @@ static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
void SDNode::dumpr() const {
VisitedSDNodeSet once;
- DumpNodesr(errs(), this, 0, 0, once);
+ DumpNodesr(dbgs(), this, 0, 0, once);
}
void SDNode::dumpr(const SelectionDAG *G) const {
VisitedSDNodeSet once;
- DumpNodesr(errs(), this, 0, G, once);
+ DumpNodesr(dbgs(), this, 0, G, once);
}
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
index 74d624f..5e3a3b5 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
@@ -1195,6 +1195,18 @@ SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
return false;
}
+ // Handle: (X != null) | (Y != null) --> (X|Y) != 0
+ // Handle: (X == null) & (Y == null) --> (X|Y) == 0
+ if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
+ Cases[0].CC == Cases[1].CC &&
+ isa<Constant>(Cases[0].CmpRHS) &&
+ cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
+ if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
+ return false;
+ if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
+ return false;
+ }
+
return true;
}
@@ -1733,7 +1745,7 @@ bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
if (Density < 0.4)
return false;
- DEBUG(errs() << "Lowering jump table\n"
+ DEBUG(dbgs() << "Lowering jump table\n"
<< "First entry: " << First << ". Last entry: " << Last << '\n'
<< "Range: " << Range
<< "Size: " << TSize << ". Density: " << Density << "\n\n");
@@ -1837,7 +1849,7 @@ bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
APInt LSize = FrontCase.size();
APInt RSize = TSize-LSize;
- DEBUG(errs() << "Selecting best pivot: \n"
+ DEBUG(dbgs() << "Selecting best pivot: \n"
<< "First: " << First << ", Last: " << Last <<'\n'
<< "LSize: " << LSize << ", RSize: " << RSize << '\n');
for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
@@ -1853,7 +1865,7 @@ bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
(Last - RBegin + 1ULL).roundToDouble();
double Metric = Range.logBase2()*(LDensity+RDensity);
// Should always split in some non-trivial place
- DEBUG(errs() <<"=>Step\n"
+ DEBUG(dbgs() <<"=>Step\n"
<< "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
<< "LDensity: " << LDensity
<< ", RDensity: " << RDensity << '\n'
@@ -1861,7 +1873,7 @@ bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
if (FMetric < Metric) {
Pivot = J;
FMetric = Metric;
- DEBUG(errs() << "Current metric set to: " << FMetric << '\n');
+ DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
}
LSize += J->size();
@@ -1965,7 +1977,7 @@ bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
// Don't bother the code below, if there are too much unique destinations
return false;
}
- DEBUG(errs() << "Total number of unique destinations: "
+ DEBUG(dbgs() << "Total number of unique destinations: "
<< Dests.size() << '\n'
<< "Total number of comparisons: " << numCmps << '\n');
@@ -1974,7 +1986,7 @@ bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
APInt cmpRange = maxValue - minValue;
- DEBUG(errs() << "Compare range: " << cmpRange << '\n'
+ DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
<< "Low bound: " << minValue << '\n'
<< "High bound: " << maxValue << '\n');
@@ -1984,7 +1996,7 @@ bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
!(Dests.size() >= 3 && numCmps >= 6)))
return false;
- DEBUG(errs() << "Emitting bit tests\n");
+ DEBUG(dbgs() << "Emitting bit tests\n");
APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
// Optimize the case where all the case values fit in a
@@ -2034,9 +2046,9 @@ bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
- DEBUG(errs() << "Cases:\n");
+ DEBUG(dbgs() << "Cases:\n");
for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
- DEBUG(errs() << "Mask: " << CasesBits[i].Mask
+ DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
<< ", Bits: " << CasesBits[i].Bits
<< ", BB: " << CasesBits[i].BB << '\n');
@@ -2135,7 +2147,7 @@ void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) {
// create a binary search tree from them.
CaseVector Cases;
size_t numCmps = Clusterify(Cases, SI);
- DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size()
+ DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
<< ". Total compares: " << numCmps << '\n');
numCmps = 0;
@@ -3157,7 +3169,7 @@ void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I,
} else if (!HasChain) {
Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
VTs, &Ops[0], Ops.size());
- } else if (I.getType() != Type::getVoidTy(*DAG.getContext())) {
+ } else if (!I.getType()->isVoidTy()) {
Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
VTs, &Ops[0], Ops.size());
} else {
@@ -3176,7 +3188,7 @@ void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I,
DAG.setRoot(Chain);
}
- if (I.getType() != Type::getVoidTy(*DAG.getContext())) {
+ if (!I.getType()->isVoidTy()) {
if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
EVT VT = TLI.getValueType(PTy);
Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
@@ -4406,12 +4418,6 @@ SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
return 0;
}
- case Intrinsic::dbg_stoppoint:
- case Intrinsic::dbg_region_start:
- case Intrinsic::dbg_region_end:
- case Intrinsic::dbg_func_start:
- // FIXME - Remove this instructions once the dust settles.
- return 0;
case Intrinsic::dbg_declare: {
if (OptLevel != CodeGenOpt::None)
// FIXME: Variable debug info is not supported here.
@@ -5931,7 +5937,7 @@ void SelectionDAGBuilder::visitInlineAsm(CallSite CS) {
// The return value of the call is this value. As such, there is no
// corresponding argument.
- assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) &&
+ assert(!CS.getType()->isVoidTy() &&
"Bad inline asm!");
if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
OpVT = TLI.getValueType(STy->getElementType(ResNo));
@@ -6056,7 +6062,8 @@ void SelectionDAGBuilder::visitInlineAsm(CallSite CS) {
std::vector<SDValue> AsmNodeOperands;
AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
AsmNodeOperands.push_back(
- DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
+ DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
+ TLI.getPointerTy()));
// Loop over all of the inputs, copying the operand values into the
@@ -6100,8 +6107,7 @@ void SelectionDAGBuilder::visitInlineAsm(CallSite CS) {
OpInfo.CallOperandVal));
} else {
// This is the result value of the call.
- assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) &&
- "Bad inline asm!");
+ assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
// Concatenate this output onto the outputs list.
RetValRegs.append(OpInfo.AssignedRegs);
}
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h
index 88a2017..db656e3 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h
@@ -163,7 +163,7 @@ private:
/// The comparison function for sorting the switch case values in the vector.
/// WARNING: Case ranges should be disjoint!
struct CaseCmp {
- bool operator () (const Case& C1, const Case& C2) {
+ bool operator()(const Case &C1, const Case &C2) {
assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
@@ -172,12 +172,12 @@ private:
};
struct CaseBitsCmp {
- bool operator () (const CaseBits& C1, const CaseBits& C2) {
+ bool operator()(const CaseBits &C1, const CaseBits &C2) {
return C1.Bits > C2.Bits;
}
};
- size_t Clusterify(CaseVector& Cases, const SwitchInst &SI);
+ size_t Clusterify(CaseVector &Cases, const SwitchInst &SI);
/// CaseBlock - This structure is used to communicate between
/// SelectionDAGBuilder and SDISel for the code generation of additional basic
@@ -215,7 +215,7 @@ private:
MachineBasicBlock *Default;
};
struct JumpTableHeader {
- JumpTableHeader(APInt F, APInt L, Value* SV, MachineBasicBlock* H,
+ JumpTableHeader(APInt F, APInt L, Value *SV, MachineBasicBlock *H,
bool E = false):
First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
APInt First;
@@ -230,8 +230,8 @@ private:
BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr):
Mask(M), ThisBB(T), TargetBB(Tr) { }
uint64_t Mask;
- MachineBasicBlock* ThisBB;
- MachineBasicBlock* TargetBB;
+ MachineBasicBlock *ThisBB;
+ MachineBasicBlock *TargetBB;
};
typedef SmallVector<BitTestCase, 3> BitTestInfo;
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
index 05669c0..9ac8f83 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
@@ -162,7 +162,7 @@ MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *MBB,
DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
#ifndef NDEBUG
- errs() << "If a target marks an instruction with "
+ dbgs() << "If a target marks an instruction with "
"'usesCustomInserter', it must implement "
"TargetLowering::EmitInstrWithCustomInserter!";
#endif
@@ -325,7 +325,7 @@ bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
else
GFI = 0;
RegInfo = &MF->getRegInfo();
- DEBUG(errs() << "\n\n\n=== " << Fn.getName() << "\n");
+ DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
@@ -438,6 +438,95 @@ void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
SDB->clear();
}
+namespace {
+/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
+/// nodes from the worklist.
+class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
+ SmallVector<SDNode*, 128> &Worklist;
+public:
+ SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl) : Worklist(wl) {}
+
+ virtual void NodeDeleted(SDNode *N, SDNode *E) {
+ Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), N),
+ Worklist.end());
+ }
+
+ virtual void NodeUpdated(SDNode *N) {
+ // Ignore updates.
+ }
+};
+}
+
+/// ShrinkDemandedOps - A late transformation pass that shrink expressions
+/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
+/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
+void SelectionDAGISel::ShrinkDemandedOps() {
+ SmallVector<SDNode*, 128> Worklist;
+
+ // Add all the dag nodes to the worklist.
+ Worklist.reserve(CurDAG->allnodes_size());
+ for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
+ E = CurDAG->allnodes_end(); I != E; ++I)
+ Worklist.push_back(I);
+
+ APInt Mask;
+ APInt KnownZero;
+ APInt KnownOne;
+
+ TargetLowering::TargetLoweringOpt TLO(*CurDAG, true);
+ while (!Worklist.empty()) {
+ SDNode *N = Worklist.pop_back_val();
+
+ if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
+ CurDAG->DeleteNode(N);
+ continue;
+ }
+
+ // Run ShrinkDemandedOp on scalar binary operations.
+ if (N->getNumValues() == 1 &&
+ N->getValueType(0).isSimple() && N->getValueType(0).isInteger()) {
+ unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
+ APInt Demanded = APInt::getAllOnesValue(BitWidth);
+ APInt KnownZero, KnownOne;
+ if (TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
+ KnownZero, KnownOne, TLO)) {
+ // Revisit the node.
+ Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), N),
+ Worklist.end());
+ Worklist.push_back(N);
+
+ // Replace the old value with the new one.
+ DEBUG(errs() << "\nReplacing ";
+ TLO.Old.getNode()->dump(CurDAG);
+ errs() << "\nWith: ";
+ TLO.New.getNode()->dump(CurDAG);
+ errs() << '\n');
+
+ Worklist.push_back(TLO.New.getNode());
+
+ SDOPsWorkListRemover DeadNodes(Worklist);
+ CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
+
+ if (TLO.Old.getNode()->use_empty()) {
+ for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
+ i != e; ++i) {
+ SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
+ if (OpNode->hasOneUse()) {
+ Worklist.erase(std::remove(Worklist.begin(), Worklist.end(),
+ OpNode), Worklist.end());
+ Worklist.push_back(OpNode);
+ }
+ }
+
+ Worklist.erase(std::remove(Worklist.begin(), Worklist.end(),
+ TLO.Old.getNode()), Worklist.end());
+ CurDAG->DeleteNode(TLO.Old.getNode());
+ }
+ }
+ }
+ }
+}
+
void SelectionDAGISel::ComputeLiveOutVRegInfo() {
SmallPtrSet<SDNode*, 128> VisitedNodes;
SmallVector<SDNode*, 128> Worklist;
@@ -448,9 +537,8 @@ void SelectionDAGISel::ComputeLiveOutVRegInfo() {
APInt KnownZero;
APInt KnownOne;
- while (!Worklist.empty()) {
- SDNode *N = Worklist.back();
- Worklist.pop_back();
+ do {
+ SDNode *N = Worklist.pop_back_val();
// If we've already seen this node, ignore it.
if (!VisitedNodes.insert(N))
@@ -490,7 +578,7 @@ void SelectionDAGISel::ComputeLiveOutVRegInfo() {
LOI.KnownOne = KnownOne;
LOI.KnownZero = KnownZero;
}
- }
+ } while (!Worklist.empty());
}
void SelectionDAGISel::CodeGenAndEmitDAG() {
@@ -504,7 +592,7 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
BlockName = MF->getFunction()->getNameStr() + ":" +
BB->getBasicBlock()->getNameStr();
- DEBUG(errs() << "Initial selection DAG:\n");
+ DEBUG(dbgs() << "Initial selection DAG:\n");
DEBUG(CurDAG->dump());
if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
@@ -517,7 +605,7 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
CurDAG->Combine(Unrestricted, *AA, OptLevel);
}
- DEBUG(errs() << "Optimized lowered selection DAG:\n");
+ DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
DEBUG(CurDAG->dump());
// Second step, hack on the DAG until it only uses operations and types that
@@ -533,7 +621,7 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
Changed = CurDAG->LegalizeTypes();
}
- DEBUG(errs() << "Type-legalized selection DAG:\n");
+ DEBUG(dbgs() << "Type-legalized selection DAG:\n");
DEBUG(CurDAG->dump());
if (Changed) {
@@ -548,7 +636,7 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
}
- DEBUG(errs() << "Optimized type-legalized selection DAG:\n");
+ DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
DEBUG(CurDAG->dump());
}
@@ -578,7 +666,7 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
}
- DEBUG(errs() << "Optimized vector-legalized selection DAG:\n");
+ DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
DEBUG(CurDAG->dump());
}
@@ -591,7 +679,7 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
CurDAG->Legalize(OptLevel);
}
- DEBUG(errs() << "Legalized selection DAG:\n");
+ DEBUG(dbgs() << "Legalized selection DAG:\n");
DEBUG(CurDAG->dump());
if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
@@ -604,13 +692,15 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
}
- DEBUG(errs() << "Optimized legalized selection DAG:\n");
+ DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
DEBUG(CurDAG->dump());
if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
- if (OptLevel != CodeGenOpt::None)
+ if (OptLevel != CodeGenOpt::None) {
+ ShrinkDemandedOps();
ComputeLiveOutVRegInfo();
+ }
// Third, instruction select all of the operations to machine code, adding the
// code to the MachineBasicBlock.
@@ -621,7 +711,7 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
InstructionSelect();
}
- DEBUG(errs() << "Selected selection DAG:\n");
+ DEBUG(dbgs() << "Selected selection DAG:\n");
DEBUG(CurDAG->dump());
if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
@@ -654,7 +744,7 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
delete Scheduler;
}
- DEBUG(errs() << "Selected machine code:\n");
+ DEBUG(dbgs() << "Selected machine code:\n");
DEBUG(BB->dump());
}
@@ -699,7 +789,7 @@ void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
I != E; ++I, ++j)
if (Fn.paramHasAttr(j, Attribute::ByVal)) {
if (EnableFastISelVerbose || EnableFastISelAbort)
- errs() << "FastISel skips entry block due to byval argument\n";
+ dbgs() << "FastISel skips entry block due to byval argument\n";
SuppressFastISel = true;
break;
}
@@ -729,10 +819,10 @@ void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
// information is provided by an intrinsic (eh.selector) that can be moved
// to unexpected places by the optimizers: if the unwind edge is critical,
// then breaking it can result in the intrinsics being in the successor of
- // the landing pad, not the landing pad itself. This results in exceptions
- // not being caught because no typeids are associated with the invoke.
- // This may not be the only way things can go wrong, but it is the only way
- // we try to work around for the moment.
+ // the landing pad, not the landing pad itself. This results
+ // in exceptions not being caught because no typeids are associated with
+ // the invoke. This may not be the only way things can go wrong, but it
+ // is the only way we try to work around for the moment.
BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
if (Br && Br->isUnconditional()) { // Critical edge?
@@ -765,7 +855,7 @@ void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
ResetDebugLoc(SDB, FastIS);
if (EnableFastISelVerbose || EnableFastISelAbort) {
- errs() << "FastISel miss: ";
+ dbgs() << "FastISel miss: ";
BI->dump();
}
assert(!EnableFastISelAbort &&
@@ -775,7 +865,7 @@ void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
SetDebugLoc(MDDbgKind, BI, SDB, FastIS, &MF);
- // First try normal tablegen-generated "fast" selection.
+ // Try to select the instruction with FastISel.
if (FastIS->SelectInstruction(BI)) {
ResetDebugLoc(SDB, FastIS);
continue;
@@ -788,11 +878,11 @@ void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
// Then handle certain instructions as single-LLVM-Instruction blocks.
if (isa<CallInst>(BI)) {
if (EnableFastISelVerbose || EnableFastISelAbort) {
- errs() << "FastISel missed call: ";
+ dbgs() << "FastISel missed call: ";
BI->dump();
}
- if (BI->getType() != Type::getVoidTy(*CurDAG->getContext())) {
+ if (!BI->getType()->isVoidTy()) {
unsigned &R = FuncInfo->ValueMap[BI];
if (!R)
R = FuncInfo->CreateRegForValue(BI);
@@ -817,7 +907,7 @@ void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
// For now, be a little lenient about non-branch terminators.
if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
if (EnableFastISelVerbose || EnableFastISelAbort) {
- errs() << "FastISel miss: ";
+ dbgs() << "FastISel miss: ";
BI->dump();
}
if (EnableFastISelAbort)
@@ -846,13 +936,13 @@ void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
void
SelectionDAGISel::FinishBasicBlock() {
- DEBUG(errs() << "Target-post-processed machine code:\n");
+ DEBUG(dbgs() << "Target-post-processed machine code:\n");
DEBUG(BB->dump());
- DEBUG(errs() << "Total amount of phi nodes to update: "
+ DEBUG(dbgs() << "Total amount of phi nodes to update: "
<< SDB->PHINodesToUpdate.size() << "\n");
DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
- errs() << "Node " << i << " : ("
+ dbgs() << "Node " << i << " : ("
<< SDB->PHINodesToUpdate[i].first
<< ", " << SDB->PHINodesToUpdate[i].second << ")\n");
@@ -915,11 +1005,11 @@ SelectionDAGISel::FinishBasicBlock() {
// This is "default" BB. We have two jumps to it. From "header" BB and
// from last "case" BB.
if (PHIBB == SDB->BitTestCases[i].Default) {
- PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second,
- false));
+ PHI->addOperand(MachineOperand::
+ CreateReg(SDB->PHINodesToUpdate[pi].second, false));
PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
- PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second,
- false));
+ PHI->addOperand(MachineOperand::
+ CreateReg(SDB->PHINodesToUpdate[pi].second, false));
PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
back().ThisBB));
}
@@ -927,10 +1017,9 @@ SelectionDAGISel::FinishBasicBlock() {
for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
j != ej; ++j) {
MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
- if (cBB->succ_end() !=
- std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
- PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second,
- false));
+ if (cBB->isSuccessor(PHIBB)) {
+ PHI->addOperand(MachineOperand::
+ CreateReg(SDB->PHINodesToUpdate[pi].second, false));
PHI->addOperand(MachineOperand::CreateMBB(cBB));
}
}
@@ -977,7 +1066,7 @@ SelectionDAGISel::FinishBasicBlock() {
(MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
}
// JT BB. Just iterate over successors here
- if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
+ if (BB->isSuccessor(PHIBB)) {
PHI->addOperand
(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
PHI->addOperand(MachineOperand::CreateMBB(BB));
@@ -1023,17 +1112,23 @@ SelectionDAGISel::FinishBasicBlock() {
SDB->EdgeMapping.find(BB);
if (EI != SDB->EdgeMapping.end())
ThisBB = EI->second;
- for (MachineBasicBlock::iterator Phi = BB->begin();
- Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
- // This value for this PHI node is recorded in PHINodesToUpdate, get it.
- for (unsigned pn = 0; ; ++pn) {
- assert(pn != SDB->PHINodesToUpdate.size() &&
- "Didn't find PHI entry!");
- if (SDB->PHINodesToUpdate[pn].first == Phi) {
- Phi->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pn].
- second, false));
- Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
- break;
+
+ // BB may have been removed from the CFG if a branch was constant folded.
+ if (ThisBB->isSuccessor(BB)) {
+ for (MachineBasicBlock::iterator Phi = BB->begin();
+ Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI;
+ ++Phi) {
+ // This value for this PHI node is recorded in PHINodesToUpdate.
+ for (unsigned pn = 0; ; ++pn) {
+ assert(pn != SDB->PHINodesToUpdate.size() &&
+ "Didn't find PHI entry!");
+ if (SDB->PHINodesToUpdate[pn].first == Phi) {
+ Phi->addOperand(MachineOperand::
+ CreateReg(SDB->PHINodesToUpdate[pn].second,
+ false));
+ Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
+ break;
+ }
}
}
}
@@ -1302,45 +1397,47 @@ bool SelectionDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
return !isNonImmUse(Root, N, U);
}
-SDNode *SelectionDAGISel::Select_INLINEASM(SDValue N) {
- std::vector<SDValue> Ops(N.getNode()->op_begin(), N.getNode()->op_end());
+SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
+ std::vector<SDValue> Ops(N->op_begin(), N->op_end());
SelectInlineAsmMemoryOperands(Ops);
std::vector<EVT> VTs;
VTs.push_back(MVT::Other);
VTs.push_back(MVT::Flag);
- SDValue New = CurDAG->getNode(ISD::INLINEASM, N.getDebugLoc(),
+ SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
VTs, &Ops[0], Ops.size());
return New.getNode();
}
-SDNode *SelectionDAGISel::Select_UNDEF(const SDValue &N) {
- return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::IMPLICIT_DEF,
- N.getValueType());
+SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
+ return CurDAG->SelectNodeTo(N, TargetInstrInfo::IMPLICIT_DEF,
+ N->getValueType(0));
}
-SDNode *SelectionDAGISel::Select_EH_LABEL(const SDValue &N) {
- SDValue Chain = N.getOperand(0);
+SDNode *SelectionDAGISel::Select_EH_LABEL(SDNode *N) {
+ SDValue Chain = N->getOperand(0);
unsigned C = cast<LabelSDNode>(N)->getLabelID();
SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);
- return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::EH_LABEL,
+ return CurDAG->SelectNodeTo(N, TargetInstrInfo::EH_LABEL,
MVT::Other, Tmp, Chain);
}
-void SelectionDAGISel::CannotYetSelect(SDValue N) {
+void SelectionDAGISel::CannotYetSelect(SDNode *N) {
std::string msg;
raw_string_ostream Msg(msg);
Msg << "Cannot yet select: ";
- N.getNode()->print(Msg, CurDAG);
+ N->print(Msg, CurDAG);
llvm_report_error(Msg.str());
}
-void SelectionDAGISel::CannotYetSelectIntrinsic(SDValue N) {
- errs() << "Cannot yet select: ";
+void SelectionDAGISel::CannotYetSelectIntrinsic(SDNode *N) {
+ dbgs() << "Cannot yet select: ";
unsigned iid =
- cast<ConstantSDNode>(N.getOperand(N.getOperand(0).getValueType() == MVT::Other))->getZExtValue();
+ cast<ConstantSDNode>(N->getOperand(N->getOperand(0).getValueType() ==
+ MVT::Other))->getZExtValue();
if (iid < Intrinsic::num_intrinsics)
- llvm_report_error("Cannot yet select: intrinsic %" + Intrinsic::getName((Intrinsic::ID)iid));
+ llvm_report_error("Cannot yet select: intrinsic %" +
+ Intrinsic::getName((Intrinsic::ID)iid));
else if (const TargetIntrinsicInfo *tii = TM.getIntrinsicInfo())
llvm_report_error(Twine("Cannot yet select: target intrinsic %") +
tii->getName(iid));
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGPrinter.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGPrinter.cpp
index 83fa5a8..3786bd1 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGPrinter.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGPrinter.cpp
@@ -225,7 +225,7 @@ bool SelectionDAG::setSubgraphColorHelper(SDNode *N, const char *Color, DenseSet
if (level >= 20) {
if (!printed) {
printed = true;
- DEBUG(errs() << "setSubgraphColor hit max level\n");
+ DEBUG(dbgs() << "setSubgraphColor hit max level\n");
}
return true;
}
diff --git a/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/lib/CodeGen/SelectionDAG/TargetLowering.cpp
index d9a5a13..81c51c4 100644
--- a/lib/CodeGen/SelectionDAG/TargetLowering.cpp
+++ b/lib/CodeGen/SelectionDAG/TargetLowering.cpp
@@ -990,7 +990,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
return true;
// If the operation can be done in a smaller type, do so.
- if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
+ if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
return true;
// Output known-1 bits are only known if set in both the LHS & RHS.
@@ -1024,7 +1024,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
if (TLO.ShrinkDemandedConstant(Op, NewMask))
return true;
// If the operation can be done in a smaller type, do so.
- if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
+ if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
return true;
// Output known-0 bits are only known if clear in both the LHS & RHS.
@@ -1049,7 +1049,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
if ((KnownZero2 & NewMask) == NewMask)
return TLO.CombineTo(Op, Op.getOperand(1));
// If the operation can be done in a smaller type, do so.
- if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
+ if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
return true;
// If all of the unknown bits are known to be zero on one side or the other
@@ -1272,19 +1272,21 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
// Sign extension. Compute the demanded bits in the result that are not
// present in the input.
- APInt NewBits = APInt::getHighBitsSet(BitWidth,
- BitWidth - EVT.getSizeInBits()) &
- NewMask;
+ APInt NewBits =
+ APInt::getHighBitsSet(BitWidth,
+ BitWidth - EVT.getScalarType().getSizeInBits()) &
+ NewMask;
// If none of the extended bits are demanded, eliminate the sextinreg.
if (NewBits == 0)
return TLO.CombineTo(Op, Op.getOperand(0));
- APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
+ APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits());
InSignBit.zext(BitWidth);
- APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
- EVT.getSizeInBits()) &
- NewMask;
+ APInt InputDemandedBits =
+ APInt::getLowBitsSet(BitWidth,
+ EVT.getScalarType().getSizeInBits()) &
+ NewMask;
// Since the sign extended bits are demanded, we know that the sign
// bit is demanded.
@@ -1313,7 +1315,8 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
break;
}
case ISD::ZERO_EXTEND: {
- unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
+ unsigned OperandBitWidth =
+ Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
APInt InMask = NewMask;
InMask.trunc(OperandBitWidth);
@@ -1336,7 +1339,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
}
case ISD::SIGN_EXTEND: {
EVT InVT = Op.getOperand(0).getValueType();
- unsigned InBits = InVT.getSizeInBits();
+ unsigned InBits = InVT.getScalarType().getSizeInBits();
APInt InMask = APInt::getLowBitsSet(BitWidth, InBits);
APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
APInt NewBits = ~InMask & NewMask;
@@ -1376,7 +1379,8 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
break;
}
case ISD::ANY_EXTEND: {
- unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
+ unsigned OperandBitWidth =
+ Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
APInt InMask = NewMask;
InMask.trunc(OperandBitWidth);
if (SimplifyDemandedBits(Op.getOperand(0), InMask,
@@ -1480,7 +1484,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
KnownOne2, TLO, Depth+1))
return true;
// See if the operation should be performed at a smaller bit width.
- if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
+ if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
return true;
}
// FALL THROUGH
@@ -1597,7 +1601,8 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
N0.getOperand(0).getOpcode() == ISD::CTLZ &&
N0.getOperand(1).getOpcode() == ISD::Constant) {
- unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
+ const APInt &ShAmt
+ = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
if ((C1 == 0) == (Cond == ISD::SETEQ)) {
@@ -1625,27 +1630,26 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
N0.getOperand(0).getNode()->hasOneUse() &&
isa<ConstantSDNode>(N0.getOperand(1))) {
LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
- uint64_t bestMask = 0;
+ APInt bestMask;
unsigned bestWidth = 0, bestOffset = 0;
- if (!Lod->isVolatile() && Lod->isUnindexed() &&
- // FIXME: This uses getZExtValue() below so it only works on i64 and
- // below.
- N0.getValueType().getSizeInBits() <= 64) {
+ if (!Lod->isVolatile() && Lod->isUnindexed()) {
unsigned origWidth = N0.getValueType().getSizeInBits();
+ unsigned maskWidth = origWidth;
// We can narrow (e.g.) 16-bit extending loads on 32-bit target to
// 8 bits, but have to be careful...
if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
origWidth = Lod->getMemoryVT().getSizeInBits();
- uint64_t Mask =cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
+ const APInt &Mask =
+ cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
for (unsigned width = origWidth / 2; width>=8; width /= 2) {
- uint64_t newMask = (1ULL << width) - 1;
+ APInt newMask = APInt::getLowBitsSet(maskWidth, width);
for (unsigned offset=0; offset<origWidth/width; offset++) {
if ((newMask & Mask) == Mask) {
if (!TD->isLittleEndian())
bestOffset = (origWidth/width - offset - 1) * (width/8);
else
bestOffset = (uint64_t)offset * (width/8);
- bestMask = Mask >> (offset * (width/8) * 8);
+ bestMask = Mask.lshr(offset * (width/8) * 8);
bestWidth = width;
break;
}
@@ -1668,7 +1672,8 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
false, NewAlign);
return DAG.getSetCC(dl, VT,
DAG.getNode(ISD::AND, dl, newVT, NewLoad,
- DAG.getConstant(bestMask, newVT)),
+ DAG.getConstant(bestMask.trunc(bestWidth),
+ newVT)),
DAG.getConstant(0LL, newVT), Cond);
}
}
@@ -1760,7 +1765,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
// SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
if (N0.getOpcode() == ISD::SETCC) {
- bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
+ bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
if (TrueWhenTrue)
return N0;
@@ -1876,24 +1881,27 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
// Fold bit comparisons when we can.
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
+ (VT == N0.getValueType() ||
+ (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
+ N0.getOpcode() == ISD::AND)
if (ConstantSDNode *AndRHS =
dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
EVT ShiftTy = DCI.isBeforeLegalize() ?
getPointerTy() : getShiftAmountTy();
if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
// Perform the xform if the AND RHS is a single bit.
- if (isPowerOf2_64(AndRHS->getZExtValue())) {
- return DAG.getNode(ISD::SRL, dl, VT, N0,
- DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
- ShiftTy));
+ if (AndRHS->getAPIntValue().isPowerOf2()) {
+ return DAG.getNode(ISD::TRUNCATE, dl, VT,
+ DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
+ DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
}
- } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
+ } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
// (X & 8) == 8 --> (X & 8) >> 3
// Perform the xform if C1 is a single bit.
if (C1.isPowerOf2()) {
- return DAG.getNode(ISD::SRL, dl, VT, N0,
- DAG.getConstant(C1.logBase2(), ShiftTy));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT,
+ DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
+ DAG.getConstant(C1.logBase2(), ShiftTy)));
}
}
}
diff --git a/lib/CodeGen/ShrinkWrapping.cpp b/lib/CodeGen/ShrinkWrapping.cpp
index 8070570..aeaa38b 100644
--- a/lib/CodeGen/ShrinkWrapping.cpp
+++ b/lib/CodeGen/ShrinkWrapping.cpp
@@ -185,7 +185,7 @@ void PEI::placeCSRSpillsAndRestores(MachineFunction &Fn) {
initShrinkWrappingInfo();
DEBUG(if (ShrinkWrapThisFunction) {
- errs() << "Place CSR spills/restores for "
+ dbgs() << "Place CSR spills/restores for "
<< MF->getFunction()->getName() << "\n";
});
@@ -299,7 +299,7 @@ void PEI::calculateAnticAvail(MachineFunction &Fn) {
DEBUG({
if (ShrinkWrapDebugging >= Details) {
- errs()
+ dbgs()
<< "-----------------------------------------------------------\n"
<< " Antic/Avail Sets:\n"
<< "-----------------------------------------------------------\n"
@@ -314,7 +314,7 @@ void PEI::calculateAnticAvail(MachineFunction &Fn) {
dumpSets(MBB);
}
- errs()
+ dbgs()
<< "-----------------------------------------------------------\n";
}
});
@@ -363,7 +363,7 @@ bool PEI::calculateSets(MachineFunction &Fn) {
// If no CSRs used, we are done.
if (CSI.empty()) {
DEBUG(if (ShrinkWrapThisFunction)
- errs() << "DISABLED: " << Fn.getFunction()->getName()
+ dbgs() << "DISABLED: " << Fn.getFunction()->getName()
<< ": uses no callee-saved registers\n");
return false;
}
@@ -383,7 +383,7 @@ bool PEI::calculateSets(MachineFunction &Fn) {
// implementation to functions with <= 500 MBBs.
if (Fn.size() > 500) {
DEBUG(if (ShrinkWrapThisFunction)
- errs() << "DISABLED: " << Fn.getFunction()->getName()
+ dbgs() << "DISABLED: " << Fn.getFunction()->getName()
<< ": too large (" << Fn.size() << " MBBs)\n");
ShrinkWrapThisFunction = false;
}
@@ -465,7 +465,7 @@ bool PEI::calculateSets(MachineFunction &Fn) {
}
if (allCSRUsesInEntryBlock) {
- DEBUG(errs() << "DISABLED: " << Fn.getFunction()->getName()
+ DEBUG(dbgs() << "DISABLED: " << Fn.getFunction()->getName()
<< ": all CSRs used in EntryBlock\n");
ShrinkWrapThisFunction = false;
} else {
@@ -477,7 +477,7 @@ bool PEI::calculateSets(MachineFunction &Fn) {
allCSRsUsedInEntryFanout = false;
}
if (allCSRsUsedInEntryFanout) {
- DEBUG(errs() << "DISABLED: " << Fn.getFunction()->getName()
+ DEBUG(dbgs() << "DISABLED: " << Fn.getFunction()->getName()
<< ": all CSRs used in imm successors of EntryBlock\n");
ShrinkWrapThisFunction = false;
}
@@ -504,7 +504,7 @@ bool PEI::calculateSets(MachineFunction &Fn) {
if (dominatesExitNodes) {
CSRUsedInChokePoints |= CSRUsed[MBB];
if (CSRUsedInChokePoints == UsedCSRegs) {
- DEBUG(errs() << "DISABLED: " << Fn.getFunction()->getName()
+ DEBUG(dbgs() << "DISABLED: " << Fn.getFunction()->getName()
<< ": all CSRs used in choke point(s) at "
<< getBasicBlockName(MBB) << "\n");
ShrinkWrapThisFunction = false;
@@ -520,16 +520,16 @@ bool PEI::calculateSets(MachineFunction &Fn) {
return false;
DEBUG({
- errs() << "ENABLED: " << Fn.getFunction()->getName();
+ dbgs() << "ENABLED: " << Fn.getFunction()->getName();
if (HasFastExitPath)
- errs() << " (fast exit path)";
- errs() << "\n";
+ dbgs() << " (fast exit path)";
+ dbgs() << "\n";
if (ShrinkWrapDebugging >= BasicInfo) {
- errs() << "------------------------------"
+ dbgs() << "------------------------------"
<< "-----------------------------\n";
- errs() << "UsedCSRegs = " << stringifyCSRegSet(UsedCSRegs) << "\n";
+ dbgs() << "UsedCSRegs = " << stringifyCSRegSet(UsedCSRegs) << "\n";
if (ShrinkWrapDebugging >= Details) {
- errs() << "------------------------------"
+ dbgs() << "------------------------------"
<< "-----------------------------\n";
dumpAllUsed();
}
@@ -602,7 +602,7 @@ bool PEI::addUsesForMEMERegion(MachineBasicBlock* MBB,
addedUses = true;
blks.push_back(SUCC);
DEBUG(if (ShrinkWrapDebugging >= Iterations)
- errs() << getBasicBlockName(MBB)
+ dbgs() << getBasicBlockName(MBB)
<< "(" << stringifyCSRegSet(prop) << ")->"
<< "successor " << getBasicBlockName(SUCC) << "\n");
}
@@ -618,7 +618,7 @@ bool PEI::addUsesForMEMERegion(MachineBasicBlock* MBB,
addedUses = true;
blks.push_back(PRED);
DEBUG(if (ShrinkWrapDebugging >= Iterations)
- errs() << getBasicBlockName(MBB)
+ dbgs() << getBasicBlockName(MBB)
<< "(" << stringifyCSRegSet(prop) << ")->"
<< "predecessor " << getBasicBlockName(PRED) << "\n");
}
@@ -656,7 +656,7 @@ bool PEI::addUsesForTopLevelLoops(SmallVector<MachineBasicBlock*, 4>& blks) {
CSRUsed[EXB] |= loopSpills;
addedUses = true;
DEBUG(if (ShrinkWrapDebugging >= Iterations)
- errs() << "LOOP " << getBasicBlockName(MBB)
+ dbgs() << "LOOP " << getBasicBlockName(MBB)
<< "(" << stringifyCSRegSet(loopSpills) << ")->"
<< getBasicBlockName(EXB) << "\n");
if (EXB->succ_size() > 1 || EXB->pred_size() > 1)
@@ -723,7 +723,7 @@ bool PEI::calcSpillPlacements(MachineBasicBlock* MBB,
blks.push_back(MBB);
DEBUG(if (! CSRSave[MBB].empty() && ShrinkWrapDebugging >= Iterations)
- errs() << "SAVE[" << getBasicBlockName(MBB) << "] = "
+ dbgs() << "SAVE[" << getBasicBlockName(MBB) << "] = "
<< stringifyCSRegSet(CSRSave[MBB]) << "\n");
return placedSpills;
@@ -784,7 +784,7 @@ bool PEI::calcRestorePlacements(MachineBasicBlock* MBB,
blks.push_back(MBB);
DEBUG(if (! CSRRestore[MBB].empty() && ShrinkWrapDebugging >= Iterations)
- errs() << "RESTORE[" << getBasicBlockName(MBB) << "] = "
+ dbgs() << "RESTORE[" << getBasicBlockName(MBB) << "] = "
<< stringifyCSRegSet(CSRRestore[MBB]) << "\n");
return placedRestores;
@@ -808,7 +808,7 @@ void PEI::placeSpillsAndRestores(MachineFunction &Fn) {
++iterations;
DEBUG(if (ShrinkWrapDebugging >= Iterations)
- errs() << "iter " << iterations
+ dbgs() << "iter " << iterations
<< " --------------------------------------------------\n");
// Calculate CSR{Save,Restore} sets using Antic, Avail on the MCFG,
@@ -858,15 +858,15 @@ void PEI::placeSpillsAndRestores(MachineFunction &Fn) {
unsigned numSRReducedThisFunc = notSpilledInEntryBlock.count();
numSRReduced += numSRReducedThisFunc;
DEBUG(if (ShrinkWrapDebugging >= BasicInfo) {
- errs() << "-----------------------------------------------------------\n";
- errs() << "total iterations = " << iterations << " ( "
+ dbgs() << "-----------------------------------------------------------\n";
+ dbgs() << "total iterations = " << iterations << " ( "
<< Fn.getFunction()->getName()
<< " " << numSRReducedThisFunc
<< " " << Fn.size()
<< " )\n";
- errs() << "-----------------------------------------------------------\n";
+ dbgs() << "-----------------------------------------------------------\n";
dumpSRSets();
- errs() << "-----------------------------------------------------------\n";
+ dbgs() << "-----------------------------------------------------------\n";
if (numSRReducedThisFunc)
verifySpillRestorePlacement();
});
@@ -899,7 +899,7 @@ void PEI::findFastExitPath() {
// Check the immediate successors.
if (isReturnBlock(SUCC)) {
if (ShrinkWrapDebugging >= BasicInfo)
- errs() << "Fast exit path: " << getBasicBlockName(EntryBlock)
+ dbgs() << "Fast exit path: " << getBasicBlockName(EntryBlock)
<< "->" << getBasicBlockName(SUCC) << "\n";
break;
}
@@ -917,7 +917,7 @@ void PEI::findFastExitPath() {
}
if (HasFastExitPath) {
if (ShrinkWrapDebugging >= BasicInfo)
- errs() << "Fast exit path: " << getBasicBlockName(EntryBlock)
+ dbgs() << "Fast exit path: " << getBasicBlockName(EntryBlock)
<< "->" << exitPath << "\n";
break;
}
@@ -951,7 +951,7 @@ void PEI::verifySpillRestorePlacement() {
if (spilled.empty())
continue;
- DEBUG(errs() << "SAVE[" << getBasicBlockName(MBB) << "] = "
+ DEBUG(dbgs() << "SAVE[" << getBasicBlockName(MBB) << "] = "
<< stringifyCSRegSet(spilled)
<< " RESTORE[" << getBasicBlockName(MBB) << "] = "
<< stringifyCSRegSet(CSRRestore[MBB]) << "\n");
@@ -983,7 +983,7 @@ void PEI::verifySpillRestorePlacement() {
if (isReturnBlock(SBB) || SBB->succ_size() == 0) {
if (restored != spilled) {
CSRegSet notRestored = (spilled - restored);
- DEBUG(errs() << MF->getFunction()->getName() << ": "
+ DEBUG(dbgs() << MF->getFunction()->getName() << ": "
<< stringifyCSRegSet(notRestored)
<< " spilled at " << getBasicBlockName(MBB)
<< " are never restored on path to return "
@@ -1004,7 +1004,7 @@ void PEI::verifySpillRestorePlacement() {
if (restored.empty())
continue;
- DEBUG(errs() << "SAVE[" << getBasicBlockName(MBB) << "] = "
+ DEBUG(dbgs() << "SAVE[" << getBasicBlockName(MBB) << "] = "
<< stringifyCSRegSet(CSRSave[MBB])
<< " RESTORE[" << getBasicBlockName(MBB) << "] = "
<< stringifyCSRegSet(restored) << "\n");
@@ -1031,7 +1031,7 @@ void PEI::verifySpillRestorePlacement() {
}
if (spilled != restored) {
CSRegSet notSpilled = (restored - spilled);
- DEBUG(errs() << MF->getFunction()->getName() << ": "
+ DEBUG(dbgs() << MF->getFunction()->getName() << ": "
<< stringifyCSRegSet(notSpilled)
<< " restored at " << getBasicBlockName(MBB)
<< " are never spilled\n");
@@ -1078,13 +1078,13 @@ std::string PEI::stringifyCSRegSet(const CSRegSet& s) {
}
void PEI::dumpSet(const CSRegSet& s) {
- DEBUG(errs() << stringifyCSRegSet(s) << "\n");
+ DEBUG(dbgs() << stringifyCSRegSet(s) << "\n");
}
void PEI::dumpUsed(MachineBasicBlock* MBB) {
DEBUG({
if (MBB)
- errs() << "CSRUsed[" << getBasicBlockName(MBB) << "] = "
+ dbgs() << "CSRUsed[" << getBasicBlockName(MBB) << "] = "
<< stringifyCSRegSet(CSRUsed[MBB]) << "\n";
});
}
@@ -1100,7 +1100,7 @@ void PEI::dumpAllUsed() {
void PEI::dumpSets(MachineBasicBlock* MBB) {
DEBUG({
if (MBB)
- errs() << getBasicBlockName(MBB) << " | "
+ dbgs() << getBasicBlockName(MBB) << " | "
<< stringifyCSRegSet(CSRUsed[MBB]) << " | "
<< stringifyCSRegSet(AnticIn[MBB]) << " | "
<< stringifyCSRegSet(AnticOut[MBB]) << " | "
@@ -1112,7 +1112,7 @@ void PEI::dumpSets(MachineBasicBlock* MBB) {
void PEI::dumpSets1(MachineBasicBlock* MBB) {
DEBUG({
if (MBB)
- errs() << getBasicBlockName(MBB) << " | "
+ dbgs() << getBasicBlockName(MBB) << " | "
<< stringifyCSRegSet(CSRUsed[MBB]) << " | "
<< stringifyCSRegSet(AnticIn[MBB]) << " | "
<< stringifyCSRegSet(AnticOut[MBB]) << " | "
@@ -1136,14 +1136,14 @@ void PEI::dumpSRSets() {
for (MachineFunction::iterator MBB = MF->begin(), E = MF->end();
MBB != E; ++MBB) {
if (!CSRSave[MBB].empty()) {
- errs() << "SAVE[" << getBasicBlockName(MBB) << "] = "
+ dbgs() << "SAVE[" << getBasicBlockName(MBB) << "] = "
<< stringifyCSRegSet(CSRSave[MBB]);
if (CSRRestore[MBB].empty())
- errs() << '\n';
+ dbgs() << '\n';
}
if (!CSRRestore[MBB].empty() && !CSRSave[MBB].empty())
- errs() << " "
+ dbgs() << " "
<< "RESTORE[" << getBasicBlockName(MBB) << "] = "
<< stringifyCSRegSet(CSRRestore[MBB]) << "\n";
}
diff --git a/lib/CodeGen/SimpleRegisterCoalescing.cpp b/lib/CodeGen/SimpleRegisterCoalescing.cpp
index 6314331..27d429b 100644
--- a/lib/CodeGen/SimpleRegisterCoalescing.cpp
+++ b/lib/CodeGen/SimpleRegisterCoalescing.cpp
@@ -183,16 +183,16 @@ bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
DEBUG({
- errs() << "Interfere with sub-register ";
- li_->getInterval(*SR).print(errs(), tri_);
+ dbgs() << "Interfere with sub-register ";
+ li_->getInterval(*SR).print(dbgs(), tri_);
});
return false;
}
}
DEBUG({
- errs() << "\nExtending: ";
- IntB.print(errs(), tri_);
+ dbgs() << "\nExtending: ";
+ IntB.print(dbgs(), tri_);
});
SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
@@ -224,9 +224,9 @@ bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
IntB.MergeValueNumberInto(BValNo, ValLR->valno);
}
DEBUG({
- errs() << " result = ";
- IntB.print(errs(), tri_);
- errs() << "\n";
+ dbgs() << " result = ";
+ IntB.print(dbgs(), tri_);
+ dbgs() << "\n";
});
// If the source instruction was killing the source register before the
@@ -467,8 +467,8 @@ bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
// We need to insert a new liverange: [ALR.start, LastUse). It may be we can
// simply extend BLR if CopyMI doesn't end the range.
DEBUG({
- errs() << "\nExtending: ";
- IntB.print(errs(), tri_);
+ dbgs() << "\nExtending: ";
+ IntB.print(dbgs(), tri_);
});
// Remove val#'s defined by copies that will be coalesced away.
@@ -518,19 +518,19 @@ bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
ValNo->setHasPHIKill(BHasPHIKill);
DEBUG({
- errs() << " result = ";
- IntB.print(errs(), tri_);
- errs() << '\n';
- errs() << "\nShortening: ";
- IntA.print(errs(), tri_);
+ dbgs() << " result = ";
+ IntB.print(dbgs(), tri_);
+ dbgs() << '\n';
+ dbgs() << "\nShortening: ";
+ IntA.print(dbgs(), tri_);
});
IntA.removeValNo(AValNo);
DEBUG({
- errs() << " result = ";
- IntA.print(errs(), tri_);
- errs() << '\n';
+ dbgs() << " result = ";
+ IntA.print(dbgs(), tri_);
+ dbgs() << '\n';
});
++numCommutes;
@@ -1223,16 +1223,16 @@ SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg,
if (li_->hasInterval(RealDstReg) &&
RHS.overlaps(li_->getInterval(RealDstReg))) {
DEBUG({
- errs() << "Interfere with register ";
- li_->getInterval(RealDstReg).print(errs(), tri_);
+ dbgs() << "Interfere with register ";
+ li_->getInterval(RealDstReg).print(dbgs(), tri_);
});
return false; // Not coalescable
}
for (const unsigned* SR = tri_->getSubRegisters(RealDstReg); *SR; ++SR)
if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
DEBUG({
- errs() << "Interfere with sub-register ";
- li_->getInterval(*SR).print(errs(), tri_);
+ dbgs() << "Interfere with sub-register ";
+ li_->getInterval(*SR).print(dbgs(), tri_);
});
return false; // Not coalescable
}
@@ -1254,16 +1254,16 @@ SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg,
if (li_->hasInterval(RealSrcReg) &&
RHS.overlaps(li_->getInterval(RealSrcReg))) {
DEBUG({
- errs() << "Interfere with register ";
- li_->getInterval(RealSrcReg).print(errs(), tri_);
+ dbgs() << "Interfere with register ";
+ li_->getInterval(RealSrcReg).print(dbgs(), tri_);
});
return false; // Not coalescable
}
for (const unsigned* SR = tri_->getSubRegisters(RealSrcReg); *SR; ++SR)
if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
DEBUG({
- errs() << "Interfere with sub-register ";
- li_->getInterval(*SR).print(errs(), tri_);
+ dbgs() << "Interfere with sub-register ";
+ li_->getInterval(*SR).print(dbgs(), tri_);
});
return false; // Not coalescable
}
@@ -1293,7 +1293,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
return false; // Already done.
- DEBUG(errs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
+ DEBUG(dbgs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
unsigned SrcReg, DstReg, SrcSubIdx = 0, DstSubIdx = 0;
bool isExtSubReg = CopyMI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG;
@@ -1313,7 +1313,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
if (SrcSubIdx && SrcSubIdx != DstSubIdx) {
// r1025 = INSERT_SUBREG r1025, r1024<2>, 2 Then r1024 has already been
// coalesced to a larger register so the subreg indices cancel out.
- DEBUG(errs() << "\tSource of insert_subreg or subreg_to_reg is already "
+ DEBUG(dbgs() << "\tSource of insert_subreg or subreg_to_reg is already "
"coalesced to another register.\n");
return false; // Not coalescable.
}
@@ -1329,7 +1329,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
// If they are already joined we continue.
if (SrcReg == DstReg) {
- DEBUG(errs() << "\tCopy already coalesced.\n");
+ DEBUG(dbgs() << "\tCopy already coalesced.\n");
return false; // Not coalescable.
}
@@ -1338,17 +1338,17 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
// If they are both physical registers, we cannot join them.
if (SrcIsPhys && DstIsPhys) {
- DEBUG(errs() << "\tCan not coalesce physregs.\n");
+ DEBUG(dbgs() << "\tCan not coalesce physregs.\n");
return false; // Not coalescable.
}
// We only join virtual registers with allocatable physical registers.
if (SrcIsPhys && !allocatableRegs_[SrcReg]) {
- DEBUG(errs() << "\tSrc reg is unallocatable physreg.\n");
+ DEBUG(dbgs() << "\tSrc reg is unallocatable physreg.\n");
return false; // Not coalescable.
}
if (DstIsPhys && !allocatableRegs_[DstReg]) {
- DEBUG(errs() << "\tDst reg is unallocatable physreg.\n");
+ DEBUG(dbgs() << "\tDst reg is unallocatable physreg.\n");
return false; // Not coalescable.
}
@@ -1362,7 +1362,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
DstSubRC = DstRC->getSubRegisterRegClass(DstSubIdx);
assert(DstSubRC && "Illegal subregister index");
if (!DstSubRC->contains(SrcSubReg)) {
- DEBUG(errs() << "\tIncompatible destination regclass: "
+ DEBUG(dbgs() << "\tIncompatible destination regclass: "
<< tri_->getName(SrcSubReg) << " not in "
<< DstSubRC->getName() << ".\n");
return false; // Not coalescable.
@@ -1379,7 +1379,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
SrcSubRC = SrcRC->getSubRegisterRegClass(SrcSubIdx);
assert(SrcSubRC && "Illegal subregister index");
if (!SrcSubRC->contains(DstSubReg)) {
- DEBUG(errs() << "\tIncompatible source regclass: "
+ DEBUG(dbgs() << "\tIncompatible source regclass: "
<< tri_->getName(DstSubReg) << " not in "
<< SrcSubRC->getName() << ".\n");
(void)DstSubReg;
@@ -1405,7 +1405,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
// r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
// coalesced to a larger register so the subreg indices cancel out.
if (DstSubIdx != SubIdx) {
- DEBUG(errs() << "\t Sub-register indices mismatch.\n");
+ DEBUG(dbgs() << "\t Sub-register indices mismatch.\n");
return false; // Not coalescable.
}
} else
@@ -1418,7 +1418,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
// EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
// coalesced to a larger register so the subreg indices cancel out.
if (SrcSubIdx != SubIdx) {
- DEBUG(errs() << "\t Sub-register indices mismatch.\n");
+ DEBUG(dbgs() << "\t Sub-register indices mismatch.\n");
return false; // Not coalescable.
}
} else
@@ -1427,7 +1427,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
} else if ((DstIsPhys && isExtSubReg) ||
(SrcIsPhys && (isInsSubReg || isSubRegToReg))) {
if (!isSubRegToReg && CopyMI->getOperand(1).getSubReg()) {
- DEBUG(errs() << "\tSrc of extract_subreg already coalesced with reg"
+ DEBUG(dbgs() << "\tSrc of extract_subreg already coalesced with reg"
<< " of a super-class.\n");
return false; // Not coalescable.
}
@@ -1451,7 +1451,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
// class as the would be resulting register.
SubIdx = 0;
else {
- DEBUG(errs() << "\t Sub-register indices mismatch.\n");
+ DEBUG(dbgs() << "\t Sub-register indices mismatch.\n");
return false; // Not coalescable.
}
}
@@ -1463,7 +1463,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
NewRC = tri_->getMatchingSuperRegClass(SrcRC, DstRC, SubIdx);
}
if (!NewRC) {
- DEBUG(errs() << "\t Conflicting sub-register indices.\n");
+ DEBUG(dbgs() << "\t Conflicting sub-register indices.\n");
return false; // Not coalescable
}
@@ -1535,7 +1535,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
} else if (!SrcIsPhys && !DstIsPhys) {
NewRC = getCommonSubClass(SrcRC, DstRC);
if (!NewRC) {
- DEBUG(errs() << "\tDisjoint regclasses: "
+ DEBUG(dbgs() << "\tDisjoint regclasses: "
<< SrcRC->getName() << ", "
<< DstRC->getName() << ".\n");
return false; // Not coalescable.
@@ -1551,7 +1551,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
(isExtSubReg || DstRC->isASubClass()) &&
!isWinToJoinCrossClass(LargeReg, SmallReg,
allocatableRCRegs_[NewRC].count())) {
- DEBUG(errs() << "\tSrc/Dest are different register classes.\n");
+ DEBUG(dbgs() << "\tSrc/Dest are different register classes.\n");
// Allow the coalescer to try again in case either side gets coalesced to
// a physical register that's compatible with the other side. e.g.
// r1024 = MOV32to32_ r1025
@@ -1573,9 +1573,9 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
"Register mapping is horribly broken!");
DEBUG({
- errs() << "\t\tInspecting "; SrcInt.print(errs(), tri_);
- errs() << " and "; DstInt.print(errs(), tri_);
- errs() << ": ";
+ dbgs() << "\t\tInspecting "; SrcInt.print(dbgs(), tri_);
+ dbgs() << " and "; DstInt.print(dbgs(), tri_);
+ dbgs() << ": ";
});
// Save a copy of the virtual register live interval. We'll manually
@@ -1606,7 +1606,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
if (!isWinToJoinVRWithSrcPhysReg(CopyMI, CopyMBB, DstInt, SrcInt)) {
mri_->setRegAllocationHint(DstInt.reg, 0, SrcReg);
++numAborts;
- DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
+ DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
Again = true; // May be possible to coalesce later.
return false;
}
@@ -1614,7 +1614,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
if (!isWinToJoinVRWithDstPhysReg(CopyMI, CopyMBB, DstInt, SrcInt)) {
mri_->setRegAllocationHint(SrcInt.reg, 0, DstReg);
++numAborts;
- DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
+ DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
Again = true; // May be possible to coalesce later.
return false;
}
@@ -1635,7 +1635,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
mri_->use_end()) / Length) < Ratio)) {
mri_->setRegAllocationHint(JoinVInt.reg, 0, JoinPReg);
++numAborts;
- DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
+ DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
Again = true; // May be possible to coalesce later.
return false;
}
@@ -1654,7 +1654,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
// Only coalesce an empty interval (defined by implicit_def) with
// another interval which has a valno defined by the CopyMI and the CopyMI
// is a kill of the implicit def.
- DEBUG(errs() << "Not profitable!\n");
+ DEBUG(dbgs() << "Not profitable!\n");
return false;
}
@@ -1676,7 +1676,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
}
// Otherwise, we are unable to join the intervals.
- DEBUG(errs() << "Interference!\n");
+ DEBUG(dbgs() << "Interference!\n");
Again = true; // May be possible to coalesce later.
return false;
}
@@ -1779,9 +1779,9 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
}
DEBUG({
- errs() << "\n\t\tJoined. Result = ";
- ResDstInt->print(errs(), tri_);
- errs() << "\n";
+ dbgs() << "\n\t\tJoined. Result = ";
+ ResDstInt->print(dbgs(), tri_);
+ dbgs() << "\n";
});
++numJoins;
@@ -2134,8 +2134,8 @@ SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
for (const unsigned* SR = tri_->getSubRegisters(LHS.reg); *SR; ++SR)
if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
DEBUG({
- errs() << "Interfere with sub-register ";
- li_->getInterval(*SR).print(errs(), tri_);
+ dbgs() << "Interfere with sub-register ";
+ li_->getInterval(*SR).print(dbgs(), tri_);
});
return false;
}
@@ -2151,8 +2151,8 @@ SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
for (const unsigned* SR = tri_->getSubRegisters(RHS.reg); *SR; ++SR)
if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
DEBUG({
- errs() << "Interfere with sub-register ";
- li_->getInterval(*SR).print(errs(), tri_);
+ dbgs() << "Interfere with sub-register ";
+ li_->getInterval(*SR).print(dbgs(), tri_);
});
return false;
}
@@ -2413,7 +2413,7 @@ namespace {
void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
std::vector<CopyRec> &TryAgain) {
- DEBUG(errs() << MBB->getName() << ":\n");
+ DEBUG(dbgs() << MBB->getName() << ":\n");
std::vector<CopyRec> VirtCopies;
std::vector<CopyRec> PhysCopies;
@@ -2478,7 +2478,7 @@ void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
}
void SimpleRegisterCoalescing::joinIntervals() {
- DEBUG(errs() << "********** JOINING INTERVALS ***********\n");
+ DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
std::vector<CopyRec> TryAgainList;
if (loopInfo->empty()) {
@@ -2610,12 +2610,11 @@ SimpleRegisterCoalescing::lastRegisterUse(SlotIndex Start,
return NULL;
}
-
void SimpleRegisterCoalescing::printRegName(unsigned reg) const {
if (TargetRegisterInfo::isPhysicalRegister(reg))
- errs() << tri_->getName(reg);
+ dbgs() << tri_->getName(reg);
else
- errs() << "%reg" << reg;
+ dbgs() << "%reg" << reg;
}
void SimpleRegisterCoalescing::releaseMemory() {
@@ -2634,7 +2633,7 @@ bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
AA = &getAnalysis<AliasAnalysis>();
loopInfo = &getAnalysis<MachineLoopInfo>();
- DEBUG(errs() << "********** SIMPLE REGISTER COALESCING **********\n"
+ DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
<< "********** Function: "
<< ((Value*)mf_->getFunction())->getName() << '\n');
@@ -2648,11 +2647,11 @@ bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
if (EnableJoining) {
joinIntervals();
DEBUG({
- errs() << "********** INTERVALS POST JOINING **********\n";
+ dbgs() << "********** INTERVALS POST JOINING **********\n";
for (LiveIntervals::iterator I = li_->begin(), E = li_->end();
I != E; ++I){
- I->second->print(errs(), tri_);
- errs() << "\n";
+ I->second->print(dbgs(), tri_);
+ dbgs() << "\n";
}
});
}
diff --git a/lib/CodeGen/SjLjEHPrepare.cpp b/lib/CodeGen/SjLjEHPrepare.cpp
index 6de03e1..9558933 100644
--- a/lib/CodeGen/SjLjEHPrepare.cpp
+++ b/lib/CodeGen/SjLjEHPrepare.cpp
@@ -381,9 +381,6 @@ bool SjLjEHPass::insertSjLjEHSupport(Function &F) {
I->eraseFromParent();
}
-
-
-
// The entry block changes to have the eh.sjlj.setjmp, with a conditional
// branch to a dispatch block for non-zero returns. If we return normally,
// we're not handling an exception and just register the function context
@@ -397,13 +394,15 @@ bool SjLjEHPass::insertSjLjEHSupport(Function &F) {
// Insert a load in the Catch block, and a switch on its value. By default,
// we go to a block that just does an unwind (which is the correct action
// for a standard call).
- BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwindbb", &F);
+ BasicBlock *UnwindBlock =
+ BasicBlock::Create(F.getContext(), "unwindbb", &F);
Unwinds.push_back(new UnwindInst(F.getContext(), UnwindBlock));
Value *DispatchLoad = new LoadInst(CallSite, "invoke.num", true,
DispatchBlock);
SwitchInst *DispatchSwitch =
- SwitchInst::Create(DispatchLoad, UnwindBlock, Invokes.size(), DispatchBlock);
+ SwitchInst::Create(DispatchLoad, UnwindBlock, Invokes.size(),
+ DispatchBlock);
// Split the entry block to insert the conditional branch for the setjmp.
BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
"eh.sjlj.setjmp.cont");
diff --git a/lib/CodeGen/SlotIndexes.cpp b/lib/CodeGen/SlotIndexes.cpp
index 782af12..b8f529b 100644
--- a/lib/CodeGen/SlotIndexes.cpp
+++ b/lib/CodeGen/SlotIndexes.cpp
@@ -192,18 +192,18 @@ void SlotIndexes::renumberIndexes() {
void SlotIndexes::dump() const {
for (const IndexListEntry *itr = front(); itr != getTail();
itr = itr->getNext()) {
- errs() << itr->getIndex() << " ";
+ dbgs() << itr->getIndex() << " ";
if (itr->getInstr() != 0) {
- errs() << *itr->getInstr();
+ dbgs() << *itr->getInstr();
} else {
- errs() << "\n";
+ dbgs() << "\n";
}
}
for (MBB2IdxMap::const_iterator itr = mbb2IdxMap.begin();
itr != mbb2IdxMap.end(); ++itr) {
- errs() << "MBB " << itr->first->getNumber() << " (" << itr->first << ") - ["
+ dbgs() << "MBB " << itr->first->getNumber() << " (" << itr->first << ") - ["
<< itr->second.first << ", " << itr->second.second << "]\n";
}
}
@@ -217,7 +217,7 @@ void SlotIndex::print(raw_ostream &os) const {
// Dump a SlotIndex to stderr.
void SlotIndex::dump() const {
- print(errs());
- errs() << "\n";
+ print(dbgs());
+ dbgs() << "\n";
}
diff --git a/lib/CodeGen/Spiller.cpp b/lib/CodeGen/Spiller.cpp
index bec9294..7ba4403 100644
--- a/lib/CodeGen/Spiller.cpp
+++ b/lib/CodeGen/Spiller.cpp
@@ -67,7 +67,7 @@ protected:
/// immediately before each use, and stores after each def. No folding or
/// remat is attempted.
std::vector<LiveInterval*> trivialSpillEverywhere(LiveInterval *li) {
- DEBUG(errs() << "Spilling everywhere " << *li << "\n");
+ DEBUG(dbgs() << "Spilling everywhere " << *li << "\n");
assert(li->weight != HUGE_VALF &&
"Attempting to spill already spilled value.");
@@ -75,7 +75,7 @@ protected:
assert(!li->isStackSlot() &&
"Trying to spill a stack slot.");
- DEBUG(errs() << "Trivial spill everywhere of reg" << li->reg << "\n");
+ DEBUG(dbgs() << "Trivial spill everywhere of reg" << li->reg << "\n");
std::vector<LiveInterval*> added;
@@ -89,7 +89,7 @@ protected:
// Grab the use/def instr.
MachineInstr *mi = &*regItr;
- DEBUG(errs() << " Processing " << *mi);
+ DEBUG(dbgs() << " Processing " << *mi);
// Step regItr to the next use/def instr.
do {
@@ -242,7 +242,7 @@ private:
std::vector<LiveInterval*> tryVNISplit(LiveInterval *li,
SlotIndex *earliestStart) {
- DEBUG(errs() << "Trying VNI split of %reg" << *li << "\n");
+ DEBUG(dbgs() << "Trying VNI split of %reg" << *li << "\n");
std::vector<LiveInterval*> added;
SmallVector<VNInfo*, 4> vnis;
@@ -257,11 +257,11 @@ private:
if (vni->isUnused() || vni->kills.empty())
continue;
- DEBUG(errs() << " Extracted Val #" << vni->id << " as ");
+ DEBUG(dbgs() << " Extracted Val #" << vni->id << " as ");
LiveInterval *splitInterval = extractVNI(li, vni);
if (splitInterval != 0) {
- DEBUG(errs() << *splitInterval << "\n");
+ DEBUG(dbgs() << *splitInterval << "\n");
added.push_back(splitInterval);
alreadySplit.insert(splitInterval);
if (earliestStart != 0) {
@@ -269,11 +269,11 @@ private:
*earliestStart = splitInterval->beginIndex();
}
} else {
- DEBUG(errs() << "0\n");
+ DEBUG(dbgs() << "0\n");
}
}
- DEBUG(errs() << "Original LI: " << *li << "\n");
+ DEBUG(dbgs() << "Original LI: " << *li << "\n");
// If there original interval still contains some live ranges
// add it to added and alreadySplit.
diff --git a/lib/CodeGen/StackProtector.cpp b/lib/CodeGen/StackProtector.cpp
index e8ee822..48bb5af 100644
--- a/lib/CodeGen/StackProtector.cpp
+++ b/lib/CodeGen/StackProtector.cpp
@@ -113,7 +113,7 @@ bool StackProtector::RequiresStackProtector() const {
if (const ArrayType *AT = dyn_cast<ArrayType>(AI->getAllocatedType())) {
// We apparently only care about character arrays.
- if (AT->getElementType() != Type::getInt8Ty(AT->getContext()))
+ if (!AT->getElementType()->isInteger(8))
continue;
// If an array has more than SSPBufferSize bytes of allocated space,
diff --git a/lib/CodeGen/StackSlotColoring.cpp b/lib/CodeGen/StackSlotColoring.cpp
index fd25a37..2170703 100644
--- a/lib/CodeGen/StackSlotColoring.cpp
+++ b/lib/CodeGen/StackSlotColoring.cpp
@@ -200,7 +200,7 @@ void StackSlotColoring::InitializeSlots() {
Assignments.resize(LastFI);
// Gather all spill slots into a list.
- DEBUG(errs() << "Spill slot intervals:\n");
+ DEBUG(dbgs() << "Spill slot intervals:\n");
for (LiveStacks::iterator i = LS->begin(), e = LS->end(); i != e; ++i) {
LiveInterval &li = i->second;
DEBUG(li.dump());
@@ -212,7 +212,7 @@ void StackSlotColoring::InitializeSlots() {
OrigSizes[FI] = MFI->getObjectSize(FI);
AllColors.set(FI);
}
- DEBUG(errs() << '\n');
+ DEBUG(dbgs() << '\n');
// Sort them by weight.
std::stable_sort(SSIntervals.begin(), SSIntervals.end(), IntervalSorter());
@@ -244,7 +244,7 @@ StackSlotColoring::ColorSlotsWithFreeRegs(SmallVector<int, 16> &SlotMapping,
return false;
bool Changed = false;
- DEBUG(errs() << "Assigning unused registers to spill slots:\n");
+ DEBUG(dbgs() << "Assigning unused registers to spill slots:\n");
for (unsigned i = 0, e = SSIntervals.size(); i != e; ++i) {
LiveInterval *li = SSIntervals[i];
int SS = li->getStackSlotIndex();
@@ -274,7 +274,7 @@ StackSlotColoring::ColorSlotsWithFreeRegs(SmallVector<int, 16> &SlotMapping,
AllColored = false;
continue;
} else {
- DEBUG(errs() << "Assigning fi#" << RSS << " to "
+ DEBUG(dbgs() << "Assigning fi#" << RSS << " to "
<< TRI->getName(Reg) << '\n');
ColoredRegs.push_back(Reg);
SlotMapping[RSS] = Reg;
@@ -302,7 +302,7 @@ StackSlotColoring::ColorSlotsWithFreeRegs(SmallVector<int, 16> &SlotMapping,
++NumEliminated;
}
}
- DEBUG(errs() << '\n');
+ DEBUG(dbgs() << '\n');
return Changed;
}
@@ -337,7 +337,7 @@ int StackSlotColoring::ColorSlot(LiveInterval *li) {
// Record the assignment.
Assignments[Color].push_back(li);
int FI = li->getStackSlotIndex();
- DEBUG(errs() << "Assigning fi#" << FI << " to fi#" << Color << "\n");
+ DEBUG(dbgs() << "Assigning fi#" << FI << " to fi#" << Color << "\n");
// Change size and alignment of the allocated slot. If there are multiple
// objects sharing the same slot, then make sure the size and alignment
@@ -361,7 +361,7 @@ bool StackSlotColoring::ColorSlots(MachineFunction &MF) {
BitVector SlotIsReg(NumObjs);
BitVector UsedColors(NumObjs);
- DEBUG(errs() << "Color spill slot intervals:\n");
+ DEBUG(dbgs() << "Color spill slot intervals:\n");
bool Changed = false;
for (unsigned i = 0, e = SSIntervals.size(); i != e; ++i) {
LiveInterval *li = SSIntervals[i];
@@ -375,7 +375,7 @@ bool StackSlotColoring::ColorSlots(MachineFunction &MF) {
Changed |= (SS != NewSS);
}
- DEBUG(errs() << "\nSpill slots after coloring:\n");
+ DEBUG(dbgs() << "\nSpill slots after coloring:\n");
for (unsigned i = 0, e = SSIntervals.size(); i != e; ++i) {
LiveInterval *li = SSIntervals[i];
int SS = li->getStackSlotIndex();
@@ -387,7 +387,7 @@ bool StackSlotColoring::ColorSlots(MachineFunction &MF) {
#ifndef NDEBUG
for (unsigned i = 0, e = SSIntervals.size(); i != e; ++i)
DEBUG(SSIntervals[i]->dump());
- DEBUG(errs() << '\n');
+ DEBUG(dbgs() << '\n');
#endif
// Can we "color" a stack slot with a unused register?
@@ -419,7 +419,7 @@ bool StackSlotColoring::ColorSlots(MachineFunction &MF) {
// Delete unused stack slots.
while (NextColor != -1) {
- DEBUG(errs() << "Removing unused stack object fi#" << NextColor << "\n");
+ DEBUG(dbgs() << "Removing unused stack object fi#" << NextColor << "\n");
MFI->RemoveStackObject(NextColor);
NextColor = AllColors.find_next(NextColor);
}
@@ -605,7 +605,7 @@ StackSlotColoring::UnfoldAndRewriteInstruction(MachineInstr *MI, int OldFI,
MachineBasicBlock *MBB = MI->getParent();
if (unsigned DstReg = TII->isLoadFromStackSlot(MI, OldFI)) {
if (PropagateForward(MI, MBB, DstReg, Reg)) {
- DEBUG(errs() << "Eliminated load: ");
+ DEBUG(dbgs() << "Eliminated load: ");
DEBUG(MI->dump());
++NumLoadElim;
} else {
@@ -621,7 +621,7 @@ StackSlotColoring::UnfoldAndRewriteInstruction(MachineInstr *MI, int OldFI,
}
} else if (unsigned SrcReg = TII->isStoreToStackSlot(MI, OldFI)) {
if (MI->killsRegister(SrcReg) && PropagateBackward(MI, MBB, SrcReg, Reg)) {
- DEBUG(errs() << "Eliminated store: ");
+ DEBUG(dbgs() << "Eliminated store: ");
DEBUG(MI->dump());
++NumStoreElim;
} else {
@@ -699,7 +699,7 @@ bool StackSlotColoring::RemoveDeadStores(MachineBasicBlock* MBB) {
bool StackSlotColoring::runOnMachineFunction(MachineFunction &MF) {
- DEBUG(errs() << "********** Stack Slot Coloring **********\n");
+ DEBUG(dbgs() << "********** Stack Slot Coloring **********\n");
MFI = MF.getFrameInfo();
MRI = &MF.getRegInfo();
diff --git a/lib/CodeGen/StrongPHIElimination.cpp b/lib/CodeGen/StrongPHIElimination.cpp
index 3c13906..bd7cb75 100644
--- a/lib/CodeGen/StrongPHIElimination.cpp
+++ b/lib/CodeGen/StrongPHIElimination.cpp
@@ -555,7 +555,7 @@ void StrongPHIElimination::processBlock(MachineBasicBlock* MBB) {
// Add the renaming set for this PHI node to our overall renaming information
for (std::map<unsigned, MachineBasicBlock*>::iterator QI = PHIUnion.begin(),
QE = PHIUnion.end(); QI != QE; ++QI) {
- DEBUG(errs() << "Adding Renaming: " << QI->first << " -> "
+ DEBUG(dbgs() << "Adding Renaming: " << QI->first << " -> "
<< P->getOperand(0).getReg() << "\n");
}
@@ -698,7 +698,7 @@ void StrongPHIElimination::ScheduleCopies(MachineBasicBlock* MBB,
TII->copyRegToReg(*PI->getParent(), PI, t,
curr.second, RC, RC);
- DEBUG(errs() << "Inserted copy from " << curr.second << " to " << t
+ DEBUG(dbgs() << "Inserted copy from " << curr.second << " to " << t
<< "\n");
// Push temporary on Stacks
@@ -715,7 +715,7 @@ void StrongPHIElimination::ScheduleCopies(MachineBasicBlock* MBB,
TII->copyRegToReg(*MBB, MBB->getFirstTerminator(), curr.second,
map[curr.first], RC, RC);
map[curr.first] = curr.second;
- DEBUG(errs() << "Inserted copy from " << curr.first << " to "
+ DEBUG(dbgs() << "Inserted copy from " << curr.first << " to "
<< curr.second << "\n");
// Push this copy onto InsertedPHICopies so we can
@@ -928,7 +928,7 @@ bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
unsigned reg = OI->first;
++OI;
I->second.erase(reg);
- DEBUG(errs() << "Removing Renaming: " << reg << " -> " << I->first
+ DEBUG(dbgs() << "Removing Renaming: " << reg << " -> " << I->first
<< "\n");
}
}
@@ -946,7 +946,7 @@ bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
while (I->second.size()) {
std::map<unsigned, MachineBasicBlock*>::iterator SI = I->second.begin();
- DEBUG(errs() << "Renaming: " << SI->first << " -> " << I->first << "\n");
+ DEBUG(dbgs() << "Renaming: " << SI->first << " -> " << I->first << "\n");
if (SI->first != I->first) {
if (mergeLiveIntervals(I->first, SI->first)) {
@@ -978,7 +978,7 @@ bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
R.valno->setCopy(--SI->second->getFirstTerminator());
R.valno->def = instrIdx.getDefIndex();
- DEBUG(errs() << "Renaming failed: " << SI->first << " -> "
+ DEBUG(dbgs() << "Renaming failed: " << SI->first << " -> "
<< I->first << "\n");
}
}
diff --git a/lib/CodeGen/TailDuplication.cpp b/lib/CodeGen/TailDuplication.cpp
index bf58902..f51f74d 100644
--- a/lib/CodeGen/TailDuplication.cpp
+++ b/lib/CodeGen/TailDuplication.cpp
@@ -139,8 +139,8 @@ static void VerifyPHIs(MachineFunction &MF, bool CheckExtra) {
}
}
if (!Found) {
- errs() << "Malformed PHI in BB#" << MBB->getNumber() << ": " << *MI;
- errs() << " missing input from predecessor BB#"
+ dbgs() << "Malformed PHI in BB#" << MBB->getNumber() << ": " << *MI;
+ dbgs() << " missing input from predecessor BB#"
<< PredBB->getNumber() << '\n';
llvm_unreachable(0);
}
@@ -150,14 +150,14 @@ static void VerifyPHIs(MachineFunction &MF, bool CheckExtra) {
MachineBasicBlock *PHIBB = MI->getOperand(i+1).getMBB();
if (CheckExtra && !Preds.count(PHIBB)) {
// This is not a hard error.
- errs() << "Warning: malformed PHI in BB#" << MBB->getNumber()
+ dbgs() << "Warning: malformed PHI in BB#" << MBB->getNumber()
<< ": " << *MI;
- errs() << " extra input from predecessor BB#"
+ dbgs() << " extra input from predecessor BB#"
<< PHIBB->getNumber() << '\n';
}
if (PHIBB->getNumber() < 0) {
- errs() << "Malformed PHI in BB#" << MBB->getNumber() << ": " << *MI;
- errs() << " non-existing BB#" << PHIBB->getNumber() << '\n';
+ dbgs() << "Malformed PHI in BB#" << MBB->getNumber() << ": " << *MI;
+ dbgs() << " non-existing BB#" << PHIBB->getNumber() << '\n';
llvm_unreachable(0);
}
}
@@ -173,7 +173,7 @@ bool TailDuplicatePass::TailDuplicateBlocks(MachineFunction &MF) {
bool MadeChange = false;
if (PreRegAlloc && TailDupVerify) {
- DEBUG(errs() << "\n*** Before tail-duplicating\n");
+ DEBUG(dbgs() << "\n*** Before tail-duplicating\n");
VerifyPHIs(MF, true);
}
@@ -253,7 +253,7 @@ bool TailDuplicatePass::TailDuplicateBlocks(MachineFunction &MF) {
SSAUpdateVals.clear();
}
- // Eliminate some of the copies inserted tail duplication to maintain
+ // Eliminate some of the copies inserted by tail duplication to maintain
// SSA form.
for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
MachineInstr *Copy = Copies[i];
@@ -346,7 +346,7 @@ void TailDuplicatePass::DuplicateInstruction(MachineInstr *MI,
MachineBasicBlock *PredBB,
MachineFunction &MF,
DenseMap<unsigned, unsigned> &LocalVRMap) {
- MachineInstr *NewMI = MF.CloneMachineInstr(MI);
+ MachineInstr *NewMI = TII->duplicate(MI, MF);
for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = NewMI->getOperand(i);
if (!MO.isReg())
@@ -437,8 +437,11 @@ bool
TailDuplicatePass::TailDuplicate(MachineBasicBlock *TailBB, MachineFunction &MF,
SmallVector<MachineBasicBlock*, 8> &TDBBs,
SmallVector<MachineInstr*, 16> &Copies) {
- // Don't try to tail-duplicate single-block loops.
- if (TailBB->isSuccessor(TailBB))
+ // Pre-regalloc tail duplication hurts compile time and doesn't help
+ // much except for indirect branches.
+ bool hasIndirectBranch = (!TailBB->empty() &&
+ TailBB->back().getDesc().isIndirectBranch());
+ if (PreRegAlloc && !hasIndirectBranch)
return false;
// Set the limit on the number of instructions to duplicate, with a default
@@ -446,7 +449,7 @@ TailDuplicatePass::TailDuplicate(MachineBasicBlock *TailBB, MachineFunction &MF,
// duplicate only one, because one branch instruction can be eliminated to
// compensate for the duplication.
unsigned MaxDuplicateCount;
- if (!TailBB->empty() && TailBB->back().getDesc().isIndirectBranch())
+ if (hasIndirectBranch)
// If the target has hardware branch prediction that can handle indirect
// branches, duplicating them can often make them predictable when there
// are common paths through the code. The limit needs to be high enough
@@ -457,6 +460,10 @@ TailDuplicatePass::TailDuplicate(MachineBasicBlock *TailBB, MachineFunction &MF,
else
MaxDuplicateCount = TailDuplicateSize;
+ // Don't try to tail-duplicate single-block loops.
+ if (TailBB->isSuccessor(TailBB))
+ return false;
+
// Check the instructions in the block to determine whether tail-duplication
// is invalid or unlikely to be profitable.
unsigned InstrCount = 0;
@@ -481,7 +488,7 @@ TailDuplicatePass::TailDuplicate(MachineBasicBlock *TailBB, MachineFunction &MF,
if (InstrCount > 1 && HasCall)
return false;
- DEBUG(errs() << "\n*** Tail-duplicating BB#" << TailBB->getNumber() << '\n');
+ DEBUG(dbgs() << "\n*** Tail-duplicating BB#" << TailBB->getNumber() << '\n');
// Iterate through all the unique predecessors and tail-duplicate this
// block into them, if possible. Copying the list ahead of time also
@@ -510,7 +517,7 @@ TailDuplicatePass::TailDuplicate(MachineBasicBlock *TailBB, MachineFunction &MF,
if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough())
continue;
- DEBUG(errs() << "\nTail-duplicating into PredBB: " << *PredBB
+ DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
<< "From Succ: " << *TailBB);
TDBBs.push_back(PredBB);
@@ -570,7 +577,7 @@ TailDuplicatePass::TailDuplicate(MachineBasicBlock *TailBB, MachineFunction &MF,
if (!PriorUnAnalyzable && PriorCond.empty() && !PriorTBB &&
TailBB->pred_size() == 1 && PrevBB->succ_size() == 1 &&
!TailBB->hasAddressTaken()) {
- DEBUG(errs() << "\nMerging into block: " << *PrevBB
+ DEBUG(dbgs() << "\nMerging into block: " << *PrevBB
<< "From MBB: " << *TailBB);
if (PreRegAlloc) {
DenseMap<unsigned, unsigned> LocalVRMap;
@@ -620,7 +627,7 @@ TailDuplicatePass::TailDuplicate(MachineBasicBlock *TailBB, MachineFunction &MF,
/// function, updating the CFG.
void TailDuplicatePass::RemoveDeadBlock(MachineBasicBlock *MBB) {
assert(MBB->pred_empty() && "MBB must be dead!");
- DEBUG(errs() << "\nRemoving MBB: " << *MBB);
+ DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
// Remove all successors.
while (!MBB->succ_empty())
diff --git a/lib/CodeGen/TargetInstrInfoImpl.cpp b/lib/CodeGen/TargetInstrInfoImpl.cpp
index 393e315..a0fccab 100644
--- a/lib/CodeGen/TargetInstrInfoImpl.cpp
+++ b/lib/CodeGen/TargetInstrInfoImpl.cpp
@@ -150,6 +150,13 @@ void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
MBB.insert(I, MI);
}
+MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig,
+ MachineFunction &MF) const {
+ assert(!Orig->getDesc().isNotDuplicable() &&
+ "Instruction cannot be duplicated");
+ return MF.CloneMachineInstr(Orig);
+}
+
bool
TargetInstrInfoImpl::isIdentical(const MachineInstr *MI,
const MachineInstr *Other,
diff --git a/lib/CodeGen/TwoAddressInstructionPass.cpp b/lib/CodeGen/TwoAddressInstructionPass.cpp
index 98b95ac..a3f6364 100644
--- a/lib/CodeGen/TwoAddressInstructionPass.cpp
+++ b/lib/CodeGen/TwoAddressInstructionPass.cpp
@@ -573,15 +573,15 @@ TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
MachineFunction::iterator &mbbi,
unsigned RegB, unsigned RegC, unsigned Dist) {
MachineInstr *MI = mi;
- DEBUG(errs() << "2addr: COMMUTING : " << *MI);
+ DEBUG(dbgs() << "2addr: COMMUTING : " << *MI);
MachineInstr *NewMI = TII->commuteInstruction(MI);
if (NewMI == 0) {
- DEBUG(errs() << "2addr: COMMUTING FAILED!\n");
+ DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
return false;
}
- DEBUG(errs() << "2addr: COMMUTED TO: " << *NewMI);
+ DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
// If the instruction changed to commute it, update livevar.
if (NewMI != MI) {
if (LV)
@@ -628,8 +628,8 @@ TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
unsigned RegB, unsigned Dist) {
MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
if (NewMI) {
- DEBUG(errs() << "2addr: CONVERTING 2-ADDR: " << *mi);
- DEBUG(errs() << "2addr: TO 3-ADDR: " << *NewMI);
+ DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
+ DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI);
bool Sunk = false;
if (NewMI->findRegisterUseOperand(RegB, false, TRI))
@@ -891,7 +891,7 @@ TryInstructionTransform(MachineBasicBlock::iterator &mi,
/// runOnMachineFunction - Reduce two-address instructions to two operands.
///
bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
- DEBUG(errs() << "Machine Function\n");
+ DEBUG(dbgs() << "Machine Function\n");
const TargetMachine &TM = MF.getTarget();
MRI = &MF.getRegInfo();
TII = TM.getInstrInfo();
@@ -901,8 +901,8 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
bool MadeChange = false;
- DEBUG(errs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
- DEBUG(errs() << "********** Function: "
+ DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
+ DEBUG(dbgs() << "********** Function: "
<< MF.getFunction()->getName() << '\n');
// ReMatRegs - Keep track of the registers whose def's are remat'ed.
@@ -943,7 +943,7 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
if (FirstTied) {
FirstTied = false;
++NumTwoAddressInstrs;
- DEBUG(errs() << '\t' << *mi);
+ DEBUG(dbgs() << '\t' << *mi);
}
assert(mi->getOperand(SrcIdx).isReg() &&
@@ -1024,7 +1024,7 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
DefMI->getDesc().isAsCheapAsAMove() &&
DefMI->isSafeToReMat(TII, regB, AA) &&
isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
- DEBUG(errs() << "2addr: REMATTING : " << *DefMI << "\n");
+ DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, TRI);
ReMatRegs.set(regB);
@@ -1040,7 +1040,7 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
DistanceMap.insert(std::make_pair(prevMI, Dist));
DistanceMap[mi] = ++Dist;
- DEBUG(errs() << "\t\tprepend:\t" << *prevMI);
+ DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
MachineOperand &MO = mi->getOperand(SrcIdx);
assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
@@ -1085,7 +1085,7 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
MadeChange = true;
- DEBUG(errs() << "\t\trewrite to:\t" << *mi);
+ DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
}
// Clear TiedOperands here instead of at the top of the loop
diff --git a/lib/CodeGen/VirtRegMap.cpp b/lib/CodeGen/VirtRegMap.cpp
index c8c5d86..d4fb2e4 100644
--- a/lib/CodeGen/VirtRegMap.cpp
+++ b/lib/CodeGen/VirtRegMap.cpp
@@ -278,5 +278,5 @@ void VirtRegMap::print(raw_ostream &OS, const Module* M) const {
}
void VirtRegMap::dump() const {
- print(errs());
+ print(dbgs());
}
diff --git a/lib/CodeGen/VirtRegRewriter.cpp b/lib/CodeGen/VirtRegRewriter.cpp
index 054c3b6..df2b8d2 100644
--- a/lib/CodeGen/VirtRegRewriter.cpp
+++ b/lib/CodeGen/VirtRegRewriter.cpp
@@ -60,6 +60,33 @@ ScheduleSpills("schedule-spills",
VirtRegRewriter::~VirtRegRewriter() {}
+/// substitutePhysReg - Replace virtual register in MachineOperand with a
+/// physical register. Do the right thing with the sub-register index.
+static void substitutePhysReg(MachineOperand &MO, unsigned Reg,
+ const TargetRegisterInfo &TRI) {
+ if (unsigned SubIdx = MO.getSubReg()) {
+ // Insert the physical subreg and reset the subreg field.
+ MO.setReg(TRI.getSubReg(Reg, SubIdx));
+ MO.setSubReg(0);
+
+ // Any def, dead, and kill flags apply to the full virtual register, so they
+ // also apply to the full physical register. Add imp-def/dead and imp-kill
+ // as needed.
+ MachineInstr &MI = *MO.getParent();
+ if (MO.isDef())
+ if (MO.isDead())
+ MI.addRegisterDead(Reg, &TRI, /*AddIfNotFound=*/ true);
+ else
+ MI.addRegisterDefined(Reg, &TRI);
+ else if (!MO.isUndef() &&
+ (MO.isKill() ||
+ MI.isRegTiedToDefOperand(&MO-&MI.getOperand(0))))
+ MI.addRegisterKilled(Reg, &TRI, /*AddIfNotFound=*/ true);
+ } else {
+ MO.setReg(Reg);
+ }
+}
+
namespace {
/// This class is intended for use with the new spilling framework only. It
@@ -69,10 +96,10 @@ struct TrivialRewriter : public VirtRegRewriter {
bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
LiveIntervals* LIs) {
- DEBUG(errs() << "********** REWRITE MACHINE CODE **********\n");
- DEBUG(errs() << "********** Function: "
+ DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n");
+ DEBUG(dbgs() << "********** Function: "
<< MF.getFunction()->getName() << '\n');
- DEBUG(errs() << "**** Machine Instrs"
+ DEBUG(dbgs() << "**** Machine Instrs"
<< "(NOTE! Does not include spills and reloads!) ****\n");
DEBUG(MF.dump());
@@ -101,16 +128,13 @@ struct TrivialRewriter : public VirtRegRewriter {
MachineOperand &mop = regItr.getOperand();
assert(mop.isReg() && mop.getReg() == reg && "reg_iterator broken?");
++regItr;
- unsigned subRegIdx = mop.getSubReg();
- unsigned pRegOp = subRegIdx ? tri->getSubReg(pReg, subRegIdx) : pReg;
- mop.setReg(pRegOp);
- mop.setSubReg(0);
+ substitutePhysReg(mop, pReg, *tri);
changed = true;
}
}
}
- DEBUG(errs() << "**** Post Machine Instrs ****\n");
+ DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
DEBUG(MF.dump());
return changed;
@@ -191,11 +215,11 @@ public:
(unsigned)CanClobber;
if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
- DEBUG(errs() << "Remembering RM#"
+ DEBUG(dbgs() << "Remembering RM#"
<< SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1);
else
- DEBUG(errs() << "Remembering SS#" << SlotOrReMat);
- DEBUG(errs() << " in physreg " << TRI->getName(Reg) << "\n");
+ DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat);
+ DEBUG(dbgs() << " in physreg " << TRI->getName(Reg) << "\n");
}
/// canClobberPhysRegForSS - Return true if the spiller is allowed to change
@@ -647,12 +671,9 @@ static void ReMaterialize(MachineBasicBlock &MBB,
if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
continue;
assert(MO.isUse());
- unsigned SubIdx = MO.getSubReg();
unsigned Phys = VRM.getPhys(VirtReg);
assert(Phys && "Virtual register is not assigned a register?");
- unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
- MO.setReg(RReg);
- MO.setSubReg(0);
+ substitutePhysReg(MO, Phys, *TRI);
}
++NumReMats;
}
@@ -686,7 +707,7 @@ void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
"Bidirectional map mismatch!");
SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
- DEBUG(errs() << "PhysReg " << TRI->getName(PhysReg)
+ DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
<< " copied, it is available for use but can no longer be modified\n");
}
}
@@ -711,12 +732,12 @@ void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
"Bidirectional map mismatch!");
SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
- DEBUG(errs() << "PhysReg " << TRI->getName(PhysReg)
+ DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
<< " clobbered, invalidating ");
if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
- DEBUG(errs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
+ DEBUG(dbgs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
else
- DEBUG(errs() << "SS#" << SlotOrReMat << "\n");
+ DEBUG(dbgs() << "SS#" << SlotOrReMat << "\n");
}
}
@@ -895,9 +916,9 @@ unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
- DEBUG(errs() << '\t' << *prior(InsertLoc));
+ DEBUG(dbgs() << '\t' << *prior(InsertLoc));
- DEBUG(errs() << "Reuse undone!\n");
+ DEBUG(dbgs() << "Reuse undone!\n");
--NumReused;
// Finally, PhysReg is now available, go ahead and use it.
@@ -1004,11 +1025,12 @@ static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
}
static
-void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) {
+void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg,
+ const TargetRegisterInfo &TRI) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.getReg() == VirtReg)
- MO.setReg(PhysReg);
+ substitutePhysReg(MO, PhysReg, TRI);
}
}
@@ -1041,9 +1063,9 @@ public:
TRI = MF.getTarget().getRegisterInfo();
TII = MF.getTarget().getInstrInfo();
AllocatableRegs = TRI->getAllocatableSet(MF);
- DEBUG(errs() << "\n**** Local spiller rewriting function '"
+ DEBUG(dbgs() << "\n**** Local spiller rewriting function '"
<< MF.getFunction()->getName() << "':\n");
- DEBUG(errs() << "**** Machine Instrs (NOTE! Does not include spills and"
+ DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and"
" reloads!) ****\n");
DEBUG(MF.dump());
@@ -1095,7 +1117,7 @@ public:
Spills.clear();
}
- DEBUG(errs() << "**** Post Machine Instrs ****\n");
+ DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
DEBUG(MF.dump());
// Mark unused spill slots.
@@ -1175,7 +1197,7 @@ private:
if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
llvm_unreachable("Unable unfold the load / store folding instruction!");
assert(NewMIs.size() == 1);
- AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
+ AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
VRM.transferRestorePts(&MI, NewMIs[0]);
MII = MBB.insert(MII, NewMIs[0]);
InvalidateKills(MI, TRI, RegKills, KillOps);
@@ -1191,7 +1213,7 @@ private:
if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
llvm_unreachable("Unable unfold the load / store folding instruction!");
assert(NewMIs.size() == 1);
- AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
+ AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
VRM.transferRestorePts(&NextMI, NewMIs[0]);
MBB.insert(NextMII, NewMIs[0]);
InvalidateKills(NextMI, TRI, RegKills, KillOps);
@@ -1467,11 +1489,11 @@ private:
TII->storeRegToStackSlot(MBB, llvm::next(MII), PhysReg, true, StackSlot, RC);
MachineInstr *StoreMI = prior(oldNextMII);
VRM.addSpillSlotUse(StackSlot, StoreMI);
- DEBUG(errs() << "Store:\t" << *StoreMI);
+ DEBUG(dbgs() << "Store:\t" << *StoreMI);
// If there is a dead store to this stack slot, nuke it now.
if (LastStore) {
- DEBUG(errs() << "Removed dead store:\t" << *LastStore);
+ DEBUG(dbgs() << "Removed dead store:\t" << *LastStore);
++NumDSE;
SmallVector<unsigned, 2> KillRegs;
InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
@@ -1599,7 +1621,7 @@ private:
AvailableSpills &Spills, BitVector &RegKills,
std::vector<MachineOperand*> &KillOps) {
- DEBUG(errs() << "\n**** Local spiller rewriting MBB '"
+ DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '"
<< MBB.getName() << "':\n");
MachineFunction &MF = *MBB.getParent();
@@ -1699,11 +1721,11 @@ private:
// If the value is already available in the expected register, save
// a reload / remat.
if (SSorRMId)
- DEBUG(errs() << "Reusing RM#"
+ DEBUG(dbgs() << "Reusing RM#"
<< SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
else
- DEBUG(errs() << "Reusing SS#" << SSorRMId);
- DEBUG(errs() << " from physreg "
+ DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
+ DEBUG(dbgs() << " from physreg "
<< TRI->getName(InReg) << " for vreg"
<< VirtReg <<" instead of reloading into physreg "
<< TRI->getName(Phys) << '\n');
@@ -1711,11 +1733,11 @@ private:
continue;
} else if (InReg && InReg != Phys) {
if (SSorRMId)
- DEBUG(errs() << "Reusing RM#"
+ DEBUG(dbgs() << "Reusing RM#"
<< SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
else
- DEBUG(errs() << "Reusing SS#" << SSorRMId);
- DEBUG(errs() << " from physreg "
+ DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
+ DEBUG(dbgs() << " from physreg "
<< TRI->getName(InReg) << " for vreg"
<< VirtReg <<" by copying it into physreg "
<< TRI->getName(Phys) << '\n');
@@ -1742,7 +1764,7 @@ private:
KillOpnd->setIsKill();
UpdateKills(*CopyMI, TRI, RegKills, KillOps);
- DEBUG(errs() << '\t' << *CopyMI);
+ DEBUG(dbgs() << '\t' << *CopyMI);
++NumCopified;
continue;
}
@@ -1769,7 +1791,7 @@ private:
Spills.addAvailable(SSorRMId, Phys);
UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
- DEBUG(errs() << '\t' << *prior(MII));
+ DEBUG(dbgs() << '\t' << *prior(MII));
}
}
@@ -1789,7 +1811,7 @@ private:
TII->storeRegToStackSlot(MBB, llvm::next(MII), Phys, isKill, StackSlot, RC);
MachineInstr *StoreMI = prior(oldNextMII);
VRM.addSpillSlotUse(StackSlot, StoreMI);
- DEBUG(errs() << "Store:\t" << *StoreMI);
+ DEBUG(dbgs() << "Store:\t" << *StoreMI);
VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
}
NextMII = llvm::next(MII);
@@ -1840,16 +1862,14 @@ private:
RegInfo->setPhysRegUsed(Phys);
if (MO.isDef())
ReusedOperands.markClobbered(Phys);
- unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
- MI.getOperand(i).setReg(RReg);
- MI.getOperand(i).setSubReg(0);
+ substitutePhysReg(MO, Phys, *TRI);
if (VRM.isImplicitlyDefined(VirtReg))
// FIXME: Is this needed?
BuildMI(MBB, &MI, MI.getDebugLoc(),
- TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
+ TII->get(TargetInstrInfo::IMPLICIT_DEF), Phys);
continue;
}
-
+
// This virtual register is now known to be a spilled value.
if (!MO.isUse())
continue; // Handle defs in the loop below (handle use&def here though)
@@ -1908,11 +1928,11 @@ private:
if (CanReuse) {
// If this stack slot value is already available, reuse it!
if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
- DEBUG(errs() << "Reusing RM#"
+ DEBUG(dbgs() << "Reusing RM#"
<< ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
else
- DEBUG(errs() << "Reusing SS#" << ReuseSlot);
- DEBUG(errs() << " from physreg "
+ DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
+ DEBUG(dbgs() << " from physreg "
<< TRI->getName(PhysReg) << " for vreg"
<< VirtReg <<" instead of reloading into physreg "
<< TRI->getName(VRM.getPhys(VirtReg)) << '\n');
@@ -1991,11 +2011,11 @@ private:
if (DesignatedReg == PhysReg) {
// If this stack slot value is already available, reuse it!
if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
- DEBUG(errs() << "Reusing RM#"
+ DEBUG(dbgs() << "Reusing RM#"
<< ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
else
- DEBUG(errs() << "Reusing SS#" << ReuseSlot);
- DEBUG(errs() << " from physreg " << TRI->getName(PhysReg)
+ DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
+ DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg)
<< " for vreg" << VirtReg
<< " instead of reloading into same physreg.\n");
unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
@@ -2029,7 +2049,7 @@ private:
SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
MI.getOperand(i).setReg(RReg);
MI.getOperand(i).setSubReg(0);
- DEBUG(errs() << '\t' << *prior(MII));
+ DEBUG(dbgs() << '\t' << *prior(MII));
++NumReused;
continue;
} // if (PhysReg)
@@ -2082,7 +2102,7 @@ private:
}
UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
- DEBUG(errs() << '\t' << *prior(InsertLoc));
+ DEBUG(dbgs() << '\t' << *prior(InsertLoc));
}
unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
MI.getOperand(i).setReg(RReg);
@@ -2096,7 +2116,7 @@ private:
int PDSSlot = PotentialDeadStoreSlots[j];
MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
if (DeadStore) {
- DEBUG(errs() << "Removed dead store:\t" << *DeadStore);
+ DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
VRM.RemoveMachineInstrFromMaps(DeadStore);
MBB.erase(DeadStore);
@@ -2106,7 +2126,7 @@ private:
}
- DEBUG(errs() << '\t' << MI);
+ DEBUG(dbgs() << '\t' << MI);
// If we have folded references to memory operands, make sure we clear all
@@ -2116,7 +2136,7 @@ private:
for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
unsigned VirtReg = I->second.first;
VirtRegMap::ModRef MR = I->second.second;
- DEBUG(errs() << "Folded vreg: " << VirtReg << " MR: " << MR);
+ DEBUG(dbgs() << "Folded vreg: " << VirtReg << " MR: " << MR);
// MI2VirtMap be can updated which invalidate the iterator.
// Increment the iterator first.
@@ -2125,7 +2145,7 @@ private:
if (SS == VirtRegMap::NO_STACK_SLOT)
continue;
FoldedSS.insert(SS);
- DEBUG(errs() << " - StackSlot: " << SS << "\n");
+ DEBUG(dbgs() << " - StackSlot: " << SS << "\n");
// If this folded instruction is just a use, check to see if it's a
// straight load from the virt reg slot.
@@ -2136,7 +2156,7 @@ private:
// If this spill slot is available, turn it into a copy (or nothing)
// instead of leaving it as a load!
if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
- DEBUG(errs() << "Promoted Load To Copy: " << MI);
+ DEBUG(dbgs() << "Promoted Load To Copy: " << MI);
if (DestReg != InReg) {
const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
@@ -2160,7 +2180,7 @@ private:
BackTracked = true;
} else {
- DEBUG(errs() << "Removing now-noop copy: " << MI);
+ DEBUG(dbgs() << "Removing now-noop copy: " << MI);
// Unset last kill since it's being reused.
InvalidateKill(InReg, TRI, RegKills, KillOps);
Spills.disallowClobberPhysReg(InReg);
@@ -2230,7 +2250,7 @@ private:
if (isDead) { // Previous store is dead.
// If we get here, the store is dead, nuke it now.
- DEBUG(errs() << "Removed dead store:\t" << *DeadStore);
+ DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
VRM.RemoveMachineInstrFromMaps(DeadStore);
MBB.erase(DeadStore);
@@ -2301,7 +2321,7 @@ private:
if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst &&
!MI.findRegisterUseOperand(Src)->isUndef()) {
++NumDCE;
- DEBUG(errs() << "Removing now-noop copy: " << MI);
+ DEBUG(dbgs() << "Removing now-noop copy: " << MI);
SmallVector<unsigned, 2> KillRegs;
InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
if (MO.isDead() && !KillRegs.empty()) {
@@ -2389,7 +2409,7 @@ private:
unsigned Src, Dst, SrcSR, DstSR;
if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
++NumDCE;
- DEBUG(errs() << "Removing now-noop copy: " << MI);
+ DEBUG(dbgs() << "Removing now-noop copy: " << MI);
InvalidateKills(MI, TRI, RegKills, KillOps);
VRM.RemoveMachineInstrFromMaps(&MI);
MBB.erase(&MI);
diff --git a/lib/ExecutionEngine/ExecutionEngine.cpp b/lib/ExecutionEngine/ExecutionEngine.cpp
index cb30748..89c4290 100644
--- a/lib/ExecutionEngine/ExecutionEngine.cpp
+++ b/lib/ExecutionEngine/ExecutionEngine.cpp
@@ -138,7 +138,7 @@ void *ExecutionEngineState::RemoveMapping(
void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
MutexGuard locked(lock);
- DEBUG(errs() << "JIT: Map \'" << GV->getName()
+ DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
<< "\' to [" << Addr << "]\n";);
void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
@@ -246,13 +246,13 @@ static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE,
unsigned PtrSize = EE->getTargetData()->getPointerSize();
char *Result = new char[(InputArgv.size()+1)*PtrSize];
- DEBUG(errs() << "JIT: ARGV = " << (void*)Result << "\n");
+ DEBUG(dbgs() << "JIT: ARGV = " << (void*)Result << "\n");
const Type *SBytePtr = Type::getInt8PtrTy(C);
for (unsigned i = 0; i != InputArgv.size(); ++i) {
unsigned Size = InputArgv[i].size()+1;
char *Dest = new char[Size];
- DEBUG(errs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
+ DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
Dest[Size-1] = 0;
@@ -343,9 +343,7 @@ int ExecutionEngine::runFunctionAsMain(Function *Fn,
// Check main() type
unsigned NumArgs = Fn->getFunctionType()->getNumParams();
const FunctionType *FTy = Fn->getFunctionType();
- const Type* PPInt8Ty =
- PointerType::getUnqual(PointerType::getUnqual(
- Type::getInt8Ty(Fn->getContext())));
+ const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
switch (NumArgs) {
case 3:
if (FTy->getParamType(2) != PPInt8Ty) {
@@ -358,13 +356,13 @@ int ExecutionEngine::runFunctionAsMain(Function *Fn,
}
// FALLS THROUGH
case 1:
- if (FTy->getParamType(0) != Type::getInt32Ty(Fn->getContext())) {
+ if (!FTy->getParamType(0)->isInteger(32)) {
llvm_report_error("Invalid type for first argument of main() supplied");
}
// FALLS THROUGH
case 0:
if (!isa<IntegerType>(FTy->getReturnType()) &&
- FTy->getReturnType() != Type::getVoidTy(FTy->getContext())) {
+ !FTy->getReturnType()->isVoidTy()) {
llvm_report_error("Invalid return type of main() supplied");
}
break;
@@ -493,8 +491,22 @@ void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
/// @brief Get a GenericValue for a Constant*
GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
// If its undefined, return the garbage.
- if (isa<UndefValue>(C))
- return GenericValue();
+ if (isa<UndefValue>(C)) {
+ GenericValue Result;
+ switch (C->getType()->getTypeID()) {
+ case Type::IntegerTyID:
+ case Type::X86_FP80TyID:
+ case Type::FP128TyID:
+ case Type::PPC_FP128TyID:
+ // Although the value is undefined, we still have to construct an APInt
+ // with the correct bit width.
+ Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
+ break;
+ default:
+ break;
+ }
+ return Result;
+ }
// If the value is a ConstantExpr
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
@@ -620,13 +632,11 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
GV.DoubleVal = GV.IntVal.bitsToDouble();
break;
case Type::FloatTyID:
- assert(DestTy == Type::getInt32Ty(DestTy->getContext()) &&
- "Invalid bitcast");
+ assert(DestTy->isInteger(32) && "Invalid bitcast");
GV.IntVal.floatToBits(GV.FloatVal);
break;
case Type::DoubleTyID:
- assert(DestTy == Type::getInt64Ty(DestTy->getContext()) &&
- "Invalid bitcast");
+ assert(DestTy->isInteger(64) && "Invalid bitcast");
GV.IntVal.doubleToBits(GV.DoubleVal);
break;
case Type::PointerTyID:
@@ -832,7 +842,7 @@ void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
*((PointerTy*)Ptr) = Val.PointerVal;
break;
default:
- errs() << "Cannot store value of type " << *Ty << "!\n";
+ dbgs() << "Cannot store value of type " << *Ty << "!\n";
}
if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
@@ -908,7 +918,7 @@ void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
// specified memory location...
//
void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
- DEBUG(errs() << "JIT: Initializing " << Addr << " ");
+ DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
DEBUG(Init->dump());
if (isa<UndefValue>(Init)) {
return;
@@ -939,7 +949,7 @@ void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
return;
}
- errs() << "Bad Type: " << *Init->getType() << "\n";
+ dbgs() << "Bad Type: " << *Init->getType() << "\n";
llvm_unreachable("Unknown constant type to initialize memory with!");
}
diff --git a/lib/ExecutionEngine/ExecutionEngineBindings.cpp b/lib/ExecutionEngine/ExecutionEngineBindings.cpp
index 5901cd7..412b493 100644
--- a/lib/ExecutionEngine/ExecutionEngineBindings.cpp
+++ b/lib/ExecutionEngine/ExecutionEngineBindings.cpp
@@ -24,7 +24,7 @@ using namespace llvm;
LLVMGenericValueRef LLVMCreateGenericValueOfInt(LLVMTypeRef Ty,
unsigned long long N,
- int IsSigned) {
+ LLVMBool IsSigned) {
GenericValue *GenVal = new GenericValue();
GenVal->IntVal = APInt(unwrap<IntegerType>(Ty)->getBitWidth(), N, IsSigned);
return wrap(GenVal);
@@ -56,7 +56,7 @@ unsigned LLVMGenericValueIntWidth(LLVMGenericValueRef GenValRef) {
}
unsigned long long LLVMGenericValueToInt(LLVMGenericValueRef GenValRef,
- int IsSigned) {
+ LLVMBool IsSigned) {
GenericValue *GenVal = unwrap(GenValRef);
if (IsSigned)
return GenVal->IntVal.getSExtValue();
@@ -87,9 +87,9 @@ void LLVMDisposeGenericValue(LLVMGenericValueRef GenVal) {
/*===-- Operations on execution engines -----------------------------------===*/
-int LLVMCreateExecutionEngine(LLVMExecutionEngineRef *OutEE,
- LLVMModuleProviderRef MP,
- char **OutError) {
+LLVMBool LLVMCreateExecutionEngine(LLVMExecutionEngineRef *OutEE,
+ LLVMModuleProviderRef MP,
+ char **OutError) {
std::string Error;
EngineBuilder builder(unwrap(MP));
builder.setEngineKind(EngineKind::Either)
@@ -102,9 +102,9 @@ int LLVMCreateExecutionEngine(LLVMExecutionEngineRef *OutEE,
return 1;
}
-int LLVMCreateInterpreter(LLVMExecutionEngineRef *OutInterp,
- LLVMModuleProviderRef MP,
- char **OutError) {
+LLVMBool LLVMCreateInterpreter(LLVMExecutionEngineRef *OutInterp,
+ LLVMModuleProviderRef MP,
+ char **OutError) {
std::string Error;
EngineBuilder builder(unwrap(MP));
builder.setEngineKind(EngineKind::Interpreter)
@@ -117,10 +117,10 @@ int LLVMCreateInterpreter(LLVMExecutionEngineRef *OutInterp,
return 1;
}
-int LLVMCreateJITCompiler(LLVMExecutionEngineRef *OutJIT,
- LLVMModuleProviderRef MP,
- unsigned OptLevel,
- char **OutError) {
+LLVMBool LLVMCreateJITCompiler(LLVMExecutionEngineRef *OutJIT,
+ LLVMModuleProviderRef MP,
+ unsigned OptLevel,
+ char **OutError) {
std::string Error;
EngineBuilder builder(unwrap(MP));
builder.setEngineKind(EngineKind::JIT)
@@ -177,9 +177,9 @@ void LLVMAddModuleProvider(LLVMExecutionEngineRef EE, LLVMModuleProviderRef MP){
unwrap(EE)->addModuleProvider(unwrap(MP));
}
-int LLVMRemoveModuleProvider(LLVMExecutionEngineRef EE,
- LLVMModuleProviderRef MP,
- LLVMModuleRef *OutMod, char **OutError) {
+LLVMBool LLVMRemoveModuleProvider(LLVMExecutionEngineRef EE,
+ LLVMModuleProviderRef MP,
+ LLVMModuleRef *OutMod, char **OutError) {
std::string Error;
if (Module *Gone = unwrap(EE)->removeModuleProvider(unwrap(MP), &Error)) {
*OutMod = wrap(Gone);
@@ -190,8 +190,8 @@ int LLVMRemoveModuleProvider(LLVMExecutionEngineRef EE,
return 1;
}
-int LLVMFindFunction(LLVMExecutionEngineRef EE, const char *Name,
- LLVMValueRef *OutFn) {
+LLVMBool LLVMFindFunction(LLVMExecutionEngineRef EE, const char *Name,
+ LLVMValueRef *OutFn) {
if (Function *F = unwrap(EE)->FindFunctionNamed(Name)) {
*OutFn = wrap(F);
return 0;
diff --git a/lib/ExecutionEngine/Interpreter/Execution.cpp b/lib/ExecutionEngine/Interpreter/Execution.cpp
index b59cfd1..73f5558 100644
--- a/lib/ExecutionEngine/Interpreter/Execution.cpp
+++ b/lib/ExecutionEngine/Interpreter/Execution.cpp
@@ -56,7 +56,7 @@ static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
IMPLEMENT_BINARY_OPERATOR(+, Float);
IMPLEMENT_BINARY_OPERATOR(+, Double);
default:
- errs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
+ dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
}
@@ -67,7 +67,7 @@ static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
IMPLEMENT_BINARY_OPERATOR(-, Float);
IMPLEMENT_BINARY_OPERATOR(-, Double);
default:
- errs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
+ dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
}
@@ -78,7 +78,7 @@ static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
IMPLEMENT_BINARY_OPERATOR(*, Float);
IMPLEMENT_BINARY_OPERATOR(*, Double);
default:
- errs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
+ dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
}
@@ -89,7 +89,7 @@ static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
IMPLEMENT_BINARY_OPERATOR(/, Float);
IMPLEMENT_BINARY_OPERATOR(/, Double);
default:
- errs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
+ dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
}
@@ -104,7 +104,7 @@ static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
break;
default:
- errs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
+ dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
}
@@ -131,7 +131,7 @@ static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
IMPLEMENT_INTEGER_ICMP(eq,Ty);
IMPLEMENT_POINTER_ICMP(==);
default:
- errs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
+ dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
@@ -144,7 +144,7 @@ static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
IMPLEMENT_INTEGER_ICMP(ne,Ty);
IMPLEMENT_POINTER_ICMP(!=);
default:
- errs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
+ dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
@@ -157,7 +157,7 @@ static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
IMPLEMENT_INTEGER_ICMP(ult,Ty);
IMPLEMENT_POINTER_ICMP(<);
default:
- errs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
+ dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
@@ -170,7 +170,7 @@ static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
IMPLEMENT_INTEGER_ICMP(slt,Ty);
IMPLEMENT_POINTER_ICMP(<);
default:
- errs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
+ dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
@@ -183,7 +183,7 @@ static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
IMPLEMENT_INTEGER_ICMP(ugt,Ty);
IMPLEMENT_POINTER_ICMP(>);
default:
- errs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
+ dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
@@ -196,7 +196,7 @@ static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
IMPLEMENT_INTEGER_ICMP(sgt,Ty);
IMPLEMENT_POINTER_ICMP(>);
default:
- errs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
+ dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
@@ -209,7 +209,7 @@ static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
IMPLEMENT_INTEGER_ICMP(ule,Ty);
IMPLEMENT_POINTER_ICMP(<=);
default:
- errs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
+ dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
@@ -222,7 +222,7 @@ static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
IMPLEMENT_INTEGER_ICMP(sle,Ty);
IMPLEMENT_POINTER_ICMP(<=);
default:
- errs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
+ dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
@@ -235,7 +235,7 @@ static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
IMPLEMENT_INTEGER_ICMP(uge,Ty);
IMPLEMENT_POINTER_ICMP(>=);
default:
- errs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
+ dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
@@ -248,7 +248,7 @@ static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
IMPLEMENT_INTEGER_ICMP(sge,Ty);
IMPLEMENT_POINTER_ICMP(>=);
default:
- errs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
+ dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
@@ -273,7 +273,7 @@ void Interpreter::visitICmpInst(ICmpInst &I) {
case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
default:
- errs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
+ dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
llvm_unreachable(0);
}
@@ -292,7 +292,7 @@ static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
IMPLEMENT_FCMP(==, Float);
IMPLEMENT_FCMP(==, Double);
default:
- errs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
+ dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
@@ -306,7 +306,7 @@ static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
IMPLEMENT_FCMP(!=, Double);
default:
- errs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
+ dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
@@ -319,7 +319,7 @@ static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
IMPLEMENT_FCMP(<=, Float);
IMPLEMENT_FCMP(<=, Double);
default:
- errs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
+ dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
@@ -332,7 +332,7 @@ static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
IMPLEMENT_FCMP(>=, Float);
IMPLEMENT_FCMP(>=, Double);
default:
- errs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
+ dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
@@ -345,7 +345,7 @@ static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
IMPLEMENT_FCMP(<, Float);
IMPLEMENT_FCMP(<, Double);
default:
- errs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
+ dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
@@ -358,7 +358,7 @@ static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
IMPLEMENT_FCMP(>, Float);
IMPLEMENT_FCMP(>, Double);
default:
- errs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
+ dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
@@ -467,7 +467,7 @@ void Interpreter::visitFCmpInst(FCmpInst &I) {
case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
default:
- errs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
+ dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
llvm_unreachable(0);
}
@@ -513,7 +513,7 @@ static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
return Result;
}
default:
- errs() << "Unhandled Cmp predicate\n";
+ dbgs() << "Unhandled Cmp predicate\n";
llvm_unreachable(0);
}
}
@@ -542,7 +542,7 @@ void Interpreter::visitBinaryOperator(BinaryOperator &I) {
case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
default:
- errs() << "Don't know how to handle this binary operator!\n-->" << I;
+ dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
llvm_unreachable(0);
}
@@ -602,7 +602,7 @@ void Interpreter::popStackAndReturnValueToCaller(const Type *RetTy,
ExecutionContext &CallingSF = ECStack.back();
if (Instruction *I = CallingSF.Caller.getInstruction()) {
// Save result...
- if (CallingSF.Caller.getType() != Type::getVoidTy(RetTy->getContext()))
+ if (!CallingSF.Caller.getType()->isVoidTy())
SetValue(I, Result, CallingSF);
if (InvokeInst *II = dyn_cast<InvokeInst> (I))
SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
@@ -744,7 +744,7 @@ void Interpreter::visitAllocaInst(AllocaInst &I) {
// Allocate enough memory to hold the type...
void *Memory = malloc(MemToAlloc);
- DEBUG(errs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
+ DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
<< NumElements << " (Total: " << MemToAlloc << ") at "
<< uintptr_t(Memory) << '\n');
@@ -794,7 +794,7 @@ GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
GenericValue Result;
Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
- DEBUG(errs() << "GEP Index " << Total << " bytes.\n");
+ DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
return Result;
}
@@ -812,7 +812,7 @@ void Interpreter::visitLoadInst(LoadInst &I) {
LoadValueFromMemory(Result, Ptr, I.getType());
SetValue(&I, Result, SF);
if (I.isVolatile() && PrintVolatile)
- errs() << "Volatile load " << I;
+ dbgs() << "Volatile load " << I;
}
void Interpreter::visitStoreInst(StoreInst &I) {
@@ -822,7 +822,7 @@ void Interpreter::visitStoreInst(StoreInst &I) {
StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
I.getOperand(0)->getType());
if (I.isVolatile() && PrintVolatile)
- errs() << "Volatile store: " << I;
+ dbgs() << "Volatile store: " << I;
}
//===----------------------------------------------------------------------===//
@@ -1164,7 +1164,7 @@ void Interpreter::visitVAArgInst(VAArgInst &I) {
IMPLEMENT_VAARG(Float);
IMPLEMENT_VAARG(Double);
default:
- errs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
+ dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
@@ -1251,7 +1251,7 @@ GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
break;
default:
- errs() << "Unhandled ConstantExpr: " << *CE << "\n";
+ dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
llvm_unreachable(0);
return GenericValue();
}
@@ -1324,24 +1324,24 @@ void Interpreter::run() {
// Track the number of dynamic instructions executed.
++NumDynamicInsts;
- DEBUG(errs() << "About to interpret: " << I);
+ DEBUG(dbgs() << "About to interpret: " << I);
visit(I); // Dispatch to one of the visit* methods...
#if 0
// This is not safe, as visiting the instruction could lower it and free I.
DEBUG(
if (!isa<CallInst>(I) && !isa<InvokeInst>(I) &&
I.getType() != Type::VoidTy) {
- errs() << " --> ";
+ dbgs() << " --> ";
const GenericValue &Val = SF.Values[&I];
switch (I.getType()->getTypeID()) {
default: llvm_unreachable("Invalid GenericValue Type");
- case Type::VoidTyID: errs() << "void"; break;
- case Type::FloatTyID: errs() << "float " << Val.FloatVal; break;
- case Type::DoubleTyID: errs() << "double " << Val.DoubleVal; break;
- case Type::PointerTyID: errs() << "void* " << intptr_t(Val.PointerVal);
+ case Type::VoidTyID: dbgs() << "void"; break;
+ case Type::FloatTyID: dbgs() << "float " << Val.FloatVal; break;
+ case Type::DoubleTyID: dbgs() << "double " << Val.DoubleVal; break;
+ case Type::PointerTyID: dbgs() << "void* " << intptr_t(Val.PointerVal);
break;
case Type::IntegerTyID:
- errs() << "i" << Val.IntVal.getBitWidth() << " "
+ dbgs() << "i" << Val.IntVal.getBitWidth() << " "
<< Val.IntVal.toStringUnsigned(10)
<< " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n";
break;
diff --git a/lib/ExecutionEngine/JIT/JIT.cpp b/lib/ExecutionEngine/JIT/JIT.cpp
index ebc2567..faf724f 100644
--- a/lib/ExecutionEngine/JIT/JIT.cpp
+++ b/lib/ExecutionEngine/JIT/JIT.cpp
@@ -411,11 +411,10 @@ GenericValue JIT::runFunction(Function *F,
// Handle some common cases first. These cases correspond to common `main'
// prototypes.
- if (RetTy == Type::getInt32Ty(F->getContext()) ||
- RetTy == Type::getVoidTy(F->getContext())) {
+ if (RetTy->isInteger(32) || RetTy->isVoidTy()) {
switch (ArgValues.size()) {
case 3:
- if (FTy->getParamType(0) == Type::getInt32Ty(F->getContext()) &&
+ if (FTy->getParamType(0)->isInteger(32) &&
isa<PointerType>(FTy->getParamType(1)) &&
isa<PointerType>(FTy->getParamType(2))) {
int (*PF)(int, char **, const char **) =
@@ -430,7 +429,7 @@ GenericValue JIT::runFunction(Function *F,
}
break;
case 2:
- if (FTy->getParamType(0) == Type::getInt32Ty(F->getContext()) &&
+ if (FTy->getParamType(0)->isInteger(32) &&
isa<PointerType>(FTy->getParamType(1))) {
int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
@@ -443,7 +442,7 @@ GenericValue JIT::runFunction(Function *F,
break;
case 1:
if (FTy->getNumParams() == 1 &&
- FTy->getParamType(0) == Type::getInt32Ty(F->getContext())) {
+ FTy->getParamType(0)->isInteger(32)) {
GenericValue rv;
int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
@@ -548,7 +547,7 @@ GenericValue JIT::runFunction(Function *F,
"", StubBB);
TheCall->setCallingConv(F->getCallingConv());
TheCall->setTailCall();
- if (TheCall->getType() != Type::getVoidTy(F->getContext()))
+ if (!TheCall->getType()->isVoidTy())
// Return result of the call.
ReturnInst::Create(F->getContext(), TheCall, StubBB);
else
diff --git a/lib/ExecutionEngine/JIT/JITEmitter.cpp b/lib/ExecutionEngine/JIT/JITEmitter.cpp
index ef323b5..0f604ac 100644
--- a/lib/ExecutionEngine/JIT/JITEmitter.cpp
+++ b/lib/ExecutionEngine/JIT/JITEmitter.cpp
@@ -377,7 +377,7 @@ namespace {
MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
if (jit.getJITInfo().needsGOT()) {
MemMgr->AllocateGOT();
- DEBUG(errs() << "JIT is managing a GOT\n");
+ DEBUG(dbgs() << "JIT is managing a GOT\n");
}
if (DwarfExceptionHandling || JITEmitDebugInfo) {
@@ -431,7 +431,7 @@ namespace {
if (MBBLocations.size() <= (unsigned)MBB->getNumber())
MBBLocations.resize((MBB->getNumber()+1)*2);
MBBLocations[MBB->getNumber()] = getCurrentPCValue();
- DEBUG(errs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
+ DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
<< (void*) getCurrentPCValue() << "]\n");
}
@@ -547,7 +547,7 @@ void *JITResolver::getLazyFunctionStub(Function *F) {
TheJIT->updateGlobalMapping(F, Stub);
}
- DEBUG(errs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
+ DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
<< F->getName() << "'\n");
// Finally, keep track of the stub-to-Function mapping so that the
@@ -577,7 +577,7 @@ void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
JE);
- DEBUG(errs() << "JIT: Indirect symbol emitted at [" << IndirectSym
+ DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
<< "] for GV '" << GV->getName() << "'\n");
return IndirectSym;
@@ -595,7 +595,7 @@ void *JITResolver::getExternalFunctionStub(void *FnAddr) {
Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
JE.finishGVStub();
- DEBUG(errs() << "JIT: Stub emitted at [" << Stub
+ DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
<< "] for external function at '" << FnAddr << "'\n");
return Stub;
}
@@ -605,7 +605,7 @@ unsigned JITResolver::getGOTIndexForAddr(void* addr) {
if (!idx) {
idx = ++nextGOTIndex;
revGOTMap[addr] = idx;
- DEBUG(errs() << "JIT: Adding GOT entry " << idx << " for addr ["
+ DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
<< addr << "]\n");
}
return idx;
@@ -701,7 +701,7 @@ void *JITResolver::JITCompilerFn(void *Stub) {
+ F->getName() + "' when lazy compiles are disabled!");
}
- DEBUG(errs() << "JIT: Lazily resolving function '" << F->getName()
+ DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
<< "' In stub ptr = " << Stub << " actual ptr = "
<< ActualPtr << "\n");
@@ -864,7 +864,7 @@ unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) {
size_t GVSize = (size_t)TheJIT->getTargetData()->getTypeAllocSize(ElTy);
size_t GVAlign =
(size_t)TheJIT->getTargetData()->getPreferredAlignment(GV);
- DEBUG(errs() << "JIT: Adding in size " << GVSize << " alignment " << GVAlign);
+ DEBUG(dbgs() << "JIT: Adding in size " << GVSize << " alignment " << GVAlign);
DEBUG(GV->dump());
// Assume code section ends with worst possible alignment, so first
// variable needs maximal padding.
@@ -992,7 +992,7 @@ unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) {
}
}
}
- DEBUG(errs() << "JIT: About to look through initializers\n");
+ DEBUG(dbgs() << "JIT: About to look through initializers\n");
// Look for more globals that are referenced only from initializers.
// GVSet.end is computed each time because the set can grow as we go.
for (SmallPtrSet<const GlobalVariable *, 8>::iterator I = GVSet.begin();
@@ -1006,14 +1006,14 @@ unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) {
}
void JITEmitter::startFunction(MachineFunction &F) {
- DEBUG(errs() << "JIT: Starting CodeGen of Function "
+ DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
<< F.getFunction()->getName() << "\n");
uintptr_t ActualSize = 0;
// Set the memory writable, if it's not already
MemMgr->setMemoryWritable();
if (MemMgr->NeedsExactSize()) {
- DEBUG(errs() << "JIT: ExactSize\n");
+ DEBUG(dbgs() << "JIT: ExactSize\n");
const TargetInstrInfo* TII = F.getTarget().getInstrInfo();
MachineJumpTableInfo *MJTI = F.getJumpTableInfo();
MachineConstantPool *MCP = F.getConstantPool();
@@ -1040,12 +1040,12 @@ void JITEmitter::startFunction(MachineFunction &F) {
// Add the function size
ActualSize += TII->GetFunctionSizeInBytes(F);
- DEBUG(errs() << "JIT: ActualSize before globals " << ActualSize << "\n");
+ DEBUG(dbgs() << "JIT: ActualSize before globals " << ActualSize << "\n");
// Add the size of the globals that will be allocated after this function.
// These are all the ones referenced from this function that were not
// previously allocated.
ActualSize += GetSizeOfGlobalsInBytes(F);
- DEBUG(errs() << "JIT: ActualSize after globals " << ActualSize << "\n");
+ DEBUG(dbgs() << "JIT: ActualSize after globals " << ActualSize << "\n");
} else if (SizeEstimate > 0) {
// SizeEstimate will be non-zero on reallocation attempts.
ActualSize = SizeEstimate;
@@ -1104,7 +1104,7 @@ bool JITEmitter::finishFunction(MachineFunction &F) {
if (MR.isExternalSymbol()) {
ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
false);
- DEBUG(errs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
+ DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
<< ResultPtr << "]\n");
// If the target REALLY wants a stub for this function, emit it now.
@@ -1136,7 +1136,7 @@ bool JITEmitter::finishFunction(MachineFunction &F) {
unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
MR.setGOTIndex(idx);
if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
- DEBUG(errs() << "JIT: GOT was out of date for " << ResultPtr
+ DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
<< " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
<< "\n");
((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
@@ -1153,7 +1153,7 @@ bool JITEmitter::finishFunction(MachineFunction &F) {
if (MemMgr->isManagingGOT()) {
unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
- DEBUG(errs() << "JIT: GOT was out of date for " << (void*)BufferBegin
+ DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
<< " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
<< "\n");
((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
@@ -1182,7 +1182,7 @@ bool JITEmitter::finishFunction(MachineFunction &F) {
TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
EmissionDetails);
- DEBUG(errs() << "JIT: Finished CodeGen of [" << (void*)FnStart
+ DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
<< "] Function: " << F.getFunction()->getName()
<< ": " << (FnEnd-FnStart) << " bytes of text, "
<< Relocations.size() << " relocations\n");
@@ -1195,31 +1195,31 @@ bool JITEmitter::finishFunction(MachineFunction &F) {
DEBUG(
if (sys::hasDisassembler()) {
- errs() << "JIT: Disassembled code:\n";
- errs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
+ dbgs() << "JIT: Disassembled code:\n";
+ dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
(uintptr_t)FnStart);
} else {
- errs() << "JIT: Binary code:\n";
+ dbgs() << "JIT: Binary code:\n";
uint8_t* q = FnStart;
for (int i = 0; q < FnEnd; q += 4, ++i) {
if (i == 4)
i = 0;
if (i == 0)
- errs() << "JIT: " << (long)(q - FnStart) << ": ";
+ dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
bool Done = false;
for (int j = 3; j >= 0; --j) {
if (q + j >= FnEnd)
Done = true;
else
- errs() << (unsigned short)q[j];
+ dbgs() << (unsigned short)q[j];
}
if (Done)
break;
- errs() << ' ';
+ dbgs() << ' ';
if (i == 3)
- errs() << '\n';
+ dbgs() << '\n';
}
- errs()<< '\n';
+ dbgs()<< '\n';
}
);
@@ -1268,7 +1268,7 @@ bool JITEmitter::finishFunction(MachineFunction &F) {
}
void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
- DEBUG(errs() << "JIT: Ran out of space for native code. Reattempting.\n");
+ DEBUG(dbgs() << "JIT: Ran out of space for native code. Reattempting.\n");
Relocations.clear(); // Clear the old relocations or we'll reapply them.
ConstPoolAddresses.clear();
++NumRetries;
@@ -1319,7 +1319,7 @@ void JITEmitter::deallocateMemForFunction(const Function *F) {
// in the JITResolver. Were there a memory manager deallocateStub routine,
// we could call that at this point too.
if (FnRefs.empty()) {
- DEBUG(errs() << "\nJIT: Invalidated Stub at [" << Stub << "]\n");
+ DEBUG(dbgs() << "\nJIT: Invalidated Stub at [" << Stub << "]\n");
StubFnRefs.erase(Stub);
// Invalidate the stub. If it is a GV stub, update the JIT's global
@@ -1365,7 +1365,7 @@ void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
if (ConstantPoolBase == 0) return; // Buffer overflow.
- DEBUG(errs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
+ DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
<< "] (size: " << Size << ", alignment: " << Align << ")\n");
// Initialize the memory for all of the constant pool entries.
@@ -1383,8 +1383,8 @@ void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
"entry has not been implemented!");
}
TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
- DEBUG(errs() << "JIT: CP" << i << " at [0x";
- errs().write_hex(CAddr) << "]\n");
+ DEBUG(dbgs() << "JIT: CP" << i << " at [0x";
+ dbgs().write_hex(CAddr) << "]\n");
const Type *Ty = CPE.Val.ConstVal->getType();
Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
diff --git a/lib/ExecutionEngine/JIT/JITMemoryManager.cpp b/lib/ExecutionEngine/JIT/JITMemoryManager.cpp
index 80cb999..a17caa1 100644
--- a/lib/ExecutionEngine/JIT/JITMemoryManager.cpp
+++ b/lib/ExecutionEngine/JIT/JITMemoryManager.cpp
@@ -352,7 +352,7 @@ namespace {
// another block of memory and add it to the free list.
if (largest < ActualSize ||
largest <= FreeRangeHeader::getMinBlockSize()) {
- DEBUG(errs() << "JIT: Allocating another slab of memory for function.");
+ DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
}
diff --git a/lib/ExecutionEngine/JIT/OProfileJITEventListener.cpp b/lib/ExecutionEngine/JIT/OProfileJITEventListener.cpp
index 52a8f71..d01c4b2 100644
--- a/lib/ExecutionEngine/JIT/OProfileJITEventListener.cpp
+++ b/lib/ExecutionEngine/JIT/OProfileJITEventListener.cpp
@@ -50,9 +50,9 @@ OProfileJITEventListener::OProfileJITEventListener()
: Agent(op_open_agent()) {
if (Agent == NULL) {
const std::string err_str = sys::StrError();
- DEBUG(errs() << "Failed to connect to OProfile agent: " << err_str << "\n");
+ DEBUG(dbgs() << "Failed to connect to OProfile agent: " << err_str << "\n");
} else {
- DEBUG(errs() << "Connected to OProfile agent.\n");
+ DEBUG(dbgs() << "Connected to OProfile agent.\n");
}
}
@@ -60,10 +60,10 @@ OProfileJITEventListener::~OProfileJITEventListener() {
if (Agent != NULL) {
if (op_close_agent(Agent) == -1) {
const std::string err_str = sys::StrError();
- DEBUG(errs() << "Failed to disconnect from OProfile agent: "
+ DEBUG(dbgs() << "Failed to disconnect from OProfile agent: "
<< err_str << "\n");
} else {
- DEBUG(errs() << "Disconnected from OProfile agent.\n");
+ DEBUG(dbgs() << "Disconnected from OProfile agent.\n");
}
}
}
@@ -92,7 +92,7 @@ static debug_line_info LineStartToOProfileFormat(
const DebugLocTuple &tuple = MF.getDebugLocTuple(Loc);
Result.lineno = tuple.Line;
Result.filename = Filenames.getFilename(tuple.Scope);
- DEBUG(errs() << "Mapping " << reinterpret_cast<void*>(Result.vma) << " to "
+ DEBUG(dbgs() << "Mapping " << reinterpret_cast<void*>(Result.vma) << " to "
<< Result.filename << ":" << Result.lineno << "\n");
return Result;
}
@@ -105,7 +105,7 @@ void OProfileJITEventListener::NotifyFunctionEmitted(
if (op_write_native_code(Agent, F.getName().data(),
reinterpret_cast<uint64_t>(FnStart),
FnStart, FnSize) == -1) {
- DEBUG(errs() << "Failed to tell OProfile about native function "
+ DEBUG(dbgs() << "Failed to tell OProfile about native function "
<< F.getName() << " at ["
<< FnStart << "-" << ((char*)FnStart + FnSize) << "]\n");
return;
@@ -133,7 +133,7 @@ void OProfileJITEventListener::NotifyFunctionEmitted(
if (!LineInfo.empty()) {
if (op_write_debug_line_info(Agent, FnStart,
LineInfo.size(), &*LineInfo.begin()) == -1) {
- DEBUG(errs()
+ DEBUG(dbgs()
<< "Failed to tell OProfile about line numbers for native function "
<< F.getName() << " at ["
<< FnStart << "-" << ((char*)FnStart + FnSize) << "]\n");
@@ -145,7 +145,7 @@ void OProfileJITEventListener::NotifyFunctionEmitted(
void OProfileJITEventListener::NotifyFreeingMachineCode(void *FnStart) {
assert(FnStart && "Invalid function pointer");
if (op_unload_native_code(Agent, reinterpret_cast<uint64_t>(FnStart)) == -1) {
- DEBUG(errs()
+ DEBUG(dbgs()
<< "Failed to tell OProfile about unload of native function at "
<< FnStart << "\n");
}
diff --git a/lib/Linker/LinkModules.cpp b/lib/Linker/LinkModules.cpp
index 104cbe9..dcd696c 100644
--- a/lib/Linker/LinkModules.cpp
+++ b/lib/Linker/LinkModules.cpp
@@ -25,6 +25,7 @@
#include "llvm/ValueSymbolTable.h"
#include "llvm/Instructions.h"
#include "llvm/Assembly/Writer.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Path.h"
@@ -144,7 +145,7 @@ protected:
// for debugging...
virtual void dump() const {
- errs() << "AbstractTypeSet!\n";
+ dbgs() << "AbstractTypeSet!\n";
}
};
}
@@ -337,11 +338,11 @@ static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
static void PrintMap(const std::map<const Value*, Value*> &M) {
for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
I != E; ++I) {
- errs() << " Fr: " << (void*)I->first << " ";
+ dbgs() << " Fr: " << (void*)I->first << " ";
I->first->dump();
- errs() << " To: " << (void*)I->second << " ";
+ dbgs() << " To: " << (void*)I->second << " ";
I->second->dump();
- errs() << "\n";
+ dbgs() << "\n";
}
}
#endif
@@ -404,10 +405,10 @@ static Value *RemapOperand(const Value *In,
}
#ifndef NDEBUG
- errs() << "LinkModules ValueMap: \n";
+ dbgs() << "LinkModules ValueMap: \n";
PrintMap(ValueMap);
- errs() << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
+ dbgs() << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
llvm_unreachable("Couldn't remap value!");
#endif
return 0;
@@ -854,9 +855,14 @@ static bool LinkAlias(Module *Dest, const Module *Src,
} else {
// No linking to be performed, simply create an identical version of the
// alias over in the dest module...
-
+ Constant *Aliasee = DAliasee;
+ // Fixup aliases to bitcasts. Note that aliases to GEPs are still broken
+ // by this, but aliases to GEPs are broken to a lot of other things, so
+ // it's less important.
+ if (SGA->getType() != DAliasee->getType())
+ Aliasee = ConstantExpr::getBitCast(DAliasee, SGA->getType());
NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
- SGA->getName(), DAliasee, Dest);
+ SGA->getName(), Aliasee, Dest);
CopyGVAttributes(NewGA, SGA);
// Proceed to 'common' steps
@@ -1222,9 +1228,15 @@ static bool LinkAppendingVars(Module *M,
static bool ResolveAliases(Module *Dest) {
for (Module::alias_iterator I = Dest->alias_begin(), E = Dest->alias_end();
I != E; ++I)
- if (const GlobalValue *GV = I->resolveAliasedGlobal())
- if (GV != I && !GV->isDeclaration())
- I->replaceAllUsesWith(const_cast<GlobalValue*>(GV));
+ // We can't sue resolveGlobalAlias here because we need to preserve
+ // bitcasts and GEPs.
+ if (const Constant *C = I->getAliasee()) {
+ while (dyn_cast<GlobalAlias>(C))
+ C = cast<GlobalAlias>(C)->getAliasee();
+ const GlobalValue *GV = dyn_cast<GlobalValue>(C);
+ if (C != I && !(GV && GV->isDeclaration()))
+ I->replaceAllUsesWith(const_cast<Constant*>(C));
+ }
return false;
}
diff --git a/lib/MC/MCExpr.cpp b/lib/MC/MCExpr.cpp
index a5a2256..a19ec19 100644
--- a/lib/MC/MCExpr.cpp
+++ b/lib/MC/MCExpr.cpp
@@ -11,6 +11,7 @@
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -108,8 +109,8 @@ void MCExpr::print(raw_ostream &OS, const MCAsmInfo *MAI) const {
}
void MCExpr::dump() const {
- print(errs(), 0);
- errs() << '\n';
+ print(dbgs(), 0);
+ dbgs() << '\n';
}
/* *** */
diff --git a/lib/MC/MCInst.cpp b/lib/MC/MCInst.cpp
index d050318..7c7a644 100644
--- a/lib/MC/MCInst.cpp
+++ b/lib/MC/MCInst.cpp
@@ -9,6 +9,7 @@
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCExpr.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -31,8 +32,8 @@ void MCOperand::print(raw_ostream &OS, const MCAsmInfo *MAI) const {
}
void MCOperand::dump() const {
- print(errs(), 0);
- errs() << "\n";
+ print(dbgs(), 0);
+ dbgs() << "\n";
}
void MCInst::print(raw_ostream &OS, const MCAsmInfo *MAI) const {
@@ -45,6 +46,6 @@ void MCInst::print(raw_ostream &OS, const MCAsmInfo *MAI) const {
}
void MCInst::dump() const {
- print(errs(), 0);
- errs() << "\n";
+ print(dbgs(), 0);
+ dbgs() << "\n";
}
diff --git a/lib/MC/MCSectionELF.cpp b/lib/MC/MCSectionELF.cpp
index c6812ed..4d520ec 100644
--- a/lib/MC/MCSectionELF.cpp
+++ b/lib/MC/MCSectionELF.cpp
@@ -8,10 +8,10 @@
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCSectionELF.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/MC/MCAsmInfo.h"
-
using namespace llvm;
MCSectionELF *MCSectionELF::
@@ -23,7 +23,7 @@ Create(StringRef Section, unsigned Type, unsigned Flags,
// ShouldOmitSectionDirective - Decides whether a '.section' directive
// should be printed before the section name
bool MCSectionELF::ShouldOmitSectionDirective(const char *Name,
- const MCAsmInfo &MAI) const {
+ const MCAsmInfo &MAI) const {
// FIXME: Does .section .bss/.data/.text work everywhere??
if (strcmp(Name, ".text") == 0 ||
@@ -37,7 +37,6 @@ bool MCSectionELF::ShouldOmitSectionDirective(const char *Name,
// ShouldPrintSectionType - Only prints the section type if supported
bool MCSectionELF::ShouldPrintSectionType(unsigned Ty) const {
-
if (IsExplicit && !(Ty == SHT_NOBITS || Ty == SHT_PROGBITS))
return false;
diff --git a/lib/MC/MCSymbol.cpp b/lib/MC/MCSymbol.cpp
index b145d07..265d06c 100644
--- a/lib/MC/MCSymbol.cpp
+++ b/lib/MC/MCSymbol.cpp
@@ -9,6 +9,7 @@
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -51,11 +52,14 @@ static bool NameNeedsEscaping(StringRef Str, const MCAsmInfo &MAI) {
return false;
}
-static void PrintMangledName(raw_ostream &OS, StringRef Str,
- const MCAsmInfo &MAI) {
+/// printMangledName - Print the specified string in mangled form if it uses
+/// any unusual characters.
+void MCSymbol::printMangledName(StringRef Str, raw_ostream &OS,
+ const MCAsmInfo *MAI) {
// The first character is not allowed to be a number unless the target
// explicitly allows it.
- if (!MAI.doesAllowNameToStartWithDigit() && Str[0] >= '0' && Str[0] <= '9') {
+ if ((MAI == 0 || !MAI->doesAllowNameToStartWithDigit()) &&
+ Str[0] >= '0' && Str[0] <= '9') {
MangleLetter(OS, Str[0]);
Str = Str.substr(1);
}
@@ -94,7 +98,7 @@ void MCSymbol::print(raw_ostream &OS, const MCAsmInfo *MAI) const {
// On systems that do not allow quoted names, print with mangling.
if (!MAI->doesAllowQuotesInName())
- return PrintMangledName(OS, getName(), *MAI);
+ return printMangledName(getName(), OS, MAI);
// If the string contains a double quote or newline, we still have to mangle
// it.
@@ -106,5 +110,5 @@ void MCSymbol::print(raw_ostream &OS, const MCAsmInfo *MAI) const {
}
void MCSymbol::dump() const {
- print(errs(), 0);
+ print(dbgs(), 0);
}
diff --git a/lib/MC/MCValue.cpp b/lib/MC/MCValue.cpp
index 69bd10c..c1222ec 100644
--- a/lib/MC/MCValue.cpp
+++ b/lib/MC/MCValue.cpp
@@ -8,6 +8,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCValue.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -30,5 +31,5 @@ void MCValue::print(raw_ostream &OS, const MCAsmInfo *MAI) const {
}
void MCValue::dump() const {
- print(errs(), 0);
+ print(dbgs(), 0);
}
diff --git a/lib/Support/APInt.cpp b/lib/Support/APInt.cpp
index 9532e1e..9d14684 100644
--- a/lib/Support/APInt.cpp
+++ b/lib/Support/APInt.cpp
@@ -1580,12 +1580,12 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
uint64_t b = uint64_t(1) << 32;
#if 0
- DEBUG(errs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
- DEBUG(errs() << "KnuthDiv: original:");
- DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
- DEBUG(errs() << " by");
- DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]);
- DEBUG(errs() << '\n');
+ DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
+ DEBUG(dbgs() << "KnuthDiv: original:");
+ DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
+ DEBUG(dbgs() << " by");
+ DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
+ DEBUG(dbgs() << '\n');
#endif
// D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
// u and v by d. Note that we have taken Knuth's advice here to use a power
@@ -1612,17 +1612,17 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
}
u[m+n] = u_carry;
#if 0
- DEBUG(errs() << "KnuthDiv: normal:");
- DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
- DEBUG(errs() << " by");
- DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]);
- DEBUG(errs() << '\n');
+ DEBUG(dbgs() << "KnuthDiv: normal:");
+ DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
+ DEBUG(dbgs() << " by");
+ DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
+ DEBUG(dbgs() << '\n');
#endif
// D2. [Initialize j.] Set j to m. This is the loop counter over the places.
int j = m;
do {
- DEBUG(errs() << "KnuthDiv: quotient digit #" << j << '\n');
+ DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
// D3. [Calculate q'.].
// Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
// Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
@@ -1632,7 +1632,7 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
// value qp is one too large, and it eliminates all cases where qp is two
// too large.
uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
- DEBUG(errs() << "KnuthDiv: dividend == " << dividend << '\n');
+ DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
uint64_t qp = dividend / v[n-1];
uint64_t rp = dividend % v[n-1];
if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
@@ -1641,7 +1641,7 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
qp--;
}
- DEBUG(errs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
+ DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
// D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
// (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
@@ -1652,7 +1652,7 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
bool borrow = subtrahend > u_tmp;
- DEBUG(errs() << "KnuthDiv: u_tmp == " << u_tmp
+ DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp
<< ", subtrahend == " << subtrahend
<< ", borrow = " << borrow << '\n');
@@ -1666,12 +1666,12 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
k++;
}
isNeg |= borrow;
- DEBUG(errs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
+ DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
u[j+i+1] << '\n');
}
- DEBUG(errs() << "KnuthDiv: after subtraction:");
- DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
- DEBUG(errs() << '\n');
+ DEBUG(dbgs() << "KnuthDiv: after subtraction:");
+ DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
+ DEBUG(dbgs() << '\n');
// The digits (u[j+n]...u[j]) should be kept positive; if the result of
// this step is actually negative, (u[j+n]...u[j]) should be left as the
// true value plus b**(n+1), namely as the b's complement of
@@ -1684,9 +1684,9 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
carry = carry && u[i] == 0;
}
}
- DEBUG(errs() << "KnuthDiv: after complement:");
- DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
- DEBUG(errs() << '\n');
+ DEBUG(dbgs() << "KnuthDiv: after complement:");
+ DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
+ DEBUG(dbgs() << '\n');
// D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
// negative, go to step D6; otherwise go on to step D7.
@@ -1707,16 +1707,16 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
}
u[j+n] += carry;
}
- DEBUG(errs() << "KnuthDiv: after correction:");
- DEBUG(for (int i = m+n; i >=0; i--) errs() <<" " << u[i]);
- DEBUG(errs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
+ DEBUG(dbgs() << "KnuthDiv: after correction:");
+ DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]);
+ DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
// D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
} while (--j >= 0);
- DEBUG(errs() << "KnuthDiv: quotient:");
- DEBUG(for (int i = m; i >=0; i--) errs() <<" " << q[i]);
- DEBUG(errs() << '\n');
+ DEBUG(dbgs() << "KnuthDiv: quotient:");
+ DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
+ DEBUG(dbgs() << '\n');
// D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
// remainder may be obtained by dividing u[...] by d. If r is non-null we
@@ -1727,22 +1727,22 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
// shift right here. In order to mak
if (shift) {
unsigned carry = 0;
- DEBUG(errs() << "KnuthDiv: remainder:");
+ DEBUG(dbgs() << "KnuthDiv: remainder:");
for (int i = n-1; i >= 0; i--) {
r[i] = (u[i] >> shift) | carry;
carry = u[i] << (32 - shift);
- DEBUG(errs() << " " << r[i]);
+ DEBUG(dbgs() << " " << r[i]);
}
} else {
for (int i = n-1; i >= 0; i--) {
r[i] = u[i];
- DEBUG(errs() << " " << r[i]);
+ DEBUG(dbgs() << " " << r[i]);
}
}
- DEBUG(errs() << '\n');
+ DEBUG(dbgs() << '\n');
}
#if 0
- DEBUG(errs() << '\n');
+ DEBUG(dbgs() << '\n');
#endif
}
@@ -2191,7 +2191,7 @@ void APInt::dump() const {
SmallString<40> S, U;
this->toStringUnsigned(U);
this->toStringSigned(S);
- errs() << "APInt(" << BitWidth << "b, "
+ dbgs() << "APInt(" << BitWidth << "b, "
<< U.str() << "u " << S.str() << "s)";
}
diff --git a/lib/Support/CommandLine.cpp b/lib/Support/CommandLine.cpp
index b6c0e08..fa692be8 100644
--- a/lib/Support/CommandLine.cpp
+++ b/lib/Support/CommandLine.cpp
@@ -354,7 +354,7 @@ static Option *HandlePrefixedOrGroupedOption(StringRef &Arg, StringRef &Value,
// we don't need to pass argc/argv in.
assert(PGOpt->getValueExpectedFlag() != cl::ValueRequired &&
"Option can not be cl::Grouping AND cl::ValueRequired!");
- int Dummy;
+ int Dummy = 0;
ErrorParsing |= ProvideOption(PGOpt, OneArgName,
StringRef(), 0, 0, Dummy);
@@ -778,10 +778,10 @@ void cl::ParseCommandLineOptions(int argc, char **argv,
free(*i);
}
- DEBUG(errs() << "Args: ";
+ DEBUG(dbgs() << "Args: ";
for (int i = 0; i < argc; ++i)
- errs() << argv[i] << ' ';
- errs() << '\n';
+ dbgs() << argv[i] << ' ';
+ dbgs() << '\n';
);
// If we had an error processing our arguments, don't let the program execute
diff --git a/lib/Support/ConstantRange.cpp b/lib/Support/ConstantRange.cpp
index e427f82..ddf14e3 100644
--- a/lib/Support/ConstantRange.cpp
+++ b/lib/Support/ConstantRange.cpp
@@ -22,6 +22,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/Support/ConstantRange.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Instructions.h"
using namespace llvm;
@@ -655,7 +656,7 @@ void ConstantRange::print(raw_ostream &OS) const {
/// dump - Allow printing from a debugger easily...
///
void ConstantRange::dump() const {
- print(errs());
+ print(dbgs());
}
diff --git a/lib/Support/ErrorHandling.cpp b/lib/Support/ErrorHandling.cpp
index dff4f03..8bb1566 100644
--- a/lib/Support/ErrorHandling.cpp
+++ b/lib/Support/ErrorHandling.cpp
@@ -13,6 +13,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/ADT/Twine.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Threading.h"
@@ -62,11 +63,11 @@ void llvm_unreachable_internal(const char *msg, const char *file,
// llvm_unreachable is intended to be used to indicate "impossible"
// situations, and not legitimate runtime errors.
if (msg)
- errs() << msg << "\n";
- errs() << "UNREACHABLE executed";
+ dbgs() << msg << "\n";
+ dbgs() << "UNREACHABLE executed";
if (file)
- errs() << " at " << file << ":" << line;
- errs() << "!\n";
+ dbgs() << " at " << file << ":" << line;
+ dbgs() << "!\n";
abort();
}
}
diff --git a/lib/Support/FormattedStream.cpp b/lib/Support/FormattedStream.cpp
index 70f2cfa..9ab3666 100644
--- a/lib/Support/FormattedStream.cpp
+++ b/lib/Support/FormattedStream.cpp
@@ -11,6 +11,7 @@
//
//===----------------------------------------------------------------------===//
+#include "llvm/Support/Debug.h"
#include "llvm/Support/FormattedStream.h"
using namespace llvm;
@@ -91,3 +92,10 @@ formatted_raw_ostream &llvm::ferrs() {
static formatted_raw_ostream S(errs());
return S;
}
+
+/// fdbgs() - This returns a reference to a formatted_raw_ostream for
+/// the debug stream. Use it like: fdbgs() << "foo" << "bar";
+formatted_raw_ostream &llvm::fdbgs() {
+ static formatted_raw_ostream S(dbgs());
+ return S;
+}
diff --git a/lib/Support/Statistic.cpp b/lib/Support/Statistic.cpp
index 14f94bc..e787670 100644
--- a/lib/Support/Statistic.cpp
+++ b/lib/Support/Statistic.cpp
@@ -23,6 +23,7 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Mutex.h"
@@ -127,6 +128,6 @@ StatisticInfo::~StatisticInfo() {
OutStream << '\n'; // Flush the output stream...
OutStream.flush();
- if (&OutStream != &outs() && &OutStream != &errs())
+ if (&OutStream != &outs() && &OutStream != &errs() && &OutStream != &dbgs())
delete &OutStream; // Close the file.
}
diff --git a/lib/Support/StringExtras.cpp b/lib/Support/StringExtras.cpp
index 1b233ab..785e0ec 100644
--- a/lib/Support/StringExtras.cpp
+++ b/lib/Support/StringExtras.cpp
@@ -11,50 +11,53 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/SmallVector.h"
-#include <cstring>
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringExtras.h"
using namespace llvm;
+/// StrInStrNoCase - Portable version of strcasestr. Locates the first
+/// occurrence of string 's1' in string 's2', ignoring case. Returns
+/// the offset of s2 in s1 or npos if s2 cannot be found.
+StringRef::size_type llvm::StrInStrNoCase(StringRef s1, StringRef s2) {
+ size_t N = s2.size(), M = s1.size();
+ if (N > M)
+ return StringRef::npos;
+ for (size_t i = 0, e = M - N + 1; i != e; ++i)
+ if (s1.substr(i, N).equals_lower(s2))
+ return i;
+ return StringRef::npos;
+}
+
/// getToken - This function extracts one token from source, ignoring any
/// leading characters that appear in the Delimiters string, and ending the
/// token at any of the characters that appear in the Delimiters string. If
/// there are no tokens in the source string, an empty string is returned.
-/// The Source source string is updated in place to remove the returned string
-/// and any delimiter prefix from it.
-std::string llvm::getToken(std::string &Source, const char *Delimiters) {
- size_t NumDelimiters = std::strlen(Delimiters);
-
+/// The function returns a pair containing the extracted token and the
+/// remaining tail string.
+std::pair<StringRef, StringRef> llvm::getToken(StringRef Source,
+ StringRef Delimiters) {
// Figure out where the token starts.
- std::string::size_type Start =
- Source.find_first_not_of(Delimiters, 0, NumDelimiters);
- if (Start == std::string::npos) Start = Source.size();
-
- // Find the next occurance of the delimiter.
- std::string::size_type End =
- Source.find_first_of(Delimiters, Start, NumDelimiters);
- if (End == std::string::npos) End = Source.size();
-
- // Create the return token.
- std::string Result = std::string(Source.begin()+Start, Source.begin()+End);
+ StringRef::size_type Start = Source.find_first_not_of(Delimiters);
+ if (Start == StringRef::npos) Start = Source.size();
- // Erase the token that we read in.
- Source.erase(Source.begin(), Source.begin()+End);
+ // Find the next occurrence of the delimiter.
+ StringRef::size_type End = Source.find_first_of(Delimiters, Start);
+ if (End == StringRef::npos) End = Source.size();
- return Result;
+ return std::make_pair(Source.substr(Start, End), Source.substr(End));
}
/// SplitString - Split up the specified string according to the specified
/// delimiters, appending the result fragments to the output list.
-void llvm::SplitString(const std::string &Source,
- std::vector<std::string> &OutFragments,
- const char *Delimiters) {
- std::string S = Source;
-
- std::string S2 = getToken(S, Delimiters);
+void llvm::SplitString(StringRef Source,
+ SmallVectorImpl<StringRef> &OutFragments,
+ StringRef Delimiters) {
+ StringRef S2, S;
+ tie(S2, S) = getToken(Source, Delimiters);
while (!S2.empty()) {
OutFragments.push_back(S2);
- S2 = getToken(S, Delimiters);
+ tie(S2, S) = getToken(S, Delimiters);
}
}
diff --git a/lib/Support/StringRef.cpp b/lib/Support/StringRef.cpp
index e4a9984..ae2640b 100644
--- a/lib/Support/StringRef.cpp
+++ b/lib/Support/StringRef.cpp
@@ -8,7 +8,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringRef.h"
-#include "llvm/ADT/SmallVector.h"
+
using namespace llvm;
// MSVC emits references to this into the translation units which reference it.
@@ -51,13 +51,18 @@ unsigned StringRef::edit_distance(llvm::StringRef Other,
size_type m = size();
size_type n = Other.size();
- SmallVector<unsigned, 32> previous(n+1, 0);
- for (SmallVector<unsigned, 32>::size_type i = 0; i <= n; ++i)
+ const unsigned SmallBufferSize = 64;
+ unsigned SmallBuffer[SmallBufferSize];
+ unsigned *Allocated = 0;
+ unsigned *previous = SmallBuffer;
+ if (2*(n + 1) > SmallBufferSize)
+ Allocated = previous = new unsigned [2*(n+1)];
+ unsigned *current = previous + (n + 1);
+
+ for (unsigned i = 0; i <= n; ++i)
previous[i] = i;
- SmallVector<unsigned, 32> current(n+1, 0);
for (size_type y = 1; y <= m; ++y) {
- current.assign(n+1, 0);
current[0] = y;
for (size_type x = 1; x <= n; ++x) {
if (AllowReplacements) {
@@ -69,10 +74,16 @@ unsigned StringRef::edit_distance(llvm::StringRef Other,
else current[x] = min(current[x-1], previous[x]) + 1;
}
}
- current.swap(previous);
+
+ unsigned *tmp = current;
+ current = previous;
+ previous = tmp;
}
- return previous[n];
+ unsigned Result = previous[n];
+ delete [] Allocated;
+
+ return Result;
}
//===----------------------------------------------------------------------===//
diff --git a/lib/Support/Timer.cpp b/lib/Support/Timer.cpp
index 7d32ee6..4bdfac2 100644
--- a/lib/Support/Timer.cpp
+++ b/lib/Support/Timer.cpp
@@ -11,6 +11,7 @@
//
//===----------------------------------------------------------------------===//
+#include "llvm/Support/Debug.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ManagedStatic.h"
@@ -373,7 +374,7 @@ void TimerGroup::removeTimer() {
TimersToPrint.clear();
- if (OutStream != &errs() && OutStream != &outs())
+ if (OutStream != &errs() && OutStream != &outs() && OutStream != &dbgs())
delete OutStream; // Close the file...
}
}
diff --git a/lib/Support/Twine.cpp b/lib/Support/Twine.cpp
index 292c0c2..21504e9 100644
--- a/lib/Support/Twine.cpp
+++ b/lib/Support/Twine.cpp
@@ -9,13 +9,13 @@
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
std::string Twine::str() const {
SmallString<256> Vec;
- toVector(Vec);
- return std::string(Vec.begin(), Vec.end());
+ return toStringRef(Vec).str();
}
void Twine::toVector(SmallVectorImpl<char> &Out) const {
@@ -23,6 +23,13 @@ void Twine::toVector(SmallVectorImpl<char> &Out) const {
print(OS);
}
+StringRef Twine::toStringRef(SmallVectorImpl<char> &Out) const {
+ if (isSingleStringRef())
+ return getSingleStringRef();
+ toVector(Out);
+ return StringRef(Out.data(), Out.size());
+}
+
void Twine::printOneChild(raw_ostream &OS, const void *Ptr,
NodeKind Kind) const {
switch (Kind) {
@@ -125,9 +132,9 @@ void Twine::printRepr(raw_ostream &OS) const {
}
void Twine::dump() const {
- print(llvm::errs());
+ print(llvm::dbgs());
}
void Twine::dumpRepr() const {
- printRepr(llvm::errs());
+ printRepr(llvm::dbgs());
}
diff --git a/lib/System/Win32/DynamicLibrary.inc b/lib/System/Win32/DynamicLibrary.inc
index 10e64aa..c9a89e5 100644
--- a/lib/System/Win32/DynamicLibrary.inc
+++ b/lib/System/Win32/DynamicLibrary.inc
@@ -79,7 +79,7 @@ extern "C" {
// Mingw32 uses msvcrt.dll by default. Don't ignore it.
// Otherwise, user should be aware, what he's doing :)
stricmp(ModuleName, "msvcrt") != 0 &&
-#endif
+#endif
stricmp(ModuleName, "msvcrt20") != 0 &&
stricmp(ModuleName, "msvcrt40") != 0) {
OpenedHandles.push_back((HMODULE)ModuleBase);
@@ -119,24 +119,24 @@ bool DynamicLibrary::LoadLibraryPermanently(const char *filename,
extern "C" { extern void *SYM; }
#if defined(__MINGW32__)
- EXPLICIT_SYMBOL_DEF(_alloca);
- EXPLICIT_SYMBOL_DEF(__main);
- EXPLICIT_SYMBOL_DEF(__ashldi3);
- EXPLICIT_SYMBOL_DEF(__ashrdi3);
- EXPLICIT_SYMBOL_DEF(__cmpdi2);
- EXPLICIT_SYMBOL_DEF(__divdi3);
- EXPLICIT_SYMBOL_DEF(__fixdfdi);
- EXPLICIT_SYMBOL_DEF(__fixsfdi);
- EXPLICIT_SYMBOL_DEF(__fixunsdfdi);
- EXPLICIT_SYMBOL_DEF(__fixunssfdi);
- EXPLICIT_SYMBOL_DEF(__floatdidf);
- EXPLICIT_SYMBOL_DEF(__floatdisf);
- EXPLICIT_SYMBOL_DEF(__lshrdi3);
- EXPLICIT_SYMBOL_DEF(__moddi3);
- EXPLICIT_SYMBOL_DEF(__udivdi3);
- EXPLICIT_SYMBOL_DEF(__umoddi3);
+ EXPLICIT_SYMBOL_DEF(_alloca)
+ EXPLICIT_SYMBOL_DEF(__main)
+ EXPLICIT_SYMBOL_DEF(__ashldi3)
+ EXPLICIT_SYMBOL_DEF(__ashrdi3)
+ EXPLICIT_SYMBOL_DEF(__cmpdi2)
+ EXPLICIT_SYMBOL_DEF(__divdi3)
+ EXPLICIT_SYMBOL_DEF(__fixdfdi)
+ EXPLICIT_SYMBOL_DEF(__fixsfdi)
+ EXPLICIT_SYMBOL_DEF(__fixunsdfdi)
+ EXPLICIT_SYMBOL_DEF(__fixunssfdi)
+ EXPLICIT_SYMBOL_DEF(__floatdidf)
+ EXPLICIT_SYMBOL_DEF(__floatdisf)
+ EXPLICIT_SYMBOL_DEF(__lshrdi3)
+ EXPLICIT_SYMBOL_DEF(__moddi3)
+ EXPLICIT_SYMBOL_DEF(__udivdi3)
+ EXPLICIT_SYMBOL_DEF(__umoddi3)
#elif defined(_MSC_VER)
- EXPLICIT_SYMBOL_DEF(_alloca_probe);
+ EXPLICIT_SYMBOL_DEF(_alloca_probe)
#endif
#endif
@@ -181,7 +181,7 @@ void* DynamicLibrary::SearchForAddressOfSymbol(const char* symbolName) {
EXPLICIT_SYMBOL2(alloca, _alloca);
#undef EXPLICIT_SYMBOL
#undef EXPLICIT_SYMBOL2
-#undef EXPLICIT_SYMBOL_DEF
+#undef EXPLICIT_SYMBOL_DEF
}
#elif defined(_MSC_VER)
{
@@ -189,8 +189,8 @@ void* DynamicLibrary::SearchForAddressOfSymbol(const char* symbolName) {
EXPLICIT_SYMBOL2(_alloca, _alloca_probe);
#undef EXPLICIT_SYMBOL
#undef EXPLICIT_SYMBOL2
-#undef EXPLICIT_SYMBOL_DEF
- }
+#undef EXPLICIT_SYMBOL_DEF
+ }
#endif
return 0;
diff --git a/lib/Target/ARM/ARMBaseInstrInfo.cpp b/lib/Target/ARM/ARMBaseInstrInfo.cpp
index 7cfa097..969c4a4 100644
--- a/lib/Target/ARM/ARMBaseInstrInfo.cpp
+++ b/lib/Target/ARM/ARMBaseInstrInfo.cpp
@@ -938,6 +938,35 @@ ARMBaseInstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
return false;
}
+/// Create a copy of a const pool value. Update CPI to the new index and return
+/// the label UID.
+static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
+ MachineConstantPool *MCP = MF.getConstantPool();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
+ assert(MCPE.isMachineConstantPoolEntry() &&
+ "Expecting a machine constantpool entry!");
+ ARMConstantPoolValue *ACPV =
+ static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
+
+ unsigned PCLabelId = AFI->createConstPoolEntryUId();
+ ARMConstantPoolValue *NewCPV = 0;
+ if (ACPV->isGlobalValue())
+ NewCPV = new ARMConstantPoolValue(ACPV->getGV(), PCLabelId,
+ ARMCP::CPValue, 4);
+ else if (ACPV->isExtSymbol())
+ NewCPV = new ARMConstantPoolValue(MF.getFunction()->getContext(),
+ ACPV->getSymbol(), PCLabelId, 4);
+ else if (ACPV->isBlockAddress())
+ NewCPV = new ARMConstantPoolValue(ACPV->getBlockAddress(), PCLabelId,
+ ARMCP::CPBlockAddress, 4);
+ else
+ llvm_unreachable("Unexpected ARM constantpool value type!!");
+ CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
+ return PCLabelId;
+}
+
void ARMBaseInstrInfo::
reMaterialize(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
@@ -960,28 +989,8 @@ reMaterialize(MachineBasicBlock &MBB,
case ARM::tLDRpci_pic:
case ARM::t2LDRpci_pic: {
MachineFunction &MF = *MBB.getParent();
- ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
- MachineConstantPool *MCP = MF.getConstantPool();
unsigned CPI = Orig->getOperand(1).getIndex();
- const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
- assert(MCPE.isMachineConstantPoolEntry() &&
- "Expecting a machine constantpool entry!");
- ARMConstantPoolValue *ACPV =
- static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
- unsigned PCLabelId = AFI->createConstPoolEntryUId();
- ARMConstantPoolValue *NewCPV = 0;
- if (ACPV->isGlobalValue())
- NewCPV = new ARMConstantPoolValue(ACPV->getGV(), PCLabelId,
- ARMCP::CPValue, 4);
- else if (ACPV->isExtSymbol())
- NewCPV = new ARMConstantPoolValue(MF.getFunction()->getContext(),
- ACPV->getSymbol(), PCLabelId, 4);
- else if (ACPV->isBlockAddress())
- NewCPV = new ARMConstantPoolValue(ACPV->getBlockAddress(), PCLabelId,
- ARMCP::CPBlockAddress, 4);
- else
- llvm_unreachable("Unexpected ARM constantpool value type!!");
- CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
+ unsigned PCLabelId = duplicateCPV(MF, CPI);
MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
DestReg)
.addConstantPoolIndex(CPI).addImm(PCLabelId);
@@ -994,6 +1003,22 @@ reMaterialize(MachineBasicBlock &MBB,
NewMI->getOperand(0).setSubReg(SubIdx);
}
+MachineInstr *
+ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
+ MachineInstr *MI = TargetInstrInfoImpl::duplicate(Orig, MF);
+ switch(Orig->getOpcode()) {
+ case ARM::tLDRpci_pic:
+ case ARM::t2LDRpci_pic: {
+ unsigned CPI = Orig->getOperand(1).getIndex();
+ unsigned PCLabelId = duplicateCPV(MF, CPI);
+ Orig->getOperand(1).setIndex(CPI);
+ Orig->getOperand(2).setImm(PCLabelId);
+ break;
+ }
+ }
+ return MI;
+}
+
bool ARMBaseInstrInfo::isIdentical(const MachineInstr *MI0,
const MachineInstr *MI1,
const MachineRegisterInfo *MRI) const {
diff --git a/lib/Target/ARM/ARMBaseInstrInfo.h b/lib/Target/ARM/ARMBaseInstrInfo.h
index 78d9135..0d9d4a7 100644
--- a/lib/Target/ARM/ARMBaseInstrInfo.h
+++ b/lib/Target/ARM/ARMBaseInstrInfo.h
@@ -287,6 +287,8 @@ public:
const MachineInstr *Orig,
const TargetRegisterInfo *TRI) const;
+ MachineInstr *duplicate(MachineInstr *Orig, MachineFunction &MF) const;
+
virtual bool isIdentical(const MachineInstr *MI, const MachineInstr *Other,
const MachineRegisterInfo *MRI) const;
};
diff --git a/lib/Target/ARM/ARMBaseRegisterInfo.cpp b/lib/Target/ARM/ARMBaseRegisterInfo.cpp
index 7aebdf4..f1b6e1d 100644
--- a/lib/Target/ARM/ARMBaseRegisterInfo.cpp
+++ b/lib/Target/ARM/ARMBaseRegisterInfo.cpp
@@ -217,7 +217,8 @@ ARMBaseRegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
? DarwinCalleeSavedRegClasses : CalleeSavedRegClasses;
}
-BitVector ARMBaseRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
+BitVector ARMBaseRegisterInfo::
+getReservedRegs(const MachineFunction &MF) const {
// FIXME: avoid re-calculating this everytime.
BitVector Reserved(getNumRegs());
Reserved.set(ARM::SP);
@@ -494,7 +495,8 @@ needsStackRealignment(const MachineFunction &MF) const {
!MFI->hasVarSizedObjects());
}
-bool ARMBaseRegisterInfo::cannotEliminateFrame(const MachineFunction &MF) const {
+bool ARMBaseRegisterInfo::
+cannotEliminateFrame(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
if (NoFramePointerElim && MFI->hasCalls())
return true;
@@ -523,7 +525,7 @@ static unsigned estimateStackSize(MachineFunction &MF, MachineFrameInfo *MFI) {
/// estimateRSStackSizeLimit - Look at each instruction that references stack
/// frames and return the stack size limit beyond which some of these
-/// instructions will require scratch register during their expansion later.
+/// instructions will require a scratch register during their expansion later.
unsigned
ARMBaseRegisterInfo::estimateRSStackSizeLimit(MachineFunction &MF) const {
unsigned Limit = (1 << 12) - 1;
@@ -547,6 +549,9 @@ ARMBaseRegisterInfo::estimateRSStackSizeLimit(MachineFunction &MF) const {
// When the stack offset is negative, we will end up using
// the i8 instructions instead.
return (1 << 8) - 1;
+
+ if (AddrMode == ARMII::AddrMode6)
+ return 0;
break; // At most one FI per instruction
}
}
@@ -557,7 +562,7 @@ ARMBaseRegisterInfo::estimateRSStackSizeLimit(MachineFunction &MF) const {
void
ARMBaseRegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
- RegScavenger *RS) const {
+ RegScavenger *RS) const {
// This tells PEI to spill the FP as if it is any other callee-save register
// to take advantage the eliminateFrameIndex machinery. This also ensures it
// is spilled in the order specified by getCalleeSavedRegs() to make it easier
@@ -852,7 +857,7 @@ int ARMBaseRegisterInfo::getDwarfRegNum(unsigned RegNum, bool isEH) const {
}
unsigned ARMBaseRegisterInfo::getRegisterPairEven(unsigned Reg,
- const MachineFunction &MF) const {
+ const MachineFunction &MF) const {
switch (Reg) {
default: break;
// Return 0 if either register of the pair is a special register.
diff --git a/lib/Target/ARM/ARMISelDAGToDAG.cpp b/lib/Target/ARM/ARMISelDAGToDAG.cpp
index d63f3e6..14a45b3 100644
--- a/lib/Target/ARM/ARMISelDAGToDAG.cpp
+++ b/lib/Target/ARM/ARMISelDAGToDAG.cpp
@@ -64,53 +64,53 @@ public:
return CurDAG->getTargetConstant(Imm, MVT::i32);
}
- SDNode *Select(SDValue Op);
+ SDNode *Select(SDNode *N);
virtual void InstructionSelect();
- bool SelectShifterOperandReg(SDValue Op, SDValue N, SDValue &A,
+ bool SelectShifterOperandReg(SDNode *Op, SDValue N, SDValue &A,
SDValue &B, SDValue &C);
- bool SelectAddrMode2(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectAddrMode2(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Offset, SDValue &Opc);
- bool SelectAddrMode2Offset(SDValue Op, SDValue N,
+ bool SelectAddrMode2Offset(SDNode *Op, SDValue N,
SDValue &Offset, SDValue &Opc);
- bool SelectAddrMode3(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectAddrMode3(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Offset, SDValue &Opc);
- bool SelectAddrMode3Offset(SDValue Op, SDValue N,
+ bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
SDValue &Offset, SDValue &Opc);
- bool SelectAddrMode4(SDValue Op, SDValue N, SDValue &Addr,
+ bool SelectAddrMode4(SDNode *Op, SDValue N, SDValue &Addr,
SDValue &Mode);
- bool SelectAddrMode5(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectAddrMode5(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Offset);
- bool SelectAddrMode6(SDValue Op, SDValue N, SDValue &Addr, SDValue &Update,
+ bool SelectAddrMode6(SDNode *Op, SDValue N, SDValue &Addr, SDValue &Update,
SDValue &Opc, SDValue &Align);
- bool SelectAddrModePC(SDValue Op, SDValue N, SDValue &Offset,
+ bool SelectAddrModePC(SDNode *Op, SDValue N, SDValue &Offset,
SDValue &Label);
- bool SelectThumbAddrModeRR(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectThumbAddrModeRR(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Offset);
- bool SelectThumbAddrModeRI5(SDValue Op, SDValue N, unsigned Scale,
+ bool SelectThumbAddrModeRI5(SDNode *Op, SDValue N, unsigned Scale,
SDValue &Base, SDValue &OffImm,
SDValue &Offset);
- bool SelectThumbAddrModeS1(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectThumbAddrModeS1(SDNode *Op, SDValue N, SDValue &Base,
SDValue &OffImm, SDValue &Offset);
- bool SelectThumbAddrModeS2(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectThumbAddrModeS2(SDNode *Op, SDValue N, SDValue &Base,
SDValue &OffImm, SDValue &Offset);
- bool SelectThumbAddrModeS4(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectThumbAddrModeS4(SDNode *Op, SDValue N, SDValue &Base,
SDValue &OffImm, SDValue &Offset);
- bool SelectThumbAddrModeSP(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectThumbAddrModeSP(SDNode *Op, SDValue N, SDValue &Base,
SDValue &OffImm);
- bool SelectT2ShifterOperandReg(SDValue Op, SDValue N,
+ bool SelectT2ShifterOperandReg(SDNode *Op, SDValue N,
SDValue &BaseReg, SDValue &Opc);
- bool SelectT2AddrModeImm12(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectT2AddrModeImm12(SDNode *Op, SDValue N, SDValue &Base,
SDValue &OffImm);
- bool SelectT2AddrModeImm8(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectT2AddrModeImm8(SDNode *Op, SDValue N, SDValue &Base,
SDValue &OffImm);
- bool SelectT2AddrModeImm8Offset(SDValue Op, SDValue N,
+ bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
SDValue &OffImm);
- bool SelectT2AddrModeImm8s4(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectT2AddrModeImm8s4(SDNode *Op, SDValue N, SDValue &Base,
SDValue &OffImm);
- bool SelectT2AddrModeSoReg(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectT2AddrModeSoReg(SDNode *Op, SDValue N, SDValue &Base,
SDValue &OffReg, SDValue &ShImm);
// Include the pieces autogenerated from the target description.
@@ -119,48 +119,48 @@ public:
private:
/// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for
/// ARM.
- SDNode *SelectARMIndexedLoad(SDValue Op);
- SDNode *SelectT2IndexedLoad(SDValue Op);
+ SDNode *SelectARMIndexedLoad(SDNode *N);
+ SDNode *SelectT2IndexedLoad(SDNode *N);
/// SelectDYN_ALLOC - Select dynamic alloc for Thumb.
- SDNode *SelectDYN_ALLOC(SDValue Op);
+ SDNode *SelectDYN_ALLOC(SDNode *N);
/// SelectVLD - Select NEON load intrinsics. NumVecs should
/// be 2, 3 or 4. The opcode arrays specify the instructions used for
/// loads of D registers and even subregs and odd subregs of Q registers.
/// For NumVecs == 2, QOpcodes1 is not used.
- SDNode *SelectVLD(SDValue Op, unsigned NumVecs, unsigned *DOpcodes,
+ SDNode *SelectVLD(SDNode *N, unsigned NumVecs, unsigned *DOpcodes,
unsigned *QOpcodes0, unsigned *QOpcodes1);
/// SelectVST - Select NEON store intrinsics. NumVecs should
/// be 2, 3 or 4. The opcode arrays specify the instructions used for
/// stores of D registers and even subregs and odd subregs of Q registers.
/// For NumVecs == 2, QOpcodes1 is not used.
- SDNode *SelectVST(SDValue Op, unsigned NumVecs, unsigned *DOpcodes,
+ SDNode *SelectVST(SDNode *N, unsigned NumVecs, unsigned *DOpcodes,
unsigned *QOpcodes0, unsigned *QOpcodes1);
/// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should
/// be 2, 3 or 4. The opcode arrays specify the instructions used for
/// load/store of D registers and even subregs and odd subregs of Q registers.
- SDNode *SelectVLDSTLane(SDValue Op, bool IsLoad, unsigned NumVecs,
+ SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad, unsigned NumVecs,
unsigned *DOpcodes, unsigned *QOpcodes0,
unsigned *QOpcodes1);
/// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
- SDNode *SelectV6T2BitfieldExtractOp(SDValue Op, unsigned Opc);
+ SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, unsigned Opc);
/// SelectCMOVOp - Select CMOV instructions for ARM.
- SDNode *SelectCMOVOp(SDValue Op);
- SDNode *SelectT2CMOVShiftOp(SDValue Op, SDValue FalseVal, SDValue TrueVal,
+ SDNode *SelectCMOVOp(SDNode *N);
+ SDNode *SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
ARMCC::CondCodes CCVal, SDValue CCR,
SDValue InFlag);
- SDNode *SelectARMCMOVShiftOp(SDValue Op, SDValue FalseVal, SDValue TrueVal,
+ SDNode *SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
ARMCC::CondCodes CCVal, SDValue CCR,
SDValue InFlag);
- SDNode *SelectT2CMOVSoImmOp(SDValue Op, SDValue FalseVal, SDValue TrueVal,
+ SDNode *SelectT2CMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
ARMCC::CondCodes CCVal, SDValue CCR,
SDValue InFlag);
- SDNode *SelectARMCMOVSoImmOp(SDValue Op, SDValue FalseVal, SDValue TrueVal,
+ SDNode *SelectARMCMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
ARMCC::CondCodes CCVal, SDValue CCR,
SDValue InFlag);
@@ -206,7 +206,7 @@ void ARMDAGToDAGISel::InstructionSelect() {
CurDAG->RemoveDeadNodes();
}
-bool ARMDAGToDAGISel::SelectShifterOperandReg(SDValue Op,
+bool ARMDAGToDAGISel::SelectShifterOperandReg(SDNode *Op,
SDValue N,
SDValue &BaseReg,
SDValue &ShReg,
@@ -230,7 +230,7 @@ bool ARMDAGToDAGISel::SelectShifterOperandReg(SDValue Op,
return true;
}
-bool ARMDAGToDAGISel::SelectAddrMode2(SDValue Op, SDValue N,
+bool ARMDAGToDAGISel::SelectAddrMode2(SDNode *Op, SDValue N,
SDValue &Base, SDValue &Offset,
SDValue &Opc) {
if (N.getOpcode() == ISD::MUL) {
@@ -340,9 +340,9 @@ bool ARMDAGToDAGISel::SelectAddrMode2(SDValue Op, SDValue N,
return true;
}
-bool ARMDAGToDAGISel::SelectAddrMode2Offset(SDValue Op, SDValue N,
+bool ARMDAGToDAGISel::SelectAddrMode2Offset(SDNode *Op, SDValue N,
SDValue &Offset, SDValue &Opc) {
- unsigned Opcode = Op.getOpcode();
+ unsigned Opcode = Op->getOpcode();
ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
? cast<LoadSDNode>(Op)->getAddressingMode()
: cast<StoreSDNode>(Op)->getAddressingMode();
@@ -379,7 +379,7 @@ bool ARMDAGToDAGISel::SelectAddrMode2Offset(SDValue Op, SDValue N,
}
-bool ARMDAGToDAGISel::SelectAddrMode3(SDValue Op, SDValue N,
+bool ARMDAGToDAGISel::SelectAddrMode3(SDNode *Op, SDValue N,
SDValue &Base, SDValue &Offset,
SDValue &Opc) {
if (N.getOpcode() == ISD::SUB) {
@@ -429,9 +429,9 @@ bool ARMDAGToDAGISel::SelectAddrMode3(SDValue Op, SDValue N,
return true;
}
-bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDValue Op, SDValue N,
+bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
SDValue &Offset, SDValue &Opc) {
- unsigned Opcode = Op.getOpcode();
+ unsigned Opcode = Op->getOpcode();
ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
? cast<LoadSDNode>(Op)->getAddressingMode()
: cast<StoreSDNode>(Op)->getAddressingMode();
@@ -451,14 +451,14 @@ bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDValue Op, SDValue N,
return true;
}
-bool ARMDAGToDAGISel::SelectAddrMode4(SDValue Op, SDValue N,
+bool ARMDAGToDAGISel::SelectAddrMode4(SDNode *Op, SDValue N,
SDValue &Addr, SDValue &Mode) {
Addr = N;
Mode = CurDAG->getTargetConstant(0, MVT::i32);
return true;
}
-bool ARMDAGToDAGISel::SelectAddrMode5(SDValue Op, SDValue N,
+bool ARMDAGToDAGISel::SelectAddrMode5(SDNode *Op, SDValue N,
SDValue &Base, SDValue &Offset) {
if (N.getOpcode() != ISD::ADD) {
Base = N;
@@ -506,7 +506,7 @@ bool ARMDAGToDAGISel::SelectAddrMode5(SDValue Op, SDValue N,
return true;
}
-bool ARMDAGToDAGISel::SelectAddrMode6(SDValue Op, SDValue N,
+bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Op, SDValue N,
SDValue &Addr, SDValue &Update,
SDValue &Opc, SDValue &Align) {
Addr = N;
@@ -518,7 +518,7 @@ bool ARMDAGToDAGISel::SelectAddrMode6(SDValue Op, SDValue N,
return true;
}
-bool ARMDAGToDAGISel::SelectAddrModePC(SDValue Op, SDValue N,
+bool ARMDAGToDAGISel::SelectAddrModePC(SDNode *Op, SDValue N,
SDValue &Offset, SDValue &Label) {
if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
Offset = N.getOperand(0);
@@ -530,10 +530,10 @@ bool ARMDAGToDAGISel::SelectAddrModePC(SDValue Op, SDValue N,
return false;
}
-bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue Op, SDValue N,
+bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDNode *Op, SDValue N,
SDValue &Base, SDValue &Offset){
// FIXME dl should come from the parent load or store, not the address
- DebugLoc dl = Op.getDebugLoc();
+ DebugLoc dl = Op->getDebugLoc();
if (N.getOpcode() != ISD::ADD) {
ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
if (!NC || NC->getZExtValue() != 0)
@@ -549,7 +549,7 @@ bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue Op, SDValue N,
}
bool
-ARMDAGToDAGISel::SelectThumbAddrModeRI5(SDValue Op, SDValue N,
+ARMDAGToDAGISel::SelectThumbAddrModeRI5(SDNode *Op, SDValue N,
unsigned Scale, SDValue &Base,
SDValue &OffImm, SDValue &Offset) {
if (Scale == 4) {
@@ -605,25 +605,25 @@ ARMDAGToDAGISel::SelectThumbAddrModeRI5(SDValue Op, SDValue N,
return true;
}
-bool ARMDAGToDAGISel::SelectThumbAddrModeS1(SDValue Op, SDValue N,
+bool ARMDAGToDAGISel::SelectThumbAddrModeS1(SDNode *Op, SDValue N,
SDValue &Base, SDValue &OffImm,
SDValue &Offset) {
return SelectThumbAddrModeRI5(Op, N, 1, Base, OffImm, Offset);
}
-bool ARMDAGToDAGISel::SelectThumbAddrModeS2(SDValue Op, SDValue N,
+bool ARMDAGToDAGISel::SelectThumbAddrModeS2(SDNode *Op, SDValue N,
SDValue &Base, SDValue &OffImm,
SDValue &Offset) {
return SelectThumbAddrModeRI5(Op, N, 2, Base, OffImm, Offset);
}
-bool ARMDAGToDAGISel::SelectThumbAddrModeS4(SDValue Op, SDValue N,
+bool ARMDAGToDAGISel::SelectThumbAddrModeS4(SDNode *Op, SDValue N,
SDValue &Base, SDValue &OffImm,
SDValue &Offset) {
return SelectThumbAddrModeRI5(Op, N, 4, Base, OffImm, Offset);
}
-bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue Op, SDValue N,
+bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDNode *Op, SDValue N,
SDValue &Base, SDValue &OffImm) {
if (N.getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(N)->getIndex();
@@ -659,7 +659,7 @@ bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue Op, SDValue N,
return false;
}
-bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDValue Op, SDValue N,
+bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDNode *Op, SDValue N,
SDValue &BaseReg,
SDValue &Opc) {
ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N);
@@ -679,7 +679,7 @@ bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDValue Op, SDValue N,
return false;
}
-bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue Op, SDValue N,
+bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDNode *Op, SDValue N,
SDValue &Base, SDValue &OffImm) {
// Match simple R + imm12 operands.
@@ -729,7 +729,7 @@ bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue Op, SDValue N,
return true;
}
-bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue Op, SDValue N,
+bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDNode *Op, SDValue N,
SDValue &Base, SDValue &OffImm) {
// Match simple R - imm8 operands.
if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::SUB) {
@@ -753,9 +753,9 @@ bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue Op, SDValue N,
return false;
}
-bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDValue Op, SDValue N,
+bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
SDValue &OffImm){
- unsigned Opcode = Op.getOpcode();
+ unsigned Opcode = Op->getOpcode();
ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
? cast<LoadSDNode>(Op)->getAddressingMode()
: cast<StoreSDNode>(Op)->getAddressingMode();
@@ -772,7 +772,7 @@ bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDValue Op, SDValue N,
return false;
}
-bool ARMDAGToDAGISel::SelectT2AddrModeImm8s4(SDValue Op, SDValue N,
+bool ARMDAGToDAGISel::SelectT2AddrModeImm8s4(SDNode *Op, SDValue N,
SDValue &Base, SDValue &OffImm) {
if (N.getOpcode() == ISD::ADD) {
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
@@ -798,7 +798,7 @@ bool ARMDAGToDAGISel::SelectT2AddrModeImm8s4(SDValue Op, SDValue N,
return false;
}
-bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue Op, SDValue N,
+bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDNode *Op, SDValue N,
SDValue &Base,
SDValue &OffReg, SDValue &ShImm) {
// (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
@@ -854,8 +854,8 @@ static inline SDValue getAL(SelectionDAG *CurDAG) {
return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32);
}
-SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDValue Op) {
- LoadSDNode *LD = cast<LoadSDNode>(Op);
+SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) {
+ LoadSDNode *LD = cast<LoadSDNode>(N);
ISD::MemIndexedMode AM = LD->getAddressingMode();
if (AM == ISD::UNINDEXED)
return NULL;
@@ -866,23 +866,23 @@ SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDValue Op) {
unsigned Opcode = 0;
bool Match = false;
if (LoadedVT == MVT::i32 &&
- SelectAddrMode2Offset(Op, LD->getOffset(), Offset, AMOpc)) {
+ SelectAddrMode2Offset(N, LD->getOffset(), Offset, AMOpc)) {
Opcode = isPre ? ARM::LDR_PRE : ARM::LDR_POST;
Match = true;
} else if (LoadedVT == MVT::i16 &&
- SelectAddrMode3Offset(Op, LD->getOffset(), Offset, AMOpc)) {
+ SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
Match = true;
Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
: (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
} else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
if (LD->getExtensionType() == ISD::SEXTLOAD) {
- if (SelectAddrMode3Offset(Op, LD->getOffset(), Offset, AMOpc)) {
+ if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
Match = true;
Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
}
} else {
- if (SelectAddrMode2Offset(Op, LD->getOffset(), Offset, AMOpc)) {
+ if (SelectAddrMode2Offset(N, LD->getOffset(), Offset, AMOpc)) {
Match = true;
Opcode = isPre ? ARM::LDRB_PRE : ARM::LDRB_POST;
}
@@ -894,15 +894,15 @@ SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDValue Op) {
SDValue Base = LD->getBasePtr();
SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG),
CurDAG->getRegister(0, MVT::i32), Chain };
- return CurDAG->getMachineNode(Opcode, Op.getDebugLoc(), MVT::i32, MVT::i32,
+ return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32,
MVT::Other, Ops, 6);
}
return NULL;
}
-SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDValue Op) {
- LoadSDNode *LD = cast<LoadSDNode>(Op);
+SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) {
+ LoadSDNode *LD = cast<LoadSDNode>(N);
ISD::MemIndexedMode AM = LD->getAddressingMode();
if (AM == ISD::UNINDEXED)
return NULL;
@@ -913,7 +913,7 @@ SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDValue Op) {
bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
unsigned Opcode = 0;
bool Match = false;
- if (SelectT2AddrModeImm8Offset(Op, LD->getOffset(), Offset)) {
+ if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
switch (LoadedVT.getSimpleVT().SimpleTy) {
case MVT::i32:
Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
@@ -942,20 +942,19 @@ SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDValue Op) {
SDValue Base = LD->getBasePtr();
SDValue Ops[]= { Base, Offset, getAL(CurDAG),
CurDAG->getRegister(0, MVT::i32), Chain };
- return CurDAG->getMachineNode(Opcode, Op.getDebugLoc(), MVT::i32, MVT::i32,
+ return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32,
MVT::Other, Ops, 5);
}
return NULL;
}
-SDNode *ARMDAGToDAGISel::SelectDYN_ALLOC(SDValue Op) {
- SDNode *N = Op.getNode();
+SDNode *ARMDAGToDAGISel::SelectDYN_ALLOC(SDNode *N) {
DebugLoc dl = N->getDebugLoc();
- EVT VT = Op.getValueType();
- SDValue Chain = Op.getOperand(0);
- SDValue Size = Op.getOperand(1);
- SDValue Align = Op.getOperand(2);
+ EVT VT = N->getValueType(0);
+ SDValue Chain = N->getOperand(0);
+ SDValue Size = N->getOperand(1);
+ SDValue Align = N->getOperand(2);
SDValue SP = CurDAG->getRegister(ARM::SP, MVT::i32);
int32_t AlignVal = cast<ConstantSDNode>(Align)->getSExtValue();
if (AlignVal < 0)
@@ -1030,15 +1029,14 @@ static EVT GetNEONSubregVT(EVT VT) {
}
}
-SDNode *ARMDAGToDAGISel::SelectVLD(SDValue Op, unsigned NumVecs,
+SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, unsigned NumVecs,
unsigned *DOpcodes, unsigned *QOpcodes0,
unsigned *QOpcodes1) {
assert(NumVecs >=2 && NumVecs <= 4 && "VLD NumVecs out-of-range");
- SDNode *N = Op.getNode();
DebugLoc dl = N->getDebugLoc();
SDValue MemAddr, MemUpdate, MemOpc, Align;
- if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc, Align))
+ if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, MemUpdate, MemOpc, Align))
return NULL;
SDValue Chain = N->getOperand(0);
@@ -1124,15 +1122,14 @@ SDNode *ARMDAGToDAGISel::SelectVLD(SDValue Op, unsigned NumVecs,
return NULL;
}
-SDNode *ARMDAGToDAGISel::SelectVST(SDValue Op, unsigned NumVecs,
+SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, unsigned NumVecs,
unsigned *DOpcodes, unsigned *QOpcodes0,
unsigned *QOpcodes1) {
assert(NumVecs >=2 && NumVecs <= 4 && "VST NumVecs out-of-range");
- SDNode *N = Op.getNode();
DebugLoc dl = N->getDebugLoc();
SDValue MemAddr, MemUpdate, MemOpc, Align;
- if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc, Align))
+ if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, MemUpdate, MemOpc, Align))
return NULL;
SDValue Chain = N->getOperand(0);
@@ -1225,16 +1222,15 @@ SDNode *ARMDAGToDAGISel::SelectVST(SDValue Op, unsigned NumVecs,
return NULL;
}
-SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDValue Op, bool IsLoad,
+SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
unsigned NumVecs, unsigned *DOpcodes,
unsigned *QOpcodes0,
unsigned *QOpcodes1) {
assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
- SDNode *N = Op.getNode();
DebugLoc dl = N->getDebugLoc();
SDValue MemAddr, MemUpdate, MemOpc, Align;
- if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc, Align))
+ if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, MemUpdate, MemOpc, Align))
return NULL;
SDValue Chain = N->getOperand(0);
@@ -1324,38 +1320,38 @@ SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDValue Op, bool IsLoad,
return NULL;
}
-SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDValue Op,
+SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N,
unsigned Opc) {
if (!Subtarget->hasV6T2Ops())
return NULL;
unsigned Shl_imm = 0;
- if (isOpcWithIntImmediate(Op.getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
+ if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
unsigned Srl_imm = 0;
- if (isInt32Immediate(Op.getOperand(1), Srl_imm)) {
+ if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
unsigned Width = 32 - Srl_imm;
int LSB = Srl_imm - Shl_imm;
if (LSB < 0)
return NULL;
SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
- SDValue Ops[] = { Op.getOperand(0).getOperand(0),
+ SDValue Ops[] = { N->getOperand(0).getOperand(0),
CurDAG->getTargetConstant(LSB, MVT::i32),
CurDAG->getTargetConstant(Width, MVT::i32),
getAL(CurDAG), Reg0 };
- return CurDAG->SelectNodeTo(Op.getNode(), Opc, MVT::i32, Ops, 5);
+ return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
}
}
return NULL;
}
SDNode *ARMDAGToDAGISel::
-SelectT2CMOVShiftOp(SDValue Op, SDValue FalseVal, SDValue TrueVal,
+SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
SDValue CPTmp0;
SDValue CPTmp1;
- if (SelectT2ShifterOperandReg(Op, TrueVal, CPTmp0, CPTmp1)) {
+ if (SelectT2ShifterOperandReg(N, TrueVal, CPTmp0, CPTmp1)) {
unsigned SOVal = cast<ConstantSDNode>(CPTmp1)->getZExtValue();
unsigned SOShOp = ARM_AM::getSORegShOp(SOVal);
unsigned Opc = 0;
@@ -1372,27 +1368,27 @@ SelectT2CMOVShiftOp(SDValue Op, SDValue FalseVal, SDValue TrueVal,
CurDAG->getTargetConstant(ARM_AM::getSORegOffset(SOVal), MVT::i32);
SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
SDValue Ops[] = { FalseVal, CPTmp0, SOShImm, CC, CCR, InFlag };
- return CurDAG->SelectNodeTo(Op.getNode(), Opc, MVT::i32,Ops, 6);
+ return CurDAG->SelectNodeTo(N, Opc, MVT::i32,Ops, 6);
}
return 0;
}
SDNode *ARMDAGToDAGISel::
-SelectARMCMOVShiftOp(SDValue Op, SDValue FalseVal, SDValue TrueVal,
+SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
SDValue CPTmp0;
SDValue CPTmp1;
SDValue CPTmp2;
- if (SelectShifterOperandReg(Op, TrueVal, CPTmp0, CPTmp1, CPTmp2)) {
+ if (SelectShifterOperandReg(N, TrueVal, CPTmp0, CPTmp1, CPTmp2)) {
SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
SDValue Ops[] = { FalseVal, CPTmp0, CPTmp1, CPTmp2, CC, CCR, InFlag };
- return CurDAG->SelectNodeTo(Op.getNode(), ARM::MOVCCs, MVT::i32, Ops, 7);
+ return CurDAG->SelectNodeTo(N, ARM::MOVCCs, MVT::i32, Ops, 7);
}
return 0;
}
SDNode *ARMDAGToDAGISel::
-SelectT2CMOVSoImmOp(SDValue Op, SDValue FalseVal, SDValue TrueVal,
+SelectT2CMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
if (!T)
@@ -1402,14 +1398,14 @@ SelectT2CMOVSoImmOp(SDValue Op, SDValue FalseVal, SDValue TrueVal,
SDValue True = CurDAG->getTargetConstant(T->getZExtValue(), MVT::i32);
SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
- return CurDAG->SelectNodeTo(Op.getNode(),
+ return CurDAG->SelectNodeTo(N,
ARM::t2MOVCCi, MVT::i32, Ops, 5);
}
return 0;
}
SDNode *ARMDAGToDAGISel::
-SelectARMCMOVSoImmOp(SDValue Op, SDValue FalseVal, SDValue TrueVal,
+SelectARMCMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
if (!T)
@@ -1419,19 +1415,19 @@ SelectARMCMOVSoImmOp(SDValue Op, SDValue FalseVal, SDValue TrueVal,
SDValue True = CurDAG->getTargetConstant(T->getZExtValue(), MVT::i32);
SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
- return CurDAG->SelectNodeTo(Op.getNode(),
+ return CurDAG->SelectNodeTo(N,
ARM::MOVCCi, MVT::i32, Ops, 5);
}
return 0;
}
-SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDValue Op) {
- EVT VT = Op.getValueType();
- SDValue FalseVal = Op.getOperand(0);
- SDValue TrueVal = Op.getOperand(1);
- SDValue CC = Op.getOperand(2);
- SDValue CCR = Op.getOperand(3);
- SDValue InFlag = Op.getOperand(4);
+SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDNode *N) {
+ EVT VT = N->getValueType(0);
+ SDValue FalseVal = N->getOperand(0);
+ SDValue TrueVal = N->getOperand(1);
+ SDValue CC = N->getOperand(2);
+ SDValue CCR = N->getOperand(3);
+ SDValue InFlag = N->getOperand(4);
assert(CC.getOpcode() == ISD::Constant);
assert(CCR.getOpcode() == ISD::Register);
ARMCC::CondCodes CCVal =
@@ -1445,18 +1441,18 @@ SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDValue Op) {
SDValue CPTmp1;
SDValue CPTmp2;
if (Subtarget->isThumb()) {
- SDNode *Res = SelectT2CMOVShiftOp(Op, FalseVal, TrueVal,
+ SDNode *Res = SelectT2CMOVShiftOp(N, FalseVal, TrueVal,
CCVal, CCR, InFlag);
if (!Res)
- Res = SelectT2CMOVShiftOp(Op, TrueVal, FalseVal,
+ Res = SelectT2CMOVShiftOp(N, TrueVal, FalseVal,
ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
if (Res)
return Res;
} else {
- SDNode *Res = SelectARMCMOVShiftOp(Op, FalseVal, TrueVal,
+ SDNode *Res = SelectARMCMOVShiftOp(N, FalseVal, TrueVal,
CCVal, CCR, InFlag);
if (!Res)
- Res = SelectARMCMOVShiftOp(Op, TrueVal, FalseVal,
+ Res = SelectARMCMOVShiftOp(N, TrueVal, FalseVal,
ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
if (Res)
return Res;
@@ -1469,18 +1465,18 @@ SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDValue Op) {
// (so_imm:i32 (imm:i32):$true), (imm:i32):$cc)
// Pattern complexity = 10 cost = 1 size = 0
if (Subtarget->isThumb()) {
- SDNode *Res = SelectT2CMOVSoImmOp(Op, FalseVal, TrueVal,
+ SDNode *Res = SelectT2CMOVSoImmOp(N, FalseVal, TrueVal,
CCVal, CCR, InFlag);
if (!Res)
- Res = SelectT2CMOVSoImmOp(Op, TrueVal, FalseVal,
+ Res = SelectT2CMOVSoImmOp(N, TrueVal, FalseVal,
ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
if (Res)
return Res;
} else {
- SDNode *Res = SelectARMCMOVSoImmOp(Op, FalseVal, TrueVal,
+ SDNode *Res = SelectARMCMOVSoImmOp(N, FalseVal, TrueVal,
CCVal, CCR, InFlag);
if (!Res)
- Res = SelectARMCMOVSoImmOp(Op, TrueVal, FalseVal,
+ Res = SelectARMCMOVSoImmOp(N, TrueVal, FalseVal,
ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
if (Res)
return Res;
@@ -1514,11 +1510,10 @@ SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDValue Op) {
Opc = ARM::VMOVDcc;
break;
}
- return CurDAG->SelectNodeTo(Op.getNode(), Opc, VT, Ops, 5);
+ return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5);
}
-SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
- SDNode *N = Op.getNode();
+SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
DebugLoc dl = N->getDebugLoc();
if (N->isMachineOpcode())
@@ -1569,7 +1564,7 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
Ops, 6);
}
- ReplaceUses(Op, SDValue(ResNode, 0));
+ ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
return NULL;
}
@@ -1593,28 +1588,28 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
}
}
case ARMISD::DYN_ALLOC:
- return SelectDYN_ALLOC(Op);
+ return SelectDYN_ALLOC(N);
case ISD::SRL:
- if (SDNode *I = SelectV6T2BitfieldExtractOp(Op,
+ if (SDNode *I = SelectV6T2BitfieldExtractOp(N,
Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX))
return I;
break;
case ISD::SRA:
- if (SDNode *I = SelectV6T2BitfieldExtractOp(Op,
+ if (SDNode *I = SelectV6T2BitfieldExtractOp(N,
Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX))
return I;
break;
case ISD::MUL:
if (Subtarget->isThumb1Only())
break;
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
unsigned RHSV = C->getZExtValue();
if (!RHSV) break;
if (isPowerOf2_32(RHSV-1)) { // 2^n+1?
unsigned ShImm = Log2_32(RHSV-1);
if (ShImm >= 32)
break;
- SDValue V = Op.getOperand(0);
+ SDValue V = N->getOperand(0);
ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
@@ -1630,7 +1625,7 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
unsigned ShImm = Log2_32(RHSV+1);
if (ShImm >= 32)
break;
- SDValue V = Op.getOperand(0);
+ SDValue V = N->getOperand(0);
ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
@@ -1650,7 +1645,7 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
// are entirely contributed by c2 and lower 16-bits are entirely contributed
// by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
// Select it to: "movt x, ((c1 & 0xffff) >> 16)
- EVT VT = Op.getValueType();
+ EVT VT = N->getValueType(0);
if (VT != MVT::i32)
break;
unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
@@ -1658,7 +1653,7 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
: (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
if (!Opc)
break;
- SDValue N0 = Op.getOperand(0), N1 = Op.getOperand(1);
+ SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (!N1C)
break;
@@ -1683,18 +1678,18 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
}
case ARMISD::VMOVRRD:
return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32,
- Op.getOperand(0), getAL(CurDAG),
+ N->getOperand(0), getAL(CurDAG),
CurDAG->getRegister(0, MVT::i32));
case ISD::UMUL_LOHI: {
if (Subtarget->isThumb1Only())
break;
if (Subtarget->isThumb()) {
- SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1),
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
CurDAG->getRegister(0, MVT::i32) };
return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32, Ops,4);
} else {
- SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1),
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
CurDAG->getRegister(0, MVT::i32) };
return CurDAG->getMachineNode(ARM::UMULL, dl, MVT::i32, MVT::i32, Ops, 5);
@@ -1704,11 +1699,11 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
if (Subtarget->isThumb1Only())
break;
if (Subtarget->isThumb()) {
- SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1),
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32, Ops,4);
} else {
- SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1),
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
CurDAG->getRegister(0, MVT::i32) };
return CurDAG->getMachineNode(ARM::SMULL, dl, MVT::i32, MVT::i32, Ops, 5);
@@ -1717,9 +1712,9 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
case ISD::LOAD: {
SDNode *ResNode = 0;
if (Subtarget->isThumb() && Subtarget->hasThumb2())
- ResNode = SelectT2IndexedLoad(Op);
+ ResNode = SelectT2IndexedLoad(N);
else
- ResNode = SelectARMIndexedLoad(Op);
+ ResNode = SelectARMIndexedLoad(N);
if (ResNode)
return ResNode;
// Other cases are autogenerated.
@@ -1740,11 +1735,11 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
unsigned Opc = Subtarget->isThumb() ?
((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
- SDValue Chain = Op.getOperand(0);
- SDValue N1 = Op.getOperand(1);
- SDValue N2 = Op.getOperand(2);
- SDValue N3 = Op.getOperand(3);
- SDValue InFlag = Op.getOperand(4);
+ SDValue Chain = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ SDValue N3 = N->getOperand(3);
+ SDValue InFlag = N->getOperand(4);
assert(N1.getOpcode() == ISD::BasicBlock);
assert(N2.getOpcode() == ISD::Constant);
assert(N3.getOpcode() == ISD::Register);
@@ -1756,23 +1751,23 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
MVT::Flag, Ops, 5);
Chain = SDValue(ResNode, 0);
- if (Op.getNode()->getNumValues() == 2) {
+ if (N->getNumValues() == 2) {
InFlag = SDValue(ResNode, 1);
- ReplaceUses(SDValue(Op.getNode(), 1), InFlag);
+ ReplaceUses(SDValue(N, 1), InFlag);
}
- ReplaceUses(SDValue(Op.getNode(), 0),
+ ReplaceUses(SDValue(N, 0),
SDValue(Chain.getNode(), Chain.getResNo()));
return NULL;
}
case ARMISD::CMOV:
- return SelectCMOVOp(Op);
+ return SelectCMOVOp(N);
case ARMISD::CNEG: {
- EVT VT = Op.getValueType();
- SDValue N0 = Op.getOperand(0);
- SDValue N1 = Op.getOperand(1);
- SDValue N2 = Op.getOperand(2);
- SDValue N3 = Op.getOperand(3);
- SDValue InFlag = Op.getOperand(4);
+ EVT VT = N->getValueType(0);
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ SDValue N3 = N->getOperand(3);
+ SDValue InFlag = N->getOperand(4);
assert(N2.getOpcode() == ISD::Constant);
assert(N3.getOpcode() == ISD::Register);
@@ -1791,7 +1786,7 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
Opc = ARM::VNEGDcc;
break;
}
- return CurDAG->SelectNodeTo(Op.getNode(), Opc, VT, Ops, 5);
+ return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5);
}
case ARMISD::VZIP: {
@@ -1863,7 +1858,7 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
unsigned DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
ARM::VLD2d32, ARM::VLD2d64 };
unsigned QOpcodes[] = { ARM::VLD2q8, ARM::VLD2q16, ARM::VLD2q32 };
- return SelectVLD(Op, 2, DOpcodes, QOpcodes, 0);
+ return SelectVLD(N, 2, DOpcodes, QOpcodes, 0);
}
case Intrinsic::arm_neon_vld3: {
@@ -1871,7 +1866,7 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
ARM::VLD3d32, ARM::VLD3d64 };
unsigned QOpcodes0[] = { ARM::VLD3q8a, ARM::VLD3q16a, ARM::VLD3q32a };
unsigned QOpcodes1[] = { ARM::VLD3q8b, ARM::VLD3q16b, ARM::VLD3q32b };
- return SelectVLD(Op, 3, DOpcodes, QOpcodes0, QOpcodes1);
+ return SelectVLD(N, 3, DOpcodes, QOpcodes0, QOpcodes1);
}
case Intrinsic::arm_neon_vld4: {
@@ -1879,35 +1874,35 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
ARM::VLD4d32, ARM::VLD4d64 };
unsigned QOpcodes0[] = { ARM::VLD4q8a, ARM::VLD4q16a, ARM::VLD4q32a };
unsigned QOpcodes1[] = { ARM::VLD4q8b, ARM::VLD4q16b, ARM::VLD4q32b };
- return SelectVLD(Op, 4, DOpcodes, QOpcodes0, QOpcodes1);
+ return SelectVLD(N, 4, DOpcodes, QOpcodes0, QOpcodes1);
}
case Intrinsic::arm_neon_vld2lane: {
unsigned DOpcodes[] = { ARM::VLD2LNd8, ARM::VLD2LNd16, ARM::VLD2LNd32 };
unsigned QOpcodes0[] = { ARM::VLD2LNq16a, ARM::VLD2LNq32a };
unsigned QOpcodes1[] = { ARM::VLD2LNq16b, ARM::VLD2LNq32b };
- return SelectVLDSTLane(Op, true, 2, DOpcodes, QOpcodes0, QOpcodes1);
+ return SelectVLDSTLane(N, true, 2, DOpcodes, QOpcodes0, QOpcodes1);
}
case Intrinsic::arm_neon_vld3lane: {
unsigned DOpcodes[] = { ARM::VLD3LNd8, ARM::VLD3LNd16, ARM::VLD3LNd32 };
unsigned QOpcodes0[] = { ARM::VLD3LNq16a, ARM::VLD3LNq32a };
unsigned QOpcodes1[] = { ARM::VLD3LNq16b, ARM::VLD3LNq32b };
- return SelectVLDSTLane(Op, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
+ return SelectVLDSTLane(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
}
case Intrinsic::arm_neon_vld4lane: {
unsigned DOpcodes[] = { ARM::VLD4LNd8, ARM::VLD4LNd16, ARM::VLD4LNd32 };
unsigned QOpcodes0[] = { ARM::VLD4LNq16a, ARM::VLD4LNq32a };
unsigned QOpcodes1[] = { ARM::VLD4LNq16b, ARM::VLD4LNq32b };
- return SelectVLDSTLane(Op, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
+ return SelectVLDSTLane(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
}
case Intrinsic::arm_neon_vst2: {
unsigned DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
ARM::VST2d32, ARM::VST2d64 };
unsigned QOpcodes[] = { ARM::VST2q8, ARM::VST2q16, ARM::VST2q32 };
- return SelectVST(Op, 2, DOpcodes, QOpcodes, 0);
+ return SelectVST(N, 2, DOpcodes, QOpcodes, 0);
}
case Intrinsic::arm_neon_vst3: {
@@ -1915,7 +1910,7 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
ARM::VST3d32, ARM::VST3d64 };
unsigned QOpcodes0[] = { ARM::VST3q8a, ARM::VST3q16a, ARM::VST3q32a };
unsigned QOpcodes1[] = { ARM::VST3q8b, ARM::VST3q16b, ARM::VST3q32b };
- return SelectVST(Op, 3, DOpcodes, QOpcodes0, QOpcodes1);
+ return SelectVST(N, 3, DOpcodes, QOpcodes0, QOpcodes1);
}
case Intrinsic::arm_neon_vst4: {
@@ -1923,34 +1918,34 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
ARM::VST4d32, ARM::VST4d64 };
unsigned QOpcodes0[] = { ARM::VST4q8a, ARM::VST4q16a, ARM::VST4q32a };
unsigned QOpcodes1[] = { ARM::VST4q8b, ARM::VST4q16b, ARM::VST4q32b };
- return SelectVST(Op, 4, DOpcodes, QOpcodes0, QOpcodes1);
+ return SelectVST(N, 4, DOpcodes, QOpcodes0, QOpcodes1);
}
case Intrinsic::arm_neon_vst2lane: {
unsigned DOpcodes[] = { ARM::VST2LNd8, ARM::VST2LNd16, ARM::VST2LNd32 };
unsigned QOpcodes0[] = { ARM::VST2LNq16a, ARM::VST2LNq32a };
unsigned QOpcodes1[] = { ARM::VST2LNq16b, ARM::VST2LNq32b };
- return SelectVLDSTLane(Op, false, 2, DOpcodes, QOpcodes0, QOpcodes1);
+ return SelectVLDSTLane(N, false, 2, DOpcodes, QOpcodes0, QOpcodes1);
}
case Intrinsic::arm_neon_vst3lane: {
unsigned DOpcodes[] = { ARM::VST3LNd8, ARM::VST3LNd16, ARM::VST3LNd32 };
unsigned QOpcodes0[] = { ARM::VST3LNq16a, ARM::VST3LNq32a };
unsigned QOpcodes1[] = { ARM::VST3LNq16b, ARM::VST3LNq32b };
- return SelectVLDSTLane(Op, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
+ return SelectVLDSTLane(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
}
case Intrinsic::arm_neon_vst4lane: {
unsigned DOpcodes[] = { ARM::VST4LNd8, ARM::VST4LNd16, ARM::VST4LNd32 };
unsigned QOpcodes0[] = { ARM::VST4LNq16a, ARM::VST4LNq32a };
unsigned QOpcodes1[] = { ARM::VST4LNq16b, ARM::VST4LNq32b };
- return SelectVLDSTLane(Op, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
+ return SelectVLDSTLane(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
}
}
}
}
- return SelectCode(Op);
+ return SelectCode(N);
}
bool ARMDAGToDAGISel::
diff --git a/lib/Target/ARM/ARMISelLowering.cpp b/lib/Target/ARM/ARMISelLowering.cpp
index 334baae..7b62c00 100644
--- a/lib/Target/ARM/ARMISelLowering.cpp
+++ b/lib/Target/ARM/ARMISelLowering.cpp
@@ -3130,6 +3130,9 @@ ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
// exitMBB:
// ...
BB = exitMBB;
+
+ MF->DeleteMachineInstr(MI); // The instruction is gone now.
+
return BB;
}
@@ -3140,7 +3143,7 @@ ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
- MachineFunction *F = BB->getParent();
+ MachineFunction *MF = BB->getParent();
MachineFunction::iterator It = BB;
++It;
@@ -3155,7 +3158,7 @@ ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
case 1:
ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
- strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
+ strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
break;
case 2:
ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
@@ -3167,13 +3170,13 @@ ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
break;
}
- MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
- F->insert(It, loopMBB);
- F->insert(It, exitMBB);
+ MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MF->insert(It, loopMBB);
+ MF->insert(It, exitMBB);
exitMBB->transferSuccessors(BB);
- MachineRegisterInfo &RegInfo = F->getRegInfo();
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
unsigned scratch2 = (!BinOpcode) ? incr :
RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
@@ -3216,7 +3219,7 @@ ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
// ...
BB = exitMBB;
- F->DeleteMachineInstr(MI); // The instruction is gone now.
+ MF->DeleteMachineInstr(MI); // The instruction is gone now.
return BB;
}
@@ -4258,10 +4261,10 @@ std::pair<unsigned, const TargetRegisterClass*>
ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
EVT VT) const {
if (Constraint.size() == 1) {
- // GCC RS6000 Constraint Letters
+ // GCC ARM Constraint Letters
switch (Constraint[0]) {
case 'l':
- if (Subtarget->isThumb1Only())
+ if (Subtarget->isThumb())
return std::make_pair(0U, ARM::tGPRRegisterClass);
else
return std::make_pair(0U, ARM::GPRRegisterClass);
diff --git a/lib/Target/ARM/ARMInstrInfo.td b/lib/Target/ARM/ARMInstrInfo.td
index da8b373..f67e74a 100644
--- a/lib/Target/ARM/ARMInstrInfo.td
+++ b/lib/Target/ARM/ARMInstrInfo.td
@@ -127,8 +127,8 @@ def IsThumb2 : Predicate<"Subtarget->isThumb2()">;
def IsARM : Predicate<"!Subtarget->isThumb()">;
def IsDarwin : Predicate<"Subtarget->isTargetDarwin()">;
def IsNotDarwin : Predicate<"!Subtarget->isTargetDarwin()">;
-def CarryDefIsUnused : Predicate<"!N.getNode()->hasAnyUseOfValue(1)">;
-def CarryDefIsUsed : Predicate<"N.getNode()->hasAnyUseOfValue(1)">;
+def CarryDefIsUnused : Predicate<"!N->hasAnyUseOfValue(1)">;
+def CarryDefIsUsed : Predicate<"N->hasAnyUseOfValue(1)">;
// FIXME: Eventually this will be just "hasV6T2Ops".
def UseMovt : Predicate<"Subtarget->useMovt()">;
diff --git a/lib/Target/ARM/ARMInstrThumb.td b/lib/Target/ARM/ARMInstrThumb.td
index 34d7d8f..603ccf5 100644
--- a/lib/Target/ARM/ARMInstrThumb.td
+++ b/lib/Target/ARM/ARMInstrThumb.td
@@ -113,7 +113,7 @@ def t_addrmode_s1 : Operand<i32>,
def t_addrmode_sp : Operand<i32>,
ComplexPattern<i32, 2, "SelectThumbAddrModeSP", []> {
let PrintMethod = "printThumbAddrModeSPOperand";
- let MIOperandInfo = (ops JustSP:$base, i32imm:$offsimm);
+ let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
}
//===----------------------------------------------------------------------===//
@@ -208,9 +208,8 @@ let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
def tBRIND : TI<(outs), (ins GPR:$dst), IIC_Br, "mov\tpc, $dst",
[(brind GPR:$dst)]>,
- T1Special<{1,0,?,?}> {
- // <Rd> = pc
- let Inst{7} = 1;
+ T1Special<{1,0,1,1}> {
+ // <Rd> = Inst{7:2-0} = pc
let Inst{2-0} = 0b111;
}
}
@@ -342,16 +341,28 @@ def tLDR : T1pI4<(outs tGPR:$dst), (ins t_addrmode_s4:$addr), IIC_iLoadr,
"ldr", "\t$dst, $addr",
[(set tGPR:$dst, (load t_addrmode_s4:$addr))]>,
T1LdSt<0b100>;
+def tLDRi: T1pI4<(outs tGPR:$dst), (ins t_addrmode_s4:$addr), IIC_iLoadr,
+ "ldr", "\t$dst, $addr",
+ []>,
+ T1LdSt4Imm<{1,?,?}>;
def tLDRB : T1pI1<(outs tGPR:$dst), (ins t_addrmode_s1:$addr), IIC_iLoadr,
"ldrb", "\t$dst, $addr",
[(set tGPR:$dst, (zextloadi8 t_addrmode_s1:$addr))]>,
T1LdSt<0b110>;
+def tLDRBi: T1pI1<(outs tGPR:$dst), (ins t_addrmode_s1:$addr), IIC_iLoadr,
+ "ldrb", "\t$dst, $addr",
+ []>,
+ T1LdSt1Imm<{1,?,?}>;
def tLDRH : T1pI2<(outs tGPR:$dst), (ins t_addrmode_s2:$addr), IIC_iLoadr,
"ldrh", "\t$dst, $addr",
[(set tGPR:$dst, (zextloadi16 t_addrmode_s2:$addr))]>,
T1LdSt<0b101>;
+def tLDRHi: T1pI2<(outs tGPR:$dst), (ins t_addrmode_s2:$addr), IIC_iLoadr,
+ "ldrh", "\t$dst, $addr",
+ []>,
+ T1LdSt2Imm<{1,?,?}>;
let AddedComplexity = 10 in
def tLDRSB : T1pI1<(outs tGPR:$dst), (ins t_addrmode_rr:$addr), IIC_iLoadr,
@@ -397,16 +408,28 @@ def tSTR : T1pI4<(outs), (ins tGPR:$src, t_addrmode_s4:$addr), IIC_iStorer,
"str", "\t$src, $addr",
[(store tGPR:$src, t_addrmode_s4:$addr)]>,
T1LdSt<0b000>;
+def tSTRi: T1pI4<(outs), (ins tGPR:$src, t_addrmode_s4:$addr), IIC_iStorer,
+ "str", "\t$src, $addr",
+ []>,
+ T1LdSt4Imm<{0,?,?}>;
def tSTRB : T1pI1<(outs), (ins tGPR:$src, t_addrmode_s1:$addr), IIC_iStorer,
"strb", "\t$src, $addr",
[(truncstorei8 tGPR:$src, t_addrmode_s1:$addr)]>,
T1LdSt<0b010>;
+def tSTRBi: T1pI1<(outs), (ins tGPR:$src, t_addrmode_s1:$addr), IIC_iStorer,
+ "strb", "\t$src, $addr",
+ []>,
+ T1LdSt1Imm<{0,?,?}>;
def tSTRH : T1pI2<(outs), (ins tGPR:$src, t_addrmode_s2:$addr), IIC_iStorer,
"strh", "\t$src, $addr",
[(truncstorei16 tGPR:$src, t_addrmode_s2:$addr)]>,
T1LdSt<0b001>;
+def tSTRHi: T1pI2<(outs), (ins tGPR:$src, t_addrmode_s2:$addr), IIC_iStorer,
+ "strh", "\t$src, $addr",
+ []>,
+ T1LdSt2Imm<{0,?,?}>;
def tSTRspi : T1pIs<(outs), (ins tGPR:$src, t_addrmode_sp:$addr), IIC_iStorei,
"str", "\t$src, $addr",
@@ -748,7 +771,7 @@ let usesCustomInserter = 1 in // Expanded after instruction selection.
// 16-bit movcc in IT blocks for Thumb2.
def tMOVCCr : T1pIt<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iCMOVr,
"mov", "\t$dst, $rhs", []>,
- T1Special<{1,0,?,?}>;
+ T1Special<{1,0,1,1}>;
def tMOVCCi : T1pIt<(outs GPR:$dst), (ins GPR:$lhs, i32imm:$rhs), IIC_iCMOVi,
"mov", "\t$dst, $rhs", []>,
diff --git a/lib/Target/ARM/ARMInstrThumb2.td b/lib/Target/ARM/ARMInstrThumb2.td
index 6f20ed4..769df7e 100644
--- a/lib/Target/ARM/ARMInstrThumb2.td
+++ b/lib/Target/ARM/ARMInstrThumb2.td
@@ -360,8 +360,8 @@ multiclass T2I_bin_ii12rs<bits<3> op23_21, string opc, PatFrag opnode,
opc, ".w\t$dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]> {
let Inst{31-27} = 0b11101;
- let Inst{24} = 1;
let Inst{26-25} = 0b01;
+ let Inst{24} = 1;
let Inst{23-21} = op23_21;
let Inst{20} = 0; // The S bit.
}
diff --git a/lib/Target/ARM/ARMLoadStoreOptimizer.cpp b/lib/Target/ARM/ARMLoadStoreOptimizer.cpp
index b13f98a..b78b95b 100644
--- a/lib/Target/ARM/ARMLoadStoreOptimizer.cpp
+++ b/lib/Target/ARM/ARMLoadStoreOptimizer.cpp
@@ -740,6 +740,18 @@ bool ARMLoadStoreOpt::MergeBaseUpdateLoadStore(MachineBasicBlock &MBB,
/// isMemoryOp - Returns true if instruction is a memory operations (that this
/// pass is capable of operating on).
static bool isMemoryOp(const MachineInstr *MI) {
+ if (MI->hasOneMemOperand()) {
+ const MachineMemOperand *MMO = *MI->memoperands_begin();
+
+ // Don't touch volatile memory accesses - we may be changing their order.
+ if (MMO->isVolatile())
+ return false;
+
+ // Unaligned ldr/str is emulated by some kernels, but unaligned ldm/stm is not.
+ if (MMO->getAlignment() < 4)
+ return false;
+ }
+
int Opcode = MI->getOpcode();
switch (Opcode) {
default: break;
diff --git a/lib/Target/ARM/ARMRegisterInfo.td b/lib/Target/ARM/ARMRegisterInfo.td
index 9fbde81..d393e8d 100644
--- a/lib/Target/ARM/ARMRegisterInfo.td
+++ b/lib/Target/ARM/ARMRegisterInfo.td
@@ -367,19 +367,6 @@ def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
// Condition code registers.
def CCR : RegisterClass<"ARM", [i32], 32, [CPSR]>;
-// Just the stack pointer (for tSTRspi and friends).
-def JustSP : RegisterClass<"ARM", [i32], 32, [SP]> {
- let MethodProtos = [{
- iterator allocation_order_end(const MachineFunction &MF) const;
- }];
- let MethodBodies = [{
- JustSPClass::iterator
- JustSPClass::allocation_order_end(const MachineFunction &MF) const {
- return allocation_order_begin(MF);
- }
- }];
-}
-
//===----------------------------------------------------------------------===//
// Subregister Set Definitions... now that we have all of the pieces, define the
// sub registers for each register.
diff --git a/lib/Target/ARM/AsmParser/ARMAsmParser.cpp b/lib/Target/ARM/AsmParser/ARMAsmParser.cpp
index ed4667b..132738e 100644
--- a/lib/Target/ARM/AsmParser/ARMAsmParser.cpp
+++ b/lib/Target/ARM/AsmParser/ARMAsmParser.cpp
@@ -12,6 +12,7 @@
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAsmLexer.h"
#include "llvm/MC/MCAsmParser.h"
+#include "llvm/MC/MCParsedAsmOperand.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
@@ -78,7 +79,7 @@ private:
/// @name Auto-generated Match Functions
/// {
- bool MatchInstruction(SmallVectorImpl<ARMOperand> &Operands,
+ bool MatchInstruction(const SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCInst &Inst);
/// MatchRegisterName - Match the given string to a register name and return
@@ -94,14 +95,15 @@ public:
ARMAsmParser(const Target &T, MCAsmParser &_Parser)
: TargetAsmParser(T), Parser(_Parser) {}
- virtual bool ParseInstruction(const StringRef &Name, MCInst &Inst);
+ virtual bool ParseInstruction(const StringRef &Name, SMLoc NameLoc,
+ SmallVectorImpl<MCParsedAsmOperand*> &Operands);
virtual bool ParseDirective(AsmToken DirectiveID);
};
/// ARMOperand - Instances of this class represent a parsed ARM machine
/// instruction.
-struct ARMOperand {
+struct ARMOperand : public MCParsedAsmOperand {
enum {
Token,
Register,
@@ -515,9 +517,10 @@ int ARMAsmParser::MatchRegisterName(const StringRef &Name) {
}
/// A hack to allow some testing, to be replaced by a real table gen version.
-bool ARMAsmParser::MatchInstruction(SmallVectorImpl<ARMOperand> &Operands,
- MCInst &Inst) {
- struct ARMOperand Op0 = Operands[0];
+bool ARMAsmParser::
+MatchInstruction(const SmallVectorImpl<MCParsedAsmOperand*> &Operands,
+ MCInst &Inst) {
+ ARMOperand &Op0 = *(ARMOperand*)Operands[0];
assert(Op0.Kind == ARMOperand::Token && "First operand not a Token");
const StringRef &Mnemonic = Op0.getToken();
if (Mnemonic == "add" ||
@@ -578,33 +581,27 @@ bool ARMAsmParser::ParseOperand(ARMOperand &Op) {
}
/// Parse an arm instruction mnemonic followed by its operands.
-bool ARMAsmParser::ParseInstruction(const StringRef &Name, MCInst &Inst) {
- SmallVector<ARMOperand, 7> Operands;
-
- Operands.push_back(ARMOperand::CreateToken(Name));
+bool ARMAsmParser::ParseInstruction(const StringRef &Name, SMLoc NameLoc,
+ SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
+ Operands.push_back(new ARMOperand(ARMOperand::CreateToken(Name)));
SMLoc Loc = getLexer().getTok().getLoc();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
- Operands.push_back(ARMOperand());
- if (ParseOperand(Operands.back()))
- return true;
+ ARMOperand Op;
+ if (ParseOperand(Op)) return true;
+ Operands.push_back(new ARMOperand(Op));
while (getLexer().is(AsmToken::Comma)) {
getLexer().Lex(); // Eat the comma.
// Parse and remember the operand.
- Operands.push_back(ARMOperand());
- if (ParseOperand(Operands.back()))
- return true;
+ if (ParseOperand(Op)) return true;
+ Operands.push_back(new ARMOperand(Op));
}
}
- if (!MatchInstruction(Operands, Inst))
- return false;
-
- Error(Loc, "ARMAsmParser::ParseInstruction only partly implemented");
- return true;
+ return false;
}
/// ParseDirective parses the arm specific directives
diff --git a/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp b/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
index 931d8df..2d13533 100644
--- a/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
+++ b/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
@@ -175,16 +175,16 @@ namespace {
printDataDirective(MCPV->getType());
ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
- std::string Name;
+ SmallString<128> TmpNameStr;
if (ACPV->isLSDA()) {
- SmallString<16> LSDAName;
- raw_svector_ostream(LSDAName) << MAI->getPrivateGlobalPrefix() <<
+ raw_svector_ostream(TmpNameStr) << MAI->getPrivateGlobalPrefix() <<
"_LSDA_" << getFunctionNumber();
- Name = LSDAName.str();
+ O << TmpNameStr.str();
} else if (ACPV->isBlockAddress()) {
- Name = GetBlockAddressSymbol(ACPV->getBlockAddress())->getName();
+ O << GetBlockAddressSymbol(ACPV->getBlockAddress())->getName();
} else if (ACPV->isGlobalValue()) {
+ std::string Name;
GlobalValue *GV = ACPV->getGV();
bool isIndirect = Subtarget->isTargetDarwin() &&
Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel());
@@ -201,16 +201,16 @@ namespace {
GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(Sym) :
MMIMachO.getGVStubEntry(Sym);
if (StubSym == 0) {
- SmallString<128> NameStr;
- Mang->getNameWithPrefix(NameStr, GV, false);
- StubSym = OutContext.GetOrCreateSymbol(NameStr.str());
+ Mang->getNameWithPrefix(TmpNameStr, GV, false);
+ StubSym = OutContext.GetOrCreateSymbol(TmpNameStr.str());
}
}
+ O << Name;
} else {
assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
- Name = Mang->makeNameProper(ACPV->getSymbol());
+ Mang->getNameWithPrefix(TmpNameStr, ACPV->getSymbol());
+ OutContext.GetOrCreateSymbol(TmpNameStr.str())->print(O, MAI);
}
- O << Name;
if (ACPV->hasModifier()) O << "(" << ACPV->getModifier() << ")";
if (ACPV->getPCAdjustment() != 0) {
@@ -392,9 +392,10 @@ void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
}
case MachineOperand::MO_ExternalSymbol: {
bool isCallOp = Modifier && !strcmp(Modifier, "call");
- std::string Name = Mang->makeNameProper(MO.getSymbolName());
-
- O << Name;
+ SmallString<128> NameStr;
+ Mang->getNameWithPrefix(NameStr, MO.getSymbolName());
+ OutContext.GetOrCreateSymbol(NameStr.str())->print(O, MAI);
+
if (isCallOp && Subtarget->isTargetELF() &&
TM.getRelocationModel() == Reloc::PIC_)
O << "(PLT)";
diff --git a/lib/Target/Alpha/AlphaISelDAGToDAG.cpp b/lib/Target/Alpha/AlphaISelDAGToDAG.cpp
index 5b0a89d..eaefef9 100644
--- a/lib/Target/Alpha/AlphaISelDAGToDAG.cpp
+++ b/lib/Target/Alpha/AlphaISelDAGToDAG.cpp
@@ -157,7 +157,7 @@ namespace {
// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
- SDNode *Select(SDValue Op);
+ SDNode *Select(SDNode *N);
/// InstructionSelect - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
@@ -202,7 +202,7 @@ private:
SDNode *getGlobalBaseReg();
SDNode *getGlobalRetAddr();
- void SelectCALL(SDValue Op);
+ void SelectCALL(SDNode *Op);
};
}
@@ -232,8 +232,7 @@ void AlphaDAGToDAGISel::InstructionSelect() {
// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
-SDNode *AlphaDAGToDAGISel::Select(SDValue Op) {
- SDNode *N = Op.getNode();
+SDNode *AlphaDAGToDAGISel::Select(SDNode *N) {
if (N->isMachineOpcode()) {
return NULL; // Already selected.
}
@@ -242,7 +241,7 @@ SDNode *AlphaDAGToDAGISel::Select(SDValue Op) {
switch (N->getOpcode()) {
default: break;
case AlphaISD::CALL:
- SelectCALL(Op);
+ SelectCALL(N);
return NULL;
case ISD::FrameIndex: {
@@ -258,9 +257,9 @@ SDNode *AlphaDAGToDAGISel::Select(SDValue Op) {
case AlphaISD::DivCall: {
SDValue Chain = CurDAG->getEntryNode();
- SDValue N0 = Op.getOperand(0);
- SDValue N1 = Op.getOperand(1);
- SDValue N2 = Op.getOperand(2);
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
Chain = CurDAG->getCopyToReg(Chain, dl, Alpha::R24, N1,
SDValue(0,0));
Chain = CurDAG->getCopyToReg(Chain, dl, Alpha::R25, N2,
@@ -287,7 +286,7 @@ SDNode *AlphaDAGToDAGISel::Select(SDValue Op) {
if (uval == 0) {
SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
Alpha::R31, MVT::i64);
- ReplaceUses(Op, Result);
+ ReplaceUses(SDValue(N, 0), Result);
return NULL;
}
@@ -415,13 +414,12 @@ SDNode *AlphaDAGToDAGISel::Select(SDValue Op) {
}
- return SelectCode(Op);
+ return SelectCode(N);
}
-void AlphaDAGToDAGISel::SelectCALL(SDValue Op) {
+void AlphaDAGToDAGISel::SelectCALL(SDNode *N) {
//TODO: add flag stuff to prevent nondeturministic breakage!
- SDNode *N = Op.getNode();
SDValue Chain = N->getOperand(0);
SDValue Addr = N->getOperand(1);
SDValue InFlag = N->getOperand(N->getNumOperands() - 1);
@@ -442,8 +440,8 @@ void AlphaDAGToDAGISel::SelectCALL(SDValue Op) {
}
InFlag = Chain.getValue(1);
- ReplaceUses(Op.getValue(0), Chain);
- ReplaceUses(Op.getValue(1), InFlag);
+ ReplaceUses(SDValue(N, 0), Chain);
+ ReplaceUses(SDValue(N, 1), InFlag);
}
diff --git a/lib/Target/Blackfin/AsmPrinter/BlackfinAsmPrinter.cpp b/lib/Target/Blackfin/AsmPrinter/BlackfinAsmPrinter.cpp
index 917f7f5..0bd94d4 100644
--- a/lib/Target/Blackfin/AsmPrinter/BlackfinAsmPrinter.cpp
+++ b/lib/Target/Blackfin/AsmPrinter/BlackfinAsmPrinter.cpp
@@ -25,12 +25,14 @@
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Support/Mangler.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/SmallString.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
using namespace llvm;
@@ -179,9 +181,12 @@ void BlackfinAsmPrinter::printOperand(const MachineInstr *MI, int opNum) {
O << Mang->getMangledName(MO.getGlobal());
printOffset(MO.getOffset());
break;
- case MachineOperand::MO_ExternalSymbol:
- O << Mang->makeNameProper(MO.getSymbolName());
+ case MachineOperand::MO_ExternalSymbol: {
+ SmallString<60> NameStr;
+ Mang->getNameWithPrefix(NameStr, MO.getSymbolName());
+ OutContext.GetOrCreateSymbol(NameStr.str())->print(O, MAI);
break;
+ }
case MachineOperand::MO_ConstantPoolIndex:
O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << "_"
<< MO.getIndex();
diff --git a/lib/Target/Blackfin/BlackfinISelDAGToDAG.cpp b/lib/Target/Blackfin/BlackfinISelDAGToDAG.cpp
index 2217af4..e1b6008 100644
--- a/lib/Target/Blackfin/BlackfinISelDAGToDAG.cpp
+++ b/lib/Target/Blackfin/BlackfinISelDAGToDAG.cpp
@@ -51,8 +51,8 @@ namespace {
#include "BlackfinGenDAGISel.inc"
private:
- SDNode *Select(SDValue Op);
- bool SelectADDRspii(SDValue Op, SDValue Addr,
+ SDNode *Select(SDNode *N);
+ bool SelectADDRspii(SDNode *Op, SDValue Addr,
SDValue &Base, SDValue &Offset);
// Walk the DAG after instruction selection, fixing register class issues.
@@ -82,8 +82,7 @@ void BlackfinDAGToDAGISel::InstructionSelect() {
FixRegisterClasses(*CurDAG);
}
-SDNode *BlackfinDAGToDAGISel::Select(SDValue Op) {
- SDNode *N = Op.getNode();
+SDNode *BlackfinDAGToDAGISel::Select(SDNode *N) {
if (N->isMachineOpcode())
return NULL; // Already selected.
@@ -99,10 +98,10 @@ SDNode *BlackfinDAGToDAGISel::Select(SDValue Op) {
}
}
- return SelectCode(Op);
+ return SelectCode(N);
}
-bool BlackfinDAGToDAGISel::SelectADDRspii(SDValue Op,
+bool BlackfinDAGToDAGISel::SelectADDRspii(SDNode *Op,
SDValue Addr,
SDValue &Base,
SDValue &Offset) {
diff --git a/lib/Target/CBackend/CBackend.cpp b/lib/Target/CBackend/CBackend.cpp
index 1ab3c0a..0fd975c 100644
--- a/lib/Target/CBackend/CBackend.cpp
+++ b/lib/Target/CBackend/CBackend.cpp
@@ -25,6 +25,7 @@
#include "llvm/IntrinsicInst.h"
#include "llvm/InlineAsm.h"
#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/ConstantsScanner.h"
#include "llvm/Analysis/FindUsedTypes.h"
@@ -34,6 +35,7 @@
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Support/CallSite.h"
@@ -341,6 +343,15 @@ namespace {
char CWriter::ID = 0;
+
+static std::string Mangle(const std::string &S) {
+ std::string Result;
+ raw_string_ostream OS(Result);
+ MCSymbol::printMangledName(S, OS, 0);
+ return OS.str();
+}
+
+
/// This method inserts names for any unnamed structure types that are used by
/// the program, and removes names from structure types that are not used by the
/// program.
@@ -1431,8 +1442,11 @@ void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
std::string CWriter::GetValueName(const Value *Operand) {
// Mangle globals with the standard mangler interface for LLC compatibility.
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(Operand))
- return Mang->getMangledName(GV);
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(Operand)) {
+ SmallString<128> Str;
+ Mang->getNameWithPrefix(Str, GV, false);
+ return Mangle(Str.str().str());
+ }
std::string Name = Operand->getName();
@@ -1857,7 +1871,6 @@ bool CWriter::doInitialization(Module &M) {
// Ensure that all structure types have names...
Mang = new Mangler(M);
- Mang->markCharUnacceptable('.');
// Keep track of which functions are static ctors/dtors so they can have
// an attribute added to their prototypes.
@@ -2210,7 +2223,7 @@ void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
// Print out forward declarations for structure types before anything else!
Out << "/* Structure forward decls */\n";
for (; I != End; ++I) {
- std::string Name = "struct l_" + Mang->makeNameProper(I->first);
+ std::string Name = "struct " + Mangle("l_"+I->first);
Out << Name << ";\n";
TypeNames.insert(std::make_pair(I->second, Name));
}
@@ -2221,7 +2234,7 @@ void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
// for struct or opaque types.
Out << "/* Typedefs */\n";
for (I = TST.begin(); I != End; ++I) {
- std::string Name = "l_" + Mang->makeNameProper(I->first);
+ std::string Name = Mangle("l_"+I->first);
Out << "typedef ";
printType(Out, I->second, false, Name);
Out << ";\n";
@@ -2921,7 +2934,6 @@ void CWriter::lowerIntrinsics(Function &F) {
case Intrinsic::setjmp:
case Intrinsic::longjmp:
case Intrinsic::prefetch:
- case Intrinsic::dbg_stoppoint:
case Intrinsic::powi:
case Intrinsic::x86_sse_cmp_ss:
case Intrinsic::x86_sse_cmp_ps:
@@ -3178,20 +3190,6 @@ bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
Out << "0; *((void**)&" << GetValueName(&I)
<< ") = __builtin_stack_save()";
return true;
- case Intrinsic::dbg_stoppoint: {
- // If we use writeOperand directly we get a "u" suffix which is rejected
- // by gcc.
- DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
- std::string dir;
- GetConstantStringInfo(SPI.getDirectory(), dir);
- std::string file;
- GetConstantStringInfo(SPI.getFileName(), file);
- Out << "\n#line "
- << SPI.getLine()
- << " \""
- << dir << '/' << file << "\"\n";
- return true;
- }
case Intrinsic::x86_sse_cmp_ss:
case Intrinsic::x86_sse_cmp_ps:
case Intrinsic::x86_sse2_cmp_sd:
diff --git a/lib/Target/CellSPU/SPUISelDAGToDAG.cpp b/lib/Target/CellSPU/SPUISelDAGToDAG.cpp
index c69a751..80693e1 100644
--- a/lib/Target/CellSPU/SPUISelDAGToDAG.cpp
+++ b/lib/Target/CellSPU/SPUISelDAGToDAG.cpp
@@ -277,10 +277,9 @@ namespace {
return CurDAG->getTargetConstant(Imm, SPUtli.getPointerTy());
}
- SDNode *emitBuildVector(SDValue build_vec) {
- EVT vecVT = build_vec.getValueType();
+ SDNode *emitBuildVector(SDNode *bvNode) {
+ EVT vecVT = bvNode->getValueType(0);
EVT eltVT = vecVT.getVectorElementType();
- SDNode *bvNode = build_vec.getNode();
DebugLoc dl = bvNode->getDebugLoc();
// Check to see if this vector can be represented as a CellSPU immediate
@@ -296,13 +295,13 @@ namespace {
((SPU::get_vec_i16imm(bvNode, *CurDAG, MVT::i64).getNode() != 0) ||
(SPU::get_ILHUvec_imm(bvNode, *CurDAG, MVT::i64).getNode() != 0) ||
(SPU::get_vec_u18imm(bvNode, *CurDAG, MVT::i64).getNode() != 0))))
- return Select(build_vec);
+ return Select(bvNode);
// No, need to emit a constant pool spill:
std::vector<Constant*> CV;
- for (size_t i = 0; i < build_vec.getNumOperands(); ++i) {
- ConstantSDNode *V = dyn_cast<ConstantSDNode > (build_vec.getOperand(i));
+ for (size_t i = 0; i < bvNode->getNumOperands(); ++i) {
+ ConstantSDNode *V = dyn_cast<ConstantSDNode > (bvNode->getOperand(i));
CV.push_back(const_cast<ConstantInt *> (V->getConstantIntValue()));
}
@@ -312,49 +311,49 @@ namespace {
SDValue CGPoolOffset =
SPU::LowerConstantPool(CPIdx, *CurDAG,
SPUtli.getSPUTargetMachine());
- return SelectCode(CurDAG->getLoad(build_vec.getValueType(), dl,
+ return SelectCode(CurDAG->getLoad(vecVT, dl,
CurDAG->getEntryNode(), CGPoolOffset,
PseudoSourceValue::getConstantPool(), 0,
- false, Alignment));
+ false, Alignment).getNode());
}
/// Select - Convert the specified operand from a target-independent to a
/// target-specific node if it hasn't already been changed.
- SDNode *Select(SDValue Op);
+ SDNode *Select(SDNode *N);
//! Emit the instruction sequence for i64 shl
- SDNode *SelectSHLi64(SDValue &Op, EVT OpVT);
+ SDNode *SelectSHLi64(SDNode *N, EVT OpVT);
//! Emit the instruction sequence for i64 srl
- SDNode *SelectSRLi64(SDValue &Op, EVT OpVT);
+ SDNode *SelectSRLi64(SDNode *N, EVT OpVT);
//! Emit the instruction sequence for i64 sra
- SDNode *SelectSRAi64(SDValue &Op, EVT OpVT);
+ SDNode *SelectSRAi64(SDNode *N, EVT OpVT);
//! Emit the necessary sequence for loading i64 constants:
- SDNode *SelectI64Constant(SDValue &Op, EVT OpVT, DebugLoc dl);
+ SDNode *SelectI64Constant(SDNode *N, EVT OpVT, DebugLoc dl);
//! Alternate instruction emit sequence for loading i64 constants
SDNode *SelectI64Constant(uint64_t i64const, EVT OpVT, DebugLoc dl);
//! Returns true if the address N is an A-form (local store) address
- bool SelectAFormAddr(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectAFormAddr(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Index);
//! D-form address predicate
- bool SelectDFormAddr(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectDFormAddr(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Index);
/// Alternate D-form address using i7 offset predicate
- bool SelectDForm2Addr(SDValue Op, SDValue N, SDValue &Disp,
+ bool SelectDForm2Addr(SDNode *Op, SDValue N, SDValue &Disp,
SDValue &Base);
/// D-form address selection workhorse
- bool DFormAddressPredicate(SDValue Op, SDValue N, SDValue &Disp,
+ bool DFormAddressPredicate(SDNode *Op, SDValue N, SDValue &Disp,
SDValue &Base, int minOffset, int maxOffset);
//! Address predicate if N can be expressed as an indexed [r+r] operation.
- bool SelectXFormAddr(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectXFormAddr(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Index);
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
@@ -366,13 +365,13 @@ namespace {
switch (ConstraintCode) {
default: return true;
case 'm': // memory
- if (!SelectDFormAddr(Op, Op, Op0, Op1)
- && !SelectAFormAddr(Op, Op, Op0, Op1))
- SelectXFormAddr(Op, Op, Op0, Op1);
+ if (!SelectDFormAddr(Op.getNode(), Op, Op0, Op1)
+ && !SelectAFormAddr(Op.getNode(), Op, Op0, Op1))
+ SelectXFormAddr(Op.getNode(), Op, Op0, Op1);
break;
case 'o': // offsetable
- if (!SelectDFormAddr(Op, Op, Op0, Op1)
- && !SelectAFormAddr(Op, Op, Op0, Op1)) {
+ if (!SelectDFormAddr(Op.getNode(), Op, Op0, Op1)
+ && !SelectAFormAddr(Op.getNode(), Op, Op0, Op1)) {
Op0 = Op;
Op1 = getSmallIPtrImm(0);
}
@@ -429,7 +428,7 @@ SPUDAGToDAGISel::InstructionSelect()
\arg Index The base address index
*/
bool
-SPUDAGToDAGISel::SelectAFormAddr(SDValue Op, SDValue N, SDValue &Base,
+SPUDAGToDAGISel::SelectAFormAddr(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Index) {
// These match the addr256k operand type:
EVT OffsVT = MVT::i16;
@@ -479,7 +478,7 @@ SPUDAGToDAGISel::SelectAFormAddr(SDValue Op, SDValue N, SDValue &Base,
}
bool
-SPUDAGToDAGISel::SelectDForm2Addr(SDValue Op, SDValue N, SDValue &Disp,
+SPUDAGToDAGISel::SelectDForm2Addr(SDNode *Op, SDValue N, SDValue &Disp,
SDValue &Base) {
const int minDForm2Offset = -(1 << 7);
const int maxDForm2Offset = (1 << 7) - 1;
@@ -500,7 +499,7 @@ SPUDAGToDAGISel::SelectDForm2Addr(SDValue Op, SDValue N, SDValue &Disp,
to non-empty SDValue instances.
*/
bool
-SPUDAGToDAGISel::SelectDFormAddr(SDValue Op, SDValue N, SDValue &Base,
+SPUDAGToDAGISel::SelectDFormAddr(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Index) {
return DFormAddressPredicate(Op, N, Base, Index,
SPUFrameInfo::minFrameOffset(),
@@ -508,7 +507,7 @@ SPUDAGToDAGISel::SelectDFormAddr(SDValue Op, SDValue N, SDValue &Base,
}
bool
-SPUDAGToDAGISel::DFormAddressPredicate(SDValue Op, SDValue N, SDValue &Base,
+SPUDAGToDAGISel::DFormAddressPredicate(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Index, int minOffset,
int maxOffset) {
unsigned Opc = N.getOpcode();
@@ -618,7 +617,7 @@ SPUDAGToDAGISel::DFormAddressPredicate(SDValue Op, SDValue N, SDValue &Base,
Index = N;
return true;
} else if (Opc == ISD::Register || Opc == ISD::CopyFromReg) {
- unsigned OpOpc = Op.getOpcode();
+ unsigned OpOpc = Op->getOpcode();
if (OpOpc == ISD::STORE || OpOpc == ISD::LOAD) {
// Direct load/store without getelementptr
@@ -630,7 +629,7 @@ SPUDAGToDAGISel::DFormAddressPredicate(SDValue Op, SDValue N, SDValue &Base,
else
Addr = N; // Register
- Offs = ((OpOpc == ISD::STORE) ? Op.getOperand(3) : Op.getOperand(2));
+ Offs = ((OpOpc == ISD::STORE) ? Op->getOperand(3) : Op->getOperand(2));
if (Offs.getOpcode() == ISD::Constant || Offs.getOpcode() == ISD::UNDEF) {
if (Offs.getOpcode() == ISD::UNDEF)
@@ -667,7 +666,7 @@ SPUDAGToDAGISel::DFormAddressPredicate(SDValue Op, SDValue N, SDValue &Base,
(r)(r) X-form address.
*/
bool
-SPUDAGToDAGISel::SelectXFormAddr(SDValue Op, SDValue N, SDValue &Base,
+SPUDAGToDAGISel::SelectXFormAddr(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Index) {
if (!SelectAFormAddr(Op, N, Base, Index)
&& !SelectDFormAddr(Op, N, Base, Index)) {
@@ -685,12 +684,11 @@ SPUDAGToDAGISel::SelectXFormAddr(SDValue Op, SDValue N, SDValue &Base,
/*!
*/
SDNode *
-SPUDAGToDAGISel::Select(SDValue Op) {
- SDNode *N = Op.getNode();
+SPUDAGToDAGISel::Select(SDNode *N) {
unsigned Opc = N->getOpcode();
int n_ops = -1;
unsigned NewOpc;
- EVT OpVT = Op.getValueType();
+ EVT OpVT = N->getValueType(0);
SDValue Ops[8];
DebugLoc dl = N->getDebugLoc();
@@ -700,8 +698,8 @@ SPUDAGToDAGISel::Select(SDValue Op) {
if (Opc == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(N)->getIndex();
- SDValue TFI = CurDAG->getTargetFrameIndex(FI, Op.getValueType());
- SDValue Imm0 = CurDAG->getTargetConstant(0, Op.getValueType());
+ SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
+ SDValue Imm0 = CurDAG->getTargetConstant(0, N->getValueType(0));
if (FI < 128) {
NewOpc = SPU::AIr32;
@@ -710,9 +708,9 @@ SPUDAGToDAGISel::Select(SDValue Op) {
n_ops = 2;
} else {
NewOpc = SPU::Ar32;
- Ops[0] = CurDAG->getRegister(SPU::R1, Op.getValueType());
+ Ops[0] = CurDAG->getRegister(SPU::R1, N->getValueType(0));
Ops[1] = SDValue(CurDAG->getMachineNode(SPU::ILAr32, dl,
- Op.getValueType(), TFI, Imm0),
+ N->getValueType(0), TFI, Imm0),
0);
n_ops = 2;
}
@@ -720,10 +718,10 @@ SPUDAGToDAGISel::Select(SDValue Op) {
// Catch the i64 constants that end up here. Note: The backend doesn't
// attempt to legalize the constant (it's useless because DAGCombiner
// will insert 64-bit constants and we can't stop it).
- return SelectI64Constant(Op, OpVT, Op.getDebugLoc());
+ return SelectI64Constant(N, OpVT, N->getDebugLoc());
} else if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND)
&& OpVT == MVT::i64) {
- SDValue Op0 = Op.getOperand(0);
+ SDValue Op0 = N->getOperand(0);
EVT Op0VT = Op0.getValueType();
EVT Op0VecVT = EVT::getVectorVT(*CurDAG->getContext(),
Op0VT, (128 / Op0VT.getSizeInBits()));
@@ -760,9 +758,10 @@ SPUDAGToDAGISel::Select(SDValue Op) {
break;
}
- SDNode *shufMaskLoad = emitBuildVector(shufMask);
+ SDNode *shufMaskLoad = emitBuildVector(shufMask.getNode());
SDNode *PromoteScalar =
- SelectCode(CurDAG->getNode(SPUISD::PREFSLOT2VEC, dl, Op0VecVT, Op0));
+ SelectCode(CurDAG->getNode(SPUISD::PREFSLOT2VEC, dl,
+ Op0VecVT, Op0).getNode());
SDValue zextShuffle =
CurDAG->getNode(SPUISD::SHUFB, dl, OpVecVT,
@@ -773,32 +772,32 @@ SPUDAGToDAGISel::Select(SDValue Op) {
// N.B.: BIT_CONVERT replaces and updates the zextShuffle node, so we
// re-use it in the VEC2PREFSLOT selection without needing to explicitly
// call SelectCode (it's already done for us.)
- SelectCode(CurDAG->getNode(ISD::BIT_CONVERT, dl, OpVecVT, zextShuffle));
+ SelectCode(CurDAG->getNode(ISD::BIT_CONVERT, dl, OpVecVT, zextShuffle).getNode());
return SelectCode(CurDAG->getNode(SPUISD::VEC2PREFSLOT, dl, OpVT,
- zextShuffle));
+ zextShuffle).getNode());
} else if (Opc == ISD::ADD && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) {
SDNode *CGLoad =
- emitBuildVector(getCarryGenerateShufMask(*CurDAG, dl));
+ emitBuildVector(getCarryGenerateShufMask(*CurDAG, dl).getNode());
return SelectCode(CurDAG->getNode(SPUISD::ADD64_MARKER, dl, OpVT,
- Op.getOperand(0), Op.getOperand(1),
- SDValue(CGLoad, 0)));
+ N->getOperand(0), N->getOperand(1),
+ SDValue(CGLoad, 0)).getNode());
} else if (Opc == ISD::SUB && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) {
SDNode *CGLoad =
- emitBuildVector(getBorrowGenerateShufMask(*CurDAG, dl));
+ emitBuildVector(getBorrowGenerateShufMask(*CurDAG, dl).getNode());
return SelectCode(CurDAG->getNode(SPUISD::SUB64_MARKER, dl, OpVT,
- Op.getOperand(0), Op.getOperand(1),
- SDValue(CGLoad, 0)));
+ N->getOperand(0), N->getOperand(1),
+ SDValue(CGLoad, 0)).getNode());
} else if (Opc == ISD::MUL && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) {
SDNode *CGLoad =
- emitBuildVector(getCarryGenerateShufMask(*CurDAG, dl));
+ emitBuildVector(getCarryGenerateShufMask(*CurDAG, dl).getNode());
return SelectCode(CurDAG->getNode(SPUISD::MUL64_MARKER, dl, OpVT,
- Op.getOperand(0), Op.getOperand(1),
- SDValue(CGLoad, 0)));
+ N->getOperand(0), N->getOperand(1),
+ SDValue(CGLoad, 0)).getNode());
} else if (Opc == ISD::TRUNCATE) {
- SDValue Op0 = Op.getOperand(0);
+ SDValue Op0 = N->getOperand(0);
if ((Op0.getOpcode() == ISD::SRA || Op0.getOpcode() == ISD::SRL)
&& OpVT == MVT::i32
&& Op0.getValueType() == MVT::i64) {
@@ -834,22 +833,22 @@ SPUDAGToDAGISel::Select(SDValue Op) {
}
} else if (Opc == ISD::SHL) {
if (OpVT == MVT::i64) {
- return SelectSHLi64(Op, OpVT);
+ return SelectSHLi64(N, OpVT);
}
} else if (Opc == ISD::SRL) {
if (OpVT == MVT::i64) {
- return SelectSRLi64(Op, OpVT);
+ return SelectSRLi64(N, OpVT);
}
} else if (Opc == ISD::SRA) {
if (OpVT == MVT::i64) {
- return SelectSRAi64(Op, OpVT);
+ return SelectSRAi64(N, OpVT);
}
} else if (Opc == ISD::FNEG
&& (OpVT == MVT::f64 || OpVT == MVT::v2f64)) {
- DebugLoc dl = Op.getDebugLoc();
+ DebugLoc dl = N->getDebugLoc();
// Check if the pattern is a special form of DFNMS:
// (fneg (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))
- SDValue Op0 = Op.getOperand(0);
+ SDValue Op0 = N->getOperand(0);
if (Op0.getOpcode() == ISD::FSUB) {
SDValue Op00 = Op0.getOperand(0);
if (Op00.getOpcode() == ISD::FMUL) {
@@ -869,28 +868,28 @@ SPUDAGToDAGISel::Select(SDValue Op) {
unsigned Opc = SPU::XORfneg64;
if (OpVT == MVT::f64) {
- signMask = SelectI64Constant(negConst, MVT::i64, dl);
+ signMask = SelectI64Constant(negConst.getNode(), MVT::i64, dl);
} else if (OpVT == MVT::v2f64) {
Opc = SPU::XORfnegvec;
signMask = emitBuildVector(CurDAG->getNode(ISD::BUILD_VECTOR, dl,
MVT::v2i64,
- negConst, negConst));
+ negConst, negConst).getNode());
}
return CurDAG->getMachineNode(Opc, dl, OpVT,
- Op.getOperand(0), SDValue(signMask, 0));
+ N->getOperand(0), SDValue(signMask, 0));
} else if (Opc == ISD::FABS) {
if (OpVT == MVT::f64) {
SDNode *signMask = SelectI64Constant(0x7fffffffffffffffULL, MVT::i64, dl);
return CurDAG->getMachineNode(SPU::ANDfabs64, dl, OpVT,
- Op.getOperand(0), SDValue(signMask, 0));
+ N->getOperand(0), SDValue(signMask, 0));
} else if (OpVT == MVT::v2f64) {
SDValue absConst = CurDAG->getConstant(0x7fffffffffffffffULL, MVT::i64);
SDValue absVec = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64,
absConst, absConst);
- SDNode *signMask = emitBuildVector(absVec);
+ SDNode *signMask = emitBuildVector(absVec.getNode());
return CurDAG->getMachineNode(SPU::ANDfabsvec, dl, OpVT,
- Op.getOperand(0), SDValue(signMask, 0));
+ N->getOperand(0), SDValue(signMask, 0));
}
} else if (Opc == SPUISD::LDRESULT) {
// Custom select instructions for LDRESULT
@@ -925,7 +924,7 @@ SPUDAGToDAGISel::Select(SDValue Op) {
// SPUInstrInfo catches the following patterns:
// (SPUindirect (SPUhi ...), (SPUlo ...))
// (SPUindirect $sp, imm)
- EVT VT = Op.getValueType();
+ EVT VT = N->getValueType(0);
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
RegisterSDNode *RN;
@@ -952,7 +951,7 @@ SPUDAGToDAGISel::Select(SDValue Op) {
else
return CurDAG->getMachineNode(NewOpc, dl, OpVT, Ops, n_ops);
} else
- return SelectCode(Op);
+ return SelectCode(N);
}
/*!
@@ -968,15 +967,15 @@ SPUDAGToDAGISel::Select(SDValue Op) {
* @return The SDNode with the entire instruction sequence
*/
SDNode *
-SPUDAGToDAGISel::SelectSHLi64(SDValue &Op, EVT OpVT) {
- SDValue Op0 = Op.getOperand(0);
+SPUDAGToDAGISel::SelectSHLi64(SDNode *N, EVT OpVT) {
+ SDValue Op0 = N->getOperand(0);
EVT VecVT = EVT::getVectorVT(*CurDAG->getContext(),
OpVT, (128 / OpVT.getSizeInBits()));
- SDValue ShiftAmt = Op.getOperand(1);
+ SDValue ShiftAmt = N->getOperand(1);
EVT ShiftAmtVT = ShiftAmt.getValueType();
SDNode *VecOp0, *SelMask, *ZeroFill, *Shift = 0;
SDValue SelMaskVal;
- DebugLoc dl = Op.getDebugLoc();
+ DebugLoc dl = N->getDebugLoc();
VecOp0 = CurDAG->getMachineNode(SPU::ORv2i64_i64, dl, VecVT, Op0);
SelMaskVal = CurDAG->getTargetConstant(0xff00ULL, MVT::i16);
@@ -1034,14 +1033,14 @@ SPUDAGToDAGISel::SelectSHLi64(SDValue &Op, EVT OpVT) {
* @return The SDNode with the entire instruction sequence
*/
SDNode *
-SPUDAGToDAGISel::SelectSRLi64(SDValue &Op, EVT OpVT) {
- SDValue Op0 = Op.getOperand(0);
+SPUDAGToDAGISel::SelectSRLi64(SDNode *N, EVT OpVT) {
+ SDValue Op0 = N->getOperand(0);
EVT VecVT = EVT::getVectorVT(*CurDAG->getContext(),
OpVT, (128 / OpVT.getSizeInBits()));
- SDValue ShiftAmt = Op.getOperand(1);
+ SDValue ShiftAmt = N->getOperand(1);
EVT ShiftAmtVT = ShiftAmt.getValueType();
SDNode *VecOp0, *Shift = 0;
- DebugLoc dl = Op.getDebugLoc();
+ DebugLoc dl = N->getDebugLoc();
VecOp0 = CurDAG->getMachineNode(SPU::ORv2i64_i64, dl, VecVT, Op0);
@@ -1101,16 +1100,16 @@ SPUDAGToDAGISel::SelectSRLi64(SDValue &Op, EVT OpVT) {
* @return The SDNode with the entire instruction sequence
*/
SDNode *
-SPUDAGToDAGISel::SelectSRAi64(SDValue &Op, EVT OpVT) {
+SPUDAGToDAGISel::SelectSRAi64(SDNode *N, EVT OpVT) {
// Promote Op0 to vector
EVT VecVT = EVT::getVectorVT(*CurDAG->getContext(),
OpVT, (128 / OpVT.getSizeInBits()));
- SDValue ShiftAmt = Op.getOperand(1);
+ SDValue ShiftAmt = N->getOperand(1);
EVT ShiftAmtVT = ShiftAmt.getValueType();
- DebugLoc dl = Op.getDebugLoc();
+ DebugLoc dl = N->getDebugLoc();
SDNode *VecOp0 =
- CurDAG->getMachineNode(SPU::ORv2i64_i64, dl, VecVT, Op.getOperand(0));
+ CurDAG->getMachineNode(SPU::ORv2i64_i64, dl, VecVT, N->getOperand(0));
SDValue SignRotAmt = CurDAG->getTargetConstant(31, ShiftAmtVT);
SDNode *SignRot =
@@ -1170,9 +1169,9 @@ SPUDAGToDAGISel::SelectSRAi64(SDValue &Op, EVT OpVT) {
/*!
Do the necessary magic necessary to load a i64 constant
*/
-SDNode *SPUDAGToDAGISel::SelectI64Constant(SDValue& Op, EVT OpVT,
+SDNode *SPUDAGToDAGISel::SelectI64Constant(SDNode *N, EVT OpVT,
DebugLoc dl) {
- ConstantSDNode *CN = cast<ConstantSDNode>(Op.getNode());
+ ConstantSDNode *CN = cast<ConstantSDNode>(N);
return SelectI64Constant(CN->getZExtValue(), OpVT, dl);
}
@@ -1192,7 +1191,7 @@ SDNode *SPUDAGToDAGISel::SelectI64Constant(uint64_t Value64, EVT OpVT,
ReplaceUses(i64vec, Op0);
return CurDAG->getMachineNode(SPU::ORi64_v2i64, dl, OpVT,
- SDValue(emitBuildVector(Op0), 0));
+ SDValue(emitBuildVector(Op0.getNode()), 0));
} else if (i64vec.getOpcode() == SPUISD::SHUFB) {
SDValue lhs = i64vec.getOperand(0);
SDValue rhs = i64vec.getOperand(1);
@@ -1205,7 +1204,7 @@ SDNode *SPUDAGToDAGISel::SelectI64Constant(uint64_t Value64, EVT OpVT,
SDNode *lhsNode = (lhs.getNode()->isMachineOpcode()
? lhs.getNode()
- : emitBuildVector(lhs));
+ : emitBuildVector(lhs.getNode()));
if (rhs.getOpcode() == ISD::BIT_CONVERT) {
ReplaceUses(rhs, rhs.getOperand(0));
@@ -1214,7 +1213,7 @@ SDNode *SPUDAGToDAGISel::SelectI64Constant(uint64_t Value64, EVT OpVT,
SDNode *rhsNode = (rhs.getNode()->isMachineOpcode()
? rhs.getNode()
- : emitBuildVector(rhs));
+ : emitBuildVector(rhs.getNode()));
if (shufmask.getOpcode() == ISD::BIT_CONVERT) {
ReplaceUses(shufmask, shufmask.getOperand(0));
@@ -1223,18 +1222,18 @@ SDNode *SPUDAGToDAGISel::SelectI64Constant(uint64_t Value64, EVT OpVT,
SDNode *shufMaskNode = (shufmask.getNode()->isMachineOpcode()
? shufmask.getNode()
- : emitBuildVector(shufmask));
+ : emitBuildVector(shufmask.getNode()));
SDNode *shufNode =
Select(CurDAG->getNode(SPUISD::SHUFB, dl, OpVecVT,
SDValue(lhsNode, 0), SDValue(rhsNode, 0),
- SDValue(shufMaskNode, 0)));
+ SDValue(shufMaskNode, 0)).getNode());
return CurDAG->getMachineNode(SPU::ORi64_v2i64, dl, OpVT,
SDValue(shufNode, 0));
} else if (i64vec.getOpcode() == ISD::BUILD_VECTOR) {
return CurDAG->getMachineNode(SPU::ORi64_v2i64, dl, OpVT,
- SDValue(emitBuildVector(i64vec), 0));
+ SDValue(emitBuildVector(i64vec.getNode()), 0));
} else {
llvm_report_error("SPUDAGToDAGISel::SelectI64Constant: Unhandled i64vec"
"condition");
diff --git a/lib/Target/MSP430/MSP430ISelDAGToDAG.cpp b/lib/Target/MSP430/MSP430ISelDAGToDAG.cpp
index 4d40769..4eec757 100644
--- a/lib/Target/MSP430/MSP430ISelDAGToDAG.cpp
+++ b/lib/Target/MSP430/MSP430ISelDAGToDAG.cpp
@@ -146,12 +146,12 @@ namespace {
private:
DenseMap<SDNode*, SDNode*> RMWStores;
void PreprocessForRMW();
- SDNode *Select(SDValue Op);
- SDNode *SelectIndexedLoad(SDValue Op);
- SDNode *SelectIndexedBinOp(SDValue Op, SDValue N1, SDValue N2,
+ SDNode *Select(SDNode *N);
+ SDNode *SelectIndexedLoad(SDNode *Op);
+ SDNode *SelectIndexedBinOp(SDNode *Op, SDValue N1, SDValue N2,
unsigned Opc8, unsigned Opc16);
- bool SelectAddr(SDValue Op, SDValue Addr, SDValue &Base, SDValue &Disp);
+ bool SelectAddr(SDNode *Op, SDValue Addr, SDValue &Base, SDValue &Disp);
#ifndef NDEBUG
unsigned Indent;
@@ -283,7 +283,7 @@ bool MSP430DAGToDAGISel::MatchAddress(SDValue N, MSP430ISelAddressMode &AM) {
/// SelectAddr - returns true if it is able pattern match an addressing mode.
/// It returns the operands which make up the maximal addressing mode it can
/// match by reference.
-bool MSP430DAGToDAGISel::SelectAddr(SDValue Op, SDValue N,
+bool MSP430DAGToDAGISel::SelectAddr(SDNode *Op, SDValue N,
SDValue &Base, SDValue &Disp) {
MSP430ISelAddressMode AM;
@@ -326,7 +326,7 @@ SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
switch (ConstraintCode) {
default: return true;
case 'm': // memory
- if (!SelectAddr(Op, Op, Op0, Op1))
+ if (!SelectAddr(Op.getNode(), Op, Op0, Op1))
return true;
break;
}
@@ -627,8 +627,8 @@ static bool isValidIndexedLoad(const LoadSDNode *LD) {
return true;
}
-SDNode *MSP430DAGToDAGISel::SelectIndexedLoad(SDValue Op) {
- LoadSDNode *LD = cast<LoadSDNode>(Op);
+SDNode *MSP430DAGToDAGISel::SelectIndexedLoad(SDNode *N) {
+ LoadSDNode *LD = cast<LoadSDNode>(N);
if (!isValidIndexedLoad(LD))
return NULL;
@@ -646,17 +646,17 @@ SDNode *MSP430DAGToDAGISel::SelectIndexedLoad(SDValue Op) {
return NULL;
}
- return CurDAG->getMachineNode(Opcode, Op.getDebugLoc(),
+ return CurDAG->getMachineNode(Opcode, N->getDebugLoc(),
VT, MVT::i16, MVT::Other,
LD->getBasePtr(), LD->getChain());
}
-SDNode *MSP430DAGToDAGISel::SelectIndexedBinOp(SDValue Op,
+SDNode *MSP430DAGToDAGISel::SelectIndexedBinOp(SDNode *Op,
SDValue N1, SDValue N2,
unsigned Opc8, unsigned Opc16) {
if (N1.getOpcode() == ISD::LOAD &&
N1.hasOneUse() &&
- IsLegalAndProfitableToFold(N1.getNode(), Op.getNode(), Op.getNode())) {
+ IsLegalAndProfitableToFold(N1.getNode(), Op, Op)) {
LoadSDNode *LD = cast<LoadSDNode>(N1);
if (!isValidIndexedLoad(LD))
return NULL;
@@ -667,7 +667,7 @@ SDNode *MSP430DAGToDAGISel::SelectIndexedBinOp(SDValue Op,
MemRefs0[0] = cast<MemSDNode>(N1)->getMemOperand();
SDValue Ops0[] = { N2, LD->getBasePtr(), LD->getChain() };
SDNode *ResNode =
- CurDAG->SelectNodeTo(Op.getNode(), Opc,
+ CurDAG->SelectNodeTo(Op, Opc,
VT, MVT::i16, MVT::Other,
Ops0, 3);
cast<MachineSDNode>(ResNode)->setMemRefs(MemRefs0, MemRefs0 + 1);
@@ -707,9 +707,8 @@ void MSP430DAGToDAGISel::InstructionSelect() {
RMWStores.clear();
}
-SDNode *MSP430DAGToDAGISel::Select(SDValue Op) {
- SDNode *Node = Op.getNode();
- DebugLoc dl = Op.getDebugLoc();
+SDNode *MSP430DAGToDAGISel::Select(SDNode *Node) {
+ DebugLoc dl = Node->getDebugLoc();
// Dump information about the Node being selected
DEBUG(errs().indent(Indent) << "Selecting: ");
@@ -730,7 +729,7 @@ SDNode *MSP430DAGToDAGISel::Select(SDValue Op) {
switch (Node->getOpcode()) {
default: break;
case ISD::FrameIndex: {
- assert(Op.getValueType() == MVT::i16);
+ assert(Node->getValueType(0) == MVT::i16);
int FI = cast<FrameIndexSDNode>(Node)->getIndex();
SDValue TFI = CurDAG->getTargetFrameIndex(FI, MVT::i16);
if (Node->hasOneUse())
@@ -740,18 +739,18 @@ SDNode *MSP430DAGToDAGISel::Select(SDValue Op) {
TFI, CurDAG->getTargetConstant(0, MVT::i16));
}
case ISD::LOAD:
- if (SDNode *ResNode = SelectIndexedLoad(Op))
+ if (SDNode *ResNode = SelectIndexedLoad(Node))
return ResNode;
// Other cases are autogenerated.
break;
case ISD::ADD:
if (SDNode *ResNode =
- SelectIndexedBinOp(Op,
- Op.getOperand(0), Op.getOperand(1),
+ SelectIndexedBinOp(Node,
+ Node->getOperand(0), Node->getOperand(1),
MSP430::ADD8rm_POST, MSP430::ADD16rm_POST))
return ResNode;
else if (SDNode *ResNode =
- SelectIndexedBinOp(Op, Op.getOperand(1), Op.getOperand(0),
+ SelectIndexedBinOp(Node, Node->getOperand(1), Node->getOperand(0),
MSP430::ADD8rm_POST, MSP430::ADD16rm_POST))
return ResNode;
@@ -759,8 +758,8 @@ SDNode *MSP430DAGToDAGISel::Select(SDValue Op) {
break;
case ISD::SUB:
if (SDNode *ResNode =
- SelectIndexedBinOp(Op,
- Op.getOperand(0), Op.getOperand(1),
+ SelectIndexedBinOp(Node,
+ Node->getOperand(0), Node->getOperand(1),
MSP430::SUB8rm_POST, MSP430::SUB16rm_POST))
return ResNode;
@@ -768,12 +767,12 @@ SDNode *MSP430DAGToDAGISel::Select(SDValue Op) {
break;
case ISD::AND:
if (SDNode *ResNode =
- SelectIndexedBinOp(Op,
- Op.getOperand(0), Op.getOperand(1),
+ SelectIndexedBinOp(Node,
+ Node->getOperand(0), Node->getOperand(1),
MSP430::AND8rm_POST, MSP430::AND16rm_POST))
return ResNode;
else if (SDNode *ResNode =
- SelectIndexedBinOp(Op, Op.getOperand(1), Op.getOperand(0),
+ SelectIndexedBinOp(Node, Node->getOperand(1), Node->getOperand(0),
MSP430::AND8rm_POST, MSP430::AND16rm_POST))
return ResNode;
@@ -781,12 +780,12 @@ SDNode *MSP430DAGToDAGISel::Select(SDValue Op) {
break;
case ISD::OR:
if (SDNode *ResNode =
- SelectIndexedBinOp(Op,
- Op.getOperand(0), Op.getOperand(1),
+ SelectIndexedBinOp(Node,
+ Node->getOperand(0), Node->getOperand(1),
MSP430::OR8rm_POST, MSP430::OR16rm_POST))
return ResNode;
else if (SDNode *ResNode =
- SelectIndexedBinOp(Op, Op.getOperand(1), Op.getOperand(0),
+ SelectIndexedBinOp(Node, Node->getOperand(1), Node->getOperand(0),
MSP430::OR8rm_POST, MSP430::OR16rm_POST))
return ResNode;
@@ -794,12 +793,12 @@ SDNode *MSP430DAGToDAGISel::Select(SDValue Op) {
break;
case ISD::XOR:
if (SDNode *ResNode =
- SelectIndexedBinOp(Op,
- Op.getOperand(0), Op.getOperand(1),
+ SelectIndexedBinOp(Node,
+ Node->getOperand(0), Node->getOperand(1),
MSP430::XOR8rm_POST, MSP430::XOR16rm_POST))
return ResNode;
else if (SDNode *ResNode =
- SelectIndexedBinOp(Op, Op.getOperand(1), Op.getOperand(0),
+ SelectIndexedBinOp(Node, Node->getOperand(1), Node->getOperand(0),
MSP430::XOR8rm_POST, MSP430::XOR16rm_POST))
return ResNode;
@@ -808,11 +807,11 @@ SDNode *MSP430DAGToDAGISel::Select(SDValue Op) {
}
// Select the default instruction
- SDNode *ResNode = SelectCode(Op);
+ SDNode *ResNode = SelectCode(Node);
DEBUG(errs() << std::string(Indent-2, ' ') << "=> ");
- if (ResNode == NULL || ResNode == Op.getNode())
- DEBUG(Op.getNode()->dump(CurDAG));
+ if (ResNode == NULL || ResNode == Node)
+ DEBUG(Node->dump(CurDAG));
else
DEBUG(ResNode->dump(CurDAG));
DEBUG(errs() << "\n");
diff --git a/lib/Target/MSP430/MSP430ISelLowering.cpp b/lib/Target/MSP430/MSP430ISelLowering.cpp
index 5fe9b20..d3dce4b 100644
--- a/lib/Target/MSP430/MSP430ISelLowering.cpp
+++ b/lib/Target/MSP430/MSP430ISelLowering.cpp
@@ -660,16 +660,16 @@ static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC,
default: llvm_unreachable("Invalid integer condition!");
case ISD::SETEQ:
TCC = MSP430CC::COND_E; // aka COND_Z
- // Minor optimization: if RHS is a constant, swap operands, then the
+ // Minor optimization: if LHS is a constant, swap operands, then the
// constant can be folded into comparison.
- if (RHS.getOpcode() == ISD::Constant)
+ if (LHS.getOpcode() == ISD::Constant)
std::swap(LHS, RHS);
break;
case ISD::SETNE:
TCC = MSP430CC::COND_NE; // aka COND_NZ
- // Minor optimization: if RHS is a constant, swap operands, then the
+ // Minor optimization: if LHS is a constant, swap operands, then the
// constant can be folded into comparison.
- if (RHS.getOpcode() == ISD::Constant)
+ if (LHS.getOpcode() == ISD::Constant)
std::swap(LHS, RHS);
break;
case ISD::SETULE:
@@ -1014,8 +1014,8 @@ MSP430TargetLowering::EmitShiftInstr(MachineInstr *MI,
// BB:
// cmp 0, N
// je RemBB
- BuildMI(BB, dl, TII.get(MSP430::CMP8ir))
- .addImm(0).addReg(ShiftAmtSrcReg);
+ BuildMI(BB, dl, TII.get(MSP430::CMP8ri))
+ .addReg(ShiftAmtSrcReg).addImm(0);
BuildMI(BB, dl, TII.get(MSP430::JCC))
.addMBB(RemBB)
.addImm(MSP430CC::COND_E);
@@ -1045,6 +1045,7 @@ MSP430TargetLowering::EmitShiftInstr(MachineInstr *MI,
.addReg(SrcReg).addMBB(BB)
.addReg(ShiftReg2).addMBB(LoopBB);
+ F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
return RemBB;
}
diff --git a/lib/Target/MSP430/MSP430InstrInfo.td b/lib/Target/MSP430/MSP430InstrInfo.td
index d67ba90..022d171 100644
--- a/lib/Target/MSP430/MSP430InstrInfo.td
+++ b/lib/Target/MSP430/MSP430InstrInfo.td
@@ -819,38 +819,40 @@ def SWPB16r : Pseudo<(outs GR16:$dst), (ins GR16:$src),
// Integer comparisons
let Defs = [SRW] in {
def CMP8rr : Pseudo<(outs), (ins GR8:$src1, GR8:$src2),
- "cmp.b\t{$src1, $src2}",
+ "cmp.b\t{$src2, $src1}",
[(MSP430cmp GR8:$src1, GR8:$src2), (implicit SRW)]>;
def CMP16rr : Pseudo<(outs), (ins GR16:$src1, GR16:$src2),
- "cmp.w\t{$src1, $src2}",
+ "cmp.w\t{$src2, $src1}",
[(MSP430cmp GR16:$src1, GR16:$src2), (implicit SRW)]>;
-def CMP8ir : Pseudo<(outs), (ins i8imm:$src1, GR8:$src2),
- "cmp.b\t{$src1, $src2}",
- [(MSP430cmp imm:$src1, GR8:$src2), (implicit SRW)]>;
-def CMP16ir : Pseudo<(outs), (ins i16imm:$src1, GR16:$src2),
- "cmp.w\t{$src1, $src2}",
- [(MSP430cmp imm:$src1, GR16:$src2), (implicit SRW)]>;
-
-def CMP8im : Pseudo<(outs), (ins i8imm:$src1, memsrc:$src2),
- "cmp.b\t{$src1, $src2}",
- [(MSP430cmp (i8 imm:$src1), (load addr:$src2)), (implicit SRW)]>;
-def CMP16im : Pseudo<(outs), (ins i16imm:$src1, memsrc:$src2),
- "cmp.w\t{$src1, $src2}",
- [(MSP430cmp (i16 imm:$src1), (load addr:$src2)), (implicit SRW)]>;
+def CMP8ri : Pseudo<(outs), (ins GR8:$src1, i8imm:$src2),
+ "cmp.b\t{$src2, $src1}",
+ [(MSP430cmp GR8:$src1, imm:$src2), (implicit SRW)]>;
+def CMP16ri : Pseudo<(outs), (ins GR16:$src1, i16imm:$src2),
+ "cmp.w\t{$src2, $src1}",
+ [(MSP430cmp GR16:$src1, imm:$src2), (implicit SRW)]>;
+
+def CMP8mi : Pseudo<(outs), (ins memsrc:$src1, i8imm:$src2),
+ "cmp.b\t{$src2, $src1}",
+ [(MSP430cmp (load addr:$src1),
+ (i8 imm:$src2)), (implicit SRW)]>;
+def CMP16mi : Pseudo<(outs), (ins memsrc:$src1, i16imm:$src2),
+ "cmp.w\t{$src2, $src1}",
+ [(MSP430cmp (load addr:$src1),
+ (i16 imm:$src2)), (implicit SRW)]>;
def CMP8rm : Pseudo<(outs), (ins GR8:$src1, memsrc:$src2),
- "cmp.b\t{$src1, $src2}",
+ "cmp.b\t{$src2, $src1}",
[(MSP430cmp GR8:$src1, (load addr:$src2)), (implicit SRW)]>;
def CMP16rm : Pseudo<(outs), (ins GR16:$src1, memsrc:$src2),
- "cmp.w\t{$src1, $src2}",
+ "cmp.w\t{$src2, $src1}",
[(MSP430cmp GR16:$src1, (load addr:$src2)), (implicit SRW)]>;
def CMP8mr : Pseudo<(outs), (ins memsrc:$src1, GR8:$src2),
- "cmp.b\t{$src1, $src2}",
+ "cmp.b\t{$src2, $src1}",
[(MSP430cmp (load addr:$src1), GR8:$src2), (implicit SRW)]>;
def CMP16mr : Pseudo<(outs), (ins memsrc:$src1, GR16:$src2),
- "cmp.w\t{$src1, $src2}",
+ "cmp.w\t{$src2, $src1}",
[(MSP430cmp (load addr:$src1), GR16:$src2), (implicit SRW)]>;
diff --git a/lib/Target/Mips/MipsISelDAGToDAG.cpp b/lib/Target/Mips/MipsISelDAGToDAG.cpp
index ede111d..a53e918 100644
--- a/lib/Target/Mips/MipsISelDAGToDAG.cpp
+++ b/lib/Target/Mips/MipsISelDAGToDAG.cpp
@@ -84,14 +84,14 @@ private:
}
SDNode *getGlobalBaseReg();
- SDNode *Select(SDValue N);
+ SDNode *Select(SDNode *N);
// Complex Pattern.
- bool SelectAddr(SDValue Op, SDValue N,
+ bool SelectAddr(SDNode *Op, SDValue N,
SDValue &Base, SDValue &Offset);
- SDNode *SelectLoadFp64(SDValue N);
- SDNode *SelectStoreFp64(SDValue N);
+ SDNode *SelectLoadFp64(SDNode *N);
+ SDNode *SelectStoreFp64(SDNode *N);
// getI32Imm - Return a target constant with the specified
// value, of type i32.
@@ -132,7 +132,7 @@ SDNode *MipsDAGToDAGISel::getGlobalBaseReg() {
/// ComplexPattern used on MipsInstrInfo
/// Used on Mips Load/Store instructions
bool MipsDAGToDAGISel::
-SelectAddr(SDValue Op, SDValue Addr, SDValue &Offset, SDValue &Base)
+SelectAddr(SDNode *Op, SDValue Addr, SDValue &Offset, SDValue &Base)
{
// if Address is FI, get the TargetFrameIndex.
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
@@ -199,19 +199,19 @@ SelectAddr(SDValue Op, SDValue Addr, SDValue &Offset, SDValue &Base)
return true;
}
-SDNode *MipsDAGToDAGISel::SelectLoadFp64(SDValue N) {
+SDNode *MipsDAGToDAGISel::SelectLoadFp64(SDNode *N) {
MVT::SimpleValueType NVT =
- N.getNode()->getValueType(0).getSimpleVT().SimpleTy;
+ N->getValueType(0).getSimpleVT().SimpleTy;
if (!Subtarget.isMips1() || NVT != MVT::f64)
return NULL;
- if (!Predicate_unindexedload(N.getNode()) ||
- !Predicate_load(N.getNode()))
+ if (!Predicate_unindexedload(N) ||
+ !Predicate_load(N))
return NULL;
- SDValue Chain = N.getOperand(0);
- SDValue N1 = N.getOperand(1);
+ SDValue Chain = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
SDValue Offset0, Offset1, Base;
if (!SelectAddr(N, N1, Offset0, Base) ||
@@ -220,7 +220,7 @@ SDNode *MipsDAGToDAGISel::SelectLoadFp64(SDValue N) {
MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
- DebugLoc dl = N.getDebugLoc();
+ DebugLoc dl = N->getDebugLoc();
// The second load should start after for 4 bytes.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Offset0))
@@ -255,27 +255,27 @@ SDNode *MipsDAGToDAGISel::SelectLoadFp64(SDValue N) {
SDValue I1 = CurDAG->getTargetInsertSubreg(Mips::SUBREG_FPODD, dl,
MVT::f64, I0, SDValue(LD1, 0));
- ReplaceUses(N, I1);
- ReplaceUses(N.getValue(1), Chain);
+ ReplaceUses(SDValue(N, 0), I1);
+ ReplaceUses(SDValue(N, 1), Chain);
cast<MachineSDNode>(LD0)->setMemRefs(MemRefs0, MemRefs0 + 1);
cast<MachineSDNode>(LD1)->setMemRefs(MemRefs0, MemRefs0 + 1);
return I1.getNode();
}
-SDNode *MipsDAGToDAGISel::SelectStoreFp64(SDValue N) {
+SDNode *MipsDAGToDAGISel::SelectStoreFp64(SDNode *N) {
if (!Subtarget.isMips1() ||
- N.getOperand(1).getValueType() != MVT::f64)
+ N->getOperand(1).getValueType() != MVT::f64)
return NULL;
- SDValue Chain = N.getOperand(0);
+ SDValue Chain = N->getOperand(0);
- if (!Predicate_unindexedstore(N.getNode()) ||
- !Predicate_store(N.getNode()))
+ if (!Predicate_unindexedstore(N) ||
+ !Predicate_store(N))
return NULL;
- SDValue N1 = N.getOperand(1);
- SDValue N2 = N.getOperand(2);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
SDValue Offset0, Offset1, Base;
if (!SelectAddr(N, N2, Offset0, Base) ||
@@ -285,7 +285,7 @@ SDNode *MipsDAGToDAGISel::SelectStoreFp64(SDValue N) {
MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
- DebugLoc dl = N.getDebugLoc();
+ DebugLoc dl = N->getDebugLoc();
// Get the even and odd part from the f64 register
SDValue FPOdd = CurDAG->getTargetExtractSubreg(Mips::SUBREG_FPODD,
@@ -318,14 +318,13 @@ SDNode *MipsDAGToDAGISel::SelectStoreFp64(SDValue N) {
MVT::Other, Ops1, 4), 0);
cast<MachineSDNode>(Chain.getNode())->setMemRefs(MemRefs0, MemRefs0 + 1);
- ReplaceUses(N.getValue(0), Chain);
+ ReplaceUses(SDValue(N, 0), Chain);
return Chain.getNode();
}
/// Select instructions not customized! Used for
/// expanded, promoted and normal instructions
-SDNode* MipsDAGToDAGISel::Select(SDValue N) {
- SDNode *Node = N.getNode();
+SDNode* MipsDAGToDAGISel::Select(SDNode *Node) {
unsigned Opcode = Node->getOpcode();
DebugLoc dl = Node->getDebugLoc();
@@ -379,7 +378,7 @@ SDNode* MipsDAGToDAGISel::Select(SDValue N) {
SDNode *AddCarry = CurDAG->getMachineNode(Mips::ADDu, dl, VT,
SDValue(Carry,0), RHS);
- return CurDAG->SelectNodeTo(N.getNode(), MOp, VT, MVT::Flag,
+ return CurDAG->SelectNodeTo(Node, MOp, VT, MVT::Flag,
LHS, SDValue(AddCarry,0));
}
@@ -405,11 +404,11 @@ SDNode* MipsDAGToDAGISel::Select(SDValue N) {
InFlag = SDValue(Lo,1);
SDNode *Hi = CurDAG->getMachineNode(Mips::MFHI, dl, MVT::i32, InFlag);
- if (!N.getValue(0).use_empty())
- ReplaceUses(N.getValue(0), SDValue(Lo,0));
+ if (!SDValue(Node, 0).use_empty())
+ ReplaceUses(SDValue(Node, 0), SDValue(Lo,0));
- if (!N.getValue(1).use_empty())
- ReplaceUses(N.getValue(1), SDValue(Hi,0));
+ if (!SDValue(Node, 1).use_empty())
+ ReplaceUses(SDValue(Node, 1), SDValue(Hi,0));
return NULL;
}
@@ -460,23 +459,23 @@ SDNode* MipsDAGToDAGISel::Select(SDValue N) {
return getGlobalBaseReg();
case ISD::ConstantFP: {
- ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
- if (N.getValueType() == MVT::f64 && CN->isExactlyValue(+0.0)) {
+ ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node);
+ if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
SDValue Zero = CurDAG->getRegister(Mips::ZERO, MVT::i32);
- ReplaceUses(N, Zero);
+ ReplaceUses(SDValue(Node, 0), Zero);
return Zero.getNode();
}
break;
}
case ISD::LOAD:
- if (SDNode *ResNode = SelectLoadFp64(N))
+ if (SDNode *ResNode = SelectLoadFp64(Node))
return ResNode;
// Other cases are autogenerated.
break;
case ISD::STORE:
- if (SDNode *ResNode = SelectStoreFp64(N))
+ if (SDNode *ResNode = SelectStoreFp64(Node))
return ResNode;
// Other cases are autogenerated.
break;
@@ -523,11 +522,11 @@ SDNode* MipsDAGToDAGISel::Select(SDValue N) {
}
// Select the default instruction
- SDNode *ResNode = SelectCode(N);
+ SDNode *ResNode = SelectCode(Node);
DEBUG(errs().indent(Indent-2) << "=> ");
- if (ResNode == NULL || ResNode == N.getNode())
- DEBUG(N.getNode()->dump(CurDAG));
+ if (ResNode == NULL || ResNode == Node)
+ DEBUG(Node->dump(CurDAG));
else
DEBUG(ResNode->dump(CurDAG));
DEBUG(errs() << "\n");
diff --git a/lib/Target/PIC16/PIC16ISelDAGToDAG.cpp b/lib/Target/PIC16/PIC16ISelDAGToDAG.cpp
index e13e6cd..82197ae 100644
--- a/lib/Target/PIC16/PIC16ISelDAGToDAG.cpp
+++ b/lib/Target/PIC16/PIC16ISelDAGToDAG.cpp
@@ -36,7 +36,7 @@ void PIC16DAGToDAGISel::InstructionSelect() {
/// Select - Select instructions not customized! Used for
/// expanded, promoted and normal instructions.
-SDNode* PIC16DAGToDAGISel::Select(SDValue N) {
+SDNode* PIC16DAGToDAGISel::Select(SDNode *N) {
// Select the default instruction.
SDNode *ResNode = SelectCode(N);
@@ -47,7 +47,7 @@ SDNode* PIC16DAGToDAGISel::Select(SDValue N) {
// SelectDirectAddr - Match a direct address for DAG.
// A direct address could be a globaladdress or externalsymbol.
-bool PIC16DAGToDAGISel::SelectDirectAddr(SDValue Op, SDValue N,
+bool PIC16DAGToDAGISel::SelectDirectAddr(SDNode *Op, SDValue N,
SDValue &Address) {
// Return true if TGA or ES.
if (N.getOpcode() == ISD::TargetGlobalAddress
diff --git a/lib/Target/PIC16/PIC16ISelDAGToDAG.h b/lib/Target/PIC16/PIC16ISelDAGToDAG.h
index d9172f2..813a540 100644
--- a/lib/Target/PIC16/PIC16ISelDAGToDAG.h
+++ b/lib/Target/PIC16/PIC16ISelDAGToDAG.h
@@ -52,10 +52,10 @@ private:
// Include the pieces autogenerated from the target description.
#include "PIC16GenDAGISel.inc"
- SDNode *Select(SDValue N);
+ SDNode *Select(SDNode *N);
// Match direct address complex pattern.
- bool SelectDirectAddr(SDValue Op, SDValue N, SDValue &Address);
+ bool SelectDirectAddr(SDNode *Op, SDValue N, SDValue &Address);
};
diff --git a/lib/Target/PowerPC/AsmPrinter/PPCAsmPrinter.cpp b/lib/Target/PowerPC/AsmPrinter/PPCAsmPrinter.cpp
index aae4607..d505d38 100644
--- a/lib/Target/PowerPC/AsmPrinter/PPCAsmPrinter.cpp
+++ b/lib/Target/PowerPC/AsmPrinter/PPCAsmPrinter.cpp
@@ -32,6 +32,7 @@
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
@@ -49,6 +50,7 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSet.h"
+#include "llvm/ADT/SmallString.h"
using namespace llvm;
STATISTIC(EmittedInsts, "Number of machine instrs printed");
@@ -57,27 +59,42 @@ namespace {
class PPCAsmPrinter : public AsmPrinter {
protected:
struct FnStubInfo {
- std::string Stub, LazyPtr, AnonSymbol;
+ MCSymbol *Stub, *LazyPtr, *AnonSymbol;
- FnStubInfo() {}
+ FnStubInfo() {
+ Stub = LazyPtr = AnonSymbol = 0;
+ }
- void Init(const GlobalValue *GV, Mangler *Mang) {
+ void Init(const GlobalValue *GV, Mangler *Mang, MCContext &Ctx) {
// Already initialized.
- if (!Stub.empty()) return;
- Stub = Mang->getMangledName(GV, "$stub", true);
- LazyPtr = Mang->getMangledName(GV, "$lazy_ptr", true);
- AnonSymbol = Mang->getMangledName(GV, "$stub$tmp", true);
+ if (Stub != 0) return;
+
+ // Get the names.
+ SmallString<128> TmpStr;
+ Mang->getNameWithPrefix(TmpStr, GV, true);
+ MakeSymbols(TmpStr, Ctx);
}
- void Init(const std::string &GV, Mangler *Mang) {
- // Already initialized.
- if (!Stub.empty()) return;
- Stub = Mang->makeNameProper(GV + "$stub",
- Mangler::Private);
- LazyPtr = Mang->makeNameProper(GV + "$lazy_ptr",
- Mangler::Private);
- AnonSymbol = Mang->makeNameProper(GV + "$stub$tmp",
- Mangler::Private);
+ void Init(StringRef GVName, Mangler *Mang, MCContext &Ctx) {
+ assert(!GVName.empty() && "external symbol name shouldn't be empty");
+ if (Stub != 0) return; // Already initialized.
+ // Get the names for the external symbol name.
+ SmallString<128> TmpStr;
+ Mang->getNameWithPrefix(TmpStr, GVName, Mangler::Private);
+ MakeSymbols(TmpStr, Ctx);
+ }
+
+ void MakeSymbols(SmallString<128> &TmpStr, MCContext &Ctx) {
+ TmpStr += "$stub";
+ Stub = Ctx.GetOrCreateSymbol(TmpStr.str());
+ TmpStr.erase(TmpStr.end()-5, TmpStr.end()); // Remove $stub
+
+ TmpStr += "$lazy_ptr";
+ LazyPtr = Ctx.GetOrCreateSymbol(TmpStr.str());
+ TmpStr.erase(TmpStr.end()-9, TmpStr.end()); // Remove $lazy_ptr
+
+ TmpStr += "$stub$tmp";
+ AnonSymbol = Ctx.GetOrCreateSymbol(TmpStr.str());
}
};
@@ -224,15 +241,17 @@ namespace {
if (GV->isDeclaration() || GV->isWeakForLinker()) {
// Dynamically-resolved functions need a stub for the function.
FnStubInfo &FnInfo = FnStubs[Mang->getMangledName(GV)];
- FnInfo.Init(GV, Mang);
- O << FnInfo.Stub;
+ FnInfo.Init(GV, Mang, OutContext);
+ FnInfo.Stub->print(O, MAI);
return;
}
}
if (MO.getType() == MachineOperand::MO_ExternalSymbol) {
- FnStubInfo &FnInfo =FnStubs[Mang->makeNameProper(MO.getSymbolName())];
- FnInfo.Init(MO.getSymbolName(), Mang);
- O << FnInfo.Stub;
+ SmallString<128> MangledName;
+ Mang->getNameWithPrefix(MangledName, MO.getSymbolName());
+ FnStubInfo &FnInfo = FnStubs[MangledName.str()];
+ FnInfo.Init(MO.getSymbolName(), Mang, OutContext);
+ FnInfo.Stub->print(O, MAI);
return;
}
}
@@ -550,50 +569,49 @@ void PPCAsmPrinter::printMachineInstruction(const MachineInstr *MI) {
processDebugLoc(MI, true);
// Check for slwi/srwi mnemonics.
+ bool useSubstituteMnemonic = false;
if (MI->getOpcode() == PPC::RLWINM) {
- bool FoundMnemonic = false;
unsigned char SH = MI->getOperand(2).getImm();
unsigned char MB = MI->getOperand(3).getImm();
unsigned char ME = MI->getOperand(4).getImm();
if (SH <= 31 && MB == 0 && ME == (31-SH)) {
- O << "\tslwi "; FoundMnemonic = true;
+ O << "\tslwi "; useSubstituteMnemonic = true;
}
if (SH <= 31 && MB == (32-SH) && ME == 31) {
- O << "\tsrwi "; FoundMnemonic = true;
+ O << "\tsrwi "; useSubstituteMnemonic = true;
SH = 32-SH;
}
- if (FoundMnemonic) {
+ if (useSubstituteMnemonic) {
printOperand(MI, 0);
O << ", ";
printOperand(MI, 1);
- O << ", " << (unsigned int)SH << '\n';
- return;
+ O << ", " << (unsigned int)SH;
}
} else if (MI->getOpcode() == PPC::OR || MI->getOpcode() == PPC::OR8) {
if (MI->getOperand(1).getReg() == MI->getOperand(2).getReg()) {
+ useSubstituteMnemonic = true;
O << "\tmr ";
printOperand(MI, 0);
O << ", ";
printOperand(MI, 1);
- O << '\n';
- return;
}
} else if (MI->getOpcode() == PPC::RLDICR) {
unsigned char SH = MI->getOperand(2).getImm();
unsigned char ME = MI->getOperand(3).getImm();
// rldicr RA, RS, SH, 63-SH == sldi RA, RS, SH
if (63-SH == ME) {
+ useSubstituteMnemonic = true;
O << "\tsldi ";
printOperand(MI, 0);
O << ", ";
printOperand(MI, 1);
- O << ", " << (unsigned int)SH << '\n';
- return;
+ O << ", " << (unsigned int)SH;
}
}
- printInstruction(MI);
-
+ if (!useSubstituteMnemonic)
+ printInstruction(MI);
+
if (VerboseAsm)
EmitComments(*MI);
O << '\n';
@@ -1038,27 +1056,38 @@ bool PPCDarwinAsmPrinter::doFinalization(Module &M) {
MCSectionMachO::S_SYMBOL_STUBS |
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
32, SectionKind::getText());
- for (StringMap<FnStubInfo>::iterator I = FnStubs.begin(), E = FnStubs.end();
+ for (StringMap<FnStubInfo>::iterator I = FnStubs.begin(), E = FnStubs.end();
I != E; ++I) {
OutStreamer.SwitchSection(StubSection);
EmitAlignment(4);
const FnStubInfo &Info = I->second;
- O << Info.Stub << ":\n";
+ Info.Stub->print(O, MAI);
+ O << ":\n";
O << "\t.indirect_symbol " << I->getKeyData() << '\n';
O << "\tmflr r0\n";
- O << "\tbcl 20,31," << Info.AnonSymbol << '\n';
- O << Info.AnonSymbol << ":\n";
+ O << "\tbcl 20,31,";
+ Info.AnonSymbol->print(O, MAI);
+ O << '\n';
+ Info.AnonSymbol->print(O, MAI);
+ O << ":\n";
O << "\tmflr r11\n";
- O << "\taddis r11,r11,ha16(" << Info.LazyPtr << "-" << Info.AnonSymbol;
+ O << "\taddis r11,r11,ha16(";
+ Info.LazyPtr->print(O, MAI);
+ O << '-';
+ Info.AnonSymbol->print(O, MAI);
O << ")\n";
O << "\tmtlr r0\n";
O << (isPPC64 ? "\tldu" : "\tlwzu") << " r12,lo16(";
- O << Info.LazyPtr << "-" << Info.AnonSymbol << ")(r11)\n";
+ Info.LazyPtr->print(O, MAI);
+ O << '-';
+ Info.AnonSymbol->print(O, MAI);
+ O << ")(r11)\n";
O << "\tmtctr r12\n";
O << "\tbctr\n";
OutStreamer.SwitchSection(LSPSection);
- O << Info.LazyPtr << ":\n";
+ Info.LazyPtr->print(O, MAI);
+ O << ":\n";
O << "\t.indirect_symbol " << I->getKeyData() << '\n';
O << (isPPC64 ? "\t.quad" : "\t.long") << " dyld_stub_binding_helper\n";
}
@@ -1074,15 +1103,20 @@ bool PPCDarwinAsmPrinter::doFinalization(Module &M) {
OutStreamer.SwitchSection(StubSection);
EmitAlignment(4);
const FnStubInfo &Info = I->second;
- O << Info.Stub << ":\n";
+ Info.Stub->print(O, MAI);
+ O << ":\n";
O << "\t.indirect_symbol " << I->getKeyData() << '\n';
- O << "\tlis r11,ha16(" << Info.LazyPtr << ")\n";
+ O << "\tlis r11,ha16(";
+ Info.LazyPtr->print(O, MAI);
+ O << ")\n";
O << (isPPC64 ? "\tldu" : "\tlwzu") << " r12,lo16(";
- O << Info.LazyPtr << ")(r11)\n";
+ Info.LazyPtr->print(O, MAI);
+ O << ")(r11)\n";
O << "\tmtctr r12\n";
O << "\tbctr\n";
OutStreamer.SwitchSection(LSPSection);
- O << Info.LazyPtr << ":\n";
+ Info.LazyPtr->print(O, MAI);
+ O << ":\n";
O << "\t.indirect_symbol " << I->getKeyData() << '\n';
O << (isPPC64 ? "\t.quad" : "\t.long") << " dyld_stub_binding_helper\n";
}
diff --git a/lib/Target/PowerPC/PPCISelDAGToDAG.cpp b/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
index e7334b5..32c1879 100644
--- a/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
+++ b/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
@@ -95,7 +95,7 @@ namespace {
// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
- SDNode *Select(SDValue Op);
+ SDNode *Select(SDNode *N);
SDNode *SelectBitfieldInsert(SDNode *N);
@@ -105,7 +105,7 @@ namespace {
/// SelectAddrImm - Returns true if the address N can be represented by
/// a base register plus a signed 16-bit displacement [r+imm].
- bool SelectAddrImm(SDValue Op, SDValue N, SDValue &Disp,
+ bool SelectAddrImm(SDNode *Op, SDValue N, SDValue &Disp,
SDValue &Base) {
return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG);
}
@@ -113,7 +113,7 @@ namespace {
/// SelectAddrImmOffs - Return true if the operand is valid for a preinc
/// immediate field. Because preinc imms have already been validated, just
/// accept it.
- bool SelectAddrImmOffs(SDValue Op, SDValue N, SDValue &Out) const {
+ bool SelectAddrImmOffs(SDNode *Op, SDValue N, SDValue &Out) const {
Out = N;
return true;
}
@@ -121,14 +121,14 @@ namespace {
/// SelectAddrIdx - Given the specified addressed, check to see if it can be
/// represented as an indexed [r+r] operation. Returns false if it can
/// be represented by [r+imm], which are preferred.
- bool SelectAddrIdx(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectAddrIdx(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Index) {
return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
}
/// SelectAddrIdxOnly - Given the specified addressed, force it to be
/// represented as an indexed [r+r] operation.
- bool SelectAddrIdxOnly(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectAddrIdxOnly(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Index) {
return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
}
@@ -136,7 +136,7 @@ namespace {
/// SelectAddrImmShift - Returns true if the address N can be represented by
/// a base register plus a signed 14-bit displacement [r+imm*4]. Suitable
/// for use by STD and friends.
- bool SelectAddrImmShift(SDValue Op, SDValue N, SDValue &Disp,
+ bool SelectAddrImmShift(SDNode *Op, SDValue N, SDValue &Disp,
SDValue &Base) {
return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG);
}
@@ -180,7 +180,7 @@ namespace {
#include "PPCGenDAGISel.inc"
private:
- SDNode *SelectSETCC(SDValue Op);
+ SDNode *SelectSETCC(SDNode *N);
};
}
@@ -635,8 +635,7 @@ static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) {
return 0;
}
-SDNode *PPCDAGToDAGISel::SelectSETCC(SDValue Op) {
- SDNode *N = Op.getNode();
+SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
DebugLoc dl = N->getDebugLoc();
unsigned Imm;
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
@@ -756,9 +755,8 @@ SDNode *PPCDAGToDAGISel::SelectSETCC(SDValue Op) {
// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
-SDNode *PPCDAGToDAGISel::Select(SDValue Op) {
- SDNode *N = Op.getNode();
- DebugLoc dl = Op.getDebugLoc();
+SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
+ DebugLoc dl = N->getDebugLoc();
if (N->isMachineOpcode())
return NULL; // Already selected.
@@ -841,18 +839,18 @@ SDNode *PPCDAGToDAGISel::Select(SDValue Op) {
}
case ISD::SETCC:
- return SelectSETCC(Op);
+ return SelectSETCC(N);
case PPCISD::GlobalBaseReg:
return getGlobalBaseReg();
case ISD::FrameIndex: {
int FI = cast<FrameIndexSDNode>(N)->getIndex();
- SDValue TFI = CurDAG->getTargetFrameIndex(FI, Op.getValueType());
- unsigned Opc = Op.getValueType() == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
+ SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
+ unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
if (N->hasOneUse())
- return CurDAG->SelectNodeTo(N, Opc, Op.getValueType(), TFI,
+ return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI,
getSmallIPtrImm(0));
- return CurDAG->getMachineNode(Opc, dl, Op.getValueType(), TFI,
+ return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
getSmallIPtrImm(0));
}
@@ -899,7 +897,7 @@ SDNode *PPCDAGToDAGISel::Select(SDValue Op) {
case ISD::LOAD: {
// Handle preincrement loads.
- LoadSDNode *LD = cast<LoadSDNode>(Op);
+ LoadSDNode *LD = cast<LoadSDNode>(N);
EVT LoadedVT = LD->getMemoryVT();
// Normal loads are handled by code generated from the .td file.
@@ -1092,7 +1090,7 @@ SDNode *PPCDAGToDAGISel::Select(SDValue Op) {
}
}
- return SelectCode(Op);
+ return SelectCode(N);
}
diff --git a/lib/Target/PowerPC/PPCInstrInfo.td b/lib/Target/PowerPC/PPCInstrInfo.td
index 8fe151a..842f8ee 100644
--- a/lib/Target/PowerPC/PPCInstrInfo.td
+++ b/lib/Target/PowerPC/PPCInstrInfo.td
@@ -430,9 +430,7 @@ let isCall = 1, PPC970_Unit = 7,
F0,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F12,F13,
V0,V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15,V16,V17,V18,V19,
LR,CTR,
- CR0,CR1,CR5,CR6,CR7,
- CR0LT,CR0GT,CR0EQ,CR0UN,CR1LT,CR1GT,CR1EQ,CR1UN,CR5LT,CR5GT,CR5EQ,
- CR5UN,CR6LT,CR6GT,CR6EQ,CR6UN,CR7LT,CR7GT,CR7EQ,CR7UN,CARRY] in {
+ CR0,CR1,CR5,CR6,CR7,CARRY] in {
// Convenient aliases for call instructions
let Uses = [RM] in {
def BL_Darwin : IForm<18, 0, 1,
@@ -457,9 +455,7 @@ let isCall = 1, PPC970_Unit = 7,
F0,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F12,F13,
V0,V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15,V16,V17,V18,V19,
LR,CTR,
- CR0,CR1,CR5,CR6,CR7,
- CR0LT,CR0GT,CR0EQ,CR0UN,CR1LT,CR1GT,CR1EQ,CR1UN,CR5LT,CR5GT,CR5EQ,
- CR5UN,CR6LT,CR6GT,CR6EQ,CR6UN,CR7LT,CR7GT,CR7EQ,CR7UN,CARRY] in {
+ CR0,CR1,CR5,CR6,CR7,CARRY] in {
// Convenient aliases for call instructions
let Uses = [RM] in {
def BL_SVR4 : IForm<18, 0, 1,
diff --git a/lib/Target/PowerPC/PPCJITInfo.cpp b/lib/Target/PowerPC/PPCJITInfo.cpp
index be6e51e..daf4ec6 100644
--- a/lib/Target/PowerPC/PPCJITInfo.cpp
+++ b/lib/Target/PowerPC/PPCJITInfo.cpp
@@ -308,6 +308,7 @@ extern "C" void *PPCCompilationCallbackC(unsigned *StubCallAddrPlus4,
// Rewrite the stub with an unconditional branch to the target, for any users
// who took the address of the stub.
EmitBranchToAt((intptr_t)StubCallAddr, (intptr_t)Target, false, is64Bit);
+ sys::Memory::InvalidateInstructionCache(StubCallAddr, 7*4);
// Put the address of the target function to call and the address to return to
// after calling the target function in a place that is easy to get on the
@@ -441,4 +442,5 @@ void PPCJITInfo::relocate(void *Function, MachineRelocation *MR,
void PPCJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
EmitBranchToAt((intptr_t)Old, (intptr_t)New, false, is64Bit);
+ sys::Memory::InvalidateInstructionCache(Old, 7*4);
}
diff --git a/lib/Target/PowerPC/PPCMCAsmInfo.cpp b/lib/Target/PowerPC/PPCMCAsmInfo.cpp
index c87879b..ee6deb5 100644
--- a/lib/Target/PowerPC/PPCMCAsmInfo.cpp
+++ b/lib/Target/PowerPC/PPCMCAsmInfo.cpp
@@ -22,6 +22,7 @@ PPCMCAsmInfoDarwin::PPCMCAsmInfoDarwin(bool is64Bit) {
if (!is64Bit)
Data64bitsDirective = 0; // We can't emit a 64-bit unit in PPC32 mode.
AssemblerDialect = 1; // New-Style mnemonics.
+ SupportsDebugInformation= true; // Debug information.
}
PPCLinuxMCAsmInfo::PPCLinuxMCAsmInfo(bool is64Bit) {
diff --git a/lib/Target/PowerPC/README.txt b/lib/Target/PowerPC/README.txt
index f5e50fc..060d6a5 100644
--- a/lib/Target/PowerPC/README.txt
+++ b/lib/Target/PowerPC/README.txt
@@ -7,6 +7,39 @@ TODO:
===-------------------------------------------------------------------------===
+On PPC64, this:
+
+long f2 (long x) { return 0xfffffff000000000UL; }
+long f3 (long x) { return 0x1ffffffffUL; }
+
+could compile into:
+
+_f2:
+ li r3,-1
+ rldicr r3,r3,0,27
+ blr
+_f3:
+ li r3,-1
+ rldicl r3,r3,0,31
+ blr
+
+we produce:
+
+_f2:
+ lis r2, 4095
+ ori r2, r2, 65535
+ sldi r3, r2, 36
+ blr
+_f3:
+ li r2, 1
+ sldi r2, r2, 32
+ oris r2, r2, 65535
+ ori r3, r2, 65535
+ blr
+
+
+===-------------------------------------------------------------------------===
+
Support 'update' load/store instructions. These are cracked on the G5, but are
still a codesize win.
diff --git a/lib/Target/README.txt b/lib/Target/README.txt
index a6e05fa..69da35f 100644
--- a/lib/Target/README.txt
+++ b/lib/Target/README.txt
@@ -282,19 +282,6 @@ this requires TBAA.
//===---------------------------------------------------------------------===//
-This should be optimized to one 'and' and one 'or', from PR4216:
-
-define i32 @test_bitfield(i32 %bf.prev.low) nounwind ssp {
-entry:
- %bf.prev.lo.cleared10 = or i32 %bf.prev.low, 32962 ; <i32> [#uses=1]
- %0 = and i32 %bf.prev.low, -65536 ; <i32> [#uses=1]
- %1 = and i32 %bf.prev.lo.cleared10, 40186 ; <i32> [#uses=1]
- %2 = or i32 %1, %0 ; <i32> [#uses=1]
- ret i32 %2
-}
-
-//===---------------------------------------------------------------------===//
-
This isn't recognized as bswap by instcombine (yes, it really is bswap):
unsigned long reverse(unsigned v) {
@@ -1661,38 +1648,9 @@ would delete the or instruction for us.
//===---------------------------------------------------------------------===//
-FunctionAttrs is not marking this function as readnone (just readonly):
-$ clang t.c -emit-llvm -S -o - -O0 | opt -mem2reg -S -functionattrs
-
-int t(int a, int b, int c) {
- int *p;
- if (a)
- p = &a;
- else
- p = &c;
- return *p;
-}
-
-This is because we codegen this to:
-
-define i32 @t(i32 %a, i32 %b, i32 %c) nounwind readonly ssp {
-entry:
- %a.addr = alloca i32 ; <i32*> [#uses=3]
- %c.addr = alloca i32 ; <i32*> [#uses=2]
-...
-
-if.end:
- %p.0 = phi i32* [ %a.addr, %if.then ], [ %c.addr, %if.else ]
- %tmp2 = load i32* %p.0 ; <i32> [#uses=1]
- ret i32 %tmp2
-}
-
-And functionattrs doesn't realize that the p.0 load points to function local
-memory.
-
-Also, functionattrs doesn't know about memcpy/memset. This function should be
-marked readnone, since it only twiddles local memory, but functionattrs doesn't
-handle memset/memcpy/memmove aggressively:
+functionattrs doesn't know much about memcpy/memset. This function should be
+marked readnone rather than readonly, since it only twiddles local memory, but
+functionattrs doesn't handle memset/memcpy/memmove aggressively:
struct X { int *p; int *q; };
int foo() {
diff --git a/lib/Target/Sparc/SparcISelDAGToDAG.cpp b/lib/Target/Sparc/SparcISelDAGToDAG.cpp
index b41917e..e1b3299 100644
--- a/lib/Target/Sparc/SparcISelDAGToDAG.cpp
+++ b/lib/Target/Sparc/SparcISelDAGToDAG.cpp
@@ -43,11 +43,11 @@ public:
TM(tm) {
}
- SDNode *Select(SDValue Op);
+ SDNode *Select(SDNode *N);
// Complex Pattern Selectors.
- bool SelectADDRrr(SDValue Op, SDValue N, SDValue &R1, SDValue &R2);
- bool SelectADDRri(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectADDRrr(SDNode *Op, SDValue N, SDValue &R1, SDValue &R2);
+ bool SelectADDRri(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Offset);
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
@@ -87,7 +87,7 @@ SDNode* SparcDAGToDAGISel::getGlobalBaseReg() {
return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
}
-bool SparcDAGToDAGISel::SelectADDRri(SDValue Op, SDValue Addr,
+bool SparcDAGToDAGISel::SelectADDRri(SDNode *Op, SDValue Addr,
SDValue &Base, SDValue &Offset) {
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
@@ -128,7 +128,7 @@ bool SparcDAGToDAGISel::SelectADDRri(SDValue Op, SDValue Addr,
return true;
}
-bool SparcDAGToDAGISel::SelectADDRrr(SDValue Op, SDValue Addr,
+bool SparcDAGToDAGISel::SelectADDRrr(SDNode *Op, SDValue Addr,
SDValue &R1, SDValue &R2) {
if (Addr.getOpcode() == ISD::FrameIndex) return false;
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
@@ -152,8 +152,7 @@ bool SparcDAGToDAGISel::SelectADDRrr(SDValue Op, SDValue Addr,
return true;
}
-SDNode *SparcDAGToDAGISel::Select(SDValue Op) {
- SDNode *N = Op.getNode();
+SDNode *SparcDAGToDAGISel::Select(SDNode *N) {
DebugLoc dl = N->getDebugLoc();
if (N->isMachineOpcode())
return NULL; // Already selected.
@@ -199,7 +198,7 @@ SDNode *SparcDAGToDAGISel::Select(SDValue Op) {
}
}
- return SelectCode(Op);
+ return SelectCode(N);
}
@@ -213,8 +212,8 @@ SparcDAGToDAGISel::SelectInlineAsmMemoryOperand(const SDValue &Op,
switch (ConstraintCode) {
default: return true;
case 'm': // memory
- if (!SelectADDRrr(Op, Op, Op0, Op1))
- SelectADDRri(Op, Op, Op0, Op1);
+ if (!SelectADDRrr(Op.getNode(), Op, Op0, Op1))
+ SelectADDRri(Op.getNode(), Op, Op0, Op1);
break;
}
diff --git a/lib/Target/SubtargetFeature.cpp b/lib/Target/SubtargetFeature.cpp
index 590574e..7cc4fd1 100644
--- a/lib/Target/SubtargetFeature.cpp
+++ b/lib/Target/SubtargetFeature.cpp
@@ -12,6 +12,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/Target/SubtargetFeature.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/StringExtras.h"
#include <algorithm>
@@ -355,7 +356,7 @@ void SubtargetFeatures::print(raw_ostream &OS) const {
/// dump - Dump feature info.
///
void SubtargetFeatures::dump() const {
- print(errs());
+ print(dbgs());
}
/// getDefaultSubtargetFeatures - Return a string listing
diff --git a/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp b/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
index d64611d..7096c0e 100644
--- a/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
+++ b/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
@@ -128,23 +128,23 @@ namespace {
#include "SystemZGenDAGISel.inc"
private:
- bool SelectAddrRI12Only(SDValue Op, SDValue& Addr,
+ bool SelectAddrRI12Only(SDNode *Op, SDValue& Addr,
SDValue &Base, SDValue &Disp);
- bool SelectAddrRI12(SDValue Op, SDValue& Addr,
+ bool SelectAddrRI12(SDNode *Op, SDValue& Addr,
SDValue &Base, SDValue &Disp,
bool is12BitOnly = false);
- bool SelectAddrRI(SDValue Op, SDValue& Addr,
+ bool SelectAddrRI(SDNode *Op, SDValue& Addr,
SDValue &Base, SDValue &Disp);
- bool SelectAddrRRI12(SDValue Op, SDValue Addr,
+ bool SelectAddrRRI12(SDNode *Op, SDValue Addr,
SDValue &Base, SDValue &Disp, SDValue &Index);
- bool SelectAddrRRI20(SDValue Op, SDValue Addr,
+ bool SelectAddrRRI20(SDNode *Op, SDValue Addr,
SDValue &Base, SDValue &Disp, SDValue &Index);
- bool SelectLAAddr(SDValue Op, SDValue Addr,
+ bool SelectLAAddr(SDNode *Op, SDValue Addr,
SDValue &Base, SDValue &Disp, SDValue &Index);
- SDNode *Select(SDValue Op);
+ SDNode *Select(SDNode *Node);
- bool TryFoldLoad(SDValue P, SDValue N,
+ bool TryFoldLoad(SDNode *P, SDValue N,
SDValue &Base, SDValue &Disp, SDValue &Index);
bool MatchAddress(SDValue N, SystemZRRIAddressMode &AM,
@@ -367,12 +367,12 @@ void SystemZDAGToDAGISel::getAddressOperands(const SystemZRRIAddressMode &AM,
/// Returns true if the address can be represented by a base register plus
/// an unsigned 12-bit displacement [r+imm].
-bool SystemZDAGToDAGISel::SelectAddrRI12Only(SDValue Op, SDValue& Addr,
+bool SystemZDAGToDAGISel::SelectAddrRI12Only(SDNode *Op, SDValue& Addr,
SDValue &Base, SDValue &Disp) {
return SelectAddrRI12(Op, Addr, Base, Disp, /*is12BitOnly*/true);
}
-bool SystemZDAGToDAGISel::SelectAddrRI12(SDValue Op, SDValue& Addr,
+bool SystemZDAGToDAGISel::SelectAddrRI12(SDNode *Op, SDValue& Addr,
SDValue &Base, SDValue &Disp,
bool is12BitOnly) {
SystemZRRIAddressMode AM20(/*isRI*/true), AM12(/*isRI*/true);
@@ -422,7 +422,7 @@ bool SystemZDAGToDAGISel::SelectAddrRI12(SDValue Op, SDValue& Addr,
/// Returns true if the address can be represented by a base register plus
/// a signed 20-bit displacement [r+imm].
-bool SystemZDAGToDAGISel::SelectAddrRI(SDValue Op, SDValue& Addr,
+bool SystemZDAGToDAGISel::SelectAddrRI(SDNode *Op, SDValue& Addr,
SDValue &Base, SDValue &Disp) {
SystemZRRIAddressMode AM(/*isRI*/true);
bool Done = false;
@@ -465,7 +465,7 @@ bool SystemZDAGToDAGISel::SelectAddrRI(SDValue Op, SDValue& Addr,
/// Returns true if the address can be represented by a base register plus
/// index register plus an unsigned 12-bit displacement [base + idx + imm].
-bool SystemZDAGToDAGISel::SelectAddrRRI12(SDValue Op, SDValue Addr,
+bool SystemZDAGToDAGISel::SelectAddrRRI12(SDNode *Op, SDValue Addr,
SDValue &Base, SDValue &Disp, SDValue &Index) {
SystemZRRIAddressMode AM20, AM12;
bool Done = false;
@@ -514,7 +514,7 @@ bool SystemZDAGToDAGISel::SelectAddrRRI12(SDValue Op, SDValue Addr,
/// Returns true if the address can be represented by a base register plus
/// index register plus a signed 20-bit displacement [base + idx + imm].
-bool SystemZDAGToDAGISel::SelectAddrRRI20(SDValue Op, SDValue Addr,
+bool SystemZDAGToDAGISel::SelectAddrRRI20(SDNode *Op, SDValue Addr,
SDValue &Base, SDValue &Disp, SDValue &Index) {
SystemZRRIAddressMode AM;
bool Done = false;
@@ -558,7 +558,7 @@ bool SystemZDAGToDAGISel::SelectAddrRRI20(SDValue Op, SDValue Addr,
/// SelectLAAddr - it calls SelectAddr and determines if the maximal addressing
/// mode it matches can be cost effectively emitted as an LA/LAY instruction.
-bool SystemZDAGToDAGISel::SelectLAAddr(SDValue Op, SDValue Addr,
+bool SystemZDAGToDAGISel::SelectLAAddr(SDNode *Op, SDValue Addr,
SDValue &Base, SDValue &Disp, SDValue &Index) {
SystemZRRIAddressMode AM;
@@ -591,11 +591,11 @@ bool SystemZDAGToDAGISel::SelectLAAddr(SDValue Op, SDValue Addr,
return false;
}
-bool SystemZDAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
+bool SystemZDAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
SDValue &Base, SDValue &Disp, SDValue &Index) {
if (ISD::isNON_EXTLoad(N.getNode()) &&
N.hasOneUse() &&
- IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode()))
+ IsLegalAndProfitableToFold(N.getNode(), P, P))
return SelectAddrRRI20(P, N.getOperand(1), Base, Disp, Index);
return false;
}
@@ -612,10 +612,9 @@ void SystemZDAGToDAGISel::InstructionSelect() {
CurDAG->RemoveDeadNodes();
}
-SDNode *SystemZDAGToDAGISel::Select(SDValue Op) {
- SDNode *Node = Op.getNode();
+SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
EVT NVT = Node->getValueType(0);
- DebugLoc dl = Op.getDebugLoc();
+ DebugLoc dl = Node->getDebugLoc();
unsigned Opcode = Node->getOpcode();
// Dump information about the Node being selected
@@ -643,20 +642,20 @@ SDNode *SystemZDAGToDAGISel::Select(SDValue Op) {
EVT ResVT;
bool is32Bit = false;
switch (NVT.getSimpleVT().SimpleTy) {
- default: assert(0 && "Unsupported VT!");
- case MVT::i32:
- Opc = SystemZ::SDIVREM32r; MOpc = SystemZ::SDIVREM32m;
- ResVT = MVT::v2i64;
- is32Bit = true;
- break;
- case MVT::i64:
- Opc = SystemZ::SDIVREM64r; MOpc = SystemZ::SDIVREM64m;
- ResVT = MVT::v2i64;
- break;
+ default: assert(0 && "Unsupported VT!");
+ case MVT::i32:
+ Opc = SystemZ::SDIVREM32r; MOpc = SystemZ::SDIVREM32m;
+ ResVT = MVT::v2i64;
+ is32Bit = true;
+ break;
+ case MVT::i64:
+ Opc = SystemZ::SDIVREM64r; MOpc = SystemZ::SDIVREM64m;
+ ResVT = MVT::v2i64;
+ break;
}
SDValue Tmp0, Tmp1, Tmp2;
- bool foldedLoad = TryFoldLoad(Op, N1, Tmp0, Tmp1, Tmp2);
+ bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2);
// Prepare the dividend
SDNode *Dividend;
@@ -677,16 +676,16 @@ SDNode *SystemZDAGToDAGISel::Select(SDValue Op) {
SDValue DivVal = SDValue(Dividend, 0);
if (foldedLoad) {
SDValue Ops[] = { DivVal, Tmp0, Tmp1, Tmp2, N1.getOperand(0) };
- Result = CurDAG->getMachineNode(MOpc, dl, ResVT,
+ Result = CurDAG->getMachineNode(MOpc, dl, ResVT, MVT::Other,
Ops, array_lengthof(Ops));
// Update the chain.
- ReplaceUses(N1.getValue(1), SDValue(Result, 0));
+ ReplaceUses(N1.getValue(1), SDValue(Result, 1));
} else {
Result = CurDAG->getMachineNode(Opc, dl, ResVT, SDValue(Dividend, 0), N1);
}
// Copy the division (odd subreg) result, if it is needed.
- if (!Op.getValue(0).use_empty()) {
+ if (!SDValue(Node, 0).use_empty()) {
unsigned SubRegIdx = (is32Bit ? subreg_odd32 : subreg_odd);
SDNode *Div = CurDAG->getMachineNode(TargetInstrInfo::EXTRACT_SUBREG,
dl, NVT,
@@ -694,14 +693,14 @@ SDNode *SystemZDAGToDAGISel::Select(SDValue Op) {
CurDAG->getTargetConstant(SubRegIdx,
MVT::i32));
- ReplaceUses(Op.getValue(0), SDValue(Div, 0));
+ ReplaceUses(SDValue(Node, 0), SDValue(Div, 0));
DEBUG(errs().indent(Indent-2) << "=> ";
Result->dump(CurDAG);
errs() << "\n");
}
// Copy the remainder (even subreg) result, if it is needed.
- if (!Op.getValue(1).use_empty()) {
+ if (!SDValue(Node, 1).use_empty()) {
unsigned SubRegIdx = (is32Bit ? subreg_even32 : subreg_even);
SDNode *Rem = CurDAG->getMachineNode(TargetInstrInfo::EXTRACT_SUBREG,
dl, NVT,
@@ -709,7 +708,7 @@ SDNode *SystemZDAGToDAGISel::Select(SDValue Op) {
CurDAG->getTargetConstant(SubRegIdx,
MVT::i32));
- ReplaceUses(Op.getValue(1), SDValue(Rem, 0));
+ ReplaceUses(SDValue(Node, 1), SDValue(Rem, 0));
DEBUG(errs().indent(Indent-2) << "=> ";
Result->dump(CurDAG);
errs() << "\n");
@@ -729,22 +728,22 @@ SDNode *SystemZDAGToDAGISel::Select(SDValue Op) {
bool is32Bit = false;
switch (NVT.getSimpleVT().SimpleTy) {
- default: assert(0 && "Unsupported VT!");
- case MVT::i32:
- Opc = SystemZ::UDIVREM32r; MOpc = SystemZ::UDIVREM32m;
- ClrOpc = SystemZ::MOV64Pr0_even;
- ResVT = MVT::v2i32;
- is32Bit = true;
- break;
- case MVT::i64:
- Opc = SystemZ::UDIVREM64r; MOpc = SystemZ::UDIVREM64m;
- ClrOpc = SystemZ::MOV128r0_even;
- ResVT = MVT::v2i64;
- break;
+ default: assert(0 && "Unsupported VT!");
+ case MVT::i32:
+ Opc = SystemZ::UDIVREM32r; MOpc = SystemZ::UDIVREM32m;
+ ClrOpc = SystemZ::MOV64Pr0_even;
+ ResVT = MVT::v2i32;
+ is32Bit = true;
+ break;
+ case MVT::i64:
+ Opc = SystemZ::UDIVREM64r; MOpc = SystemZ::UDIVREM64m;
+ ClrOpc = SystemZ::MOV128r0_even;
+ ResVT = MVT::v2i64;
+ break;
}
SDValue Tmp0, Tmp1, Tmp2;
- bool foldedLoad = TryFoldLoad(Op, N1, Tmp0, Tmp1, Tmp2);
+ bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2);
// Prepare the dividend
SDNode *Dividend = N0.getNode();
@@ -767,37 +766,37 @@ SDNode *SystemZDAGToDAGISel::Select(SDValue Op) {
SDNode *Result;
if (foldedLoad) {
SDValue Ops[] = { DivVal, Tmp0, Tmp1, Tmp2, N1.getOperand(0) };
- Result = CurDAG->getMachineNode(MOpc, dl,ResVT,
+ Result = CurDAG->getMachineNode(MOpc, dl, ResVT, MVT::Other,
Ops, array_lengthof(Ops));
// Update the chain.
- ReplaceUses(N1.getValue(1), SDValue(Result, 0));
+ ReplaceUses(N1.getValue(1), SDValue(Result, 1));
} else {
Result = CurDAG->getMachineNode(Opc, dl, ResVT, DivVal, N1);
}
// Copy the division (odd subreg) result, if it is needed.
- if (!Op.getValue(0).use_empty()) {
+ if (!SDValue(Node, 0).use_empty()) {
unsigned SubRegIdx = (is32Bit ? subreg_odd32 : subreg_odd);
SDNode *Div = CurDAG->getMachineNode(TargetInstrInfo::EXTRACT_SUBREG,
dl, NVT,
SDValue(Result, 0),
CurDAG->getTargetConstant(SubRegIdx,
MVT::i32));
- ReplaceUses(Op.getValue(0), SDValue(Div, 0));
+ ReplaceUses(SDValue(Node, 0), SDValue(Div, 0));
DEBUG(errs().indent(Indent-2) << "=> ";
Result->dump(CurDAG);
errs() << "\n");
}
// Copy the remainder (even subreg) result, if it is needed.
- if (!Op.getValue(1).use_empty()) {
+ if (!SDValue(Node, 1).use_empty()) {
unsigned SubRegIdx = (is32Bit ? subreg_even32 : subreg_even);
SDNode *Rem = CurDAG->getMachineNode(TargetInstrInfo::EXTRACT_SUBREG,
dl, NVT,
SDValue(Result, 0),
CurDAG->getTargetConstant(SubRegIdx,
MVT::i32));
- ReplaceUses(Op.getValue(1), SDValue(Rem, 0));
+ ReplaceUses(SDValue(Node, 1), SDValue(Rem, 0));
DEBUG(errs().indent(Indent-2) << "=> ";
Result->dump(CurDAG);
errs() << "\n");
@@ -812,11 +811,11 @@ SDNode *SystemZDAGToDAGISel::Select(SDValue Op) {
}
// Select the default instruction
- SDNode *ResNode = SelectCode(Op);
+ SDNode *ResNode = SelectCode(Node);
DEBUG(errs().indent(Indent-2) << "=> ";
- if (ResNode == NULL || ResNode == Op.getNode())
- Op.getNode()->dump(CurDAG);
+ if (ResNode == NULL || ResNode == Node)
+ Node->dump(CurDAG);
else
ResNode->dump(CurDAG);
errs() << "\n";
diff --git a/lib/Target/Target.cpp b/lib/Target/Target.cpp
index cddf49e..f5c969a 100644
--- a/lib/Target/Target.cpp
+++ b/lib/Target/Target.cpp
@@ -34,7 +34,7 @@ char *LLVMCopyStringRepOfTargetData(LLVMTargetDataRef TD) {
}
LLVMByteOrdering LLVMByteOrder(LLVMTargetDataRef TD) {
- return unwrap(TD)->isLittleEndian();
+ return unwrap(TD)->isLittleEndian() ? LLVMLittleEndian : LLVMBigEndian;
}
unsigned LLVMPointerSize(LLVMTargetDataRef TD) {
diff --git a/lib/Target/TargetLoweringObjectFile.cpp b/lib/Target/TargetLoweringObjectFile.cpp
index f887523..70e8008 100644
--- a/lib/Target/TargetLoweringObjectFile.cpp
+++ b/lib/Target/TargetLoweringObjectFile.cpp
@@ -21,11 +21,13 @@
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCSectionELF.h"
+#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Mangler.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
using namespace llvm;
@@ -492,16 +494,15 @@ getELFKindForNamedSection(const char *Name, SectionKind K) {
}
-static unsigned
-getELFSectionType(const char *Name, SectionKind K) {
+static unsigned getELFSectionType(StringRef Name, SectionKind K) {
- if (strcmp(Name, ".init_array") == 0)
+ if (Name == ".init_array")
return MCSectionELF::SHT_INIT_ARRAY;
- if (strcmp(Name, ".fini_array") == 0)
+ if (Name == ".fini_array")
return MCSectionELF::SHT_FINI_ARRAY;
- if (strcmp(Name, ".preinit_array") == 0)
+ if (Name == ".preinit_array")
return MCSectionELF::SHT_PREINIT_ARRAY;
if (K.isBSS() || K.isThreadBSS())
@@ -577,10 +578,16 @@ SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind,
// into a 'uniqued' section name, create and return the section now.
if (GV->isWeakForLinker()) {
const char *Prefix = getSectionPrefixForUniqueGlobal(Kind);
- std::string Name = Mang->makeNameProper(GV->getNameStr());
-
- return getELFSection((Prefix+Name).c_str(),
- getELFSectionType((Prefix+Name).c_str(), Kind),
+ SmallString<128> Name, MangledName;
+ Name.append(Prefix, Prefix+strlen(Prefix));
+ Mang->getNameWithPrefix(Name, GV, false);
+
+ raw_svector_ostream OS(MangledName);
+ MCSymbol::printMangledName(Name, OS, 0);
+ OS.flush();
+
+ return getELFSection(MangledName.str(),
+ getELFSectionType(MangledName.str(), Kind),
getELFSectionFlags(Kind),
Kind);
}
@@ -922,7 +929,7 @@ const MCSection *
TargetLoweringObjectFileMachO::getSectionForConstant(SectionKind Kind) const {
// If this constant requires a relocation, we have to put it in the data
// segment, not in the text segment.
- if (Kind.isDataRel())
+ if (Kind.isDataRel() || Kind.isReadOnlyWithRel())
return ConstDataSection;
if (Kind.isMergeableConst4())
@@ -983,7 +990,7 @@ TargetLoweringObjectFileCOFF::~TargetLoweringObjectFileCOFF() {
const MCSection *TargetLoweringObjectFileCOFF::
-getCOFFSection(const char *Name, bool isDirective, SectionKind Kind) const {
+getCOFFSection(StringRef Name, bool isDirective, SectionKind Kind) const {
// Create the map if it doesn't already exist.
if (UniquingMap == 0)
UniquingMap = new MachOUniqueMapTy();
@@ -1078,8 +1085,9 @@ SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind,
// into a 'uniqued' section name, create and return the section now.
if (GV->isWeakForLinker()) {
const char *Prefix = getCOFFSectionPrefixForUniqueGlobal(Kind);
- std::string Name = Mang->makeNameProper(GV->getNameStr());
- return getCOFFSection((Prefix+Name).c_str(), false, Kind);
+ SmallString<128> Name(Prefix, Prefix+strlen(Prefix));
+ Mang->getNameWithPrefix(Name, GV, false);
+ return getCOFFSection(Name.str(), false, Kind);
}
if (Kind.isText())
diff --git a/lib/Target/X86/AsmParser/X86AsmParser.cpp b/lib/Target/X86/AsmParser/X86AsmParser.cpp
index c357b4d..c4ae5d2 100644
--- a/lib/Target/X86/AsmParser/X86AsmParser.cpp
+++ b/lib/Target/X86/AsmParser/X86AsmParser.cpp
@@ -7,6 +7,7 @@
//
//===----------------------------------------------------------------------===//
+#include "llvm/Target/TargetAsmParser.h"
#include "X86.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
@@ -15,6 +16,7 @@
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCParsedAsmOperand.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Target/TargetAsmParser.h"
@@ -46,7 +48,7 @@ private:
/// @name Auto-generated Match Functions
/// {
- bool MatchInstruction(SmallVectorImpl<X86Operand> &Operands,
+ bool MatchInstruction(const SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCInst &Inst);
/// MatchRegisterName - Match the given string to a register name, or 0 if
@@ -59,7 +61,8 @@ public:
X86ATTAsmParser(const Target &T, MCAsmParser &_Parser)
: TargetAsmParser(T), Parser(_Parser) {}
- virtual bool ParseInstruction(const StringRef &Name, MCInst &Inst);
+ virtual bool ParseInstruction(const StringRef &Name, SMLoc NameLoc,
+ SmallVectorImpl<MCParsedAsmOperand*> &Operands);
virtual bool ParseDirective(AsmToken DirectiveID);
};
@@ -71,7 +74,7 @@ namespace {
/// X86Operand - Instances of this class represent a parsed X86 machine
/// instruction.
-struct X86Operand {
+struct X86Operand : public MCParsedAsmOperand {
enum {
Token,
Register,
@@ -400,10 +403,11 @@ bool X86ATTAsmParser::ParseMemOperand(X86Operand &Op) {
return false;
}
-bool X86ATTAsmParser::ParseInstruction(const StringRef &Name, MCInst &Inst) {
- SmallVector<X86Operand, 8> Operands;
+bool X86ATTAsmParser::
+ParseInstruction(const StringRef &Name, SMLoc NameLoc,
+ SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
- Operands.push_back(X86Operand::CreateToken(Name));
+ Operands.push_back(new X86Operand(X86Operand::CreateToken(Name)));
SMLoc Loc = getLexer().getTok().getLoc();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
@@ -411,31 +415,27 @@ bool X86ATTAsmParser::ParseInstruction(const StringRef &Name, MCInst &Inst) {
// Parse '*' modifier.
if (getLexer().is(AsmToken::Star)) {
getLexer().Lex(); // Eat the star.
- Operands.push_back(X86Operand::CreateToken("*"));
+ Operands.push_back(new X86Operand(X86Operand::CreateToken("*")));
}
// Read the first operand.
- Operands.push_back(X86Operand());
- if (ParseOperand(Operands.back()))
+ X86Operand Op;
+ if (ParseOperand(Op))
return true;
+ Operands.push_back(new X86Operand(Op));
+
while (getLexer().is(AsmToken::Comma)) {
getLexer().Lex(); // Eat the comma.
// Parse and remember the operand.
- Operands.push_back(X86Operand());
- if (ParseOperand(Operands.back()))
+ if (ParseOperand(Op))
return true;
+ Operands.push_back(new X86Operand(Op));
}
}
- if (!MatchInstruction(Operands, Inst))
- return false;
-
- // FIXME: We should give nicer diagnostics about the exact failure.
-
- Error(Loc, "unrecognized instruction");
- return true;
+ return false;
}
bool X86ATTAsmParser::ParseDirective(AsmToken DirectiveID) {
diff --git a/lib/Target/X86/AsmPrinter/X86AsmPrinter.cpp b/lib/Target/X86/AsmPrinter/X86AsmPrinter.cpp
index b88063f..70c6dd0 100644
--- a/lib/Target/X86/AsmPrinter/X86AsmPrinter.cpp
+++ b/lib/Target/X86/AsmPrinter/X86AsmPrinter.cpp
@@ -201,6 +201,7 @@ bool X86AsmPrinter::runOnMachineFunction(MachineFunction &MF) {
/// jump tables, constant pools, global address and external symbols, all of
/// which print to a label with various suffixes for relocation types etc.
void X86AsmPrinter::printSymbolOperand(const MachineOperand &MO) {
+ SmallString<128> TempNameStr;
switch (MO.getType()) {
default: llvm_unreachable("unknown symbol type!");
case MachineOperand::MO_JumpTableIndex:
@@ -236,41 +237,38 @@ void X86AsmPrinter::printSymbolOperand(const MachineOperand &MO) {
if (MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE) {
- SmallString<128> NameStr;
- Mang->getNameWithPrefix(NameStr, GV, true);
- NameStr += "$non_lazy_ptr";
- MCSymbol *Sym = OutContext.GetOrCreateSymbol(NameStr.str());
+ Mang->getNameWithPrefix(TempNameStr, GV, true);
+ TempNameStr += "$non_lazy_ptr";
+ MCSymbol *Sym = OutContext.GetOrCreateSymbol(TempNameStr.str());
const MCSymbol *&StubSym =
MMI->getObjFileInfo<MachineModuleInfoMachO>().getGVStubEntry(Sym);
if (StubSym == 0) {
- NameStr.clear();
- Mang->getNameWithPrefix(NameStr, GV, false);
- StubSym = OutContext.GetOrCreateSymbol(NameStr.str());
+ TempNameStr.clear();
+ Mang->getNameWithPrefix(TempNameStr, GV, false);
+ StubSym = OutContext.GetOrCreateSymbol(TempNameStr.str());
}
} else if (MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE){
- SmallString<128> NameStr;
- Mang->getNameWithPrefix(NameStr, GV, true);
- NameStr += "$non_lazy_ptr";
- MCSymbol *Sym = OutContext.GetOrCreateSymbol(NameStr.str());
+ Mang->getNameWithPrefix(TempNameStr, GV, true);
+ TempNameStr += "$non_lazy_ptr";
+ MCSymbol *Sym = OutContext.GetOrCreateSymbol(TempNameStr.str());
const MCSymbol *&StubSym =
MMI->getObjFileInfo<MachineModuleInfoMachO>().getHiddenGVStubEntry(Sym);
if (StubSym == 0) {
- NameStr.clear();
- Mang->getNameWithPrefix(NameStr, GV, false);
- StubSym = OutContext.GetOrCreateSymbol(NameStr.str());
+ TempNameStr.clear();
+ Mang->getNameWithPrefix(TempNameStr, GV, false);
+ StubSym = OutContext.GetOrCreateSymbol(TempNameStr.str());
}
} else if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB) {
- SmallString<128> NameStr;
- Mang->getNameWithPrefix(NameStr, GV, true);
- NameStr += "$stub";
- MCSymbol *Sym = OutContext.GetOrCreateSymbol(NameStr.str());
+ Mang->getNameWithPrefix(TempNameStr, GV, true);
+ TempNameStr += "$stub";
+ MCSymbol *Sym = OutContext.GetOrCreateSymbol(TempNameStr.str());
const MCSymbol *&StubSym =
MMI->getObjFileInfo<MachineModuleInfoMachO>().getFnStubEntry(Sym);
if (StubSym == 0) {
- NameStr.clear();
- Mang->getNameWithPrefix(NameStr, GV, false);
- StubSym = OutContext.GetOrCreateSymbol(NameStr.str());
+ TempNameStr.clear();
+ Mang->getNameWithPrefix(TempNameStr, GV, false);
+ StubSym = OutContext.GetOrCreateSymbol(TempNameStr.str());
}
}
@@ -285,24 +283,32 @@ void X86AsmPrinter::printSymbolOperand(const MachineOperand &MO) {
break;
}
case MachineOperand::MO_ExternalSymbol: {
- std::string Name = Mang->makeNameProper(MO.getSymbolName());
+ const MCSymbol *SymToPrint;
if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB) {
- Name += "$stub";
- MCSymbol *Sym = OutContext.GetOrCreateSymbol(StringRef(Name));
+ Mang->getNameWithPrefix(TempNameStr,
+ StringRef(MO.getSymbolName())+"$stub");
+ const MCSymbol *Sym = OutContext.GetOrCreateSymbol(TempNameStr.str());
const MCSymbol *&StubSym =
MMI->getObjFileInfo<MachineModuleInfoMachO>().getFnStubEntry(Sym);
if (StubSym == 0) {
- Name.erase(Name.end()-5, Name.end());
- StubSym = OutContext.GetOrCreateSymbol(StringRef(Name));
+ TempNameStr.erase(TempNameStr.end()-5, TempNameStr.end());
+ StubSym = OutContext.GetOrCreateSymbol(TempNameStr.str());
}
+ SymToPrint = StubSym;
+ } else {
+ Mang->getNameWithPrefix(TempNameStr, MO.getSymbolName());
+ SymToPrint = OutContext.GetOrCreateSymbol(TempNameStr.str());
}
// If the name begins with a dollar-sign, enclose it in parens. We do this
// to avoid having it look like an integer immediate to the assembler.
- if (Name[0] == '$')
- O << '(' << Name << ')';
- else
- O << Name;
+ if (SymToPrint->getName()[0] != '$')
+ SymToPrint->print(O, MAI);
+ else {
+ O << '(';
+ SymToPrint->print(O, MAI);
+ O << '(';
+ }
break;
}
}
diff --git a/lib/Target/X86/AsmPrinter/X86MCInstLower.cpp b/lib/Target/X86/AsmPrinter/X86MCInstLower.cpp
index 1015b69..9ee118c 100644
--- a/lib/Target/X86/AsmPrinter/X86MCInstLower.cpp
+++ b/lib/Target/X86/AsmPrinter/X86MCInstLower.cpp
@@ -25,6 +25,7 @@
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/Mangler.h"
#include "llvm/ADT/SmallString.h"
+#include "llvm/Analysis/DebugInfo.h"
using namespace llvm;
@@ -399,6 +400,14 @@ void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
OutMI.setOpcode(X86::MOVZX32rm16);
lower_subreg32(&OutMI, 0);
break;
+ case X86::MOV16r0:
+ OutMI.setOpcode(X86::MOV32r0);
+ lower_subreg32(&OutMI, 0);
+ break;
+ case X86::MOV64r0:
+ OutMI.setOpcode(X86::MOV32r0);
+ lower_subreg32(&OutMI, 0);
+ break;
}
}
@@ -412,6 +421,25 @@ void X86AsmPrinter::printInstructionThroughMCStreamer(const MachineInstr *MI) {
case TargetInstrInfo::GC_LABEL:
printLabel(MI);
return;
+ case TargetInstrInfo::DEBUG_VALUE: {
+ if (!VerboseAsm)
+ return;
+ O << '\t' << MAI->getCommentString() << "DEBUG_VALUE: ";
+ // cast away const; DIetc do not take const operands for some reason
+ DIVariable V((MDNode*)(MI->getOperand(2).getMetadata()));
+ O << V.getName();
+ O << " <- ";
+ if (MI->getOperand(0).getType()==MachineOperand::MO_Register)
+ printOperand(MI, 0);
+ else {
+ assert(MI->getOperand(0).getType()==MachineOperand::MO_Immediate);
+ int64_t imm = MI->getOperand(0).getImm();
+ O << '[' << ((imm<0) ? "EBP" : "ESP+") << imm << ']';
+ }
+ O << "+";
+ printOperand(MI, 1);
+ return;
+ }
case TargetInstrInfo::INLINEASM:
printInlineAsm(MI);
return;
diff --git a/lib/Target/X86/README-SSE.txt b/lib/Target/X86/README-SSE.txt
index 71ad51c..0f3e44b 100644
--- a/lib/Target/X86/README-SSE.txt
+++ b/lib/Target/X86/README-SSE.txt
@@ -916,3 +916,23 @@ cheaper to do fld1 than load from a constant pool for example, so
"load, add 1.0, store" is better done in the fp stack, etc.
//===---------------------------------------------------------------------===//
+
+The X86 backend should be able to if-convert SSE comparisons like "ucomisd" to
+"cmpsd". For example, this code:
+
+double d1(double x) { return x == x ? x : x + x; }
+
+Compiles into:
+
+_d1:
+ ucomisd %xmm0, %xmm0
+ jnp LBB1_2
+ addsd %xmm0, %xmm0
+ ret
+LBB1_2:
+ ret
+
+Also, the 'ret's should be shared. This is PR6032.
+
+//===---------------------------------------------------------------------===//
+
diff --git a/lib/Target/X86/README.txt b/lib/Target/X86/README.txt
index afd9f53..aa7bb3d 100644
--- a/lib/Target/X86/README.txt
+++ b/lib/Target/X86/README.txt
@@ -530,7 +530,7 @@ We should inline lrintf and probably other libc functions.
//===---------------------------------------------------------------------===//
-Start using the flags more. For example, compile:
+Use the FLAGS values from arithmetic instructions more. For example, compile:
int add_zf(int *x, int y, int a, int b) {
if ((*x += y) == 0)
@@ -554,31 +554,8 @@ _add_zf:
movl %ecx, %eax
ret
-and:
-
-int add_zf(int *x, int y, int a, int b) {
- if ((*x + y) < 0)
- return a;
- else
- return b;
-}
-
-to:
-
-add_zf:
- addl (%rdi), %esi
- movl %edx, %eax
- cmovns %ecx, %eax
- ret
-
-instead of:
-
-_add_zf:
- addl (%rdi), %esi
- testl %esi, %esi
- cmovs %edx, %ecx
- movl %ecx, %eax
- ret
+As another example, compile function f2 in test/CodeGen/X86/cmp-test.ll
+without a test instruction.
//===---------------------------------------------------------------------===//
@@ -685,55 +662,6 @@ Though this probably isn't worth it.
//===---------------------------------------------------------------------===//
-We need to teach the codegen to convert two-address INC instructions to LEA
-when the flags are dead (likewise dec). For example, on X86-64, compile:
-
-int foo(int A, int B) {
- return A+1;
-}
-
-to:
-
-_foo:
- leal 1(%edi), %eax
- ret
-
-instead of:
-
-_foo:
- incl %edi
- movl %edi, %eax
- ret
-
-Another example is:
-
-;; X's live range extends beyond the shift, so the register allocator
-;; cannot coalesce it with Y. Because of this, a copy needs to be
-;; emitted before the shift to save the register value before it is
-;; clobbered. However, this copy is not needed if the register
-;; allocator turns the shift into an LEA. This also occurs for ADD.
-
-; Check that the shift gets turned into an LEA.
-; RUN: llvm-as < %s | llc -march=x86 -x86-asm-syntax=intel | \
-; RUN: not grep {mov E.X, E.X}
-
-@G = external global i32 ; <i32*> [#uses=3]
-
-define i32 @test1(i32 %X, i32 %Y) {
- %Z = add i32 %X, %Y ; <i32> [#uses=1]
- volatile store i32 %Y, i32* @G
- volatile store i32 %Z, i32* @G
- ret i32 %X
-}
-
-define i32 @test2(i32 %X) {
- %Z = add i32 %X, 1 ; <i32> [#uses=1]
- volatile store i32 %Z, i32* @G
- ret i32 %X
-}
-
-//===---------------------------------------------------------------------===//
-
Sometimes it is better to codegen subtractions from a constant (e.g. 7-x) with
a neg instead of a sub instruction. Consider:
@@ -854,11 +782,6 @@ __Z11no_overflowjj:
//===---------------------------------------------------------------------===//
-Re-materialize MOV32r0 etc. with xor instead of changing them to moves if the
-condition register is dead. xor reg reg is shorter than mov reg, #0.
-
-//===---------------------------------------------------------------------===//
-
The following code:
bb114.preheader: ; preds = %cond_next94
diff --git a/lib/Target/X86/X86.td b/lib/Target/X86/X86.td
index a6e1ca3..7919559 100644
--- a/lib/Target/X86/X86.td
+++ b/lib/Target/X86/X86.td
@@ -23,6 +23,7 @@ include "llvm/Target/Target.td"
def FeatureCMOV : SubtargetFeature<"cmov","HasCMov", "true",
"Enable conditional move instructions">;
+
def FeatureMMX : SubtargetFeature<"mmx","X86SSELevel", "MMX",
"Enable MMX instructions">;
def FeatureSSE1 : SubtargetFeature<"sse", "X86SSELevel", "SSE1",
@@ -66,6 +67,9 @@ def FeatureFMA3 : SubtargetFeature<"fma3", "HasFMA3", "true",
"Enable three-operand fused multiple-add">;
def FeatureFMA4 : SubtargetFeature<"fma4", "HasFMA4", "true",
"Enable four-operand fused multiple-add">;
+def FeatureVectorUAMem : SubtargetFeature<"vector-unaligned-mem",
+ "HasVectorUAMem", "true",
+ "Allow unaligned memory operands on vector/SIMD instructions">;
//===----------------------------------------------------------------------===//
// X86 processors supported.
diff --git a/lib/Target/X86/X86CodeEmitter.cpp b/lib/Target/X86/X86CodeEmitter.cpp
index 4892e17..828e872 100644
--- a/lib/Target/X86/X86CodeEmitter.cpp
+++ b/lib/Target/X86/X86CodeEmitter.cpp
@@ -135,7 +135,7 @@ bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
IsPIC = TM.getRelocationModel() == Reloc::PIC_;
do {
- DEBUG(errs() << "JITTing function '"
+ DEBUG(dbgs() << "JITTing function '"
<< MF.getFunction()->getName() << "'\n");
MCE.startFunction(MF);
for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
@@ -477,7 +477,7 @@ void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI,
const TargetInstrDesc *Desc) {
- DEBUG(errs() << MI);
+ DEBUG(dbgs() << MI);
MCE.processDebugLoc(MI.getDebugLoc(), true);
@@ -618,11 +618,11 @@ void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI,
const MachineOperand &MO = MI.getOperand(CurOp++);
- DEBUG(errs() << "RawFrm CurOp " << CurOp << "\n");
- DEBUG(errs() << "isMBB " << MO.isMBB() << "\n");
- DEBUG(errs() << "isGlobal " << MO.isGlobal() << "\n");
- DEBUG(errs() << "isSymbol " << MO.isSymbol() << "\n");
- DEBUG(errs() << "isImm " << MO.isImm() << "\n");
+ DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n");
+ DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n");
+ DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n");
+ DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n");
+ DEBUG(dbgs() << "isImm " << MO.isImm() << "\n");
if (MO.isMBB()) {
emitPCRelativeBlockAddress(MO.getMBB());
@@ -843,7 +843,7 @@ void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI,
if (!Desc->isVariadic() && CurOp != NumOps) {
#ifndef NDEBUG
- errs() << "Cannot encode all operands of: " << MI << "\n";
+ dbgs() << "Cannot encode all operands of: " << MI << "\n";
#endif
llvm_unreachable(0);
}
@@ -1082,9 +1082,9 @@ public:
}
if (!OK) {
- errs() << "couldn't convert inst '";
+ dbgs() << "couldn't convert inst '";
MI.dump();
- errs() << "' to machine instr:\n";
+ dbgs() << "' to machine instr:\n";
Instr->dump();
}
diff --git a/lib/Target/X86/X86FastISel.cpp b/lib/Target/X86/X86FastISel.cpp
index 431c120..7e02d59 100644
--- a/lib/Target/X86/X86FastISel.cpp
+++ b/lib/Target/X86/X86FastISel.cpp
@@ -786,8 +786,8 @@ bool X86FastISel::X86SelectCmp(Instruction *I) {
bool X86FastISel::X86SelectZExt(Instruction *I) {
// Handle zero-extension from i1 to i8, which is common.
- if (I->getType() == Type::getInt8Ty(I->getContext()) &&
- I->getOperand(0)->getType() == Type::getInt1Ty(I->getContext())) {
+ if (I->getType()->isInteger(8) &&
+ I->getOperand(0)->getType()->isInteger(1)) {
unsigned ResultReg = getRegForValue(I->getOperand(0));
if (ResultReg == 0) return false;
// Set the high bits to zero.
@@ -948,7 +948,7 @@ bool X86FastISel::X86SelectBranch(Instruction *I) {
bool X86FastISel::X86SelectShift(Instruction *I) {
unsigned CReg = 0, OpReg = 0, OpImm = 0;
const TargetRegisterClass *RC = NULL;
- if (I->getType() == Type::getInt8Ty(I->getContext())) {
+ if (I->getType()->isInteger(8)) {
CReg = X86::CL;
RC = &X86::GR8RegClass;
switch (I->getOpcode()) {
@@ -957,7 +957,7 @@ bool X86FastISel::X86SelectShift(Instruction *I) {
case Instruction::Shl: OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
default: return false;
}
- } else if (I->getType() == Type::getInt16Ty(I->getContext())) {
+ } else if (I->getType()->isInteger(16)) {
CReg = X86::CX;
RC = &X86::GR16RegClass;
switch (I->getOpcode()) {
@@ -966,7 +966,7 @@ bool X86FastISel::X86SelectShift(Instruction *I) {
case Instruction::Shl: OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
default: return false;
}
- } else if (I->getType() == Type::getInt32Ty(I->getContext())) {
+ } else if (I->getType()->isInteger(32)) {
CReg = X86::ECX;
RC = &X86::GR32RegClass;
switch (I->getOpcode()) {
@@ -975,7 +975,7 @@ bool X86FastISel::X86SelectShift(Instruction *I) {
case Instruction::Shl: OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
default: return false;
}
- } else if (I->getType() == Type::getInt64Ty(I->getContext())) {
+ } else if (I->getType()->isInteger(64)) {
CReg = X86::RCX;
RC = &X86::GR64RegClass;
switch (I->getOpcode()) {
@@ -1230,8 +1230,8 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
CC != CallingConv::X86_FastCall)
return false;
- // On X86, -tailcallopt changes the fastcc ABI. FastISel doesn't
- // handle this for now.
+ // fastcc with -tailcallopt is intended to provide a guaranteed
+ // tail call optimization. Fastisel doesn't know how to do that.
if (CC == CallingConv::Fast && PerformTailCallOpt)
return false;
diff --git a/lib/Target/X86/X86FloatingPoint.cpp b/lib/Target/X86/X86FloatingPoint.cpp
index 044bd4b..503ac14 100644
--- a/lib/Target/X86/X86FloatingPoint.cpp
+++ b/lib/Target/X86/X86FloatingPoint.cpp
@@ -75,12 +75,12 @@ namespace {
unsigned StackTop; // The current top of the FP stack.
void dumpStack() const {
- errs() << "Stack contents:";
+ dbgs() << "Stack contents:";
for (unsigned i = 0; i != StackTop; ++i) {
- errs() << " FP" << Stack[i];
+ dbgs() << " FP" << Stack[i];
assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
}
- errs() << "\n";
+ dbgs() << "\n";
}
private:
/// isStackEmpty - Return true if the FP stack is empty.
@@ -246,7 +246,7 @@ bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
PrevMI = prior(I);
++NumFP; // Keep track of # of pseudo instrs
- DEBUG(errs() << "\nFPInst:\t" << *MI);
+ DEBUG(dbgs() << "\nFPInst:\t" << *MI);
// Get dead variables list now because the MI pointer may be deleted as part
// of processing!
@@ -273,7 +273,7 @@ bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
unsigned Reg = DeadRegs[i];
if (Reg >= X86::FP0 && Reg <= X86::FP6) {
- DEBUG(errs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
+ DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
freeStackSlotAfter(I, Reg-X86::FP0);
}
}
@@ -282,13 +282,13 @@ bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
DEBUG(
MachineBasicBlock::iterator PrevI(PrevMI);
if (I == PrevI) {
- errs() << "Just deleted pseudo instruction\n";
+ dbgs() << "Just deleted pseudo instruction\n";
} else {
MachineBasicBlock::iterator Start = I;
// Rewind to first instruction newly inserted.
while (Start != BB.begin() && prior(Start) != PrevI) --Start;
- errs() << "Inserted instructions:\n\t";
- Start->print(errs(), &MF.getTarget());
+ dbgs() << "Inserted instructions:\n\t";
+ Start->print(dbgs(), &MF.getTarget());
while (++Start != llvm::next(I)) {}
}
dumpStack();
diff --git a/lib/Target/X86/X86ISelDAGToDAG.cpp b/lib/Target/X86/X86ISelDAGToDAG.cpp
index cb82383..e2a53d1 100644
--- a/lib/Target/X86/X86ISelDAGToDAG.cpp
+++ b/lib/Target/X86/X86ISelDAGToDAG.cpp
@@ -113,37 +113,37 @@ namespace {
}
void dump() {
- errs() << "X86ISelAddressMode " << this << '\n';
- errs() << "Base.Reg ";
+ dbgs() << "X86ISelAddressMode " << this << '\n';
+ dbgs() << "Base.Reg ";
if (Base.Reg.getNode() != 0)
Base.Reg.getNode()->dump();
else
- errs() << "nul";
- errs() << " Base.FrameIndex " << Base.FrameIndex << '\n'
+ dbgs() << "nul";
+ dbgs() << " Base.FrameIndex " << Base.FrameIndex << '\n'
<< " Scale" << Scale << '\n'
<< "IndexReg ";
if (IndexReg.getNode() != 0)
IndexReg.getNode()->dump();
else
- errs() << "nul";
- errs() << " Disp " << Disp << '\n'
+ dbgs() << "nul";
+ dbgs() << " Disp " << Disp << '\n'
<< "GV ";
if (GV)
GV->dump();
else
- errs() << "nul";
- errs() << " CP ";
+ dbgs() << "nul";
+ dbgs() << " CP ";
if (CP)
CP->dump();
else
- errs() << "nul";
- errs() << '\n'
+ dbgs() << "nul";
+ dbgs() << '\n'
<< "ES ";
if (ES)
- errs() << ES;
+ dbgs() << ES;
else
- errs() << "nul";
- errs() << " JT" << JT << " Align" << Align << '\n';
+ dbgs() << "nul";
+ dbgs() << " JT" << JT << " Align" << Align << '\n';
}
};
}
@@ -190,7 +190,7 @@ namespace {
#include "X86GenDAGISel.inc"
private:
- SDNode *Select(SDValue N);
+ SDNode *Select(SDNode *N);
SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
@@ -201,19 +201,19 @@ namespace {
bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
unsigned Depth);
bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
- bool SelectAddr(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectAddr(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index, SDValue &Disp,
SDValue &Segment);
- bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectLEAAddr(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index, SDValue &Disp);
- bool SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base,
+ bool SelectTLSADDRAddr(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index, SDValue &Disp);
- bool SelectScalarSSELoad(SDValue Op, SDValue Pred,
+ bool SelectScalarSSELoad(SDNode *Op, SDValue Pred,
SDValue N, SDValue &Base, SDValue &Scale,
SDValue &Index, SDValue &Disp,
SDValue &Segment,
SDValue &InChain, SDValue &OutChain);
- bool TryFoldLoad(SDValue P, SDValue N,
+ bool TryFoldLoad(SDNode *P, SDValue N,
SDValue &Base, SDValue &Scale,
SDValue &Index, SDValue &Disp,
SDValue &Segment);
@@ -310,6 +310,11 @@ bool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
if (U == Root)
switch (U->getOpcode()) {
default: break;
+ case X86ISD::ADD:
+ case X86ISD::SUB:
+ case X86ISD::AND:
+ case X86ISD::XOR:
+ case X86ISD::OR:
case ISD::ADD:
case ISD::ADDC:
case ISD::ADDE:
@@ -675,12 +680,12 @@ void X86DAGToDAGISel::InstructionSelect() {
// Codegen the basic block.
#ifndef NDEBUG
- DEBUG(errs() << "===== Instruction selection begins:\n");
+ DEBUG(dbgs() << "===== Instruction selection begins:\n");
Indent = 0;
#endif
SelectRoot(*CurDAG);
#ifndef NDEBUG
- DEBUG(errs() << "===== Instruction selection ends:\n");
+ DEBUG(dbgs() << "===== Instruction selection ends:\n");
#endif
CurDAG->RemoveDeadNodes();
@@ -850,7 +855,7 @@ bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
bool is64Bit = Subtarget->is64Bit();
DebugLoc dl = N.getDebugLoc();
DEBUG({
- errs() << "MatchAddress: ";
+ dbgs() << "MatchAddress: ";
AM.dump();
});
// Limit recursion.
@@ -1268,7 +1273,7 @@ bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
/// SelectAddr - returns true if it is able pattern match an addressing mode.
/// It returns the operands which make up the maximal addressing mode it can
/// match by reference.
-bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base,
+bool X86DAGToDAGISel::SelectAddr(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index,
SDValue &Disp, SDValue &Segment) {
X86ISelAddressMode AM;
@@ -1291,7 +1296,7 @@ bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base,
/// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to
/// match a load whose top elements are either undef or zeros. The load flavor
/// is derived from the type of N, which is either v4f32 or v2f64.
-bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred,
+bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Op, SDValue Pred,
SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index,
SDValue &Disp, SDValue &Segment,
@@ -1302,7 +1307,7 @@ bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred,
if (ISD::isNON_EXTLoad(InChain.getNode()) &&
InChain.getValue(0).hasOneUse() &&
N.hasOneUse() &&
- IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op.getNode())) {
+ IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op)) {
LoadSDNode *LD = cast<LoadSDNode>(InChain);
if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
return false;
@@ -1333,7 +1338,7 @@ bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred,
/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
/// mode it matches can be cost effectively emitted as an LEA instruction.
-bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
+bool X86DAGToDAGISel::SelectLEAAddr(SDNode *Op, SDValue N,
SDValue &Base, SDValue &Scale,
SDValue &Index, SDValue &Disp) {
X86ISelAddressMode AM;
@@ -1395,10 +1400,10 @@ bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
}
/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
-bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base,
+bool X86DAGToDAGISel::SelectTLSADDRAddr(SDNode *Op, SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index,
SDValue &Disp) {
- assert(Op.getOpcode() == X86ISD::TLSADDR);
+ assert(Op->getOpcode() == X86ISD::TLSADDR);
assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
@@ -1421,13 +1426,13 @@ bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base,
}
-bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
+bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
SDValue &Base, SDValue &Scale,
SDValue &Index, SDValue &Disp,
SDValue &Segment) {
if (ISD::isNON_EXTLoad(N.getNode()) &&
N.hasOneUse() &&
- IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode()))
+ IsLegalAndProfitableToFold(N.getNode(), P, P))
return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp, Segment);
return false;
}
@@ -1454,7 +1459,7 @@ SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
SDValue In2L = Node->getOperand(2);
SDValue In2H = Node->getOperand(3);
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
- if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
+ if (!SelectAddr(In1.getNode(), In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
return NULL;
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
@@ -1480,7 +1485,7 @@ SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
SDValue Ptr = Node->getOperand(1);
SDValue Val = Node->getOperand(2);
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
- if (!SelectAddr(Ptr, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
+ if (!SelectAddr(Ptr.getNode(), Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
return 0;
bool isInc = false, isDec = false, isSub = false, isCN = false;
@@ -1678,8 +1683,7 @@ static bool HasNoSignedComparisonUses(SDNode *N) {
return true;
}
-SDNode *X86DAGToDAGISel::Select(SDValue N) {
- SDNode *Node = N.getNode();
+SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
EVT NVT = Node->getValueType(0);
unsigned Opc, MOpc;
unsigned Opcode = Node->getOpcode();
@@ -1687,9 +1691,9 @@ SDNode *X86DAGToDAGISel::Select(SDValue N) {
#ifndef NDEBUG
DEBUG({
- errs() << std::string(Indent, ' ') << "Selecting: ";
+ dbgs() << std::string(Indent, ' ') << "Selecting: ";
Node->dump(CurDAG);
- errs() << '\n';
+ dbgs() << '\n';
});
Indent += 2;
#endif
@@ -1697,9 +1701,9 @@ SDNode *X86DAGToDAGISel::Select(SDValue N) {
if (Node->isMachineOpcode()) {
#ifndef NDEBUG
DEBUG({
- errs() << std::string(Indent-2, ' ') << "== ";
+ dbgs() << std::string(Indent-2, ' ') << "== ";
Node->dump(CurDAG);
- errs() << '\n';
+ dbgs() << '\n';
});
Indent -= 2;
#endif
@@ -1767,10 +1771,10 @@ SDNode *X86DAGToDAGISel::Select(SDValue N) {
}
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
- bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
+ bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
// Multiply is commmutative.
if (!foldedLoad) {
- foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
+ foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
if (foldedLoad)
std::swap(N0, N1);
}
@@ -1793,21 +1797,21 @@ SDNode *X86DAGToDAGISel::Select(SDValue N) {
}
// Copy the low half of the result, if it is needed.
- if (!N.getValue(0).use_empty()) {
+ if (!SDValue(Node, 0).use_empty()) {
SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
LoReg, NVT, InFlag);
InFlag = Result.getValue(2);
- ReplaceUses(N.getValue(0), Result);
+ ReplaceUses(SDValue(Node, 0), Result);
#ifndef NDEBUG
DEBUG({
- errs() << std::string(Indent-2, ' ') << "=> ";
+ dbgs() << std::string(Indent-2, ' ') << "=> ";
Result.getNode()->dump(CurDAG);
- errs() << '\n';
+ dbgs() << '\n';
});
#endif
}
// Copy the high half of the result, if it is needed.
- if (!N.getValue(1).use_empty()) {
+ if (!SDValue(Node, 1).use_empty()) {
SDValue Result;
if (HiReg == X86::AH && Subtarget->is64Bit()) {
// Prevent use of AH in a REX instruction by referencing AX instead.
@@ -1826,12 +1830,12 @@ SDNode *X86DAGToDAGISel::Select(SDValue N) {
HiReg, NVT, InFlag);
InFlag = Result.getValue(2);
}
- ReplaceUses(N.getValue(1), Result);
+ ReplaceUses(SDValue(Node, 1), Result);
#ifndef NDEBUG
DEBUG({
- errs() << std::string(Indent-2, ' ') << "=> ";
+ dbgs() << std::string(Indent-2, ' ') << "=> ";
Result.getNode()->dump(CurDAG);
- errs() << '\n';
+ dbgs() << '\n';
});
#endif
}
@@ -1869,7 +1873,6 @@ SDNode *X86DAGToDAGISel::Select(SDValue N) {
unsigned LoReg, HiReg, ClrReg;
unsigned ClrOpcode, SExtOpcode;
- EVT ClrVT = NVT;
switch (NVT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unsupported VT!");
case MVT::i8:
@@ -1879,7 +1882,7 @@ SDNode *X86DAGToDAGISel::Select(SDValue N) {
break;
case MVT::i16:
LoReg = X86::AX; HiReg = X86::DX;
- ClrOpcode = X86::MOV32r0; ClrReg = X86::EDX; ClrVT = MVT::i32;
+ ClrOpcode = X86::MOV16r0; ClrReg = X86::DX;
SExtOpcode = X86::CWD;
break;
case MVT::i32:
@@ -1889,13 +1892,13 @@ SDNode *X86DAGToDAGISel::Select(SDValue N) {
break;
case MVT::i64:
LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
- ClrOpcode = ~0U; // NOT USED.
+ ClrOpcode = X86::MOV64r0;
SExtOpcode = X86::CQO;
break;
}
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
- bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
+ bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
bool signBitIsZero = CurDAG->SignBitIsZero(N0);
SDValue InFlag;
@@ -1903,7 +1906,7 @@ SDNode *X86DAGToDAGISel::Select(SDValue N) {
// Special case for div8, just use a move with zero extension to AX to
// clear the upper 8 bits (AH).
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
- if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
+ if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
Move =
SDValue(CurDAG->getMachineNode(X86::MOVZX16rm8, dl, MVT::i16,
@@ -1928,24 +1931,8 @@ SDNode *X86DAGToDAGISel::Select(SDValue N) {
SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
} else {
// Zero out the high part, effectively zero extending the input.
- SDValue ClrNode;
-
- if (NVT.getSimpleVT() == MVT::i64) {
- ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, MVT::i32),
- 0);
- // We just did a 32-bit clear, insert it into a 64-bit register to
- // clear the whole 64-bit reg.
- SDValue Zero = CurDAG->getTargetConstant(0, MVT::i64);
- SDValue SubRegNo =
- CurDAG->getTargetConstant(X86::SUBREG_32BIT, MVT::i32);
- ClrNode =
- SDValue(CurDAG->getMachineNode(TargetInstrInfo::SUBREG_TO_REG, dl,
- MVT::i64, Zero, ClrNode, SubRegNo),
- 0);
- } else {
- ClrNode = SDValue(CurDAG->getMachineNode(ClrOpcode, dl, ClrVT), 0);
- }
-
+ SDValue ClrNode =
+ SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
ClrNode, InFlag).getValue(1);
}
@@ -1966,21 +1953,21 @@ SDNode *X86DAGToDAGISel::Select(SDValue N) {
}
// Copy the division (low) result, if it is needed.
- if (!N.getValue(0).use_empty()) {
+ if (!SDValue(Node, 0).use_empty()) {
SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
LoReg, NVT, InFlag);
InFlag = Result.getValue(2);
- ReplaceUses(N.getValue(0), Result);
+ ReplaceUses(SDValue(Node, 0), Result);
#ifndef NDEBUG
DEBUG({
- errs() << std::string(Indent-2, ' ') << "=> ";
+ dbgs() << std::string(Indent-2, ' ') << "=> ";
Result.getNode()->dump(CurDAG);
- errs() << '\n';
+ dbgs() << '\n';
});
#endif
}
// Copy the remainder (high) result, if it is needed.
- if (!N.getValue(1).use_empty()) {
+ if (!SDValue(Node, 1).use_empty()) {
SDValue Result;
if (HiReg == X86::AH && Subtarget->is64Bit()) {
// Prevent use of AH in a REX instruction by referencing AX instead.
@@ -2000,12 +1987,12 @@ SDNode *X86DAGToDAGISel::Select(SDValue N) {
HiReg, NVT, InFlag);
InFlag = Result.getValue(2);
}
- ReplaceUses(N.getValue(1), Result);
+ ReplaceUses(SDValue(Node, 1), Result);
#ifndef NDEBUG
DEBUG({
- errs() << std::string(Indent-2, ' ') << "=> ";
+ dbgs() << std::string(Indent-2, ' ') << "=> ";
Result.getNode()->dump(CurDAG);
- errs() << '\n';
+ dbgs() << '\n';
});
#endif
}
@@ -2124,16 +2111,16 @@ SDNode *X86DAGToDAGISel::Select(SDValue N) {
}
}
- SDNode *ResNode = SelectCode(N);
+ SDNode *ResNode = SelectCode(Node);
#ifndef NDEBUG
DEBUG({
- errs() << std::string(Indent-2, ' ') << "=> ";
- if (ResNode == NULL || ResNode == N.getNode())
- N.getNode()->dump(CurDAG);
+ dbgs() << std::string(Indent-2, ' ') << "=> ";
+ if (ResNode == NULL || ResNode == Node)
+ Node->dump(CurDAG);
else
ResNode->dump(CurDAG);
- errs() << '\n';
+ dbgs() << '\n';
});
Indent -= 2;
#endif
@@ -2150,7 +2137,7 @@ SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
case 'v': // not offsetable ??
default: return true;
case 'm': // memory
- if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3, Op4))
+ if (!SelectAddr(Op.getNode(), Op, Op0, Op1, Op2, Op3, Op4))
return true;
break;
}
diff --git a/lib/Target/X86/X86ISelLowering.cpp b/lib/Target/X86/X86ISelLowering.cpp
index c722fbf..228ec9f 100644
--- a/lib/Target/X86/X86ISelLowering.cpp
+++ b/lib/Target/X86/X86ISelLowering.cpp
@@ -978,6 +978,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
setTargetDAGCombine(ISD::SHL);
setTargetDAGCombine(ISD::SRA);
setTargetDAGCombine(ISD::SRL);
+ setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::MEMBARRIER);
setTargetDAGCombine(ISD::ZERO_EXTEND);
@@ -2077,10 +2078,10 @@ X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
assert(((Callee.getOpcode() == ISD::Register &&
(cast<RegisterSDNode>(Callee)->getReg() == X86::EAX ||
- cast<RegisterSDNode>(Callee)->getReg() == X86::R9)) ||
+ cast<RegisterSDNode>(Callee)->getReg() == X86::R11)) ||
Callee.getOpcode() == ISD::TargetExternalSymbol ||
Callee.getOpcode() == ISD::TargetGlobalAddress) &&
- "Expecting an global address, external symbol, or register");
+ "Expecting a global address, external symbol, or scratch register");
return DAG.getNode(X86ISD::TC_RETURN, dl,
NodeTys, &Ops[0], Ops.size());
@@ -5610,13 +5611,21 @@ SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
// because a TEST instruction will be better.
bool NonFlagUse = false;
for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
- UE = Op.getNode()->use_end(); UI != UE; ++UI)
- if (UI->getOpcode() != ISD::BRCOND &&
- UI->getOpcode() != ISD::SELECT &&
- UI->getOpcode() != ISD::SETCC) {
+ UE = Op.getNode()->use_end(); UI != UE; ++UI) {
+ SDNode *User = *UI;
+ unsigned UOpNo = UI.getOperandNo();
+ if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
+ // Look pass truncate.
+ UOpNo = User->use_begin().getOperandNo();
+ User = *User->use_begin();
+ }
+ if (User->getOpcode() != ISD::BRCOND &&
+ User->getOpcode() != ISD::SETCC &&
+ (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
NonFlagUse = true;
break;
}
+ }
if (!NonFlagUse)
break;
}
@@ -5680,6 +5689,56 @@ SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
}
+/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
+/// if it's possible.
+static SDValue LowerToBT(SDValue Op0, ISD::CondCode CC,
+ DebugLoc dl, SelectionDAG &DAG) {
+ SDValue LHS, RHS;
+ if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
+ if (ConstantSDNode *Op010C =
+ dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
+ if (Op010C->getZExtValue() == 1) {
+ LHS = Op0.getOperand(0);
+ RHS = Op0.getOperand(1).getOperand(1);
+ }
+ } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
+ if (ConstantSDNode *Op000C =
+ dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
+ if (Op000C->getZExtValue() == 1) {
+ LHS = Op0.getOperand(1);
+ RHS = Op0.getOperand(0).getOperand(1);
+ }
+ } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
+ ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
+ SDValue AndLHS = Op0.getOperand(0);
+ if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
+ LHS = AndLHS.getOperand(0);
+ RHS = AndLHS.getOperand(1);
+ }
+ }
+
+ if (LHS.getNode()) {
+ // If LHS is i8, promote it to i16 with any_extend. There is no i8 BT
+ // instruction. Since the shift amount is in-range-or-undefined, we know
+ // that doing a bittest on the i16 value is ok. We extend to i32 because
+ // the encoding for the i16 version is larger than the i32 version.
+ if (LHS.getValueType() == MVT::i8)
+ LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
+
+ // If the operand types disagree, extend the shift amount to match. Since
+ // BT ignores high bits (like shifts) we can use anyextend.
+ if (LHS.getValueType() != RHS.getValueType())
+ RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
+
+ SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
+ unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
+ return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(Cond, MVT::i8), BT);
+ }
+
+ return SDValue();
+}
+
SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
SDValue Op0 = Op.getOperand(0);
@@ -5687,6 +5746,7 @@ SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ // Optimize to BT if possible.
// Lower (X & (1 << N)) == 0 to BT(X, N).
// Lower ((X >>u N) & 1) != 0 to BT(X, N).
// Lower ((X >>s N) & 1) != 0 to BT(X, N).
@@ -5695,48 +5755,9 @@ SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
Op1.getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
- SDValue LHS, RHS;
- if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
- if (ConstantSDNode *Op010C =
- dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
- if (Op010C->getZExtValue() == 1) {
- LHS = Op0.getOperand(0);
- RHS = Op0.getOperand(1).getOperand(1);
- }
- } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
- if (ConstantSDNode *Op000C =
- dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
- if (Op000C->getZExtValue() == 1) {
- LHS = Op0.getOperand(1);
- RHS = Op0.getOperand(0).getOperand(1);
- }
- } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
- ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
- SDValue AndLHS = Op0.getOperand(0);
- if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
- LHS = AndLHS.getOperand(0);
- RHS = AndLHS.getOperand(1);
- }
- }
-
- if (LHS.getNode()) {
- // If LHS is i8, promote it to i16 with any_extend. There is no i8 BT
- // instruction. Since the shift amount is in-range-or-undefined, we know
- // that doing a bittest on the i16 value is ok. We extend to i32 because
- // the encoding for the i16 version is larger than the i32 version.
- if (LHS.getValueType() == MVT::i8)
- LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
-
- // If the operand types disagree, extend the shift amount to match. Since
- // BT ignores high bits (like shifts) we can use anyextend.
- if (LHS.getValueType() != RHS.getValueType())
- RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
-
- SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
- unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
- return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
- DAG.getConstant(Cond, MVT::i8), BT);
- }
+ SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
+ if (NewSetCC.getNode())
+ return NewSetCC;
}
bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
@@ -5936,6 +5957,23 @@ SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
}
if (addTest) {
+ // Look pass the truncate.
+ if (Cond.getOpcode() == ISD::TRUNCATE)
+ Cond = Cond.getOperand(0);
+
+ // We know the result of AND is compared against zero. Try to match
+ // it to BT.
+ if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
+ SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
+ if (NewSetCC.getNode()) {
+ CC = NewSetCC.getOperand(0);
+ Cond = NewSetCC.getOperand(1);
+ addTest = false;
+ }
+ }
+ }
+
+ if (addTest) {
CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Cond = EmitTest(Cond, X86::COND_NE, DAG);
}
@@ -6093,6 +6131,23 @@ SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
}
if (addTest) {
+ // Look pass the truncate.
+ if (Cond.getOpcode() == ISD::TRUNCATE)
+ Cond = Cond.getOperand(0);
+
+ // We know the result of AND is compared against zero. Try to match
+ // it to BT.
+ if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
+ SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
+ if (NewSetCC.getNode()) {
+ CC = NewSetCC.getOperand(0);
+ Cond = NewSetCC.getOperand(1);
+ addTest = false;
+ }
+ }
+ }
+
+ if (addTest) {
CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Cond = EmitTest(Cond, X86::COND_NE, DAG);
}
@@ -7524,8 +7579,7 @@ bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
// x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
- return Ty1 == Type::getInt32Ty(Ty1->getContext()) &&
- Ty2 == Type::getInt64Ty(Ty1->getContext()) && Subtarget->is64Bit();
+ return Ty1->isInteger(64) && Ty2->isInteger(64) && Subtarget->is64Bit();
}
bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
@@ -7749,7 +7803,7 @@ X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
for (int i=0; i < 2 + X86AddrNumOperands; ++i)
argOpers[i] = &bInstr->getOperand(i+2);
- // x86 address has 4 operands: base, index, scale, and displacement
+ // x86 address has 5 operands: base, index, scale, displacement, and segment.
int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
@@ -7777,14 +7831,16 @@ X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
.addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
- unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
- unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
+ // The subsequent operations should be using the destination registers of
+ //the PHI instructions.
if (invSrc) {
- MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
- MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
+ t1 = F->getRegInfo().createVirtualRegister(RC);
+ t2 = F->getRegInfo().createVirtualRegister(RC);
+ MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
+ MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
} else {
- tt1 = t1;
- tt2 = t2;
+ t1 = dest1Oper.getReg();
+ t2 = dest2Oper.getReg();
}
int valArgIndx = lastAddrIndx + 1;
@@ -7798,7 +7854,7 @@ X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
else
MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
if (regOpcL != X86::MOV32rr)
- MIB.addReg(tt1);
+ MIB.addReg(t1);
(*MIB).addOperand(*argOpers[valArgIndx]);
assert(argOpers[valArgIndx + 1]->isReg() ==
argOpers[valArgIndx]->isReg());
@@ -7809,7 +7865,7 @@ X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
else
MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
if (regOpcH != X86::MOV32rr)
- MIB.addReg(tt2);
+ MIB.addReg(t2);
(*MIB).addOperand(*argOpers[valArgIndx + 1]);
MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
@@ -9108,6 +9164,64 @@ static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
return SDValue();
}
+static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+ if (VT != MVT::i64 || !Subtarget->is64Bit())
+ return SDValue();
+
+ // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
+ std::swap(N0, N1);
+ if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
+ return SDValue();
+
+ SDValue ShAmt0 = N0.getOperand(1);
+ if (ShAmt0.getValueType() != MVT::i8)
+ return SDValue();
+ SDValue ShAmt1 = N1.getOperand(1);
+ if (ShAmt1.getValueType() != MVT::i8)
+ return SDValue();
+ if (ShAmt0.getOpcode() == ISD::TRUNCATE)
+ ShAmt0 = ShAmt0.getOperand(0);
+ if (ShAmt1.getOpcode() == ISD::TRUNCATE)
+ ShAmt1 = ShAmt1.getOperand(0);
+
+ DebugLoc DL = N->getDebugLoc();
+ unsigned Opc = X86ISD::SHLD;
+ SDValue Op0 = N0.getOperand(0);
+ SDValue Op1 = N1.getOperand(0);
+ if (ShAmt0.getOpcode() == ISD::SUB) {
+ Opc = X86ISD::SHRD;
+ std::swap(Op0, Op1);
+ std::swap(ShAmt0, ShAmt1);
+ }
+
+ if (ShAmt1.getOpcode() == ISD::SUB) {
+ SDValue Sum = ShAmt1.getOperand(0);
+ if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
+ if (SumC->getSExtValue() == 64 &&
+ ShAmt1.getOperand(1) == ShAmt0)
+ return DAG.getNode(Opc, DL, VT,
+ Op0, Op1,
+ DAG.getNode(ISD::TRUNCATE, DL,
+ MVT::i8, ShAmt0));
+ }
+ } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
+ ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
+ if (ShAmt0C &&
+ ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == 64)
+ return DAG.getNode(Opc, DL, VT,
+ N0.getOperand(0), N1.getOperand(0),
+ DAG.getNode(ISD::TRUNCATE, DL,
+ MVT::i8, ShAmt0));
+ }
+
+ return SDValue();
+}
+
/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
@@ -9370,6 +9484,7 @@ SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
case ISD::SHL:
case ISD::SRA:
case ISD::SRL: return PerformShiftCombine(N, DAG, Subtarget);
+ case ISD::OR: return PerformOrCombine(N, DAG, Subtarget);
case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
case X86ISD::FXOR:
case X86ISD::FOR: return PerformFORCombine(N, DAG);
@@ -9423,7 +9538,7 @@ bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
std::string AsmStr = IA->getAsmString();
// TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
- std::vector<std::string> AsmPieces;
+ SmallVector<StringRef, 4> AsmPieces;
SplitString(AsmStr, AsmPieces, "\n"); // ; as separator?
switch (AsmPieces.size()) {
@@ -9445,7 +9560,7 @@ bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
return LowerToBSwap(CI);
}
// rorw $$8, ${0:w} --> llvm.bswap.i16
- if (CI->getType() == Type::getInt16Ty(CI->getContext()) &&
+ if (CI->getType()->isInteger(16) &&
AsmPieces.size() == 3 &&
AsmPieces[0] == "rorw" &&
AsmPieces[1] == "$$8," &&
@@ -9455,12 +9570,12 @@ bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
}
break;
case 3:
- if (CI->getType() == Type::getInt64Ty(CI->getContext()) &&
+ if (CI->getType()->isInteger(64) &&
Constraints.size() >= 2 &&
Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
// bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
- std::vector<std::string> Words;
+ SmallVector<StringRef, 4> Words;
SplitString(AsmPieces[0], Words, " \t");
if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
Words.clear();
diff --git a/lib/Target/X86/X86Instr64bit.td b/lib/Target/X86/X86Instr64bit.td
index 65fbbda..08e1dd1 100644
--- a/lib/Target/X86/X86Instr64bit.td
+++ b/lib/Target/X86/X86Instr64bit.td
@@ -1106,13 +1106,13 @@ def OR64rm : RI<0x0B, MRMSrcMem , (outs GR64:$dst),
def OR64ri8 : RIi8<0x83, MRM1r, (outs GR64:$dst),
(ins GR64:$src1, i64i8imm:$src2),
"or{q}\t{$src2, $dst|$dst, $src2}",
- [(set GR64:$dst, (or GR64:$src1, i64immSExt8:$src2)),
- (implicit EFLAGS)]>;
+ [(set GR64:$dst, (or GR64:$src1, i64immSExt8:$src2)),
+ (implicit EFLAGS)]>;
def OR64ri32 : RIi32<0x81, MRM1r, (outs GR64:$dst),
(ins GR64:$src1, i64i32imm:$src2),
"or{q}\t{$src2, $dst|$dst, $src2}",
- [(set GR64:$dst, (or GR64:$src1, i64immSExt32:$src2)),
- (implicit EFLAGS)]>;
+ [(set GR64:$dst, (or GR64:$src1, i64immSExt32:$src2)),
+ (implicit EFLAGS)]>;
} // isTwoAddress
def OR64mr : RI<0x09, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
@@ -1598,17 +1598,21 @@ def SLDT64m : RI<0x00, MRM0m, (outs i16mem:$dst), (ins),
// Alias Instructions
//===----------------------------------------------------------------------===//
-// Alias instructions that map movr0 to xor. Use xorl instead of xorq; it's
-// equivalent due to implicit zero-extending, and it sometimes has a smaller
-// encoding.
+// We want to rewrite MOV64r0 in terms of MOV32r0, because it's sometimes a
+// smaller encoding, but doing so at isel time interferes with rematerialization
+// in the current register allocator. For now, this is rewritten when the
+// instruction is lowered to an MCInst.
// FIXME: AddedComplexity gives this a higher priority than MOV64ri32. Remove
// when we have a better way to specify isel priority.
-let AddedComplexity = 1 in
-def : Pat<(i64 0),
- (SUBREG_TO_REG (i64 0), (MOV32r0), x86_subreg_32bit)>;
-
-
-// Materialize i64 constant where top 32-bits are zero.
+let Defs = [EFLAGS],
+ AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
+def MOV64r0 : I<0x31, MRMInitReg, (outs GR64:$dst), (ins),
+ "",
+ [(set GR64:$dst, 0)]>;
+
+// Materialize i64 constant where top 32-bits are zero. This could theoretically
+// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
+// that would make it more difficult to rematerialize.
let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src),
"", [(set GR64:$dst, i64immZExt32:$src)]>;
@@ -1683,6 +1687,7 @@ def CMPXCHG64rr : RI<0xB1, MRMDestReg, (outs GR64:$dst), (ins GR64:$src),
def CMPXCHG64rm : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
"cmpxchg{q}\t{$src, $dst|$dst, $src}", []>, TB;
+let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX] in
def CMPXCHG16B : RI<0xC7, MRM1m, (outs), (ins i128mem:$dst),
"cmpxchg16b\t$dst", []>, TB;
@@ -1962,6 +1967,17 @@ def : Pat<(add GR64:$src1, 0x0000000080000000),
def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
(SUB64mi32 addr:$dst, 0xffffffff80000000)>;
+// Use a 32-bit and with implicit zero-extension instead of a 64-bit and if it
+// has an immediate with at least 32 bits of leading zeros, to avoid needing to
+// materialize that immediate in a register first.
+def : Pat<(and GR64:$src, i64immZExt32:$imm),
+ (SUBREG_TO_REG
+ (i64 0),
+ (AND32ri
+ (EXTRACT_SUBREG GR64:$src, x86_subreg_32bit),
+ imm:$imm),
+ x86_subreg_32bit)>;
+
// r & (2^32-1) ==> movz
def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
(MOVZX64rr32 (EXTRACT_SUBREG GR64:$src, x86_subreg_32bit))>;
@@ -2028,7 +2044,7 @@ def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
(EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
x86_subreg_8bit_hi))>,
Requires<[In64BitMode]>;
-def : Pat<(srl_su GR16:$src, (i8 8)),
+def : Pat<(srl GR16:$src, (i8 8)),
(EXTRACT_SUBREG
(MOVZX32_NOREXrr8
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
@@ -2098,24 +2114,7 @@ def : Pat<(sra GR64:$src1, (and CL:$amt, 63)),
def : Pat<(store (sra (loadi64 addr:$dst), (and CL:$amt, 63)), addr:$dst),
(SAR64mCL addr:$dst)>;
-// (or (x >> c) | (y << (64 - c))) ==> (shrd64 x, y, c)
-def : Pat<(or (srl GR64:$src1, CL:$amt),
- (shl GR64:$src2, (sub 64, CL:$amt))),
- (SHRD64rrCL GR64:$src1, GR64:$src2)>;
-
-def : Pat<(store (or (srl (loadi64 addr:$dst), CL:$amt),
- (shl GR64:$src2, (sub 64, CL:$amt))), addr:$dst),
- (SHRD64mrCL addr:$dst, GR64:$src2)>;
-
-def : Pat<(or (srl GR64:$src1, (i8 (trunc RCX:$amt))),
- (shl GR64:$src2, (i8 (trunc (sub 64, RCX:$amt))))),
- (SHRD64rrCL GR64:$src1, GR64:$src2)>;
-
-def : Pat<(store (or (srl (loadi64 addr:$dst), (i8 (trunc RCX:$amt))),
- (shl GR64:$src2, (i8 (trunc (sub 64, RCX:$amt))))),
- addr:$dst),
- (SHRD64mrCL addr:$dst, GR64:$src2)>;
-
+// Double shift patterns
def : Pat<(shrd GR64:$src1, (i8 imm:$amt1), GR64:$src2, (i8 imm:$amt2)),
(SHRD64rri8 GR64:$src1, GR64:$src2, (i8 imm:$amt1))>;
@@ -2123,24 +2122,6 @@ def : Pat<(store (shrd (loadi64 addr:$dst), (i8 imm:$amt1),
GR64:$src2, (i8 imm:$amt2)), addr:$dst),
(SHRD64mri8 addr:$dst, GR64:$src2, (i8 imm:$amt1))>;
-// (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
-def : Pat<(or (shl GR64:$src1, CL:$amt),
- (srl GR64:$src2, (sub 64, CL:$amt))),
- (SHLD64rrCL GR64:$src1, GR64:$src2)>;
-
-def : Pat<(store (or (shl (loadi64 addr:$dst), CL:$amt),
- (srl GR64:$src2, (sub 64, CL:$amt))), addr:$dst),
- (SHLD64mrCL addr:$dst, GR64:$src2)>;
-
-def : Pat<(or (shl GR64:$src1, (i8 (trunc RCX:$amt))),
- (srl GR64:$src2, (i8 (trunc (sub 64, RCX:$amt))))),
- (SHLD64rrCL GR64:$src1, GR64:$src2)>;
-
-def : Pat<(store (or (shl (loadi64 addr:$dst), (i8 (trunc RCX:$amt))),
- (srl GR64:$src2, (i8 (trunc (sub 64, RCX:$amt))))),
- addr:$dst),
- (SHLD64mrCL addr:$dst, GR64:$src2)>;
-
def : Pat<(shld GR64:$src1, (i8 imm:$amt1), GR64:$src2, (i8 imm:$amt2)),
(SHLD64rri8 GR64:$src1, GR64:$src2, (i8 imm:$amt1))>;
@@ -2148,6 +2129,19 @@ def : Pat<(store (shld (loadi64 addr:$dst), (i8 imm:$amt1),
GR64:$src2, (i8 imm:$amt2)), addr:$dst),
(SHLD64mri8 addr:$dst, GR64:$src2, (i8 imm:$amt1))>;
+// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
+let AddedComplexity = 5 in { // Try this before the selecting to OR
+def : Pat<(parallel (or_is_add GR64:$src1, i64immSExt8:$src2),
+ (implicit EFLAGS)),
+ (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(parallel (or_is_add GR64:$src1, i64immSExt32:$src2),
+ (implicit EFLAGS)),
+ (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
+def : Pat<(parallel (or_is_add GR64:$src1, GR64:$src2),
+ (implicit EFLAGS)),
+ (ADD64rr GR64:$src1, GR64:$src2)>;
+} // AddedComplexity
+
// X86 specific add which produces a flag.
def : Pat<(addc GR64:$src1, GR64:$src2),
(ADD64rr GR64:$src1, GR64:$src2)>;
diff --git a/lib/Target/X86/X86InstrInfo.cpp b/lib/Target/X86/X86InstrInfo.cpp
index e555cd1..7b39fb3 100644
--- a/lib/Target/X86/X86InstrInfo.cpp
+++ b/lib/Target/X86/X86InstrInfo.cpp
@@ -28,6 +28,7 @@
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
@@ -711,6 +712,62 @@ bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
}
}
+bool
+X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
+ unsigned &SrcReg, unsigned &DstReg,
+ unsigned &SubIdx) const {
+ switch (MI.getOpcode()) {
+ default: break;
+ case X86::MOVSX16rr8:
+ case X86::MOVZX16rr8:
+ case X86::MOVSX32rr8:
+ case X86::MOVZX32rr8:
+ case X86::MOVSX64rr8:
+ case X86::MOVZX64rr8:
+ if (!TM.getSubtarget<X86Subtarget>().is64Bit())
+ // It's not always legal to reference the low 8-bit of the larger
+ // register in 32-bit mode.
+ return false;
+ case X86::MOVSX32rr16:
+ case X86::MOVZX32rr16:
+ case X86::MOVSX64rr16:
+ case X86::MOVZX64rr16:
+ case X86::MOVSX64rr32:
+ case X86::MOVZX64rr32: {
+ if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
+ // Be conservative.
+ return false;
+ SrcReg = MI.getOperand(1).getReg();
+ DstReg = MI.getOperand(0).getReg();
+ switch (MI.getOpcode()) {
+ default:
+ llvm_unreachable(0);
+ break;
+ case X86::MOVSX16rr8:
+ case X86::MOVZX16rr8:
+ case X86::MOVSX32rr8:
+ case X86::MOVZX32rr8:
+ case X86::MOVSX64rr8:
+ case X86::MOVZX64rr8:
+ SubIdx = 1;
+ break;
+ case X86::MOVSX32rr16:
+ case X86::MOVZX32rr16:
+ case X86::MOVSX64rr16:
+ case X86::MOVZX64rr16:
+ SubIdx = 3;
+ break;
+ case X86::MOVSX64rr32:
+ case X86::MOVZX64rr32:
+ SubIdx = 4;
+ break;
+ }
+ return true;
+ }
+ }
+ return false;
+}
+
/// isFrameOperand - Return true and the FrameIndex if the specified
/// operand and follow operands form a reference to the stack frame.
bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
@@ -1018,12 +1075,16 @@ void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
switch (Opc) {
default: break;
case X86::MOV8r0:
- case X86::MOV32r0: {
+ case X86::MOV16r0:
+ case X86::MOV32r0:
+ case X86::MOV64r0: {
if (!isSafeToClobberEFLAGS(MBB, I)) {
switch (Opc) {
default: break;
case X86::MOV8r0: Opc = X86::MOV8ri; break;
+ case X86::MOV16r0: Opc = X86::MOV16ri; break;
case X86::MOV32r0: Opc = X86::MOV32ri; break;
+ case X86::MOV64r0: Opc = X86::MOV64ri; break;
}
Clone = false;
}
@@ -2290,8 +2351,12 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
OpcodeTablePtr = &RegOp2MemOpTable2Addr;
isTwoAddrFold = true;
} else if (i == 0) { // If operand 0
- if (MI->getOpcode() == X86::MOV32r0)
+ if (MI->getOpcode() == X86::MOV64r0)
+ NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
+ else if (MI->getOpcode() == X86::MOV32r0)
NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
+ else if (MI->getOpcode() == X86::MOV16r0)
+ NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
else if (MI->getOpcode() == X86::MOV8r0)
NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
if (NewMI)
@@ -2354,7 +2419,7 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
// No fusion
if (PrintFailedFusing)
- errs() << "We failed to fuse operand " << i << " in " << *MI;
+ dbgs() << "We failed to fuse operand " << i << " in " << *MI;
return NULL;
}
@@ -2559,7 +2624,9 @@ bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
} else if (OpNum == 0) { // If operand 0
switch (Opc) {
case X86::MOV8r0:
+ case X86::MOV16r0:
case X86::MOV32r0:
+ case X86::MOV64r0:
return true;
default: break;
}
diff --git a/lib/Target/X86/X86InstrInfo.h b/lib/Target/X86/X86InstrInfo.h
index b83441d..0ab85f4 100644
--- a/lib/Target/X86/X86InstrInfo.h
+++ b/lib/Target/X86/X86InstrInfo.h
@@ -448,6 +448,16 @@ public:
unsigned &SrcReg, unsigned &DstReg,
unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
+ /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
+ /// extension instruction. That is, it's like a copy where it's legal for the
+ /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
+ /// true, then it's expected the pre-extension value is available as a subreg
+ /// of the result register. This also returns the sub-register index in
+ /// SubIdx.
+ virtual bool isCoalescableExtInstr(const MachineInstr &MI,
+ unsigned &SrcReg, unsigned &DstReg,
+ unsigned &SubIdx) const;
+
unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
/// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
/// stack locations as well. This uses a heuristic so it isn't
diff --git a/lib/Target/X86/X86InstrInfo.td b/lib/Target/X86/X86InstrInfo.td
index 4d922a5..396cb53 100644
--- a/lib/Target/X86/X86InstrInfo.td
+++ b/lib/Target/X86/X86InstrInfo.td
@@ -160,15 +160,21 @@ def X86ehret : SDNode<"X86ISD::EH_RETURN", SDT_X86EHRET,
def X86tcret : SDNode<"X86ISD::TC_RETURN", SDT_X86TCRET,
[SDNPHasChain, SDNPOptInFlag]>;
-def X86add_flag : SDNode<"X86ISD::ADD", SDTBinaryArithWithFlags>;
+def X86add_flag : SDNode<"X86ISD::ADD", SDTBinaryArithWithFlags,
+ [SDNPCommutative]>;
def X86sub_flag : SDNode<"X86ISD::SUB", SDTBinaryArithWithFlags>;
-def X86smul_flag : SDNode<"X86ISD::SMUL", SDTBinaryArithWithFlags>;
-def X86umul_flag : SDNode<"X86ISD::UMUL", SDTUnaryArithWithFlags>;
+def X86smul_flag : SDNode<"X86ISD::SMUL", SDTBinaryArithWithFlags,
+ [SDNPCommutative]>;
+def X86umul_flag : SDNode<"X86ISD::UMUL", SDTUnaryArithWithFlags,
+ [SDNPCommutative]>;
def X86inc_flag : SDNode<"X86ISD::INC", SDTUnaryArithWithFlags>;
def X86dec_flag : SDNode<"X86ISD::DEC", SDTUnaryArithWithFlags>;
-def X86or_flag : SDNode<"X86ISD::OR", SDTBinaryArithWithFlags>;
-def X86xor_flag : SDNode<"X86ISD::XOR", SDTBinaryArithWithFlags>;
-def X86and_flag : SDNode<"X86ISD::AND", SDTBinaryArithWithFlags>;
+def X86or_flag : SDNode<"X86ISD::OR", SDTBinaryArithWithFlags,
+ [SDNPCommutative]>;
+def X86xor_flag : SDNode<"X86ISD::XOR", SDTBinaryArithWithFlags,
+ [SDNPCommutative]>;
+def X86and_flag : SDNode<"X86ISD::AND", SDTBinaryArithWithFlags,
+ [SDNPCommutative]>;
def X86mul_imm : SDNode<"X86ISD::MUL_IMM", SDTIntBinOp>;
@@ -487,6 +493,21 @@ def trunc_su : PatFrag<(ops node:$src), (trunc node:$src), [{
return N->hasOneUse();
}]>;
+// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
+def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
+ return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
+ else {
+ unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
+ APInt Mask = APInt::getAllOnesValue(BitWidth);
+ APInt KnownZero0, KnownOne0;
+ CurDAG->ComputeMaskedBits(N->getOperand(0), Mask, KnownZero0, KnownOne0, 0);
+ APInt KnownZero1, KnownOne1;
+ CurDAG->ComputeMaskedBits(N->getOperand(1), Mask, KnownZero1, KnownOne1, 0);
+ return (~KnownZero0 & ~KnownZero1) == 0;
+ }
+}]>;
+
// 'shld' and 'shrd' instruction patterns. Note that even though these have
// the srl and shl in their patterns, the C++ code must still check for them,
// because predicates are tested before children nodes are explored.
@@ -3700,18 +3721,21 @@ let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
def MOV8r0 : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins),
"xor{b}\t$dst, $dst",
[(set GR8:$dst, 0)]>;
+
+// We want to rewrite MOV16r0 in terms of MOV32r0, because it's a smaller
+// encoding and avoids a partial-register update sometimes, but doing so
+// at isel time interferes with rematerialization in the current register
+// allocator. For now, this is rewritten when the instruction is lowered
+// to an MCInst.
+def MOV16r0 : I<0x31, MRMInitReg, (outs GR16:$dst), (ins),
+ "",
+ [(set GR16:$dst, 0)]>, OpSize;
def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins),
"xor{l}\t$dst, $dst",
[(set GR32:$dst, 0)]>;
}
-// Use xorl instead of xorw since we don't care about the high 16 bits,
-// it's smaller, and it avoids a partial-register update.
-let AddedComplexity = 1 in
-def : Pat<(i16 0),
- (EXTRACT_SUBREG (MOV32r0), x86_subreg_16bit)>;
-
//===----------------------------------------------------------------------===//
// Thread Local Storage Instructions
//
@@ -3792,7 +3816,7 @@ def LCMPXCHG32 : I<0xB1, MRMDestMem, (outs), (ins i32mem:$ptr, GR32:$swap),
[(X86cas addr:$ptr, GR32:$swap, 4)]>, TB, LOCK;
}
let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in {
-def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i32mem:$ptr),
+def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$ptr),
"lock\n\t"
"cmpxchg8b\t$ptr",
[(X86cas8 addr:$ptr)]>, TB, LOCK;
@@ -3858,6 +3882,7 @@ def CMPXCHG16rm : I<0xB1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
def CMPXCHG32rm : I<0xB1, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
"cmpxchg{l}\t{$src, $dst|$dst, $src}", []>, TB;
+let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in
def CMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$dst),
"cmpxchg8b\t$dst", []>, TB;
@@ -4466,7 +4491,7 @@ def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
x86_subreg_8bit_hi)>,
Requires<[In32BitMode]>;
-def : Pat<(srl_su GR16:$src, (i8 8)),
+def : Pat<(srl GR16:$src, (i8 8)),
(EXTRACT_SUBREG
(MOVZX32rr8
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
@@ -4640,6 +4665,28 @@ def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
(SETB_C32r)>;
+// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
+let AddedComplexity = 5 in { // Try this before the selecting to OR
+def : Pat<(parallel (or_is_add GR16:$src1, imm:$src2),
+ (implicit EFLAGS)),
+ (ADD16ri GR16:$src1, imm:$src2)>;
+def : Pat<(parallel (or_is_add GR32:$src1, imm:$src2),
+ (implicit EFLAGS)),
+ (ADD32ri GR32:$src1, imm:$src2)>;
+def : Pat<(parallel (or_is_add GR16:$src1, i16immSExt8:$src2),
+ (implicit EFLAGS)),
+ (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(parallel (or_is_add GR32:$src1, i32immSExt8:$src2),
+ (implicit EFLAGS)),
+ (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
+def : Pat<(parallel (or_is_add GR16:$src1, GR16:$src2),
+ (implicit EFLAGS)),
+ (ADD16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(parallel (or_is_add GR32:$src1, GR32:$src2),
+ (implicit EFLAGS)),
+ (ADD32rr GR32:$src1, GR32:$src2)>;
+} // AddedComplexity
+
//===----------------------------------------------------------------------===//
// EFLAGS-defining Patterns
//===----------------------------------------------------------------------===//
diff --git a/lib/Target/X86/X86InstrSSE.td b/lib/Target/X86/X86InstrSSE.td
index b26e508..94b9b55 100644
--- a/lib/Target/X86/X86InstrSSE.td
+++ b/lib/Target/X86/X86InstrSSE.td
@@ -131,11 +131,13 @@ def alignedloadv2i64 : PatFrag<(ops node:$ptr),
// Like 'load', but uses special alignment checks suitable for use in
// memory operands in most SSE instructions, which are required to
-// be naturally aligned on some targets but not on others.
-// FIXME: Actually implement support for targets that don't require the
-// alignment. This probably wants a subtarget predicate.
+// be naturally aligned on some targets but not on others. If the subtarget
+// allows unaligned accesses, match any load, though this may require
+// setting a feature bit in the processor (on startup, for example).
+// Opteron 10h and later implement such a feature.
def memop : PatFrag<(ops node:$ptr), (load node:$ptr), [{
- return cast<LoadSDNode>(N)->getAlignment() >= 16;
+ return Subtarget->hasVectorUAMem()
+ || cast<LoadSDNode>(N)->getAlignment() >= 16;
}]>;
def memopfsf32 : PatFrag<(ops node:$ptr), (f32 (memop node:$ptr))>;
diff --git a/lib/Target/X86/X86JITInfo.cpp b/lib/Target/X86/X86JITInfo.cpp
index c69cc83..f363903 100644
--- a/lib/Target/X86/X86JITInfo.cpp
+++ b/lib/Target/X86/X86JITInfo.cpp
@@ -348,7 +348,7 @@ X86CompilationCallback2(intptr_t *StackPtr, intptr_t RetAddr) {
#endif
#if 0
- DEBUG(errs() << "In callback! Addr=" << (void*)RetAddr
+ DEBUG(dbgs() << "In callback! Addr=" << (void*)RetAddr
<< " ESP=" << (void*)StackPtr
<< ": Resolving call to function: "
<< TheVM->getFunctionReferencedName((void*)RetAddr) << "\n");
diff --git a/lib/Target/X86/X86RegisterInfo.cpp b/lib/Target/X86/X86RegisterInfo.cpp
index d96aafd..9bd96af 100644
--- a/lib/Target/X86/X86RegisterInfo.cpp
+++ b/lib/Target/X86/X86RegisterInfo.cpp
@@ -591,6 +591,15 @@ X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
int FrameIndex = MI.getOperand(i).getIndex();
unsigned BasePtr;
+ // DEBUG_VALUE has a special representation, and is only robust enough to
+ // represent SP(or BP) +- offset addressing modes. We rewrite the
+ // FrameIndex to be a constant; implicitly positive constants are relative
+ // to ESP and negative ones to EBP.
+ if (MI.getOpcode()==TargetInstrInfo::DEBUG_VALUE) {
+ MI.getOperand(i).ChangeToImmediate(getFrameIndexOffset(MF, FrameIndex));
+ return 0;
+ }
+
if (needsStackRealignment(MF))
BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr);
else
diff --git a/lib/Target/X86/X86Subtarget.cpp b/lib/Target/X86/X86Subtarget.cpp
index 75cdbad..2039be7 100644
--- a/lib/Target/X86/X86Subtarget.cpp
+++ b/lib/Target/X86/X86Subtarget.cpp
@@ -286,6 +286,7 @@ X86Subtarget::X86Subtarget(const std::string &TT, const std::string &FS,
, HasFMA3(false)
, HasFMA4(false)
, IsBTMemSlow(false)
+ , HasVectorUAMem(false)
, DarwinVers(0)
, stackAlignment(8)
// FIXME: this is a known good value for Yonah. How about others?
@@ -317,7 +318,7 @@ X86Subtarget::X86Subtarget(const std::string &TT, const std::string &FS,
if (Is64Bit)
HasX86_64 = true;
- DEBUG(errs() << "Subtarget features: SSELevel " << X86SSELevel
+ DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
<< ", 3DNowLevel " << X863DNowLevel
<< ", 64bit " << HasX86_64 << "\n");
assert((!Is64Bit || HasX86_64) &&
diff --git a/lib/Target/X86/X86Subtarget.h b/lib/Target/X86/X86Subtarget.h
index ef6dbaf..618dd10 100644
--- a/lib/Target/X86/X86Subtarget.h
+++ b/lib/Target/X86/X86Subtarget.h
@@ -78,6 +78,10 @@ protected:
/// IsBTMemSlow - True if BT (bit test) of memory instructions are slow.
bool IsBTMemSlow;
+ /// HasVectorUAMem - True if SIMD operations can have unaligned memory operands.
+ /// This may require setting a feature bit in the processor.
+ bool HasVectorUAMem;
+
/// DarwinVers - Nonzero if this is a darwin platform: the numeric
/// version of the platform, e.g. 8 = 10.4 (Tiger), 9 = 10.5 (Leopard), etc.
unsigned char DarwinVers; // Is any darwin-x86 platform.
@@ -142,6 +146,7 @@ public:
bool hasFMA3() const { return HasFMA3; }
bool hasFMA4() const { return HasFMA4; }
bool isBTMemSlow() const { return IsBTMemSlow; }
+ bool hasVectorUAMem() const { return HasVectorUAMem; }
bool isTargetDarwin() const { return TargetType == isDarwin; }
bool isTargetELF() const { return TargetType == isELF; }
@@ -169,7 +174,7 @@ public:
p = "e-p:64:64-s:64-f64:64:64-i64:64:64-f80:128:128-n8:16:32:64";
else if (isTargetDarwin())
p = "e-p:32:32-f64:32:64-i64:32:64-f80:128:128-n8:16:32";
- else if (isTargetCygMing() || isTargetWindows())
+ else if (isTargetMingw() || isTargetWindows())
p = "e-p:32:32-f64:64:64-i64:64:64-f80:128:128-n8:16:32";
else
p = "e-p:32:32-f64:32:64-i64:32:64-f80:32:32-n8:16:32";
diff --git a/lib/Target/XCore/XCoreISelDAGToDAG.cpp b/lib/Target/XCore/XCoreISelDAGToDAG.cpp
index da2fb04..383fd91 100644
--- a/lib/Target/XCore/XCoreISelDAGToDAG.cpp
+++ b/lib/Target/XCore/XCoreISelDAGToDAG.cpp
@@ -49,7 +49,7 @@ namespace {
Lowering(*TM.getTargetLowering()),
Subtarget(*TM.getSubtargetImpl()) { }
- SDNode *Select(SDValue Op);
+ SDNode *Select(SDNode *N);
/// getI32Imm - Return a target constant with the specified value, of type
/// i32.
@@ -58,11 +58,11 @@ namespace {
}
// Complex Pattern Selectors.
- bool SelectADDRspii(SDValue Op, SDValue Addr, SDValue &Base,
+ bool SelectADDRspii(SDNode *Op, SDValue Addr, SDValue &Base,
SDValue &Offset);
- bool SelectADDRdpii(SDValue Op, SDValue Addr, SDValue &Base,
+ bool SelectADDRdpii(SDNode *Op, SDValue Addr, SDValue &Base,
SDValue &Offset);
- bool SelectADDRcpii(SDValue Op, SDValue Addr, SDValue &Base,
+ bool SelectADDRcpii(SDNode *Op, SDValue Addr, SDValue &Base,
SDValue &Offset);
virtual void InstructionSelect();
@@ -83,7 +83,7 @@ FunctionPass *llvm::createXCoreISelDag(XCoreTargetMachine &TM) {
return new XCoreDAGToDAGISel(TM);
}
-bool XCoreDAGToDAGISel::SelectADDRspii(SDValue Op, SDValue Addr,
+bool XCoreDAGToDAGISel::SelectADDRspii(SDNode *Op, SDValue Addr,
SDValue &Base, SDValue &Offset) {
FrameIndexSDNode *FIN = 0;
if ((FIN = dyn_cast<FrameIndexSDNode>(Addr))) {
@@ -105,7 +105,7 @@ bool XCoreDAGToDAGISel::SelectADDRspii(SDValue Op, SDValue Addr,
return false;
}
-bool XCoreDAGToDAGISel::SelectADDRdpii(SDValue Op, SDValue Addr,
+bool XCoreDAGToDAGISel::SelectADDRdpii(SDNode *Op, SDValue Addr,
SDValue &Base, SDValue &Offset) {
if (Addr.getOpcode() == XCoreISD::DPRelativeWrapper) {
Base = Addr.getOperand(0);
@@ -126,7 +126,7 @@ bool XCoreDAGToDAGISel::SelectADDRdpii(SDValue Op, SDValue Addr,
return false;
}
-bool XCoreDAGToDAGISel::SelectADDRcpii(SDValue Op, SDValue Addr,
+bool XCoreDAGToDAGISel::SelectADDRcpii(SDNode *Op, SDValue Addr,
SDValue &Base, SDValue &Offset) {
if (Addr.getOpcode() == XCoreISD::CPRelativeWrapper) {
Base = Addr.getOperand(0);
@@ -156,8 +156,7 @@ void XCoreDAGToDAGISel::InstructionSelect() {
CurDAG->RemoveDeadNodes();
}
-SDNode *XCoreDAGToDAGISel::Select(SDValue Op) {
- SDNode *N = Op.getNode();
+SDNode *XCoreDAGToDAGISel::Select(SDNode *N) {
DebugLoc dl = N->getDebugLoc();
EVT NVT = N->getValueType(0);
if (NVT == MVT::i32) {
@@ -185,7 +184,7 @@ SDNode *XCoreDAGToDAGISel::Select(SDValue Op) {
// FIXME fold addition into the macc instruction
SDValue Zero(CurDAG->getMachineNode(XCore::LDC_ru6, dl, MVT::i32,
CurDAG->getTargetConstant(0, MVT::i32)), 0);
- SDValue Ops[] = { Zero, Zero, Op.getOperand(0), Op.getOperand(1) };
+ SDValue Ops[] = { Zero, Zero, N->getOperand(0), N->getOperand(1) };
SDNode *ResNode = CurDAG->getMachineNode(XCore::MACCS_l4r, dl,
MVT::i32, MVT::i32, Ops, 4);
ReplaceUses(SDValue(N, 0), SDValue(ResNode, 1));
@@ -196,7 +195,7 @@ SDNode *XCoreDAGToDAGISel::Select(SDValue Op) {
// FIXME fold addition into the macc / lmul instruction
SDValue Zero(CurDAG->getMachineNode(XCore::LDC_ru6, dl, MVT::i32,
CurDAG->getTargetConstant(0, MVT::i32)), 0);
- SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1),
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
Zero, Zero };
SDNode *ResNode = CurDAG->getMachineNode(XCore::LMUL_l6r, dl, MVT::i32,
MVT::i32, Ops, 4);
@@ -205,19 +204,19 @@ SDNode *XCoreDAGToDAGISel::Select(SDValue Op) {
return NULL;
}
case XCoreISD::LADD: {
- SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1),
- Op.getOperand(2) };
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
+ N->getOperand(2) };
return CurDAG->getMachineNode(XCore::LADD_l5r, dl, MVT::i32, MVT::i32,
Ops, 3);
}
case XCoreISD::LSUB: {
- SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1),
- Op.getOperand(2) };
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
+ N->getOperand(2) };
return CurDAG->getMachineNode(XCore::LSUB_l5r, dl, MVT::i32, MVT::i32,
Ops, 3);
}
// Other cases are autogenerated.
}
}
- return SelectCode(Op);
+ return SelectCode(N);
}
diff --git a/lib/Transforms/IPO/ArgumentPromotion.cpp b/lib/Transforms/IPO/ArgumentPromotion.cpp
index dd5a6d8..d8190a4 100644
--- a/lib/Transforms/IPO/ArgumentPromotion.cpp
+++ b/lib/Transforms/IPO/ArgumentPromotion.cpp
@@ -147,7 +147,7 @@ CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
const Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
if (const StructType *STy = dyn_cast<StructType>(AgTy)) {
if (maxElements > 0 && STy->getNumElements() > maxElements) {
- DEBUG(errs() << "argpromotion disable promoting argument '"
+ DEBUG(dbgs() << "argpromotion disable promoting argument '"
<< PtrArg->getName() << "' because it would require adding more"
<< " than " << maxElements << " arguments to the function.\n");
} else {
@@ -409,7 +409,7 @@ bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
// to do.
if (ToPromote.find(Operands) == ToPromote.end()) {
if (maxElements > 0 && ToPromote.size() == maxElements) {
- DEBUG(errs() << "argpromotion not promoting argument '"
+ DEBUG(dbgs() << "argpromotion not promoting argument '"
<< Arg->getName() << "' because it would require adding more "
<< "than " << maxElements << " arguments to the function.\n");
// We limit aggregate promotion to only promoting up to a fixed number
@@ -593,7 +593,7 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
NF->copyAttributesFrom(F);
- DEBUG(errs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
+ DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
<< "From: " << *F);
// Recompute the parameter attributes list based on the new arguments for
@@ -808,7 +808,7 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
LI->replaceAllUsesWith(I2);
AA.replaceWithNewValue(LI, I2);
LI->eraseFromParent();
- DEBUG(errs() << "*** Promoted load of argument '" << I->getName()
+ DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
<< "' in function '" << F->getName() << "'\n");
} else {
GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
@@ -835,7 +835,7 @@ CallGraphNode *ArgPromotion::DoPromotion(Function *F,
NewName += ".val";
TheArg->setName(NewName);
- DEBUG(errs() << "*** Promoted agg argument '" << TheArg->getName()
+ DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
<< "' of function '" << NF->getName() << "'\n");
// All of the uses must be load instructions. Replace them all with
diff --git a/lib/Transforms/IPO/DeadArgumentElimination.cpp b/lib/Transforms/IPO/DeadArgumentElimination.cpp
index a3db836..1749b1e 100644
--- a/lib/Transforms/IPO/DeadArgumentElimination.cpp
+++ b/lib/Transforms/IPO/DeadArgumentElimination.cpp
@@ -425,7 +425,7 @@ void DAE::SurveyFunction(Function &F) {
return;
}
- DEBUG(errs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
+ DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
// Keep track of the number of live retvals, so we can skip checks once all
// of them turn out to be live.
unsigned NumLiveRetVals = 0;
@@ -488,7 +488,7 @@ void DAE::SurveyFunction(Function &F) {
for (unsigned i = 0; i != RetCount; ++i)
MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
- DEBUG(errs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
+ DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
// Now, check all of our arguments.
unsigned i = 0;
@@ -530,7 +530,7 @@ void DAE::MarkValue(const RetOrArg &RA, Liveness L,
/// mark any values that are used as this function's parameters or by its return
/// values (according to Uses) live as well.
void DAE::MarkLive(const Function &F) {
- DEBUG(errs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
+ DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
// Mark the function as live.
LiveFunctions.insert(&F);
// Mark all arguments as live.
@@ -551,7 +551,7 @@ void DAE::MarkLive(const RetOrArg &RA) {
if (!LiveValues.insert(RA).second)
return; // We were already marked Live.
- DEBUG(errs() << "DAE - Marking " << RA.getDescription() << " live\n");
+ DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
PropagateLiveness(RA);
}
@@ -616,7 +616,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
NewRetIdxs[i] = RetTypes.size() - 1;
} else {
++NumRetValsEliminated;
- DEBUG(errs() << "DAE - Removing return value " << i << " from "
+ DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
<< F->getName() << "\n");
}
}
@@ -626,7 +626,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
RetTypes.push_back(RetTy);
NewRetIdxs[0] = 0;
} else {
- DEBUG(errs() << "DAE - Removing return value from " << F->getName()
+ DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
<< "\n");
++NumRetValsEliminated;
}
@@ -681,7 +681,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
} else {
++NumArgumentsEliminated;
- DEBUG(errs() << "DAE - Removing argument " << i << " (" << I->getName()
+ DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
<< ") from " << F->getName() << "\n");
}
}
@@ -915,7 +915,7 @@ bool DAE::runOnModule(Module &M) {
// removed. We can do this if they never call va_start. This loop cannot be
// fused with the next loop, because deleting a function invalidates
// information computed while surveying other functions.
- DEBUG(errs() << "DAE - Deleting dead varargs\n");
+ DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
Function &F = *I++;
if (F.getFunctionType()->isVarArg())
@@ -926,7 +926,7 @@ bool DAE::runOnModule(Module &M) {
// We assume all arguments are dead unless proven otherwise (allowing us to
// determine that dead arguments passed into recursive functions are dead).
//
- DEBUG(errs() << "DAE - Determining liveness\n");
+ DEBUG(dbgs() << "DAE - Determining liveness\n");
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
SurveyFunction(*I);
diff --git a/lib/Transforms/IPO/FunctionAttrs.cpp b/lib/Transforms/IPO/FunctionAttrs.cpp
index a16d335..64a6d78 100644
--- a/lib/Transforms/IPO/FunctionAttrs.cpp
+++ b/lib/Transforms/IPO/FunctionAttrs.cpp
@@ -79,16 +79,47 @@ Pass *llvm::createFunctionAttrsPass() { return new FunctionAttrs(); }
/// memory that is local to the function. Global constants are considered
/// local to all functions.
bool FunctionAttrs::PointsToLocalMemory(Value *V) {
- V = V->getUnderlyingObject();
- // An alloca instruction defines local memory.
- if (isa<AllocaInst>(V))
- return true;
- // A global constant counts as local memory for our purposes.
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
- return GV->isConstant();
- // Could look through phi nodes and selects here, but it doesn't seem
- // to be useful in practice.
- return false;
+ SmallVector<Value*, 16> Worklist;
+ unsigned MaxLookup = 8;
+
+ Worklist.push_back(V);
+
+ do {
+ V = Worklist.pop_back_val()->getUnderlyingObject();
+
+ // An alloca instruction defines local memory.
+ if (isa<AllocaInst>(V))
+ continue;
+
+ // A global constant counts as local memory for our purposes.
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
+ if (!GV->isConstant())
+ return false;
+ continue;
+ }
+
+ // If both select values point to local memory, then so does the select.
+ if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
+ Worklist.push_back(SI->getTrueValue());
+ Worklist.push_back(SI->getFalseValue());
+ continue;
+ }
+
+ // If all values incoming to a phi node point to local memory, then so does
+ // the phi.
+ if (PHINode *PN = dyn_cast<PHINode>(V)) {
+ // Don't bother inspecting phi nodes with many operands.
+ if (PN->getNumIncomingValues() > MaxLookup)
+ return false;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ Worklist.push_back(PN->getIncomingValue(i));
+ continue;
+ }
+
+ return false;
+ } while (!Worklist.empty() && --MaxLookup);
+
+ return Worklist.empty();
}
/// AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
@@ -136,6 +167,21 @@ bool FunctionAttrs::AddReadAttrs(const std::vector<CallGraphNode *> &SCC) {
// Ignore calls to functions in the same SCC.
if (SCCNodes.count(CS.getCalledFunction()))
continue;
+ // Ignore intrinsics that only access local memory.
+ if (unsigned id = CS.getCalledFunction()->getIntrinsicID())
+ if (AliasAnalysis::getModRefBehavior(id) ==
+ AliasAnalysis::AccessesArguments) {
+ // Check that all pointer arguments point to local memory.
+ for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
+ CI != CE; ++CI) {
+ Value *Arg = *CI;
+ if (isa<PointerType>(Arg->getType()) && !PointsToLocalMemory(Arg))
+ // Writes memory. Just give up.
+ return false;
+ }
+ // Only reads and writes local memory.
+ continue;
+ }
} else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
// Ignore loads from local memory.
if (PointsToLocalMemory(LI->getPointerOperand()))
diff --git a/lib/Transforms/IPO/GlobalOpt.cpp b/lib/Transforms/IPO/GlobalOpt.cpp
index 1793bbf..ee260e9 100644
--- a/lib/Transforms/IPO/GlobalOpt.cpp
+++ b/lib/Transforms/IPO/GlobalOpt.cpp
@@ -544,7 +544,7 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
if (NewGlobals.empty())
return 0;
- DEBUG(errs() << "PERFORMING GLOBAL SRA ON: " << *GV);
+ DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
@@ -771,14 +771,14 @@ static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
}
if (Changed) {
- DEBUG(errs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
+ DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
++NumGlobUses;
}
// If we nuked all of the loads, then none of the stores are needed either,
// nor is the global.
if (AllNonStoreUsesGone) {
- DEBUG(errs() << " *** GLOBAL NOW DEAD!\n");
+ DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n");
CleanupConstantGlobalUsers(GV, 0);
if (GV->use_empty()) {
GV->eraseFromParent();
@@ -815,7 +815,7 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
const Type *AllocTy,
Value* NElems,
TargetData* TD) {
- DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n');
+ DEBUG(dbgs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n');
const Type *IntPtrTy = TD->getIntPtrType(GV->getContext());
@@ -1268,7 +1268,7 @@ static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
/// it up into multiple allocations of arrays of the fields.
static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
Value* NElems, TargetData *TD) {
- DEBUG(errs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n');
+ DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n');
const Type* MAT = getMallocAllocatedType(CI);
const StructType *STy = cast<StructType>(MAT);
@@ -1600,7 +1600,7 @@ static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
return false;
- DEBUG(errs() << " *** SHRINKING TO BOOL: " << *GV);
+ DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV);
// Create the new global, initializing it to false.
GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
@@ -1681,7 +1681,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
GV->removeDeadConstantUsers();
if (GV->use_empty()) {
- DEBUG(errs() << "GLOBAL DEAD: " << *GV);
+ DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
GV->eraseFromParent();
++NumDeleted;
return true;
@@ -1689,26 +1689,26 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
#if 0
- DEBUG(errs() << "Global: " << *GV);
- DEBUG(errs() << " isLoaded = " << GS.isLoaded << "\n");
- DEBUG(errs() << " StoredType = ");
+ DEBUG(dbgs() << "Global: " << *GV);
+ DEBUG(dbgs() << " isLoaded = " << GS.isLoaded << "\n");
+ DEBUG(dbgs() << " StoredType = ");
switch (GS.StoredType) {
- case GlobalStatus::NotStored: DEBUG(errs() << "NEVER STORED\n"); break;
- case GlobalStatus::isInitializerStored: DEBUG(errs() << "INIT STORED\n");
+ case GlobalStatus::NotStored: DEBUG(dbgs() << "NEVER STORED\n"); break;
+ case GlobalStatus::isInitializerStored: DEBUG(dbgs() << "INIT STORED\n");
break;
- case GlobalStatus::isStoredOnce: DEBUG(errs() << "STORED ONCE\n"); break;
- case GlobalStatus::isStored: DEBUG(errs() << "stored\n"); break;
+ case GlobalStatus::isStoredOnce: DEBUG(dbgs() << "STORED ONCE\n"); break;
+ case GlobalStatus::isStored: DEBUG(dbgs() << "stored\n"); break;
}
if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
- DEBUG(errs() << " StoredOnceValue = " << *GS.StoredOnceValue << "\n");
+ DEBUG(dbgs() << " StoredOnceValue = " << *GS.StoredOnceValue << "\n");
if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
- DEBUG(errs() << " AccessingFunction = " << GS.AccessingFunction->getName()
+ DEBUG(dbgs() << " AccessingFunction = " << GS.AccessingFunction->getName()
<< "\n");
- DEBUG(errs() << " HasMultipleAccessingFunctions = "
+ DEBUG(dbgs() << " HasMultipleAccessingFunctions = "
<< GS.HasMultipleAccessingFunctions << "\n");
- DEBUG(errs() << " HasNonInstructionUser = "
+ DEBUG(dbgs() << " HasNonInstructionUser = "
<< GS.HasNonInstructionUser<<"\n");
- DEBUG(errs() << "\n");
+ DEBUG(dbgs() << "\n");
#endif
// If this is a first class global and has only one accessing function
@@ -1726,7 +1726,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
GS.AccessingFunction->getName() == "main" &&
GS.AccessingFunction->hasExternalLinkage() &&
GV->getType()->getAddressSpace() == 0) {
- DEBUG(errs() << "LOCALIZING GLOBAL: " << *GV);
+ DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
const Type* ElemTy = GV->getType()->getElementType();
// FIXME: Pass Global's alignment when globals have alignment
@@ -1743,7 +1743,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
// If the global is never loaded (but may be stored to), it is dead.
// Delete it now.
if (!GS.isLoaded) {
- DEBUG(errs() << "GLOBAL NEVER LOADED: " << *GV);
+ DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
// Delete any stores we can find to the global. We may not be able to
// make it completely dead though.
@@ -1758,7 +1758,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
return Changed;
} else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
- DEBUG(errs() << "MARKING CONSTANT: " << *GV);
+ DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
GV->setConstant(true);
// Clean up any obviously simplifiable users now.
@@ -1766,7 +1766,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
// If the global is dead now, just nuke it.
if (GV->use_empty()) {
- DEBUG(errs() << " *** Marking constant allowed us to simplify "
+ DEBUG(dbgs() << " *** Marking constant allowed us to simplify "
<< "all users and delete global!\n");
GV->eraseFromParent();
++NumDeleted;
@@ -1794,7 +1794,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
CleanupConstantGlobalUsers(GV, GV->getInitializer());
if (GV->use_empty()) {
- DEBUG(errs() << " *** Substituting initializer allowed us to "
+ DEBUG(dbgs() << " *** Substituting initializer allowed us to "
<< "simplify all users and delete global!\n");
GV->eraseFromParent();
++NumDeleted;
@@ -1925,11 +1925,11 @@ GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
if (!ATy) return 0;
const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
if (!STy || STy->getNumElements() != 2 ||
- STy->getElementType(0) != Type::getInt32Ty(M.getContext())) return 0;
+ !STy->getElementType(0)->isInteger(32)) return 0;
const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
if (!PFTy) return 0;
const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
- if (!FTy || FTy->getReturnType() != Type::getVoidTy(M.getContext()) ||
+ if (!FTy || !FTy->getReturnType()->isVoidTy() ||
FTy->isVarArg() || FTy->getNumParams() != 0)
return 0;
@@ -2091,8 +2091,8 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
return Val;
}
+ std::vector<Constant*> Elts;
if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
- std::vector<Constant*> Elts;
// Break up the constant into its elements.
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
@@ -2120,28 +2120,38 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
STy->isPacked());
} else {
ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
- const ArrayType *ATy = cast<ArrayType>(Init->getType());
+ const SequentialType *InitTy = cast<SequentialType>(Init->getType());
+ uint64_t NumElts;
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
+ NumElts = ATy->getNumElements();
+ else
+ NumElts = cast<VectorType>(InitTy)->getNumElements();
+
+
// Break up the array into elements.
- std::vector<Constant*> Elts;
if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
Elts.push_back(cast<Constant>(*i));
+ } else if (ConstantVector *CV = dyn_cast<ConstantVector>(Init)) {
+ for (User::op_iterator i = CV->op_begin(), e = CV->op_end(); i != e; ++i)
+ Elts.push_back(cast<Constant>(*i));
} else if (isa<ConstantAggregateZero>(Init)) {
- Constant *Elt = Constant::getNullValue(ATy->getElementType());
- Elts.assign(ATy->getNumElements(), Elt);
- } else if (isa<UndefValue>(Init)) {
- Constant *Elt = UndefValue::get(ATy->getElementType());
- Elts.assign(ATy->getNumElements(), Elt);
+ Elts.assign(NumElts, Constant::getNullValue(InitTy->getElementType()));
} else {
- llvm_unreachable("This code is out of sync with "
+ assert(isa<UndefValue>(Init) && "This code is out of sync with "
" ConstantFoldLoadThroughGEPConstantExpr");
+ Elts.assign(NumElts, UndefValue::get(InitTy->getElementType()));
}
- assert(CI->getZExtValue() < ATy->getNumElements());
+ assert(CI->getZExtValue() < NumElts);
Elts[CI->getZExtValue()] =
EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
- return ConstantArray::get(ATy, Elts);
+
+ if (isa<ArrayType>(Init->getType()))
+ return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
+ else
+ return ConstantVector::get(&Elts[0], Elts.size());
}
}
@@ -2153,13 +2163,10 @@ static void CommitValueTo(Constant *Val, Constant *Addr) {
GV->setInitializer(Val);
return;
}
-
+
ConstantExpr *CE = cast<ConstantExpr>(Addr);
GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
-
- Constant *Init = GV->getInitializer();
- Init = EvaluateStoreInto(Init, Val, CE, 2);
- GV->setInitializer(Init);
+ GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
}
/// ComputeLoadResult - Return the value that would be computed by a load from
@@ -2402,7 +2409,7 @@ static bool EvaluateStaticConstructor(Function *F) {
MutatedMemory, AllocaTmps);
if (EvalSuccess) {
// We succeeded at evaluation: commit the result.
- DEBUG(errs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
+ DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
<< F->getName() << "' to " << MutatedMemory.size()
<< " stores.\n");
for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
diff --git a/lib/Transforms/IPO/Inliner.cpp b/lib/Transforms/IPO/Inliner.cpp
index 6918fe8..5725db1 100644
--- a/lib/Transforms/IPO/Inliner.cpp
+++ b/lib/Transforms/IPO/Inliner.cpp
@@ -147,7 +147,7 @@ static bool InlineCallIfPossible(CallSite CS, CallGraph &CG,
// Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
// success!
- DEBUG(errs() << " ***MERGED ALLOCA: " << *AI);
+ DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI);
AI->replaceAllUsesWith(AvailableAlloca);
AI->eraseFromParent();
@@ -178,13 +178,13 @@ bool Inliner::shouldInline(CallSite CS) {
InlineCost IC = getInlineCost(CS);
if (IC.isAlways()) {
- DEBUG(errs() << " Inlining: cost=always"
+ DEBUG(dbgs() << " Inlining: cost=always"
<< ", Call: " << *CS.getInstruction() << "\n");
return true;
}
if (IC.isNever()) {
- DEBUG(errs() << " NOT Inlining: cost=never"
+ DEBUG(dbgs() << " NOT Inlining: cost=never"
<< ", Call: " << *CS.getInstruction() << "\n");
return false;
}
@@ -200,7 +200,7 @@ bool Inliner::shouldInline(CallSite CS) {
float FudgeFactor = getInlineFudgeFactor(CS);
if (Cost >= (int)(CurrentThreshold * FudgeFactor)) {
- DEBUG(errs() << " NOT Inlining: cost=" << Cost
+ DEBUG(dbgs() << " NOT Inlining: cost=" << Cost
<< ", Call: " << *CS.getInstruction() << "\n");
return false;
}
@@ -263,14 +263,14 @@ bool Inliner::shouldInline(CallSite CS) {
if (outerCallsFound && someOuterCallWouldNotBeInlined &&
TotalSecondaryCost < Cost) {
- DEBUG(errs() << " NOT Inlining: " << *CS.getInstruction() <<
+ DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() <<
" Cost = " << Cost <<
", outer Cost = " << TotalSecondaryCost << '\n');
return false;
}
}
- DEBUG(errs() << " Inlining: cost=" << Cost
+ DEBUG(dbgs() << " Inlining: cost=" << Cost
<< ", Call: " << *CS.getInstruction() << '\n');
return true;
}
@@ -280,11 +280,11 @@ bool Inliner::runOnSCC(std::vector<CallGraphNode*> &SCC) {
const TargetData *TD = getAnalysisIfAvailable<TargetData>();
SmallPtrSet<Function*, 8> SCCFunctions;
- DEBUG(errs() << "Inliner visiting SCC:");
+ DEBUG(dbgs() << "Inliner visiting SCC:");
for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
Function *F = SCC[i]->getFunction();
if (F) SCCFunctions.insert(F);
- DEBUG(errs() << " " << (F ? F->getName() : "INDIRECTNODE"));
+ DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
}
// Scan through and identify all call sites ahead of time so that we only
@@ -314,7 +314,7 @@ bool Inliner::runOnSCC(std::vector<CallGraphNode*> &SCC) {
}
}
- DEBUG(errs() << ": " << CallSites.size() << " call sites.\n");
+ DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
// Now that we have all of the call sites, move the ones to functions in the
// current SCC to the end of the list.
@@ -346,7 +346,7 @@ bool Inliner::runOnSCC(std::vector<CallGraphNode*> &SCC) {
// size. This happens because IPSCCP propagates the result out of the
// call and then we're left with the dead call.
if (isInstructionTriviallyDead(CS.getInstruction())) {
- DEBUG(errs() << " -> Deleting dead call: "
+ DEBUG(dbgs() << " -> Deleting dead call: "
<< *CS.getInstruction() << "\n");
// Update the call graph by deleting the edge from Callee to Caller.
CG[Caller]->removeCallEdgeFor(CS);
@@ -377,7 +377,7 @@ bool Inliner::runOnSCC(std::vector<CallGraphNode*> &SCC) {
// callgraph references to the node, we cannot delete it yet, this
// could invalidate the CGSCC iterator.
CG[Callee]->getNumReferences() == 0) {
- DEBUG(errs() << " -> Deleting dead function: "
+ DEBUG(dbgs() << " -> Deleting dead function: "
<< Callee->getName() << "\n");
CallGraphNode *CalleeNode = CG[Callee];
diff --git a/lib/Transforms/IPO/Internalize.cpp b/lib/Transforms/IPO/Internalize.cpp
index 20ae0d5..3d31932 100644
--- a/lib/Transforms/IPO/Internalize.cpp
+++ b/lib/Transforms/IPO/Internalize.cpp
@@ -131,7 +131,7 @@ bool InternalizePass::runOnModule(Module &M) {
if (ExternalNode) ExternalNode->removeOneAbstractEdgeTo((*CG)[I]);
Changed = true;
++NumFunctions;
- DEBUG(errs() << "Internalizing func " << I->getName() << "\n");
+ DEBUG(dbgs() << "Internalizing func " << I->getName() << "\n");
}
// Never internalize the llvm.used symbol. It is used to implement
@@ -160,7 +160,7 @@ bool InternalizePass::runOnModule(Module &M) {
I->setLinkage(GlobalValue::InternalLinkage);
Changed = true;
++NumGlobals;
- DEBUG(errs() << "Internalized gvar " << I->getName() << "\n");
+ DEBUG(dbgs() << "Internalized gvar " << I->getName() << "\n");
}
// Mark all aliases that are not in the api as internal as well.
@@ -171,7 +171,7 @@ bool InternalizePass::runOnModule(Module &M) {
I->setLinkage(GlobalValue::InternalLinkage);
Changed = true;
++NumAliases;
- DEBUG(errs() << "Internalized alias " << I->getName() << "\n");
+ DEBUG(dbgs() << "Internalized alias " << I->getName() << "\n");
}
return Changed;
diff --git a/lib/Transforms/IPO/MergeFunctions.cpp b/lib/Transforms/IPO/MergeFunctions.cpp
index b2bdabc..fa8845b 100644
--- a/lib/Transforms/IPO/MergeFunctions.cpp
+++ b/lib/Transforms/IPO/MergeFunctions.cpp
@@ -498,7 +498,7 @@ static void ThunkGToF(Function *F, Function *G) {
CallInst *CI = CallInst::Create(F, Args.begin(), Args.end(), "", BB);
CI->setTailCall();
CI->setCallingConv(F->getCallingConv());
- if (NewG->getReturnType() == Type::getVoidTy(F->getContext())) {
+ if (NewG->getReturnType()->isVoidTy()) {
ReturnInst::Create(F->getContext(), BB);
} else if (CI->getType() != NewG->getReturnType()) {
Value *BCI = new BitCastInst(CI, NewG->getReturnType(), "", BB);
@@ -633,17 +633,17 @@ bool MergeFunctions::runOnModule(Module &M) {
bool LocalChanged;
do {
LocalChanged = false;
- DEBUG(errs() << "size: " << FnMap.size() << "\n");
+ DEBUG(dbgs() << "size: " << FnMap.size() << "\n");
for (std::map<unsigned long, std::vector<Function *> >::iterator
I = FnMap.begin(), E = FnMap.end(); I != E; ++I) {
std::vector<Function *> &FnVec = I->second;
- DEBUG(errs() << "hash (" << I->first << "): " << FnVec.size() << "\n");
+ DEBUG(dbgs() << "hash (" << I->first << "): " << FnVec.size() << "\n");
for (int i = 0, e = FnVec.size(); i != e; ++i) {
for (int j = i + 1; j != e; ++j) {
bool isEqual = equals(FnVec[i], FnVec[j]);
- DEBUG(errs() << " " << FnVec[i]->getName()
+ DEBUG(dbgs() << " " << FnVec[i]->getName()
<< (isEqual ? " == " : " != ")
<< FnVec[j]->getName() << "\n");
diff --git a/lib/Transforms/IPO/PartialInlining.cpp b/lib/Transforms/IPO/PartialInlining.cpp
index b955b97..f40902f 100644
--- a/lib/Transforms/IPO/PartialInlining.cpp
+++ b/lib/Transforms/IPO/PartialInlining.cpp
@@ -145,7 +145,7 @@ bool PartialInliner::runOnModule(Module& M) {
worklist.reserve(M.size());
for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI)
if (!FI->use_empty() && !FI->isDeclaration())
- worklist.push_back(&*FI);
+ worklist.push_back(&*FI);
bool changed = false;
while (!worklist.empty()) {
diff --git a/lib/Transforms/IPO/StructRetPromotion.cpp b/lib/Transforms/IPO/StructRetPromotion.cpp
index 67fc934..dda32d0 100644
--- a/lib/Transforms/IPO/StructRetPromotion.cpp
+++ b/lib/Transforms/IPO/StructRetPromotion.cpp
@@ -93,11 +93,10 @@ CallGraphNode *SRETPromotion::PromoteReturn(CallGraphNode *CGN) {
if (F->arg_size() == 0 || !F->hasStructRetAttr() || F->doesNotReturn())
return 0;
- DEBUG(errs() << "SretPromotion: Looking at sret function "
+ DEBUG(dbgs() << "SretPromotion: Looking at sret function "
<< F->getName() << "\n");
- assert(F->getReturnType() == Type::getVoidTy(F->getContext()) &&
- "Invalid function return type");
+ assert(F->getReturnType()->isVoidTy() && "Invalid function return type");
Function::arg_iterator AI = F->arg_begin();
const llvm::PointerType *FArgType = dyn_cast<PointerType>(AI->getType());
assert(FArgType && "Invalid sret parameter type");
@@ -107,12 +106,12 @@ CallGraphNode *SRETPromotion::PromoteReturn(CallGraphNode *CGN) {
// Check if it is ok to perform this promotion.
if (isSafeToUpdateAllCallers(F) == false) {
- DEBUG(errs() << "SretPromotion: Not all callers can be updated\n");
+ DEBUG(dbgs() << "SretPromotion: Not all callers can be updated\n");
NumRejectedSRETUses++;
return 0;
}
- DEBUG(errs() << "SretPromotion: sret argument will be promoted\n");
+ DEBUG(dbgs() << "SretPromotion: sret argument will be promoted\n");
NumSRET++;
// [1] Replace use of sret parameter
AllocaInst *TheAlloca = new AllocaInst(STy, NULL, "mrv",
@@ -358,7 +357,7 @@ bool SRETPromotion::nestedStructType(const StructType *STy) {
unsigned Num = STy->getNumElements();
for (unsigned i = 0; i < Num; i++) {
const Type *Ty = STy->getElementType(i);
- if (!Ty->isSingleValueType() && Ty != Type::getVoidTy(STy->getContext()))
+ if (!Ty->isSingleValueType() && !Ty->isVoidTy())
return true;
}
return false;
diff --git a/lib/Transforms/InstCombine/CMakeLists.txt b/lib/Transforms/InstCombine/CMakeLists.txt
new file mode 100644
index 0000000..5b1ff3e
--- /dev/null
+++ b/lib/Transforms/InstCombine/CMakeLists.txt
@@ -0,0 +1,17 @@
+add_llvm_library(LLVMInstCombine
+ InstructionCombining.cpp
+ InstCombineAddSub.cpp
+ InstCombineAndOrXor.cpp
+ InstCombineCalls.cpp
+ InstCombineCasts.cpp
+ InstCombineCompares.cpp
+ InstCombineLoadStoreAlloca.cpp
+ InstCombineMulDivRem.cpp
+ InstCombinePHI.cpp
+ InstCombineSelect.cpp
+ InstCombineShifts.cpp
+ InstCombineSimplifyDemanded.cpp
+ InstCombineVectorOps.cpp
+ )
+
+target_link_libraries (LLVMInstCombine LLVMTransformUtils)
diff --git a/lib/Transforms/InstCombine/InstCombine.h b/lib/Transforms/InstCombine/InstCombine.h
new file mode 100644
index 0000000..5367900
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombine.h
@@ -0,0 +1,349 @@
+//===- InstCombine.h - Main InstCombine pass definition -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef INSTCOMBINE_INSTCOMBINE_H
+#define INSTCOMBINE_INSTCOMBINE_H
+
+#include "InstCombineWorklist.h"
+#include "llvm/Pass.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Support/IRBuilder.h"
+#include "llvm/Support/InstVisitor.h"
+#include "llvm/Support/TargetFolder.h"
+
+namespace llvm {
+ class CallSite;
+ class TargetData;
+ class DbgDeclareInst;
+ class MemIntrinsic;
+ class MemSetInst;
+
+/// SelectPatternFlavor - We can match a variety of different patterns for
+/// select operations.
+enum SelectPatternFlavor {
+ SPF_UNKNOWN = 0,
+ SPF_SMIN, SPF_UMIN,
+ SPF_SMAX, SPF_UMAX
+ //SPF_ABS - TODO.
+};
+
+/// getComplexity: Assign a complexity or rank value to LLVM Values...
+/// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
+static inline unsigned getComplexity(Value *V) {
+ if (isa<Instruction>(V)) {
+ if (BinaryOperator::isNeg(V) ||
+ BinaryOperator::isFNeg(V) ||
+ BinaryOperator::isNot(V))
+ return 3;
+ return 4;
+ }
+ if (isa<Argument>(V)) return 3;
+ return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
+}
+
+
+/// InstCombineIRInserter - This is an IRBuilder insertion helper that works
+/// just like the normal insertion helper, but also adds any new instructions
+/// to the instcombine worklist.
+class VISIBILITY_HIDDEN InstCombineIRInserter
+ : public IRBuilderDefaultInserter<true> {
+ InstCombineWorklist &Worklist;
+public:
+ InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {}
+
+ void InsertHelper(Instruction *I, const Twine &Name,
+ BasicBlock *BB, BasicBlock::iterator InsertPt) const {
+ IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
+ Worklist.Add(I);
+ }
+};
+
+/// InstCombiner - The -instcombine pass.
+class VISIBILITY_HIDDEN InstCombiner
+ : public FunctionPass,
+ public InstVisitor<InstCombiner, Instruction*> {
+ TargetData *TD;
+ bool MustPreserveLCSSA;
+ bool MadeIRChange;
+public:
+ /// Worklist - All of the instructions that need to be simplified.
+ InstCombineWorklist Worklist;
+
+ /// Builder - This is an IRBuilder that automatically inserts new
+ /// instructions into the worklist when they are created.
+ typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
+ BuilderTy *Builder;
+
+ static char ID; // Pass identification, replacement for typeid
+ InstCombiner() : FunctionPass(&ID), TD(0), Builder(0) {}
+
+public:
+ virtual bool runOnFunction(Function &F);
+
+ bool DoOneIteration(Function &F, unsigned ItNum);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+
+ TargetData *getTargetData() const { return TD; }
+
+ // Visitation implementation - Implement instruction combining for different
+ // instruction types. The semantics are as follows:
+ // Return Value:
+ // null - No change was made
+ // I - Change was made, I is still valid, I may be dead though
+ // otherwise - Change was made, replace I with returned instruction
+ //
+ Instruction *visitAdd(BinaryOperator &I);
+ Instruction *visitFAdd(BinaryOperator &I);
+ Value *OptimizePointerDifference(Value *LHS, Value *RHS, const Type *Ty);
+ Instruction *visitSub(BinaryOperator &I);
+ Instruction *visitFSub(BinaryOperator &I);
+ Instruction *visitMul(BinaryOperator &I);
+ Instruction *visitFMul(BinaryOperator &I);
+ Instruction *visitURem(BinaryOperator &I);
+ Instruction *visitSRem(BinaryOperator &I);
+ Instruction *visitFRem(BinaryOperator &I);
+ bool SimplifyDivRemOfSelect(BinaryOperator &I);
+ Instruction *commonRemTransforms(BinaryOperator &I);
+ Instruction *commonIRemTransforms(BinaryOperator &I);
+ Instruction *commonDivTransforms(BinaryOperator &I);
+ Instruction *commonIDivTransforms(BinaryOperator &I);
+ Instruction *visitUDiv(BinaryOperator &I);
+ Instruction *visitSDiv(BinaryOperator &I);
+ Instruction *visitFDiv(BinaryOperator &I);
+ Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
+ Instruction *FoldAndOfFCmps(Instruction &I, FCmpInst *LHS, FCmpInst *RHS);
+ Instruction *visitAnd(BinaryOperator &I);
+ Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
+ Instruction *FoldOrOfFCmps(Instruction &I, FCmpInst *LHS, FCmpInst *RHS);
+ Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
+ Value *A, Value *B, Value *C);
+ Instruction *visitOr (BinaryOperator &I);
+ Instruction *visitXor(BinaryOperator &I);
+ Instruction *visitShl(BinaryOperator &I);
+ Instruction *visitAShr(BinaryOperator &I);
+ Instruction *visitLShr(BinaryOperator &I);
+ Instruction *commonShiftTransforms(BinaryOperator &I);
+ Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
+ Constant *RHSC);
+ Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
+ GlobalVariable *GV, CmpInst &ICI,
+ ConstantInt *AndCst = 0);
+ Instruction *visitFCmpInst(FCmpInst &I);
+ Instruction *visitICmpInst(ICmpInst &I);
+ Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
+ Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
+ Instruction *LHS,
+ ConstantInt *RHS);
+ Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
+ ConstantInt *DivRHS);
+ Instruction *FoldICmpAddOpCst(ICmpInst &ICI, Value *X, ConstantInt *CI,
+ ICmpInst::Predicate Pred, Value *TheAdd);
+ Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
+ ICmpInst::Predicate Cond, Instruction &I);
+ Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
+ BinaryOperator &I);
+ Instruction *commonCastTransforms(CastInst &CI);
+ Instruction *commonPointerCastTransforms(CastInst &CI);
+ Instruction *visitTrunc(TruncInst &CI);
+ Instruction *visitZExt(ZExtInst &CI);
+ Instruction *visitSExt(SExtInst &CI);
+ Instruction *visitFPTrunc(FPTruncInst &CI);
+ Instruction *visitFPExt(CastInst &CI);
+ Instruction *visitFPToUI(FPToUIInst &FI);
+ Instruction *visitFPToSI(FPToSIInst &FI);
+ Instruction *visitUIToFP(CastInst &CI);
+ Instruction *visitSIToFP(CastInst &CI);
+ Instruction *visitPtrToInt(PtrToIntInst &CI);
+ Instruction *visitIntToPtr(IntToPtrInst &CI);
+ Instruction *visitBitCast(BitCastInst &CI);
+ Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
+ Instruction *FI);
+ Instruction *FoldSelectIntoOp(SelectInst &SI, Value*, Value*);
+ Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
+ Value *A, Value *B, Instruction &Outer,
+ SelectPatternFlavor SPF2, Value *C);
+ Instruction *visitSelectInst(SelectInst &SI);
+ Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
+ Instruction *visitCallInst(CallInst &CI);
+ Instruction *visitInvokeInst(InvokeInst &II);
+
+ Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
+ Instruction *visitPHINode(PHINode &PN);
+ Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
+ Instruction *visitAllocaInst(AllocaInst &AI);
+ Instruction *visitFree(Instruction &FI);
+ Instruction *visitLoadInst(LoadInst &LI);
+ Instruction *visitStoreInst(StoreInst &SI);
+ Instruction *visitBranchInst(BranchInst &BI);
+ Instruction *visitSwitchInst(SwitchInst &SI);
+ Instruction *visitInsertElementInst(InsertElementInst &IE);
+ Instruction *visitExtractElementInst(ExtractElementInst &EI);
+ Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
+ Instruction *visitExtractValueInst(ExtractValueInst &EV);
+
+ // visitInstruction - Specify what to return for unhandled instructions...
+ Instruction *visitInstruction(Instruction &I) { return 0; }
+
+private:
+ bool ShouldChangeType(const Type *From, const Type *To) const;
+ Value *dyn_castNegVal(Value *V) const;
+ Value *dyn_castFNegVal(Value *V) const;
+ const Type *FindElementAtOffset(const Type *Ty, int64_t Offset,
+ SmallVectorImpl<Value*> &NewIndices);
+ Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
+
+ /// ValueRequiresCast - Return true if the cast from "V to Ty" actually
+ /// results in any code being generated. It does not require codegen if V is
+ /// simple enough or if the cast can be folded into other casts.
+ bool ValueRequiresCast(Instruction::CastOps opcode,const Value *V,
+ const Type *Ty);
+
+ Instruction *visitCallSite(CallSite CS);
+ bool transformConstExprCastCall(CallSite CS);
+ Instruction *transformCallThroughTrampoline(CallSite CS);
+ Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
+ bool DoXform = true);
+ bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
+ DbgDeclareInst *hasOneUsePlusDeclare(Value *V);
+ Value *EmitGEPOffset(User *GEP);
+
+public:
+ // InsertNewInstBefore - insert an instruction New before instruction Old
+ // in the program. Add the new instruction to the worklist.
+ //
+ Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
+ assert(New && New->getParent() == 0 &&
+ "New instruction already inserted into a basic block!");
+ BasicBlock *BB = Old.getParent();
+ BB->getInstList().insert(&Old, New); // Insert inst
+ Worklist.Add(New);
+ return New;
+ }
+
+ // ReplaceInstUsesWith - This method is to be used when an instruction is
+ // found to be dead, replacable with another preexisting expression. Here
+ // we add all uses of I to the worklist, replace all uses of I with the new
+ // value, then return I, so that the inst combiner will know that I was
+ // modified.
+ //
+ Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
+ Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
+
+ // If we are replacing the instruction with itself, this must be in a
+ // segment of unreachable code, so just clobber the instruction.
+ if (&I == V)
+ V = UndefValue::get(I.getType());
+
+ I.replaceAllUsesWith(V);
+ return &I;
+ }
+
+ // EraseInstFromFunction - When dealing with an instruction that has side
+ // effects or produces a void value, we can't rely on DCE to delete the
+ // instruction. Instead, visit methods should return the value returned by
+ // this function.
+ Instruction *EraseInstFromFunction(Instruction &I) {
+ DEBUG(errs() << "IC: ERASE " << I << '\n');
+
+ assert(I.use_empty() && "Cannot erase instruction that is used!");
+ // Make sure that we reprocess all operands now that we reduced their
+ // use counts.
+ if (I.getNumOperands() < 8) {
+ for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
+ if (Instruction *Op = dyn_cast<Instruction>(*i))
+ Worklist.Add(Op);
+ }
+ Worklist.Remove(&I);
+ I.eraseFromParent();
+ MadeIRChange = true;
+ return 0; // Don't do anything with FI
+ }
+
+ void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
+ APInt &KnownOne, unsigned Depth = 0) const {
+ return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
+ }
+
+ bool MaskedValueIsZero(Value *V, const APInt &Mask,
+ unsigned Depth = 0) const {
+ return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
+ }
+ unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
+ return llvm::ComputeNumSignBits(Op, TD, Depth);
+ }
+
+private:
+
+ /// SimplifyCommutative - This performs a few simplifications for
+ /// commutative operators.
+ bool SimplifyCommutative(BinaryOperator &I);
+
+ /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
+ /// based on the demanded bits.
+ Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
+ APInt& KnownZero, APInt& KnownOne,
+ unsigned Depth);
+ bool SimplifyDemandedBits(Use &U, APInt DemandedMask,
+ APInt& KnownZero, APInt& KnownOne,
+ unsigned Depth=0);
+
+ /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
+ /// SimplifyDemandedBits knows about. See if the instruction has any
+ /// properties that allow us to simplify its operands.
+ bool SimplifyDemandedInstructionBits(Instruction &Inst);
+
+ Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
+ APInt& UndefElts, unsigned Depth = 0);
+
+ // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
+ // which has a PHI node as operand #0, see if we can fold the instruction
+ // into the PHI (which is only possible if all operands to the PHI are
+ // constants).
+ //
+ // If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
+ // that would normally be unprofitable because they strongly encourage jump
+ // threading.
+ Instruction *FoldOpIntoPhi(Instruction &I, bool AllowAggressive = false);
+
+ // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
+ // operator and they all are only used by the PHI, PHI together their
+ // inputs, and do the operation once, to the result of the PHI.
+ Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
+ Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
+ Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
+ Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
+
+
+ Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
+ ConstantInt *AndRHS, BinaryOperator &TheAnd);
+
+ Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
+ bool isSub, Instruction &I);
+ Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
+ bool isSigned, bool Inside, Instruction &IB);
+ Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
+ Instruction *MatchBSwap(BinaryOperator &I);
+ bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
+ Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
+ Instruction *SimplifyMemSet(MemSetInst *MI);
+
+
+ Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
+
+ unsigned GetOrEnforceKnownAlignment(Value *V,
+ unsigned PrefAlign = 0);
+
+};
+
+
+
+} // end namespace llvm.
+
+#endif
diff --git a/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/lib/Transforms/InstCombine/InstCombineAddSub.cpp
new file mode 100644
index 0000000..4891ff0
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineAddSub.cpp
@@ -0,0 +1,740 @@
+//===- InstCombineAddSub.cpp ----------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visit functions for add, fadd, sub, and fsub.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+/// AddOne - Add one to a ConstantInt.
+static Constant *AddOne(Constant *C) {
+ return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
+}
+/// SubOne - Subtract one from a ConstantInt.
+static Constant *SubOne(ConstantInt *C) {
+ return ConstantInt::get(C->getContext(), C->getValue()-1);
+}
+
+
+// dyn_castFoldableMul - If this value is a multiply that can be folded into
+// other computations (because it has a constant operand), return the
+// non-constant operand of the multiply, and set CST to point to the multiplier.
+// Otherwise, return null.
+//
+static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
+ if (!V->hasOneUse() || !V->getType()->isInteger())
+ return 0;
+
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (I == 0) return 0;
+
+ if (I->getOpcode() == Instruction::Mul)
+ if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
+ return I->getOperand(0);
+ if (I->getOpcode() == Instruction::Shl)
+ if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
+ // The multiplier is really 1 << CST.
+ uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
+ uint32_t CSTVal = CST->getLimitedValue(BitWidth);
+ CST = ConstantInt::get(V->getType()->getContext(),
+ APInt(BitWidth, 1).shl(CSTVal));
+ return I->getOperand(0);
+ }
+ return 0;
+}
+
+
+/// WillNotOverflowSignedAdd - Return true if we can prove that:
+/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
+/// This basically requires proving that the add in the original type would not
+/// overflow to change the sign bit or have a carry out.
+bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
+ // There are different heuristics we can use for this. Here are some simple
+ // ones.
+
+ // Add has the property that adding any two 2's complement numbers can only
+ // have one carry bit which can change a sign. As such, if LHS and RHS each
+ // have at least two sign bits, we know that the addition of the two values
+ // will sign extend fine.
+ if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
+ return true;
+
+
+ // If one of the operands only has one non-zero bit, and if the other operand
+ // has a known-zero bit in a more significant place than it (not including the
+ // sign bit) the ripple may go up to and fill the zero, but won't change the
+ // sign. For example, (X & ~4) + 1.
+
+ // TODO: Implement.
+
+ return false;
+}
+
+Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
+ bool Changed = SimplifyCommutative(I);
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+
+ if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
+ I.hasNoUnsignedWrap(), TD))
+ return ReplaceInstUsesWith(I, V);
+
+
+ if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
+ // X + (signbit) --> X ^ signbit
+ const APInt& Val = CI->getValue();
+ uint32_t BitWidth = Val.getBitWidth();
+ if (Val == APInt::getSignBit(BitWidth))
+ return BinaryOperator::CreateXor(LHS, RHS);
+
+ // See if SimplifyDemandedBits can simplify this. This handles stuff like
+ // (X & 254)+1 -> (X&254)|1
+ if (SimplifyDemandedInstructionBits(I))
+ return &I;
+
+ // zext(bool) + C -> bool ? C + 1 : C
+ if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
+ if (ZI->getSrcTy() == Type::getInt1Ty(I.getContext()))
+ return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
+ }
+
+ if (isa<PHINode>(LHS))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+
+ ConstantInt *XorRHS = 0;
+ Value *XorLHS = 0;
+ if (isa<ConstantInt>(RHSC) &&
+ match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
+ uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
+ const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
+
+ uint32_t Size = TySizeBits / 2;
+ APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
+ APInt CFF80Val(-C0080Val);
+ do {
+ if (TySizeBits > Size) {
+ // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
+ // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
+ if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
+ (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
+ // This is a sign extend if the top bits are known zero.
+ if (!MaskedValueIsZero(XorLHS,
+ APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
+ Size = 0; // Not a sign ext, but can't be any others either.
+ break;
+ }
+ }
+ Size >>= 1;
+ C0080Val = APIntOps::lshr(C0080Val, Size);
+ CFF80Val = APIntOps::ashr(CFF80Val, Size);
+ } while (Size >= 1);
+
+ // FIXME: This shouldn't be necessary. When the backends can handle types
+ // with funny bit widths then this switch statement should be removed. It
+ // is just here to get the size of the "middle" type back up to something
+ // that the back ends can handle.
+ const Type *MiddleType = 0;
+ switch (Size) {
+ default: break;
+ case 32:
+ case 16:
+ case 8: MiddleType = IntegerType::get(I.getContext(), Size); break;
+ }
+ if (MiddleType) {
+ Value *NewTrunc = Builder->CreateTrunc(XorLHS, MiddleType, "sext");
+ return new SExtInst(NewTrunc, I.getType(), I.getName());
+ }
+ }
+ }
+
+ if (I.getType()->isInteger(1))
+ return BinaryOperator::CreateXor(LHS, RHS);
+
+ if (I.getType()->isInteger()) {
+ // X + X --> X << 1
+ if (LHS == RHS)
+ return BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
+
+ if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
+ if (RHSI->getOpcode() == Instruction::Sub)
+ if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
+ return ReplaceInstUsesWith(I, RHSI->getOperand(0));
+ }
+ if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
+ if (LHSI->getOpcode() == Instruction::Sub)
+ if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
+ return ReplaceInstUsesWith(I, LHSI->getOperand(0));
+ }
+ }
+
+ // -A + B --> B - A
+ // -A + -B --> -(A + B)
+ if (Value *LHSV = dyn_castNegVal(LHS)) {
+ if (LHS->getType()->isIntOrIntVector()) {
+ if (Value *RHSV = dyn_castNegVal(RHS)) {
+ Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
+ return BinaryOperator::CreateNeg(NewAdd);
+ }
+ }
+
+ return BinaryOperator::CreateSub(RHS, LHSV);
+ }
+
+ // A + -B --> A - B
+ if (!isa<Constant>(RHS))
+ if (Value *V = dyn_castNegVal(RHS))
+ return BinaryOperator::CreateSub(LHS, V);
+
+
+ ConstantInt *C2;
+ if (Value *X = dyn_castFoldableMul(LHS, C2)) {
+ if (X == RHS) // X*C + X --> X * (C+1)
+ return BinaryOperator::CreateMul(RHS, AddOne(C2));
+
+ // X*C1 + X*C2 --> X * (C1+C2)
+ ConstantInt *C1;
+ if (X == dyn_castFoldableMul(RHS, C1))
+ return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
+ }
+
+ // X + X*C --> X * (C+1)
+ if (dyn_castFoldableMul(RHS, C2) == LHS)
+ return BinaryOperator::CreateMul(LHS, AddOne(C2));
+
+ // X + ~X --> -1 since ~X = -X-1
+ if (match(LHS, m_Not(m_Specific(RHS))) ||
+ match(RHS, m_Not(m_Specific(LHS))))
+ return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
+
+ // A+B --> A|B iff A and B have no bits set in common.
+ if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
+ APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
+ APInt LHSKnownOne(IT->getBitWidth(), 0);
+ APInt LHSKnownZero(IT->getBitWidth(), 0);
+ ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
+ if (LHSKnownZero != 0) {
+ APInt RHSKnownOne(IT->getBitWidth(), 0);
+ APInt RHSKnownZero(IT->getBitWidth(), 0);
+ ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
+
+ // No bits in common -> bitwise or.
+ if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
+ return BinaryOperator::CreateOr(LHS, RHS);
+ }
+ }
+
+ // W*X + Y*Z --> W * (X+Z) iff W == Y
+ if (I.getType()->isIntOrIntVector()) {
+ Value *W, *X, *Y, *Z;
+ if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
+ match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
+ if (W != Y) {
+ if (W == Z) {
+ std::swap(Y, Z);
+ } else if (Y == X) {
+ std::swap(W, X);
+ } else if (X == Z) {
+ std::swap(Y, Z);
+ std::swap(W, X);
+ }
+ }
+
+ if (W == Y) {
+ Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
+ return BinaryOperator::CreateMul(W, NewAdd);
+ }
+ }
+ }
+
+ if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
+ Value *X = 0;
+ if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
+ return BinaryOperator::CreateSub(SubOne(CRHS), X);
+
+ // (X & FF00) + xx00 -> (X+xx00) & FF00
+ if (LHS->hasOneUse() &&
+ match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
+ Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
+ if (Anded == CRHS) {
+ // See if all bits from the first bit set in the Add RHS up are included
+ // in the mask. First, get the rightmost bit.
+ const APInt &AddRHSV = CRHS->getValue();
+
+ // Form a mask of all bits from the lowest bit added through the top.
+ APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
+
+ // See if the and mask includes all of these bits.
+ APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
+
+ if (AddRHSHighBits == AddRHSHighBitsAnd) {
+ // Okay, the xform is safe. Insert the new add pronto.
+ Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
+ return BinaryOperator::CreateAnd(NewAdd, C2);
+ }
+ }
+ }
+
+ // Try to fold constant add into select arguments.
+ if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+ }
+
+ // add (select X 0 (sub n A)) A --> select X A n
+ {
+ SelectInst *SI = dyn_cast<SelectInst>(LHS);
+ Value *A = RHS;
+ if (!SI) {
+ SI = dyn_cast<SelectInst>(RHS);
+ A = LHS;
+ }
+ if (SI && SI->hasOneUse()) {
+ Value *TV = SI->getTrueValue();
+ Value *FV = SI->getFalseValue();
+ Value *N;
+
+ // Can we fold the add into the argument of the select?
+ // We check both true and false select arguments for a matching subtract.
+ if (match(FV, m_Zero()) &&
+ match(TV, m_Sub(m_Value(N), m_Specific(A))))
+ // Fold the add into the true select value.
+ return SelectInst::Create(SI->getCondition(), N, A);
+ if (match(TV, m_Zero()) &&
+ match(FV, m_Sub(m_Value(N), m_Specific(A))))
+ // Fold the add into the false select value.
+ return SelectInst::Create(SI->getCondition(), A, N);
+ }
+ }
+
+ // Check for (add (sext x), y), see if we can merge this into an
+ // integer add followed by a sext.
+ if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
+ // (add (sext x), cst) --> (sext (add x, cst'))
+ if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
+ Constant *CI =
+ ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
+ if (LHSConv->hasOneUse() &&
+ ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
+ WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
+ // Insert the new, smaller add.
+ Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
+ CI, "addconv");
+ return new SExtInst(NewAdd, I.getType());
+ }
+ }
+
+ // (add (sext x), (sext y)) --> (sext (add int x, y))
+ if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
+ // Only do this if x/y have the same type, if at last one of them has a
+ // single use (so we don't increase the number of sexts), and if the
+ // integer add will not overflow.
+ if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
+ (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
+ WillNotOverflowSignedAdd(LHSConv->getOperand(0),
+ RHSConv->getOperand(0))) {
+ // Insert the new integer add.
+ Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
+ RHSConv->getOperand(0), "addconv");
+ return new SExtInst(NewAdd, I.getType());
+ }
+ }
+ }
+
+ return Changed ? &I : 0;
+}
+
+Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
+ bool Changed = SimplifyCommutative(I);
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+
+ if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
+ // X + 0 --> X
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
+ if (CFP->isExactlyValue(ConstantFP::getNegativeZero
+ (I.getType())->getValueAPF()))
+ return ReplaceInstUsesWith(I, LHS);
+ }
+
+ if (isa<PHINode>(LHS))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ }
+
+ // -A + B --> B - A
+ // -A + -B --> -(A + B)
+ if (Value *LHSV = dyn_castFNegVal(LHS))
+ return BinaryOperator::CreateFSub(RHS, LHSV);
+
+ // A + -B --> A - B
+ if (!isa<Constant>(RHS))
+ if (Value *V = dyn_castFNegVal(RHS))
+ return BinaryOperator::CreateFSub(LHS, V);
+
+ // Check for X+0.0. Simplify it to X if we know X is not -0.0.
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
+ if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
+ return ReplaceInstUsesWith(I, LHS);
+
+ // Check for (add double (sitofp x), y), see if we can merge this into an
+ // integer add followed by a promotion.
+ if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
+ // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
+ // ... if the constant fits in the integer value. This is useful for things
+ // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
+ // requires a constant pool load, and generally allows the add to be better
+ // instcombined.
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
+ Constant *CI =
+ ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
+ if (LHSConv->hasOneUse() &&
+ ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
+ WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
+ // Insert the new integer add.
+ Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
+ CI, "addconv");
+ return new SIToFPInst(NewAdd, I.getType());
+ }
+ }
+
+ // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
+ if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
+ // Only do this if x/y have the same type, if at last one of them has a
+ // single use (so we don't increase the number of int->fp conversions),
+ // and if the integer add will not overflow.
+ if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
+ (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
+ WillNotOverflowSignedAdd(LHSConv->getOperand(0),
+ RHSConv->getOperand(0))) {
+ // Insert the new integer add.
+ Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
+ RHSConv->getOperand(0),"addconv");
+ return new SIToFPInst(NewAdd, I.getType());
+ }
+ }
+ }
+
+ return Changed ? &I : 0;
+}
+
+
+/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
+/// code necessary to compute the offset from the base pointer (without adding
+/// in the base pointer). Return the result as a signed integer of intptr size.
+Value *InstCombiner::EmitGEPOffset(User *GEP) {
+ TargetData &TD = *getTargetData();
+ gep_type_iterator GTI = gep_type_begin(GEP);
+ const Type *IntPtrTy = TD.getIntPtrType(GEP->getContext());
+ Value *Result = Constant::getNullValue(IntPtrTy);
+
+ // Build a mask for high order bits.
+ unsigned IntPtrWidth = TD.getPointerSizeInBits();
+ uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
+
+ for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
+ ++i, ++GTI) {
+ Value *Op = *i;
+ uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
+ if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
+ if (OpC->isZero()) continue;
+
+ // Handle a struct index, which adds its field offset to the pointer.
+ if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
+ Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
+
+ Result = Builder->CreateAdd(Result,
+ ConstantInt::get(IntPtrTy, Size),
+ GEP->getName()+".offs");
+ continue;
+ }
+
+ Constant *Scale = ConstantInt::get(IntPtrTy, Size);
+ Constant *OC =
+ ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
+ Scale = ConstantExpr::getMul(OC, Scale);
+ // Emit an add instruction.
+ Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
+ continue;
+ }
+ // Convert to correct type.
+ if (Op->getType() != IntPtrTy)
+ Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
+ if (Size != 1) {
+ Constant *Scale = ConstantInt::get(IntPtrTy, Size);
+ // We'll let instcombine(mul) convert this to a shl if possible.
+ Op = Builder->CreateMul(Op, Scale, GEP->getName()+".idx");
+ }
+
+ // Emit an add instruction.
+ Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
+ }
+ return Result;
+}
+
+
+
+
+/// Optimize pointer differences into the same array into a size. Consider:
+/// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
+/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
+///
+Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
+ const Type *Ty) {
+ assert(TD && "Must have target data info for this");
+
+ // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
+ // this.
+ bool Swapped = false;
+ GetElementPtrInst *GEP = 0;
+ ConstantExpr *CstGEP = 0;
+
+ // TODO: Could also optimize &A[i] - &A[j] -> "i-j", and "&A.foo[i] - &A.foo".
+ // For now we require one side to be the base pointer "A" or a constant
+ // expression derived from it.
+ if (GetElementPtrInst *LHSGEP = dyn_cast<GetElementPtrInst>(LHS)) {
+ // (gep X, ...) - X
+ if (LHSGEP->getOperand(0) == RHS) {
+ GEP = LHSGEP;
+ Swapped = false;
+ } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(RHS)) {
+ // (gep X, ...) - (ce_gep X, ...)
+ if (CE->getOpcode() == Instruction::GetElementPtr &&
+ LHSGEP->getOperand(0) == CE->getOperand(0)) {
+ CstGEP = CE;
+ GEP = LHSGEP;
+ Swapped = false;
+ }
+ }
+ }
+
+ if (GetElementPtrInst *RHSGEP = dyn_cast<GetElementPtrInst>(RHS)) {
+ // X - (gep X, ...)
+ if (RHSGEP->getOperand(0) == LHS) {
+ GEP = RHSGEP;
+ Swapped = true;
+ } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(LHS)) {
+ // (ce_gep X, ...) - (gep X, ...)
+ if (CE->getOpcode() == Instruction::GetElementPtr &&
+ RHSGEP->getOperand(0) == CE->getOperand(0)) {
+ CstGEP = CE;
+ GEP = RHSGEP;
+ Swapped = true;
+ }
+ }
+ }
+
+ if (GEP == 0)
+ return 0;
+
+ // Emit the offset of the GEP and an intptr_t.
+ Value *Result = EmitGEPOffset(GEP);
+
+ // If we had a constant expression GEP on the other side offsetting the
+ // pointer, subtract it from the offset we have.
+ if (CstGEP) {
+ Value *CstOffset = EmitGEPOffset(CstGEP);
+ Result = Builder->CreateSub(Result, CstOffset);
+ }
+
+
+ // If we have p - gep(p, ...) then we have to negate the result.
+ if (Swapped)
+ Result = Builder->CreateNeg(Result, "diff.neg");
+
+ return Builder->CreateIntCast(Result, Ty, true);
+}
+
+
+Instruction *InstCombiner::visitSub(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Op0 == Op1) // sub X, X -> 0
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+
+ // If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW.
+ if (Value *V = dyn_castNegVal(Op1)) {
+ BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
+ Res->setHasNoSignedWrap(I.hasNoSignedWrap());
+ Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
+ return Res;
+ }
+
+ if (isa<UndefValue>(Op0))
+ return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
+ if (isa<UndefValue>(Op1))
+ return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
+ if (I.getType()->isInteger(1))
+ return BinaryOperator::CreateXor(Op0, Op1);
+
+ if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
+ // Replace (-1 - A) with (~A).
+ if (C->isAllOnesValue())
+ return BinaryOperator::CreateNot(Op1);
+
+ // C - ~X == X + (1+C)
+ Value *X = 0;
+ if (match(Op1, m_Not(m_Value(X))))
+ return BinaryOperator::CreateAdd(X, AddOne(C));
+
+ // -(X >>u 31) -> (X >>s 31)
+ // -(X >>s 31) -> (X >>u 31)
+ if (C->isZero()) {
+ if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
+ if (SI->getOpcode() == Instruction::LShr) {
+ if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
+ // Check to see if we are shifting out everything but the sign bit.
+ if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
+ SI->getType()->getPrimitiveSizeInBits()-1) {
+ // Ok, the transformation is safe. Insert AShr.
+ return BinaryOperator::Create(Instruction::AShr,
+ SI->getOperand(0), CU, SI->getName());
+ }
+ }
+ } else if (SI->getOpcode() == Instruction::AShr) {
+ if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
+ // Check to see if we are shifting out everything but the sign bit.
+ if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
+ SI->getType()->getPrimitiveSizeInBits()-1) {
+ // Ok, the transformation is safe. Insert LShr.
+ return BinaryOperator::CreateLShr(
+ SI->getOperand(0), CU, SI->getName());
+ }
+ }
+ }
+ }
+ }
+
+ // Try to fold constant sub into select arguments.
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+
+ // C - zext(bool) -> bool ? C - 1 : C
+ if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1))
+ if (ZI->getSrcTy() == Type::getInt1Ty(I.getContext()))
+ return SelectInst::Create(ZI->getOperand(0), SubOne(C), C);
+ }
+
+ if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
+ if (Op1I->getOpcode() == Instruction::Add) {
+ if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
+ return BinaryOperator::CreateNeg(Op1I->getOperand(1),
+ I.getName());
+ else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
+ return BinaryOperator::CreateNeg(Op1I->getOperand(0),
+ I.getName());
+ else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
+ if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
+ // C1-(X+C2) --> (C1-C2)-X
+ return BinaryOperator::CreateSub(
+ ConstantExpr::getSub(CI1, CI2), Op1I->getOperand(0));
+ }
+ }
+
+ if (Op1I->hasOneUse()) {
+ // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
+ // is not used by anyone else...
+ //
+ if (Op1I->getOpcode() == Instruction::Sub) {
+ // Swap the two operands of the subexpr...
+ Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
+ Op1I->setOperand(0, IIOp1);
+ Op1I->setOperand(1, IIOp0);
+
+ // Create the new top level add instruction...
+ return BinaryOperator::CreateAdd(Op0, Op1);
+ }
+
+ // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
+ //
+ if (Op1I->getOpcode() == Instruction::And &&
+ (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
+ Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
+
+ Value *NewNot = Builder->CreateNot(OtherOp, "B.not");
+ return BinaryOperator::CreateAnd(Op0, NewNot);
+ }
+
+ // 0 - (X sdiv C) -> (X sdiv -C)
+ if (Op1I->getOpcode() == Instruction::SDiv)
+ if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
+ if (CSI->isZero())
+ if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
+ return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
+ ConstantExpr::getNeg(DivRHS));
+
+ // X - X*C --> X * (1-C)
+ ConstantInt *C2 = 0;
+ if (dyn_castFoldableMul(Op1I, C2) == Op0) {
+ Constant *CP1 =
+ ConstantExpr::getSub(ConstantInt::get(I.getType(), 1),
+ C2);
+ return BinaryOperator::CreateMul(Op0, CP1);
+ }
+ }
+ }
+
+ if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
+ if (Op0I->getOpcode() == Instruction::Add) {
+ if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
+ return ReplaceInstUsesWith(I, Op0I->getOperand(1));
+ else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
+ return ReplaceInstUsesWith(I, Op0I->getOperand(0));
+ } else if (Op0I->getOpcode() == Instruction::Sub) {
+ if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
+ return BinaryOperator::CreateNeg(Op0I->getOperand(1),
+ I.getName());
+ }
+ }
+
+ ConstantInt *C1;
+ if (Value *X = dyn_castFoldableMul(Op0, C1)) {
+ if (X == Op1) // X*C - X --> X * (C-1)
+ return BinaryOperator::CreateMul(Op1, SubOne(C1));
+
+ ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
+ if (X == dyn_castFoldableMul(Op1, C2))
+ return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
+ }
+
+ // Optimize pointer differences into the same array into a size. Consider:
+ // &A[10] - &A[0]: we should compile this to "10".
+ if (TD) {
+ Value *LHSOp, *RHSOp;
+ if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
+ match(Op1, m_PtrToInt(m_Value(RHSOp))))
+ if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
+ return ReplaceInstUsesWith(I, Res);
+
+ // trunc(p)-trunc(q) -> trunc(p-q)
+ if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
+ match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
+ if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
+ return ReplaceInstUsesWith(I, Res);
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ // If this is a 'B = x-(-A)', change to B = x+A...
+ if (Value *V = dyn_castFNegVal(Op1))
+ return BinaryOperator::CreateFAdd(Op0, V);
+
+ return 0;
+}
diff --git a/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
new file mode 100644
index 0000000..af300fc
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
@@ -0,0 +1,1990 @@
+//===- InstCombineAndOrXor.cpp --------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitAnd, visitOr, and visitXor functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Support/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+
+/// AddOne - Add one to a ConstantInt.
+static Constant *AddOne(Constant *C) {
+ return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
+}
+/// SubOne - Subtract one from a ConstantInt.
+static Constant *SubOne(ConstantInt *C) {
+ return ConstantInt::get(C->getContext(), C->getValue()-1);
+}
+
+/// isFreeToInvert - Return true if the specified value is free to invert (apply
+/// ~ to). This happens in cases where the ~ can be eliminated.
+static inline bool isFreeToInvert(Value *V) {
+ // ~(~(X)) -> X.
+ if (BinaryOperator::isNot(V))
+ return true;
+
+ // Constants can be considered to be not'ed values.
+ if (isa<ConstantInt>(V))
+ return true;
+
+ // Compares can be inverted if they have a single use.
+ if (CmpInst *CI = dyn_cast<CmpInst>(V))
+ return CI->hasOneUse();
+
+ return false;
+}
+
+static inline Value *dyn_castNotVal(Value *V) {
+ // If this is not(not(x)) don't return that this is a not: we want the two
+ // not's to be folded first.
+ if (BinaryOperator::isNot(V)) {
+ Value *Operand = BinaryOperator::getNotArgument(V);
+ if (!isFreeToInvert(Operand))
+ return Operand;
+ }
+
+ // Constants can be considered to be not'ed values...
+ if (ConstantInt *C = dyn_cast<ConstantInt>(V))
+ return ConstantInt::get(C->getType(), ~C->getValue());
+ return 0;
+}
+
+
+/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
+/// are carefully arranged to allow folding of expressions such as:
+///
+/// (A < B) | (A > B) --> (A != B)
+///
+/// Note that this is only valid if the first and second predicates have the
+/// same sign. Is illegal to do: (A u< B) | (A s> B)
+///
+/// Three bits are used to represent the condition, as follows:
+/// 0 A > B
+/// 1 A == B
+/// 2 A < B
+///
+/// <=> Value Definition
+/// 000 0 Always false
+/// 001 1 A > B
+/// 010 2 A == B
+/// 011 3 A >= B
+/// 100 4 A < B
+/// 101 5 A != B
+/// 110 6 A <= B
+/// 111 7 Always true
+///
+static unsigned getICmpCode(const ICmpInst *ICI) {
+ switch (ICI->getPredicate()) {
+ // False -> 0
+ case ICmpInst::ICMP_UGT: return 1; // 001
+ case ICmpInst::ICMP_SGT: return 1; // 001
+ case ICmpInst::ICMP_EQ: return 2; // 010
+ case ICmpInst::ICMP_UGE: return 3; // 011
+ case ICmpInst::ICMP_SGE: return 3; // 011
+ case ICmpInst::ICMP_ULT: return 4; // 100
+ case ICmpInst::ICMP_SLT: return 4; // 100
+ case ICmpInst::ICMP_NE: return 5; // 101
+ case ICmpInst::ICMP_ULE: return 6; // 110
+ case ICmpInst::ICMP_SLE: return 6; // 110
+ // True -> 7
+ default:
+ llvm_unreachable("Invalid ICmp predicate!");
+ return 0;
+ }
+}
+
+/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
+/// predicate into a three bit mask. It also returns whether it is an ordered
+/// predicate by reference.
+static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
+ isOrdered = false;
+ switch (CC) {
+ case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
+ case FCmpInst::FCMP_UNO: return 0; // 000
+ case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
+ case FCmpInst::FCMP_UGT: return 1; // 001
+ case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
+ case FCmpInst::FCMP_UEQ: return 2; // 010
+ case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
+ case FCmpInst::FCMP_UGE: return 3; // 011
+ case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
+ case FCmpInst::FCMP_ULT: return 4; // 100
+ case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
+ case FCmpInst::FCMP_UNE: return 5; // 101
+ case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
+ case FCmpInst::FCMP_ULE: return 6; // 110
+ // True -> 7
+ default:
+ // Not expecting FCMP_FALSE and FCMP_TRUE;
+ llvm_unreachable("Unexpected FCmp predicate!");
+ return 0;
+ }
+}
+
+/// getICmpValue - This is the complement of getICmpCode, which turns an
+/// opcode and two operands into either a constant true or false, or a brand
+/// new ICmp instruction. The sign is passed in to determine which kind
+/// of predicate to use in the new icmp instruction.
+static Value *getICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS) {
+ switch (Code) {
+ default: assert(0 && "Illegal ICmp code!");
+ case 0:
+ return ConstantInt::getFalse(LHS->getContext());
+ case 1:
+ if (Sign)
+ return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
+ return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
+ case 2:
+ return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
+ case 3:
+ if (Sign)
+ return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
+ return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
+ case 4:
+ if (Sign)
+ return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
+ return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
+ case 5:
+ return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
+ case 6:
+ if (Sign)
+ return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
+ return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
+ case 7:
+ return ConstantInt::getTrue(LHS->getContext());
+ }
+}
+
+/// getFCmpValue - This is the complement of getFCmpCode, which turns an
+/// opcode and two operands into either a FCmp instruction. isordered is passed
+/// in to determine which kind of predicate to use in the new fcmp instruction.
+static Value *getFCmpValue(bool isordered, unsigned code,
+ Value *LHS, Value *RHS) {
+ switch (code) {
+ default: llvm_unreachable("Illegal FCmp code!");
+ case 0:
+ if (isordered)
+ return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
+ else
+ return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
+ case 1:
+ if (isordered)
+ return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
+ else
+ return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
+ case 2:
+ if (isordered)
+ return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
+ else
+ return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
+ case 3:
+ if (isordered)
+ return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
+ else
+ return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
+ case 4:
+ if (isordered)
+ return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
+ else
+ return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
+ case 5:
+ if (isordered)
+ return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
+ else
+ return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
+ case 6:
+ if (isordered)
+ return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
+ else
+ return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
+ case 7: return ConstantInt::getTrue(LHS->getContext());
+ }
+}
+
+/// PredicatesFoldable - Return true if both predicates match sign or if at
+/// least one of them is an equality comparison (which is signless).
+static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
+ return (CmpInst::isSigned(p1) == CmpInst::isSigned(p2)) ||
+ (CmpInst::isSigned(p1) && ICmpInst::isEquality(p2)) ||
+ (CmpInst::isSigned(p2) && ICmpInst::isEquality(p1));
+}
+
+// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
+// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
+// guaranteed to be a binary operator.
+Instruction *InstCombiner::OptAndOp(Instruction *Op,
+ ConstantInt *OpRHS,
+ ConstantInt *AndRHS,
+ BinaryOperator &TheAnd) {
+ Value *X = Op->getOperand(0);
+ Constant *Together = 0;
+ if (!Op->isShift())
+ Together = ConstantExpr::getAnd(AndRHS, OpRHS);
+
+ switch (Op->getOpcode()) {
+ case Instruction::Xor:
+ if (Op->hasOneUse()) {
+ // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
+ Value *And = Builder->CreateAnd(X, AndRHS);
+ And->takeName(Op);
+ return BinaryOperator::CreateXor(And, Together);
+ }
+ break;
+ case Instruction::Or:
+ if (Together == AndRHS) // (X | C) & C --> C
+ return ReplaceInstUsesWith(TheAnd, AndRHS);
+
+ if (Op->hasOneUse() && Together != OpRHS) {
+ // (X | C1) & C2 --> (X | (C1&C2)) & C2
+ Value *Or = Builder->CreateOr(X, Together);
+ Or->takeName(Op);
+ return BinaryOperator::CreateAnd(Or, AndRHS);
+ }
+ break;
+ case Instruction::Add:
+ if (Op->hasOneUse()) {
+ // Adding a one to a single bit bit-field should be turned into an XOR
+ // of the bit. First thing to check is to see if this AND is with a
+ // single bit constant.
+ const APInt &AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
+
+ // If there is only one bit set.
+ if (AndRHSV.isPowerOf2()) {
+ // Ok, at this point, we know that we are masking the result of the
+ // ADD down to exactly one bit. If the constant we are adding has
+ // no bits set below this bit, then we can eliminate the ADD.
+ const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
+
+ // Check to see if any bits below the one bit set in AndRHSV are set.
+ if ((AddRHS & (AndRHSV-1)) == 0) {
+ // If not, the only thing that can effect the output of the AND is
+ // the bit specified by AndRHSV. If that bit is set, the effect of
+ // the XOR is to toggle the bit. If it is clear, then the ADD has
+ // no effect.
+ if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
+ TheAnd.setOperand(0, X);
+ return &TheAnd;
+ } else {
+ // Pull the XOR out of the AND.
+ Value *NewAnd = Builder->CreateAnd(X, AndRHS);
+ NewAnd->takeName(Op);
+ return BinaryOperator::CreateXor(NewAnd, AndRHS);
+ }
+ }
+ }
+ }
+ break;
+
+ case Instruction::Shl: {
+ // We know that the AND will not produce any of the bits shifted in, so if
+ // the anded constant includes them, clear them now!
+ //
+ uint32_t BitWidth = AndRHS->getType()->getBitWidth();
+ uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
+ APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
+ ConstantInt *CI = ConstantInt::get(AndRHS->getContext(),
+ AndRHS->getValue() & ShlMask);
+
+ if (CI->getValue() == ShlMask) {
+ // Masking out bits that the shift already masks
+ return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
+ } else if (CI != AndRHS) { // Reducing bits set in and.
+ TheAnd.setOperand(1, CI);
+ return &TheAnd;
+ }
+ break;
+ }
+ case Instruction::LShr: {
+ // We know that the AND will not produce any of the bits shifted in, so if
+ // the anded constant includes them, clear them now! This only applies to
+ // unsigned shifts, because a signed shr may bring in set bits!
+ //
+ uint32_t BitWidth = AndRHS->getType()->getBitWidth();
+ uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
+ APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
+ ConstantInt *CI = ConstantInt::get(Op->getContext(),
+ AndRHS->getValue() & ShrMask);
+
+ if (CI->getValue() == ShrMask) {
+ // Masking out bits that the shift already masks.
+ return ReplaceInstUsesWith(TheAnd, Op);
+ } else if (CI != AndRHS) {
+ TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
+ return &TheAnd;
+ }
+ break;
+ }
+ case Instruction::AShr:
+ // Signed shr.
+ // See if this is shifting in some sign extension, then masking it out
+ // with an and.
+ if (Op->hasOneUse()) {
+ uint32_t BitWidth = AndRHS->getType()->getBitWidth();
+ uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
+ APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
+ Constant *C = ConstantInt::get(Op->getContext(),
+ AndRHS->getValue() & ShrMask);
+ if (C == AndRHS) { // Masking out bits shifted in.
+ // (Val ashr C1) & C2 -> (Val lshr C1) & C2
+ // Make the argument unsigned.
+ Value *ShVal = Op->getOperand(0);
+ ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
+ return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
+ }
+ }
+ break;
+ }
+ return 0;
+}
+
+
+/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
+/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
+/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
+/// whether to treat the V, Lo and HI as signed or not. IB is the location to
+/// insert new instructions.
+Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
+ bool isSigned, bool Inside,
+ Instruction &IB) {
+ assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
+ ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
+ "Lo is not <= Hi in range emission code!");
+
+ if (Inside) {
+ if (Lo == Hi) // Trivially false.
+ return new ICmpInst(ICmpInst::ICMP_NE, V, V);
+
+ // V >= Min && V < Hi --> V < Hi
+ if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
+ ICmpInst::Predicate pred = (isSigned ?
+ ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
+ return new ICmpInst(pred, V, Hi);
+ }
+
+ // Emit V-Lo <u Hi-Lo
+ Constant *NegLo = ConstantExpr::getNeg(Lo);
+ Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
+ Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
+ return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
+ }
+
+ if (Lo == Hi) // Trivially true.
+ return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
+
+ // V < Min || V >= Hi -> V > Hi-1
+ Hi = SubOne(cast<ConstantInt>(Hi));
+ if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
+ ICmpInst::Predicate pred = (isSigned ?
+ ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
+ return new ICmpInst(pred, V, Hi);
+ }
+
+ // Emit V-Lo >u Hi-1-Lo
+ // Note that Hi has already had one subtracted from it, above.
+ ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
+ Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
+ Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
+ return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
+}
+
+// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
+// any number of 0s on either side. The 1s are allowed to wrap from LSB to
+// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
+// not, since all 1s are not contiguous.
+static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
+ const APInt& V = Val->getValue();
+ uint32_t BitWidth = Val->getType()->getBitWidth();
+ if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
+
+ // look for the first zero bit after the run of ones
+ MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
+ // look for the first non-zero bit
+ ME = V.getActiveBits();
+ return true;
+}
+
+/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
+/// where isSub determines whether the operator is a sub. If we can fold one of
+/// the following xforms:
+///
+/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
+/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
+/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
+///
+/// return (A +/- B).
+///
+Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
+ ConstantInt *Mask, bool isSub,
+ Instruction &I) {
+ Instruction *LHSI = dyn_cast<Instruction>(LHS);
+ if (!LHSI || LHSI->getNumOperands() != 2 ||
+ !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
+
+ ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
+
+ switch (LHSI->getOpcode()) {
+ default: return 0;
+ case Instruction::And:
+ if (ConstantExpr::getAnd(N, Mask) == Mask) {
+ // If the AndRHS is a power of two minus one (0+1+), this is simple.
+ if ((Mask->getValue().countLeadingZeros() +
+ Mask->getValue().countPopulation()) ==
+ Mask->getValue().getBitWidth())
+ break;
+
+ // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
+ // part, we don't need any explicit masks to take them out of A. If that
+ // is all N is, ignore it.
+ uint32_t MB = 0, ME = 0;
+ if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
+ uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
+ APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
+ if (MaskedValueIsZero(RHS, Mask))
+ break;
+ }
+ }
+ return 0;
+ case Instruction::Or:
+ case Instruction::Xor:
+ // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
+ if ((Mask->getValue().countLeadingZeros() +
+ Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
+ && ConstantExpr::getAnd(N, Mask)->isNullValue())
+ break;
+ return 0;
+ }
+
+ if (isSub)
+ return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
+ return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
+}
+
+/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
+Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
+ ICmpInst *LHS, ICmpInst *RHS) {
+ ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
+
+ // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
+ if (PredicatesFoldable(LHSCC, RHSCC)) {
+ if (LHS->getOperand(0) == RHS->getOperand(1) &&
+ LHS->getOperand(1) == RHS->getOperand(0))
+ LHS->swapOperands();
+ if (LHS->getOperand(0) == RHS->getOperand(0) &&
+ LHS->getOperand(1) == RHS->getOperand(1)) {
+ Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
+ unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
+ bool isSigned = LHS->isSigned() || RHS->isSigned();
+ Value *RV = getICmpValue(isSigned, Code, Op0, Op1);
+ if (Instruction *I = dyn_cast<Instruction>(RV))
+ return I;
+ // Otherwise, it's a constant boolean value.
+ return ReplaceInstUsesWith(I, RV);
+ }
+ }
+
+ // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
+ Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
+ ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
+ ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
+ if (LHSCst == 0 || RHSCst == 0) return 0;
+
+ if (LHSCst == RHSCst && LHSCC == RHSCC) {
+ // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
+ // where C is a power of 2
+ if (LHSCC == ICmpInst::ICMP_ULT &&
+ LHSCst->getValue().isPowerOf2()) {
+ Value *NewOr = Builder->CreateOr(Val, Val2);
+ return new ICmpInst(LHSCC, NewOr, LHSCst);
+ }
+
+ // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
+ if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
+ Value *NewOr = Builder->CreateOr(Val, Val2);
+ return new ICmpInst(LHSCC, NewOr, LHSCst);
+ }
+ }
+
+ // From here on, we only handle:
+ // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
+ if (Val != Val2) return 0;
+
+ // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
+ if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
+ RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
+ LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
+ RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
+ return 0;
+
+ // We can't fold (ugt x, C) & (sgt x, C2).
+ if (!PredicatesFoldable(LHSCC, RHSCC))
+ return 0;
+
+ // Ensure that the larger constant is on the RHS.
+ bool ShouldSwap;
+ if (CmpInst::isSigned(LHSCC) ||
+ (ICmpInst::isEquality(LHSCC) &&
+ CmpInst::isSigned(RHSCC)))
+ ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
+ else
+ ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
+
+ if (ShouldSwap) {
+ std::swap(LHS, RHS);
+ std::swap(LHSCst, RHSCst);
+ std::swap(LHSCC, RHSCC);
+ }
+
+ // At this point, we know we have have two icmp instructions
+ // comparing a value against two constants and and'ing the result
+ // together. Because of the above check, we know that we only have
+ // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
+ // (from the icmp folding check above), that the two constants
+ // are not equal and that the larger constant is on the RHS
+ assert(LHSCst != RHSCst && "Compares not folded above?");
+
+ switch (LHSCC) {
+ default: llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_EQ:
+ switch (RHSCC) {
+ default: llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
+ case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
+ case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
+ case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
+ case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
+ return ReplaceInstUsesWith(I, LHS);
+ }
+ case ICmpInst::ICMP_NE:
+ switch (RHSCC) {
+ default: llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_ULT:
+ if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
+ return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst);
+ break; // (X != 13 & X u< 15) -> no change
+ case ICmpInst::ICMP_SLT:
+ if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
+ return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst);
+ break; // (X != 13 & X s< 15) -> no change
+ case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
+ case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
+ case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
+ return ReplaceInstUsesWith(I, RHS);
+ case ICmpInst::ICMP_NE:
+ if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
+ Constant *AddCST = ConstantExpr::getNeg(LHSCst);
+ Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
+ return new ICmpInst(ICmpInst::ICMP_UGT, Add,
+ ConstantInt::get(Add->getType(), 1));
+ }
+ break; // (X != 13 & X != 15) -> no change
+ }
+ break;
+ case ICmpInst::ICMP_ULT:
+ switch (RHSCC) {
+ default: llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
+ case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
+ break;
+ case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
+ case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
+ return ReplaceInstUsesWith(I, LHS);
+ case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
+ break;
+ }
+ break;
+ case ICmpInst::ICMP_SLT:
+ switch (RHSCC) {
+ default: llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
+ case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
+ break;
+ case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
+ case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
+ return ReplaceInstUsesWith(I, LHS);
+ case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
+ break;
+ }
+ break;
+ case ICmpInst::ICMP_UGT:
+ switch (RHSCC) {
+ default: llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
+ case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
+ return ReplaceInstUsesWith(I, RHS);
+ case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
+ break;
+ case ICmpInst::ICMP_NE:
+ if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
+ return new ICmpInst(LHSCC, Val, RHSCst);
+ break; // (X u> 13 & X != 15) -> no change
+ case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
+ return InsertRangeTest(Val, AddOne(LHSCst),
+ RHSCst, false, true, I);
+ case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
+ break;
+ }
+ break;
+ case ICmpInst::ICMP_SGT:
+ switch (RHSCC) {
+ default: llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
+ case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
+ return ReplaceInstUsesWith(I, RHS);
+ case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
+ break;
+ case ICmpInst::ICMP_NE:
+ if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
+ return new ICmpInst(LHSCC, Val, RHSCst);
+ break; // (X s> 13 & X != 15) -> no change
+ case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
+ return InsertRangeTest(Val, AddOne(LHSCst),
+ RHSCst, true, true, I);
+ case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
+ break;
+ }
+ break;
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::FoldAndOfFCmps(Instruction &I, FCmpInst *LHS,
+ FCmpInst *RHS) {
+
+ if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
+ RHS->getPredicate() == FCmpInst::FCMP_ORD) {
+ // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
+ if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
+ if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
+ // If either of the constants are nans, then the whole thing returns
+ // false.
+ if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ return new FCmpInst(FCmpInst::FCMP_ORD,
+ LHS->getOperand(0), RHS->getOperand(0));
+ }
+
+ // Handle vector zeros. This occurs because the canonical form of
+ // "fcmp ord x,x" is "fcmp ord x, 0".
+ if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
+ isa<ConstantAggregateZero>(RHS->getOperand(1)))
+ return new FCmpInst(FCmpInst::FCMP_ORD,
+ LHS->getOperand(0), RHS->getOperand(0));
+ return 0;
+ }
+
+ Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
+ Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
+ FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
+
+
+ if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
+ // Swap RHS operands to match LHS.
+ Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
+ std::swap(Op1LHS, Op1RHS);
+ }
+
+ if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
+ // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
+ if (Op0CC == Op1CC)
+ return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
+
+ if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ if (Op0CC == FCmpInst::FCMP_TRUE)
+ return ReplaceInstUsesWith(I, RHS);
+ if (Op1CC == FCmpInst::FCMP_TRUE)
+ return ReplaceInstUsesWith(I, LHS);
+
+ bool Op0Ordered;
+ bool Op1Ordered;
+ unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
+ unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
+ if (Op1Pred == 0) {
+ std::swap(LHS, RHS);
+ std::swap(Op0Pred, Op1Pred);
+ std::swap(Op0Ordered, Op1Ordered);
+ }
+ if (Op0Pred == 0) {
+ // uno && ueq -> uno && (uno || eq) -> ueq
+ // ord && olt -> ord && (ord && lt) -> olt
+ if (Op0Ordered == Op1Ordered)
+ return ReplaceInstUsesWith(I, RHS);
+
+ // uno && oeq -> uno && (ord && eq) -> false
+ // uno && ord -> false
+ if (!Op0Ordered)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ // ord && ueq -> ord && (uno || eq) -> oeq
+ return cast<Instruction>(getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS));
+ }
+ }
+
+ return 0;
+}
+
+
+Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
+ bool Changed = SimplifyCommutative(I);
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifyAndInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+ // See if we can simplify any instructions used by the instruction whose sole
+ // purpose is to compute bits we don't care about.
+ if (SimplifyDemandedInstructionBits(I))
+ return &I;
+
+ if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
+ const APInt &AndRHSMask = AndRHS->getValue();
+ APInt NotAndRHS(~AndRHSMask);
+
+ // Optimize a variety of ((val OP C1) & C2) combinations...
+ if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
+ Value *Op0LHS = Op0I->getOperand(0);
+ Value *Op0RHS = Op0I->getOperand(1);
+ switch (Op0I->getOpcode()) {
+ default: break;
+ case Instruction::Xor:
+ case Instruction::Or:
+ // If the mask is only needed on one incoming arm, push it up.
+ if (!Op0I->hasOneUse()) break;
+
+ if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
+ // Not masking anything out for the LHS, move to RHS.
+ Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
+ Op0RHS->getName()+".masked");
+ return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
+ }
+ if (!isa<Constant>(Op0RHS) &&
+ MaskedValueIsZero(Op0RHS, NotAndRHS)) {
+ // Not masking anything out for the RHS, move to LHS.
+ Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
+ Op0LHS->getName()+".masked");
+ return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
+ }
+
+ break;
+ case Instruction::Add:
+ // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
+ // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
+ // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
+ if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
+ return BinaryOperator::CreateAnd(V, AndRHS);
+ if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
+ return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
+ break;
+
+ case Instruction::Sub:
+ // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
+ // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
+ // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
+ if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
+ return BinaryOperator::CreateAnd(V, AndRHS);
+
+ // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
+ // has 1's for all bits that the subtraction with A might affect.
+ if (Op0I->hasOneUse()) {
+ uint32_t BitWidth = AndRHSMask.getBitWidth();
+ uint32_t Zeros = AndRHSMask.countLeadingZeros();
+ APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
+
+ ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
+ if (!(A && A->isZero()) && // avoid infinite recursion.
+ MaskedValueIsZero(Op0LHS, Mask)) {
+ Value *NewNeg = Builder->CreateNeg(Op0RHS);
+ return BinaryOperator::CreateAnd(NewNeg, AndRHS);
+ }
+ }
+ break;
+
+ case Instruction::Shl:
+ case Instruction::LShr:
+ // (1 << x) & 1 --> zext(x == 0)
+ // (1 >> x) & 1 --> zext(x == 0)
+ if (AndRHSMask == 1 && Op0LHS == AndRHS) {
+ Value *NewICmp =
+ Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
+ return new ZExtInst(NewICmp, I.getType());
+ }
+ break;
+ }
+
+ if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
+ if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
+ return Res;
+ } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
+ // If this is an integer truncation or change from signed-to-unsigned, and
+ // if the source is an and/or with immediate, transform it. This
+ // frequently occurs for bitfield accesses.
+ if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
+ if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
+ CastOp->getNumOperands() == 2)
+ if (ConstantInt *AndCI =dyn_cast<ConstantInt>(CastOp->getOperand(1))){
+ if (CastOp->getOpcode() == Instruction::And) {
+ // Change: and (cast (and X, C1) to T), C2
+ // into : and (cast X to T), trunc_or_bitcast(C1)&C2
+ // This will fold the two constants together, which may allow
+ // other simplifications.
+ Value *NewCast = Builder->CreateTruncOrBitCast(
+ CastOp->getOperand(0), I.getType(),
+ CastOp->getName()+".shrunk");
+ // trunc_or_bitcast(C1)&C2
+ Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
+ C3 = ConstantExpr::getAnd(C3, AndRHS);
+ return BinaryOperator::CreateAnd(NewCast, C3);
+ } else if (CastOp->getOpcode() == Instruction::Or) {
+ // Change: and (cast (or X, C1) to T), C2
+ // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
+ Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
+ if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS)
+ // trunc(C1)&C2
+ return ReplaceInstUsesWith(I, AndRHS);
+ }
+ }
+ }
+ }
+
+ // Try to fold constant and into select arguments.
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+ if (isa<PHINode>(Op0))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ }
+
+
+ // (~A & ~B) == (~(A | B)) - De Morgan's Law
+ if (Value *Op0NotVal = dyn_castNotVal(Op0))
+ if (Value *Op1NotVal = dyn_castNotVal(Op1))
+ if (Op0->hasOneUse() && Op1->hasOneUse()) {
+ Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
+ I.getName()+".demorgan");
+ return BinaryOperator::CreateNot(Or);
+ }
+
+ {
+ Value *A = 0, *B = 0, *C = 0, *D = 0;
+ // (A|B) & ~(A&B) -> A^B
+ if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
+ match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
+ ((A == C && B == D) || (A == D && B == C)))
+ return BinaryOperator::CreateXor(A, B);
+
+ // ~(A&B) & (A|B) -> A^B
+ if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
+ match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
+ ((A == C && B == D) || (A == D && B == C)))
+ return BinaryOperator::CreateXor(A, B);
+
+ if (Op0->hasOneUse() &&
+ match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
+ if (A == Op1) { // (A^B)&A -> A&(A^B)
+ I.swapOperands(); // Simplify below
+ std::swap(Op0, Op1);
+ } else if (B == Op1) { // (A^B)&B -> B&(B^A)
+ cast<BinaryOperator>(Op0)->swapOperands();
+ I.swapOperands(); // Simplify below
+ std::swap(Op0, Op1);
+ }
+ }
+
+ if (Op1->hasOneUse() &&
+ match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
+ if (B == Op0) { // B&(A^B) -> B&(B^A)
+ cast<BinaryOperator>(Op1)->swapOperands();
+ std::swap(A, B);
+ }
+ if (A == Op0) // A&(A^B) -> A & ~B
+ return BinaryOperator::CreateAnd(A, Builder->CreateNot(B, "tmp"));
+ }
+
+ // (A&((~A)|B)) -> A&B
+ if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
+ match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
+ return BinaryOperator::CreateAnd(A, Op1);
+ if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
+ match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
+ return BinaryOperator::CreateAnd(A, Op0);
+ }
+
+ if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
+ if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
+ if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS))
+ return Res;
+
+ // fold (and (cast A), (cast B)) -> (cast (and A, B))
+ if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
+ if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
+ if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
+ const Type *SrcTy = Op0C->getOperand(0)->getType();
+ if (SrcTy == Op1C->getOperand(0)->getType() &&
+ SrcTy->isIntOrIntVector() &&
+ // Only do this if the casts both really cause code to be generated.
+ ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
+ I.getType()) &&
+ ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
+ I.getType())) {
+ Value *NewOp = Builder->CreateAnd(Op0C->getOperand(0),
+ Op1C->getOperand(0), I.getName());
+ return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
+ }
+ }
+
+ // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
+ if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
+ if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
+ if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
+ SI0->getOperand(1) == SI1->getOperand(1) &&
+ (SI0->hasOneUse() || SI1->hasOneUse())) {
+ Value *NewOp =
+ Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
+ SI0->getName());
+ return BinaryOperator::Create(SI1->getOpcode(), NewOp,
+ SI1->getOperand(1));
+ }
+ }
+
+ // If and'ing two fcmp, try combine them into one.
+ if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
+ if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
+ if (Instruction *Res = FoldAndOfFCmps(I, LHS, RHS))
+ return Res;
+ }
+
+ return Changed ? &I : 0;
+}
+
+/// CollectBSwapParts - Analyze the specified subexpression and see if it is
+/// capable of providing pieces of a bswap. The subexpression provides pieces
+/// of a bswap if it is proven that each of the non-zero bytes in the output of
+/// the expression came from the corresponding "byte swapped" byte in some other
+/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
+/// we know that the expression deposits the low byte of %X into the high byte
+/// of the bswap result and that all other bytes are zero. This expression is
+/// accepted, the high byte of ByteValues is set to X to indicate a correct
+/// match.
+///
+/// This function returns true if the match was unsuccessful and false if so.
+/// On entry to the function the "OverallLeftShift" is a signed integer value
+/// indicating the number of bytes that the subexpression is later shifted. For
+/// example, if the expression is later right shifted by 16 bits, the
+/// OverallLeftShift value would be -2 on entry. This is used to specify which
+/// byte of ByteValues is actually being set.
+///
+/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
+/// byte is masked to zero by a user. For example, in (X & 255), X will be
+/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
+/// this function to working on up to 32-byte (256 bit) values. ByteMask is
+/// always in the local (OverallLeftShift) coordinate space.
+///
+static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
+ SmallVector<Value*, 8> &ByteValues) {
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ // If this is an or instruction, it may be an inner node of the bswap.
+ if (I->getOpcode() == Instruction::Or) {
+ return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
+ ByteValues) ||
+ CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
+ ByteValues);
+ }
+
+ // If this is a logical shift by a constant multiple of 8, recurse with
+ // OverallLeftShift and ByteMask adjusted.
+ if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
+ unsigned ShAmt =
+ cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
+ // Ensure the shift amount is defined and of a byte value.
+ if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
+ return true;
+
+ unsigned ByteShift = ShAmt >> 3;
+ if (I->getOpcode() == Instruction::Shl) {
+ // X << 2 -> collect(X, +2)
+ OverallLeftShift += ByteShift;
+ ByteMask >>= ByteShift;
+ } else {
+ // X >>u 2 -> collect(X, -2)
+ OverallLeftShift -= ByteShift;
+ ByteMask <<= ByteShift;
+ ByteMask &= (~0U >> (32-ByteValues.size()));
+ }
+
+ if (OverallLeftShift >= (int)ByteValues.size()) return true;
+ if (OverallLeftShift <= -(int)ByteValues.size()) return true;
+
+ return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
+ ByteValues);
+ }
+
+ // If this is a logical 'and' with a mask that clears bytes, clear the
+ // corresponding bytes in ByteMask.
+ if (I->getOpcode() == Instruction::And &&
+ isa<ConstantInt>(I->getOperand(1))) {
+ // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
+ unsigned NumBytes = ByteValues.size();
+ APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
+ const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
+
+ for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
+ // If this byte is masked out by a later operation, we don't care what
+ // the and mask is.
+ if ((ByteMask & (1 << i)) == 0)
+ continue;
+
+ // If the AndMask is all zeros for this byte, clear the bit.
+ APInt MaskB = AndMask & Byte;
+ if (MaskB == 0) {
+ ByteMask &= ~(1U << i);
+ continue;
+ }
+
+ // If the AndMask is not all ones for this byte, it's not a bytezap.
+ if (MaskB != Byte)
+ return true;
+
+ // Otherwise, this byte is kept.
+ }
+
+ return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
+ ByteValues);
+ }
+ }
+
+ // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
+ // the input value to the bswap. Some observations: 1) if more than one byte
+ // is demanded from this input, then it could not be successfully assembled
+ // into a byteswap. At least one of the two bytes would not be aligned with
+ // their ultimate destination.
+ if (!isPowerOf2_32(ByteMask)) return true;
+ unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
+
+ // 2) The input and ultimate destinations must line up: if byte 3 of an i32
+ // is demanded, it needs to go into byte 0 of the result. This means that the
+ // byte needs to be shifted until it lands in the right byte bucket. The
+ // shift amount depends on the position: if the byte is coming from the high
+ // part of the value (e.g. byte 3) then it must be shifted right. If from the
+ // low part, it must be shifted left.
+ unsigned DestByteNo = InputByteNo + OverallLeftShift;
+ if (InputByteNo < ByteValues.size()/2) {
+ if (ByteValues.size()-1-DestByteNo != InputByteNo)
+ return true;
+ } else {
+ if (ByteValues.size()-1-DestByteNo != InputByteNo)
+ return true;
+ }
+
+ // If the destination byte value is already defined, the values are or'd
+ // together, which isn't a bswap (unless it's an or of the same bits).
+ if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
+ return true;
+ ByteValues[DestByteNo] = V;
+ return false;
+}
+
+/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
+/// If so, insert the new bswap intrinsic and return it.
+Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
+ const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
+ if (!ITy || ITy->getBitWidth() % 16 ||
+ // ByteMask only allows up to 32-byte values.
+ ITy->getBitWidth() > 32*8)
+ return 0; // Can only bswap pairs of bytes. Can't do vectors.
+
+ /// ByteValues - For each byte of the result, we keep track of which value
+ /// defines each byte.
+ SmallVector<Value*, 8> ByteValues;
+ ByteValues.resize(ITy->getBitWidth()/8);
+
+ // Try to find all the pieces corresponding to the bswap.
+ uint32_t ByteMask = ~0U >> (32-ByteValues.size());
+ if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
+ return 0;
+
+ // Check to see if all of the bytes come from the same value.
+ Value *V = ByteValues[0];
+ if (V == 0) return 0; // Didn't find a byte? Must be zero.
+
+ // Check to make sure that all of the bytes come from the same value.
+ for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
+ if (ByteValues[i] != V)
+ return 0;
+ const Type *Tys[] = { ITy };
+ Module *M = I.getParent()->getParent()->getParent();
+ Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
+ return CallInst::Create(F, V);
+}
+
+/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
+/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
+/// we can simplify this expression to "cond ? C : D or B".
+static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
+ Value *C, Value *D) {
+ // If A is not a select of -1/0, this cannot match.
+ Value *Cond = 0;
+ if (!match(A, m_SelectCst<-1, 0>(m_Value(Cond))))
+ return 0;
+
+ // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
+ if (match(D, m_SelectCst<0, -1>(m_Specific(Cond))))
+ return SelectInst::Create(Cond, C, B);
+ if (match(D, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond)))))
+ return SelectInst::Create(Cond, C, B);
+ // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
+ if (match(B, m_SelectCst<0, -1>(m_Specific(Cond))))
+ return SelectInst::Create(Cond, C, D);
+ if (match(B, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond)))))
+ return SelectInst::Create(Cond, C, D);
+ return 0;
+}
+
+/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
+Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
+ ICmpInst *LHS, ICmpInst *RHS) {
+ ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
+
+ // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
+ if (PredicatesFoldable(LHSCC, RHSCC)) {
+ if (LHS->getOperand(0) == RHS->getOperand(1) &&
+ LHS->getOperand(1) == RHS->getOperand(0))
+ LHS->swapOperands();
+ if (LHS->getOperand(0) == RHS->getOperand(0) &&
+ LHS->getOperand(1) == RHS->getOperand(1)) {
+ Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
+ unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
+ bool isSigned = LHS->isSigned() || RHS->isSigned();
+ Value *RV = getICmpValue(isSigned, Code, Op0, Op1);
+ if (Instruction *I = dyn_cast<Instruction>(RV))
+ return I;
+ // Otherwise, it's a constant boolean value.
+ return ReplaceInstUsesWith(I, RV);
+ }
+ }
+
+ // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
+ Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
+ ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
+ ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
+ if (LHSCst == 0 || RHSCst == 0) return 0;
+
+ // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
+ if (LHSCst == RHSCst && LHSCC == RHSCC &&
+ LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
+ Value *NewOr = Builder->CreateOr(Val, Val2);
+ return new ICmpInst(LHSCC, NewOr, LHSCst);
+ }
+
+ // From here on, we only handle:
+ // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
+ if (Val != Val2) return 0;
+
+ // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
+ if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
+ RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
+ LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
+ RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
+ return 0;
+
+ // We can't fold (ugt x, C) | (sgt x, C2).
+ if (!PredicatesFoldable(LHSCC, RHSCC))
+ return 0;
+
+ // Ensure that the larger constant is on the RHS.
+ bool ShouldSwap;
+ if (CmpInst::isSigned(LHSCC) ||
+ (ICmpInst::isEquality(LHSCC) &&
+ CmpInst::isSigned(RHSCC)))
+ ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
+ else
+ ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
+
+ if (ShouldSwap) {
+ std::swap(LHS, RHS);
+ std::swap(LHSCst, RHSCst);
+ std::swap(LHSCC, RHSCC);
+ }
+
+ // At this point, we know we have have two icmp instructions
+ // comparing a value against two constants and or'ing the result
+ // together. Because of the above check, we know that we only have
+ // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
+ // icmp folding check above), that the two constants are not
+ // equal.
+ assert(LHSCst != RHSCst && "Compares not folded above?");
+
+ switch (LHSCC) {
+ default: llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_EQ:
+ switch (RHSCC) {
+ default: llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_EQ:
+ if (LHSCst == SubOne(RHSCst)) {
+ // (X == 13 | X == 14) -> X-13 <u 2
+ Constant *AddCST = ConstantExpr::getNeg(LHSCst);
+ Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
+ AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
+ return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
+ }
+ break; // (X == 13 | X == 15) -> no change
+ case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
+ case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
+ break;
+ case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
+ case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
+ case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
+ return ReplaceInstUsesWith(I, RHS);
+ }
+ break;
+ case ICmpInst::ICMP_NE:
+ switch (RHSCC) {
+ default: llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
+ case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
+ case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
+ return ReplaceInstUsesWith(I, LHS);
+ case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
+ case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
+ case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ }
+ break;
+ case ICmpInst::ICMP_ULT:
+ switch (RHSCC) {
+ default: llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
+ break;
+ case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
+ // If RHSCst is [us]MAXINT, it is always false. Not handling
+ // this can cause overflow.
+ if (RHSCst->isMaxValue(false))
+ return ReplaceInstUsesWith(I, LHS);
+ return InsertRangeTest(Val, LHSCst, AddOne(RHSCst),
+ false, false, I);
+ case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
+ break;
+ case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
+ case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
+ return ReplaceInstUsesWith(I, RHS);
+ case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
+ break;
+ }
+ break;
+ case ICmpInst::ICMP_SLT:
+ switch (RHSCC) {
+ default: llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
+ break;
+ case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
+ // If RHSCst is [us]MAXINT, it is always false. Not handling
+ // this can cause overflow.
+ if (RHSCst->isMaxValue(true))
+ return ReplaceInstUsesWith(I, LHS);
+ return InsertRangeTest(Val, LHSCst, AddOne(RHSCst),
+ true, false, I);
+ case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
+ break;
+ case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
+ case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
+ return ReplaceInstUsesWith(I, RHS);
+ case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
+ break;
+ }
+ break;
+ case ICmpInst::ICMP_UGT:
+ switch (RHSCC) {
+ default: llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
+ case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
+ return ReplaceInstUsesWith(I, LHS);
+ case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
+ break;
+ case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
+ case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
+ break;
+ }
+ break;
+ case ICmpInst::ICMP_SGT:
+ switch (RHSCC) {
+ default: llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
+ case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
+ return ReplaceInstUsesWith(I, LHS);
+ case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
+ break;
+ case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
+ case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
+ break;
+ }
+ break;
+ }
+ return 0;
+}
+
+Instruction *InstCombiner::FoldOrOfFCmps(Instruction &I, FCmpInst *LHS,
+ FCmpInst *RHS) {
+ if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
+ RHS->getPredicate() == FCmpInst::FCMP_UNO &&
+ LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
+ if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
+ if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
+ // If either of the constants are nans, then the whole thing returns
+ // true.
+ if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+
+ // Otherwise, no need to compare the two constants, compare the
+ // rest.
+ return new FCmpInst(FCmpInst::FCMP_UNO,
+ LHS->getOperand(0), RHS->getOperand(0));
+ }
+
+ // Handle vector zeros. This occurs because the canonical form of
+ // "fcmp uno x,x" is "fcmp uno x, 0".
+ if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
+ isa<ConstantAggregateZero>(RHS->getOperand(1)))
+ return new FCmpInst(FCmpInst::FCMP_UNO,
+ LHS->getOperand(0), RHS->getOperand(0));
+
+ return 0;
+ }
+
+ Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
+ Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
+ FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
+
+ if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
+ // Swap RHS operands to match LHS.
+ Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
+ std::swap(Op1LHS, Op1RHS);
+ }
+ if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
+ // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
+ if (Op0CC == Op1CC)
+ return new FCmpInst((FCmpInst::Predicate)Op0CC,
+ Op0LHS, Op0RHS);
+ if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ if (Op0CC == FCmpInst::FCMP_FALSE)
+ return ReplaceInstUsesWith(I, RHS);
+ if (Op1CC == FCmpInst::FCMP_FALSE)
+ return ReplaceInstUsesWith(I, LHS);
+ bool Op0Ordered;
+ bool Op1Ordered;
+ unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
+ unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
+ if (Op0Ordered == Op1Ordered) {
+ // If both are ordered or unordered, return a new fcmp with
+ // or'ed predicates.
+ Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS);
+ if (Instruction *I = dyn_cast<Instruction>(RV))
+ return I;
+ // Otherwise, it's a constant boolean value...
+ return ReplaceInstUsesWith(I, RV);
+ }
+ }
+ return 0;
+}
+
+/// FoldOrWithConstants - This helper function folds:
+///
+/// ((A | B) & C1) | (B & C2)
+///
+/// into:
+///
+/// (A & C1) | B
+///
+/// when the XOR of the two constants is "all ones" (-1).
+Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
+ Value *A, Value *B, Value *C) {
+ ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
+ if (!CI1) return 0;
+
+ Value *V1 = 0;
+ ConstantInt *CI2 = 0;
+ if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
+
+ APInt Xor = CI1->getValue() ^ CI2->getValue();
+ if (!Xor.isAllOnesValue()) return 0;
+
+ if (V1 == A || V1 == B) {
+ Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
+ return BinaryOperator::CreateOr(NewOp, V1);
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitOr(BinaryOperator &I) {
+ bool Changed = SimplifyCommutative(I);
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifyOrInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+
+ // See if we can simplify any instructions used by the instruction whose sole
+ // purpose is to compute bits we don't care about.
+ if (SimplifyDemandedInstructionBits(I))
+ return &I;
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
+ ConstantInt *C1 = 0; Value *X = 0;
+ // (X & C1) | C2 --> (X | C2) & (C1|C2)
+ if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
+ Op0->hasOneUse()) {
+ Value *Or = Builder->CreateOr(X, RHS);
+ Or->takeName(Op0);
+ return BinaryOperator::CreateAnd(Or,
+ ConstantInt::get(I.getContext(),
+ RHS->getValue() | C1->getValue()));
+ }
+
+ // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
+ if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
+ Op0->hasOneUse()) {
+ Value *Or = Builder->CreateOr(X, RHS);
+ Or->takeName(Op0);
+ return BinaryOperator::CreateXor(Or,
+ ConstantInt::get(I.getContext(),
+ C1->getValue() & ~RHS->getValue()));
+ }
+
+ // Try to fold constant and into select arguments.
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+ if (isa<PHINode>(Op0))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ }
+
+ Value *A = 0, *B = 0;
+ ConstantInt *C1 = 0, *C2 = 0;
+
+ // (A | B) | C and A | (B | C) -> bswap if possible.
+ // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
+ if (match(Op0, m_Or(m_Value(), m_Value())) ||
+ match(Op1, m_Or(m_Value(), m_Value())) ||
+ (match(Op0, m_Shift(m_Value(), m_Value())) &&
+ match(Op1, m_Shift(m_Value(), m_Value())))) {
+ if (Instruction *BSwap = MatchBSwap(I))
+ return BSwap;
+ }
+
+ // (X^C)|Y -> (X|Y)^C iff Y&C == 0
+ if (Op0->hasOneUse() &&
+ match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
+ MaskedValueIsZero(Op1, C1->getValue())) {
+ Value *NOr = Builder->CreateOr(A, Op1);
+ NOr->takeName(Op0);
+ return BinaryOperator::CreateXor(NOr, C1);
+ }
+
+ // Y|(X^C) -> (X|Y)^C iff Y&C == 0
+ if (Op1->hasOneUse() &&
+ match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
+ MaskedValueIsZero(Op0, C1->getValue())) {
+ Value *NOr = Builder->CreateOr(A, Op0);
+ NOr->takeName(Op0);
+ return BinaryOperator::CreateXor(NOr, C1);
+ }
+
+ // (A & C)|(B & D)
+ Value *C = 0, *D = 0;
+ if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
+ match(Op1, m_And(m_Value(B), m_Value(D)))) {
+ Value *V1 = 0, *V2 = 0, *V3 = 0;
+ C1 = dyn_cast<ConstantInt>(C);
+ C2 = dyn_cast<ConstantInt>(D);
+ if (C1 && C2) { // (A & C1)|(B & C2)
+ // If we have: ((V + N) & C1) | (V & C2)
+ // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
+ // replace with V+N.
+ if (C1->getValue() == ~C2->getValue()) {
+ if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
+ match(A, m_Add(m_Value(V1), m_Value(V2)))) {
+ // Add commutes, try both ways.
+ if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
+ return ReplaceInstUsesWith(I, A);
+ if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
+ return ReplaceInstUsesWith(I, A);
+ }
+ // Or commutes, try both ways.
+ if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
+ match(B, m_Add(m_Value(V1), m_Value(V2)))) {
+ // Add commutes, try both ways.
+ if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
+ return ReplaceInstUsesWith(I, B);
+ if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
+ return ReplaceInstUsesWith(I, B);
+ }
+ }
+
+ if ((C1->getValue() & C2->getValue()) == 0) {
+ // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
+ // iff (C1&C2) == 0 and (N&~C1) == 0
+ if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
+ ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) || // (V|N)
+ (V2 == B && MaskedValueIsZero(V1, ~C1->getValue())))) // (N|V)
+ return BinaryOperator::CreateAnd(A,
+ ConstantInt::get(A->getContext(),
+ C1->getValue()|C2->getValue()));
+ // Or commutes, try both ways.
+ if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
+ ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) || // (V|N)
+ (V2 == A && MaskedValueIsZero(V1, ~C2->getValue())))) // (N|V)
+ return BinaryOperator::CreateAnd(B,
+ ConstantInt::get(B->getContext(),
+ C1->getValue()|C2->getValue()));
+
+ // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
+ // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
+ ConstantInt *C3 = 0, *C4 = 0;
+ if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
+ (C3->getValue() & ~C1->getValue()) == 0 &&
+ match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
+ (C4->getValue() & ~C2->getValue()) == 0) {
+ V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
+ return BinaryOperator::CreateAnd(V2,
+ ConstantInt::get(B->getContext(),
+ C1->getValue()|C2->getValue()));
+ }
+ }
+ }
+
+ // Check to see if we have any common things being and'ed. If so, find the
+ // terms for V1 & (V2|V3).
+ if (Op0->hasOneUse() || Op1->hasOneUse()) {
+ V1 = 0;
+ if (A == B) // (A & C)|(A & D) == A & (C|D)
+ V1 = A, V2 = C, V3 = D;
+ else if (A == D) // (A & C)|(B & A) == A & (B|C)
+ V1 = A, V2 = B, V3 = C;
+ else if (C == B) // (A & C)|(C & D) == C & (A|D)
+ V1 = C, V2 = A, V3 = D;
+ else if (C == D) // (A & C)|(B & C) == C & (A|B)
+ V1 = C, V2 = A, V3 = B;
+
+ if (V1) {
+ Value *Or = Builder->CreateOr(V2, V3, "tmp");
+ return BinaryOperator::CreateAnd(V1, Or);
+ }
+ }
+
+ // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants
+ if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
+ return Match;
+ if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
+ return Match;
+ if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
+ return Match;
+ if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
+ return Match;
+
+ // ((A&~B)|(~A&B)) -> A^B
+ if ((match(C, m_Not(m_Specific(D))) &&
+ match(B, m_Not(m_Specific(A)))))
+ return BinaryOperator::CreateXor(A, D);
+ // ((~B&A)|(~A&B)) -> A^B
+ if ((match(A, m_Not(m_Specific(D))) &&
+ match(B, m_Not(m_Specific(C)))))
+ return BinaryOperator::CreateXor(C, D);
+ // ((A&~B)|(B&~A)) -> A^B
+ if ((match(C, m_Not(m_Specific(B))) &&
+ match(D, m_Not(m_Specific(A)))))
+ return BinaryOperator::CreateXor(A, B);
+ // ((~B&A)|(B&~A)) -> A^B
+ if ((match(A, m_Not(m_Specific(B))) &&
+ match(D, m_Not(m_Specific(C)))))
+ return BinaryOperator::CreateXor(C, B);
+ }
+
+ // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
+ if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
+ if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
+ if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
+ SI0->getOperand(1) == SI1->getOperand(1) &&
+ (SI0->hasOneUse() || SI1->hasOneUse())) {
+ Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
+ SI0->getName());
+ return BinaryOperator::Create(SI1->getOpcode(), NewOp,
+ SI1->getOperand(1));
+ }
+ }
+
+ // ((A|B)&1)|(B&-2) -> (A&1) | B
+ if (match(Op0, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
+ match(Op0, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
+ Instruction *Ret = FoldOrWithConstants(I, Op1, A, B, C);
+ if (Ret) return Ret;
+ }
+ // (B&-2)|((A|B)&1) -> (A&1) | B
+ if (match(Op1, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
+ match(Op1, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
+ Instruction *Ret = FoldOrWithConstants(I, Op0, A, B, C);
+ if (Ret) return Ret;
+ }
+
+ // (~A | ~B) == (~(A & B)) - De Morgan's Law
+ if (Value *Op0NotVal = dyn_castNotVal(Op0))
+ if (Value *Op1NotVal = dyn_castNotVal(Op1))
+ if (Op0->hasOneUse() && Op1->hasOneUse()) {
+ Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
+ I.getName()+".demorgan");
+ return BinaryOperator::CreateNot(And);
+ }
+
+ if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
+ if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
+ if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS))
+ return Res;
+
+ // fold (or (cast A), (cast B)) -> (cast (or A, B))
+ if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
+ if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
+ if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
+ if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
+ !isa<ICmpInst>(Op1C->getOperand(0))) {
+ const Type *SrcTy = Op0C->getOperand(0)->getType();
+ if (SrcTy == Op1C->getOperand(0)->getType() &&
+ SrcTy->isIntOrIntVector() &&
+ // Only do this if the casts both really cause code to be
+ // generated.
+ ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
+ I.getType()) &&
+ ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
+ I.getType())) {
+ Value *NewOp = Builder->CreateOr(Op0C->getOperand(0),
+ Op1C->getOperand(0), I.getName());
+ return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
+ }
+ }
+ }
+ }
+
+
+ // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
+ if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
+ if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
+ if (Instruction *Res = FoldOrOfFCmps(I, LHS, RHS))
+ return Res;
+ }
+
+ return Changed ? &I : 0;
+}
+
+Instruction *InstCombiner::visitXor(BinaryOperator &I) {
+ bool Changed = SimplifyCommutative(I);
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (isa<UndefValue>(Op1)) {
+ if (isa<UndefValue>(Op0))
+ // Handle undef ^ undef -> 0 special case. This is a common
+ // idiom (misuse).
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
+ }
+
+ // xor X, X = 0
+ if (Op0 == Op1)
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+
+ // See if we can simplify any instructions used by the instruction whose sole
+ // purpose is to compute bits we don't care about.
+ if (SimplifyDemandedInstructionBits(I))
+ return &I;
+ if (isa<VectorType>(I.getType()))
+ if (isa<ConstantAggregateZero>(Op1))
+ return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
+
+ // Is this a ~ operation?
+ if (Value *NotOp = dyn_castNotVal(&I)) {
+ if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
+ if (Op0I->getOpcode() == Instruction::And ||
+ Op0I->getOpcode() == Instruction::Or) {
+ // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
+ // ~(~X | Y) === (X & ~Y) - De Morgan's Law
+ if (dyn_castNotVal(Op0I->getOperand(1)))
+ Op0I->swapOperands();
+ if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
+ Value *NotY =
+ Builder->CreateNot(Op0I->getOperand(1),
+ Op0I->getOperand(1)->getName()+".not");
+ if (Op0I->getOpcode() == Instruction::And)
+ return BinaryOperator::CreateOr(Op0NotVal, NotY);
+ return BinaryOperator::CreateAnd(Op0NotVal, NotY);
+ }
+
+ // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
+ // ~(X | Y) === (~X & ~Y) - De Morgan's Law
+ if (isFreeToInvert(Op0I->getOperand(0)) &&
+ isFreeToInvert(Op0I->getOperand(1))) {
+ Value *NotX =
+ Builder->CreateNot(Op0I->getOperand(0), "notlhs");
+ Value *NotY =
+ Builder->CreateNot(Op0I->getOperand(1), "notrhs");
+ if (Op0I->getOpcode() == Instruction::And)
+ return BinaryOperator::CreateOr(NotX, NotY);
+ return BinaryOperator::CreateAnd(NotX, NotY);
+ }
+ }
+ }
+ }
+
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
+ if (RHS->isOne() && Op0->hasOneUse()) {
+ // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
+ return new ICmpInst(ICI->getInversePredicate(),
+ ICI->getOperand(0), ICI->getOperand(1));
+
+ if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
+ return new FCmpInst(FCI->getInversePredicate(),
+ FCI->getOperand(0), FCI->getOperand(1));
+ }
+
+ // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
+ if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
+ if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
+ if (CI->hasOneUse() && Op0C->hasOneUse()) {
+ Instruction::CastOps Opcode = Op0C->getOpcode();
+ if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
+ (RHS == ConstantExpr::getCast(Opcode,
+ ConstantInt::getTrue(I.getContext()),
+ Op0C->getDestTy()))) {
+ CI->setPredicate(CI->getInversePredicate());
+ return CastInst::Create(Opcode, CI, Op0C->getType());
+ }
+ }
+ }
+ }
+
+ if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
+ // ~(c-X) == X-c-1 == X+(-c-1)
+ if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
+ if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
+ Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
+ Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
+ ConstantInt::get(I.getType(), 1));
+ return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
+ }
+
+ if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
+ if (Op0I->getOpcode() == Instruction::Add) {
+ // ~(X-c) --> (-c-1)-X
+ if (RHS->isAllOnesValue()) {
+ Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
+ return BinaryOperator::CreateSub(
+ ConstantExpr::getSub(NegOp0CI,
+ ConstantInt::get(I.getType(), 1)),
+ Op0I->getOperand(0));
+ } else if (RHS->getValue().isSignBit()) {
+ // (X + C) ^ signbit -> (X + C + signbit)
+ Constant *C = ConstantInt::get(I.getContext(),
+ RHS->getValue() + Op0CI->getValue());
+ return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
+
+ }
+ } else if (Op0I->getOpcode() == Instruction::Or) {
+ // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
+ if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
+ Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
+ // Anything in both C1 and C2 is known to be zero, remove it from
+ // NewRHS.
+ Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
+ NewRHS = ConstantExpr::getAnd(NewRHS,
+ ConstantExpr::getNot(CommonBits));
+ Worklist.Add(Op0I);
+ I.setOperand(0, Op0I->getOperand(0));
+ I.setOperand(1, NewRHS);
+ return &I;
+ }
+ }
+ }
+ }
+
+ // Try to fold constant and into select arguments.
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+ if (isa<PHINode>(Op0))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ }
+
+ if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
+ if (X == Op1)
+ return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
+
+ if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
+ if (X == Op0)
+ return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
+
+
+ BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
+ if (Op1I) {
+ Value *A, *B;
+ if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
+ if (A == Op0) { // B^(B|A) == (A|B)^B
+ Op1I->swapOperands();
+ I.swapOperands();
+ std::swap(Op0, Op1);
+ } else if (B == Op0) { // B^(A|B) == (A|B)^B
+ I.swapOperands(); // Simplified below.
+ std::swap(Op0, Op1);
+ }
+ } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) {
+ return ReplaceInstUsesWith(I, B); // A^(A^B) == B
+ } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) {
+ return ReplaceInstUsesWith(I, A); // A^(B^A) == B
+ } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
+ Op1I->hasOneUse()){
+ if (A == Op0) { // A^(A&B) -> A^(B&A)
+ Op1I->swapOperands();
+ std::swap(A, B);
+ }
+ if (B == Op0) { // A^(B&A) -> (B&A)^A
+ I.swapOperands(); // Simplified below.
+ std::swap(Op0, Op1);
+ }
+ }
+ }
+
+ BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
+ if (Op0I) {
+ Value *A, *B;
+ if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
+ Op0I->hasOneUse()) {
+ if (A == Op1) // (B|A)^B == (A|B)^B
+ std::swap(A, B);
+ if (B == Op1) // (A|B)^B == A & ~B
+ return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1, "tmp"));
+ } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) {
+ return ReplaceInstUsesWith(I, B); // (A^B)^A == B
+ } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) {
+ return ReplaceInstUsesWith(I, A); // (B^A)^A == B
+ } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
+ Op0I->hasOneUse()){
+ if (A == Op1) // (A&B)^A -> (B&A)^A
+ std::swap(A, B);
+ if (B == Op1 && // (B&A)^A == ~B & A
+ !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
+ return BinaryOperator::CreateAnd(Builder->CreateNot(A, "tmp"), Op1);
+ }
+ }
+ }
+
+ // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
+ if (Op0I && Op1I && Op0I->isShift() &&
+ Op0I->getOpcode() == Op1I->getOpcode() &&
+ Op0I->getOperand(1) == Op1I->getOperand(1) &&
+ (Op1I->hasOneUse() || Op1I->hasOneUse())) {
+ Value *NewOp =
+ Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
+ Op0I->getName());
+ return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
+ Op1I->getOperand(1));
+ }
+
+ if (Op0I && Op1I) {
+ Value *A, *B, *C, *D;
+ // (A & B)^(A | B) -> A ^ B
+ if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
+ match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
+ if ((A == C && B == D) || (A == D && B == C))
+ return BinaryOperator::CreateXor(A, B);
+ }
+ // (A | B)^(A & B) -> A ^ B
+ if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
+ match(Op1I, m_And(m_Value(C), m_Value(D)))) {
+ if ((A == C && B == D) || (A == D && B == C))
+ return BinaryOperator::CreateXor(A, B);
+ }
+
+ // (A & B)^(C & D)
+ if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
+ match(Op0I, m_And(m_Value(A), m_Value(B))) &&
+ match(Op1I, m_And(m_Value(C), m_Value(D)))) {
+ // (X & Y)^(X & Y) -> (Y^Z) & X
+ Value *X = 0, *Y = 0, *Z = 0;
+ if (A == C)
+ X = A, Y = B, Z = D;
+ else if (A == D)
+ X = A, Y = B, Z = C;
+ else if (B == C)
+ X = B, Y = A, Z = D;
+ else if (B == D)
+ X = B, Y = A, Z = C;
+
+ if (X) {
+ Value *NewOp = Builder->CreateXor(Y, Z, Op0->getName());
+ return BinaryOperator::CreateAnd(NewOp, X);
+ }
+ }
+ }
+
+ // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
+ if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
+ if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
+ if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
+ if (LHS->getOperand(0) == RHS->getOperand(1) &&
+ LHS->getOperand(1) == RHS->getOperand(0))
+ LHS->swapOperands();
+ if (LHS->getOperand(0) == RHS->getOperand(0) &&
+ LHS->getOperand(1) == RHS->getOperand(1)) {
+ Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
+ unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
+ bool isSigned = LHS->isSigned() || RHS->isSigned();
+ Value *RV = getICmpValue(isSigned, Code, Op0, Op1);
+ if (Instruction *I = dyn_cast<Instruction>(RV))
+ return I;
+ // Otherwise, it's a constant boolean value.
+ return ReplaceInstUsesWith(I, RV);
+ }
+ }
+
+ // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
+ if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
+ if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
+ if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
+ const Type *SrcTy = Op0C->getOperand(0)->getType();
+ if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
+ // Only do this if the casts both really cause code to be generated.
+ ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
+ I.getType()) &&
+ ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
+ I.getType())) {
+ Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
+ Op1C->getOperand(0), I.getName());
+ return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
+ }
+ }
+ }
+
+ return Changed ? &I : 0;
+}
diff --git a/lib/Transforms/InstCombine/InstCombineCalls.cpp b/lib/Transforms/InstCombine/InstCombineCalls.cpp
new file mode 100644
index 0000000..47c37c4
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineCalls.cpp
@@ -0,0 +1,1142 @@
+//===- InstCombineCalls.cpp -----------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitCall and visitInvoke functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+using namespace llvm;
+
+/// getPromotedType - Return the specified type promoted as it would be to pass
+/// though a va_arg area.
+static const Type *getPromotedType(const Type *Ty) {
+ if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
+ if (ITy->getBitWidth() < 32)
+ return Type::getInt32Ty(Ty->getContext());
+ }
+ return Ty;
+}
+
+/// EnforceKnownAlignment - If the specified pointer points to an object that
+/// we control, modify the object's alignment to PrefAlign. This isn't
+/// often possible though. If alignment is important, a more reliable approach
+/// is to simply align all global variables and allocation instructions to
+/// their preferred alignment from the beginning.
+///
+static unsigned EnforceKnownAlignment(Value *V,
+ unsigned Align, unsigned PrefAlign) {
+
+ User *U = dyn_cast<User>(V);
+ if (!U) return Align;
+
+ switch (Operator::getOpcode(U)) {
+ default: break;
+ case Instruction::BitCast:
+ return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
+ case Instruction::GetElementPtr: {
+ // If all indexes are zero, it is just the alignment of the base pointer.
+ bool AllZeroOperands = true;
+ for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
+ if (!isa<Constant>(*i) ||
+ !cast<Constant>(*i)->isNullValue()) {
+ AllZeroOperands = false;
+ break;
+ }
+
+ if (AllZeroOperands) {
+ // Treat this like a bitcast.
+ return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
+ }
+ break;
+ }
+ }
+
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ // If there is a large requested alignment and we can, bump up the alignment
+ // of the global.
+ if (!GV->isDeclaration()) {
+ if (GV->getAlignment() >= PrefAlign)
+ Align = GV->getAlignment();
+ else {
+ GV->setAlignment(PrefAlign);
+ Align = PrefAlign;
+ }
+ }
+ } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
+ // If there is a requested alignment and if this is an alloca, round up.
+ if (AI->getAlignment() >= PrefAlign)
+ Align = AI->getAlignment();
+ else {
+ AI->setAlignment(PrefAlign);
+ Align = PrefAlign;
+ }
+ }
+
+ return Align;
+}
+
+/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
+/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
+/// and it is more than the alignment of the ultimate object, see if we can
+/// increase the alignment of the ultimate object, making this check succeed.
+unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
+ unsigned PrefAlign) {
+ unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
+ sizeof(PrefAlign) * CHAR_BIT;
+ APInt Mask = APInt::getAllOnesValue(BitWidth);
+ APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
+ ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
+ unsigned TrailZ = KnownZero.countTrailingOnes();
+ unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
+
+ if (PrefAlign > Align)
+ Align = EnforceKnownAlignment(V, Align, PrefAlign);
+
+ // We don't need to make any adjustment.
+ return Align;
+}
+
+Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
+ unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
+ unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
+ unsigned MinAlign = std::min(DstAlign, SrcAlign);
+ unsigned CopyAlign = MI->getAlignment();
+
+ if (CopyAlign < MinAlign) {
+ MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
+ MinAlign, false));
+ return MI;
+ }
+
+ // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
+ // load/store.
+ ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
+ if (MemOpLength == 0) return 0;
+
+ // Source and destination pointer types are always "i8*" for intrinsic. See
+ // if the size is something we can handle with a single primitive load/store.
+ // A single load+store correctly handles overlapping memory in the memmove
+ // case.
+ unsigned Size = MemOpLength->getZExtValue();
+ if (Size == 0) return MI; // Delete this mem transfer.
+
+ if (Size > 8 || (Size&(Size-1)))
+ return 0; // If not 1/2/4/8 bytes, exit.
+
+ // Use an integer load+store unless we can find something better.
+ Type *NewPtrTy =
+ PointerType::getUnqual(IntegerType::get(MI->getContext(), Size<<3));
+
+ // Memcpy forces the use of i8* for the source and destination. That means
+ // that if you're using memcpy to move one double around, you'll get a cast
+ // from double* to i8*. We'd much rather use a double load+store rather than
+ // an i64 load+store, here because this improves the odds that the source or
+ // dest address will be promotable. See if we can find a better type than the
+ // integer datatype.
+ Value *StrippedDest = MI->getOperand(1)->stripPointerCasts();
+ if (StrippedDest != MI->getOperand(1)) {
+ const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
+ ->getElementType();
+ if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
+ // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
+ // down through these levels if so.
+ while (!SrcETy->isSingleValueType()) {
+ if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
+ if (STy->getNumElements() == 1)
+ SrcETy = STy->getElementType(0);
+ else
+ break;
+ } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
+ if (ATy->getNumElements() == 1)
+ SrcETy = ATy->getElementType();
+ else
+ break;
+ } else
+ break;
+ }
+
+ if (SrcETy->isSingleValueType())
+ NewPtrTy = PointerType::getUnqual(SrcETy);
+ }
+ }
+
+
+ // If the memcpy/memmove provides better alignment info than we can
+ // infer, use it.
+ SrcAlign = std::max(SrcAlign, CopyAlign);
+ DstAlign = std::max(DstAlign, CopyAlign);
+
+ Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy);
+ Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy);
+ Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
+ InsertNewInstBefore(L, *MI);
+ InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
+
+ // Set the size of the copy to 0, it will be deleted on the next iteration.
+ MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
+ return MI;
+}
+
+Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
+ unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
+ if (MI->getAlignment() < Alignment) {
+ MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
+ Alignment, false));
+ return MI;
+ }
+
+ // Extract the length and alignment and fill if they are constant.
+ ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
+ ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
+ if (!LenC || !FillC || !FillC->getType()->isInteger(8))
+ return 0;
+ uint64_t Len = LenC->getZExtValue();
+ Alignment = MI->getAlignment();
+
+ // If the length is zero, this is a no-op
+ if (Len == 0) return MI; // memset(d,c,0,a) -> noop
+
+ // memset(s,c,n) -> store s, c (for n=1,2,4,8)
+ if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
+ const Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
+
+ Value *Dest = MI->getDest();
+ Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
+
+ // Alignment 0 is identity for alignment 1 for memset, but not store.
+ if (Alignment == 0) Alignment = 1;
+
+ // Extract the fill value and store.
+ uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
+ InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
+ Dest, false, Alignment), *MI);
+
+ // Set the size of the copy to 0, it will be deleted on the next iteration.
+ MI->setLength(Constant::getNullValue(LenC->getType()));
+ return MI;
+ }
+
+ return 0;
+}
+
+
+/// visitCallInst - CallInst simplification. This mostly only handles folding
+/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
+/// the heavy lifting.
+///
+Instruction *InstCombiner::visitCallInst(CallInst &CI) {
+ if (isFreeCall(&CI))
+ return visitFree(CI);
+
+ // If the caller function is nounwind, mark the call as nounwind, even if the
+ // callee isn't.
+ if (CI.getParent()->getParent()->doesNotThrow() &&
+ !CI.doesNotThrow()) {
+ CI.setDoesNotThrow();
+ return &CI;
+ }
+
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
+ if (!II) return visitCallSite(&CI);
+
+ // Intrinsics cannot occur in an invoke, so handle them here instead of in
+ // visitCallSite.
+ if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
+ bool Changed = false;
+
+ // memmove/cpy/set of zero bytes is a noop.
+ if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
+ if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
+ if (CI->getZExtValue() == 1) {
+ // Replace the instruction with just byte operations. We would
+ // transform other cases to loads/stores, but we don't know if
+ // alignment is sufficient.
+ }
+ }
+
+ // If we have a memmove and the source operation is a constant global,
+ // then the source and dest pointers can't alias, so we can change this
+ // into a call to memcpy.
+ if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
+ if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
+ if (GVSrc->isConstant()) {
+ Module *M = CI.getParent()->getParent()->getParent();
+ Intrinsic::ID MemCpyID = Intrinsic::memcpy;
+ const Type *Tys[1];
+ Tys[0] = CI.getOperand(3)->getType();
+ CI.setOperand(0,
+ Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
+ Changed = true;
+ }
+ }
+
+ if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
+ // memmove(x,x,size) -> noop.
+ if (MTI->getSource() == MTI->getDest())
+ return EraseInstFromFunction(CI);
+ }
+
+ // If we can determine a pointer alignment that is bigger than currently
+ // set, update the alignment.
+ if (isa<MemTransferInst>(MI)) {
+ if (Instruction *I = SimplifyMemTransfer(MI))
+ return I;
+ } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
+ if (Instruction *I = SimplifyMemSet(MSI))
+ return I;
+ }
+
+ if (Changed) return II;
+ }
+
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::bswap:
+ // bswap(bswap(x)) -> x
+ if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
+ if (Operand->getIntrinsicID() == Intrinsic::bswap)
+ return ReplaceInstUsesWith(CI, Operand->getOperand(1));
+
+ // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
+ if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) {
+ if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
+ if (Operand->getIntrinsicID() == Intrinsic::bswap) {
+ unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
+ TI->getType()->getPrimitiveSizeInBits();
+ Value *CV = ConstantInt::get(Operand->getType(), C);
+ Value *V = Builder->CreateLShr(Operand->getOperand(1), CV);
+ return new TruncInst(V, TI->getType());
+ }
+ }
+
+ break;
+ case Intrinsic::powi:
+ if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) {
+ // powi(x, 0) -> 1.0
+ if (Power->isZero())
+ return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
+ // powi(x, 1) -> x
+ if (Power->isOne())
+ return ReplaceInstUsesWith(CI, II->getOperand(1));
+ // powi(x, -1) -> 1/x
+ if (Power->isAllOnesValue())
+ return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
+ II->getOperand(1));
+ }
+ break;
+ case Intrinsic::cttz: {
+ // If all bits below the first known one are known zero,
+ // this value is constant.
+ const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
+ uint32_t BitWidth = IT->getBitWidth();
+ APInt KnownZero(BitWidth, 0);
+ APInt KnownOne(BitWidth, 0);
+ ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
+ KnownZero, KnownOne);
+ unsigned TrailingZeros = KnownOne.countTrailingZeros();
+ APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
+ if ((Mask & KnownZero) == Mask)
+ return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
+ APInt(BitWidth, TrailingZeros)));
+
+ }
+ break;
+ case Intrinsic::ctlz: {
+ // If all bits above the first known one are known zero,
+ // this value is constant.
+ const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
+ uint32_t BitWidth = IT->getBitWidth();
+ APInt KnownZero(BitWidth, 0);
+ APInt KnownOne(BitWidth, 0);
+ ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
+ KnownZero, KnownOne);
+ unsigned LeadingZeros = KnownOne.countLeadingZeros();
+ APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
+ if ((Mask & KnownZero) == Mask)
+ return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
+ APInt(BitWidth, LeadingZeros)));
+
+ }
+ break;
+ case Intrinsic::uadd_with_overflow: {
+ Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
+ const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
+ uint32_t BitWidth = IT->getBitWidth();
+ APInt Mask = APInt::getSignBit(BitWidth);
+ APInt LHSKnownZero(BitWidth, 0);
+ APInt LHSKnownOne(BitWidth, 0);
+ ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
+ bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
+ bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
+
+ if (LHSKnownNegative || LHSKnownPositive) {
+ APInt RHSKnownZero(BitWidth, 0);
+ APInt RHSKnownOne(BitWidth, 0);
+ ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
+ bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
+ bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
+ if (LHSKnownNegative && RHSKnownNegative) {
+ // The sign bit is set in both cases: this MUST overflow.
+ // Create a simple add instruction, and insert it into the struct.
+ Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
+ Worklist.Add(Add);
+ Constant *V[] = {
+ UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext())
+ };
+ Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
+ return InsertValueInst::Create(Struct, Add, 0);
+ }
+
+ if (LHSKnownPositive && RHSKnownPositive) {
+ // The sign bit is clear in both cases: this CANNOT overflow.
+ // Create a simple add instruction, and insert it into the struct.
+ Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
+ Worklist.Add(Add);
+ Constant *V[] = {
+ UndefValue::get(LHS->getType()),
+ ConstantInt::getFalse(II->getContext())
+ };
+ Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
+ return InsertValueInst::Create(Struct, Add, 0);
+ }
+ }
+ }
+ // FALL THROUGH uadd into sadd
+ case Intrinsic::sadd_with_overflow:
+ // Canonicalize constants into the RHS.
+ if (isa<Constant>(II->getOperand(1)) &&
+ !isa<Constant>(II->getOperand(2))) {
+ Value *LHS = II->getOperand(1);
+ II->setOperand(1, II->getOperand(2));
+ II->setOperand(2, LHS);
+ return II;
+ }
+
+ // X + undef -> undef
+ if (isa<UndefValue>(II->getOperand(2)))
+ return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
+ // X + 0 -> {X, false}
+ if (RHS->isZero()) {
+ Constant *V[] = {
+ UndefValue::get(II->getOperand(0)->getType()),
+ ConstantInt::getFalse(II->getContext())
+ };
+ Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
+ return InsertValueInst::Create(Struct, II->getOperand(1), 0);
+ }
+ }
+ break;
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ // undef - X -> undef
+ // X - undef -> undef
+ if (isa<UndefValue>(II->getOperand(1)) ||
+ isa<UndefValue>(II->getOperand(2)))
+ return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
+ // X - 0 -> {X, false}
+ if (RHS->isZero()) {
+ Constant *V[] = {
+ UndefValue::get(II->getOperand(1)->getType()),
+ ConstantInt::getFalse(II->getContext())
+ };
+ Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
+ return InsertValueInst::Create(Struct, II->getOperand(1), 0);
+ }
+ }
+ break;
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ // Canonicalize constants into the RHS.
+ if (isa<Constant>(II->getOperand(1)) &&
+ !isa<Constant>(II->getOperand(2))) {
+ Value *LHS = II->getOperand(1);
+ II->setOperand(1, II->getOperand(2));
+ II->setOperand(2, LHS);
+ return II;
+ }
+
+ // X * undef -> undef
+ if (isa<UndefValue>(II->getOperand(2)))
+ return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
+
+ if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) {
+ // X*0 -> {0, false}
+ if (RHSI->isZero())
+ return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
+
+ // X * 1 -> {X, false}
+ if (RHSI->equalsInt(1)) {
+ Constant *V[] = {
+ UndefValue::get(II->getOperand(1)->getType()),
+ ConstantInt::getFalse(II->getContext())
+ };
+ Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
+ return InsertValueInst::Create(Struct, II->getOperand(1), 0);
+ }
+ }
+ break;
+ case Intrinsic::ppc_altivec_lvx:
+ case Intrinsic::ppc_altivec_lvxl:
+ case Intrinsic::x86_sse_loadu_ps:
+ case Intrinsic::x86_sse2_loadu_pd:
+ case Intrinsic::x86_sse2_loadu_dq:
+ // Turn PPC lvx -> load if the pointer is known aligned.
+ // Turn X86 loadups -> load if the pointer is known aligned.
+ if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
+ Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
+ PointerType::getUnqual(II->getType()));
+ return new LoadInst(Ptr);
+ }
+ break;
+ case Intrinsic::ppc_altivec_stvx:
+ case Intrinsic::ppc_altivec_stvxl:
+ // Turn stvx -> store if the pointer is known aligned.
+ if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
+ const Type *OpPtrTy =
+ PointerType::getUnqual(II->getOperand(1)->getType());
+ Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
+ return new StoreInst(II->getOperand(1), Ptr);
+ }
+ break;
+ case Intrinsic::x86_sse_storeu_ps:
+ case Intrinsic::x86_sse2_storeu_pd:
+ case Intrinsic::x86_sse2_storeu_dq:
+ // Turn X86 storeu -> store if the pointer is known aligned.
+ if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
+ const Type *OpPtrTy =
+ PointerType::getUnqual(II->getOperand(2)->getType());
+ Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
+ return new StoreInst(II->getOperand(2), Ptr);
+ }
+ break;
+
+ case Intrinsic::x86_sse_cvttss2si: {
+ // These intrinsics only demands the 0th element of its input vector. If
+ // we can simplify the input based on that, do so now.
+ unsigned VWidth =
+ cast<VectorType>(II->getOperand(1)->getType())->getNumElements();
+ APInt DemandedElts(VWidth, 1);
+ APInt UndefElts(VWidth, 0);
+ if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
+ UndefElts)) {
+ II->setOperand(1, V);
+ return II;
+ }
+ break;
+ }
+
+ case Intrinsic::ppc_altivec_vperm:
+ // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
+ if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
+ assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
+
+ // Check that all of the elements are integer constants or undefs.
+ bool AllEltsOk = true;
+ for (unsigned i = 0; i != 16; ++i) {
+ if (!isa<ConstantInt>(Mask->getOperand(i)) &&
+ !isa<UndefValue>(Mask->getOperand(i))) {
+ AllEltsOk = false;
+ break;
+ }
+ }
+
+ if (AllEltsOk) {
+ // Cast the input vectors to byte vectors.
+ Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
+ Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
+ Value *Result = UndefValue::get(Op0->getType());
+
+ // Only extract each element once.
+ Value *ExtractedElts[32];
+ memset(ExtractedElts, 0, sizeof(ExtractedElts));
+
+ for (unsigned i = 0; i != 16; ++i) {
+ if (isa<UndefValue>(Mask->getOperand(i)))
+ continue;
+ unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
+ Idx &= 31; // Match the hardware behavior.
+
+ if (ExtractedElts[Idx] == 0) {
+ ExtractedElts[Idx] =
+ Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
+ ConstantInt::get(Type::getInt32Ty(II->getContext()),
+ Idx&15, false), "tmp");
+ }
+
+ // Insert this value into the result vector.
+ Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
+ ConstantInt::get(Type::getInt32Ty(II->getContext()),
+ i, false), "tmp");
+ }
+ return CastInst::Create(Instruction::BitCast, Result, CI.getType());
+ }
+ }
+ break;
+
+ case Intrinsic::stackrestore: {
+ // If the save is right next to the restore, remove the restore. This can
+ // happen when variable allocas are DCE'd.
+ if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
+ if (SS->getIntrinsicID() == Intrinsic::stacksave) {
+ BasicBlock::iterator BI = SS;
+ if (&*++BI == II)
+ return EraseInstFromFunction(CI);
+ }
+ }
+
+ // Scan down this block to see if there is another stack restore in the
+ // same block without an intervening call/alloca.
+ BasicBlock::iterator BI = II;
+ TerminatorInst *TI = II->getParent()->getTerminator();
+ bool CannotRemove = false;
+ for (++BI; &*BI != TI; ++BI) {
+ if (isa<AllocaInst>(BI) || isMalloc(BI)) {
+ CannotRemove = true;
+ break;
+ }
+ if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
+ // If there is a stackrestore below this one, remove this one.
+ if (II->getIntrinsicID() == Intrinsic::stackrestore)
+ return EraseInstFromFunction(CI);
+ // Otherwise, ignore the intrinsic.
+ } else {
+ // If we found a non-intrinsic call, we can't remove the stack
+ // restore.
+ CannotRemove = true;
+ break;
+ }
+ }
+ }
+
+ // If the stack restore is in a return/unwind block and if there are no
+ // allocas or calls between the restore and the return, nuke the restore.
+ if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
+ return EraseInstFromFunction(CI);
+ break;
+ }
+ case Intrinsic::objectsize: {
+ ConstantInt *Const = cast<ConstantInt>(II->getOperand(2));
+ const Type *Ty = CI.getType();
+
+ // 0 is maximum number of bytes left, 1 is minimum number of bytes left.
+ // TODO: actually add these values, the current return values are "don't
+ // know".
+ if (Const->getZExtValue() == 0)
+ return ReplaceInstUsesWith(CI, Constant::getAllOnesValue(Ty));
+ else
+ return ReplaceInstUsesWith(CI, ConstantInt::get(Ty, 0));
+ }
+ }
+
+ return visitCallSite(II);
+}
+
+// InvokeInst simplification
+//
+Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
+ return visitCallSite(&II);
+}
+
+/// isSafeToEliminateVarargsCast - If this cast does not affect the value
+/// passed through the varargs area, we can eliminate the use of the cast.
+static bool isSafeToEliminateVarargsCast(const CallSite CS,
+ const CastInst * const CI,
+ const TargetData * const TD,
+ const int ix) {
+ if (!CI->isLosslessCast())
+ return false;
+
+ // The size of ByVal arguments is derived from the type, so we
+ // can't change to a type with a different size. If the size were
+ // passed explicitly we could avoid this check.
+ if (!CS.paramHasAttr(ix, Attribute::ByVal))
+ return true;
+
+ const Type* SrcTy =
+ cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
+ const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
+ if (!SrcTy->isSized() || !DstTy->isSized())
+ return false;
+ if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
+ return false;
+ return true;
+}
+
+// visitCallSite - Improvements for call and invoke instructions.
+//
+Instruction *InstCombiner::visitCallSite(CallSite CS) {
+ bool Changed = false;
+
+ // If the callee is a constexpr cast of a function, attempt to move the cast
+ // to the arguments of the call/invoke.
+ if (transformConstExprCastCall(CS)) return 0;
+
+ Value *Callee = CS.getCalledValue();
+
+ if (Function *CalleeF = dyn_cast<Function>(Callee))
+ if (CalleeF->getCallingConv() != CS.getCallingConv()) {
+ Instruction *OldCall = CS.getInstruction();
+ // If the call and callee calling conventions don't match, this call must
+ // be unreachable, as the call is undefined.
+ new StoreInst(ConstantInt::getTrue(Callee->getContext()),
+ UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
+ OldCall);
+ // If OldCall dues not return void then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!OldCall->getType()->isVoidTy())
+ OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
+ if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
+ return EraseInstFromFunction(*OldCall);
+ return 0;
+ }
+
+ if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
+ // This instruction is not reachable, just remove it. We insert a store to
+ // undef so that we know that this code is not reachable, despite the fact
+ // that we can't modify the CFG here.
+ new StoreInst(ConstantInt::getTrue(Callee->getContext()),
+ UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
+ CS.getInstruction());
+
+ // If CS dues not return void then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!CS.getInstruction()->getType()->isVoidTy())
+ CS.getInstruction()->
+ replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
+
+ if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
+ // Don't break the CFG, insert a dummy cond branch.
+ BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
+ ConstantInt::getTrue(Callee->getContext()), II);
+ }
+ return EraseInstFromFunction(*CS.getInstruction());
+ }
+
+ if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
+ if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
+ if (In->getIntrinsicID() == Intrinsic::init_trampoline)
+ return transformCallThroughTrampoline(CS);
+
+ const PointerType *PTy = cast<PointerType>(Callee->getType());
+ const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+ if (FTy->isVarArg()) {
+ int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
+ // See if we can optimize any arguments passed through the varargs area of
+ // the call.
+ for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
+ E = CS.arg_end(); I != E; ++I, ++ix) {
+ CastInst *CI = dyn_cast<CastInst>(*I);
+ if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
+ *I = CI->getOperand(0);
+ Changed = true;
+ }
+ }
+ }
+
+ if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
+ // Inline asm calls cannot throw - mark them 'nounwind'.
+ CS.setDoesNotThrow();
+ Changed = true;
+ }
+
+ return Changed ? CS.getInstruction() : 0;
+}
+
+// transformConstExprCastCall - If the callee is a constexpr cast of a function,
+// attempt to move the cast to the arguments of the call/invoke.
+//
+bool InstCombiner::transformConstExprCastCall(CallSite CS) {
+ if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
+ ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
+ if (CE->getOpcode() != Instruction::BitCast ||
+ !isa<Function>(CE->getOperand(0)))
+ return false;
+ Function *Callee = cast<Function>(CE->getOperand(0));
+ Instruction *Caller = CS.getInstruction();
+ const AttrListPtr &CallerPAL = CS.getAttributes();
+
+ // Okay, this is a cast from a function to a different type. Unless doing so
+ // would cause a type conversion of one of our arguments, change this call to
+ // be a direct call with arguments casted to the appropriate types.
+ //
+ const FunctionType *FT = Callee->getFunctionType();
+ const Type *OldRetTy = Caller->getType();
+ const Type *NewRetTy = FT->getReturnType();
+
+ if (isa<StructType>(NewRetTy))
+ return false; // TODO: Handle multiple return values.
+
+ // Check to see if we are changing the return type...
+ if (OldRetTy != NewRetTy) {
+ if (Callee->isDeclaration() &&
+ // Conversion is ok if changing from one pointer type to another or from
+ // a pointer to an integer of the same size.
+ !((isa<PointerType>(OldRetTy) || !TD ||
+ OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
+ (isa<PointerType>(NewRetTy) || !TD ||
+ NewRetTy == TD->getIntPtrType(Caller->getContext()))))
+ return false; // Cannot transform this return value.
+
+ if (!Caller->use_empty() &&
+ // void -> non-void is handled specially
+ !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
+ return false; // Cannot transform this return value.
+
+ if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
+ Attributes RAttrs = CallerPAL.getRetAttributes();
+ if (RAttrs & Attribute::typeIncompatible(NewRetTy))
+ return false; // Attribute not compatible with transformed value.
+ }
+
+ // If the callsite is an invoke instruction, and the return value is used by
+ // a PHI node in a successor, we cannot change the return type of the call
+ // because there is no place to put the cast instruction (without breaking
+ // the critical edge). Bail out in this case.
+ if (!Caller->use_empty())
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
+ for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
+ UI != E; ++UI)
+ if (PHINode *PN = dyn_cast<PHINode>(*UI))
+ if (PN->getParent() == II->getNormalDest() ||
+ PN->getParent() == II->getUnwindDest())
+ return false;
+ }
+
+ unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
+ unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
+
+ CallSite::arg_iterator AI = CS.arg_begin();
+ for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
+ const Type *ParamTy = FT->getParamType(i);
+ const Type *ActTy = (*AI)->getType();
+
+ if (!CastInst::isCastable(ActTy, ParamTy))
+ return false; // Cannot transform this parameter value.
+
+ if (CallerPAL.getParamAttributes(i + 1)
+ & Attribute::typeIncompatible(ParamTy))
+ return false; // Attribute not compatible with transformed value.
+
+ // Converting from one pointer type to another or between a pointer and an
+ // integer of the same size is safe even if we do not have a body.
+ bool isConvertible = ActTy == ParamTy ||
+ (TD && ((isa<PointerType>(ParamTy) ||
+ ParamTy == TD->getIntPtrType(Caller->getContext())) &&
+ (isa<PointerType>(ActTy) ||
+ ActTy == TD->getIntPtrType(Caller->getContext()))));
+ if (Callee->isDeclaration() && !isConvertible) return false;
+ }
+
+ if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
+ Callee->isDeclaration())
+ return false; // Do not delete arguments unless we have a function body.
+
+ if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
+ !CallerPAL.isEmpty())
+ // In this case we have more arguments than the new function type, but we
+ // won't be dropping them. Check that these extra arguments have attributes
+ // that are compatible with being a vararg call argument.
+ for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
+ if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
+ break;
+ Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
+ if (PAttrs & Attribute::VarArgsIncompatible)
+ return false;
+ }
+
+ // Okay, we decided that this is a safe thing to do: go ahead and start
+ // inserting cast instructions as necessary...
+ std::vector<Value*> Args;
+ Args.reserve(NumActualArgs);
+ SmallVector<AttributeWithIndex, 8> attrVec;
+ attrVec.reserve(NumCommonArgs);
+
+ // Get any return attributes.
+ Attributes RAttrs = CallerPAL.getRetAttributes();
+
+ // If the return value is not being used, the type may not be compatible
+ // with the existing attributes. Wipe out any problematic attributes.
+ RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
+
+ // Add the new return attributes.
+ if (RAttrs)
+ attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
+
+ AI = CS.arg_begin();
+ for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
+ const Type *ParamTy = FT->getParamType(i);
+ if ((*AI)->getType() == ParamTy) {
+ Args.push_back(*AI);
+ } else {
+ Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
+ false, ParamTy, false);
+ Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
+ }
+
+ // Add any parameter attributes.
+ if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
+ attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
+ }
+
+ // If the function takes more arguments than the call was taking, add them
+ // now.
+ for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
+ Args.push_back(Constant::getNullValue(FT->getParamType(i)));
+
+ // If we are removing arguments to the function, emit an obnoxious warning.
+ if (FT->getNumParams() < NumActualArgs) {
+ if (!FT->isVarArg()) {
+ errs() << "WARNING: While resolving call to function '"
+ << Callee->getName() << "' arguments were dropped!\n";
+ } else {
+ // Add all of the arguments in their promoted form to the arg list.
+ for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
+ const Type *PTy = getPromotedType((*AI)->getType());
+ if (PTy != (*AI)->getType()) {
+ // Must promote to pass through va_arg area!
+ Instruction::CastOps opcode =
+ CastInst::getCastOpcode(*AI, false, PTy, false);
+ Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
+ } else {
+ Args.push_back(*AI);
+ }
+
+ // Add any parameter attributes.
+ if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
+ attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
+ }
+ }
+ }
+
+ if (Attributes FnAttrs = CallerPAL.getFnAttributes())
+ attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
+
+ if (NewRetTy->isVoidTy())
+ Caller->setName(""); // Void type should not have a name.
+
+ const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
+ attrVec.end());
+
+ Instruction *NC;
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
+ NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
+ Args.begin(), Args.end(),
+ Caller->getName(), Caller);
+ cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
+ cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
+ } else {
+ NC = CallInst::Create(Callee, Args.begin(), Args.end(),
+ Caller->getName(), Caller);
+ CallInst *CI = cast<CallInst>(Caller);
+ if (CI->isTailCall())
+ cast<CallInst>(NC)->setTailCall();
+ cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
+ cast<CallInst>(NC)->setAttributes(NewCallerPAL);
+ }
+
+ // Insert a cast of the return type as necessary.
+ Value *NV = NC;
+ if (OldRetTy != NV->getType() && !Caller->use_empty()) {
+ if (!NV->getType()->isVoidTy()) {
+ Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
+ OldRetTy, false);
+ NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
+
+ // If this is an invoke instruction, we should insert it after the first
+ // non-phi, instruction in the normal successor block.
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
+ BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
+ InsertNewInstBefore(NC, *I);
+ } else {
+ // Otherwise, it's a call, just insert cast right after the call instr
+ InsertNewInstBefore(NC, *Caller);
+ }
+ Worklist.AddUsersToWorkList(*Caller);
+ } else {
+ NV = UndefValue::get(Caller->getType());
+ }
+ }
+
+
+ if (!Caller->use_empty())
+ Caller->replaceAllUsesWith(NV);
+
+ EraseInstFromFunction(*Caller);
+ return true;
+}
+
+// transformCallThroughTrampoline - Turn a call to a function created by the
+// init_trampoline intrinsic into a direct call to the underlying function.
+//
+Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
+ Value *Callee = CS.getCalledValue();
+ const PointerType *PTy = cast<PointerType>(Callee->getType());
+ const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+ const AttrListPtr &Attrs = CS.getAttributes();
+
+ // If the call already has the 'nest' attribute somewhere then give up -
+ // otherwise 'nest' would occur twice after splicing in the chain.
+ if (Attrs.hasAttrSomewhere(Attribute::Nest))
+ return 0;
+
+ IntrinsicInst *Tramp =
+ cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
+
+ Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
+ const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
+ const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
+
+ const AttrListPtr &NestAttrs = NestF->getAttributes();
+ if (!NestAttrs.isEmpty()) {
+ unsigned NestIdx = 1;
+ const Type *NestTy = 0;
+ Attributes NestAttr = Attribute::None;
+
+ // Look for a parameter marked with the 'nest' attribute.
+ for (FunctionType::param_iterator I = NestFTy->param_begin(),
+ E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
+ if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
+ // Record the parameter type and any other attributes.
+ NestTy = *I;
+ NestAttr = NestAttrs.getParamAttributes(NestIdx);
+ break;
+ }
+
+ if (NestTy) {
+ Instruction *Caller = CS.getInstruction();
+ std::vector<Value*> NewArgs;
+ NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
+
+ SmallVector<AttributeWithIndex, 8> NewAttrs;
+ NewAttrs.reserve(Attrs.getNumSlots() + 1);
+
+ // Insert the nest argument into the call argument list, which may
+ // mean appending it. Likewise for attributes.
+
+ // Add any result attributes.
+ if (Attributes Attr = Attrs.getRetAttributes())
+ NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
+
+ {
+ unsigned Idx = 1;
+ CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
+ do {
+ if (Idx == NestIdx) {
+ // Add the chain argument and attributes.
+ Value *NestVal = Tramp->getOperand(3);
+ if (NestVal->getType() != NestTy)
+ NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
+ NewArgs.push_back(NestVal);
+ NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
+ }
+
+ if (I == E)
+ break;
+
+ // Add the original argument and attributes.
+ NewArgs.push_back(*I);
+ if (Attributes Attr = Attrs.getParamAttributes(Idx))
+ NewAttrs.push_back
+ (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
+
+ ++Idx, ++I;
+ } while (1);
+ }
+
+ // Add any function attributes.
+ if (Attributes Attr = Attrs.getFnAttributes())
+ NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
+
+ // The trampoline may have been bitcast to a bogus type (FTy).
+ // Handle this by synthesizing a new function type, equal to FTy
+ // with the chain parameter inserted.
+
+ std::vector<const Type*> NewTypes;
+ NewTypes.reserve(FTy->getNumParams()+1);
+
+ // Insert the chain's type into the list of parameter types, which may
+ // mean appending it.
+ {
+ unsigned Idx = 1;
+ FunctionType::param_iterator I = FTy->param_begin(),
+ E = FTy->param_end();
+
+ do {
+ if (Idx == NestIdx)
+ // Add the chain's type.
+ NewTypes.push_back(NestTy);
+
+ if (I == E)
+ break;
+
+ // Add the original type.
+ NewTypes.push_back(*I);
+
+ ++Idx, ++I;
+ } while (1);
+ }
+
+ // Replace the trampoline call with a direct call. Let the generic
+ // code sort out any function type mismatches.
+ FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
+ FTy->isVarArg());
+ Constant *NewCallee =
+ NestF->getType() == PointerType::getUnqual(NewFTy) ?
+ NestF : ConstantExpr::getBitCast(NestF,
+ PointerType::getUnqual(NewFTy));
+ const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
+ NewAttrs.end());
+
+ Instruction *NewCaller;
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
+ NewCaller = InvokeInst::Create(NewCallee,
+ II->getNormalDest(), II->getUnwindDest(),
+ NewArgs.begin(), NewArgs.end(),
+ Caller->getName(), Caller);
+ cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
+ cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
+ } else {
+ NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
+ Caller->getName(), Caller);
+ if (cast<CallInst>(Caller)->isTailCall())
+ cast<CallInst>(NewCaller)->setTailCall();
+ cast<CallInst>(NewCaller)->
+ setCallingConv(cast<CallInst>(Caller)->getCallingConv());
+ cast<CallInst>(NewCaller)->setAttributes(NewPAL);
+ }
+ if (!Caller->getType()->isVoidTy())
+ Caller->replaceAllUsesWith(NewCaller);
+ Caller->eraseFromParent();
+ Worklist.Remove(Caller);
+ return 0;
+ }
+ }
+
+ // Replace the trampoline call with a direct call. Since there is no 'nest'
+ // parameter, there is no need to adjust the argument list. Let the generic
+ // code sort out any function type mismatches.
+ Constant *NewCallee =
+ NestF->getType() == PTy ? NestF :
+ ConstantExpr::getBitCast(NestF, PTy);
+ CS.setCalledFunction(NewCallee);
+ return CS.getInstruction();
+}
+
diff --git a/lib/Transforms/InstCombine/InstCombineCasts.cpp b/lib/Transforms/InstCombine/InstCombineCasts.cpp
new file mode 100644
index 0000000..e018b35
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineCasts.cpp
@@ -0,0 +1,1301 @@
+//===- InstCombineCasts.cpp -----------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visit functions for cast operations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
+/// expression. If so, decompose it, returning some value X, such that Val is
+/// X*Scale+Offset.
+///
+static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
+ int &Offset) {
+ assert(Val->getType()->isInteger(32) && "Unexpected allocation size type!");
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
+ Offset = CI->getZExtValue();
+ Scale = 0;
+ return ConstantInt::get(Type::getInt32Ty(Val->getContext()), 0);
+ }
+
+ if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ if (I->getOpcode() == Instruction::Shl) {
+ // This is a value scaled by '1 << the shift amt'.
+ Scale = 1U << RHS->getZExtValue();
+ Offset = 0;
+ return I->getOperand(0);
+ }
+
+ if (I->getOpcode() == Instruction::Mul) {
+ // This value is scaled by 'RHS'.
+ Scale = RHS->getZExtValue();
+ Offset = 0;
+ return I->getOperand(0);
+ }
+
+ if (I->getOpcode() == Instruction::Add) {
+ // We have X+C. Check to see if we really have (X*C2)+C1,
+ // where C1 is divisible by C2.
+ unsigned SubScale;
+ Value *SubVal =
+ DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
+ Offset += RHS->getZExtValue();
+ Scale = SubScale;
+ return SubVal;
+ }
+ }
+ }
+
+ // Otherwise, we can't look past this.
+ Scale = 1;
+ Offset = 0;
+ return Val;
+}
+
+/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
+/// try to eliminate the cast by moving the type information into the alloc.
+Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
+ AllocaInst &AI) {
+ // This requires TargetData to get the alloca alignment and size information.
+ if (!TD) return 0;
+
+ const PointerType *PTy = cast<PointerType>(CI.getType());
+
+ BuilderTy AllocaBuilder(*Builder);
+ AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
+
+ // Get the type really allocated and the type casted to.
+ const Type *AllocElTy = AI.getAllocatedType();
+ const Type *CastElTy = PTy->getElementType();
+ if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
+
+ unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
+ unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
+ if (CastElTyAlign < AllocElTyAlign) return 0;
+
+ // If the allocation has multiple uses, only promote it if we are strictly
+ // increasing the alignment of the resultant allocation. If we keep it the
+ // same, we open the door to infinite loops of various kinds. (A reference
+ // from a dbg.declare doesn't count as a use for this purpose.)
+ if (!AI.hasOneUse() && !hasOneUsePlusDeclare(&AI) &&
+ CastElTyAlign == AllocElTyAlign) return 0;
+
+ uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
+ uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
+ if (CastElTySize == 0 || AllocElTySize == 0) return 0;
+
+ // See if we can satisfy the modulus by pulling a scale out of the array
+ // size argument.
+ unsigned ArraySizeScale;
+ int ArrayOffset;
+ Value *NumElements = // See if the array size is a decomposable linear expr.
+ DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
+
+ // If we can now satisfy the modulus, by using a non-1 scale, we really can
+ // do the xform.
+ if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
+ (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
+
+ unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
+ Value *Amt = 0;
+ if (Scale == 1) {
+ Amt = NumElements;
+ } else {
+ Amt = ConstantInt::get(Type::getInt32Ty(CI.getContext()), Scale);
+ // Insert before the alloca, not before the cast.
+ Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
+ }
+
+ if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
+ Value *Off = ConstantInt::get(Type::getInt32Ty(CI.getContext()),
+ Offset, true);
+ Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
+ }
+
+ AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
+ New->setAlignment(AI.getAlignment());
+ New->takeName(&AI);
+
+ // If the allocation has one real use plus a dbg.declare, just remove the
+ // declare.
+ if (DbgDeclareInst *DI = hasOneUsePlusDeclare(&AI)) {
+ EraseInstFromFunction(*(Instruction*)DI);
+ }
+ // If the allocation has multiple real uses, insert a cast and change all
+ // things that used it to use the new cast. This will also hack on CI, but it
+ // will die soon.
+ else if (!AI.hasOneUse()) {
+ // New is the allocation instruction, pointer typed. AI is the original
+ // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
+ Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
+ AI.replaceAllUsesWith(NewCast);
+ }
+ return ReplaceInstUsesWith(CI, New);
+}
+
+
+
+/// EvaluateInDifferentType - Given an expression that
+/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
+/// insert the code to evaluate the expression.
+Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
+ bool isSigned) {
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
+ // If we got a constantexpr back, try to simplify it with TD info.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
+ C = ConstantFoldConstantExpression(CE, TD);
+ return C;
+ }
+
+ // Otherwise, it must be an instruction.
+ Instruction *I = cast<Instruction>(V);
+ Instruction *Res = 0;
+ unsigned Opc = I->getOpcode();
+ switch (Opc) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::AShr:
+ case Instruction::LShr:
+ case Instruction::Shl:
+ case Instruction::UDiv:
+ case Instruction::URem: {
+ Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
+ Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
+ Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
+ break;
+ }
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ // If the source type of the cast is the type we're trying for then we can
+ // just return the source. There's no need to insert it because it is not
+ // new.
+ if (I->getOperand(0)->getType() == Ty)
+ return I->getOperand(0);
+
+ // Otherwise, must be the same type of cast, so just reinsert a new one.
+ // This also handles the case of zext(trunc(x)) -> zext(x).
+ Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
+ Opc == Instruction::SExt);
+ break;
+ case Instruction::Select: {
+ Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
+ Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
+ Res = SelectInst::Create(I->getOperand(0), True, False);
+ break;
+ }
+ case Instruction::PHI: {
+ PHINode *OPN = cast<PHINode>(I);
+ PHINode *NPN = PHINode::Create(Ty);
+ for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
+ Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
+ NPN->addIncoming(V, OPN->getIncomingBlock(i));
+ }
+ Res = NPN;
+ break;
+ }
+ default:
+ // TODO: Can handle more cases here.
+ llvm_unreachable("Unreachable!");
+ break;
+ }
+
+ Res->takeName(I);
+ return InsertNewInstBefore(Res, *I);
+}
+
+
+/// This function is a wrapper around CastInst::isEliminableCastPair. It
+/// simply extracts arguments and returns what that function returns.
+static Instruction::CastOps
+isEliminableCastPair(
+ const CastInst *CI, ///< The first cast instruction
+ unsigned opcode, ///< The opcode of the second cast instruction
+ const Type *DstTy, ///< The target type for the second cast instruction
+ TargetData *TD ///< The target data for pointer size
+) {
+
+ const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
+ const Type *MidTy = CI->getType(); // B from above
+
+ // Get the opcodes of the two Cast instructions
+ Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
+ Instruction::CastOps secondOp = Instruction::CastOps(opcode);
+
+ unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
+ DstTy,
+ TD ? TD->getIntPtrType(CI->getContext()) : 0);
+
+ // We don't want to form an inttoptr or ptrtoint that converts to an integer
+ // type that differs from the pointer size.
+ if ((Res == Instruction::IntToPtr &&
+ (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
+ (Res == Instruction::PtrToInt &&
+ (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
+ Res = 0;
+
+ return Instruction::CastOps(Res);
+}
+
+/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
+/// in any code being generated. It does not require codegen if V is simple
+/// enough or if the cast can be folded into other casts.
+bool InstCombiner::ValueRequiresCast(Instruction::CastOps opcode,const Value *V,
+ const Type *Ty) {
+ if (V->getType() == Ty || isa<Constant>(V)) return false;
+
+ // If this is another cast that can be eliminated, it isn't codegen either.
+ if (const CastInst *CI = dyn_cast<CastInst>(V))
+ if (isEliminableCastPair(CI, opcode, Ty, TD))
+ return false;
+ return true;
+}
+
+
+/// @brief Implement the transforms common to all CastInst visitors.
+Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
+ Value *Src = CI.getOperand(0);
+
+ // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
+ // eliminate it now.
+ if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
+ if (Instruction::CastOps opc =
+ isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
+ // The first cast (CSrc) is eliminable so we need to fix up or replace
+ // the second cast (CI). CSrc will then have a good chance of being dead.
+ return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
+ }
+ }
+
+ // If we are casting a select then fold the cast into the select
+ if (SelectInst *SI = dyn_cast<SelectInst>(Src))
+ if (Instruction *NV = FoldOpIntoSelect(CI, SI))
+ return NV;
+
+ // If we are casting a PHI then fold the cast into the PHI
+ if (isa<PHINode>(Src)) {
+ // We don't do this if this would create a PHI node with an illegal type if
+ // it is currently legal.
+ if (!isa<IntegerType>(Src->getType()) ||
+ !isa<IntegerType>(CI.getType()) ||
+ ShouldChangeType(CI.getType(), Src->getType()))
+ if (Instruction *NV = FoldOpIntoPhi(CI))
+ return NV;
+ }
+
+ return 0;
+}
+
+/// CanEvaluateTruncated - Return true if we can evaluate the specified
+/// expression tree as type Ty instead of its larger type, and arrive with the
+/// same value. This is used by code that tries to eliminate truncates.
+///
+/// Ty will always be a type smaller than V. We should return true if trunc(V)
+/// can be computed by computing V in the smaller type. If V is an instruction,
+/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
+/// makes sense if x and y can be efficiently truncated.
+///
+/// This function works on both vectors and scalars.
+///
+static bool CanEvaluateTruncated(Value *V, const Type *Ty) {
+ // We can always evaluate constants in another type.
+ if (isa<Constant>(V))
+ return true;
+
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) return false;
+
+ const Type *OrigTy = V->getType();
+
+ // If this is an extension from the dest type, we can eliminate it, even if it
+ // has multiple uses.
+ if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
+ I->getOperand(0)->getType() == Ty)
+ return true;
+
+ // We can't extend or shrink something that has multiple uses: doing so would
+ // require duplicating the instruction in general, which isn't profitable.
+ if (!I->hasOneUse()) return false;
+
+ unsigned Opc = I->getOpcode();
+ switch (Opc) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ // These operators can all arbitrarily be extended or truncated.
+ return CanEvaluateTruncated(I->getOperand(0), Ty) &&
+ CanEvaluateTruncated(I->getOperand(1), Ty);
+
+ case Instruction::UDiv:
+ case Instruction::URem: {
+ // UDiv and URem can be truncated if all the truncated bits are zero.
+ uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
+ uint32_t BitWidth = Ty->getScalarSizeInBits();
+ if (BitWidth < OrigBitWidth) {
+ APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
+ if (MaskedValueIsZero(I->getOperand(0), Mask) &&
+ MaskedValueIsZero(I->getOperand(1), Mask)) {
+ return CanEvaluateTruncated(I->getOperand(0), Ty) &&
+ CanEvaluateTruncated(I->getOperand(1), Ty);
+ }
+ }
+ break;
+ }
+ case Instruction::Shl:
+ // If we are truncating the result of this SHL, and if it's a shift of a
+ // constant amount, we can always perform a SHL in a smaller type.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ uint32_t BitWidth = Ty->getScalarSizeInBits();
+ if (CI->getLimitedValue(BitWidth) < BitWidth)
+ return CanEvaluateTruncated(I->getOperand(0), Ty);
+ }
+ break;
+ case Instruction::LShr:
+ // If this is a truncate of a logical shr, we can truncate it to a smaller
+ // lshr iff we know that the bits we would otherwise be shifting in are
+ // already zeros.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
+ uint32_t BitWidth = Ty->getScalarSizeInBits();
+ if (MaskedValueIsZero(I->getOperand(0),
+ APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
+ CI->getLimitedValue(BitWidth) < BitWidth) {
+ return CanEvaluateTruncated(I->getOperand(0), Ty);
+ }
+ }
+ break;
+ case Instruction::Trunc:
+ // trunc(trunc(x)) -> trunc(x)
+ return true;
+ case Instruction::Select: {
+ SelectInst *SI = cast<SelectInst>(I);
+ return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
+ CanEvaluateTruncated(SI->getFalseValue(), Ty);
+ }
+ case Instruction::PHI: {
+ // We can change a phi if we can change all operands. Note that we never
+ // get into trouble with cyclic PHIs here because we only consider
+ // instructions with a single use.
+ PHINode *PN = cast<PHINode>(I);
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
+ return false;
+ return true;
+ }
+ default:
+ // TODO: Can handle more cases here.
+ break;
+ }
+
+ return false;
+}
+
+Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
+ if (Instruction *Result = commonCastTransforms(CI))
+ return Result;
+
+ // See if we can simplify any instructions used by the input whose sole
+ // purpose is to compute bits we don't care about.
+ if (SimplifyDemandedInstructionBits(CI))
+ return &CI;
+
+ Value *Src = CI.getOperand(0);
+ const Type *DestTy = CI.getType(), *SrcTy = Src->getType();
+
+ // Attempt to truncate the entire input expression tree to the destination
+ // type. Only do this if the dest type is a simple type, don't convert the
+ // expression tree to something weird like i93 unless the source is also
+ // strange.
+ if ((isa<VectorType>(DestTy) || ShouldChangeType(SrcTy, DestTy)) &&
+ CanEvaluateTruncated(Src, DestTy)) {
+
+ // If this cast is a truncate, evaluting in a different type always
+ // eliminates the cast, so it is always a win.
+ DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
+ " to avoid cast: " << CI);
+ Value *Res = EvaluateInDifferentType(Src, DestTy, false);
+ assert(Res->getType() == DestTy);
+ return ReplaceInstUsesWith(CI, Res);
+ }
+
+ // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
+ if (DestTy->getScalarSizeInBits() == 1) {
+ Constant *One = ConstantInt::get(Src->getType(), 1);
+ Src = Builder->CreateAnd(Src, One, "tmp");
+ Value *Zero = Constant::getNullValue(Src->getType());
+ return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
+ }
+
+ return 0;
+}
+
+/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
+/// in order to eliminate the icmp.
+Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
+ bool DoXform) {
+ // If we are just checking for a icmp eq of a single bit and zext'ing it
+ // to an integer, then shift the bit to the appropriate place and then
+ // cast to integer to avoid the comparison.
+ if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
+ const APInt &Op1CV = Op1C->getValue();
+
+ // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
+ // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
+ if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
+ (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
+ if (!DoXform) return ICI;
+
+ Value *In = ICI->getOperand(0);
+ Value *Sh = ConstantInt::get(In->getType(),
+ In->getType()->getScalarSizeInBits()-1);
+ In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
+ if (In->getType() != CI.getType())
+ In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
+
+ if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
+ Constant *One = ConstantInt::get(In->getType(), 1);
+ In = Builder->CreateXor(In, One, In->getName()+".not");
+ }
+
+ return ReplaceInstUsesWith(CI, In);
+ }
+
+
+
+ // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
+ // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
+ // zext (X == 1) to i32 --> X iff X has only the low bit set.
+ // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
+ // zext (X != 0) to i32 --> X iff X has only the low bit set.
+ // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
+ // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
+ // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
+ if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
+ // This only works for EQ and NE
+ ICI->isEquality()) {
+ // If Op1C some other power of two, convert:
+ uint32_t BitWidth = Op1C->getType()->getBitWidth();
+ APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
+ APInt TypeMask(APInt::getAllOnesValue(BitWidth));
+ ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
+
+ APInt KnownZeroMask(~KnownZero);
+ if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
+ if (!DoXform) return ICI;
+
+ bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
+ if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
+ // (X&4) == 2 --> false
+ // (X&4) != 2 --> true
+ Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
+ isNE);
+ Res = ConstantExpr::getZExt(Res, CI.getType());
+ return ReplaceInstUsesWith(CI, Res);
+ }
+
+ uint32_t ShiftAmt = KnownZeroMask.logBase2();
+ Value *In = ICI->getOperand(0);
+ if (ShiftAmt) {
+ // Perform a logical shr by shiftamt.
+ // Insert the shift to put the result in the low bit.
+ In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
+ In->getName()+".lobit");
+ }
+
+ if ((Op1CV != 0) == isNE) { // Toggle the low bit.
+ Constant *One = ConstantInt::get(In->getType(), 1);
+ In = Builder->CreateXor(In, One, "tmp");
+ }
+
+ if (CI.getType() == In->getType())
+ return ReplaceInstUsesWith(CI, In);
+ else
+ return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
+ }
+ }
+ }
+
+ // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
+ // It is also profitable to transform icmp eq into not(xor(A, B)) because that
+ // may lead to additional simplifications.
+ if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
+ if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
+ uint32_t BitWidth = ITy->getBitWidth();
+ Value *LHS = ICI->getOperand(0);
+ Value *RHS = ICI->getOperand(1);
+
+ APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
+ APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
+ APInt TypeMask(APInt::getAllOnesValue(BitWidth));
+ ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
+ ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
+
+ if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
+ APInt KnownBits = KnownZeroLHS | KnownOneLHS;
+ APInt UnknownBit = ~KnownBits;
+ if (UnknownBit.countPopulation() == 1) {
+ if (!DoXform) return ICI;
+
+ Value *Result = Builder->CreateXor(LHS, RHS);
+
+ // Mask off any bits that are set and won't be shifted away.
+ if (KnownOneLHS.uge(UnknownBit))
+ Result = Builder->CreateAnd(Result,
+ ConstantInt::get(ITy, UnknownBit));
+
+ // Shift the bit we're testing down to the lsb.
+ Result = Builder->CreateLShr(
+ Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
+
+ if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
+ Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
+ Result->takeName(ICI);
+ return ReplaceInstUsesWith(CI, Result);
+ }
+ }
+ }
+ }
+
+ return 0;
+}
+
+/// CanEvaluateZExtd - Determine if the specified value can be computed in the
+/// specified wider type and produce the same low bits. If not, return false.
+///
+/// If this function returns true, it can also return a non-zero number of bits
+/// (in BitsToClear) which indicates that the value it computes is correct for
+/// the zero extend, but that the additional BitsToClear bits need to be zero'd
+/// out. For example, to promote something like:
+///
+/// %B = trunc i64 %A to i32
+/// %C = lshr i32 %B, 8
+/// %E = zext i32 %C to i64
+///
+/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
+/// set to 8 to indicate that the promoted value needs to have bits 24-31
+/// cleared in addition to bits 32-63. Since an 'and' will be generated to
+/// clear the top bits anyway, doing this has no extra cost.
+///
+/// This function works on both vectors and scalars.
+static bool CanEvaluateZExtd(Value *V, const Type *Ty, unsigned &BitsToClear) {
+ BitsToClear = 0;
+ if (isa<Constant>(V))
+ return true;
+
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) return false;
+
+ // If the input is a truncate from the destination type, we can trivially
+ // eliminate it, even if it has multiple uses.
+ // FIXME: This is currently disabled until codegen can handle this without
+ // pessimizing code, PR5997.
+ if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
+ return true;
+
+ // We can't extend or shrink something that has multiple uses: doing so would
+ // require duplicating the instruction in general, which isn't profitable.
+ if (!I->hasOneUse()) return false;
+
+ unsigned Opc = I->getOpcode(), Tmp;
+ switch (Opc) {
+ case Instruction::ZExt: // zext(zext(x)) -> zext(x).
+ case Instruction::SExt: // zext(sext(x)) -> sext(x).
+ case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
+ return true;
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::Shl:
+ if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
+ !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
+ return false;
+ // These can all be promoted if neither operand has 'bits to clear'.
+ if (BitsToClear == 0 && Tmp == 0)
+ return true;
+
+ // If the operation is an AND/OR/XOR and the bits to clear are zero in the
+ // other side, BitsToClear is ok.
+ if (Tmp == 0 &&
+ (Opc == Instruction::And || Opc == Instruction::Or ||
+ Opc == Instruction::Xor)) {
+ // We use MaskedValueIsZero here for generality, but the case we care
+ // about the most is constant RHS.
+ unsigned VSize = V->getType()->getScalarSizeInBits();
+ if (MaskedValueIsZero(I->getOperand(1),
+ APInt::getHighBitsSet(VSize, BitsToClear)))
+ return true;
+ }
+
+ // Otherwise, we don't know how to analyze this BitsToClear case yet.
+ return false;
+
+ case Instruction::LShr:
+ // We can promote lshr(x, cst) if we can promote x. This requires the
+ // ultimate 'and' to clear out the high zero bits we're clearing out though.
+ if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
+ return false;
+ BitsToClear += Amt->getZExtValue();
+ if (BitsToClear > V->getType()->getScalarSizeInBits())
+ BitsToClear = V->getType()->getScalarSizeInBits();
+ return true;
+ }
+ // Cannot promote variable LSHR.
+ return false;
+ case Instruction::Select:
+ if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
+ !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
+ // TODO: If important, we could handle the case when the BitsToClear are
+ // known zero in the disagreeing side.
+ Tmp != BitsToClear)
+ return false;
+ return true;
+
+ case Instruction::PHI: {
+ // We can change a phi if we can change all operands. Note that we never
+ // get into trouble with cyclic PHIs here because we only consider
+ // instructions with a single use.
+ PHINode *PN = cast<PHINode>(I);
+ if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
+ return false;
+ for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
+ // TODO: If important, we could handle the case when the BitsToClear
+ // are known zero in the disagreeing input.
+ Tmp != BitsToClear)
+ return false;
+ return true;
+ }
+ default:
+ // TODO: Can handle more cases here.
+ return false;
+ }
+}
+
+Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
+ // If this zero extend is only used by a truncate, let the truncate by
+ // eliminated before we try to optimize this zext.
+ if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
+ return 0;
+
+ // If one of the common conversion will work, do it.
+ if (Instruction *Result = commonCastTransforms(CI))
+ return Result;
+
+ // See if we can simplify any instructions used by the input whose sole
+ // purpose is to compute bits we don't care about.
+ if (SimplifyDemandedInstructionBits(CI))
+ return &CI;
+
+ Value *Src = CI.getOperand(0);
+ const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
+
+ // Attempt to extend the entire input expression tree to the destination
+ // type. Only do this if the dest type is a simple type, don't convert the
+ // expression tree to something weird like i93 unless the source is also
+ // strange.
+ unsigned BitsToClear;
+ if ((isa<VectorType>(DestTy) || ShouldChangeType(SrcTy, DestTy)) &&
+ CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
+ assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
+ "Unreasonable BitsToClear");
+
+ // Okay, we can transform this! Insert the new expression now.
+ DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
+ " to avoid zero extend: " << CI);
+ Value *Res = EvaluateInDifferentType(Src, DestTy, false);
+ assert(Res->getType() == DestTy);
+
+ uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
+ uint32_t DestBitSize = DestTy->getScalarSizeInBits();
+
+ // If the high bits are already filled with zeros, just replace this
+ // cast with the result.
+ if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
+ DestBitSize-SrcBitsKept)))
+ return ReplaceInstUsesWith(CI, Res);
+
+ // We need to emit an AND to clear the high bits.
+ Constant *C = ConstantInt::get(Res->getType(),
+ APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
+ return BinaryOperator::CreateAnd(Res, C);
+ }
+
+ // If this is a TRUNC followed by a ZEXT then we are dealing with integral
+ // types and if the sizes are just right we can convert this into a logical
+ // 'and' which will be much cheaper than the pair of casts.
+ if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
+ // TODO: Subsume this into EvaluateInDifferentType.
+
+ // Get the sizes of the types involved. We know that the intermediate type
+ // will be smaller than A or C, but don't know the relation between A and C.
+ Value *A = CSrc->getOperand(0);
+ unsigned SrcSize = A->getType()->getScalarSizeInBits();
+ unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
+ unsigned DstSize = CI.getType()->getScalarSizeInBits();
+ // If we're actually extending zero bits, then if
+ // SrcSize < DstSize: zext(a & mask)
+ // SrcSize == DstSize: a & mask
+ // SrcSize > DstSize: trunc(a) & mask
+ if (SrcSize < DstSize) {
+ APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
+ Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
+ Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
+ return new ZExtInst(And, CI.getType());
+ }
+
+ if (SrcSize == DstSize) {
+ APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
+ return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
+ AndValue));
+ }
+ if (SrcSize > DstSize) {
+ Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
+ APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
+ return BinaryOperator::CreateAnd(Trunc,
+ ConstantInt::get(Trunc->getType(),
+ AndValue));
+ }
+ }
+
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
+ return transformZExtICmp(ICI, CI);
+
+ BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
+ if (SrcI && SrcI->getOpcode() == Instruction::Or) {
+ // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
+ // of the (zext icmp) will be transformed.
+ ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
+ ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
+ if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
+ (transformZExtICmp(LHS, CI, false) ||
+ transformZExtICmp(RHS, CI, false))) {
+ Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
+ Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
+ return BinaryOperator::Create(Instruction::Or, LCast, RCast);
+ }
+ }
+
+ // zext(trunc(t) & C) -> (t & zext(C)).
+ if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
+ if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
+ if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
+ Value *TI0 = TI->getOperand(0);
+ if (TI0->getType() == CI.getType())
+ return
+ BinaryOperator::CreateAnd(TI0,
+ ConstantExpr::getZExt(C, CI.getType()));
+ }
+
+ // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
+ if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
+ if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
+ if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
+ if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
+ And->getOperand(1) == C)
+ if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
+ Value *TI0 = TI->getOperand(0);
+ if (TI0->getType() == CI.getType()) {
+ Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
+ Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
+ return BinaryOperator::CreateXor(NewAnd, ZC);
+ }
+ }
+
+ // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1
+ Value *X;
+ if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isInteger(1) &&
+ match(SrcI, m_Not(m_Value(X))) &&
+ (!X->hasOneUse() || !isa<CmpInst>(X))) {
+ Value *New = Builder->CreateZExt(X, CI.getType());
+ return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
+ }
+
+ return 0;
+}
+
+/// CanEvaluateSExtd - Return true if we can take the specified value
+/// and return it as type Ty without inserting any new casts and without
+/// changing the value of the common low bits. This is used by code that tries
+/// to promote integer operations to a wider types will allow us to eliminate
+/// the extension.
+///
+/// This function works on both vectors and scalars.
+///
+static bool CanEvaluateSExtd(Value *V, const Type *Ty) {
+ assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
+ "Can't sign extend type to a smaller type");
+ // If this is a constant, it can be trivially promoted.
+ if (isa<Constant>(V))
+ return true;
+
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) return false;
+
+ // If this is a truncate from the dest type, we can trivially eliminate it,
+ // even if it has multiple uses.
+ // FIXME: This is currently disabled until codegen can handle this without
+ // pessimizing code, PR5997.
+ if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
+ return true;
+
+ // We can't extend or shrink something that has multiple uses: doing so would
+ // require duplicating the instruction in general, which isn't profitable.
+ if (!I->hasOneUse()) return false;
+
+ switch (I->getOpcode()) {
+ case Instruction::SExt: // sext(sext(x)) -> sext(x)
+ case Instruction::ZExt: // sext(zext(x)) -> zext(x)
+ case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
+ return true;
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ // These operators can all arbitrarily be extended if their inputs can.
+ return CanEvaluateSExtd(I->getOperand(0), Ty) &&
+ CanEvaluateSExtd(I->getOperand(1), Ty);
+
+ //case Instruction::Shl: TODO
+ //case Instruction::LShr: TODO
+
+ case Instruction::Select:
+ return CanEvaluateSExtd(I->getOperand(1), Ty) &&
+ CanEvaluateSExtd(I->getOperand(2), Ty);
+
+ case Instruction::PHI: {
+ // We can change a phi if we can change all operands. Note that we never
+ // get into trouble with cyclic PHIs here because we only consider
+ // instructions with a single use.
+ PHINode *PN = cast<PHINode>(I);
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
+ return true;
+ }
+ default:
+ // TODO: Can handle more cases here.
+ break;
+ }
+
+ return false;
+}
+
+Instruction *InstCombiner::visitSExt(SExtInst &CI) {
+ // If this sign extend is only used by a truncate, let the truncate by
+ // eliminated before we try to optimize this zext.
+ if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
+ return 0;
+
+ if (Instruction *I = commonCastTransforms(CI))
+ return I;
+
+ // See if we can simplify any instructions used by the input whose sole
+ // purpose is to compute bits we don't care about.
+ if (SimplifyDemandedInstructionBits(CI))
+ return &CI;
+
+ Value *Src = CI.getOperand(0);
+ const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
+
+ // Canonicalize sign-extend from i1 to a select.
+ if (Src->getType()->isInteger(1))
+ return SelectInst::Create(Src,
+ Constant::getAllOnesValue(CI.getType()),
+ Constant::getNullValue(CI.getType()));
+
+ // Attempt to extend the entire input expression tree to the destination
+ // type. Only do this if the dest type is a simple type, don't convert the
+ // expression tree to something weird like i93 unless the source is also
+ // strange.
+ if ((isa<VectorType>(DestTy) || ShouldChangeType(SrcTy, DestTy)) &&
+ CanEvaluateSExtd(Src, DestTy)) {
+ // Okay, we can transform this! Insert the new expression now.
+ DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
+ " to avoid sign extend: " << CI);
+ Value *Res = EvaluateInDifferentType(Src, DestTy, true);
+ assert(Res->getType() == DestTy);
+
+ uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
+ uint32_t DestBitSize = DestTy->getScalarSizeInBits();
+
+ // If the high bits are already filled with sign bit, just replace this
+ // cast with the result.
+ if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
+ return ReplaceInstUsesWith(CI, Res);
+
+ // We need to emit a shl + ashr to do the sign extend.
+ Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
+ return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
+ ShAmt);
+ }
+
+ // If the input is a shl/ashr pair of a same constant, then this is a sign
+ // extension from a smaller value. If we could trust arbitrary bitwidth
+ // integers, we could turn this into a truncate to the smaller bit and then
+ // use a sext for the whole extension. Since we don't, look deeper and check
+ // for a truncate. If the source and dest are the same type, eliminate the
+ // trunc and extend and just do shifts. For example, turn:
+ // %a = trunc i32 %i to i8
+ // %b = shl i8 %a, 6
+ // %c = ashr i8 %b, 6
+ // %d = sext i8 %c to i32
+ // into:
+ // %a = shl i32 %i, 30
+ // %d = ashr i32 %a, 30
+ Value *A = 0;
+ // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
+ ConstantInt *BA = 0, *CA = 0;
+ if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
+ m_ConstantInt(CA))) &&
+ BA == CA && A->getType() == CI.getType()) {
+ unsigned MidSize = Src->getType()->getScalarSizeInBits();
+ unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
+ unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
+ Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
+ A = Builder->CreateShl(A, ShAmtV, CI.getName());
+ return BinaryOperator::CreateAShr(A, ShAmtV);
+ }
+
+ return 0;
+}
+
+
+/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
+/// in the specified FP type without changing its value.
+static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
+ bool losesInfo;
+ APFloat F = CFP->getValueAPF();
+ (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
+ if (!losesInfo)
+ return ConstantFP::get(CFP->getContext(), F);
+ return 0;
+}
+
+/// LookThroughFPExtensions - If this is an fp extension instruction, look
+/// through it until we get the source value.
+static Value *LookThroughFPExtensions(Value *V) {
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ if (I->getOpcode() == Instruction::FPExt)
+ return LookThroughFPExtensions(I->getOperand(0));
+
+ // If this value is a constant, return the constant in the smallest FP type
+ // that can accurately represent it. This allows us to turn
+ // (float)((double)X+2.0) into x+2.0f.
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
+ if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
+ return V; // No constant folding of this.
+ // See if the value can be truncated to float and then reextended.
+ if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
+ return V;
+ if (CFP->getType()->isDoubleTy())
+ return V; // Won't shrink.
+ if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
+ return V;
+ // Don't try to shrink to various long double types.
+ }
+
+ return V;
+}
+
+Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
+ if (Instruction *I = commonCastTransforms(CI))
+ return I;
+
+ // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
+ // smaller than the destination type, we can eliminate the truncate by doing
+ // the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well
+ // as many builtins (sqrt, etc).
+ BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
+ if (OpI && OpI->hasOneUse()) {
+ switch (OpI->getOpcode()) {
+ default: break;
+ case Instruction::FAdd:
+ case Instruction::FSub:
+ case Instruction::FMul:
+ case Instruction::FDiv:
+ case Instruction::FRem:
+ const Type *SrcTy = OpI->getType();
+ Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
+ Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
+ if (LHSTrunc->getType() != SrcTy &&
+ RHSTrunc->getType() != SrcTy) {
+ unsigned DstSize = CI.getType()->getScalarSizeInBits();
+ // If the source types were both smaller than the destination type of
+ // the cast, do this xform.
+ if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
+ RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
+ LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
+ RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
+ return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
+ }
+ }
+ break;
+ }
+ }
+ return 0;
+}
+
+Instruction *InstCombiner::visitFPExt(CastInst &CI) {
+ return commonCastTransforms(CI);
+}
+
+Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
+ Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
+ if (OpI == 0)
+ return commonCastTransforms(FI);
+
+ // fptoui(uitofp(X)) --> X
+ // fptoui(sitofp(X)) --> X
+ // This is safe if the intermediate type has enough bits in its mantissa to
+ // accurately represent all values of X. For example, do not do this with
+ // i64->float->i64. This is also safe for sitofp case, because any negative
+ // 'X' value would cause an undefined result for the fptoui.
+ if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
+ OpI->getOperand(0)->getType() == FI.getType() &&
+ (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
+ OpI->getType()->getFPMantissaWidth())
+ return ReplaceInstUsesWith(FI, OpI->getOperand(0));
+
+ return commonCastTransforms(FI);
+}
+
+Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
+ Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
+ if (OpI == 0)
+ return commonCastTransforms(FI);
+
+ // fptosi(sitofp(X)) --> X
+ // fptosi(uitofp(X)) --> X
+ // This is safe if the intermediate type has enough bits in its mantissa to
+ // accurately represent all values of X. For example, do not do this with
+ // i64->float->i64. This is also safe for sitofp case, because any negative
+ // 'X' value would cause an undefined result for the fptoui.
+ if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
+ OpI->getOperand(0)->getType() == FI.getType() &&
+ (int)FI.getType()->getScalarSizeInBits() <=
+ OpI->getType()->getFPMantissaWidth())
+ return ReplaceInstUsesWith(FI, OpI->getOperand(0));
+
+ return commonCastTransforms(FI);
+}
+
+Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
+ return commonCastTransforms(CI);
+}
+
+Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
+ return commonCastTransforms(CI);
+}
+
+Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
+ // If the source integer type is larger than the intptr_t type for
+ // this target, do a trunc to the intptr_t type, then inttoptr of it. This
+ // allows the trunc to be exposed to other transforms. Don't do this for
+ // extending inttoptr's, because we don't know if the target sign or zero
+ // extends to pointers.
+ if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() >
+ TD->getPointerSizeInBits()) {
+ Value *P = Builder->CreateTrunc(CI.getOperand(0),
+ TD->getIntPtrType(CI.getContext()), "tmp");
+ return new IntToPtrInst(P, CI.getType());
+ }
+
+ if (Instruction *I = commonCastTransforms(CI))
+ return I;
+
+ return 0;
+}
+
+/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
+Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
+ Value *Src = CI.getOperand(0);
+
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
+ // If casting the result of a getelementptr instruction with no offset, turn
+ // this into a cast of the original pointer!
+ if (GEP->hasAllZeroIndices()) {
+ // Changing the cast operand is usually not a good idea but it is safe
+ // here because the pointer operand is being replaced with another
+ // pointer operand so the opcode doesn't need to change.
+ Worklist.Add(GEP);
+ CI.setOperand(0, GEP->getOperand(0));
+ return &CI;
+ }
+
+ // If the GEP has a single use, and the base pointer is a bitcast, and the
+ // GEP computes a constant offset, see if we can convert these three
+ // instructions into fewer. This typically happens with unions and other
+ // non-type-safe code.
+ if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
+ GEP->hasAllConstantIndices()) {
+ // We are guaranteed to get a constant from EmitGEPOffset.
+ ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
+ int64_t Offset = OffsetV->getSExtValue();
+
+ // Get the base pointer input of the bitcast, and the type it points to.
+ Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
+ const Type *GEPIdxTy =
+ cast<PointerType>(OrigBase->getType())->getElementType();
+ SmallVector<Value*, 8> NewIndices;
+ if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
+ // If we were able to index down into an element, create the GEP
+ // and bitcast the result. This eliminates one bitcast, potentially
+ // two.
+ Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
+ Builder->CreateInBoundsGEP(OrigBase,
+ NewIndices.begin(), NewIndices.end()) :
+ Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
+ NGEP->takeName(GEP);
+
+ if (isa<BitCastInst>(CI))
+ return new BitCastInst(NGEP, CI.getType());
+ assert(isa<PtrToIntInst>(CI));
+ return new PtrToIntInst(NGEP, CI.getType());
+ }
+ }
+ }
+
+ return commonCastTransforms(CI);
+}
+
+Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
+ // If the destination integer type is smaller than the intptr_t type for
+ // this target, do a ptrtoint to intptr_t then do a trunc. This allows the
+ // trunc to be exposed to other transforms. Don't do this for extending
+ // ptrtoint's, because we don't know if the target sign or zero extends its
+ // pointers.
+ if (TD &&
+ CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
+ Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
+ TD->getIntPtrType(CI.getContext()),
+ "tmp");
+ return new TruncInst(P, CI.getType());
+ }
+
+ return commonPointerCastTransforms(CI);
+}
+
+Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
+ // If the operands are integer typed then apply the integer transforms,
+ // otherwise just apply the common ones.
+ Value *Src = CI.getOperand(0);
+ const Type *SrcTy = Src->getType();
+ const Type *DestTy = CI.getType();
+
+ // Get rid of casts from one type to the same type. These are useless and can
+ // be replaced by the operand.
+ if (DestTy == Src->getType())
+ return ReplaceInstUsesWith(CI, Src);
+
+ if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
+ const PointerType *SrcPTy = cast<PointerType>(SrcTy);
+ const Type *DstElTy = DstPTy->getElementType();
+ const Type *SrcElTy = SrcPTy->getElementType();
+
+ // If the address spaces don't match, don't eliminate the bitcast, which is
+ // required for changing types.
+ if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
+ return 0;
+
+ // If we are casting a alloca to a pointer to a type of the same
+ // size, rewrite the allocation instruction to allocate the "right" type.
+ // There is no need to modify malloc calls because it is their bitcast that
+ // needs to be cleaned up.
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
+ if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
+ return V;
+
+ // If the source and destination are pointers, and this cast is equivalent
+ // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
+ // This can enhance SROA and other transforms that want type-safe pointers.
+ Constant *ZeroUInt =
+ Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
+ unsigned NumZeros = 0;
+ while (SrcElTy != DstElTy &&
+ isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
+ SrcElTy->getNumContainedTypes() /* not "{}" */) {
+ SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
+ ++NumZeros;
+ }
+
+ // If we found a path from the src to dest, create the getelementptr now.
+ if (SrcElTy == DstElTy) {
+ SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
+ return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(),"",
+ ((Instruction*)NULL));
+ }
+ }
+
+ if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
+ if (DestVTy->getNumElements() == 1 && !isa<VectorType>(SrcTy)) {
+ Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
+ return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
+ Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
+ // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
+ }
+ }
+
+ if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
+ if (SrcVTy->getNumElements() == 1 && !isa<VectorType>(DestTy)) {
+ Value *Elem =
+ Builder->CreateExtractElement(Src,
+ Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
+ return CastInst::Create(Instruction::BitCast, Elem, DestTy);
+ }
+ }
+
+ if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
+ // Okay, we have (bitcast (shuffle ..)). Check to see if this is
+ // a bitconvert to a vector with the same # elts.
+ if (SVI->hasOneUse() && isa<VectorType>(DestTy) &&
+ cast<VectorType>(DestTy)->getNumElements() ==
+ SVI->getType()->getNumElements() &&
+ SVI->getType()->getNumElements() ==
+ cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
+ BitCastInst *Tmp;
+ // If either of the operands is a cast from CI.getType(), then
+ // evaluating the shuffle in the casted destination's type will allow
+ // us to eliminate at least one cast.
+ if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
+ Tmp->getOperand(0)->getType() == DestTy) ||
+ ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
+ Tmp->getOperand(0)->getType() == DestTy)) {
+ Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
+ Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
+ // Return a new shuffle vector. Use the same element ID's, as we
+ // know the vector types match #elts.
+ return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
+ }
+ }
+ }
+
+ if (isa<PointerType>(SrcTy))
+ return commonPointerCastTransforms(CI);
+ return commonCastTransforms(CI);
+}
diff --git a/lib/Transforms/InstCombine/InstCombineCompares.cpp b/lib/Transforms/InstCombine/InstCombineCompares.cpp
new file mode 100644
index 0000000..e59406c6
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineCompares.cpp
@@ -0,0 +1,2475 @@
+//===- InstCombineCompares.cpp --------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitICmp and visitFCmp functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/ConstantRange.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+/// AddOne - Add one to a ConstantInt
+static Constant *AddOne(Constant *C) {
+ return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
+}
+/// SubOne - Subtract one from a ConstantInt
+static Constant *SubOne(ConstantInt *C) {
+ return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
+}
+
+static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
+ return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
+}
+
+static bool HasAddOverflow(ConstantInt *Result,
+ ConstantInt *In1, ConstantInt *In2,
+ bool IsSigned) {
+ if (IsSigned)
+ if (In2->getValue().isNegative())
+ return Result->getValue().sgt(In1->getValue());
+ else
+ return Result->getValue().slt(In1->getValue());
+ else
+ return Result->getValue().ult(In1->getValue());
+}
+
+/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
+/// overflowed for this type.
+static bool AddWithOverflow(Constant *&Result, Constant *In1,
+ Constant *In2, bool IsSigned = false) {
+ Result = ConstantExpr::getAdd(In1, In2);
+
+ if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
+ if (HasAddOverflow(ExtractElement(Result, Idx),
+ ExtractElement(In1, Idx),
+ ExtractElement(In2, Idx),
+ IsSigned))
+ return true;
+ }
+ return false;
+ }
+
+ return HasAddOverflow(cast<ConstantInt>(Result),
+ cast<ConstantInt>(In1), cast<ConstantInt>(In2),
+ IsSigned);
+}
+
+static bool HasSubOverflow(ConstantInt *Result,
+ ConstantInt *In1, ConstantInt *In2,
+ bool IsSigned) {
+ if (IsSigned)
+ if (In2->getValue().isNegative())
+ return Result->getValue().slt(In1->getValue());
+ else
+ return Result->getValue().sgt(In1->getValue());
+ else
+ return Result->getValue().ugt(In1->getValue());
+}
+
+/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
+/// overflowed for this type.
+static bool SubWithOverflow(Constant *&Result, Constant *In1,
+ Constant *In2, bool IsSigned = false) {
+ Result = ConstantExpr::getSub(In1, In2);
+
+ if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
+ if (HasSubOverflow(ExtractElement(Result, Idx),
+ ExtractElement(In1, Idx),
+ ExtractElement(In2, Idx),
+ IsSigned))
+ return true;
+ }
+ return false;
+ }
+
+ return HasSubOverflow(cast<ConstantInt>(Result),
+ cast<ConstantInt>(In1), cast<ConstantInt>(In2),
+ IsSigned);
+}
+
+/// isSignBitCheck - Given an exploded icmp instruction, return true if the
+/// comparison only checks the sign bit. If it only checks the sign bit, set
+/// TrueIfSigned if the result of the comparison is true when the input value is
+/// signed.
+static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
+ bool &TrueIfSigned) {
+ switch (pred) {
+ case ICmpInst::ICMP_SLT: // True if LHS s< 0
+ TrueIfSigned = true;
+ return RHS->isZero();
+ case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
+ TrueIfSigned = true;
+ return RHS->isAllOnesValue();
+ case ICmpInst::ICMP_SGT: // True if LHS s> -1
+ TrueIfSigned = false;
+ return RHS->isAllOnesValue();
+ case ICmpInst::ICMP_UGT:
+ // True if LHS u> RHS and RHS == high-bit-mask - 1
+ TrueIfSigned = true;
+ return RHS->getValue() ==
+ APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
+ case ICmpInst::ICMP_UGE:
+ // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
+ TrueIfSigned = true;
+ return RHS->getValue().isSignBit();
+ default:
+ return false;
+ }
+}
+
+// isHighOnes - Return true if the constant is of the form 1+0+.
+// This is the same as lowones(~X).
+static bool isHighOnes(const ConstantInt *CI) {
+ return (~CI->getValue() + 1).isPowerOf2();
+}
+
+/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
+/// set of known zero and one bits, compute the maximum and minimum values that
+/// could have the specified known zero and known one bits, returning them in
+/// min/max.
+static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
+ const APInt& KnownOne,
+ APInt& Min, APInt& Max) {
+ assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
+ KnownZero.getBitWidth() == Min.getBitWidth() &&
+ KnownZero.getBitWidth() == Max.getBitWidth() &&
+ "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
+ APInt UnknownBits = ~(KnownZero|KnownOne);
+
+ // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
+ // bit if it is unknown.
+ Min = KnownOne;
+ Max = KnownOne|UnknownBits;
+
+ if (UnknownBits.isNegative()) { // Sign bit is unknown
+ Min.set(Min.getBitWidth()-1);
+ Max.clear(Max.getBitWidth()-1);
+ }
+}
+
+// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
+// a set of known zero and one bits, compute the maximum and minimum values that
+// could have the specified known zero and known one bits, returning them in
+// min/max.
+static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
+ const APInt &KnownOne,
+ APInt &Min, APInt &Max) {
+ assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
+ KnownZero.getBitWidth() == Min.getBitWidth() &&
+ KnownZero.getBitWidth() == Max.getBitWidth() &&
+ "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
+ APInt UnknownBits = ~(KnownZero|KnownOne);
+
+ // The minimum value is when the unknown bits are all zeros.
+ Min = KnownOne;
+ // The maximum value is when the unknown bits are all ones.
+ Max = KnownOne|UnknownBits;
+}
+
+
+
+/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
+/// cmp pred (load (gep GV, ...)), cmpcst
+/// where GV is a global variable with a constant initializer. Try to simplify
+/// this into some simple computation that does not need the load. For example
+/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
+///
+/// If AndCst is non-null, then the loaded value is masked with that constant
+/// before doing the comparison. This handles cases like "A[i]&4 == 0".
+Instruction *InstCombiner::
+FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
+ CmpInst &ICI, ConstantInt *AndCst) {
+ // We need TD information to know the pointer size unless this is inbounds.
+ if (!GEP->isInBounds() && TD == 0) return 0;
+
+ ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer());
+ if (Init == 0 || Init->getNumOperands() > 1024) return 0;
+
+ // There are many forms of this optimization we can handle, for now, just do
+ // the simple index into a single-dimensional array.
+ //
+ // Require: GEP GV, 0, i {{, constant indices}}
+ if (GEP->getNumOperands() < 3 ||
+ !isa<ConstantInt>(GEP->getOperand(1)) ||
+ !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
+ isa<Constant>(GEP->getOperand(2)))
+ return 0;
+
+ // Check that indices after the variable are constants and in-range for the
+ // type they index. Collect the indices. This is typically for arrays of
+ // structs.
+ SmallVector<unsigned, 4> LaterIndices;
+
+ const Type *EltTy = cast<ArrayType>(Init->getType())->getElementType();
+ for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
+ ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
+ if (Idx == 0) return 0; // Variable index.
+
+ uint64_t IdxVal = Idx->getZExtValue();
+ if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
+
+ if (const StructType *STy = dyn_cast<StructType>(EltTy))
+ EltTy = STy->getElementType(IdxVal);
+ else if (const ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
+ if (IdxVal >= ATy->getNumElements()) return 0;
+ EltTy = ATy->getElementType();
+ } else {
+ return 0; // Unknown type.
+ }
+
+ LaterIndices.push_back(IdxVal);
+ }
+
+ enum { Overdefined = -3, Undefined = -2 };
+
+ // Variables for our state machines.
+
+ // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
+ // "i == 47 | i == 87", where 47 is the first index the condition is true for,
+ // and 87 is the second (and last) index. FirstTrueElement is -2 when
+ // undefined, otherwise set to the first true element. SecondTrueElement is
+ // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
+ int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
+
+ // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
+ // form "i != 47 & i != 87". Same state transitions as for true elements.
+ int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
+
+ /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
+ /// define a state machine that triggers for ranges of values that the index
+ /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
+ /// This is -2 when undefined, -3 when overdefined, and otherwise the last
+ /// index in the range (inclusive). We use -2 for undefined here because we
+ /// use relative comparisons and don't want 0-1 to match -1.
+ int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
+
+ // MagicBitvector - This is a magic bitvector where we set a bit if the
+ // comparison is true for element 'i'. If there are 64 elements or less in
+ // the array, this will fully represent all the comparison results.
+ uint64_t MagicBitvector = 0;
+
+
+ // Scan the array and see if one of our patterns matches.
+ Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
+ for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
+ Constant *Elt = Init->getOperand(i);
+
+ // If this is indexing an array of structures, get the structure element.
+ if (!LaterIndices.empty())
+ Elt = ConstantExpr::getExtractValue(Elt, LaterIndices.data(),
+ LaterIndices.size());
+
+ // If the element is masked, handle it.
+ if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
+
+ // Find out if the comparison would be true or false for the i'th element.
+ Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
+ CompareRHS, TD);
+ // If the result is undef for this element, ignore it.
+ if (isa<UndefValue>(C)) {
+ // Extend range state machines to cover this element in case there is an
+ // undef in the middle of the range.
+ if (TrueRangeEnd == (int)i-1)
+ TrueRangeEnd = i;
+ if (FalseRangeEnd == (int)i-1)
+ FalseRangeEnd = i;
+ continue;
+ }
+
+ // If we can't compute the result for any of the elements, we have to give
+ // up evaluating the entire conditional.
+ if (!isa<ConstantInt>(C)) return 0;
+
+ // Otherwise, we know if the comparison is true or false for this element,
+ // update our state machines.
+ bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
+
+ // State machine for single/double/range index comparison.
+ if (IsTrueForElt) {
+ // Update the TrueElement state machine.
+ if (FirstTrueElement == Undefined)
+ FirstTrueElement = TrueRangeEnd = i; // First true element.
+ else {
+ // Update double-compare state machine.
+ if (SecondTrueElement == Undefined)
+ SecondTrueElement = i;
+ else
+ SecondTrueElement = Overdefined;
+
+ // Update range state machine.
+ if (TrueRangeEnd == (int)i-1)
+ TrueRangeEnd = i;
+ else
+ TrueRangeEnd = Overdefined;
+ }
+ } else {
+ // Update the FalseElement state machine.
+ if (FirstFalseElement == Undefined)
+ FirstFalseElement = FalseRangeEnd = i; // First false element.
+ else {
+ // Update double-compare state machine.
+ if (SecondFalseElement == Undefined)
+ SecondFalseElement = i;
+ else
+ SecondFalseElement = Overdefined;
+
+ // Update range state machine.
+ if (FalseRangeEnd == (int)i-1)
+ FalseRangeEnd = i;
+ else
+ FalseRangeEnd = Overdefined;
+ }
+ }
+
+
+ // If this element is in range, update our magic bitvector.
+ if (i < 64 && IsTrueForElt)
+ MagicBitvector |= 1ULL << i;
+
+ // If all of our states become overdefined, bail out early. Since the
+ // predicate is expensive, only check it every 8 elements. This is only
+ // really useful for really huge arrays.
+ if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
+ SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
+ FalseRangeEnd == Overdefined)
+ return 0;
+ }
+
+ // Now that we've scanned the entire array, emit our new comparison(s). We
+ // order the state machines in complexity of the generated code.
+ Value *Idx = GEP->getOperand(2);
+
+ // If the index is larger than the pointer size of the target, truncate the
+ // index down like the GEP would do implicitly. We don't have to do this for
+ // an inbounds GEP because the index can't be out of range.
+ if (!GEP->isInBounds() &&
+ Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
+ Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
+
+ // If the comparison is only true for one or two elements, emit direct
+ // comparisons.
+ if (SecondTrueElement != Overdefined) {
+ // None true -> false.
+ if (FirstTrueElement == Undefined)
+ return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
+
+ Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
+
+ // True for one element -> 'i == 47'.
+ if (SecondTrueElement == Undefined)
+ return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
+
+ // True for two elements -> 'i == 47 | i == 72'.
+ Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
+ Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
+ Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
+ return BinaryOperator::CreateOr(C1, C2);
+ }
+
+ // If the comparison is only false for one or two elements, emit direct
+ // comparisons.
+ if (SecondFalseElement != Overdefined) {
+ // None false -> true.
+ if (FirstFalseElement == Undefined)
+ return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
+
+ Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
+
+ // False for one element -> 'i != 47'.
+ if (SecondFalseElement == Undefined)
+ return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
+
+ // False for two elements -> 'i != 47 & i != 72'.
+ Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
+ Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
+ Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
+ return BinaryOperator::CreateAnd(C1, C2);
+ }
+
+ // If the comparison can be replaced with a range comparison for the elements
+ // where it is true, emit the range check.
+ if (TrueRangeEnd != Overdefined) {
+ assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
+
+ // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
+ if (FirstTrueElement) {
+ Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
+ Idx = Builder->CreateAdd(Idx, Offs);
+ }
+
+ Value *End = ConstantInt::get(Idx->getType(),
+ TrueRangeEnd-FirstTrueElement+1);
+ return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
+ }
+
+ // False range check.
+ if (FalseRangeEnd != Overdefined) {
+ assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
+ // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
+ if (FirstFalseElement) {
+ Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
+ Idx = Builder->CreateAdd(Idx, Offs);
+ }
+
+ Value *End = ConstantInt::get(Idx->getType(),
+ FalseRangeEnd-FirstFalseElement);
+ return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
+ }
+
+
+ // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
+ // of this load, replace it with computation that does:
+ // ((magic_cst >> i) & 1) != 0
+ if (Init->getNumOperands() <= 32 ||
+ (TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) {
+ const Type *Ty;
+ if (Init->getNumOperands() <= 32)
+ Ty = Type::getInt32Ty(Init->getContext());
+ else
+ Ty = Type::getInt64Ty(Init->getContext());
+ Value *V = Builder->CreateIntCast(Idx, Ty, false);
+ V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
+ V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
+ return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
+ }
+
+ return 0;
+}
+
+
+/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
+/// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
+/// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
+/// be complex, and scales are involved. The above expression would also be
+/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
+/// This later form is less amenable to optimization though, and we are allowed
+/// to generate the first by knowing that pointer arithmetic doesn't overflow.
+///
+/// If we can't emit an optimized form for this expression, this returns null.
+///
+static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
+ InstCombiner &IC) {
+ TargetData &TD = *IC.getTargetData();
+ gep_type_iterator GTI = gep_type_begin(GEP);
+
+ // Check to see if this gep only has a single variable index. If so, and if
+ // any constant indices are a multiple of its scale, then we can compute this
+ // in terms of the scale of the variable index. For example, if the GEP
+ // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
+ // because the expression will cross zero at the same point.
+ unsigned i, e = GEP->getNumOperands();
+ int64_t Offset = 0;
+ for (i = 1; i != e; ++i, ++GTI) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
+ // Compute the aggregate offset of constant indices.
+ if (CI->isZero()) continue;
+
+ // Handle a struct index, which adds its field offset to the pointer.
+ if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
+ Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
+ } else {
+ uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
+ Offset += Size*CI->getSExtValue();
+ }
+ } else {
+ // Found our variable index.
+ break;
+ }
+ }
+
+ // If there are no variable indices, we must have a constant offset, just
+ // evaluate it the general way.
+ if (i == e) return 0;
+
+ Value *VariableIdx = GEP->getOperand(i);
+ // Determine the scale factor of the variable element. For example, this is
+ // 4 if the variable index is into an array of i32.
+ uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
+
+ // Verify that there are no other variable indices. If so, emit the hard way.
+ for (++i, ++GTI; i != e; ++i, ++GTI) {
+ ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
+ if (!CI) return 0;
+
+ // Compute the aggregate offset of constant indices.
+ if (CI->isZero()) continue;
+
+ // Handle a struct index, which adds its field offset to the pointer.
+ if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
+ Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
+ } else {
+ uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
+ Offset += Size*CI->getSExtValue();
+ }
+ }
+
+ // Okay, we know we have a single variable index, which must be a
+ // pointer/array/vector index. If there is no offset, life is simple, return
+ // the index.
+ unsigned IntPtrWidth = TD.getPointerSizeInBits();
+ if (Offset == 0) {
+ // Cast to intptrty in case a truncation occurs. If an extension is needed,
+ // we don't need to bother extending: the extension won't affect where the
+ // computation crosses zero.
+ if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
+ VariableIdx = new TruncInst(VariableIdx,
+ TD.getIntPtrType(VariableIdx->getContext()),
+ VariableIdx->getName(), &I);
+ return VariableIdx;
+ }
+
+ // Otherwise, there is an index. The computation we will do will be modulo
+ // the pointer size, so get it.
+ uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
+
+ Offset &= PtrSizeMask;
+ VariableScale &= PtrSizeMask;
+
+ // To do this transformation, any constant index must be a multiple of the
+ // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
+ // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
+ // multiple of the variable scale.
+ int64_t NewOffs = Offset / (int64_t)VariableScale;
+ if (Offset != NewOffs*(int64_t)VariableScale)
+ return 0;
+
+ // Okay, we can do this evaluation. Start by converting the index to intptr.
+ const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
+ if (VariableIdx->getType() != IntPtrTy)
+ VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
+ true /*SExt*/,
+ VariableIdx->getName(), &I);
+ Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
+ return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
+}
+
+/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
+/// else. At this point we know that the GEP is on the LHS of the comparison.
+Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
+ ICmpInst::Predicate Cond,
+ Instruction &I) {
+ // Look through bitcasts.
+ if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
+ RHS = BCI->getOperand(0);
+
+ Value *PtrBase = GEPLHS->getOperand(0);
+ if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
+ // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
+ // This transformation (ignoring the base and scales) is valid because we
+ // know pointers can't overflow since the gep is inbounds. See if we can
+ // output an optimized form.
+ Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
+
+ // If not, synthesize the offset the hard way.
+ if (Offset == 0)
+ Offset = EmitGEPOffset(GEPLHS);
+ return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
+ Constant::getNullValue(Offset->getType()));
+ } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
+ // If the base pointers are different, but the indices are the same, just
+ // compare the base pointer.
+ if (PtrBase != GEPRHS->getOperand(0)) {
+ bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
+ IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
+ GEPRHS->getOperand(0)->getType();
+ if (IndicesTheSame)
+ for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
+ if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
+ IndicesTheSame = false;
+ break;
+ }
+
+ // If all indices are the same, just compare the base pointers.
+ if (IndicesTheSame)
+ return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
+ GEPLHS->getOperand(0), GEPRHS->getOperand(0));
+
+ // Otherwise, the base pointers are different and the indices are
+ // different, bail out.
+ return 0;
+ }
+
+ // If one of the GEPs has all zero indices, recurse.
+ bool AllZeros = true;
+ for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
+ if (!isa<Constant>(GEPLHS->getOperand(i)) ||
+ !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
+ AllZeros = false;
+ break;
+ }
+ if (AllZeros)
+ return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
+ ICmpInst::getSwappedPredicate(Cond), I);
+
+ // If the other GEP has all zero indices, recurse.
+ AllZeros = true;
+ for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
+ if (!isa<Constant>(GEPRHS->getOperand(i)) ||
+ !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
+ AllZeros = false;
+ break;
+ }
+ if (AllZeros)
+ return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
+
+ if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
+ // If the GEPs only differ by one index, compare it.
+ unsigned NumDifferences = 0; // Keep track of # differences.
+ unsigned DiffOperand = 0; // The operand that differs.
+ for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
+ if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
+ if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
+ GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
+ // Irreconcilable differences.
+ NumDifferences = 2;
+ break;
+ } else {
+ if (NumDifferences++) break;
+ DiffOperand = i;
+ }
+ }
+
+ if (NumDifferences == 0) // SAME GEP?
+ return ReplaceInstUsesWith(I, // No comparison is needed here.
+ ConstantInt::get(Type::getInt1Ty(I.getContext()),
+ ICmpInst::isTrueWhenEqual(Cond)));
+
+ else if (NumDifferences == 1) {
+ Value *LHSV = GEPLHS->getOperand(DiffOperand);
+ Value *RHSV = GEPRHS->getOperand(DiffOperand);
+ // Make sure we do a signed comparison here.
+ return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
+ }
+ }
+
+ // Only lower this if the icmp is the only user of the GEP or if we expect
+ // the result to fold to a constant!
+ if (TD &&
+ (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
+ (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
+ // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
+ Value *L = EmitGEPOffset(GEPLHS);
+ Value *R = EmitGEPOffset(GEPRHS);
+ return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
+ }
+ }
+ return 0;
+}
+
+/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
+Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
+ Value *X, ConstantInt *CI,
+ ICmpInst::Predicate Pred,
+ Value *TheAdd) {
+ // If we have X+0, exit early (simplifying logic below) and let it get folded
+ // elsewhere. icmp X+0, X -> icmp X, X
+ if (CI->isZero()) {
+ bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
+ return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
+ }
+
+ // (X+4) == X -> false.
+ if (Pred == ICmpInst::ICMP_EQ)
+ return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
+
+ // (X+4) != X -> true.
+ if (Pred == ICmpInst::ICMP_NE)
+ return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
+
+ // If this is an instruction (as opposed to constantexpr) get NUW/NSW info.
+ bool isNUW = false, isNSW = false;
+ if (BinaryOperator *Add = dyn_cast<BinaryOperator>(TheAdd)) {
+ isNUW = Add->hasNoUnsignedWrap();
+ isNSW = Add->hasNoSignedWrap();
+ }
+
+ // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
+ // so the values can never be equal. Similiarly for all other "or equals"
+ // operators.
+
+ // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
+ // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
+ // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
+ if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
+ // If this is an NUW add, then this is always false.
+ if (isNUW)
+ return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
+
+ Value *R =
+ ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
+ return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
+ }
+
+ // (X+1) >u X --> X <u (0-1) --> X != 255
+ // (X+2) >u X --> X <u (0-2) --> X <u 254
+ // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
+ if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
+ // If this is an NUW add, then this is always true.
+ if (isNUW)
+ return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
+ return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
+ }
+
+ unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
+ ConstantInt *SMax = ConstantInt::get(X->getContext(),
+ APInt::getSignedMaxValue(BitWidth));
+
+ // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
+ // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
+ // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
+ // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
+ // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
+ // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
+ if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
+ // If this is an NSW add, then we have two cases: if the constant is
+ // positive, then this is always false, if negative, this is always true.
+ if (isNSW) {
+ bool isTrue = CI->getValue().isNegative();
+ return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
+ }
+
+ return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
+ }
+
+ // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
+ // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
+ // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
+ // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
+ // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
+ // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
+
+ // If this is an NSW add, then we have two cases: if the constant is
+ // positive, then this is always true, if negative, this is always false.
+ if (isNSW) {
+ bool isTrue = !CI->getValue().isNegative();
+ return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
+ }
+
+ assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
+ Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
+ return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
+}
+
+/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
+/// and CmpRHS are both known to be integer constants.
+Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
+ ConstantInt *DivRHS) {
+ ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
+ const APInt &CmpRHSV = CmpRHS->getValue();
+
+ // FIXME: If the operand types don't match the type of the divide
+ // then don't attempt this transform. The code below doesn't have the
+ // logic to deal with a signed divide and an unsigned compare (and
+ // vice versa). This is because (x /s C1) <s C2 produces different
+ // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
+ // (x /u C1) <u C2. Simply casting the operands and result won't
+ // work. :( The if statement below tests that condition and bails
+ // if it finds it.
+ bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
+ if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
+ return 0;
+ if (DivRHS->isZero())
+ return 0; // The ProdOV computation fails on divide by zero.
+ if (DivIsSigned && DivRHS->isAllOnesValue())
+ return 0; // The overflow computation also screws up here
+ if (DivRHS->isOne())
+ return 0; // Not worth bothering, and eliminates some funny cases
+ // with INT_MIN.
+
+ // Compute Prod = CI * DivRHS. We are essentially solving an equation
+ // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
+ // C2 (CI). By solving for X we can turn this into a range check
+ // instead of computing a divide.
+ Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
+
+ // Determine if the product overflows by seeing if the product is
+ // not equal to the divide. Make sure we do the same kind of divide
+ // as in the LHS instruction that we're folding.
+ bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
+ ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
+
+ // Get the ICmp opcode
+ ICmpInst::Predicate Pred = ICI.getPredicate();
+
+ // Figure out the interval that is being checked. For example, a comparison
+ // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
+ // Compute this interval based on the constants involved and the signedness of
+ // the compare/divide. This computes a half-open interval, keeping track of
+ // whether either value in the interval overflows. After analysis each
+ // overflow variable is set to 0 if it's corresponding bound variable is valid
+ // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
+ int LoOverflow = 0, HiOverflow = 0;
+ Constant *LoBound = 0, *HiBound = 0;
+
+ if (!DivIsSigned) { // udiv
+ // e.g. X/5 op 3 --> [15, 20)
+ LoBound = Prod;
+ HiOverflow = LoOverflow = ProdOV;
+ if (!HiOverflow)
+ HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
+ } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
+ if (CmpRHSV == 0) { // (X / pos) op 0
+ // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
+ LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
+ HiBound = DivRHS;
+ } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
+ LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
+ HiOverflow = LoOverflow = ProdOV;
+ if (!HiOverflow)
+ HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
+ } else { // (X / pos) op neg
+ // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
+ HiBound = AddOne(Prod);
+ LoOverflow = HiOverflow = ProdOV ? -1 : 0;
+ if (!LoOverflow) {
+ ConstantInt* DivNeg =
+ cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
+ LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
+ }
+ }
+ } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
+ if (CmpRHSV == 0) { // (X / neg) op 0
+ // e.g. X/-5 op 0 --> [-4, 5)
+ LoBound = AddOne(DivRHS);
+ HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
+ if (HiBound == DivRHS) { // -INTMIN = INTMIN
+ HiOverflow = 1; // [INTMIN+1, overflow)
+ HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
+ }
+ } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
+ // e.g. X/-5 op 3 --> [-19, -14)
+ HiBound = AddOne(Prod);
+ HiOverflow = LoOverflow = ProdOV ? -1 : 0;
+ if (!LoOverflow)
+ LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
+ } else { // (X / neg) op neg
+ LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
+ LoOverflow = HiOverflow = ProdOV;
+ if (!HiOverflow)
+ HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
+ }
+
+ // Dividing by a negative swaps the condition. LT <-> GT
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ }
+
+ Value *X = DivI->getOperand(0);
+ switch (Pred) {
+ default: llvm_unreachable("Unhandled icmp opcode!");
+ case ICmpInst::ICMP_EQ:
+ if (LoOverflow && HiOverflow)
+ return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
+ else if (HiOverflow)
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
+ ICmpInst::ICMP_UGE, X, LoBound);
+ else if (LoOverflow)
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
+ ICmpInst::ICMP_ULT, X, HiBound);
+ else
+ return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
+ case ICmpInst::ICMP_NE:
+ if (LoOverflow && HiOverflow)
+ return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
+ else if (HiOverflow)
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
+ ICmpInst::ICMP_ULT, X, LoBound);
+ else if (LoOverflow)
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
+ ICmpInst::ICMP_UGE, X, HiBound);
+ else
+ return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_SLT:
+ if (LoOverflow == +1) // Low bound is greater than input range.
+ return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
+ if (LoOverflow == -1) // Low bound is less than input range.
+ return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
+ return new ICmpInst(Pred, X, LoBound);
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_SGT:
+ if (HiOverflow == +1) // High bound greater than input range.
+ return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
+ else if (HiOverflow == -1) // High bound less than input range.
+ return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
+ if (Pred == ICmpInst::ICMP_UGT)
+ return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
+ else
+ return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
+ }
+}
+
+
+/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
+///
+Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
+ Instruction *LHSI,
+ ConstantInt *RHS) {
+ const APInt &RHSV = RHS->getValue();
+
+ switch (LHSI->getOpcode()) {
+ case Instruction::Trunc:
+ if (ICI.isEquality() && LHSI->hasOneUse()) {
+ // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
+ // of the high bits truncated out of x are known.
+ unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
+ SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
+ APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
+ APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
+ ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
+
+ // If all the high bits are known, we can do this xform.
+ if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
+ // Pull in the high bits from known-ones set.
+ APInt NewRHS(RHS->getValue());
+ NewRHS.zext(SrcBits);
+ NewRHS |= KnownOne;
+ return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
+ ConstantInt::get(ICI.getContext(), NewRHS));
+ }
+ }
+ break;
+
+ case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
+ if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
+ // If this is a comparison that tests the signbit (X < 0) or (x > -1),
+ // fold the xor.
+ if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
+ (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
+ Value *CompareVal = LHSI->getOperand(0);
+
+ // If the sign bit of the XorCST is not set, there is no change to
+ // the operation, just stop using the Xor.
+ if (!XorCST->getValue().isNegative()) {
+ ICI.setOperand(0, CompareVal);
+ Worklist.Add(LHSI);
+ return &ICI;
+ }
+
+ // Was the old condition true if the operand is positive?
+ bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
+
+ // If so, the new one isn't.
+ isTrueIfPositive ^= true;
+
+ if (isTrueIfPositive)
+ return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
+ SubOne(RHS));
+ else
+ return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
+ AddOne(RHS));
+ }
+
+ if (LHSI->hasOneUse()) {
+ // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
+ if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
+ const APInt &SignBit = XorCST->getValue();
+ ICmpInst::Predicate Pred = ICI.isSigned()
+ ? ICI.getUnsignedPredicate()
+ : ICI.getSignedPredicate();
+ return new ICmpInst(Pred, LHSI->getOperand(0),
+ ConstantInt::get(ICI.getContext(),
+ RHSV ^ SignBit));
+ }
+
+ // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
+ if (!ICI.isEquality() && XorCST->getValue().isMaxSignedValue()) {
+ const APInt &NotSignBit = XorCST->getValue();
+ ICmpInst::Predicate Pred = ICI.isSigned()
+ ? ICI.getUnsignedPredicate()
+ : ICI.getSignedPredicate();
+ Pred = ICI.getSwappedPredicate(Pred);
+ return new ICmpInst(Pred, LHSI->getOperand(0),
+ ConstantInt::get(ICI.getContext(),
+ RHSV ^ NotSignBit));
+ }
+ }
+ }
+ break;
+ case Instruction::And: // (icmp pred (and X, AndCST), RHS)
+ if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
+ LHSI->getOperand(0)->hasOneUse()) {
+ ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
+
+ // If the LHS is an AND of a truncating cast, we can widen the
+ // and/compare to be the input width without changing the value
+ // produced, eliminating a cast.
+ if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
+ // We can do this transformation if either the AND constant does not
+ // have its sign bit set or if it is an equality comparison.
+ // Extending a relational comparison when we're checking the sign
+ // bit would not work.
+ if (Cast->hasOneUse() &&
+ (ICI.isEquality() ||
+ (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
+ uint32_t BitWidth =
+ cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
+ APInt NewCST = AndCST->getValue();
+ NewCST.zext(BitWidth);
+ APInt NewCI = RHSV;
+ NewCI.zext(BitWidth);
+ Value *NewAnd =
+ Builder->CreateAnd(Cast->getOperand(0),
+ ConstantInt::get(ICI.getContext(), NewCST),
+ LHSI->getName());
+ return new ICmpInst(ICI.getPredicate(), NewAnd,
+ ConstantInt::get(ICI.getContext(), NewCI));
+ }
+ }
+
+ // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
+ // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
+ // happens a LOT in code produced by the C front-end, for bitfield
+ // access.
+ BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
+ if (Shift && !Shift->isShift())
+ Shift = 0;
+
+ ConstantInt *ShAmt;
+ ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
+ const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
+ const Type *AndTy = AndCST->getType(); // Type of the and.
+
+ // We can fold this as long as we can't shift unknown bits
+ // into the mask. This can only happen with signed shift
+ // rights, as they sign-extend.
+ if (ShAmt) {
+ bool CanFold = Shift->isLogicalShift();
+ if (!CanFold) {
+ // To test for the bad case of the signed shr, see if any
+ // of the bits shifted in could be tested after the mask.
+ uint32_t TyBits = Ty->getPrimitiveSizeInBits();
+ int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
+
+ uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
+ if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
+ AndCST->getValue()) == 0)
+ CanFold = true;
+ }
+
+ if (CanFold) {
+ Constant *NewCst;
+ if (Shift->getOpcode() == Instruction::Shl)
+ NewCst = ConstantExpr::getLShr(RHS, ShAmt);
+ else
+ NewCst = ConstantExpr::getShl(RHS, ShAmt);
+
+ // Check to see if we are shifting out any of the bits being
+ // compared.
+ if (ConstantExpr::get(Shift->getOpcode(),
+ NewCst, ShAmt) != RHS) {
+ // If we shifted bits out, the fold is not going to work out.
+ // As a special case, check to see if this means that the
+ // result is always true or false now.
+ if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
+ return ReplaceInstUsesWith(ICI,
+ ConstantInt::getFalse(ICI.getContext()));
+ if (ICI.getPredicate() == ICmpInst::ICMP_NE)
+ return ReplaceInstUsesWith(ICI,
+ ConstantInt::getTrue(ICI.getContext()));
+ } else {
+ ICI.setOperand(1, NewCst);
+ Constant *NewAndCST;
+ if (Shift->getOpcode() == Instruction::Shl)
+ NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
+ else
+ NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
+ LHSI->setOperand(1, NewAndCST);
+ LHSI->setOperand(0, Shift->getOperand(0));
+ Worklist.Add(Shift); // Shift is dead.
+ return &ICI;
+ }
+ }
+ }
+
+ // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
+ // preferable because it allows the C<<Y expression to be hoisted out
+ // of a loop if Y is invariant and X is not.
+ if (Shift && Shift->hasOneUse() && RHSV == 0 &&
+ ICI.isEquality() && !Shift->isArithmeticShift() &&
+ !isa<Constant>(Shift->getOperand(0))) {
+ // Compute C << Y.
+ Value *NS;
+ if (Shift->getOpcode() == Instruction::LShr) {
+ NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp");
+ } else {
+ // Insert a logical shift.
+ NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp");
+ }
+
+ // Compute X & (C << Y).
+ Value *NewAnd =
+ Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
+
+ ICI.setOperand(0, NewAnd);
+ return &ICI;
+ }
+ }
+
+ // Try to optimize things like "A[i]&42 == 0" to index computations.
+ if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
+ if (GetElementPtrInst *GEP =
+ dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
+ if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
+ !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
+ ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
+ if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
+ return Res;
+ }
+ }
+ break;
+
+ case Instruction::Or: {
+ if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
+ break;
+ Value *P, *Q;
+ if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
+ // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
+ // -> and (icmp eq P, null), (icmp eq Q, null).
+
+ Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
+ Constant::getNullValue(P->getType()));
+ Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
+ Constant::getNullValue(Q->getType()));
+ Instruction *Op;
+ if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
+ Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
+ else
+ Op = BinaryOperator::CreateOr(ICIP, ICIQ);
+ return Op;
+ }
+ break;
+ }
+
+ case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
+ ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
+ if (!ShAmt) break;
+
+ uint32_t TypeBits = RHSV.getBitWidth();
+
+ // Check that the shift amount is in range. If not, don't perform
+ // undefined shifts. When the shift is visited it will be
+ // simplified.
+ if (ShAmt->uge(TypeBits))
+ break;
+
+ if (ICI.isEquality()) {
+ // If we are comparing against bits always shifted out, the
+ // comparison cannot succeed.
+ Constant *Comp =
+ ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
+ ShAmt);
+ if (Comp != RHS) {// Comparing against a bit that we know is zero.
+ bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
+ Constant *Cst =
+ ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
+ return ReplaceInstUsesWith(ICI, Cst);
+ }
+
+ if (LHSI->hasOneUse()) {
+ // Otherwise strength reduce the shift into an and.
+ uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
+ Constant *Mask =
+ ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
+ TypeBits-ShAmtVal));
+
+ Value *And =
+ Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
+ return new ICmpInst(ICI.getPredicate(), And,
+ ConstantInt::get(ICI.getContext(),
+ RHSV.lshr(ShAmtVal)));
+ }
+ }
+
+ // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
+ bool TrueIfSigned = false;
+ if (LHSI->hasOneUse() &&
+ isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
+ // (X << 31) <s 0 --> (X&1) != 0
+ Constant *Mask = ConstantInt::get(ICI.getContext(), APInt(TypeBits, 1) <<
+ (TypeBits-ShAmt->getZExtValue()-1));
+ Value *And =
+ Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
+ return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
+ And, Constant::getNullValue(And->getType()));
+ }
+ break;
+ }
+
+ case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
+ case Instruction::AShr: {
+ // Only handle equality comparisons of shift-by-constant.
+ ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
+ if (!ShAmt || !ICI.isEquality()) break;
+
+ // Check that the shift amount is in range. If not, don't perform
+ // undefined shifts. When the shift is visited it will be
+ // simplified.
+ uint32_t TypeBits = RHSV.getBitWidth();
+ if (ShAmt->uge(TypeBits))
+ break;
+
+ uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
+
+ // If we are comparing against bits always shifted out, the
+ // comparison cannot succeed.
+ APInt Comp = RHSV << ShAmtVal;
+ if (LHSI->getOpcode() == Instruction::LShr)
+ Comp = Comp.lshr(ShAmtVal);
+ else
+ Comp = Comp.ashr(ShAmtVal);
+
+ if (Comp != RHSV) { // Comparing against a bit that we know is zero.
+ bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
+ Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
+ IsICMP_NE);
+ return ReplaceInstUsesWith(ICI, Cst);
+ }
+
+ // Otherwise, check to see if the bits shifted out are known to be zero.
+ // If so, we can compare against the unshifted value:
+ // (X & 4) >> 1 == 2 --> (X & 4) == 4.
+ if (LHSI->hasOneUse() &&
+ MaskedValueIsZero(LHSI->getOperand(0),
+ APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
+ return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
+ ConstantExpr::getShl(RHS, ShAmt));
+ }
+
+ if (LHSI->hasOneUse()) {
+ // Otherwise strength reduce the shift into an and.
+ APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
+ Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
+
+ Value *And = Builder->CreateAnd(LHSI->getOperand(0),
+ Mask, LHSI->getName()+".mask");
+ return new ICmpInst(ICI.getPredicate(), And,
+ ConstantExpr::getShl(RHS, ShAmt));
+ }
+ break;
+ }
+
+ case Instruction::SDiv:
+ case Instruction::UDiv:
+ // Fold: icmp pred ([us]div X, C1), C2 -> range test
+ // Fold this div into the comparison, producing a range check.
+ // Determine, based on the divide type, what the range is being
+ // checked. If there is an overflow on the low or high side, remember
+ // it, otherwise compute the range [low, hi) bounding the new value.
+ // See: InsertRangeTest above for the kinds of replacements possible.
+ if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
+ if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
+ DivRHS))
+ return R;
+ break;
+
+ case Instruction::Add:
+ // Fold: icmp pred (add X, C1), C2
+ if (!ICI.isEquality()) {
+ ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
+ if (!LHSC) break;
+ const APInt &LHSV = LHSC->getValue();
+
+ ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
+ .subtract(LHSV);
+
+ if (ICI.isSigned()) {
+ if (CR.getLower().isSignBit()) {
+ return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
+ ConstantInt::get(ICI.getContext(),CR.getUpper()));
+ } else if (CR.getUpper().isSignBit()) {
+ return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
+ ConstantInt::get(ICI.getContext(),CR.getLower()));
+ }
+ } else {
+ if (CR.getLower().isMinValue()) {
+ return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
+ ConstantInt::get(ICI.getContext(),CR.getUpper()));
+ } else if (CR.getUpper().isMinValue()) {
+ return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
+ ConstantInt::get(ICI.getContext(),CR.getLower()));
+ }
+ }
+ }
+ break;
+ }
+
+ // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
+ if (ICI.isEquality()) {
+ bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
+
+ // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
+ // the second operand is a constant, simplify a bit.
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
+ switch (BO->getOpcode()) {
+ case Instruction::SRem:
+ // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
+ if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
+ const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
+ if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
+ Value *NewRem =
+ Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
+ BO->getName());
+ return new ICmpInst(ICI.getPredicate(), NewRem,
+ Constant::getNullValue(BO->getType()));
+ }
+ }
+ break;
+ case Instruction::Add:
+ // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
+ if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
+ if (BO->hasOneUse())
+ return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
+ ConstantExpr::getSub(RHS, BOp1C));
+ } else if (RHSV == 0) {
+ // Replace ((add A, B) != 0) with (A != -B) if A or B is
+ // efficiently invertible, or if the add has just this one use.
+ Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
+
+ if (Value *NegVal = dyn_castNegVal(BOp1))
+ return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
+ else if (Value *NegVal = dyn_castNegVal(BOp0))
+ return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
+ else if (BO->hasOneUse()) {
+ Value *Neg = Builder->CreateNeg(BOp1);
+ Neg->takeName(BO);
+ return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
+ }
+ }
+ break;
+ case Instruction::Xor:
+ // For the xor case, we can xor two constants together, eliminating
+ // the explicit xor.
+ if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
+ return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
+ ConstantExpr::getXor(RHS, BOC));
+
+ // FALLTHROUGH
+ case Instruction::Sub:
+ // Replace (([sub|xor] A, B) != 0) with (A != B)
+ if (RHSV == 0)
+ return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
+ BO->getOperand(1));
+ break;
+
+ case Instruction::Or:
+ // If bits are being or'd in that are not present in the constant we
+ // are comparing against, then the comparison could never succeed!
+ if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
+ Constant *NotCI = ConstantExpr::getNot(RHS);
+ if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
+ return ReplaceInstUsesWith(ICI,
+ ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
+ isICMP_NE));
+ }
+ break;
+
+ case Instruction::And:
+ if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
+ // If bits are being compared against that are and'd out, then the
+ // comparison can never succeed!
+ if ((RHSV & ~BOC->getValue()) != 0)
+ return ReplaceInstUsesWith(ICI,
+ ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
+ isICMP_NE));
+
+ // If we have ((X & C) == C), turn it into ((X & C) != 0).
+ if (RHS == BOC && RHSV.isPowerOf2())
+ return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
+ ICmpInst::ICMP_NE, LHSI,
+ Constant::getNullValue(RHS->getType()));
+
+ // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
+ if (BOC->getValue().isSignBit()) {
+ Value *X = BO->getOperand(0);
+ Constant *Zero = Constant::getNullValue(X->getType());
+ ICmpInst::Predicate pred = isICMP_NE ?
+ ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
+ return new ICmpInst(pred, X, Zero);
+ }
+
+ // ((X & ~7) == 0) --> X < 8
+ if (RHSV == 0 && isHighOnes(BOC)) {
+ Value *X = BO->getOperand(0);
+ Constant *NegX = ConstantExpr::getNeg(BOC);
+ ICmpInst::Predicate pred = isICMP_NE ?
+ ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
+ return new ICmpInst(pred, X, NegX);
+ }
+ }
+ default: break;
+ }
+ } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
+ // Handle icmp {eq|ne} <intrinsic>, intcst.
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::bswap:
+ Worklist.Add(II);
+ ICI.setOperand(0, II->getOperand(1));
+ ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
+ return &ICI;
+ case Intrinsic::ctlz:
+ case Intrinsic::cttz:
+ // ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
+ if (RHSV == RHS->getType()->getBitWidth()) {
+ Worklist.Add(II);
+ ICI.setOperand(0, II->getOperand(1));
+ ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
+ return &ICI;
+ }
+ break;
+ case Intrinsic::ctpop:
+ // popcount(A) == 0 -> A == 0 and likewise for !=
+ if (RHS->isZero()) {
+ Worklist.Add(II);
+ ICI.setOperand(0, II->getOperand(1));
+ ICI.setOperand(1, RHS);
+ return &ICI;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ }
+ return 0;
+}
+
+/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
+/// We only handle extending casts so far.
+///
+Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
+ const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
+ Value *LHSCIOp = LHSCI->getOperand(0);
+ const Type *SrcTy = LHSCIOp->getType();
+ const Type *DestTy = LHSCI->getType();
+ Value *RHSCIOp;
+
+ // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
+ // integer type is the same size as the pointer type.
+ if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
+ TD->getPointerSizeInBits() ==
+ cast<IntegerType>(DestTy)->getBitWidth()) {
+ Value *RHSOp = 0;
+ if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
+ RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
+ } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
+ RHSOp = RHSC->getOperand(0);
+ // If the pointer types don't match, insert a bitcast.
+ if (LHSCIOp->getType() != RHSOp->getType())
+ RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
+ }
+
+ if (RHSOp)
+ return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
+ }
+
+ // The code below only handles extension cast instructions, so far.
+ // Enforce this.
+ if (LHSCI->getOpcode() != Instruction::ZExt &&
+ LHSCI->getOpcode() != Instruction::SExt)
+ return 0;
+
+ bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
+ bool isSignedCmp = ICI.isSigned();
+
+ if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
+ // Not an extension from the same type?
+ RHSCIOp = CI->getOperand(0);
+ if (RHSCIOp->getType() != LHSCIOp->getType())
+ return 0;
+
+ // If the signedness of the two casts doesn't agree (i.e. one is a sext
+ // and the other is a zext), then we can't handle this.
+ if (CI->getOpcode() != LHSCI->getOpcode())
+ return 0;
+
+ // Deal with equality cases early.
+ if (ICI.isEquality())
+ return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
+
+ // A signed comparison of sign extended values simplifies into a
+ // signed comparison.
+ if (isSignedCmp && isSignedExt)
+ return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
+
+ // The other three cases all fold into an unsigned comparison.
+ return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
+ }
+
+ // If we aren't dealing with a constant on the RHS, exit early
+ ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
+ if (!CI)
+ return 0;
+
+ // Compute the constant that would happen if we truncated to SrcTy then
+ // reextended to DestTy.
+ Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
+ Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
+ Res1, DestTy);
+
+ // If the re-extended constant didn't change...
+ if (Res2 == CI) {
+ // Deal with equality cases early.
+ if (ICI.isEquality())
+ return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
+
+ // A signed comparison of sign extended values simplifies into a
+ // signed comparison.
+ if (isSignedExt && isSignedCmp)
+ return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
+
+ // The other three cases all fold into an unsigned comparison.
+ return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
+ }
+
+ // The re-extended constant changed so the constant cannot be represented
+ // in the shorter type. Consequently, we cannot emit a simple comparison.
+
+ // First, handle some easy cases. We know the result cannot be equal at this
+ // point so handle the ICI.isEquality() cases
+ if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
+ return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
+ if (ICI.getPredicate() == ICmpInst::ICMP_NE)
+ return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
+
+ // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
+ // should have been folded away previously and not enter in here.
+ Value *Result;
+ if (isSignedCmp) {
+ // We're performing a signed comparison.
+ if (cast<ConstantInt>(CI)->getValue().isNegative())
+ Result = ConstantInt::getFalse(ICI.getContext()); // X < (small) --> false
+ else
+ Result = ConstantInt::getTrue(ICI.getContext()); // X < (large) --> true
+ } else {
+ // We're performing an unsigned comparison.
+ if (isSignedExt) {
+ // We're performing an unsigned comp with a sign extended value.
+ // This is true if the input is >= 0. [aka >s -1]
+ Constant *NegOne = Constant::getAllOnesValue(SrcTy);
+ Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
+ } else {
+ // Unsigned extend & unsigned compare -> always true.
+ Result = ConstantInt::getTrue(ICI.getContext());
+ }
+ }
+
+ // Finally, return the value computed.
+ if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
+ ICI.getPredicate() == ICmpInst::ICMP_SLT)
+ return ReplaceInstUsesWith(ICI, Result);
+
+ assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
+ ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
+ "ICmp should be folded!");
+ if (Constant *CI = dyn_cast<Constant>(Result))
+ return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
+ return BinaryOperator::CreateNot(Result);
+}
+
+
+
+Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
+ bool Changed = false;
+
+ /// Orders the operands of the compare so that they are listed from most
+ /// complex to least complex. This puts constants before unary operators,
+ /// before binary operators.
+ if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
+ I.swapOperands();
+ Changed = true;
+ }
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+ const Type *Ty = Op0->getType();
+
+ // icmp's with boolean values can always be turned into bitwise operations
+ if (Ty == Type::getInt1Ty(I.getContext())) {
+ switch (I.getPredicate()) {
+ default: llvm_unreachable("Invalid icmp instruction!");
+ case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
+ Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
+ return BinaryOperator::CreateNot(Xor);
+ }
+ case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
+ return BinaryOperator::CreateXor(Op0, Op1);
+
+ case ICmpInst::ICMP_UGT:
+ std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
+ // FALL THROUGH
+ case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
+ Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
+ return BinaryOperator::CreateAnd(Not, Op1);
+ }
+ case ICmpInst::ICMP_SGT:
+ std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
+ // FALL THROUGH
+ case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
+ Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
+ return BinaryOperator::CreateAnd(Not, Op0);
+ }
+ case ICmpInst::ICMP_UGE:
+ std::swap(Op0, Op1); // Change icmp uge -> icmp ule
+ // FALL THROUGH
+ case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
+ Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
+ return BinaryOperator::CreateOr(Not, Op1);
+ }
+ case ICmpInst::ICMP_SGE:
+ std::swap(Op0, Op1); // Change icmp sge -> icmp sle
+ // FALL THROUGH
+ case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
+ Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
+ return BinaryOperator::CreateOr(Not, Op0);
+ }
+ }
+ }
+
+ unsigned BitWidth = 0;
+ if (TD)
+ BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
+ else if (Ty->isIntOrIntVector())
+ BitWidth = Ty->getScalarSizeInBits();
+
+ bool isSignBit = false;
+
+ // See if we are doing a comparison with a constant.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ Value *A = 0, *B = 0;
+
+ // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
+ if (I.isEquality() && CI->isZero() &&
+ match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
+ // (icmp cond A B) if cond is equality
+ return new ICmpInst(I.getPredicate(), A, B);
+ }
+
+ // If we have an icmp le or icmp ge instruction, turn it into the
+ // appropriate icmp lt or icmp gt instruction. This allows us to rely on
+ // them being folded in the code below. The SimplifyICmpInst code has
+ // already handled the edge cases for us, so we just assert on them.
+ switch (I.getPredicate()) {
+ default: break;
+ case ICmpInst::ICMP_ULE:
+ assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE
+ return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
+ ConstantInt::get(CI->getContext(), CI->getValue()+1));
+ case ICmpInst::ICMP_SLE:
+ assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE
+ return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
+ ConstantInt::get(CI->getContext(), CI->getValue()+1));
+ case ICmpInst::ICMP_UGE:
+ assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE
+ return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
+ ConstantInt::get(CI->getContext(), CI->getValue()-1));
+ case ICmpInst::ICMP_SGE:
+ assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE
+ return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
+ ConstantInt::get(CI->getContext(), CI->getValue()-1));
+ }
+
+ // If this comparison is a normal comparison, it demands all
+ // bits, if it is a sign bit comparison, it only demands the sign bit.
+ bool UnusedBit;
+ isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
+ }
+
+ // See if we can fold the comparison based on range information we can get
+ // by checking whether bits are known to be zero or one in the input.
+ if (BitWidth != 0) {
+ APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
+ APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
+
+ if (SimplifyDemandedBits(I.getOperandUse(0),
+ isSignBit ? APInt::getSignBit(BitWidth)
+ : APInt::getAllOnesValue(BitWidth),
+ Op0KnownZero, Op0KnownOne, 0))
+ return &I;
+ if (SimplifyDemandedBits(I.getOperandUse(1),
+ APInt::getAllOnesValue(BitWidth),
+ Op1KnownZero, Op1KnownOne, 0))
+ return &I;
+
+ // Given the known and unknown bits, compute a range that the LHS could be
+ // in. Compute the Min, Max and RHS values based on the known bits. For the
+ // EQ and NE we use unsigned values.
+ APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
+ APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
+ if (I.isSigned()) {
+ ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
+ Op0Min, Op0Max);
+ ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
+ Op1Min, Op1Max);
+ } else {
+ ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
+ Op0Min, Op0Max);
+ ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
+ Op1Min, Op1Max);
+ }
+
+ // If Min and Max are known to be the same, then SimplifyDemandedBits
+ // figured out that the LHS is a constant. Just constant fold this now so
+ // that code below can assume that Min != Max.
+ if (!isa<Constant>(Op0) && Op0Min == Op0Max)
+ return new ICmpInst(I.getPredicate(),
+ ConstantInt::get(I.getContext(), Op0Min), Op1);
+ if (!isa<Constant>(Op1) && Op1Min == Op1Max)
+ return new ICmpInst(I.getPredicate(), Op0,
+ ConstantInt::get(I.getContext(), Op1Min));
+
+ // Based on the range information we know about the LHS, see if we can
+ // simplify this comparison. For example, (x&4) < 8 is always true.
+ switch (I.getPredicate()) {
+ default: llvm_unreachable("Unknown icmp opcode!");
+ case ICmpInst::ICMP_EQ:
+ if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ break;
+ case ICmpInst::ICMP_NE:
+ if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ break;
+ case ICmpInst::ICMP_ULT:
+ if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
+ return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ ConstantInt::get(CI->getContext(), CI->getValue()-1));
+
+ // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
+ if (CI->isMinValue(true))
+ return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
+ Constant::getAllOnesValue(Op0->getType()));
+ }
+ break;
+ case ICmpInst::ICMP_UGT:
+ if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+
+ if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
+ return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ ConstantInt::get(CI->getContext(), CI->getValue()+1));
+
+ // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
+ if (CI->isMaxValue(true))
+ return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
+ Constant::getNullValue(Op0->getType()));
+ }
+ break;
+ case ICmpInst::ICMP_SLT:
+ if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
+ return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ ConstantInt::get(CI->getContext(), CI->getValue()-1));
+ }
+ break;
+ case ICmpInst::ICMP_SGT:
+ if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+
+ if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
+ return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ ConstantInt::get(CI->getContext(), CI->getValue()+1));
+ }
+ break;
+ case ICmpInst::ICMP_SGE:
+ assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
+ if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ break;
+ case ICmpInst::ICMP_SLE:
+ assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
+ if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ break;
+ case ICmpInst::ICMP_UGE:
+ assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
+ if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ break;
+ case ICmpInst::ICMP_ULE:
+ assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
+ if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ break;
+ }
+
+ // Turn a signed comparison into an unsigned one if both operands
+ // are known to have the same sign.
+ if (I.isSigned() &&
+ ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
+ (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
+ return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
+ }
+
+ // Test if the ICmpInst instruction is used exclusively by a select as
+ // part of a minimum or maximum operation. If so, refrain from doing
+ // any other folding. This helps out other analyses which understand
+ // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
+ // and CodeGen. And in this case, at least one of the comparison
+ // operands has at least one user besides the compare (the select),
+ // which would often largely negate the benefit of folding anyway.
+ if (I.hasOneUse())
+ if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
+ if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
+ (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
+ return 0;
+
+ // See if we are doing a comparison between a constant and an instruction that
+ // can be folded into the comparison.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ // Since the RHS is a ConstantInt (CI), if the left hand side is an
+ // instruction, see if that instruction also has constants so that the
+ // instruction can be folded into the icmp
+ if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
+ if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
+ return Res;
+ }
+
+ // Handle icmp with constant (but not simple integer constant) RHS
+ if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
+ if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
+ switch (LHSI->getOpcode()) {
+ case Instruction::GetElementPtr:
+ // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
+ if (RHSC->isNullValue() &&
+ cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
+ return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
+ Constant::getNullValue(LHSI->getOperand(0)->getType()));
+ break;
+ case Instruction::PHI:
+ // Only fold icmp into the PHI if the phi and icmp are in the same
+ // block. If in the same block, we're encouraging jump threading. If
+ // not, we are just pessimizing the code by making an i1 phi.
+ if (LHSI->getParent() == I.getParent())
+ if (Instruction *NV = FoldOpIntoPhi(I, true))
+ return NV;
+ break;
+ case Instruction::Select: {
+ // If either operand of the select is a constant, we can fold the
+ // comparison into the select arms, which will cause one to be
+ // constant folded and the select turned into a bitwise or.
+ Value *Op1 = 0, *Op2 = 0;
+ if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
+ Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
+ if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
+ Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
+
+ // We only want to perform this transformation if it will not lead to
+ // additional code. This is true if either both sides of the select
+ // fold to a constant (in which case the icmp is replaced with a select
+ // which will usually simplify) or this is the only user of the
+ // select (in which case we are trading a select+icmp for a simpler
+ // select+icmp).
+ if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
+ if (!Op1)
+ Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
+ RHSC, I.getName());
+ if (!Op2)
+ Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
+ RHSC, I.getName());
+ return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
+ }
+ break;
+ }
+ case Instruction::Call:
+ // If we have (malloc != null), and if the malloc has a single use, we
+ // can assume it is successful and remove the malloc.
+ if (isMalloc(LHSI) && LHSI->hasOneUse() &&
+ isa<ConstantPointerNull>(RHSC)) {
+ // Need to explicitly erase malloc call here, instead of adding it to
+ // Worklist, because it won't get DCE'd from the Worklist since
+ // isInstructionTriviallyDead() returns false for function calls.
+ // It is OK to replace LHSI/MallocCall with Undef because the
+ // instruction that uses it will be erased via Worklist.
+ if (extractMallocCall(LHSI)) {
+ LHSI->replaceAllUsesWith(UndefValue::get(LHSI->getType()));
+ EraseInstFromFunction(*LHSI);
+ return ReplaceInstUsesWith(I,
+ ConstantInt::get(Type::getInt1Ty(I.getContext()),
+ !I.isTrueWhenEqual()));
+ }
+ if (CallInst* MallocCall = extractMallocCallFromBitCast(LHSI))
+ if (MallocCall->hasOneUse()) {
+ MallocCall->replaceAllUsesWith(
+ UndefValue::get(MallocCall->getType()));
+ EraseInstFromFunction(*MallocCall);
+ Worklist.Add(LHSI); // The malloc's bitcast use.
+ return ReplaceInstUsesWith(I,
+ ConstantInt::get(Type::getInt1Ty(I.getContext()),
+ !I.isTrueWhenEqual()));
+ }
+ }
+ break;
+ case Instruction::IntToPtr:
+ // icmp pred inttoptr(X), null -> icmp pred X, 0
+ if (RHSC->isNullValue() && TD &&
+ TD->getIntPtrType(RHSC->getContext()) ==
+ LHSI->getOperand(0)->getType())
+ return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
+ Constant::getNullValue(LHSI->getOperand(0)->getType()));
+ break;
+
+ case Instruction::Load:
+ // Try to optimize things like "A[i] > 4" to index computations.
+ if (GetElementPtrInst *GEP =
+ dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
+ if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
+ !cast<LoadInst>(LHSI)->isVolatile())
+ if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
+ return Res;
+ }
+ break;
+ }
+ }
+
+ // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
+ if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
+ return NI;
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
+ if (Instruction *NI = FoldGEPICmp(GEP, Op0,
+ ICmpInst::getSwappedPredicate(I.getPredicate()), I))
+ return NI;
+
+ // Test to see if the operands of the icmp are casted versions of other
+ // values. If the ptr->ptr cast can be stripped off both arguments, we do so
+ // now.
+ if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
+ if (isa<PointerType>(Op0->getType()) &&
+ (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
+ // We keep moving the cast from the left operand over to the right
+ // operand, where it can often be eliminated completely.
+ Op0 = CI->getOperand(0);
+
+ // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
+ // so eliminate it as well.
+ if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
+ Op1 = CI2->getOperand(0);
+
+ // If Op1 is a constant, we can fold the cast into the constant.
+ if (Op0->getType() != Op1->getType()) {
+ if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
+ Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
+ } else {
+ // Otherwise, cast the RHS right before the icmp
+ Op1 = Builder->CreateBitCast(Op1, Op0->getType());
+ }
+ }
+ return new ICmpInst(I.getPredicate(), Op0, Op1);
+ }
+ }
+
+ if (isa<CastInst>(Op0)) {
+ // Handle the special case of: icmp (cast bool to X), <cst>
+ // This comes up when you have code like
+ // int X = A < B;
+ // if (X) ...
+ // For generality, we handle any zero-extension of any operand comparison
+ // with a constant or another cast from the same type.
+ if (isa<Constant>(Op1) || isa<CastInst>(Op1))
+ if (Instruction *R = visitICmpInstWithCastAndCast(I))
+ return R;
+ }
+
+ // See if it's the same type of instruction on the left and right.
+ if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
+ if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
+ if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
+ Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1)) {
+ switch (Op0I->getOpcode()) {
+ default: break;
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Xor:
+ if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
+ return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
+ Op1I->getOperand(0));
+ // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
+ if (CI->getValue().isSignBit()) {
+ ICmpInst::Predicate Pred = I.isSigned()
+ ? I.getUnsignedPredicate()
+ : I.getSignedPredicate();
+ return new ICmpInst(Pred, Op0I->getOperand(0),
+ Op1I->getOperand(0));
+ }
+
+ if (CI->getValue().isMaxSignedValue()) {
+ ICmpInst::Predicate Pred = I.isSigned()
+ ? I.getUnsignedPredicate()
+ : I.getSignedPredicate();
+ Pred = I.getSwappedPredicate(Pred);
+ return new ICmpInst(Pred, Op0I->getOperand(0),
+ Op1I->getOperand(0));
+ }
+ }
+ break;
+ case Instruction::Mul:
+ if (!I.isEquality())
+ break;
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
+ // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
+ // Mask = -1 >> count-trailing-zeros(Cst).
+ if (!CI->isZero() && !CI->isOne()) {
+ const APInt &AP = CI->getValue();
+ ConstantInt *Mask = ConstantInt::get(I.getContext(),
+ APInt::getLowBitsSet(AP.getBitWidth(),
+ AP.getBitWidth() -
+ AP.countTrailingZeros()));
+ Value *And1 = Builder->CreateAnd(Op0I->getOperand(0), Mask);
+ Value *And2 = Builder->CreateAnd(Op1I->getOperand(0), Mask);
+ return new ICmpInst(I.getPredicate(), And1, And2);
+ }
+ }
+ break;
+ }
+ }
+ }
+ }
+
+ // ~x < ~y --> y < x
+ { Value *A, *B;
+ if (match(Op0, m_Not(m_Value(A))) &&
+ match(Op1, m_Not(m_Value(B))))
+ return new ICmpInst(I.getPredicate(), B, A);
+ }
+
+ if (I.isEquality()) {
+ Value *A, *B, *C, *D;
+
+ // -x == -y --> x == y
+ if (match(Op0, m_Neg(m_Value(A))) &&
+ match(Op1, m_Neg(m_Value(B))))
+ return new ICmpInst(I.getPredicate(), A, B);
+
+ if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
+ if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
+ Value *OtherVal = A == Op1 ? B : A;
+ return new ICmpInst(I.getPredicate(), OtherVal,
+ Constant::getNullValue(A->getType()));
+ }
+
+ if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
+ // A^c1 == C^c2 --> A == C^(c1^c2)
+ ConstantInt *C1, *C2;
+ if (match(B, m_ConstantInt(C1)) &&
+ match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
+ Constant *NC = ConstantInt::get(I.getContext(),
+ C1->getValue() ^ C2->getValue());
+ Value *Xor = Builder->CreateXor(C, NC, "tmp");
+ return new ICmpInst(I.getPredicate(), A, Xor);
+ }
+
+ // A^B == A^D -> B == D
+ if (A == C) return new ICmpInst(I.getPredicate(), B, D);
+ if (A == D) return new ICmpInst(I.getPredicate(), B, C);
+ if (B == C) return new ICmpInst(I.getPredicate(), A, D);
+ if (B == D) return new ICmpInst(I.getPredicate(), A, C);
+ }
+ }
+
+ if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
+ (A == Op0 || B == Op0)) {
+ // A == (A^B) -> B == 0
+ Value *OtherVal = A == Op0 ? B : A;
+ return new ICmpInst(I.getPredicate(), OtherVal,
+ Constant::getNullValue(A->getType()));
+ }
+
+ // (A-B) == A -> B == 0
+ if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
+ return new ICmpInst(I.getPredicate(), B,
+ Constant::getNullValue(B->getType()));
+
+ // A == (A-B) -> B == 0
+ if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
+ return new ICmpInst(I.getPredicate(), B,
+ Constant::getNullValue(B->getType()));
+
+ // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
+ if (Op0->hasOneUse() && Op1->hasOneUse() &&
+ match(Op0, m_And(m_Value(A), m_Value(B))) &&
+ match(Op1, m_And(m_Value(C), m_Value(D)))) {
+ Value *X = 0, *Y = 0, *Z = 0;
+
+ if (A == C) {
+ X = B; Y = D; Z = A;
+ } else if (A == D) {
+ X = B; Y = C; Z = A;
+ } else if (B == C) {
+ X = A; Y = D; Z = B;
+ } else if (B == D) {
+ X = A; Y = C; Z = B;
+ }
+
+ if (X) { // Build (X^Y) & Z
+ Op1 = Builder->CreateXor(X, Y, "tmp");
+ Op1 = Builder->CreateAnd(Op1, Z, "tmp");
+ I.setOperand(0, Op1);
+ I.setOperand(1, Constant::getNullValue(Op1->getType()));
+ return &I;
+ }
+ }
+ }
+
+ {
+ Value *X; ConstantInt *Cst;
+ // icmp X+Cst, X
+ if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
+ return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
+
+ // icmp X, X+Cst
+ if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
+ return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
+ }
+ return Changed ? &I : 0;
+}
+
+
+
+
+
+
+/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
+///
+Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
+ Instruction *LHSI,
+ Constant *RHSC) {
+ if (!isa<ConstantFP>(RHSC)) return 0;
+ const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
+
+ // Get the width of the mantissa. We don't want to hack on conversions that
+ // might lose information from the integer, e.g. "i64 -> float"
+ int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
+ if (MantissaWidth == -1) return 0; // Unknown.
+
+ // Check to see that the input is converted from an integer type that is small
+ // enough that preserves all bits. TODO: check here for "known" sign bits.
+ // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
+ unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
+
+ // If this is a uitofp instruction, we need an extra bit to hold the sign.
+ bool LHSUnsigned = isa<UIToFPInst>(LHSI);
+ if (LHSUnsigned)
+ ++InputSize;
+
+ // If the conversion would lose info, don't hack on this.
+ if ((int)InputSize > MantissaWidth)
+ return 0;
+
+ // Otherwise, we can potentially simplify the comparison. We know that it
+ // will always come through as an integer value and we know the constant is
+ // not a NAN (it would have been previously simplified).
+ assert(!RHS.isNaN() && "NaN comparison not already folded!");
+
+ ICmpInst::Predicate Pred;
+ switch (I.getPredicate()) {
+ default: llvm_unreachable("Unexpected predicate!");
+ case FCmpInst::FCMP_UEQ:
+ case FCmpInst::FCMP_OEQ:
+ Pred = ICmpInst::ICMP_EQ;
+ break;
+ case FCmpInst::FCMP_UGT:
+ case FCmpInst::FCMP_OGT:
+ Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
+ break;
+ case FCmpInst::FCMP_UGE:
+ case FCmpInst::FCMP_OGE:
+ Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
+ break;
+ case FCmpInst::FCMP_ULT:
+ case FCmpInst::FCMP_OLT:
+ Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
+ break;
+ case FCmpInst::FCMP_ULE:
+ case FCmpInst::FCMP_OLE:
+ Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
+ break;
+ case FCmpInst::FCMP_UNE:
+ case FCmpInst::FCMP_ONE:
+ Pred = ICmpInst::ICMP_NE;
+ break;
+ case FCmpInst::FCMP_ORD:
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ case FCmpInst::FCMP_UNO:
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ }
+
+ const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
+
+ // Now we know that the APFloat is a normal number, zero or inf.
+
+ // See if the FP constant is too large for the integer. For example,
+ // comparing an i8 to 300.0.
+ unsigned IntWidth = IntTy->getScalarSizeInBits();
+
+ if (!LHSUnsigned) {
+ // If the RHS value is > SignedMax, fold the comparison. This handles +INF
+ // and large values.
+ APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
+ SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
+ APFloat::rmNearestTiesToEven);
+ if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
+ if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
+ Pred == ICmpInst::ICMP_SLE)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ }
+ } else {
+ // If the RHS value is > UnsignedMax, fold the comparison. This handles
+ // +INF and large values.
+ APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
+ UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
+ APFloat::rmNearestTiesToEven);
+ if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
+ if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
+ Pred == ICmpInst::ICMP_ULE)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ }
+ }
+
+ if (!LHSUnsigned) {
+ // See if the RHS value is < SignedMin.
+ APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
+ SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
+ APFloat::rmNearestTiesToEven);
+ if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
+ if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
+ Pred == ICmpInst::ICMP_SGE)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ }
+ }
+
+ // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
+ // [0, UMAX], but it may still be fractional. See if it is fractional by
+ // casting the FP value to the integer value and back, checking for equality.
+ // Don't do this for zero, because -0.0 is not fractional.
+ Constant *RHSInt = LHSUnsigned
+ ? ConstantExpr::getFPToUI(RHSC, IntTy)
+ : ConstantExpr::getFPToSI(RHSC, IntTy);
+ if (!RHS.isZero()) {
+ bool Equal = LHSUnsigned
+ ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
+ : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
+ if (!Equal) {
+ // If we had a comparison against a fractional value, we have to adjust
+ // the compare predicate and sometimes the value. RHSC is rounded towards
+ // zero at this point.
+ switch (Pred) {
+ default: llvm_unreachable("Unexpected integer comparison!");
+ case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ case ICmpInst::ICMP_ULE:
+ // (float)int <= 4.4 --> int <= 4
+ // (float)int <= -4.4 --> false
+ if (RHS.isNegative())
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ break;
+ case ICmpInst::ICMP_SLE:
+ // (float)int <= 4.4 --> int <= 4
+ // (float)int <= -4.4 --> int < -4
+ if (RHS.isNegative())
+ Pred = ICmpInst::ICMP_SLT;
+ break;
+ case ICmpInst::ICMP_ULT:
+ // (float)int < -4.4 --> false
+ // (float)int < 4.4 --> int <= 4
+ if (RHS.isNegative())
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+ Pred = ICmpInst::ICMP_ULE;
+ break;
+ case ICmpInst::ICMP_SLT:
+ // (float)int < -4.4 --> int < -4
+ // (float)int < 4.4 --> int <= 4
+ if (!RHS.isNegative())
+ Pred = ICmpInst::ICMP_SLE;
+ break;
+ case ICmpInst::ICMP_UGT:
+ // (float)int > 4.4 --> int > 4
+ // (float)int > -4.4 --> true
+ if (RHS.isNegative())
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ break;
+ case ICmpInst::ICMP_SGT:
+ // (float)int > 4.4 --> int > 4
+ // (float)int > -4.4 --> int >= -4
+ if (RHS.isNegative())
+ Pred = ICmpInst::ICMP_SGE;
+ break;
+ case ICmpInst::ICMP_UGE:
+ // (float)int >= -4.4 --> true
+ // (float)int >= 4.4 --> int > 4
+ if (!RHS.isNegative())
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+ Pred = ICmpInst::ICMP_UGT;
+ break;
+ case ICmpInst::ICMP_SGE:
+ // (float)int >= -4.4 --> int >= -4
+ // (float)int >= 4.4 --> int > 4
+ if (!RHS.isNegative())
+ Pred = ICmpInst::ICMP_SGT;
+ break;
+ }
+ }
+ }
+
+ // Lower this FP comparison into an appropriate integer version of the
+ // comparison.
+ return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
+}
+
+Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
+ bool Changed = false;
+
+ /// Orders the operands of the compare so that they are listed from most
+ /// complex to least complex. This puts constants before unary operators,
+ /// before binary operators.
+ if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
+ I.swapOperands();
+ Changed = true;
+ }
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+ // Simplify 'fcmp pred X, X'
+ if (Op0 == Op1) {
+ switch (I.getPredicate()) {
+ default: llvm_unreachable("Unknown predicate!");
+ case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
+ case FCmpInst::FCMP_ULT: // True if unordered or less than
+ case FCmpInst::FCMP_UGT: // True if unordered or greater than
+ case FCmpInst::FCMP_UNE: // True if unordered or not equal
+ // Canonicalize these to be 'fcmp uno %X, 0.0'.
+ I.setPredicate(FCmpInst::FCMP_UNO);
+ I.setOperand(1, Constant::getNullValue(Op0->getType()));
+ return &I;
+
+ case FCmpInst::FCMP_ORD: // True if ordered (no nans)
+ case FCmpInst::FCMP_OEQ: // True if ordered and equal
+ case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
+ case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
+ // Canonicalize these to be 'fcmp ord %X, 0.0'.
+ I.setPredicate(FCmpInst::FCMP_ORD);
+ I.setOperand(1, Constant::getNullValue(Op0->getType()));
+ return &I;
+ }
+ }
+
+ // Handle fcmp with constant RHS
+ if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
+ if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
+ switch (LHSI->getOpcode()) {
+ case Instruction::PHI:
+ // Only fold fcmp into the PHI if the phi and fcmp are in the same
+ // block. If in the same block, we're encouraging jump threading. If
+ // not, we are just pessimizing the code by making an i1 phi.
+ if (LHSI->getParent() == I.getParent())
+ if (Instruction *NV = FoldOpIntoPhi(I, true))
+ return NV;
+ break;
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
+ return NV;
+ break;
+ case Instruction::Select: {
+ // If either operand of the select is a constant, we can fold the
+ // comparison into the select arms, which will cause one to be
+ // constant folded and the select turned into a bitwise or.
+ Value *Op1 = 0, *Op2 = 0;
+ if (LHSI->hasOneUse()) {
+ if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
+ // Fold the known value into the constant operand.
+ Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
+ // Insert a new FCmp of the other select operand.
+ Op2 = Builder->CreateFCmp(I.getPredicate(),
+ LHSI->getOperand(2), RHSC, I.getName());
+ } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
+ // Fold the known value into the constant operand.
+ Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
+ // Insert a new FCmp of the other select operand.
+ Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
+ RHSC, I.getName());
+ }
+ }
+
+ if (Op1)
+ return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
+ break;
+ }
+ case Instruction::Load:
+ if (GetElementPtrInst *GEP =
+ dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
+ if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
+ !cast<LoadInst>(LHSI)->isVolatile())
+ if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
+ return Res;
+ }
+ break;
+ }
+ }
+
+ return Changed ? &I : 0;
+}
diff --git a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
new file mode 100644
index 0000000..6c0ecc9
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
@@ -0,0 +1,613 @@
+//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visit functions for load, store and alloca.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/ADT/Statistic.h"
+using namespace llvm;
+
+STATISTIC(NumDeadStore, "Number of dead stores eliminated");
+
+Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
+ // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
+ if (AI.isArrayAllocation()) { // Check C != 1
+ if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
+ const Type *NewTy =
+ ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
+ assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
+ AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName());
+ New->setAlignment(AI.getAlignment());
+
+ // Scan to the end of the allocation instructions, to skip over a block of
+ // allocas if possible...also skip interleaved debug info
+ //
+ BasicBlock::iterator It = New;
+ while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
+
+ // Now that I is pointing to the first non-allocation-inst in the block,
+ // insert our getelementptr instruction...
+ //
+ Value *NullIdx =Constant::getNullValue(Type::getInt32Ty(AI.getContext()));
+ Value *Idx[2];
+ Idx[0] = NullIdx;
+ Idx[1] = NullIdx;
+ Value *V = GetElementPtrInst::CreateInBounds(New, Idx, Idx + 2,
+ New->getName()+".sub", It);
+
+ // Now make everything use the getelementptr instead of the original
+ // allocation.
+ return ReplaceInstUsesWith(AI, V);
+ } else if (isa<UndefValue>(AI.getArraySize())) {
+ return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
+ }
+ }
+
+ if (TD && isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) {
+ // If alloca'ing a zero byte object, replace the alloca with a null pointer.
+ // Note that we only do this for alloca's, because malloc should allocate
+ // and return a unique pointer, even for a zero byte allocation.
+ if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
+ return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
+
+ // If the alignment is 0 (unspecified), assign it the preferred alignment.
+ if (AI.getAlignment() == 0)
+ AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType()));
+ }
+
+ return 0;
+}
+
+
+/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
+static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
+ const TargetData *TD) {
+ User *CI = cast<User>(LI.getOperand(0));
+ Value *CastOp = CI->getOperand(0);
+
+ const PointerType *DestTy = cast<PointerType>(CI->getType());
+ const Type *DestPTy = DestTy->getElementType();
+ if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
+
+ // If the address spaces don't match, don't eliminate the cast.
+ if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
+ return 0;
+
+ const Type *SrcPTy = SrcTy->getElementType();
+
+ if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
+ isa<VectorType>(DestPTy)) {
+ // If the source is an array, the code below will not succeed. Check to
+ // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
+ // constants.
+ if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
+ if (Constant *CSrc = dyn_cast<Constant>(CastOp))
+ if (ASrcTy->getNumElements() != 0) {
+ Value *Idxs[2];
+ Idxs[0] = Constant::getNullValue(Type::getInt32Ty(LI.getContext()));
+ Idxs[1] = Idxs[0];
+ CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
+ SrcTy = cast<PointerType>(CastOp->getType());
+ SrcPTy = SrcTy->getElementType();
+ }
+
+ if (IC.getTargetData() &&
+ (SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
+ isa<VectorType>(SrcPTy)) &&
+ // Do not allow turning this into a load of an integer, which is then
+ // casted to a pointer, this pessimizes pointer analysis a lot.
+ (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
+ IC.getTargetData()->getTypeSizeInBits(SrcPTy) ==
+ IC.getTargetData()->getTypeSizeInBits(DestPTy)) {
+
+ // Okay, we are casting from one integer or pointer type to another of
+ // the same size. Instead of casting the pointer before the load, cast
+ // the result of the loaded value.
+ Value *NewLoad =
+ IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
+ // Now cast the result of the load.
+ return new BitCastInst(NewLoad, LI.getType());
+ }
+ }
+ }
+ return 0;
+}
+
+Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
+ Value *Op = LI.getOperand(0);
+
+ // Attempt to improve the alignment.
+ if (TD) {
+ unsigned KnownAlign =
+ GetOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()));
+ if (KnownAlign >
+ (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
+ LI.getAlignment()))
+ LI.setAlignment(KnownAlign);
+ }
+
+ // load (cast X) --> cast (load X) iff safe.
+ if (isa<CastInst>(Op))
+ if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
+ return Res;
+
+ // None of the following transforms are legal for volatile loads.
+ if (LI.isVolatile()) return 0;
+
+ // Do really simple store-to-load forwarding and load CSE, to catch cases
+ // where there are several consequtive memory accesses to the same location,
+ // separated by a few arithmetic operations.
+ BasicBlock::iterator BBI = &LI;
+ if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
+ return ReplaceInstUsesWith(LI, AvailableVal);
+
+ // load(gep null, ...) -> unreachable
+ if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
+ const Value *GEPI0 = GEPI->getOperand(0);
+ // TODO: Consider a target hook for valid address spaces for this xform.
+ if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
+ // Insert a new store to null instruction before the load to indicate
+ // that this code is not reachable. We do this instead of inserting
+ // an unreachable instruction directly because we cannot modify the
+ // CFG.
+ new StoreInst(UndefValue::get(LI.getType()),
+ Constant::getNullValue(Op->getType()), &LI);
+ return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
+ }
+ }
+
+ // load null/undef -> unreachable
+ // TODO: Consider a target hook for valid address spaces for this xform.
+ if (isa<UndefValue>(Op) ||
+ (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
+ // Insert a new store to null instruction before the load to indicate that
+ // this code is not reachable. We do this instead of inserting an
+ // unreachable instruction directly because we cannot modify the CFG.
+ new StoreInst(UndefValue::get(LI.getType()),
+ Constant::getNullValue(Op->getType()), &LI);
+ return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
+ }
+
+ // Instcombine load (constantexpr_cast global) -> cast (load global)
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
+ if (CE->isCast())
+ if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
+ return Res;
+
+ if (Op->hasOneUse()) {
+ // Change select and PHI nodes to select values instead of addresses: this
+ // helps alias analysis out a lot, allows many others simplifications, and
+ // exposes redundancy in the code.
+ //
+ // Note that we cannot do the transformation unless we know that the
+ // introduced loads cannot trap! Something like this is valid as long as
+ // the condition is always false: load (select bool %C, int* null, int* %G),
+ // but it would not be valid if we transformed it to load from null
+ // unconditionally.
+ //
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
+ // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
+ if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
+ isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
+ Value *V1 = Builder->CreateLoad(SI->getOperand(1),
+ SI->getOperand(1)->getName()+".val");
+ Value *V2 = Builder->CreateLoad(SI->getOperand(2),
+ SI->getOperand(2)->getName()+".val");
+ return SelectInst::Create(SI->getCondition(), V1, V2);
+ }
+
+ // load (select (cond, null, P)) -> load P
+ if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
+ if (C->isNullValue()) {
+ LI.setOperand(0, SI->getOperand(2));
+ return &LI;
+ }
+
+ // load (select (cond, P, null)) -> load P
+ if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
+ if (C->isNullValue()) {
+ LI.setOperand(0, SI->getOperand(1));
+ return &LI;
+ }
+ }
+ }
+ return 0;
+}
+
+/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
+/// when possible. This makes it generally easy to do alias analysis and/or
+/// SROA/mem2reg of the memory object.
+static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
+ User *CI = cast<User>(SI.getOperand(1));
+ Value *CastOp = CI->getOperand(0);
+
+ const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
+ const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
+ if (SrcTy == 0) return 0;
+
+ const Type *SrcPTy = SrcTy->getElementType();
+
+ if (!DestPTy->isInteger() && !isa<PointerType>(DestPTy))
+ return 0;
+
+ /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
+ /// to its first element. This allows us to handle things like:
+ /// store i32 xxx, (bitcast {foo*, float}* %P to i32*)
+ /// on 32-bit hosts.
+ SmallVector<Value*, 4> NewGEPIndices;
+
+ // If the source is an array, the code below will not succeed. Check to
+ // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
+ // constants.
+ if (isa<ArrayType>(SrcPTy) || isa<StructType>(SrcPTy)) {
+ // Index through pointer.
+ Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext()));
+ NewGEPIndices.push_back(Zero);
+
+ while (1) {
+ if (const StructType *STy = dyn_cast<StructType>(SrcPTy)) {
+ if (!STy->getNumElements()) /* Struct can be empty {} */
+ break;
+ NewGEPIndices.push_back(Zero);
+ SrcPTy = STy->getElementType(0);
+ } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
+ NewGEPIndices.push_back(Zero);
+ SrcPTy = ATy->getElementType();
+ } else {
+ break;
+ }
+ }
+
+ SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
+ }
+
+ if (!SrcPTy->isInteger() && !isa<PointerType>(SrcPTy))
+ return 0;
+
+ // If the pointers point into different address spaces or if they point to
+ // values with different sizes, we can't do the transformation.
+ if (!IC.getTargetData() ||
+ SrcTy->getAddressSpace() !=
+ cast<PointerType>(CI->getType())->getAddressSpace() ||
+ IC.getTargetData()->getTypeSizeInBits(SrcPTy) !=
+ IC.getTargetData()->getTypeSizeInBits(DestPTy))
+ return 0;
+
+ // Okay, we are casting from one integer or pointer type to another of
+ // the same size. Instead of casting the pointer before
+ // the store, cast the value to be stored.
+ Value *NewCast;
+ Value *SIOp0 = SI.getOperand(0);
+ Instruction::CastOps opcode = Instruction::BitCast;
+ const Type* CastSrcTy = SIOp0->getType();
+ const Type* CastDstTy = SrcPTy;
+ if (isa<PointerType>(CastDstTy)) {
+ if (CastSrcTy->isInteger())
+ opcode = Instruction::IntToPtr;
+ } else if (isa<IntegerType>(CastDstTy)) {
+ if (isa<PointerType>(SIOp0->getType()))
+ opcode = Instruction::PtrToInt;
+ }
+
+ // SIOp0 is a pointer to aggregate and this is a store to the first field,
+ // emit a GEP to index into its first field.
+ if (!NewGEPIndices.empty())
+ CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices.begin(),
+ NewGEPIndices.end());
+
+ NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
+ SIOp0->getName()+".c");
+ return new StoreInst(NewCast, CastOp);
+}
+
+/// equivalentAddressValues - Test if A and B will obviously have the same
+/// value. This includes recognizing that %t0 and %t1 will have the same
+/// value in code like this:
+/// %t0 = getelementptr \@a, 0, 3
+/// store i32 0, i32* %t0
+/// %t1 = getelementptr \@a, 0, 3
+/// %t2 = load i32* %t1
+///
+static bool equivalentAddressValues(Value *A, Value *B) {
+ // Test if the values are trivially equivalent.
+ if (A == B) return true;
+
+ // Test if the values come form identical arithmetic instructions.
+ // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
+ // its only used to compare two uses within the same basic block, which
+ // means that they'll always either have the same value or one of them
+ // will have an undefined value.
+ if (isa<BinaryOperator>(A) ||
+ isa<CastInst>(A) ||
+ isa<PHINode>(A) ||
+ isa<GetElementPtrInst>(A))
+ if (Instruction *BI = dyn_cast<Instruction>(B))
+ if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
+ return true;
+
+ // Otherwise they may not be equivalent.
+ return false;
+}
+
+// If this instruction has two uses, one of which is a llvm.dbg.declare,
+// return the llvm.dbg.declare.
+DbgDeclareInst *InstCombiner::hasOneUsePlusDeclare(Value *V) {
+ if (!V->hasNUses(2))
+ return 0;
+ for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
+ UI != E; ++UI) {
+ if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI))
+ return DI;
+ if (isa<BitCastInst>(UI) && UI->hasOneUse()) {
+ if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI->use_begin()))
+ return DI;
+ }
+ }
+ return 0;
+}
+
+Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
+ Value *Val = SI.getOperand(0);
+ Value *Ptr = SI.getOperand(1);
+
+ // If the RHS is an alloca with a single use, zapify the store, making the
+ // alloca dead.
+ // If the RHS is an alloca with a two uses, the other one being a
+ // llvm.dbg.declare, zapify the store and the declare, making the
+ // alloca dead. We must do this to prevent declare's from affecting
+ // codegen.
+ if (!SI.isVolatile()) {
+ if (Ptr->hasOneUse()) {
+ if (isa<AllocaInst>(Ptr))
+ return EraseInstFromFunction(SI);
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
+ if (isa<AllocaInst>(GEP->getOperand(0))) {
+ if (GEP->getOperand(0)->hasOneUse())
+ return EraseInstFromFunction(SI);
+ if (DbgDeclareInst *DI = hasOneUsePlusDeclare(GEP->getOperand(0))) {
+ EraseInstFromFunction(*DI);
+ return EraseInstFromFunction(SI);
+ }
+ }
+ }
+ }
+ if (DbgDeclareInst *DI = hasOneUsePlusDeclare(Ptr)) {
+ EraseInstFromFunction(*DI);
+ return EraseInstFromFunction(SI);
+ }
+ }
+
+ // Attempt to improve the alignment.
+ if (TD) {
+ unsigned KnownAlign =
+ GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()));
+ if (KnownAlign >
+ (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
+ SI.getAlignment()))
+ SI.setAlignment(KnownAlign);
+ }
+
+ // Do really simple DSE, to catch cases where there are several consecutive
+ // stores to the same location, separated by a few arithmetic operations. This
+ // situation often occurs with bitfield accesses.
+ BasicBlock::iterator BBI = &SI;
+ for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
+ --ScanInsts) {
+ --BBI;
+ // Don't count debug info directives, lest they affect codegen,
+ // and we skip pointer-to-pointer bitcasts, which are NOPs.
+ // It is necessary for correctness to skip those that feed into a
+ // llvm.dbg.declare, as these are not present when debugging is off.
+ if (isa<DbgInfoIntrinsic>(BBI) ||
+ (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) {
+ ScanInsts++;
+ continue;
+ }
+
+ if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
+ // Prev store isn't volatile, and stores to the same location?
+ if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1),
+ SI.getOperand(1))) {
+ ++NumDeadStore;
+ ++BBI;
+ EraseInstFromFunction(*PrevSI);
+ continue;
+ }
+ break;
+ }
+
+ // If this is a load, we have to stop. However, if the loaded value is from
+ // the pointer we're loading and is producing the pointer we're storing,
+ // then *this* store is dead (X = load P; store X -> P).
+ if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
+ if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
+ !SI.isVolatile())
+ return EraseInstFromFunction(SI);
+
+ // Otherwise, this is a load from some other location. Stores before it
+ // may not be dead.
+ break;
+ }
+
+ // Don't skip over loads or things that can modify memory.
+ if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
+ break;
+ }
+
+
+ if (SI.isVolatile()) return 0; // Don't hack volatile stores.
+
+ // store X, null -> turns into 'unreachable' in SimplifyCFG
+ if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
+ if (!isa<UndefValue>(Val)) {
+ SI.setOperand(0, UndefValue::get(Val->getType()));
+ if (Instruction *U = dyn_cast<Instruction>(Val))
+ Worklist.Add(U); // Dropped a use.
+ }
+ return 0; // Do not modify these!
+ }
+
+ // store undef, Ptr -> noop
+ if (isa<UndefValue>(Val))
+ return EraseInstFromFunction(SI);
+
+ // If the pointer destination is a cast, see if we can fold the cast into the
+ // source instead.
+ if (isa<CastInst>(Ptr))
+ if (Instruction *Res = InstCombineStoreToCast(*this, SI))
+ return Res;
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
+ if (CE->isCast())
+ if (Instruction *Res = InstCombineStoreToCast(*this, SI))
+ return Res;
+
+
+ // If this store is the last instruction in the basic block (possibly
+ // excepting debug info instructions and the pointer bitcasts that feed
+ // into them), and if the block ends with an unconditional branch, try
+ // to move it to the successor block.
+ BBI = &SI;
+ do {
+ ++BBI;
+ } while (isa<DbgInfoIntrinsic>(BBI) ||
+ (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType())));
+ if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
+ if (BI->isUnconditional())
+ if (SimplifyStoreAtEndOfBlock(SI))
+ return 0; // xform done!
+
+ return 0;
+}
+
+/// SimplifyStoreAtEndOfBlock - Turn things like:
+/// if () { *P = v1; } else { *P = v2 }
+/// into a phi node with a store in the successor.
+///
+/// Simplify things like:
+/// *P = v1; if () { *P = v2; }
+/// into a phi node with a store in the successor.
+///
+bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
+ BasicBlock *StoreBB = SI.getParent();
+
+ // Check to see if the successor block has exactly two incoming edges. If
+ // so, see if the other predecessor contains a store to the same location.
+ // if so, insert a PHI node (if needed) and move the stores down.
+ BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
+
+ // Determine whether Dest has exactly two predecessors and, if so, compute
+ // the other predecessor.
+ pred_iterator PI = pred_begin(DestBB);
+ BasicBlock *OtherBB = 0;
+ if (*PI != StoreBB)
+ OtherBB = *PI;
+ ++PI;
+ if (PI == pred_end(DestBB))
+ return false;
+
+ if (*PI != StoreBB) {
+ if (OtherBB)
+ return false;
+ OtherBB = *PI;
+ }
+ if (++PI != pred_end(DestBB))
+ return false;
+
+ // Bail out if all the relevant blocks aren't distinct (this can happen,
+ // for example, if SI is in an infinite loop)
+ if (StoreBB == DestBB || OtherBB == DestBB)
+ return false;
+
+ // Verify that the other block ends in a branch and is not otherwise empty.
+ BasicBlock::iterator BBI = OtherBB->getTerminator();
+ BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
+ if (!OtherBr || BBI == OtherBB->begin())
+ return false;
+
+ // If the other block ends in an unconditional branch, check for the 'if then
+ // else' case. there is an instruction before the branch.
+ StoreInst *OtherStore = 0;
+ if (OtherBr->isUnconditional()) {
+ --BBI;
+ // Skip over debugging info.
+ while (isa<DbgInfoIntrinsic>(BBI) ||
+ (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) {
+ if (BBI==OtherBB->begin())
+ return false;
+ --BBI;
+ }
+ // If this isn't a store, isn't a store to the same location, or if the
+ // alignments differ, bail out.
+ OtherStore = dyn_cast<StoreInst>(BBI);
+ if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
+ OtherStore->getAlignment() != SI.getAlignment())
+ return false;
+ } else {
+ // Otherwise, the other block ended with a conditional branch. If one of the
+ // destinations is StoreBB, then we have the if/then case.
+ if (OtherBr->getSuccessor(0) != StoreBB &&
+ OtherBr->getSuccessor(1) != StoreBB)
+ return false;
+
+ // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
+ // if/then triangle. See if there is a store to the same ptr as SI that
+ // lives in OtherBB.
+ for (;; --BBI) {
+ // Check to see if we find the matching store.
+ if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
+ if (OtherStore->getOperand(1) != SI.getOperand(1) ||
+ OtherStore->getAlignment() != SI.getAlignment())
+ return false;
+ break;
+ }
+ // If we find something that may be using or overwriting the stored
+ // value, or if we run out of instructions, we can't do the xform.
+ if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
+ BBI == OtherBB->begin())
+ return false;
+ }
+
+ // In order to eliminate the store in OtherBr, we have to
+ // make sure nothing reads or overwrites the stored value in
+ // StoreBB.
+ for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
+ // FIXME: This should really be AA driven.
+ if (I->mayReadFromMemory() || I->mayWriteToMemory())
+ return false;
+ }
+ }
+
+ // Insert a PHI node now if we need it.
+ Value *MergedVal = OtherStore->getOperand(0);
+ if (MergedVal != SI.getOperand(0)) {
+ PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
+ PN->reserveOperandSpace(2);
+ PN->addIncoming(SI.getOperand(0), SI.getParent());
+ PN->addIncoming(OtherStore->getOperand(0), OtherBB);
+ MergedVal = InsertNewInstBefore(PN, DestBB->front());
+ }
+
+ // Advance to a place where it is safe to insert the new store and
+ // insert it.
+ BBI = DestBB->getFirstNonPHI();
+ InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
+ OtherStore->isVolatile(),
+ SI.getAlignment()), *BBI);
+
+ // Nuke the old stores.
+ EraseInstFromFunction(SI);
+ EraseInstFromFunction(*OtherStore);
+ return true;
+}
diff --git a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
new file mode 100644
index 0000000..6afc0cd
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
@@ -0,0 +1,695 @@
+//===- InstCombineMulDivRem.cpp -------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
+// srem, urem, frem.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Support/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+/// SubOne - Subtract one from a ConstantInt.
+static Constant *SubOne(ConstantInt *C) {
+ return ConstantInt::get(C->getContext(), C->getValue()-1);
+}
+
+/// MultiplyOverflows - True if the multiply can not be expressed in an int
+/// this size.
+static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
+ uint32_t W = C1->getBitWidth();
+ APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
+ if (sign) {
+ LHSExt.sext(W * 2);
+ RHSExt.sext(W * 2);
+ } else {
+ LHSExt.zext(W * 2);
+ RHSExt.zext(W * 2);
+ }
+
+ APInt MulExt = LHSExt * RHSExt;
+
+ if (!sign)
+ return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
+
+ APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
+ APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
+ return MulExt.slt(Min) || MulExt.sgt(Max);
+}
+
+Instruction *InstCombiner::visitMul(BinaryOperator &I) {
+ bool Changed = SimplifyCommutative(I);
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (isa<UndefValue>(Op1)) // undef * X -> 0
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+
+ // Simplify mul instructions with a constant RHS.
+ if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1C)) {
+
+ // ((X << C1)*C2) == (X * (C2 << C1))
+ if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
+ if (SI->getOpcode() == Instruction::Shl)
+ if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
+ return BinaryOperator::CreateMul(SI->getOperand(0),
+ ConstantExpr::getShl(CI, ShOp));
+
+ if (CI->isZero())
+ return ReplaceInstUsesWith(I, Op1C); // X * 0 == 0
+ if (CI->equalsInt(1)) // X * 1 == X
+ return ReplaceInstUsesWith(I, Op0);
+ if (CI->isAllOnesValue()) // X * -1 == 0 - X
+ return BinaryOperator::CreateNeg(Op0, I.getName());
+
+ const APInt& Val = cast<ConstantInt>(CI)->getValue();
+ if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
+ return BinaryOperator::CreateShl(Op0,
+ ConstantInt::get(Op0->getType(), Val.logBase2()));
+ }
+ } else if (isa<VectorType>(Op1C->getType())) {
+ if (Op1C->isNullValue())
+ return ReplaceInstUsesWith(I, Op1C);
+
+ if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1C)) {
+ if (Op1V->isAllOnesValue()) // X * -1 == 0 - X
+ return BinaryOperator::CreateNeg(Op0, I.getName());
+
+ // As above, vector X*splat(1.0) -> X in all defined cases.
+ if (Constant *Splat = Op1V->getSplatValue()) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Splat))
+ if (CI->equalsInt(1))
+ return ReplaceInstUsesWith(I, Op0);
+ }
+ }
+ }
+
+ if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
+ if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
+ isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1C)) {
+ // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
+ Value *Add = Builder->CreateMul(Op0I->getOperand(0), Op1C, "tmp");
+ Value *C1C2 = Builder->CreateMul(Op1C, Op0I->getOperand(1));
+ return BinaryOperator::CreateAdd(Add, C1C2);
+
+ }
+
+ // Try to fold constant mul into select arguments.
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+
+ if (isa<PHINode>(Op0))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ }
+
+ if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
+ if (Value *Op1v = dyn_castNegVal(Op1))
+ return BinaryOperator::CreateMul(Op0v, Op1v);
+
+ // (X / Y) * Y = X - (X % Y)
+ // (X / Y) * -Y = (X % Y) - X
+ {
+ Value *Op1C = Op1;
+ BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
+ if (!BO ||
+ (BO->getOpcode() != Instruction::UDiv &&
+ BO->getOpcode() != Instruction::SDiv)) {
+ Op1C = Op0;
+ BO = dyn_cast<BinaryOperator>(Op1);
+ }
+ Value *Neg = dyn_castNegVal(Op1C);
+ if (BO && BO->hasOneUse() &&
+ (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
+ (BO->getOpcode() == Instruction::UDiv ||
+ BO->getOpcode() == Instruction::SDiv)) {
+ Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
+
+ // If the division is exact, X % Y is zero.
+ if (SDivOperator *SDiv = dyn_cast<SDivOperator>(BO))
+ if (SDiv->isExact()) {
+ if (Op1BO == Op1C)
+ return ReplaceInstUsesWith(I, Op0BO);
+ return BinaryOperator::CreateNeg(Op0BO);
+ }
+
+ Value *Rem;
+ if (BO->getOpcode() == Instruction::UDiv)
+ Rem = Builder->CreateURem(Op0BO, Op1BO);
+ else
+ Rem = Builder->CreateSRem(Op0BO, Op1BO);
+ Rem->takeName(BO);
+
+ if (Op1BO == Op1C)
+ return BinaryOperator::CreateSub(Op0BO, Rem);
+ return BinaryOperator::CreateSub(Rem, Op0BO);
+ }
+ }
+
+ /// i1 mul -> i1 and.
+ if (I.getType()->isInteger(1))
+ return BinaryOperator::CreateAnd(Op0, Op1);
+
+ // X*(1 << Y) --> X << Y
+ // (1 << Y)*X --> X << Y
+ {
+ Value *Y;
+ if (match(Op0, m_Shl(m_One(), m_Value(Y))))
+ return BinaryOperator::CreateShl(Op1, Y);
+ if (match(Op1, m_Shl(m_One(), m_Value(Y))))
+ return BinaryOperator::CreateShl(Op0, Y);
+ }
+
+ // If one of the operands of the multiply is a cast from a boolean value, then
+ // we know the bool is either zero or one, so this is a 'masking' multiply.
+ // X * Y (where Y is 0 or 1) -> X & (0-Y)
+ if (!isa<VectorType>(I.getType())) {
+ // -2 is "-1 << 1" so it is all bits set except the low one.
+ APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
+
+ Value *BoolCast = 0, *OtherOp = 0;
+ if (MaskedValueIsZero(Op0, Negative2))
+ BoolCast = Op0, OtherOp = Op1;
+ else if (MaskedValueIsZero(Op1, Negative2))
+ BoolCast = Op1, OtherOp = Op0;
+
+ if (BoolCast) {
+ Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
+ BoolCast, "tmp");
+ return BinaryOperator::CreateAnd(V, OtherOp);
+ }
+ }
+
+ return Changed ? &I : 0;
+}
+
+Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
+ bool Changed = SimplifyCommutative(I);
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ // Simplify mul instructions with a constant RHS...
+ if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
+ if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) {
+ // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
+ // ANSI says we can drop signals, so we can do this anyway." (from GCC)
+ if (Op1F->isExactlyValue(1.0))
+ return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
+ } else if (isa<VectorType>(Op1C->getType())) {
+ if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1C)) {
+ // As above, vector X*splat(1.0) -> X in all defined cases.
+ if (Constant *Splat = Op1V->getSplatValue()) {
+ if (ConstantFP *F = dyn_cast<ConstantFP>(Splat))
+ if (F->isExactlyValue(1.0))
+ return ReplaceInstUsesWith(I, Op0);
+ }
+ }
+ }
+
+ // Try to fold constant mul into select arguments.
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+
+ if (isa<PHINode>(Op0))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ }
+
+ if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y
+ if (Value *Op1v = dyn_castFNegVal(Op1))
+ return BinaryOperator::CreateFMul(Op0v, Op1v);
+
+ return Changed ? &I : 0;
+}
+
+/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
+/// instruction.
+bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
+ SelectInst *SI = cast<SelectInst>(I.getOperand(1));
+
+ // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
+ int NonNullOperand = -1;
+ if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
+ if (ST->isNullValue())
+ NonNullOperand = 2;
+ // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
+ if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
+ if (ST->isNullValue())
+ NonNullOperand = 1;
+
+ if (NonNullOperand == -1)
+ return false;
+
+ Value *SelectCond = SI->getOperand(0);
+
+ // Change the div/rem to use 'Y' instead of the select.
+ I.setOperand(1, SI->getOperand(NonNullOperand));
+
+ // Okay, we know we replace the operand of the div/rem with 'Y' with no
+ // problem. However, the select, or the condition of the select may have
+ // multiple uses. Based on our knowledge that the operand must be non-zero,
+ // propagate the known value for the select into other uses of it, and
+ // propagate a known value of the condition into its other users.
+
+ // If the select and condition only have a single use, don't bother with this,
+ // early exit.
+ if (SI->use_empty() && SelectCond->hasOneUse())
+ return true;
+
+ // Scan the current block backward, looking for other uses of SI.
+ BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
+
+ while (BBI != BBFront) {
+ --BBI;
+ // If we found a call to a function, we can't assume it will return, so
+ // information from below it cannot be propagated above it.
+ if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
+ break;
+
+ // Replace uses of the select or its condition with the known values.
+ for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
+ I != E; ++I) {
+ if (*I == SI) {
+ *I = SI->getOperand(NonNullOperand);
+ Worklist.Add(BBI);
+ } else if (*I == SelectCond) {
+ *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) :
+ ConstantInt::getFalse(BBI->getContext());
+ Worklist.Add(BBI);
+ }
+ }
+
+ // If we past the instruction, quit looking for it.
+ if (&*BBI == SI)
+ SI = 0;
+ if (&*BBI == SelectCond)
+ SelectCond = 0;
+
+ // If we ran out of things to eliminate, break out of the loop.
+ if (SelectCond == 0 && SI == 0)
+ break;
+
+ }
+ return true;
+}
+
+
+/// This function implements the transforms on div instructions that work
+/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
+/// used by the visitors to those instructions.
+/// @brief Transforms common to all three div instructions
+Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ // undef / X -> 0 for integer.
+ // undef / X -> undef for FP (the undef could be a snan).
+ if (isa<UndefValue>(Op0)) {
+ if (Op0->getType()->isFPOrFPVector())
+ return ReplaceInstUsesWith(I, Op0);
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+ }
+
+ // X / undef -> undef
+ if (isa<UndefValue>(Op1))
+ return ReplaceInstUsesWith(I, Op1);
+
+ return 0;
+}
+
+/// This function implements the transforms common to both integer division
+/// instructions (udiv and sdiv). It is called by the visitors to those integer
+/// division instructions.
+/// @brief Common integer divide transforms
+Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ // (sdiv X, X) --> 1 (udiv X, X) --> 1
+ if (Op0 == Op1) {
+ if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
+ Constant *CI = ConstantInt::get(Ty->getElementType(), 1);
+ std::vector<Constant*> Elts(Ty->getNumElements(), CI);
+ return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
+ }
+
+ Constant *CI = ConstantInt::get(I.getType(), 1);
+ return ReplaceInstUsesWith(I, CI);
+ }
+
+ if (Instruction *Common = commonDivTransforms(I))
+ return Common;
+
+ // Handle cases involving: [su]div X, (select Cond, Y, Z)
+ // This does not apply for fdiv.
+ if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
+ return &I;
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
+ // div X, 1 == X
+ if (RHS->equalsInt(1))
+ return ReplaceInstUsesWith(I, Op0);
+
+ // (X / C1) / C2 -> X / (C1*C2)
+ if (Instruction *LHS = dyn_cast<Instruction>(Op0))
+ if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
+ if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
+ if (MultiplyOverflows(RHS, LHSRHS,
+ I.getOpcode()==Instruction::SDiv))
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+ else
+ return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
+ ConstantExpr::getMul(RHS, LHSRHS));
+ }
+
+ if (!RHS->isZero()) { // avoid X udiv 0
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+ if (isa<PHINode>(Op0))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ }
+ }
+
+ // 0 / X == 0, we don't need to preserve faults!
+ if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
+ if (LHS->equalsInt(0))
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+
+ // It can't be division by zero, hence it must be division by one.
+ if (I.getType()->isInteger(1))
+ return ReplaceInstUsesWith(I, Op0);
+
+ if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
+ if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue()))
+ // div X, 1 == X
+ if (X->isOne())
+ return ReplaceInstUsesWith(I, Op0);
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ // Handle the integer div common cases
+ if (Instruction *Common = commonIDivTransforms(I))
+ return Common;
+
+ if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
+ // X udiv C^2 -> X >> C
+ // Check to see if this is an unsigned division with an exact power of 2,
+ // if so, convert to a right shift.
+ if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
+ return BinaryOperator::CreateLShr(Op0,
+ ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
+
+ // X udiv C, where C >= signbit
+ if (C->getValue().isNegative()) {
+ Value *IC = Builder->CreateICmpULT( Op0, C);
+ return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
+ ConstantInt::get(I.getType(), 1));
+ }
+ }
+
+ // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
+ if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
+ if (RHSI->getOpcode() == Instruction::Shl &&
+ isa<ConstantInt>(RHSI->getOperand(0))) {
+ const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
+ if (C1.isPowerOf2()) {
+ Value *N = RHSI->getOperand(1);
+ const Type *NTy = N->getType();
+ if (uint32_t C2 = C1.logBase2())
+ N = Builder->CreateAdd(N, ConstantInt::get(NTy, C2), "tmp");
+ return BinaryOperator::CreateLShr(Op0, N);
+ }
+ }
+ }
+
+ // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
+ // where C1&C2 are powers of two.
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
+ if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
+ if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
+ const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
+ if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
+ // Compute the shift amounts
+ uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
+ // Construct the "on true" case of the select
+ Constant *TC = ConstantInt::get(Op0->getType(), TSA);
+ Value *TSI = Builder->CreateLShr(Op0, TC, SI->getName()+".t");
+
+ // Construct the "on false" case of the select
+ Constant *FC = ConstantInt::get(Op0->getType(), FSA);
+ Value *FSI = Builder->CreateLShr(Op0, FC, SI->getName()+".f");
+
+ // construct the select instruction and return it.
+ return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
+ }
+ }
+ return 0;
+}
+
+Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ // Handle the integer div common cases
+ if (Instruction *Common = commonIDivTransforms(I))
+ return Common;
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
+ // sdiv X, -1 == -X
+ if (RHS->isAllOnesValue())
+ return BinaryOperator::CreateNeg(Op0);
+
+ // sdiv X, C --> ashr X, log2(C)
+ if (cast<SDivOperator>(&I)->isExact() &&
+ RHS->getValue().isNonNegative() &&
+ RHS->getValue().isPowerOf2()) {
+ Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
+ RHS->getValue().exactLogBase2());
+ return BinaryOperator::CreateAShr(Op0, ShAmt, I.getName());
+ }
+
+ // -X/C --> X/-C provided the negation doesn't overflow.
+ if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
+ if (isa<Constant>(Sub->getOperand(0)) &&
+ cast<Constant>(Sub->getOperand(0))->isNullValue() &&
+ Sub->hasNoSignedWrap())
+ return BinaryOperator::CreateSDiv(Sub->getOperand(1),
+ ConstantExpr::getNeg(RHS));
+ }
+
+ // If the sign bits of both operands are zero (i.e. we can prove they are
+ // unsigned inputs), turn this into a udiv.
+ if (I.getType()->isInteger()) {
+ APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
+ if (MaskedValueIsZero(Op0, Mask)) {
+ if (MaskedValueIsZero(Op1, Mask)) {
+ // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
+ return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ }
+ ConstantInt *ShiftedInt;
+ if (match(Op1, m_Shl(m_ConstantInt(ShiftedInt), m_Value())) &&
+ ShiftedInt->getValue().isPowerOf2()) {
+ // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
+ // Safe because the only negative value (1 << Y) can take on is
+ // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
+ // the sign bit set.
+ return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ }
+ }
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
+ return commonDivTransforms(I);
+}
+
+/// This function implements the transforms on rem instructions that work
+/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
+/// is used by the visitors to those instructions.
+/// @brief Transforms common to all three rem instructions
+Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (isa<UndefValue>(Op0)) { // undef % X -> 0
+ if (I.getType()->isFPOrFPVector())
+ return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+ }
+ if (isa<UndefValue>(Op1))
+ return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
+
+ // Handle cases involving: rem X, (select Cond, Y, Z)
+ if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
+ return &I;
+
+ return 0;
+}
+
+/// This function implements the transforms common to both integer remainder
+/// instructions (urem and srem). It is called by the visitors to those integer
+/// remainder instructions.
+/// @brief Common integer remainder transforms
+Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Instruction *common = commonRemTransforms(I))
+ return common;
+
+ // 0 % X == 0 for integer, we don't need to preserve faults!
+ if (Constant *LHS = dyn_cast<Constant>(Op0))
+ if (LHS->isNullValue())
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
+ // X % 0 == undef, we don't need to preserve faults!
+ if (RHS->equalsInt(0))
+ return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
+
+ if (RHS->equalsInt(1)) // X % 1 == 0
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+
+ if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+ } else if (isa<PHINode>(Op0I)) {
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ }
+
+ // See if we can fold away this rem instruction.
+ if (SimplifyDemandedInstructionBits(I))
+ return &I;
+ }
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitURem(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Instruction *common = commonIRemTransforms(I))
+ return common;
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
+ // X urem C^2 -> X and C
+ // Check to see if this is an unsigned remainder with an exact power of 2,
+ // if so, convert to a bitwise and.
+ if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
+ if (C->getValue().isPowerOf2())
+ return BinaryOperator::CreateAnd(Op0, SubOne(C));
+ }
+
+ if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
+ // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
+ if (RHSI->getOpcode() == Instruction::Shl &&
+ isa<ConstantInt>(RHSI->getOperand(0))) {
+ if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
+ Constant *N1 = Constant::getAllOnesValue(I.getType());
+ Value *Add = Builder->CreateAdd(RHSI, N1, "tmp");
+ return BinaryOperator::CreateAnd(Op0, Add);
+ }
+ }
+ }
+
+ // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
+ // where C1&C2 are powers of two.
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
+ if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
+ if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
+ // STO == 0 and SFO == 0 handled above.
+ if ((STO->getValue().isPowerOf2()) &&
+ (SFO->getValue().isPowerOf2())) {
+ Value *TrueAnd = Builder->CreateAnd(Op0, SubOne(STO),
+ SI->getName()+".t");
+ Value *FalseAnd = Builder->CreateAnd(Op0, SubOne(SFO),
+ SI->getName()+".f");
+ return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
+ }
+ }
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ // Handle the integer rem common cases
+ if (Instruction *Common = commonIRemTransforms(I))
+ return Common;
+
+ if (Value *RHSNeg = dyn_castNegVal(Op1))
+ if (!isa<Constant>(RHSNeg) ||
+ (isa<ConstantInt>(RHSNeg) &&
+ cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
+ // X % -Y -> X % Y
+ Worklist.AddValue(I.getOperand(1));
+ I.setOperand(1, RHSNeg);
+ return &I;
+ }
+
+ // If the sign bits of both operands are zero (i.e. we can prove they are
+ // unsigned inputs), turn this into a urem.
+ if (I.getType()->isInteger()) {
+ APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
+ if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
+ // X srem Y -> X urem Y, iff X and Y don't have sign bit set
+ return BinaryOperator::CreateURem(Op0, Op1, I.getName());
+ }
+ }
+
+ // If it's a constant vector, flip any negative values positive.
+ if (ConstantVector *RHSV = dyn_cast<ConstantVector>(Op1)) {
+ unsigned VWidth = RHSV->getNumOperands();
+
+ bool hasNegative = false;
+ for (unsigned i = 0; !hasNegative && i != VWidth; ++i)
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i)))
+ if (RHS->getValue().isNegative())
+ hasNegative = true;
+
+ if (hasNegative) {
+ std::vector<Constant *> Elts(VWidth);
+ for (unsigned i = 0; i != VWidth; ++i) {
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) {
+ if (RHS->getValue().isNegative())
+ Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
+ else
+ Elts[i] = RHS;
+ }
+ }
+
+ Constant *NewRHSV = ConstantVector::get(Elts);
+ if (NewRHSV != RHSV) {
+ Worklist.AddValue(I.getOperand(1));
+ I.setOperand(1, NewRHSV);
+ return &I;
+ }
+ }
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
+ return commonRemTransforms(I);
+}
+
diff --git a/lib/Transforms/InstCombine/InstCombinePHI.cpp b/lib/Transforms/InstCombine/InstCombinePHI.cpp
new file mode 100644
index 0000000..bb7632f
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombinePHI.cpp
@@ -0,0 +1,841 @@
+//===- InstCombinePHI.cpp -------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitPHINode function.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/STLExtras.h"
+using namespace llvm;
+
+/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
+/// and if a/b/c and the add's all have a single use, turn this into a phi
+/// and a single binop.
+Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
+ Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
+ assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
+ unsigned Opc = FirstInst->getOpcode();
+ Value *LHSVal = FirstInst->getOperand(0);
+ Value *RHSVal = FirstInst->getOperand(1);
+
+ const Type *LHSType = LHSVal->getType();
+ const Type *RHSType = RHSVal->getType();
+
+ // Scan to see if all operands are the same opcode, and all have one use.
+ for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
+ Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
+ if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
+ // Verify type of the LHS matches so we don't fold cmp's of different
+ // types or GEP's with different index types.
+ I->getOperand(0)->getType() != LHSType ||
+ I->getOperand(1)->getType() != RHSType)
+ return 0;
+
+ // If they are CmpInst instructions, check their predicates
+ if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
+ if (cast<CmpInst>(I)->getPredicate() !=
+ cast<CmpInst>(FirstInst)->getPredicate())
+ return 0;
+
+ // Keep track of which operand needs a phi node.
+ if (I->getOperand(0) != LHSVal) LHSVal = 0;
+ if (I->getOperand(1) != RHSVal) RHSVal = 0;
+ }
+
+ // If both LHS and RHS would need a PHI, don't do this transformation,
+ // because it would increase the number of PHIs entering the block,
+ // which leads to higher register pressure. This is especially
+ // bad when the PHIs are in the header of a loop.
+ if (!LHSVal && !RHSVal)
+ return 0;
+
+ // Otherwise, this is safe to transform!
+
+ Value *InLHS = FirstInst->getOperand(0);
+ Value *InRHS = FirstInst->getOperand(1);
+ PHINode *NewLHS = 0, *NewRHS = 0;
+ if (LHSVal == 0) {
+ NewLHS = PHINode::Create(LHSType,
+ FirstInst->getOperand(0)->getName() + ".pn");
+ NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
+ NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
+ InsertNewInstBefore(NewLHS, PN);
+ LHSVal = NewLHS;
+ }
+
+ if (RHSVal == 0) {
+ NewRHS = PHINode::Create(RHSType,
+ FirstInst->getOperand(1)->getName() + ".pn");
+ NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
+ NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
+ InsertNewInstBefore(NewRHS, PN);
+ RHSVal = NewRHS;
+ }
+
+ // Add all operands to the new PHIs.
+ if (NewLHS || NewRHS) {
+ for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
+ Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
+ if (NewLHS) {
+ Value *NewInLHS = InInst->getOperand(0);
+ NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
+ }
+ if (NewRHS) {
+ Value *NewInRHS = InInst->getOperand(1);
+ NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
+ }
+ }
+ }
+
+ if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
+ return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
+ CmpInst *CIOp = cast<CmpInst>(FirstInst);
+ return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
+ LHSVal, RHSVal);
+}
+
+Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
+ GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
+
+ SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
+ FirstInst->op_end());
+ // This is true if all GEP bases are allocas and if all indices into them are
+ // constants.
+ bool AllBasePointersAreAllocas = true;
+
+ // We don't want to replace this phi if the replacement would require
+ // more than one phi, which leads to higher register pressure. This is
+ // especially bad when the PHIs are in the header of a loop.
+ bool NeededPhi = false;
+
+ // Scan to see if all operands are the same opcode, and all have one use.
+ for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
+ GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
+ if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
+ GEP->getNumOperands() != FirstInst->getNumOperands())
+ return 0;
+
+ // Keep track of whether or not all GEPs are of alloca pointers.
+ if (AllBasePointersAreAllocas &&
+ (!isa<AllocaInst>(GEP->getOperand(0)) ||
+ !GEP->hasAllConstantIndices()))
+ AllBasePointersAreAllocas = false;
+
+ // Compare the operand lists.
+ for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
+ if (FirstInst->getOperand(op) == GEP->getOperand(op))
+ continue;
+
+ // Don't merge two GEPs when two operands differ (introducing phi nodes)
+ // if one of the PHIs has a constant for the index. The index may be
+ // substantially cheaper to compute for the constants, so making it a
+ // variable index could pessimize the path. This also handles the case
+ // for struct indices, which must always be constant.
+ if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
+ isa<ConstantInt>(GEP->getOperand(op)))
+ return 0;
+
+ if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
+ return 0;
+
+ // If we already needed a PHI for an earlier operand, and another operand
+ // also requires a PHI, we'd be introducing more PHIs than we're
+ // eliminating, which increases register pressure on entry to the PHI's
+ // block.
+ if (NeededPhi)
+ return 0;
+
+ FixedOperands[op] = 0; // Needs a PHI.
+ NeededPhi = true;
+ }
+ }
+
+ // If all of the base pointers of the PHI'd GEPs are from allocas, don't
+ // bother doing this transformation. At best, this will just save a bit of
+ // offset calculation, but all the predecessors will have to materialize the
+ // stack address into a register anyway. We'd actually rather *clone* the
+ // load up into the predecessors so that we have a load of a gep of an alloca,
+ // which can usually all be folded into the load.
+ if (AllBasePointersAreAllocas)
+ return 0;
+
+ // Otherwise, this is safe to transform. Insert PHI nodes for each operand
+ // that is variable.
+ SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
+
+ bool HasAnyPHIs = false;
+ for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
+ if (FixedOperands[i]) continue; // operand doesn't need a phi.
+ Value *FirstOp = FirstInst->getOperand(i);
+ PHINode *NewPN = PHINode::Create(FirstOp->getType(),
+ FirstOp->getName()+".pn");
+ InsertNewInstBefore(NewPN, PN);
+
+ NewPN->reserveOperandSpace(e);
+ NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
+ OperandPhis[i] = NewPN;
+ FixedOperands[i] = NewPN;
+ HasAnyPHIs = true;
+ }
+
+
+ // Add all operands to the new PHIs.
+ if (HasAnyPHIs) {
+ for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
+ GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
+ BasicBlock *InBB = PN.getIncomingBlock(i);
+
+ for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
+ if (PHINode *OpPhi = OperandPhis[op])
+ OpPhi->addIncoming(InGEP->getOperand(op), InBB);
+ }
+ }
+
+ Value *Base = FixedOperands[0];
+ return cast<GEPOperator>(FirstInst)->isInBounds() ?
+ GetElementPtrInst::CreateInBounds(Base, FixedOperands.begin()+1,
+ FixedOperands.end()) :
+ GetElementPtrInst::Create(Base, FixedOperands.begin()+1,
+ FixedOperands.end());
+}
+
+
+/// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to
+/// sink the load out of the block that defines it. This means that it must be
+/// obvious the value of the load is not changed from the point of the load to
+/// the end of the block it is in.
+///
+/// Finally, it is safe, but not profitable, to sink a load targetting a
+/// non-address-taken alloca. Doing so will cause us to not promote the alloca
+/// to a register.
+static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
+ BasicBlock::iterator BBI = L, E = L->getParent()->end();
+
+ for (++BBI; BBI != E; ++BBI)
+ if (BBI->mayWriteToMemory())
+ return false;
+
+ // Check for non-address taken alloca. If not address-taken already, it isn't
+ // profitable to do this xform.
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
+ bool isAddressTaken = false;
+ for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
+ UI != E; ++UI) {
+ if (isa<LoadInst>(UI)) continue;
+ if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
+ // If storing TO the alloca, then the address isn't taken.
+ if (SI->getOperand(1) == AI) continue;
+ }
+ isAddressTaken = true;
+ break;
+ }
+
+ if (!isAddressTaken && AI->isStaticAlloca())
+ return false;
+ }
+
+ // If this load is a load from a GEP with a constant offset from an alloca,
+ // then we don't want to sink it. In its present form, it will be
+ // load [constant stack offset]. Sinking it will cause us to have to
+ // materialize the stack addresses in each predecessor in a register only to
+ // do a shared load from register in the successor.
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
+ if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
+ return false;
+
+ return true;
+}
+
+Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
+ LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
+
+ // When processing loads, we need to propagate two bits of information to the
+ // sunk load: whether it is volatile, and what its alignment is. We currently
+ // don't sink loads when some have their alignment specified and some don't.
+ // visitLoadInst will propagate an alignment onto the load when TD is around,
+ // and if TD isn't around, we can't handle the mixed case.
+ bool isVolatile = FirstLI->isVolatile();
+ unsigned LoadAlignment = FirstLI->getAlignment();
+
+ // We can't sink the load if the loaded value could be modified between the
+ // load and the PHI.
+ if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
+ !isSafeAndProfitableToSinkLoad(FirstLI))
+ return 0;
+
+ // If the PHI is of volatile loads and the load block has multiple
+ // successors, sinking it would remove a load of the volatile value from
+ // the path through the other successor.
+ if (isVolatile &&
+ FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
+ return 0;
+
+ // Check to see if all arguments are the same operation.
+ for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
+ LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
+ if (!LI || !LI->hasOneUse())
+ return 0;
+
+ // We can't sink the load if the loaded value could be modified between
+ // the load and the PHI.
+ if (LI->isVolatile() != isVolatile ||
+ LI->getParent() != PN.getIncomingBlock(i) ||
+ !isSafeAndProfitableToSinkLoad(LI))
+ return 0;
+
+ // If some of the loads have an alignment specified but not all of them,
+ // we can't do the transformation.
+ if ((LoadAlignment != 0) != (LI->getAlignment() != 0))
+ return 0;
+
+ LoadAlignment = std::min(LoadAlignment, LI->getAlignment());
+
+ // If the PHI is of volatile loads and the load block has multiple
+ // successors, sinking it would remove a load of the volatile value from
+ // the path through the other successor.
+ if (isVolatile &&
+ LI->getParent()->getTerminator()->getNumSuccessors() != 1)
+ return 0;
+ }
+
+ // Okay, they are all the same operation. Create a new PHI node of the
+ // correct type, and PHI together all of the LHS's of the instructions.
+ PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
+ PN.getName()+".in");
+ NewPN->reserveOperandSpace(PN.getNumOperands()/2);
+
+ Value *InVal = FirstLI->getOperand(0);
+ NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
+
+ // Add all operands to the new PHI.
+ for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
+ Value *NewInVal = cast<LoadInst>(PN.getIncomingValue(i))->getOperand(0);
+ if (NewInVal != InVal)
+ InVal = 0;
+ NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
+ }
+
+ Value *PhiVal;
+ if (InVal) {
+ // The new PHI unions all of the same values together. This is really
+ // common, so we handle it intelligently here for compile-time speed.
+ PhiVal = InVal;
+ delete NewPN;
+ } else {
+ InsertNewInstBefore(NewPN, PN);
+ PhiVal = NewPN;
+ }
+
+ // If this was a volatile load that we are merging, make sure to loop through
+ // and mark all the input loads as non-volatile. If we don't do this, we will
+ // insert a new volatile load and the old ones will not be deletable.
+ if (isVolatile)
+ for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
+ cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
+
+ return new LoadInst(PhiVal, "", isVolatile, LoadAlignment);
+}
+
+
+
+/// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
+/// operator and they all are only used by the PHI, PHI together their
+/// inputs, and do the operation once, to the result of the PHI.
+Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
+ Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
+
+ if (isa<GetElementPtrInst>(FirstInst))
+ return FoldPHIArgGEPIntoPHI(PN);
+ if (isa<LoadInst>(FirstInst))
+ return FoldPHIArgLoadIntoPHI(PN);
+
+ // Scan the instruction, looking for input operations that can be folded away.
+ // If all input operands to the phi are the same instruction (e.g. a cast from
+ // the same type or "+42") we can pull the operation through the PHI, reducing
+ // code size and simplifying code.
+ Constant *ConstantOp = 0;
+ const Type *CastSrcTy = 0;
+
+ if (isa<CastInst>(FirstInst)) {
+ CastSrcTy = FirstInst->getOperand(0)->getType();
+
+ // Be careful about transforming integer PHIs. We don't want to pessimize
+ // the code by turning an i32 into an i1293.
+ if (isa<IntegerType>(PN.getType()) && isa<IntegerType>(CastSrcTy)) {
+ if (!ShouldChangeType(PN.getType(), CastSrcTy))
+ return 0;
+ }
+ } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
+ // Can fold binop, compare or shift here if the RHS is a constant,
+ // otherwise call FoldPHIArgBinOpIntoPHI.
+ ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
+ if (ConstantOp == 0)
+ return FoldPHIArgBinOpIntoPHI(PN);
+ } else {
+ return 0; // Cannot fold this operation.
+ }
+
+ // Check to see if all arguments are the same operation.
+ for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
+ Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
+ if (I == 0 || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
+ return 0;
+ if (CastSrcTy) {
+ if (I->getOperand(0)->getType() != CastSrcTy)
+ return 0; // Cast operation must match.
+ } else if (I->getOperand(1) != ConstantOp) {
+ return 0;
+ }
+ }
+
+ // Okay, they are all the same operation. Create a new PHI node of the
+ // correct type, and PHI together all of the LHS's of the instructions.
+ PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
+ PN.getName()+".in");
+ NewPN->reserveOperandSpace(PN.getNumOperands()/2);
+
+ Value *InVal = FirstInst->getOperand(0);
+ NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
+
+ // Add all operands to the new PHI.
+ for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
+ Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
+ if (NewInVal != InVal)
+ InVal = 0;
+ NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
+ }
+
+ Value *PhiVal;
+ if (InVal) {
+ // The new PHI unions all of the same values together. This is really
+ // common, so we handle it intelligently here for compile-time speed.
+ PhiVal = InVal;
+ delete NewPN;
+ } else {
+ InsertNewInstBefore(NewPN, PN);
+ PhiVal = NewPN;
+ }
+
+ // Insert and return the new operation.
+ if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst))
+ return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
+
+ if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
+ return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
+
+ CmpInst *CIOp = cast<CmpInst>(FirstInst);
+ return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
+ PhiVal, ConstantOp);
+}
+
+/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
+/// that is dead.
+static bool DeadPHICycle(PHINode *PN,
+ SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
+ if (PN->use_empty()) return true;
+ if (!PN->hasOneUse()) return false;
+
+ // Remember this node, and if we find the cycle, return.
+ if (!PotentiallyDeadPHIs.insert(PN))
+ return true;
+
+ // Don't scan crazily complex things.
+ if (PotentiallyDeadPHIs.size() == 16)
+ return false;
+
+ if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
+ return DeadPHICycle(PU, PotentiallyDeadPHIs);
+
+ return false;
+}
+
+/// PHIsEqualValue - Return true if this phi node is always equal to
+/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
+/// z = some value; x = phi (y, z); y = phi (x, z)
+static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
+ SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
+ // See if we already saw this PHI node.
+ if (!ValueEqualPHIs.insert(PN))
+ return true;
+
+ // Don't scan crazily complex things.
+ if (ValueEqualPHIs.size() == 16)
+ return false;
+
+ // Scan the operands to see if they are either phi nodes or are equal to
+ // the value.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *Op = PN->getIncomingValue(i);
+ if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
+ if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
+ return false;
+ } else if (Op != NonPhiInVal)
+ return false;
+ }
+
+ return true;
+}
+
+
+namespace {
+struct PHIUsageRecord {
+ unsigned PHIId; // The ID # of the PHI (something determinstic to sort on)
+ unsigned Shift; // The amount shifted.
+ Instruction *Inst; // The trunc instruction.
+
+ PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
+ : PHIId(pn), Shift(Sh), Inst(User) {}
+
+ bool operator<(const PHIUsageRecord &RHS) const {
+ if (PHIId < RHS.PHIId) return true;
+ if (PHIId > RHS.PHIId) return false;
+ if (Shift < RHS.Shift) return true;
+ if (Shift > RHS.Shift) return false;
+ return Inst->getType()->getPrimitiveSizeInBits() <
+ RHS.Inst->getType()->getPrimitiveSizeInBits();
+ }
+};
+
+struct LoweredPHIRecord {
+ PHINode *PN; // The PHI that was lowered.
+ unsigned Shift; // The amount shifted.
+ unsigned Width; // The width extracted.
+
+ LoweredPHIRecord(PHINode *pn, unsigned Sh, const Type *Ty)
+ : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
+
+ // Ctor form used by DenseMap.
+ LoweredPHIRecord(PHINode *pn, unsigned Sh)
+ : PN(pn), Shift(Sh), Width(0) {}
+};
+}
+
+namespace llvm {
+ template<>
+ struct DenseMapInfo<LoweredPHIRecord> {
+ static inline LoweredPHIRecord getEmptyKey() {
+ return LoweredPHIRecord(0, 0);
+ }
+ static inline LoweredPHIRecord getTombstoneKey() {
+ return LoweredPHIRecord(0, 1);
+ }
+ static unsigned getHashValue(const LoweredPHIRecord &Val) {
+ return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
+ (Val.Width>>3);
+ }
+ static bool isEqual(const LoweredPHIRecord &LHS,
+ const LoweredPHIRecord &RHS) {
+ return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
+ LHS.Width == RHS.Width;
+ }
+ };
+ template <>
+ struct isPodLike<LoweredPHIRecord> { static const bool value = true; };
+}
+
+
+/// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an
+/// illegal type: see if it is only used by trunc or trunc(lshr) operations. If
+/// so, we split the PHI into the various pieces being extracted. This sort of
+/// thing is introduced when SROA promotes an aggregate to large integer values.
+///
+/// TODO: The user of the trunc may be an bitcast to float/double/vector or an
+/// inttoptr. We should produce new PHIs in the right type.
+///
+Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
+ // PHIUsers - Keep track of all of the truncated values extracted from a set
+ // of PHIs, along with their offset. These are the things we want to rewrite.
+ SmallVector<PHIUsageRecord, 16> PHIUsers;
+
+ // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
+ // nodes which are extracted from. PHIsToSlice is a set we use to avoid
+ // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
+ // check the uses of (to ensure they are all extracts).
+ SmallVector<PHINode*, 8> PHIsToSlice;
+ SmallPtrSet<PHINode*, 8> PHIsInspected;
+
+ PHIsToSlice.push_back(&FirstPhi);
+ PHIsInspected.insert(&FirstPhi);
+
+ for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
+ PHINode *PN = PHIsToSlice[PHIId];
+
+ // Scan the input list of the PHI. If any input is an invoke, and if the
+ // input is defined in the predecessor, then we won't be split the critical
+ // edge which is required to insert a truncate. Because of this, we have to
+ // bail out.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
+ if (II == 0) continue;
+ if (II->getParent() != PN->getIncomingBlock(i))
+ continue;
+
+ // If we have a phi, and if it's directly in the predecessor, then we have
+ // a critical edge where we need to put the truncate. Since we can't
+ // split the edge in instcombine, we have to bail out.
+ return 0;
+ }
+
+
+ for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
+ UI != E; ++UI) {
+ Instruction *User = cast<Instruction>(*UI);
+
+ // If the user is a PHI, inspect its uses recursively.
+ if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
+ if (PHIsInspected.insert(UserPN))
+ PHIsToSlice.push_back(UserPN);
+ continue;
+ }
+
+ // Truncates are always ok.
+ if (isa<TruncInst>(User)) {
+ PHIUsers.push_back(PHIUsageRecord(PHIId, 0, User));
+ continue;
+ }
+
+ // Otherwise it must be a lshr which can only be used by one trunc.
+ if (User->getOpcode() != Instruction::LShr ||
+ !User->hasOneUse() || !isa<TruncInst>(User->use_back()) ||
+ !isa<ConstantInt>(User->getOperand(1)))
+ return 0;
+
+ unsigned Shift = cast<ConstantInt>(User->getOperand(1))->getZExtValue();
+ PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, User->use_back()));
+ }
+ }
+
+ // If we have no users, they must be all self uses, just nuke the PHI.
+ if (PHIUsers.empty())
+ return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
+
+ // If this phi node is transformable, create new PHIs for all the pieces
+ // extracted out of it. First, sort the users by their offset and size.
+ array_pod_sort(PHIUsers.begin(), PHIUsers.end());
+
+ DEBUG(errs() << "SLICING UP PHI: " << FirstPhi << '\n';
+ for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
+ errs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] <<'\n';
+ );
+
+ // PredValues - This is a temporary used when rewriting PHI nodes. It is
+ // hoisted out here to avoid construction/destruction thrashing.
+ DenseMap<BasicBlock*, Value*> PredValues;
+
+ // ExtractedVals - Each new PHI we introduce is saved here so we don't
+ // introduce redundant PHIs.
+ DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
+
+ for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
+ unsigned PHIId = PHIUsers[UserI].PHIId;
+ PHINode *PN = PHIsToSlice[PHIId];
+ unsigned Offset = PHIUsers[UserI].Shift;
+ const Type *Ty = PHIUsers[UserI].Inst->getType();
+
+ PHINode *EltPHI;
+
+ // If we've already lowered a user like this, reuse the previously lowered
+ // value.
+ if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == 0) {
+
+ // Otherwise, Create the new PHI node for this user.
+ EltPHI = PHINode::Create(Ty, PN->getName()+".off"+Twine(Offset), PN);
+ assert(EltPHI->getType() != PN->getType() &&
+ "Truncate didn't shrink phi?");
+
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ BasicBlock *Pred = PN->getIncomingBlock(i);
+ Value *&PredVal = PredValues[Pred];
+
+ // If we already have a value for this predecessor, reuse it.
+ if (PredVal) {
+ EltPHI->addIncoming(PredVal, Pred);
+ continue;
+ }
+
+ // Handle the PHI self-reuse case.
+ Value *InVal = PN->getIncomingValue(i);
+ if (InVal == PN) {
+ PredVal = EltPHI;
+ EltPHI->addIncoming(PredVal, Pred);
+ continue;
+ }
+
+ if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
+ // If the incoming value was a PHI, and if it was one of the PHIs we
+ // already rewrote it, just use the lowered value.
+ if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
+ PredVal = Res;
+ EltPHI->addIncoming(PredVal, Pred);
+ continue;
+ }
+ }
+
+ // Otherwise, do an extract in the predecessor.
+ Builder->SetInsertPoint(Pred, Pred->getTerminator());
+ Value *Res = InVal;
+ if (Offset)
+ Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(),
+ Offset), "extract");
+ Res = Builder->CreateTrunc(Res, Ty, "extract.t");
+ PredVal = Res;
+ EltPHI->addIncoming(Res, Pred);
+
+ // If the incoming value was a PHI, and if it was one of the PHIs we are
+ // rewriting, we will ultimately delete the code we inserted. This
+ // means we need to revisit that PHI to make sure we extract out the
+ // needed piece.
+ if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
+ if (PHIsInspected.count(OldInVal)) {
+ unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(),
+ OldInVal)-PHIsToSlice.begin();
+ PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset,
+ cast<Instruction>(Res)));
+ ++UserE;
+ }
+ }
+ PredValues.clear();
+
+ DEBUG(errs() << " Made element PHI for offset " << Offset << ": "
+ << *EltPHI << '\n');
+ ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
+ }
+
+ // Replace the use of this piece with the PHI node.
+ ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
+ }
+
+ // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
+ // with undefs.
+ Value *Undef = UndefValue::get(FirstPhi.getType());
+ for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
+ ReplaceInstUsesWith(*PHIsToSlice[i], Undef);
+ return ReplaceInstUsesWith(FirstPhi, Undef);
+}
+
+// PHINode simplification
+//
+Instruction *InstCombiner::visitPHINode(PHINode &PN) {
+ // If LCSSA is around, don't mess with Phi nodes
+ if (MustPreserveLCSSA) return 0;
+
+ if (Value *V = PN.hasConstantValue())
+ return ReplaceInstUsesWith(PN, V);
+
+ // If all PHI operands are the same operation, pull them through the PHI,
+ // reducing code size.
+ if (isa<Instruction>(PN.getIncomingValue(0)) &&
+ isa<Instruction>(PN.getIncomingValue(1)) &&
+ cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
+ cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
+ // FIXME: The hasOneUse check will fail for PHIs that use the value more
+ // than themselves more than once.
+ PN.getIncomingValue(0)->hasOneUse())
+ if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
+ return Result;
+
+ // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
+ // this PHI only has a single use (a PHI), and if that PHI only has one use (a
+ // PHI)... break the cycle.
+ if (PN.hasOneUse()) {
+ Instruction *PHIUser = cast<Instruction>(PN.use_back());
+ if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
+ SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
+ PotentiallyDeadPHIs.insert(&PN);
+ if (DeadPHICycle(PU, PotentiallyDeadPHIs))
+ return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
+ }
+
+ // If this phi has a single use, and if that use just computes a value for
+ // the next iteration of a loop, delete the phi. This occurs with unused
+ // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
+ // common case here is good because the only other things that catch this
+ // are induction variable analysis (sometimes) and ADCE, which is only run
+ // late.
+ if (PHIUser->hasOneUse() &&
+ (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
+ PHIUser->use_back() == &PN) {
+ return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
+ }
+ }
+
+ // We sometimes end up with phi cycles that non-obviously end up being the
+ // same value, for example:
+ // z = some value; x = phi (y, z); y = phi (x, z)
+ // where the phi nodes don't necessarily need to be in the same block. Do a
+ // quick check to see if the PHI node only contains a single non-phi value, if
+ // so, scan to see if the phi cycle is actually equal to that value.
+ {
+ unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
+ // Scan for the first non-phi operand.
+ while (InValNo != NumOperandVals &&
+ isa<PHINode>(PN.getIncomingValue(InValNo)))
+ ++InValNo;
+
+ if (InValNo != NumOperandVals) {
+ Value *NonPhiInVal = PN.getOperand(InValNo);
+
+ // Scan the rest of the operands to see if there are any conflicts, if so
+ // there is no need to recursively scan other phis.
+ for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
+ Value *OpVal = PN.getIncomingValue(InValNo);
+ if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
+ break;
+ }
+
+ // If we scanned over all operands, then we have one unique value plus
+ // phi values. Scan PHI nodes to see if they all merge in each other or
+ // the value.
+ if (InValNo == NumOperandVals) {
+ SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
+ if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
+ return ReplaceInstUsesWith(PN, NonPhiInVal);
+ }
+ }
+ }
+
+ // If there are multiple PHIs, sort their operands so that they all list
+ // the blocks in the same order. This will help identical PHIs be eliminated
+ // by other passes. Other passes shouldn't depend on this for correctness
+ // however.
+ PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
+ if (&PN != FirstPN)
+ for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
+ BasicBlock *BBA = PN.getIncomingBlock(i);
+ BasicBlock *BBB = FirstPN->getIncomingBlock(i);
+ if (BBA != BBB) {
+ Value *VA = PN.getIncomingValue(i);
+ unsigned j = PN.getBasicBlockIndex(BBB);
+ Value *VB = PN.getIncomingValue(j);
+ PN.setIncomingBlock(i, BBB);
+ PN.setIncomingValue(i, VB);
+ PN.setIncomingBlock(j, BBA);
+ PN.setIncomingValue(j, VA);
+ // NOTE: Instcombine normally would want us to "return &PN" if we
+ // modified any of the operands of an instruction. However, since we
+ // aren't adding or removing uses (just rearranging them) we don't do
+ // this in this case.
+ }
+ }
+
+ // If this is an integer PHI and we know that it has an illegal type, see if
+ // it is only used by trunc or trunc(lshr) operations. If so, we split the
+ // PHI into the various pieces being extracted. This sort of thing is
+ // introduced when SROA promotes an aggregate to a single large integer type.
+ if (isa<IntegerType>(PN.getType()) && TD &&
+ !TD->isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
+ if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
+ return Res;
+
+ return 0;
+}
diff --git a/lib/Transforms/InstCombine/InstCombineSelect.cpp b/lib/Transforms/InstCombine/InstCombineSelect.cpp
new file mode 100644
index 0000000..18b2dff
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineSelect.cpp
@@ -0,0 +1,703 @@
+//===- InstCombineSelect.cpp ----------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitSelect function.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/Support/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
+/// returning the kind and providing the out parameter results if we
+/// successfully match.
+static SelectPatternFlavor
+MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
+ SelectInst *SI = dyn_cast<SelectInst>(V);
+ if (SI == 0) return SPF_UNKNOWN;
+
+ ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
+ if (ICI == 0) return SPF_UNKNOWN;
+
+ LHS = ICI->getOperand(0);
+ RHS = ICI->getOperand(1);
+
+ // (icmp X, Y) ? X : Y
+ if (SI->getTrueValue() == ICI->getOperand(0) &&
+ SI->getFalseValue() == ICI->getOperand(1)) {
+ switch (ICI->getPredicate()) {
+ default: return SPF_UNKNOWN; // Equality.
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_UGE: return SPF_UMAX;
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE: return SPF_SMAX;
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_ULE: return SPF_UMIN;
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_SLE: return SPF_SMIN;
+ }
+ }
+
+ // (icmp X, Y) ? Y : X
+ if (SI->getTrueValue() == ICI->getOperand(1) &&
+ SI->getFalseValue() == ICI->getOperand(0)) {
+ switch (ICI->getPredicate()) {
+ default: return SPF_UNKNOWN; // Equality.
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_UGE: return SPF_UMIN;
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE: return SPF_SMIN;
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_ULE: return SPF_UMAX;
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_SLE: return SPF_SMAX;
+ }
+ }
+
+ // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
+
+ return SPF_UNKNOWN;
+}
+
+
+/// GetSelectFoldableOperands - We want to turn code that looks like this:
+/// %C = or %A, %B
+/// %D = select %cond, %C, %A
+/// into:
+/// %C = select %cond, %B, 0
+/// %D = or %A, %C
+///
+/// Assuming that the specified instruction is an operand to the select, return
+/// a bitmask indicating which operands of this instruction are foldable if they
+/// equal the other incoming value of the select.
+///
+static unsigned GetSelectFoldableOperands(Instruction *I) {
+ switch (I->getOpcode()) {
+ case Instruction::Add:
+ case Instruction::Mul:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ return 3; // Can fold through either operand.
+ case Instruction::Sub: // Can only fold on the amount subtracted.
+ case Instruction::Shl: // Can only fold on the shift amount.
+ case Instruction::LShr:
+ case Instruction::AShr:
+ return 1;
+ default:
+ return 0; // Cannot fold
+ }
+}
+
+/// GetSelectFoldableConstant - For the same transformation as the previous
+/// function, return the identity constant that goes into the select.
+static Constant *GetSelectFoldableConstant(Instruction *I) {
+ switch (I->getOpcode()) {
+ default: llvm_unreachable("This cannot happen!");
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ return Constant::getNullValue(I->getType());
+ case Instruction::And:
+ return Constant::getAllOnesValue(I->getType());
+ case Instruction::Mul:
+ return ConstantInt::get(I->getType(), 1);
+ }
+}
+
+/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
+/// have the same opcode and only one use each. Try to simplify this.
+Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
+ Instruction *FI) {
+ if (TI->getNumOperands() == 1) {
+ // If this is a non-volatile load or a cast from the same type,
+ // merge.
+ if (TI->isCast()) {
+ if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
+ return 0;
+ } else {
+ return 0; // unknown unary op.
+ }
+
+ // Fold this by inserting a select from the input values.
+ SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
+ FI->getOperand(0), SI.getName()+".v");
+ InsertNewInstBefore(NewSI, SI);
+ return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
+ TI->getType());
+ }
+
+ // Only handle binary operators here.
+ if (!isa<BinaryOperator>(TI))
+ return 0;
+
+ // Figure out if the operations have any operands in common.
+ Value *MatchOp, *OtherOpT, *OtherOpF;
+ bool MatchIsOpZero;
+ if (TI->getOperand(0) == FI->getOperand(0)) {
+ MatchOp = TI->getOperand(0);
+ OtherOpT = TI->getOperand(1);
+ OtherOpF = FI->getOperand(1);
+ MatchIsOpZero = true;
+ } else if (TI->getOperand(1) == FI->getOperand(1)) {
+ MatchOp = TI->getOperand(1);
+ OtherOpT = TI->getOperand(0);
+ OtherOpF = FI->getOperand(0);
+ MatchIsOpZero = false;
+ } else if (!TI->isCommutative()) {
+ return 0;
+ } else if (TI->getOperand(0) == FI->getOperand(1)) {
+ MatchOp = TI->getOperand(0);
+ OtherOpT = TI->getOperand(1);
+ OtherOpF = FI->getOperand(0);
+ MatchIsOpZero = true;
+ } else if (TI->getOperand(1) == FI->getOperand(0)) {
+ MatchOp = TI->getOperand(1);
+ OtherOpT = TI->getOperand(0);
+ OtherOpF = FI->getOperand(1);
+ MatchIsOpZero = true;
+ } else {
+ return 0;
+ }
+
+ // If we reach here, they do have operations in common.
+ SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
+ OtherOpF, SI.getName()+".v");
+ InsertNewInstBefore(NewSI, SI);
+
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
+ if (MatchIsOpZero)
+ return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
+ else
+ return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
+ }
+ llvm_unreachable("Shouldn't get here");
+ return 0;
+}
+
+static bool isSelect01(Constant *C1, Constant *C2) {
+ ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
+ if (!C1I)
+ return false;
+ ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
+ if (!C2I)
+ return false;
+ return (C1I->isZero() || C1I->isOne()) && (C2I->isZero() || C2I->isOne());
+}
+
+/// FoldSelectIntoOp - Try fold the select into one of the operands to
+/// facilitate further optimization.
+Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
+ Value *FalseVal) {
+ // See the comment above GetSelectFoldableOperands for a description of the
+ // transformation we are doing here.
+ if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
+ if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
+ !isa<Constant>(FalseVal)) {
+ if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
+ unsigned OpToFold = 0;
+ if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
+ OpToFold = 1;
+ } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
+ OpToFold = 2;
+ }
+
+ if (OpToFold) {
+ Constant *C = GetSelectFoldableConstant(TVI);
+ Value *OOp = TVI->getOperand(2-OpToFold);
+ // Avoid creating select between 2 constants unless it's selecting
+ // between 0 and 1.
+ if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
+ Instruction *NewSel = SelectInst::Create(SI.getCondition(), OOp, C);
+ InsertNewInstBefore(NewSel, SI);
+ NewSel->takeName(TVI);
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
+ return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
+ llvm_unreachable("Unknown instruction!!");
+ }
+ }
+ }
+ }
+ }
+
+ if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
+ if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
+ !isa<Constant>(TrueVal)) {
+ if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
+ unsigned OpToFold = 0;
+ if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
+ OpToFold = 1;
+ } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
+ OpToFold = 2;
+ }
+
+ if (OpToFold) {
+ Constant *C = GetSelectFoldableConstant(FVI);
+ Value *OOp = FVI->getOperand(2-OpToFold);
+ // Avoid creating select between 2 constants unless it's selecting
+ // between 0 and 1.
+ if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
+ Instruction *NewSel = SelectInst::Create(SI.getCondition(), C, OOp);
+ InsertNewInstBefore(NewSel, SI);
+ NewSel->takeName(FVI);
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
+ return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
+ llvm_unreachable("Unknown instruction!!");
+ }
+ }
+ }
+ }
+ }
+
+ return 0;
+}
+
+/// visitSelectInstWithICmp - Visit a SelectInst that has an
+/// ICmpInst as its first operand.
+///
+Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
+ ICmpInst *ICI) {
+ bool Changed = false;
+ ICmpInst::Predicate Pred = ICI->getPredicate();
+ Value *CmpLHS = ICI->getOperand(0);
+ Value *CmpRHS = ICI->getOperand(1);
+ Value *TrueVal = SI.getTrueValue();
+ Value *FalseVal = SI.getFalseValue();
+
+ // Check cases where the comparison is with a constant that
+ // can be adjusted to fit the min/max idiom. We may edit ICI in
+ // place here, so make sure the select is the only user.
+ if (ICI->hasOneUse())
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
+ switch (Pred) {
+ default: break;
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_SLT: {
+ // X < MIN ? T : F --> F
+ if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
+ return ReplaceInstUsesWith(SI, FalseVal);
+ // X < C ? X : C-1 --> X > C-1 ? C-1 : X
+ Constant *AdjustedRHS =
+ ConstantInt::get(CI->getContext(), CI->getValue()-1);
+ if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
+ (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ CmpRHS = AdjustedRHS;
+ std::swap(FalseVal, TrueVal);
+ ICI->setPredicate(Pred);
+ ICI->setOperand(1, CmpRHS);
+ SI.setOperand(1, TrueVal);
+ SI.setOperand(2, FalseVal);
+ Changed = true;
+ }
+ break;
+ }
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_SGT: {
+ // X > MAX ? T : F --> F
+ if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
+ return ReplaceInstUsesWith(SI, FalseVal);
+ // X > C ? X : C+1 --> X < C+1 ? C+1 : X
+ Constant *AdjustedRHS =
+ ConstantInt::get(CI->getContext(), CI->getValue()+1);
+ if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
+ (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ CmpRHS = AdjustedRHS;
+ std::swap(FalseVal, TrueVal);
+ ICI->setPredicate(Pred);
+ ICI->setOperand(1, CmpRHS);
+ SI.setOperand(1, TrueVal);
+ SI.setOperand(2, FalseVal);
+ Changed = true;
+ }
+ break;
+ }
+ }
+
+ // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
+ // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
+ CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
+ if (match(TrueVal, m_ConstantInt<-1>()) &&
+ match(FalseVal, m_ConstantInt<0>()))
+ Pred = ICI->getPredicate();
+ else if (match(TrueVal, m_ConstantInt<0>()) &&
+ match(FalseVal, m_ConstantInt<-1>()))
+ Pred = CmpInst::getInversePredicate(ICI->getPredicate());
+
+ if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
+ // If we are just checking for a icmp eq of a single bit and zext'ing it
+ // to an integer, then shift the bit to the appropriate place and then
+ // cast to integer to avoid the comparison.
+ const APInt &Op1CV = CI->getValue();
+
+ // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
+ // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
+ if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
+ (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
+ Value *In = ICI->getOperand(0);
+ Value *Sh = ConstantInt::get(In->getType(),
+ In->getType()->getScalarSizeInBits()-1);
+ In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
+ In->getName()+".lobit"),
+ *ICI);
+ if (In->getType() != SI.getType())
+ In = CastInst::CreateIntegerCast(In, SI.getType(),
+ true/*SExt*/, "tmp", ICI);
+
+ if (Pred == ICmpInst::ICMP_SGT)
+ In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
+ In->getName()+".not"), *ICI);
+
+ return ReplaceInstUsesWith(SI, In);
+ }
+ }
+ }
+
+ if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
+ // Transform (X == Y) ? X : Y -> Y
+ if (Pred == ICmpInst::ICMP_EQ)
+ return ReplaceInstUsesWith(SI, FalseVal);
+ // Transform (X != Y) ? X : Y -> X
+ if (Pred == ICmpInst::ICMP_NE)
+ return ReplaceInstUsesWith(SI, TrueVal);
+ /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
+
+ } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
+ // Transform (X == Y) ? Y : X -> X
+ if (Pred == ICmpInst::ICMP_EQ)
+ return ReplaceInstUsesWith(SI, FalseVal);
+ // Transform (X != Y) ? Y : X -> Y
+ if (Pred == ICmpInst::ICMP_NE)
+ return ReplaceInstUsesWith(SI, TrueVal);
+ /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
+ }
+ return Changed ? &SI : 0;
+}
+
+
+/// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
+/// PHI node (but the two may be in different blocks). See if the true/false
+/// values (V) are live in all of the predecessor blocks of the PHI. For
+/// example, cases like this cannot be mapped:
+///
+/// X = phi [ C1, BB1], [C2, BB2]
+/// Y = add
+/// Z = select X, Y, 0
+///
+/// because Y is not live in BB1/BB2.
+///
+static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
+ const SelectInst &SI) {
+ // If the value is a non-instruction value like a constant or argument, it
+ // can always be mapped.
+ const Instruction *I = dyn_cast<Instruction>(V);
+ if (I == 0) return true;
+
+ // If V is a PHI node defined in the same block as the condition PHI, we can
+ // map the arguments.
+ const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
+
+ if (const PHINode *VP = dyn_cast<PHINode>(I))
+ if (VP->getParent() == CondPHI->getParent())
+ return true;
+
+ // Otherwise, if the PHI and select are defined in the same block and if V is
+ // defined in a different block, then we can transform it.
+ if (SI.getParent() == CondPHI->getParent() &&
+ I->getParent() != CondPHI->getParent())
+ return true;
+
+ // Otherwise we have a 'hard' case and we can't tell without doing more
+ // detailed dominator based analysis, punt.
+ return false;
+}
+
+/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
+/// SPF2(SPF1(A, B), C)
+Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
+ SelectPatternFlavor SPF1,
+ Value *A, Value *B,
+ Instruction &Outer,
+ SelectPatternFlavor SPF2, Value *C) {
+ if (C == A || C == B) {
+ // MAX(MAX(A, B), B) -> MAX(A, B)
+ // MIN(MIN(a, b), a) -> MIN(a, b)
+ if (SPF1 == SPF2)
+ return ReplaceInstUsesWith(Outer, Inner);
+
+ // MAX(MIN(a, b), a) -> a
+ // MIN(MAX(a, b), a) -> a
+ if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
+ (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
+ (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
+ (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
+ return ReplaceInstUsesWith(Outer, C);
+ }
+
+ // TODO: MIN(MIN(A, 23), 97)
+ return 0;
+}
+
+
+
+
+Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
+ Value *CondVal = SI.getCondition();
+ Value *TrueVal = SI.getTrueValue();
+ Value *FalseVal = SI.getFalseValue();
+
+ // select true, X, Y -> X
+ // select false, X, Y -> Y
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
+ return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
+
+ // select C, X, X -> X
+ if (TrueVal == FalseVal)
+ return ReplaceInstUsesWith(SI, TrueVal);
+
+ if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
+ return ReplaceInstUsesWith(SI, FalseVal);
+ if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
+ return ReplaceInstUsesWith(SI, TrueVal);
+ if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
+ if (isa<Constant>(TrueVal))
+ return ReplaceInstUsesWith(SI, TrueVal);
+ else
+ return ReplaceInstUsesWith(SI, FalseVal);
+ }
+
+ if (SI.getType()->isInteger(1)) {
+ if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
+ if (C->getZExtValue()) {
+ // Change: A = select B, true, C --> A = or B, C
+ return BinaryOperator::CreateOr(CondVal, FalseVal);
+ } else {
+ // Change: A = select B, false, C --> A = and !B, C
+ Value *NotCond =
+ InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
+ "not."+CondVal->getName()), SI);
+ return BinaryOperator::CreateAnd(NotCond, FalseVal);
+ }
+ } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
+ if (C->getZExtValue() == false) {
+ // Change: A = select B, C, false --> A = and B, C
+ return BinaryOperator::CreateAnd(CondVal, TrueVal);
+ } else {
+ // Change: A = select B, C, true --> A = or !B, C
+ Value *NotCond =
+ InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
+ "not."+CondVal->getName()), SI);
+ return BinaryOperator::CreateOr(NotCond, TrueVal);
+ }
+ }
+
+ // select a, b, a -> a&b
+ // select a, a, b -> a|b
+ if (CondVal == TrueVal)
+ return BinaryOperator::CreateOr(CondVal, FalseVal);
+ else if (CondVal == FalseVal)
+ return BinaryOperator::CreateAnd(CondVal, TrueVal);
+ }
+
+ // Selecting between two integer constants?
+ if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
+ if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
+ // select C, 1, 0 -> zext C to int
+ if (FalseValC->isZero() && TrueValC->getValue() == 1) {
+ return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
+ } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
+ // select C, 0, 1 -> zext !C to int
+ Value *NotCond =
+ InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
+ "not."+CondVal->getName()), SI);
+ return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
+ }
+
+ if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
+ // If one of the constants is zero (we know they can't both be) and we
+ // have an icmp instruction with zero, and we have an 'and' with the
+ // non-constant value, eliminate this whole mess. This corresponds to
+ // cases like this: ((X & 27) ? 27 : 0)
+ if (TrueValC->isZero() || FalseValC->isZero())
+ if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
+ cast<Constant>(IC->getOperand(1))->isNullValue())
+ if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
+ if (ICA->getOpcode() == Instruction::And &&
+ isa<ConstantInt>(ICA->getOperand(1)) &&
+ (ICA->getOperand(1) == TrueValC ||
+ ICA->getOperand(1) == FalseValC) &&
+ cast<ConstantInt>(ICA->getOperand(1))->getValue().isPowerOf2()) {
+ // Okay, now we know that everything is set up, we just don't
+ // know whether we have a icmp_ne or icmp_eq and whether the
+ // true or false val is the zero.
+ bool ShouldNotVal = !TrueValC->isZero();
+ ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
+ Value *V = ICA;
+ if (ShouldNotVal)
+ V = InsertNewInstBefore(BinaryOperator::Create(
+ Instruction::Xor, V, ICA->getOperand(1)), SI);
+ return ReplaceInstUsesWith(SI, V);
+ }
+ }
+ }
+
+ // See if we are selecting two values based on a comparison of the two values.
+ if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
+ if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
+ // Transform (X == Y) ? X : Y -> Y
+ if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
+ // This is not safe in general for floating point:
+ // consider X== -0, Y== +0.
+ // It becomes safe if either operand is a nonzero constant.
+ ConstantFP *CFPt, *CFPf;
+ if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
+ !CFPt->getValueAPF().isZero()) ||
+ ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
+ !CFPf->getValueAPF().isZero()))
+ return ReplaceInstUsesWith(SI, FalseVal);
+ }
+ // Transform (X != Y) ? X : Y -> X
+ if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
+ return ReplaceInstUsesWith(SI, TrueVal);
+ // NOTE: if we wanted to, this is where to detect MIN/MAX
+
+ } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
+ // Transform (X == Y) ? Y : X -> X
+ if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
+ // This is not safe in general for floating point:
+ // consider X== -0, Y== +0.
+ // It becomes safe if either operand is a nonzero constant.
+ ConstantFP *CFPt, *CFPf;
+ if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
+ !CFPt->getValueAPF().isZero()) ||
+ ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
+ !CFPf->getValueAPF().isZero()))
+ return ReplaceInstUsesWith(SI, FalseVal);
+ }
+ // Transform (X != Y) ? Y : X -> Y
+ if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
+ return ReplaceInstUsesWith(SI, TrueVal);
+ // NOTE: if we wanted to, this is where to detect MIN/MAX
+ }
+ // NOTE: if we wanted to, this is where to detect ABS
+ }
+
+ // See if we are selecting two values based on a comparison of the two values.
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
+ if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
+ return Result;
+
+ if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
+ if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
+ if (TI->hasOneUse() && FI->hasOneUse()) {
+ Instruction *AddOp = 0, *SubOp = 0;
+
+ // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
+ if (TI->getOpcode() == FI->getOpcode())
+ if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
+ return IV;
+
+ // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
+ // even legal for FP.
+ if ((TI->getOpcode() == Instruction::Sub &&
+ FI->getOpcode() == Instruction::Add) ||
+ (TI->getOpcode() == Instruction::FSub &&
+ FI->getOpcode() == Instruction::FAdd)) {
+ AddOp = FI; SubOp = TI;
+ } else if ((FI->getOpcode() == Instruction::Sub &&
+ TI->getOpcode() == Instruction::Add) ||
+ (FI->getOpcode() == Instruction::FSub &&
+ TI->getOpcode() == Instruction::FAdd)) {
+ AddOp = TI; SubOp = FI;
+ }
+
+ if (AddOp) {
+ Value *OtherAddOp = 0;
+ if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
+ OtherAddOp = AddOp->getOperand(1);
+ } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
+ OtherAddOp = AddOp->getOperand(0);
+ }
+
+ if (OtherAddOp) {
+ // So at this point we know we have (Y -> OtherAddOp):
+ // select C, (add X, Y), (sub X, Z)
+ Value *NegVal; // Compute -Z
+ if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
+ NegVal = ConstantExpr::getNeg(C);
+ } else {
+ NegVal = InsertNewInstBefore(
+ BinaryOperator::CreateNeg(SubOp->getOperand(1),
+ "tmp"), SI);
+ }
+
+ Value *NewTrueOp = OtherAddOp;
+ Value *NewFalseOp = NegVal;
+ if (AddOp != TI)
+ std::swap(NewTrueOp, NewFalseOp);
+ Instruction *NewSel =
+ SelectInst::Create(CondVal, NewTrueOp,
+ NewFalseOp, SI.getName() + ".p");
+
+ NewSel = InsertNewInstBefore(NewSel, SI);
+ return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
+ }
+ }
+ }
+
+ // See if we can fold the select into one of our operands.
+ if (SI.getType()->isInteger()) {
+ if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
+ return FoldI;
+
+ // MAX(MAX(a, b), a) -> MAX(a, b)
+ // MIN(MIN(a, b), a) -> MIN(a, b)
+ // MAX(MIN(a, b), a) -> a
+ // MIN(MAX(a, b), a) -> a
+ Value *LHS, *RHS, *LHS2, *RHS2;
+ if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
+ if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
+ if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
+ SI, SPF, RHS))
+ return R;
+ if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
+ if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
+ SI, SPF, LHS))
+ return R;
+ }
+
+ // TODO.
+ // ABS(-X) -> ABS(X)
+ // ABS(ABS(X)) -> ABS(X)
+ }
+
+ // See if we can fold the select into a phi node if the condition is a select.
+ if (isa<PHINode>(SI.getCondition()))
+ // The true/false values have to be live in the PHI predecessor's blocks.
+ if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
+ CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
+ if (Instruction *NV = FoldOpIntoPhi(SI))
+ return NV;
+
+ if (BinaryOperator::isNot(CondVal)) {
+ SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
+ SI.setOperand(1, FalseVal);
+ SI.setOperand(2, TrueVal);
+ return &SI;
+ }
+
+ return 0;
+}
diff --git a/lib/Transforms/InstCombine/InstCombineShifts.cpp b/lib/Transforms/InstCombine/InstCombineShifts.cpp
new file mode 100644
index 0000000..fe91da1
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineShifts.cpp
@@ -0,0 +1,427 @@
+//===- InstCombineShifts.cpp ----------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitShl, visitLShr, and visitAShr functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/Support/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
+ assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ // shl X, 0 == X and shr X, 0 == X
+ // shl 0, X == 0 and shr 0, X == 0
+ if (Op1 == Constant::getNullValue(Op1->getType()) ||
+ Op0 == Constant::getNullValue(Op0->getType()))
+ return ReplaceInstUsesWith(I, Op0);
+
+ if (isa<UndefValue>(Op0)) {
+ if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
+ return ReplaceInstUsesWith(I, Op0);
+ else // undef << X -> 0, undef >>u X -> 0
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+ }
+ if (isa<UndefValue>(Op1)) {
+ if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
+ return ReplaceInstUsesWith(I, Op0);
+ else // X << undef, X >>u undef -> 0
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+ }
+
+ // See if we can fold away this shift.
+ if (SimplifyDemandedInstructionBits(I))
+ return &I;
+
+ // Try to fold constant and into select arguments.
+ if (isa<Constant>(Op0))
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+
+ if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
+ if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
+ return Res;
+ return 0;
+}
+
+Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
+ BinaryOperator &I) {
+ bool isLeftShift = I.getOpcode() == Instruction::Shl;
+
+ // See if we can simplify any instructions used by the instruction whose sole
+ // purpose is to compute bits we don't care about.
+ uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
+
+ // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate
+ // a signed shift.
+ //
+ if (Op1->uge(TypeBits)) {
+ if (I.getOpcode() != Instruction::AShr)
+ return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
+ else {
+ I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
+ return &I;
+ }
+ }
+
+ // ((X*C1) << C2) == (X * (C1 << C2))
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
+ if (BO->getOpcode() == Instruction::Mul && isLeftShift)
+ if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
+ return BinaryOperator::CreateMul(BO->getOperand(0),
+ ConstantExpr::getShl(BOOp, Op1));
+
+ // Try to fold constant and into select arguments.
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+ if (isa<PHINode>(Op0))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+
+ // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
+ if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
+ Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
+ // If 'shift2' is an ashr, we would have to get the sign bit into a funny
+ // place. Don't try to do this transformation in this case. Also, we
+ // require that the input operand is a shift-by-constant so that we have
+ // confidence that the shifts will get folded together. We could do this
+ // xform in more cases, but it is unlikely to be profitable.
+ if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
+ isa<ConstantInt>(TrOp->getOperand(1))) {
+ // Okay, we'll do this xform. Make the shift of shift.
+ Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
+ // (shift2 (shift1 & 0x00FF), c2)
+ Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
+
+ // For logical shifts, the truncation has the effect of making the high
+ // part of the register be zeros. Emulate this by inserting an AND to
+ // clear the top bits as needed. This 'and' will usually be zapped by
+ // other xforms later if dead.
+ unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
+ unsigned DstSize = TI->getType()->getScalarSizeInBits();
+ APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
+
+ // The mask we constructed says what the trunc would do if occurring
+ // between the shifts. We want to know the effect *after* the second
+ // shift. We know that it is a logical shift by a constant, so adjust the
+ // mask as appropriate.
+ if (I.getOpcode() == Instruction::Shl)
+ MaskV <<= Op1->getZExtValue();
+ else {
+ assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
+ MaskV = MaskV.lshr(Op1->getZExtValue());
+ }
+
+ // shift1 & 0x00FF
+ Value *And = Builder->CreateAnd(NSh,
+ ConstantInt::get(I.getContext(), MaskV),
+ TI->getName());
+
+ // Return the value truncated to the interesting size.
+ return new TruncInst(And, I.getType());
+ }
+ }
+
+ if (Op0->hasOneUse()) {
+ if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
+ // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
+ Value *V1, *V2;
+ ConstantInt *CC;
+ switch (Op0BO->getOpcode()) {
+ default: break;
+ case Instruction::Add:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ // These operators commute.
+ // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
+ if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
+ match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
+ m_Specific(Op1)))) {
+ Value *YS = // (Y << C)
+ Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
+ // (X + (Y << C))
+ Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
+ Op0BO->getOperand(1)->getName());
+ uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
+ return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
+ APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
+ }
+
+ // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
+ Value *Op0BOOp1 = Op0BO->getOperand(1);
+ if (isLeftShift && Op0BOOp1->hasOneUse() &&
+ match(Op0BOOp1,
+ m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
+ m_ConstantInt(CC))) &&
+ cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
+ Value *YS = // (Y << C)
+ Builder->CreateShl(Op0BO->getOperand(0), Op1,
+ Op0BO->getName());
+ // X & (CC << C)
+ Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
+ V1->getName()+".mask");
+ return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
+ }
+ }
+
+ // FALL THROUGH.
+ case Instruction::Sub: {
+ // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
+ if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
+ match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
+ m_Specific(Op1)))) {
+ Value *YS = // (Y << C)
+ Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
+ // (X + (Y << C))
+ Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
+ Op0BO->getOperand(0)->getName());
+ uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
+ return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
+ APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
+ }
+
+ // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
+ if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
+ match(Op0BO->getOperand(0),
+ m_And(m_Shr(m_Value(V1), m_Value(V2)),
+ m_ConstantInt(CC))) && V2 == Op1 &&
+ cast<BinaryOperator>(Op0BO->getOperand(0))
+ ->getOperand(0)->hasOneUse()) {
+ Value *YS = // (Y << C)
+ Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
+ // X & (CC << C)
+ Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
+ V1->getName()+".mask");
+
+ return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
+ }
+
+ break;
+ }
+ }
+
+
+ // If the operand is an bitwise operator with a constant RHS, and the
+ // shift is the only use, we can pull it out of the shift.
+ if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
+ bool isValid = true; // Valid only for And, Or, Xor
+ bool highBitSet = false; // Transform if high bit of constant set?
+
+ switch (Op0BO->getOpcode()) {
+ default: isValid = false; break; // Do not perform transform!
+ case Instruction::Add:
+ isValid = isLeftShift;
+ break;
+ case Instruction::Or:
+ case Instruction::Xor:
+ highBitSet = false;
+ break;
+ case Instruction::And:
+ highBitSet = true;
+ break;
+ }
+
+ // If this is a signed shift right, and the high bit is modified
+ // by the logical operation, do not perform the transformation.
+ // The highBitSet boolean indicates the value of the high bit of
+ // the constant which would cause it to be modified for this
+ // operation.
+ //
+ if (isValid && I.getOpcode() == Instruction::AShr)
+ isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
+
+ if (isValid) {
+ Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
+
+ Value *NewShift =
+ Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
+ NewShift->takeName(Op0BO);
+
+ return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
+ NewRHS);
+ }
+ }
+ }
+ }
+
+ // Find out if this is a shift of a shift by a constant.
+ BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
+ if (ShiftOp && !ShiftOp->isShift())
+ ShiftOp = 0;
+
+ if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
+ ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
+ uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
+ uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
+ assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
+ if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
+ Value *X = ShiftOp->getOperand(0);
+
+ uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
+
+ const IntegerType *Ty = cast<IntegerType>(I.getType());
+
+ // Check for (X << c1) << c2 and (X >> c1) >> c2
+ if (I.getOpcode() == ShiftOp->getOpcode()) {
+ // If this is oversized composite shift, then unsigned shifts get 0, ashr
+ // saturates.
+ if (AmtSum >= TypeBits) {
+ if (I.getOpcode() != Instruction::AShr)
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+ AmtSum = TypeBits-1; // Saturate to 31 for i32 ashr.
+ }
+
+ return BinaryOperator::Create(I.getOpcode(), X,
+ ConstantInt::get(Ty, AmtSum));
+ }
+
+ if (ShiftOp->getOpcode() == Instruction::LShr &&
+ I.getOpcode() == Instruction::AShr) {
+ if (AmtSum >= TypeBits)
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+
+ // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
+ return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
+ }
+
+ if (ShiftOp->getOpcode() == Instruction::AShr &&
+ I.getOpcode() == Instruction::LShr) {
+ // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
+ if (AmtSum >= TypeBits)
+ AmtSum = TypeBits-1;
+
+ Value *Shift = Builder->CreateAShr(X, ConstantInt::get(Ty, AmtSum));
+
+ APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
+ return BinaryOperator::CreateAnd(Shift,
+ ConstantInt::get(I.getContext(), Mask));
+ }
+
+ // Okay, if we get here, one shift must be left, and the other shift must be
+ // right. See if the amounts are equal.
+ if (ShiftAmt1 == ShiftAmt2) {
+ // If we have ((X >>? C) << C), turn this into X & (-1 << C).
+ if (I.getOpcode() == Instruction::Shl) {
+ APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
+ return BinaryOperator::CreateAnd(X,
+ ConstantInt::get(I.getContext(),Mask));
+ }
+ // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
+ if (I.getOpcode() == Instruction::LShr) {
+ APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
+ return BinaryOperator::CreateAnd(X,
+ ConstantInt::get(I.getContext(), Mask));
+ }
+ } else if (ShiftAmt1 < ShiftAmt2) {
+ uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
+
+ // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
+ if (I.getOpcode() == Instruction::Shl) {
+ assert(ShiftOp->getOpcode() == Instruction::LShr ||
+ ShiftOp->getOpcode() == Instruction::AShr);
+ Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
+
+ APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
+ return BinaryOperator::CreateAnd(Shift,
+ ConstantInt::get(I.getContext(),Mask));
+ }
+
+ // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
+ if (I.getOpcode() == Instruction::LShr) {
+ assert(ShiftOp->getOpcode() == Instruction::Shl);
+ Value *Shift = Builder->CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
+
+ APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
+ return BinaryOperator::CreateAnd(Shift,
+ ConstantInt::get(I.getContext(),Mask));
+ }
+
+ // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
+ } else {
+ assert(ShiftAmt2 < ShiftAmt1);
+ uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
+
+ // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
+ if (I.getOpcode() == Instruction::Shl) {
+ assert(ShiftOp->getOpcode() == Instruction::LShr ||
+ ShiftOp->getOpcode() == Instruction::AShr);
+ Value *Shift = Builder->CreateBinOp(ShiftOp->getOpcode(), X,
+ ConstantInt::get(Ty, ShiftDiff));
+
+ APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
+ return BinaryOperator::CreateAnd(Shift,
+ ConstantInt::get(I.getContext(),Mask));
+ }
+
+ // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
+ if (I.getOpcode() == Instruction::LShr) {
+ assert(ShiftOp->getOpcode() == Instruction::Shl);
+ Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
+
+ APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
+ return BinaryOperator::CreateAnd(Shift,
+ ConstantInt::get(I.getContext(),Mask));
+ }
+
+ // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
+ }
+ }
+ return 0;
+}
+
+Instruction *InstCombiner::visitShl(BinaryOperator &I) {
+ return commonShiftTransforms(I);
+}
+
+Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
+ return commonShiftTransforms(I);
+}
+
+Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
+ if (Instruction *R = commonShiftTransforms(I))
+ return R;
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0)) {
+ // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
+ if (CSI->isAllOnesValue())
+ return ReplaceInstUsesWith(I, CSI);
+ }
+
+ if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
+ // If the input is a SHL by the same constant (ashr (shl X, C), C), then we
+ // have a sign-extend idiom. If the input value is known to already be sign
+ // extended enough, delete the extension.
+ Value *X;
+ if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
+ ComputeNumSignBits(X) > Op1C->getZExtValue())
+ return ReplaceInstUsesWith(I, X);
+ }
+
+ // See if we can turn a signed shr into an unsigned shr.
+ if (MaskedValueIsZero(Op0,
+ APInt::getSignBit(I.getType()->getScalarSizeInBits())))
+ return BinaryOperator::CreateLShr(Op0, Op1);
+
+ // Arithmetic shifting an all-sign-bit value is a no-op.
+ unsigned NumSignBits = ComputeNumSignBits(Op0);
+ if (NumSignBits == Op0->getType()->getScalarSizeInBits())
+ return ReplaceInstUsesWith(I, Op0);
+
+ return 0;
+}
+
diff --git a/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp b/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
new file mode 100644
index 0000000..74a1b68
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
@@ -0,0 +1,1106 @@
+//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains logic for simplifying instructions based on information
+// about how they are used.
+//
+//===----------------------------------------------------------------------===//
+
+
+#include "InstCombine.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/IntrinsicInst.h"
+
+using namespace llvm;
+
+
+/// ShrinkDemandedConstant - Check to see if the specified operand of the
+/// specified instruction is a constant integer. If so, check to see if there
+/// are any bits set in the constant that are not demanded. If so, shrink the
+/// constant and return true.
+static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
+ APInt Demanded) {
+ assert(I && "No instruction?");
+ assert(OpNo < I->getNumOperands() && "Operand index too large");
+
+ // If the operand is not a constant integer, nothing to do.
+ ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
+ if (!OpC) return false;
+
+ // If there are no bits set that aren't demanded, nothing to do.
+ Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
+ if ((~Demanded & OpC->getValue()) == 0)
+ return false;
+
+ // This instruction is producing bits that are not demanded. Shrink the RHS.
+ Demanded &= OpC->getValue();
+ I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
+ return true;
+}
+
+
+
+/// SimplifyDemandedInstructionBits - Inst is an integer instruction that
+/// SimplifyDemandedBits knows about. See if the instruction has any
+/// properties that allow us to simplify its operands.
+bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
+ unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
+ APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
+ APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
+
+ Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
+ KnownZero, KnownOne, 0);
+ if (V == 0) return false;
+ if (V == &Inst) return true;
+ ReplaceInstUsesWith(Inst, V);
+ return true;
+}
+
+/// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
+/// specified instruction operand if possible, updating it in place. It returns
+/// true if it made any change and false otherwise.
+bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
+ APInt &KnownZero, APInt &KnownOne,
+ unsigned Depth) {
+ Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
+ KnownZero, KnownOne, Depth);
+ if (NewVal == 0) return false;
+ U = NewVal;
+ return true;
+}
+
+
+/// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
+/// value based on the demanded bits. When this function is called, it is known
+/// that only the bits set in DemandedMask of the result of V are ever used
+/// downstream. Consequently, depending on the mask and V, it may be possible
+/// to replace V with a constant or one of its operands. In such cases, this
+/// function does the replacement and returns true. In all other cases, it
+/// returns false after analyzing the expression and setting KnownOne and known
+/// to be one in the expression. KnownZero contains all the bits that are known
+/// to be zero in the expression. These are provided to potentially allow the
+/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
+/// the expression. KnownOne and KnownZero always follow the invariant that
+/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
+/// the bits in KnownOne and KnownZero may only be accurate for those bits set
+/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
+/// and KnownOne must all be the same.
+///
+/// This returns null if it did not change anything and it permits no
+/// simplification. This returns V itself if it did some simplification of V's
+/// operands based on the information about what bits are demanded. This returns
+/// some other non-null value if it found out that V is equal to another value
+/// in the context where the specified bits are demanded, but not for all users.
+Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
+ APInt &KnownZero, APInt &KnownOne,
+ unsigned Depth) {
+ assert(V != 0 && "Null pointer of Value???");
+ assert(Depth <= 6 && "Limit Search Depth");
+ uint32_t BitWidth = DemandedMask.getBitWidth();
+ const Type *VTy = V->getType();
+ assert((TD || !isa<PointerType>(VTy)) &&
+ "SimplifyDemandedBits needs to know bit widths!");
+ assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
+ (!VTy->isIntOrIntVector() ||
+ VTy->getScalarSizeInBits() == BitWidth) &&
+ KnownZero.getBitWidth() == BitWidth &&
+ KnownOne.getBitWidth() == BitWidth &&
+ "Value *V, DemandedMask, KnownZero and KnownOne "
+ "must have same BitWidth");
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ // We know all of the bits for a constant!
+ KnownOne = CI->getValue() & DemandedMask;
+ KnownZero = ~KnownOne & DemandedMask;
+ return 0;
+ }
+ if (isa<ConstantPointerNull>(V)) {
+ // We know all of the bits for a constant!
+ KnownOne.clear();
+ KnownZero = DemandedMask;
+ return 0;
+ }
+
+ KnownZero.clear();
+ KnownOne.clear();
+ if (DemandedMask == 0) { // Not demanding any bits from V.
+ if (isa<UndefValue>(V))
+ return 0;
+ return UndefValue::get(VTy);
+ }
+
+ if (Depth == 6) // Limit search depth.
+ return 0;
+
+ APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
+ APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
+
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) {
+ ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
+ return 0; // Only analyze instructions.
+ }
+
+ // If there are multiple uses of this value and we aren't at the root, then
+ // we can't do any simplifications of the operands, because DemandedMask
+ // only reflects the bits demanded by *one* of the users.
+ if (Depth != 0 && !I->hasOneUse()) {
+ // Despite the fact that we can't simplify this instruction in all User's
+ // context, we can at least compute the knownzero/knownone bits, and we can
+ // do simplifications that apply to *just* the one user if we know that
+ // this instruction has a simpler value in that context.
+ if (I->getOpcode() == Instruction::And) {
+ // If either the LHS or the RHS are Zero, the result is zero.
+ ComputeMaskedBits(I->getOperand(1), DemandedMask,
+ RHSKnownZero, RHSKnownOne, Depth+1);
+ ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
+ LHSKnownZero, LHSKnownOne, Depth+1);
+
+ // If all of the demanded bits are known 1 on one side, return the other.
+ // These bits cannot contribute to the result of the 'and' in this
+ // context.
+ if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
+ (DemandedMask & ~LHSKnownZero))
+ return I->getOperand(0);
+ if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
+ (DemandedMask & ~RHSKnownZero))
+ return I->getOperand(1);
+
+ // If all of the demanded bits in the inputs are known zeros, return zero.
+ if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
+ return Constant::getNullValue(VTy);
+
+ } else if (I->getOpcode() == Instruction::Or) {
+ // We can simplify (X|Y) -> X or Y in the user's context if we know that
+ // only bits from X or Y are demanded.
+
+ // If either the LHS or the RHS are One, the result is One.
+ ComputeMaskedBits(I->getOperand(1), DemandedMask,
+ RHSKnownZero, RHSKnownOne, Depth+1);
+ ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
+ LHSKnownZero, LHSKnownOne, Depth+1);
+
+ // If all of the demanded bits are known zero on one side, return the
+ // other. These bits cannot contribute to the result of the 'or' in this
+ // context.
+ if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
+ (DemandedMask & ~LHSKnownOne))
+ return I->getOperand(0);
+ if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
+ (DemandedMask & ~RHSKnownOne))
+ return I->getOperand(1);
+
+ // If all of the potentially set bits on one side are known to be set on
+ // the other side, just use the 'other' side.
+ if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
+ (DemandedMask & (~RHSKnownZero)))
+ return I->getOperand(0);
+ if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
+ (DemandedMask & (~LHSKnownZero)))
+ return I->getOperand(1);
+ }
+
+ // Compute the KnownZero/KnownOne bits to simplify things downstream.
+ ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth);
+ return 0;
+ }
+
+ // If this is the root being simplified, allow it to have multiple uses,
+ // just set the DemandedMask to all bits so that we can try to simplify the
+ // operands. This allows visitTruncInst (for example) to simplify the
+ // operand of a trunc without duplicating all the logic below.
+ if (Depth == 0 && !V->hasOneUse())
+ DemandedMask = APInt::getAllOnesValue(BitWidth);
+
+ switch (I->getOpcode()) {
+ default:
+ ComputeMaskedBits(I, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
+ break;
+ case Instruction::And:
+ // If either the LHS or the RHS are Zero, the result is zero.
+ if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
+ RHSKnownZero, RHSKnownOne, Depth+1) ||
+ SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
+ LHSKnownZero, LHSKnownOne, Depth+1))
+ return I;
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
+
+ // If all of the demanded bits are known 1 on one side, return the other.
+ // These bits cannot contribute to the result of the 'and'.
+ if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
+ (DemandedMask & ~LHSKnownZero))
+ return I->getOperand(0);
+ if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
+ (DemandedMask & ~RHSKnownZero))
+ return I->getOperand(1);
+
+ // If all of the demanded bits in the inputs are known zeros, return zero.
+ if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
+ return Constant::getNullValue(VTy);
+
+ // If the RHS is a constant, see if we can simplify it.
+ if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
+ return I;
+
+ // Output known-1 bits are only known if set in both the LHS & RHS.
+ RHSKnownOne &= LHSKnownOne;
+ // Output known-0 are known to be clear if zero in either the LHS | RHS.
+ RHSKnownZero |= LHSKnownZero;
+ break;
+ case Instruction::Or:
+ // If either the LHS or the RHS are One, the result is One.
+ if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
+ RHSKnownZero, RHSKnownOne, Depth+1) ||
+ SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
+ LHSKnownZero, LHSKnownOne, Depth+1))
+ return I;
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
+
+ // If all of the demanded bits are known zero on one side, return the other.
+ // These bits cannot contribute to the result of the 'or'.
+ if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
+ (DemandedMask & ~LHSKnownOne))
+ return I->getOperand(0);
+ if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
+ (DemandedMask & ~RHSKnownOne))
+ return I->getOperand(1);
+
+ // If all of the potentially set bits on one side are known to be set on
+ // the other side, just use the 'other' side.
+ if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
+ (DemandedMask & (~RHSKnownZero)))
+ return I->getOperand(0);
+ if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
+ (DemandedMask & (~LHSKnownZero)))
+ return I->getOperand(1);
+
+ // If the RHS is a constant, see if we can simplify it.
+ if (ShrinkDemandedConstant(I, 1, DemandedMask))
+ return I;
+
+ // Output known-0 bits are only known if clear in both the LHS & RHS.
+ RHSKnownZero &= LHSKnownZero;
+ // Output known-1 are known to be set if set in either the LHS | RHS.
+ RHSKnownOne |= LHSKnownOne;
+ break;
+ case Instruction::Xor: {
+ if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
+ RHSKnownZero, RHSKnownOne, Depth+1) ||
+ SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
+ LHSKnownZero, LHSKnownOne, Depth+1))
+ return I;
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
+
+ // If all of the demanded bits are known zero on one side, return the other.
+ // These bits cannot contribute to the result of the 'xor'.
+ if ((DemandedMask & RHSKnownZero) == DemandedMask)
+ return I->getOperand(0);
+ if ((DemandedMask & LHSKnownZero) == DemandedMask)
+ return I->getOperand(1);
+
+ // Output known-0 bits are known if clear or set in both the LHS & RHS.
+ APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
+ (RHSKnownOne & LHSKnownOne);
+ // Output known-1 are known to be set if set in only one of the LHS, RHS.
+ APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
+ (RHSKnownOne & LHSKnownZero);
+
+ // If all of the demanded bits are known to be zero on one side or the
+ // other, turn this into an *inclusive* or.
+ // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
+ if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
+ Instruction *Or =
+ BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
+ I->getName());
+ return InsertNewInstBefore(Or, *I);
+ }
+
+ // If all of the demanded bits on one side are known, and all of the set
+ // bits on that side are also known to be set on the other side, turn this
+ // into an AND, as we know the bits will be cleared.
+ // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
+ if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
+ // all known
+ if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
+ Constant *AndC = Constant::getIntegerValue(VTy,
+ ~RHSKnownOne & DemandedMask);
+ Instruction *And =
+ BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
+ return InsertNewInstBefore(And, *I);
+ }
+ }
+
+ // If the RHS is a constant, see if we can simplify it.
+ // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
+ if (ShrinkDemandedConstant(I, 1, DemandedMask))
+ return I;
+
+ // If our LHS is an 'and' and if it has one use, and if any of the bits we
+ // are flipping are known to be set, then the xor is just resetting those
+ // bits to zero. We can just knock out bits from the 'and' and the 'xor',
+ // simplifying both of them.
+ if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
+ if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
+ isa<ConstantInt>(I->getOperand(1)) &&
+ isa<ConstantInt>(LHSInst->getOperand(1)) &&
+ (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
+ ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
+ ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
+ APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
+
+ Constant *AndC =
+ ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
+ Instruction *NewAnd =
+ BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
+ InsertNewInstBefore(NewAnd, *I);
+
+ Constant *XorC =
+ ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
+ Instruction *NewXor =
+ BinaryOperator::CreateXor(NewAnd, XorC, "tmp");
+ return InsertNewInstBefore(NewXor, *I);
+ }
+
+
+ RHSKnownZero = KnownZeroOut;
+ RHSKnownOne = KnownOneOut;
+ break;
+ }
+ case Instruction::Select:
+ if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
+ RHSKnownZero, RHSKnownOne, Depth+1) ||
+ SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
+ LHSKnownZero, LHSKnownOne, Depth+1))
+ return I;
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
+
+ // If the operands are constants, see if we can simplify them.
+ if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
+ ShrinkDemandedConstant(I, 2, DemandedMask))
+ return I;
+
+ // Only known if known in both the LHS and RHS.
+ RHSKnownOne &= LHSKnownOne;
+ RHSKnownZero &= LHSKnownZero;
+ break;
+ case Instruction::Trunc: {
+ unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
+ DemandedMask.zext(truncBf);
+ RHSKnownZero.zext(truncBf);
+ RHSKnownOne.zext(truncBf);
+ if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
+ RHSKnownZero, RHSKnownOne, Depth+1))
+ return I;
+ DemandedMask.trunc(BitWidth);
+ RHSKnownZero.trunc(BitWidth);
+ RHSKnownOne.trunc(BitWidth);
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ break;
+ }
+ case Instruction::BitCast:
+ if (!I->getOperand(0)->getType()->isIntOrIntVector())
+ return false; // vector->int or fp->int?
+
+ if (const VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
+ if (const VectorType *SrcVTy =
+ dyn_cast<VectorType>(I->getOperand(0)->getType())) {
+ if (DstVTy->getNumElements() != SrcVTy->getNumElements())
+ // Don't touch a bitcast between vectors of different element counts.
+ return false;
+ } else
+ // Don't touch a scalar-to-vector bitcast.
+ return false;
+ } else if (isa<VectorType>(I->getOperand(0)->getType()))
+ // Don't touch a vector-to-scalar bitcast.
+ return false;
+
+ if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
+ RHSKnownZero, RHSKnownOne, Depth+1))
+ return I;
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ break;
+ case Instruction::ZExt: {
+ // Compute the bits in the result that are not present in the input.
+ unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
+
+ DemandedMask.trunc(SrcBitWidth);
+ RHSKnownZero.trunc(SrcBitWidth);
+ RHSKnownOne.trunc(SrcBitWidth);
+ if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
+ RHSKnownZero, RHSKnownOne, Depth+1))
+ return I;
+ DemandedMask.zext(BitWidth);
+ RHSKnownZero.zext(BitWidth);
+ RHSKnownOne.zext(BitWidth);
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ // The top bits are known to be zero.
+ RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
+ break;
+ }
+ case Instruction::SExt: {
+ // Compute the bits in the result that are not present in the input.
+ unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
+
+ APInt InputDemandedBits = DemandedMask &
+ APInt::getLowBitsSet(BitWidth, SrcBitWidth);
+
+ APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
+ // If any of the sign extended bits are demanded, we know that the sign
+ // bit is demanded.
+ if ((NewBits & DemandedMask) != 0)
+ InputDemandedBits.set(SrcBitWidth-1);
+
+ InputDemandedBits.trunc(SrcBitWidth);
+ RHSKnownZero.trunc(SrcBitWidth);
+ RHSKnownOne.trunc(SrcBitWidth);
+ if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
+ RHSKnownZero, RHSKnownOne, Depth+1))
+ return I;
+ InputDemandedBits.zext(BitWidth);
+ RHSKnownZero.zext(BitWidth);
+ RHSKnownOne.zext(BitWidth);
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+
+ // If the sign bit of the input is known set or clear, then we know the
+ // top bits of the result.
+
+ // If the input sign bit is known zero, or if the NewBits are not demanded
+ // convert this into a zero extension.
+ if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
+ // Convert to ZExt cast
+ CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
+ return InsertNewInstBefore(NewCast, *I);
+ } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
+ RHSKnownOne |= NewBits;
+ }
+ break;
+ }
+ case Instruction::Add: {
+ // Figure out what the input bits are. If the top bits of the and result
+ // are not demanded, then the add doesn't demand them from its input
+ // either.
+ unsigned NLZ = DemandedMask.countLeadingZeros();
+
+ // If there is a constant on the RHS, there are a variety of xformations
+ // we can do.
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ // If null, this should be simplified elsewhere. Some of the xforms here
+ // won't work if the RHS is zero.
+ if (RHS->isZero())
+ break;
+
+ // If the top bit of the output is demanded, demand everything from the
+ // input. Otherwise, we demand all the input bits except NLZ top bits.
+ APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
+
+ // Find information about known zero/one bits in the input.
+ if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
+ LHSKnownZero, LHSKnownOne, Depth+1))
+ return I;
+
+ // If the RHS of the add has bits set that can't affect the input, reduce
+ // the constant.
+ if (ShrinkDemandedConstant(I, 1, InDemandedBits))
+ return I;
+
+ // Avoid excess work.
+ if (LHSKnownZero == 0 && LHSKnownOne == 0)
+ break;
+
+ // Turn it into OR if input bits are zero.
+ if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
+ Instruction *Or =
+ BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
+ I->getName());
+ return InsertNewInstBefore(Or, *I);
+ }
+
+ // We can say something about the output known-zero and known-one bits,
+ // depending on potential carries from the input constant and the
+ // unknowns. For example if the LHS is known to have at most the 0x0F0F0
+ // bits set and the RHS constant is 0x01001, then we know we have a known
+ // one mask of 0x00001 and a known zero mask of 0xE0F0E.
+
+ // To compute this, we first compute the potential carry bits. These are
+ // the bits which may be modified. I'm not aware of a better way to do
+ // this scan.
+ const APInt &RHSVal = RHS->getValue();
+ APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
+
+ // Now that we know which bits have carries, compute the known-1/0 sets.
+
+ // Bits are known one if they are known zero in one operand and one in the
+ // other, and there is no input carry.
+ RHSKnownOne = ((LHSKnownZero & RHSVal) |
+ (LHSKnownOne & ~RHSVal)) & ~CarryBits;
+
+ // Bits are known zero if they are known zero in both operands and there
+ // is no input carry.
+ RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
+ } else {
+ // If the high-bits of this ADD are not demanded, then it does not demand
+ // the high bits of its LHS or RHS.
+ if (DemandedMask[BitWidth-1] == 0) {
+ // Right fill the mask of bits for this ADD to demand the most
+ // significant bit and all those below it.
+ APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
+ if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
+ LHSKnownZero, LHSKnownOne, Depth+1) ||
+ SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
+ LHSKnownZero, LHSKnownOne, Depth+1))
+ return I;
+ }
+ }
+ break;
+ }
+ case Instruction::Sub:
+ // If the high-bits of this SUB are not demanded, then it does not demand
+ // the high bits of its LHS or RHS.
+ if (DemandedMask[BitWidth-1] == 0) {
+ // Right fill the mask of bits for this SUB to demand the most
+ // significant bit and all those below it.
+ uint32_t NLZ = DemandedMask.countLeadingZeros();
+ APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
+ if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
+ LHSKnownZero, LHSKnownOne, Depth+1) ||
+ SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
+ LHSKnownZero, LHSKnownOne, Depth+1))
+ return I;
+ }
+ // Otherwise just hand the sub off to ComputeMaskedBits to fill in
+ // the known zeros and ones.
+ ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
+ break;
+ case Instruction::Shl:
+ if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
+ APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
+ if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
+ RHSKnownZero, RHSKnownOne, Depth+1))
+ return I;
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ RHSKnownZero <<= ShiftAmt;
+ RHSKnownOne <<= ShiftAmt;
+ // low bits known zero.
+ if (ShiftAmt)
+ RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
+ }
+ break;
+ case Instruction::LShr:
+ // For a logical shift right
+ if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
+
+ // Unsigned shift right.
+ APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
+ if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
+ RHSKnownZero, RHSKnownOne, Depth+1))
+ return I;
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
+ RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
+ if (ShiftAmt) {
+ // Compute the new bits that are at the top now.
+ APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
+ RHSKnownZero |= HighBits; // high bits known zero.
+ }
+ }
+ break;
+ case Instruction::AShr:
+ // If this is an arithmetic shift right and only the low-bit is set, we can
+ // always convert this into a logical shr, even if the shift amount is
+ // variable. The low bit of the shift cannot be an input sign bit unless
+ // the shift amount is >= the size of the datatype, which is undefined.
+ if (DemandedMask == 1) {
+ // Perform the logical shift right.
+ Instruction *NewVal = BinaryOperator::CreateLShr(
+ I->getOperand(0), I->getOperand(1), I->getName());
+ return InsertNewInstBefore(NewVal, *I);
+ }
+
+ // If the sign bit is the only bit demanded by this ashr, then there is no
+ // need to do it, the shift doesn't change the high bit.
+ if (DemandedMask.isSignBit())
+ return I->getOperand(0);
+
+ if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
+
+ // Signed shift right.
+ APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
+ // If any of the "high bits" are demanded, we should set the sign bit as
+ // demanded.
+ if (DemandedMask.countLeadingZeros() <= ShiftAmt)
+ DemandedMaskIn.set(BitWidth-1);
+ if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
+ RHSKnownZero, RHSKnownOne, Depth+1))
+ return I;
+ assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
+ // Compute the new bits that are at the top now.
+ APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
+ RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
+ RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
+
+ // Handle the sign bits.
+ APInt SignBit(APInt::getSignBit(BitWidth));
+ // Adjust to where it is now in the mask.
+ SignBit = APIntOps::lshr(SignBit, ShiftAmt);
+
+ // If the input sign bit is known to be zero, or if none of the top bits
+ // are demanded, turn this into an unsigned shift right.
+ if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] ||
+ (HighBits & ~DemandedMask) == HighBits) {
+ // Perform the logical shift right.
+ Instruction *NewVal = BinaryOperator::CreateLShr(
+ I->getOperand(0), SA, I->getName());
+ return InsertNewInstBefore(NewVal, *I);
+ } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
+ RHSKnownOne |= HighBits;
+ }
+ }
+ break;
+ case Instruction::SRem:
+ if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ APInt RA = Rem->getValue().abs();
+ if (RA.isPowerOf2()) {
+ if (DemandedMask.ult(RA)) // srem won't affect demanded bits
+ return I->getOperand(0);
+
+ APInt LowBits = RA - 1;
+ APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
+ if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
+ LHSKnownZero, LHSKnownOne, Depth+1))
+ return I;
+
+ if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
+ LHSKnownZero |= ~LowBits;
+
+ KnownZero |= LHSKnownZero & DemandedMask;
+
+ assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
+ }
+ }
+ break;
+ case Instruction::URem: {
+ APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
+ APInt AllOnes = APInt::getAllOnesValue(BitWidth);
+ if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
+ KnownZero2, KnownOne2, Depth+1) ||
+ SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
+ KnownZero2, KnownOne2, Depth+1))
+ return I;
+
+ unsigned Leaders = KnownZero2.countLeadingOnes();
+ Leaders = std::max(Leaders,
+ KnownZero2.countLeadingOnes());
+ KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
+ break;
+ }
+ case Instruction::Call:
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::bswap: {
+ // If the only bits demanded come from one byte of the bswap result,
+ // just shift the input byte into position to eliminate the bswap.
+ unsigned NLZ = DemandedMask.countLeadingZeros();
+ unsigned NTZ = DemandedMask.countTrailingZeros();
+
+ // Round NTZ down to the next byte. If we have 11 trailing zeros, then
+ // we need all the bits down to bit 8. Likewise, round NLZ. If we
+ // have 14 leading zeros, round to 8.
+ NLZ &= ~7;
+ NTZ &= ~7;
+ // If we need exactly one byte, we can do this transformation.
+ if (BitWidth-NLZ-NTZ == 8) {
+ unsigned ResultBit = NTZ;
+ unsigned InputBit = BitWidth-NTZ-8;
+
+ // Replace this with either a left or right shift to get the byte into
+ // the right place.
+ Instruction *NewVal;
+ if (InputBit > ResultBit)
+ NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
+ ConstantInt::get(I->getType(), InputBit-ResultBit));
+ else
+ NewVal = BinaryOperator::CreateShl(I->getOperand(1),
+ ConstantInt::get(I->getType(), ResultBit-InputBit));
+ NewVal->takeName(I);
+ return InsertNewInstBefore(NewVal, *I);
+ }
+
+ // TODO: Could compute known zero/one bits based on the input.
+ break;
+ }
+ }
+ }
+ ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
+ break;
+ }
+
+ // If the client is only demanding bits that we know, return the known
+ // constant.
+ if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
+ return Constant::getIntegerValue(VTy, RHSKnownOne);
+ return false;
+}
+
+
+/// SimplifyDemandedVectorElts - The specified value produces a vector with
+/// any number of elements. DemandedElts contains the set of elements that are
+/// actually used by the caller. This method analyzes which elements of the
+/// operand are undef and returns that information in UndefElts.
+///
+/// If the information about demanded elements can be used to simplify the
+/// operation, the operation is simplified, then the resultant value is
+/// returned. This returns null if no change was made.
+Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
+ APInt& UndefElts,
+ unsigned Depth) {
+ unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
+ APInt EltMask(APInt::getAllOnesValue(VWidth));
+ assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
+
+ if (isa<UndefValue>(V)) {
+ // If the entire vector is undefined, just return this info.
+ UndefElts = EltMask;
+ return 0;
+ } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
+ UndefElts = EltMask;
+ return UndefValue::get(V->getType());
+ }
+
+ UndefElts = 0;
+ if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
+ const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
+ Constant *Undef = UndefValue::get(EltTy);
+
+ std::vector<Constant*> Elts;
+ for (unsigned i = 0; i != VWidth; ++i)
+ if (!DemandedElts[i]) { // If not demanded, set to undef.
+ Elts.push_back(Undef);
+ UndefElts.set(i);
+ } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
+ Elts.push_back(Undef);
+ UndefElts.set(i);
+ } else { // Otherwise, defined.
+ Elts.push_back(CP->getOperand(i));
+ }
+
+ // If we changed the constant, return it.
+ Constant *NewCP = ConstantVector::get(Elts);
+ return NewCP != CP ? NewCP : 0;
+ } else if (isa<ConstantAggregateZero>(V)) {
+ // Simplify the CAZ to a ConstantVector where the non-demanded elements are
+ // set to undef.
+
+ // Check if this is identity. If so, return 0 since we are not simplifying
+ // anything.
+ if (DemandedElts == ((1ULL << VWidth) -1))
+ return 0;
+
+ const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
+ Constant *Zero = Constant::getNullValue(EltTy);
+ Constant *Undef = UndefValue::get(EltTy);
+ std::vector<Constant*> Elts;
+ for (unsigned i = 0; i != VWidth; ++i) {
+ Constant *Elt = DemandedElts[i] ? Zero : Undef;
+ Elts.push_back(Elt);
+ }
+ UndefElts = DemandedElts ^ EltMask;
+ return ConstantVector::get(Elts);
+ }
+
+ // Limit search depth.
+ if (Depth == 10)
+ return 0;
+
+ // If multiple users are using the root value, procede with
+ // simplification conservatively assuming that all elements
+ // are needed.
+ if (!V->hasOneUse()) {
+ // Quit if we find multiple users of a non-root value though.
+ // They'll be handled when it's their turn to be visited by
+ // the main instcombine process.
+ if (Depth != 0)
+ // TODO: Just compute the UndefElts information recursively.
+ return 0;
+
+ // Conservatively assume that all elements are needed.
+ DemandedElts = EltMask;
+ }
+
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) return 0; // Only analyze instructions.
+
+ bool MadeChange = false;
+ APInt UndefElts2(VWidth, 0);
+ Value *TmpV;
+ switch (I->getOpcode()) {
+ default: break;
+
+ case Instruction::InsertElement: {
+ // If this is a variable index, we don't know which element it overwrites.
+ // demand exactly the same input as we produce.
+ ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
+ if (Idx == 0) {
+ // Note that we can't propagate undef elt info, because we don't know
+ // which elt is getting updated.
+ TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
+ UndefElts2, Depth+1);
+ if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
+ break;
+ }
+
+ // If this is inserting an element that isn't demanded, remove this
+ // insertelement.
+ unsigned IdxNo = Idx->getZExtValue();
+ if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
+ Worklist.Add(I);
+ return I->getOperand(0);
+ }
+
+ // Otherwise, the element inserted overwrites whatever was there, so the
+ // input demanded set is simpler than the output set.
+ APInt DemandedElts2 = DemandedElts;
+ DemandedElts2.clear(IdxNo);
+ TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
+ UndefElts, Depth+1);
+ if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
+
+ // The inserted element is defined.
+ UndefElts.clear(IdxNo);
+ break;
+ }
+ case Instruction::ShuffleVector: {
+ ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
+ uint64_t LHSVWidth =
+ cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
+ APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
+ for (unsigned i = 0; i < VWidth; i++) {
+ if (DemandedElts[i]) {
+ unsigned MaskVal = Shuffle->getMaskValue(i);
+ if (MaskVal != -1u) {
+ assert(MaskVal < LHSVWidth * 2 &&
+ "shufflevector mask index out of range!");
+ if (MaskVal < LHSVWidth)
+ LeftDemanded.set(MaskVal);
+ else
+ RightDemanded.set(MaskVal - LHSVWidth);
+ }
+ }
+ }
+
+ APInt UndefElts4(LHSVWidth, 0);
+ TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
+ UndefElts4, Depth+1);
+ if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
+
+ APInt UndefElts3(LHSVWidth, 0);
+ TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
+ UndefElts3, Depth+1);
+ if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
+
+ bool NewUndefElts = false;
+ for (unsigned i = 0; i < VWidth; i++) {
+ unsigned MaskVal = Shuffle->getMaskValue(i);
+ if (MaskVal == -1u) {
+ UndefElts.set(i);
+ } else if (MaskVal < LHSVWidth) {
+ if (UndefElts4[MaskVal]) {
+ NewUndefElts = true;
+ UndefElts.set(i);
+ }
+ } else {
+ if (UndefElts3[MaskVal - LHSVWidth]) {
+ NewUndefElts = true;
+ UndefElts.set(i);
+ }
+ }
+ }
+
+ if (NewUndefElts) {
+ // Add additional discovered undefs.
+ std::vector<Constant*> Elts;
+ for (unsigned i = 0; i < VWidth; ++i) {
+ if (UndefElts[i])
+ Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
+ else
+ Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
+ Shuffle->getMaskValue(i)));
+ }
+ I->setOperand(2, ConstantVector::get(Elts));
+ MadeChange = true;
+ }
+ break;
+ }
+ case Instruction::BitCast: {
+ // Vector->vector casts only.
+ const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
+ if (!VTy) break;
+ unsigned InVWidth = VTy->getNumElements();
+ APInt InputDemandedElts(InVWidth, 0);
+ unsigned Ratio;
+
+ if (VWidth == InVWidth) {
+ // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
+ // elements as are demanded of us.
+ Ratio = 1;
+ InputDemandedElts = DemandedElts;
+ } else if (VWidth > InVWidth) {
+ // Untested so far.
+ break;
+
+ // If there are more elements in the result than there are in the source,
+ // then an input element is live if any of the corresponding output
+ // elements are live.
+ Ratio = VWidth/InVWidth;
+ for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
+ if (DemandedElts[OutIdx])
+ InputDemandedElts.set(OutIdx/Ratio);
+ }
+ } else {
+ // Untested so far.
+ break;
+
+ // If there are more elements in the source than there are in the result,
+ // then an input element is live if the corresponding output element is
+ // live.
+ Ratio = InVWidth/VWidth;
+ for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
+ if (DemandedElts[InIdx/Ratio])
+ InputDemandedElts.set(InIdx);
+ }
+
+ // div/rem demand all inputs, because they don't want divide by zero.
+ TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
+ UndefElts2, Depth+1);
+ if (TmpV) {
+ I->setOperand(0, TmpV);
+ MadeChange = true;
+ }
+
+ UndefElts = UndefElts2;
+ if (VWidth > InVWidth) {
+ llvm_unreachable("Unimp");
+ // If there are more elements in the result than there are in the source,
+ // then an output element is undef if the corresponding input element is
+ // undef.
+ for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
+ if (UndefElts2[OutIdx/Ratio])
+ UndefElts.set(OutIdx);
+ } else if (VWidth < InVWidth) {
+ llvm_unreachable("Unimp");
+ // If there are more elements in the source than there are in the result,
+ // then a result element is undef if all of the corresponding input
+ // elements are undef.
+ UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
+ for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
+ if (!UndefElts2[InIdx]) // Not undef?
+ UndefElts.clear(InIdx/Ratio); // Clear undef bit.
+ }
+ break;
+ }
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ // div/rem demand all inputs, because they don't want divide by zero.
+ TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
+ UndefElts, Depth+1);
+ if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
+ TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
+ UndefElts2, Depth+1);
+ if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
+
+ // Output elements are undefined if both are undefined. Consider things
+ // like undef&0. The result is known zero, not undef.
+ UndefElts &= UndefElts2;
+ break;
+
+ case Instruction::Call: {
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
+ if (!II) break;
+ switch (II->getIntrinsicID()) {
+ default: break;
+
+ // Binary vector operations that work column-wise. A dest element is a
+ // function of the corresponding input elements from the two inputs.
+ case Intrinsic::x86_sse_sub_ss:
+ case Intrinsic::x86_sse_mul_ss:
+ case Intrinsic::x86_sse_min_ss:
+ case Intrinsic::x86_sse_max_ss:
+ case Intrinsic::x86_sse2_sub_sd:
+ case Intrinsic::x86_sse2_mul_sd:
+ case Intrinsic::x86_sse2_min_sd:
+ case Intrinsic::x86_sse2_max_sd:
+ TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
+ UndefElts, Depth+1);
+ if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
+ TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
+ UndefElts2, Depth+1);
+ if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
+
+ // If only the low elt is demanded and this is a scalarizable intrinsic,
+ // scalarize it now.
+ if (DemandedElts == 1) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::x86_sse_sub_ss:
+ case Intrinsic::x86_sse_mul_ss:
+ case Intrinsic::x86_sse2_sub_sd:
+ case Intrinsic::x86_sse2_mul_sd:
+ // TODO: Lower MIN/MAX/ABS/etc
+ Value *LHS = II->getOperand(1);
+ Value *RHS = II->getOperand(2);
+ // Extract the element as scalars.
+ LHS = InsertNewInstBefore(ExtractElementInst::Create(LHS,
+ ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
+ RHS = InsertNewInstBefore(ExtractElementInst::Create(RHS,
+ ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
+
+ switch (II->getIntrinsicID()) {
+ default: llvm_unreachable("Case stmts out of sync!");
+ case Intrinsic::x86_sse_sub_ss:
+ case Intrinsic::x86_sse2_sub_sd:
+ TmpV = InsertNewInstBefore(BinaryOperator::CreateFSub(LHS, RHS,
+ II->getName()), *II);
+ break;
+ case Intrinsic::x86_sse_mul_ss:
+ case Intrinsic::x86_sse2_mul_sd:
+ TmpV = InsertNewInstBefore(BinaryOperator::CreateFMul(LHS, RHS,
+ II->getName()), *II);
+ break;
+ }
+
+ Instruction *New =
+ InsertElementInst::Create(
+ UndefValue::get(II->getType()), TmpV,
+ ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
+ II->getName());
+ InsertNewInstBefore(New, *II);
+ return New;
+ }
+ }
+
+ // Output elements are undefined if both are undefined. Consider things
+ // like undef&0. The result is known zero, not undef.
+ UndefElts &= UndefElts2;
+ break;
+ }
+ break;
+ }
+ }
+ return MadeChange ? I : 0;
+}
diff --git a/lib/Transforms/InstCombine/InstCombineVectorOps.cpp b/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
new file mode 100644
index 0000000..f11f557
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
@@ -0,0 +1,560 @@
+//===- InstCombineVectorOps.cpp -------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements instcombine for ExtractElement, InsertElement and
+// ShuffleVector.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+using namespace llvm;
+
+/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
+/// is to leave as a vector operation.
+static bool CheapToScalarize(Value *V, bool isConstant) {
+ if (isa<ConstantAggregateZero>(V))
+ return true;
+ if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
+ if (isConstant) return true;
+ // If all elts are the same, we can extract.
+ Constant *Op0 = C->getOperand(0);
+ for (unsigned i = 1; i < C->getNumOperands(); ++i)
+ if (C->getOperand(i) != Op0)
+ return false;
+ return true;
+ }
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) return false;
+
+ // Insert element gets simplified to the inserted element or is deleted if
+ // this is constant idx extract element and its a constant idx insertelt.
+ if (I->getOpcode() == Instruction::InsertElement && isConstant &&
+ isa<ConstantInt>(I->getOperand(2)))
+ return true;
+ if (I->getOpcode() == Instruction::Load && I->hasOneUse())
+ return true;
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
+ if (BO->hasOneUse() &&
+ (CheapToScalarize(BO->getOperand(0), isConstant) ||
+ CheapToScalarize(BO->getOperand(1), isConstant)))
+ return true;
+ if (CmpInst *CI = dyn_cast<CmpInst>(I))
+ if (CI->hasOneUse() &&
+ (CheapToScalarize(CI->getOperand(0), isConstant) ||
+ CheapToScalarize(CI->getOperand(1), isConstant)))
+ return true;
+
+ return false;
+}
+
+/// Read and decode a shufflevector mask.
+///
+/// It turns undef elements into values that are larger than the number of
+/// elements in the input.
+static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
+ unsigned NElts = SVI->getType()->getNumElements();
+ if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
+ return std::vector<unsigned>(NElts, 0);
+ if (isa<UndefValue>(SVI->getOperand(2)))
+ return std::vector<unsigned>(NElts, 2*NElts);
+
+ std::vector<unsigned> Result;
+ const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
+ for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
+ if (isa<UndefValue>(*i))
+ Result.push_back(NElts*2); // undef -> 8
+ else
+ Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
+ return Result;
+}
+
+/// FindScalarElement - Given a vector and an element number, see if the scalar
+/// value is already around as a register, for example if it were inserted then
+/// extracted from the vector.
+static Value *FindScalarElement(Value *V, unsigned EltNo) {
+ assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
+ const VectorType *PTy = cast<VectorType>(V->getType());
+ unsigned Width = PTy->getNumElements();
+ if (EltNo >= Width) // Out of range access.
+ return UndefValue::get(PTy->getElementType());
+
+ if (isa<UndefValue>(V))
+ return UndefValue::get(PTy->getElementType());
+ if (isa<ConstantAggregateZero>(V))
+ return Constant::getNullValue(PTy->getElementType());
+ if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
+ return CP->getOperand(EltNo);
+
+ if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
+ // If this is an insert to a variable element, we don't know what it is.
+ if (!isa<ConstantInt>(III->getOperand(2)))
+ return 0;
+ unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
+
+ // If this is an insert to the element we are looking for, return the
+ // inserted value.
+ if (EltNo == IIElt)
+ return III->getOperand(1);
+
+ // Otherwise, the insertelement doesn't modify the value, recurse on its
+ // vector input.
+ return FindScalarElement(III->getOperand(0), EltNo);
+ }
+
+ if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
+ unsigned LHSWidth =
+ cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
+ unsigned InEl = getShuffleMask(SVI)[EltNo];
+ if (InEl < LHSWidth)
+ return FindScalarElement(SVI->getOperand(0), InEl);
+ else if (InEl < LHSWidth*2)
+ return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
+ else
+ return UndefValue::get(PTy->getElementType());
+ }
+
+ // Otherwise, we don't know.
+ return 0;
+}
+
+Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
+ // If vector val is undef, replace extract with scalar undef.
+ if (isa<UndefValue>(EI.getOperand(0)))
+ return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
+
+ // If vector val is constant 0, replace extract with scalar 0.
+ if (isa<ConstantAggregateZero>(EI.getOperand(0)))
+ return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
+
+ if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
+ // If vector val is constant with all elements the same, replace EI with
+ // that element. When the elements are not identical, we cannot replace yet
+ // (we do that below, but only when the index is constant).
+ Constant *op0 = C->getOperand(0);
+ for (unsigned i = 1; i != C->getNumOperands(); ++i)
+ if (C->getOperand(i) != op0) {
+ op0 = 0;
+ break;
+ }
+ if (op0)
+ return ReplaceInstUsesWith(EI, op0);
+ }
+
+ // If extracting a specified index from the vector, see if we can recursively
+ // find a previously computed scalar that was inserted into the vector.
+ if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
+ unsigned IndexVal = IdxC->getZExtValue();
+ unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
+
+ // If this is extracting an invalid index, turn this into undef, to avoid
+ // crashing the code below.
+ if (IndexVal >= VectorWidth)
+ return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
+
+ // This instruction only demands the single element from the input vector.
+ // If the input vector has a single use, simplify it based on this use
+ // property.
+ if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
+ APInt UndefElts(VectorWidth, 0);
+ APInt DemandedMask(VectorWidth, 1 << IndexVal);
+ if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
+ DemandedMask, UndefElts)) {
+ EI.setOperand(0, V);
+ return &EI;
+ }
+ }
+
+ if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
+ return ReplaceInstUsesWith(EI, Elt);
+
+ // If the this extractelement is directly using a bitcast from a vector of
+ // the same number of elements, see if we can find the source element from
+ // it. In this case, we will end up needing to bitcast the scalars.
+ if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
+ if (const VectorType *VT =
+ dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
+ if (VT->getNumElements() == VectorWidth)
+ if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
+ return new BitCastInst(Elt, EI.getType());
+ }
+ }
+
+ if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
+ // Push extractelement into predecessor operation if legal and
+ // profitable to do so
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
+ if (I->hasOneUse() &&
+ CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
+ Value *newEI0 =
+ Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
+ EI.getName()+".lhs");
+ Value *newEI1 =
+ Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
+ EI.getName()+".rhs");
+ return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
+ }
+ } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
+ // Extracting the inserted element?
+ if (IE->getOperand(2) == EI.getOperand(1))
+ return ReplaceInstUsesWith(EI, IE->getOperand(1));
+ // If the inserted and extracted elements are constants, they must not
+ // be the same value, extract from the pre-inserted value instead.
+ if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
+ Worklist.AddValue(EI.getOperand(0));
+ EI.setOperand(0, IE->getOperand(0));
+ return &EI;
+ }
+ } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
+ // If this is extracting an element from a shufflevector, figure out where
+ // it came from and extract from the appropriate input element instead.
+ if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
+ unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
+ Value *Src;
+ unsigned LHSWidth =
+ cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
+
+ if (SrcIdx < LHSWidth)
+ Src = SVI->getOperand(0);
+ else if (SrcIdx < LHSWidth*2) {
+ SrcIdx -= LHSWidth;
+ Src = SVI->getOperand(1);
+ } else {
+ return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
+ }
+ return ExtractElementInst::Create(Src,
+ ConstantInt::get(Type::getInt32Ty(EI.getContext()),
+ SrcIdx, false));
+ }
+ }
+ // FIXME: Canonicalize extractelement(bitcast) -> bitcast(extractelement)
+ }
+ return 0;
+}
+
+/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
+/// elements from either LHS or RHS, return the shuffle mask and true.
+/// Otherwise, return false.
+static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
+ std::vector<Constant*> &Mask) {
+ assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
+ "Invalid CollectSingleShuffleElements");
+ unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
+
+ if (isa<UndefValue>(V)) {
+ Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
+ return true;
+ }
+
+ if (V == LHS) {
+ for (unsigned i = 0; i != NumElts; ++i)
+ Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
+ return true;
+ }
+
+ if (V == RHS) {
+ for (unsigned i = 0; i != NumElts; ++i)
+ Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
+ i+NumElts));
+ return true;
+ }
+
+ if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
+ // If this is an insert of an extract from some other vector, include it.
+ Value *VecOp = IEI->getOperand(0);
+ Value *ScalarOp = IEI->getOperand(1);
+ Value *IdxOp = IEI->getOperand(2);
+
+ if (!isa<ConstantInt>(IdxOp))
+ return false;
+ unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
+
+ if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
+ // Okay, we can handle this if the vector we are insertinting into is
+ // transitively ok.
+ if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
+ // If so, update the mask to reflect the inserted undef.
+ Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
+ return true;
+ }
+ } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
+ if (isa<ConstantInt>(EI->getOperand(1)) &&
+ EI->getOperand(0)->getType() == V->getType()) {
+ unsigned ExtractedIdx =
+ cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
+
+ // This must be extracting from either LHS or RHS.
+ if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
+ // Okay, we can handle this if the vector we are insertinting into is
+ // transitively ok.
+ if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
+ // If so, update the mask to reflect the inserted value.
+ if (EI->getOperand(0) == LHS) {
+ Mask[InsertedIdx % NumElts] =
+ ConstantInt::get(Type::getInt32Ty(V->getContext()),
+ ExtractedIdx);
+ } else {
+ assert(EI->getOperand(0) == RHS);
+ Mask[InsertedIdx % NumElts] =
+ ConstantInt::get(Type::getInt32Ty(V->getContext()),
+ ExtractedIdx+NumElts);
+
+ }
+ return true;
+ }
+ }
+ }
+ }
+ }
+ // TODO: Handle shufflevector here!
+
+ return false;
+}
+
+/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
+/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
+/// that computes V and the LHS value of the shuffle.
+static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
+ Value *&RHS) {
+ assert(isa<VectorType>(V->getType()) &&
+ (RHS == 0 || V->getType() == RHS->getType()) &&
+ "Invalid shuffle!");
+ unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
+
+ if (isa<UndefValue>(V)) {
+ Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
+ return V;
+ } else if (isa<ConstantAggregateZero>(V)) {
+ Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
+ return V;
+ } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
+ // If this is an insert of an extract from some other vector, include it.
+ Value *VecOp = IEI->getOperand(0);
+ Value *ScalarOp = IEI->getOperand(1);
+ Value *IdxOp = IEI->getOperand(2);
+
+ if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
+ if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
+ EI->getOperand(0)->getType() == V->getType()) {
+ unsigned ExtractedIdx =
+ cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
+ unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
+
+ // Either the extracted from or inserted into vector must be RHSVec,
+ // otherwise we'd end up with a shuffle of three inputs.
+ if (EI->getOperand(0) == RHS || RHS == 0) {
+ RHS = EI->getOperand(0);
+ Value *V = CollectShuffleElements(VecOp, Mask, RHS);
+ Mask[InsertedIdx % NumElts] =
+ ConstantInt::get(Type::getInt32Ty(V->getContext()),
+ NumElts+ExtractedIdx);
+ return V;
+ }
+
+ if (VecOp == RHS) {
+ Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
+ // Everything but the extracted element is replaced with the RHS.
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (i != InsertedIdx)
+ Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()),
+ NumElts+i);
+ }
+ return V;
+ }
+
+ // If this insertelement is a chain that comes from exactly these two
+ // vectors, return the vector and the effective shuffle.
+ if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
+ return EI->getOperand(0);
+ }
+ }
+ }
+ // TODO: Handle shufflevector here!
+
+ // Otherwise, can't do anything fancy. Return an identity vector.
+ for (unsigned i = 0; i != NumElts; ++i)
+ Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
+ return V;
+}
+
+Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
+ Value *VecOp = IE.getOperand(0);
+ Value *ScalarOp = IE.getOperand(1);
+ Value *IdxOp = IE.getOperand(2);
+
+ // Inserting an undef or into an undefined place, remove this.
+ if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
+ ReplaceInstUsesWith(IE, VecOp);
+
+ // If the inserted element was extracted from some other vector, and if the
+ // indexes are constant, try to turn this into a shufflevector operation.
+ if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
+ if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
+ EI->getOperand(0)->getType() == IE.getType()) {
+ unsigned NumVectorElts = IE.getType()->getNumElements();
+ unsigned ExtractedIdx =
+ cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
+ unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
+
+ if (ExtractedIdx >= NumVectorElts) // Out of range extract.
+ return ReplaceInstUsesWith(IE, VecOp);
+
+ if (InsertedIdx >= NumVectorElts) // Out of range insert.
+ return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
+
+ // If we are extracting a value from a vector, then inserting it right
+ // back into the same place, just use the input vector.
+ if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
+ return ReplaceInstUsesWith(IE, VecOp);
+
+ // If this insertelement isn't used by some other insertelement, turn it
+ // (and any insertelements it points to), into one big shuffle.
+ if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
+ std::vector<Constant*> Mask;
+ Value *RHS = 0;
+ Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
+ if (RHS == 0) RHS = UndefValue::get(LHS->getType());
+ // We now have a shuffle of LHS, RHS, Mask.
+ return new ShuffleVectorInst(LHS, RHS,
+ ConstantVector::get(Mask));
+ }
+ }
+ }
+
+ unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
+ APInt UndefElts(VWidth, 0);
+ APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
+ if (SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts))
+ return &IE;
+
+ return 0;
+}
+
+
+Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
+ Value *LHS = SVI.getOperand(0);
+ Value *RHS = SVI.getOperand(1);
+ std::vector<unsigned> Mask = getShuffleMask(&SVI);
+
+ bool MadeChange = false;
+
+ // Undefined shuffle mask -> undefined value.
+ if (isa<UndefValue>(SVI.getOperand(2)))
+ return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
+
+ unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
+
+ if (VWidth != cast<VectorType>(LHS->getType())->getNumElements())
+ return 0;
+
+ APInt UndefElts(VWidth, 0);
+ APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
+ if (SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
+ LHS = SVI.getOperand(0);
+ RHS = SVI.getOperand(1);
+ MadeChange = true;
+ }
+
+ // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
+ // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
+ if (LHS == RHS || isa<UndefValue>(LHS)) {
+ if (isa<UndefValue>(LHS) && LHS == RHS) {
+ // shuffle(undef,undef,mask) -> undef.
+ return ReplaceInstUsesWith(SVI, LHS);
+ }
+
+ // Remap any references to RHS to use LHS.
+ std::vector<Constant*> Elts;
+ for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
+ if (Mask[i] >= 2*e)
+ Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
+ else {
+ if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
+ (Mask[i] < e && isa<UndefValue>(LHS))) {
+ Mask[i] = 2*e; // Turn into undef.
+ Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
+ } else {
+ Mask[i] = Mask[i] % e; // Force to LHS.
+ Elts.push_back(ConstantInt::get(Type::getInt32Ty(SVI.getContext()),
+ Mask[i]));
+ }
+ }
+ }
+ SVI.setOperand(0, SVI.getOperand(1));
+ SVI.setOperand(1, UndefValue::get(RHS->getType()));
+ SVI.setOperand(2, ConstantVector::get(Elts));
+ LHS = SVI.getOperand(0);
+ RHS = SVI.getOperand(1);
+ MadeChange = true;
+ }
+
+ // Analyze the shuffle, are the LHS or RHS and identity shuffles?
+ bool isLHSID = true, isRHSID = true;
+
+ for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
+ if (Mask[i] >= e*2) continue; // Ignore undef values.
+ // Is this an identity shuffle of the LHS value?
+ isLHSID &= (Mask[i] == i);
+
+ // Is this an identity shuffle of the RHS value?
+ isRHSID &= (Mask[i]-e == i);
+ }
+
+ // Eliminate identity shuffles.
+ if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
+ if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
+
+ // If the LHS is a shufflevector itself, see if we can combine it with this
+ // one without producing an unusual shuffle. Here we are really conservative:
+ // we are absolutely afraid of producing a shuffle mask not in the input
+ // program, because the code gen may not be smart enough to turn a merged
+ // shuffle into two specific shuffles: it may produce worse code. As such,
+ // we only merge two shuffles if the result is one of the two input shuffle
+ // masks. In this case, merging the shuffles just removes one instruction,
+ // which we know is safe. This is good for things like turning:
+ // (splat(splat)) -> splat.
+ if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
+ if (isa<UndefValue>(RHS)) {
+ std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
+
+ if (LHSMask.size() == Mask.size()) {
+ std::vector<unsigned> NewMask;
+ for (unsigned i = 0, e = Mask.size(); i != e; ++i)
+ if (Mask[i] >= e)
+ NewMask.push_back(2*e);
+ else
+ NewMask.push_back(LHSMask[Mask[i]]);
+
+ // If the result mask is equal to the src shuffle or this
+ // shuffle mask, do the replacement.
+ if (NewMask == LHSMask || NewMask == Mask) {
+ unsigned LHSInNElts =
+ cast<VectorType>(LHSSVI->getOperand(0)->getType())->
+ getNumElements();
+ std::vector<Constant*> Elts;
+ for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
+ if (NewMask[i] >= LHSInNElts*2) {
+ Elts.push_back(UndefValue::get(
+ Type::getInt32Ty(SVI.getContext())));
+ } else {
+ Elts.push_back(ConstantInt::get(
+ Type::getInt32Ty(SVI.getContext()),
+ NewMask[i]));
+ }
+ }
+ return new ShuffleVectorInst(LHSSVI->getOperand(0),
+ LHSSVI->getOperand(1),
+ ConstantVector::get(Elts));
+ }
+ }
+ }
+ }
+
+ return MadeChange ? &SVI : 0;
+}
+
diff --git a/lib/Transforms/InstCombine/InstCombineWorklist.h b/lib/Transforms/InstCombine/InstCombineWorklist.h
new file mode 100644
index 0000000..9d88621
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineWorklist.h
@@ -0,0 +1,105 @@
+//===- InstCombineWorklist.h - Worklist for the InstCombine pass ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef INSTCOMBINE_WORKLIST_H
+#define INSTCOMBINE_WORKLIST_H
+
+#define DEBUG_TYPE "instcombine"
+#include "llvm/Instruction.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace llvm {
+
+/// InstCombineWorklist - This is the worklist management logic for
+/// InstCombine.
+class VISIBILITY_HIDDEN InstCombineWorklist {
+ SmallVector<Instruction*, 256> Worklist;
+ DenseMap<Instruction*, unsigned> WorklistMap;
+
+ void operator=(const InstCombineWorklist&RHS); // DO NOT IMPLEMENT
+ InstCombineWorklist(const InstCombineWorklist&); // DO NOT IMPLEMENT
+public:
+ InstCombineWorklist() {}
+
+ bool isEmpty() const { return Worklist.empty(); }
+
+ /// Add - Add the specified instruction to the worklist if it isn't already
+ /// in it.
+ void Add(Instruction *I) {
+ if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second) {
+ DEBUG(errs() << "IC: ADD: " << *I << '\n');
+ Worklist.push_back(I);
+ }
+ }
+
+ void AddValue(Value *V) {
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ Add(I);
+ }
+
+ /// AddInitialGroup - Add the specified batch of stuff in reverse order.
+ /// which should only be done when the worklist is empty and when the group
+ /// has no duplicates.
+ void AddInitialGroup(Instruction *const *List, unsigned NumEntries) {
+ assert(Worklist.empty() && "Worklist must be empty to add initial group");
+ Worklist.reserve(NumEntries+16);
+ DEBUG(errs() << "IC: ADDING: " << NumEntries << " instrs to worklist\n");
+ for (; NumEntries; --NumEntries) {
+ Instruction *I = List[NumEntries-1];
+ WorklistMap.insert(std::make_pair(I, Worklist.size()));
+ Worklist.push_back(I);
+ }
+ }
+
+ // Remove - remove I from the worklist if it exists.
+ void Remove(Instruction *I) {
+ DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
+ if (It == WorklistMap.end()) return; // Not in worklist.
+
+ // Don't bother moving everything down, just null out the slot.
+ Worklist[It->second] = 0;
+
+ WorklistMap.erase(It);
+ }
+
+ Instruction *RemoveOne() {
+ Instruction *I = Worklist.back();
+ Worklist.pop_back();
+ WorklistMap.erase(I);
+ return I;
+ }
+
+ /// AddUsersToWorkList - When an instruction is simplified, add all users of
+ /// the instruction to the work lists because they might get more simplified
+ /// now.
+ ///
+ void AddUsersToWorkList(Instruction &I) {
+ for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
+ UI != UE; ++UI)
+ Add(cast<Instruction>(*UI));
+ }
+
+
+ /// Zap - check that the worklist is empty and nuke the backing store for
+ /// the map if it is large.
+ void Zap() {
+ assert(WorklistMap.empty() && "Worklist empty, but map not?");
+
+ // Do an explicit clear, this shrinks the map if needed.
+ WorklistMap.clear();
+ }
+};
+
+} // end namespace llvm.
+
+#endif
diff --git a/lib/Transforms/InstCombine/InstructionCombining.cpp b/lib/Transforms/InstCombine/InstructionCombining.cpp
new file mode 100644
index 0000000..93b1961
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstructionCombining.cpp
@@ -0,0 +1,1274 @@
+//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// InstructionCombining - Combine instructions to form fewer, simple
+// instructions. This pass does not modify the CFG. This pass is where
+// algebraic simplification happens.
+//
+// This pass combines things like:
+// %Y = add i32 %X, 1
+// %Z = add i32 %Y, 1
+// into:
+// %Z = add i32 %X, 2
+//
+// This is a simple worklist driven algorithm.
+//
+// This pass guarantees that the following canonicalizations are performed on
+// the program:
+// 1. If a binary operator has a constant operand, it is moved to the RHS
+// 2. Bitwise operators with constant operands are always grouped so that
+// shifts are performed first, then or's, then and's, then xor's.
+// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
+// 4. All cmp instructions on boolean values are replaced with logical ops
+// 5. add X, X is represented as (X*2) => (X << 1)
+// 6. Multiplies with a power-of-two constant argument are transformed into
+// shifts.
+// ... etc.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "instcombine"
+#include "llvm/Transforms/Scalar.h"
+#include "InstCombine.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/PatternMatch.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include <algorithm>
+#include <climits>
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+STATISTIC(NumCombined , "Number of insts combined");
+STATISTIC(NumConstProp, "Number of constant folds");
+STATISTIC(NumDeadInst , "Number of dead inst eliminated");
+STATISTIC(NumSunkInst , "Number of instructions sunk");
+
+
+char InstCombiner::ID = 0;
+static RegisterPass<InstCombiner>
+X("instcombine", "Combine redundant instructions");
+
+void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addPreservedID(LCSSAID);
+ AU.setPreservesCFG();
+}
+
+
+/// ShouldChangeType - Return true if it is desirable to convert a computation
+/// from 'From' to 'To'. We don't want to convert from a legal to an illegal
+/// type for example, or from a smaller to a larger illegal type.
+bool InstCombiner::ShouldChangeType(const Type *From, const Type *To) const {
+ assert(isa<IntegerType>(From) && isa<IntegerType>(To));
+
+ // If we don't have TD, we don't know if the source/dest are legal.
+ if (!TD) return false;
+
+ unsigned FromWidth = From->getPrimitiveSizeInBits();
+ unsigned ToWidth = To->getPrimitiveSizeInBits();
+ bool FromLegal = TD->isLegalInteger(FromWidth);
+ bool ToLegal = TD->isLegalInteger(ToWidth);
+
+ // If this is a legal integer from type, and the result would be an illegal
+ // type, don't do the transformation.
+ if (FromLegal && !ToLegal)
+ return false;
+
+ // Otherwise, if both are illegal, do not increase the size of the result. We
+ // do allow things like i160 -> i64, but not i64 -> i160.
+ if (!FromLegal && !ToLegal && ToWidth > FromWidth)
+ return false;
+
+ return true;
+}
+
+
+// SimplifyCommutative - This performs a few simplifications for commutative
+// operators:
+//
+// 1. Order operands such that they are listed from right (least complex) to
+// left (most complex). This puts constants before unary operators before
+// binary operators.
+//
+// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
+// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
+//
+bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
+ bool Changed = false;
+ if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
+ Changed = !I.swapOperands();
+
+ if (!I.isAssociative()) return Changed;
+
+ Instruction::BinaryOps Opcode = I.getOpcode();
+ if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
+ if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
+ if (isa<Constant>(I.getOperand(1))) {
+ Constant *Folded = ConstantExpr::get(I.getOpcode(),
+ cast<Constant>(I.getOperand(1)),
+ cast<Constant>(Op->getOperand(1)));
+ I.setOperand(0, Op->getOperand(0));
+ I.setOperand(1, Folded);
+ return true;
+ }
+
+ if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)))
+ if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
+ Op->hasOneUse() && Op1->hasOneUse()) {
+ Constant *C1 = cast<Constant>(Op->getOperand(1));
+ Constant *C2 = cast<Constant>(Op1->getOperand(1));
+
+ // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
+ Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
+ Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
+ Op1->getOperand(0),
+ Op1->getName(), &I);
+ Worklist.Add(New);
+ I.setOperand(0, New);
+ I.setOperand(1, Folded);
+ return true;
+ }
+ }
+ return Changed;
+}
+
+// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
+// if the LHS is a constant zero (which is the 'negate' form).
+//
+Value *InstCombiner::dyn_castNegVal(Value *V) const {
+ if (BinaryOperator::isNeg(V))
+ return BinaryOperator::getNegArgument(V);
+
+ // Constants can be considered to be negated values if they can be folded.
+ if (ConstantInt *C = dyn_cast<ConstantInt>(V))
+ return ConstantExpr::getNeg(C);
+
+ if (ConstantVector *C = dyn_cast<ConstantVector>(V))
+ if (C->getType()->getElementType()->isInteger())
+ return ConstantExpr::getNeg(C);
+
+ return 0;
+}
+
+// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
+// instruction if the LHS is a constant negative zero (which is the 'negate'
+// form).
+//
+Value *InstCombiner::dyn_castFNegVal(Value *V) const {
+ if (BinaryOperator::isFNeg(V))
+ return BinaryOperator::getFNegArgument(V);
+
+ // Constants can be considered to be negated values if they can be folded.
+ if (ConstantFP *C = dyn_cast<ConstantFP>(V))
+ return ConstantExpr::getFNeg(C);
+
+ if (ConstantVector *C = dyn_cast<ConstantVector>(V))
+ if (C->getType()->getElementType()->isFloatingPoint())
+ return ConstantExpr::getFNeg(C);
+
+ return 0;
+}
+
+static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
+ InstCombiner *IC) {
+ if (CastInst *CI = dyn_cast<CastInst>(&I))
+ return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
+
+ // Figure out if the constant is the left or the right argument.
+ bool ConstIsRHS = isa<Constant>(I.getOperand(1));
+ Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
+
+ if (Constant *SOC = dyn_cast<Constant>(SO)) {
+ if (ConstIsRHS)
+ return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
+ return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
+ }
+
+ Value *Op0 = SO, *Op1 = ConstOperand;
+ if (!ConstIsRHS)
+ std::swap(Op0, Op1);
+
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
+ return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
+ SO->getName()+".op");
+ if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
+ return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
+ SO->getName()+".cmp");
+ if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
+ return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
+ SO->getName()+".cmp");
+ llvm_unreachable("Unknown binary instruction type!");
+}
+
+// FoldOpIntoSelect - Given an instruction with a select as one operand and a
+// constant as the other operand, try to fold the binary operator into the
+// select arguments. This also works for Cast instructions, which obviously do
+// not have a second operand.
+Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
+ // Don't modify shared select instructions
+ if (!SI->hasOneUse()) return 0;
+ Value *TV = SI->getOperand(1);
+ Value *FV = SI->getOperand(2);
+
+ if (isa<Constant>(TV) || isa<Constant>(FV)) {
+ // Bool selects with constant operands can be folded to logical ops.
+ if (SI->getType()->isInteger(1)) return 0;
+
+ Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
+ Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
+
+ return SelectInst::Create(SI->getCondition(), SelectTrueVal,
+ SelectFalseVal);
+ }
+ return 0;
+}
+
+
+/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
+/// has a PHI node as operand #0, see if we can fold the instruction into the
+/// PHI (which is only possible if all operands to the PHI are constants).
+///
+/// If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
+/// that would normally be unprofitable because they strongly encourage jump
+/// threading.
+Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
+ bool AllowAggressive) {
+ AllowAggressive = false;
+ PHINode *PN = cast<PHINode>(I.getOperand(0));
+ unsigned NumPHIValues = PN->getNumIncomingValues();
+ if (NumPHIValues == 0 ||
+ // We normally only transform phis with a single use, unless we're trying
+ // hard to make jump threading happen.
+ (!PN->hasOneUse() && !AllowAggressive))
+ return 0;
+
+
+ // Check to see if all of the operands of the PHI are simple constants
+ // (constantint/constantfp/undef). If there is one non-constant value,
+ // remember the BB it is in. If there is more than one or if *it* is a PHI,
+ // bail out. We don't do arbitrary constant expressions here because moving
+ // their computation can be expensive without a cost model.
+ BasicBlock *NonConstBB = 0;
+ for (unsigned i = 0; i != NumPHIValues; ++i)
+ if (!isa<Constant>(PN->getIncomingValue(i)) ||
+ isa<ConstantExpr>(PN->getIncomingValue(i))) {
+ if (NonConstBB) return 0; // More than one non-const value.
+ if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
+ NonConstBB = PN->getIncomingBlock(i);
+
+ // If the incoming non-constant value is in I's block, we have an infinite
+ // loop.
+ if (NonConstBB == I.getParent())
+ return 0;
+ }
+
+ // If there is exactly one non-constant value, we can insert a copy of the
+ // operation in that block. However, if this is a critical edge, we would be
+ // inserting the computation one some other paths (e.g. inside a loop). Only
+ // do this if the pred block is unconditionally branching into the phi block.
+ if (NonConstBB != 0 && !AllowAggressive) {
+ BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
+ if (!BI || !BI->isUnconditional()) return 0;
+ }
+
+ // Okay, we can do the transformation: create the new PHI node.
+ PHINode *NewPN = PHINode::Create(I.getType(), "");
+ NewPN->reserveOperandSpace(PN->getNumOperands()/2);
+ InsertNewInstBefore(NewPN, *PN);
+ NewPN->takeName(PN);
+
+ // Next, add all of the operands to the PHI.
+ if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
+ // We only currently try to fold the condition of a select when it is a phi,
+ // not the true/false values.
+ Value *TrueV = SI->getTrueValue();
+ Value *FalseV = SI->getFalseValue();
+ BasicBlock *PhiTransBB = PN->getParent();
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ BasicBlock *ThisBB = PN->getIncomingBlock(i);
+ Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
+ Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
+ Value *InV = 0;
+ if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
+ InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
+ } else {
+ assert(PN->getIncomingBlock(i) == NonConstBB);
+ InV = SelectInst::Create(PN->getIncomingValue(i), TrueVInPred,
+ FalseVInPred,
+ "phitmp", NonConstBB->getTerminator());
+ Worklist.Add(cast<Instruction>(InV));
+ }
+ NewPN->addIncoming(InV, ThisBB);
+ }
+ } else if (I.getNumOperands() == 2) {
+ Constant *C = cast<Constant>(I.getOperand(1));
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ Value *InV = 0;
+ if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
+ if (CmpInst *CI = dyn_cast<CmpInst>(&I))
+ InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
+ else
+ InV = ConstantExpr::get(I.getOpcode(), InC, C);
+ } else {
+ assert(PN->getIncomingBlock(i) == NonConstBB);
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
+ InV = BinaryOperator::Create(BO->getOpcode(),
+ PN->getIncomingValue(i), C, "phitmp",
+ NonConstBB->getTerminator());
+ else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
+ InV = CmpInst::Create(CI->getOpcode(),
+ CI->getPredicate(),
+ PN->getIncomingValue(i), C, "phitmp",
+ NonConstBB->getTerminator());
+ else
+ llvm_unreachable("Unknown binop!");
+
+ Worklist.Add(cast<Instruction>(InV));
+ }
+ NewPN->addIncoming(InV, PN->getIncomingBlock(i));
+ }
+ } else {
+ CastInst *CI = cast<CastInst>(&I);
+ const Type *RetTy = CI->getType();
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ Value *InV;
+ if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
+ InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
+ } else {
+ assert(PN->getIncomingBlock(i) == NonConstBB);
+ InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
+ I.getType(), "phitmp",
+ NonConstBB->getTerminator());
+ Worklist.Add(cast<Instruction>(InV));
+ }
+ NewPN->addIncoming(InV, PN->getIncomingBlock(i));
+ }
+ }
+ return ReplaceInstUsesWith(I, NewPN);
+}
+
+/// FindElementAtOffset - Given a type and a constant offset, determine whether
+/// or not there is a sequence of GEP indices into the type that will land us at
+/// the specified offset. If so, fill them into NewIndices and return the
+/// resultant element type, otherwise return null.
+const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset,
+ SmallVectorImpl<Value*> &NewIndices) {
+ if (!TD) return 0;
+ if (!Ty->isSized()) return 0;
+
+ // Start with the index over the outer type. Note that the type size
+ // might be zero (even if the offset isn't zero) if the indexed type
+ // is something like [0 x {int, int}]
+ const Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
+ int64_t FirstIdx = 0;
+ if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
+ FirstIdx = Offset/TySize;
+ Offset -= FirstIdx*TySize;
+
+ // Handle hosts where % returns negative instead of values [0..TySize).
+ if (Offset < 0) {
+ --FirstIdx;
+ Offset += TySize;
+ assert(Offset >= 0);
+ }
+ assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
+ }
+
+ NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
+
+ // Index into the types. If we fail, set OrigBase to null.
+ while (Offset) {
+ // Indexing into tail padding between struct/array elements.
+ if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
+ return 0;
+
+ if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+ const StructLayout *SL = TD->getStructLayout(STy);
+ assert(Offset < (int64_t)SL->getSizeInBytes() &&
+ "Offset must stay within the indexed type");
+
+ unsigned Elt = SL->getElementContainingOffset(Offset);
+ NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
+ Elt));
+
+ Offset -= SL->getElementOffset(Elt);
+ Ty = STy->getElementType(Elt);
+ } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
+ uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
+ assert(EltSize && "Cannot index into a zero-sized array");
+ NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
+ Offset %= EltSize;
+ Ty = AT->getElementType();
+ } else {
+ // Otherwise, we can't index into the middle of this atomic type, bail.
+ return 0;
+ }
+ }
+
+ return Ty;
+}
+
+
+
+Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
+ SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
+
+ if (Value *V = SimplifyGEPInst(&Ops[0], Ops.size(), TD))
+ return ReplaceInstUsesWith(GEP, V);
+
+ Value *PtrOp = GEP.getOperand(0);
+
+ if (isa<UndefValue>(GEP.getOperand(0)))
+ return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
+
+ // Eliminate unneeded casts for indices.
+ if (TD) {
+ bool MadeChange = false;
+ unsigned PtrSize = TD->getPointerSizeInBits();
+
+ gep_type_iterator GTI = gep_type_begin(GEP);
+ for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
+ I != E; ++I, ++GTI) {
+ if (!isa<SequentialType>(*GTI)) continue;
+
+ // If we are using a wider index than needed for this platform, shrink it
+ // to what we need. If narrower, sign-extend it to what we need. This
+ // explicit cast can make subsequent optimizations more obvious.
+ unsigned OpBits = cast<IntegerType>((*I)->getType())->getBitWidth();
+ if (OpBits == PtrSize)
+ continue;
+
+ *I = Builder->CreateIntCast(*I, TD->getIntPtrType(GEP.getContext()),true);
+ MadeChange = true;
+ }
+ if (MadeChange) return &GEP;
+ }
+
+ // Combine Indices - If the source pointer to this getelementptr instruction
+ // is a getelementptr instruction, combine the indices of the two
+ // getelementptr instructions into a single instruction.
+ //
+ if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
+ // Note that if our source is a gep chain itself that we wait for that
+ // chain to be resolved before we perform this transformation. This
+ // avoids us creating a TON of code in some cases.
+ //
+ if (GetElementPtrInst *SrcGEP =
+ dyn_cast<GetElementPtrInst>(Src->getOperand(0)))
+ if (SrcGEP->getNumOperands() == 2)
+ return 0; // Wait until our source is folded to completion.
+
+ SmallVector<Value*, 8> Indices;
+
+ // Find out whether the last index in the source GEP is a sequential idx.
+ bool EndsWithSequential = false;
+ for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
+ I != E; ++I)
+ EndsWithSequential = !isa<StructType>(*I);
+
+ // Can we combine the two pointer arithmetics offsets?
+ if (EndsWithSequential) {
+ // Replace: gep (gep %P, long B), long A, ...
+ // With: T = long A+B; gep %P, T, ...
+ //
+ Value *Sum;
+ Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
+ Value *GO1 = GEP.getOperand(1);
+ if (SO1 == Constant::getNullValue(SO1->getType())) {
+ Sum = GO1;
+ } else if (GO1 == Constant::getNullValue(GO1->getType())) {
+ Sum = SO1;
+ } else {
+ // If they aren't the same type, then the input hasn't been processed
+ // by the loop above yet (which canonicalizes sequential index types to
+ // intptr_t). Just avoid transforming this until the input has been
+ // normalized.
+ if (SO1->getType() != GO1->getType())
+ return 0;
+ Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
+ }
+
+ // Update the GEP in place if possible.
+ if (Src->getNumOperands() == 2) {
+ GEP.setOperand(0, Src->getOperand(0));
+ GEP.setOperand(1, Sum);
+ return &GEP;
+ }
+ Indices.append(Src->op_begin()+1, Src->op_end()-1);
+ Indices.push_back(Sum);
+ Indices.append(GEP.op_begin()+2, GEP.op_end());
+ } else if (isa<Constant>(*GEP.idx_begin()) &&
+ cast<Constant>(*GEP.idx_begin())->isNullValue() &&
+ Src->getNumOperands() != 1) {
+ // Otherwise we can do the fold if the first index of the GEP is a zero
+ Indices.append(Src->op_begin()+1, Src->op_end());
+ Indices.append(GEP.idx_begin()+1, GEP.idx_end());
+ }
+
+ if (!Indices.empty())
+ return (GEP.isInBounds() && Src->isInBounds()) ?
+ GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(),
+ Indices.end(), GEP.getName()) :
+ GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(),
+ Indices.end(), GEP.getName());
+ }
+
+ // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
+ Value *StrippedPtr = PtrOp->stripPointerCasts();
+ if (StrippedPtr != PtrOp) {
+ const PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType());
+
+ bool HasZeroPointerIndex = false;
+ if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
+ HasZeroPointerIndex = C->isZero();
+
+ // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
+ // into : GEP [10 x i8]* X, i32 0, ...
+ //
+ // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
+ // into : GEP i8* X, ...
+ //
+ // This occurs when the program declares an array extern like "int X[];"
+ if (HasZeroPointerIndex) {
+ const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
+ if (const ArrayType *CATy =
+ dyn_cast<ArrayType>(CPTy->getElementType())) {
+ // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
+ if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
+ // -> GEP i8* X, ...
+ SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
+ GetElementPtrInst *Res =
+ GetElementPtrInst::Create(StrippedPtr, Idx.begin(),
+ Idx.end(), GEP.getName());
+ Res->setIsInBounds(GEP.isInBounds());
+ return Res;
+ }
+
+ if (const ArrayType *XATy =
+ dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
+ // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
+ if (CATy->getElementType() == XATy->getElementType()) {
+ // -> GEP [10 x i8]* X, i32 0, ...
+ // At this point, we know that the cast source type is a pointer
+ // to an array of the same type as the destination pointer
+ // array. Because the array type is never stepped over (there
+ // is a leading zero) we can fold the cast into this GEP.
+ GEP.setOperand(0, StrippedPtr);
+ return &GEP;
+ }
+ }
+ }
+ } else if (GEP.getNumOperands() == 2) {
+ // Transform things like:
+ // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
+ // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
+ const Type *SrcElTy = StrippedPtrTy->getElementType();
+ const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
+ if (TD && isa<ArrayType>(SrcElTy) &&
+ TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
+ TD->getTypeAllocSize(ResElTy)) {
+ Value *Idx[2];
+ Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
+ Idx[1] = GEP.getOperand(1);
+ Value *NewGEP = GEP.isInBounds() ?
+ Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2, GEP.getName()) :
+ Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
+ // V and GEP are both pointer types --> BitCast
+ return new BitCastInst(NewGEP, GEP.getType());
+ }
+
+ // Transform things like:
+ // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
+ // (where tmp = 8*tmp2) into:
+ // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
+
+ if (TD && isa<ArrayType>(SrcElTy) && ResElTy->isInteger(8)) {
+ uint64_t ArrayEltSize =
+ TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
+
+ // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
+ // allow either a mul, shift, or constant here.
+ Value *NewIdx = 0;
+ ConstantInt *Scale = 0;
+ if (ArrayEltSize == 1) {
+ NewIdx = GEP.getOperand(1);
+ Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
+ } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
+ NewIdx = ConstantInt::get(CI->getType(), 1);
+ Scale = CI;
+ } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
+ if (Inst->getOpcode() == Instruction::Shl &&
+ isa<ConstantInt>(Inst->getOperand(1))) {
+ ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
+ uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
+ Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
+ 1ULL << ShAmtVal);
+ NewIdx = Inst->getOperand(0);
+ } else if (Inst->getOpcode() == Instruction::Mul &&
+ isa<ConstantInt>(Inst->getOperand(1))) {
+ Scale = cast<ConstantInt>(Inst->getOperand(1));
+ NewIdx = Inst->getOperand(0);
+ }
+ }
+
+ // If the index will be to exactly the right offset with the scale taken
+ // out, perform the transformation. Note, we don't know whether Scale is
+ // signed or not. We'll use unsigned version of division/modulo
+ // operation after making sure Scale doesn't have the sign bit set.
+ if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
+ Scale->getZExtValue() % ArrayEltSize == 0) {
+ Scale = ConstantInt::get(Scale->getType(),
+ Scale->getZExtValue() / ArrayEltSize);
+ if (Scale->getZExtValue() != 1) {
+ Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
+ false /*ZExt*/);
+ NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
+ }
+
+ // Insert the new GEP instruction.
+ Value *Idx[2];
+ Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
+ Idx[1] = NewIdx;
+ Value *NewGEP = GEP.isInBounds() ?
+ Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2,GEP.getName()):
+ Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
+ // The NewGEP must be pointer typed, so must the old one -> BitCast
+ return new BitCastInst(NewGEP, GEP.getType());
+ }
+ }
+ }
+ }
+
+ /// See if we can simplify:
+ /// X = bitcast A* to B*
+ /// Y = gep X, <...constant indices...>
+ /// into a gep of the original struct. This is important for SROA and alias
+ /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
+ if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
+ if (TD &&
+ !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) {
+ // Determine how much the GEP moves the pointer. We are guaranteed to get
+ // a constant back from EmitGEPOffset.
+ ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP));
+ int64_t Offset = OffsetV->getSExtValue();
+
+ // If this GEP instruction doesn't move the pointer, just replace the GEP
+ // with a bitcast of the real input to the dest type.
+ if (Offset == 0) {
+ // If the bitcast is of an allocation, and the allocation will be
+ // converted to match the type of the cast, don't touch this.
+ if (isa<AllocaInst>(BCI->getOperand(0)) ||
+ isMalloc(BCI->getOperand(0))) {
+ // See if the bitcast simplifies, if so, don't nuke this GEP yet.
+ if (Instruction *I = visitBitCast(*BCI)) {
+ if (I != BCI) {
+ I->takeName(BCI);
+ BCI->getParent()->getInstList().insert(BCI, I);
+ ReplaceInstUsesWith(*BCI, I);
+ }
+ return &GEP;
+ }
+ }
+ return new BitCastInst(BCI->getOperand(0), GEP.getType());
+ }
+
+ // Otherwise, if the offset is non-zero, we need to find out if there is a
+ // field at Offset in 'A's type. If so, we can pull the cast through the
+ // GEP.
+ SmallVector<Value*, 8> NewIndices;
+ const Type *InTy =
+ cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
+ if (FindElementAtOffset(InTy, Offset, NewIndices)) {
+ Value *NGEP = GEP.isInBounds() ?
+ Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices.begin(),
+ NewIndices.end()) :
+ Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(),
+ NewIndices.end());
+
+ if (NGEP->getType() == GEP.getType())
+ return ReplaceInstUsesWith(GEP, NGEP);
+ NGEP->takeName(&GEP);
+ return new BitCastInst(NGEP, GEP.getType());
+ }
+ }
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitFree(Instruction &FI) {
+ Value *Op = FI.getOperand(1);
+
+ // free undef -> unreachable.
+ if (isa<UndefValue>(Op)) {
+ // Insert a new store to null because we cannot modify the CFG here.
+ new StoreInst(ConstantInt::getTrue(FI.getContext()),
+ UndefValue::get(Type::getInt1PtrTy(FI.getContext())), &FI);
+ return EraseInstFromFunction(FI);
+ }
+
+ // If we have 'free null' delete the instruction. This can happen in stl code
+ // when lots of inlining happens.
+ if (isa<ConstantPointerNull>(Op))
+ return EraseInstFromFunction(FI);
+
+ // If we have a malloc call whose only use is a free call, delete both.
+ if (isMalloc(Op)) {
+ if (CallInst* CI = extractMallocCallFromBitCast(Op)) {
+ if (Op->hasOneUse() && CI->hasOneUse()) {
+ EraseInstFromFunction(FI);
+ EraseInstFromFunction(*CI);
+ return EraseInstFromFunction(*cast<Instruction>(Op));
+ }
+ } else {
+ // Op is a call to malloc
+ if (Op->hasOneUse()) {
+ EraseInstFromFunction(FI);
+ return EraseInstFromFunction(*cast<Instruction>(Op));
+ }
+ }
+ }
+
+ return 0;
+}
+
+
+
+Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
+ // Change br (not X), label True, label False to: br X, label False, True
+ Value *X = 0;
+ BasicBlock *TrueDest;
+ BasicBlock *FalseDest;
+ if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
+ !isa<Constant>(X)) {
+ // Swap Destinations and condition...
+ BI.setCondition(X);
+ BI.setSuccessor(0, FalseDest);
+ BI.setSuccessor(1, TrueDest);
+ return &BI;
+ }
+
+ // Cannonicalize fcmp_one -> fcmp_oeq
+ FCmpInst::Predicate FPred; Value *Y;
+ if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
+ TrueDest, FalseDest)) &&
+ BI.getCondition()->hasOneUse())
+ if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
+ FPred == FCmpInst::FCMP_OGE) {
+ FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
+ Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
+
+ // Swap Destinations and condition.
+ BI.setSuccessor(0, FalseDest);
+ BI.setSuccessor(1, TrueDest);
+ Worklist.Add(Cond);
+ return &BI;
+ }
+
+ // Cannonicalize icmp_ne -> icmp_eq
+ ICmpInst::Predicate IPred;
+ if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
+ TrueDest, FalseDest)) &&
+ BI.getCondition()->hasOneUse())
+ if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
+ IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
+ IPred == ICmpInst::ICMP_SGE) {
+ ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
+ Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
+ // Swap Destinations and condition.
+ BI.setSuccessor(0, FalseDest);
+ BI.setSuccessor(1, TrueDest);
+ Worklist.Add(Cond);
+ return &BI;
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
+ Value *Cond = SI.getCondition();
+ if (Instruction *I = dyn_cast<Instruction>(Cond)) {
+ if (I->getOpcode() == Instruction::Add)
+ if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ // change 'switch (X+4) case 1:' into 'switch (X) case -3'
+ for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
+ SI.setOperand(i,
+ ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
+ AddRHS));
+ SI.setOperand(0, I->getOperand(0));
+ Worklist.Add(I);
+ return &SI;
+ }
+ }
+ return 0;
+}
+
+Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
+ Value *Agg = EV.getAggregateOperand();
+
+ if (!EV.hasIndices())
+ return ReplaceInstUsesWith(EV, Agg);
+
+ if (Constant *C = dyn_cast<Constant>(Agg)) {
+ if (isa<UndefValue>(C))
+ return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
+
+ if (isa<ConstantAggregateZero>(C))
+ return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
+
+ if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
+ // Extract the element indexed by the first index out of the constant
+ Value *V = C->getOperand(*EV.idx_begin());
+ if (EV.getNumIndices() > 1)
+ // Extract the remaining indices out of the constant indexed by the
+ // first index
+ return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
+ else
+ return ReplaceInstUsesWith(EV, V);
+ }
+ return 0; // Can't handle other constants
+ }
+ if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
+ // We're extracting from an insertvalue instruction, compare the indices
+ const unsigned *exti, *exte, *insi, *inse;
+ for (exti = EV.idx_begin(), insi = IV->idx_begin(),
+ exte = EV.idx_end(), inse = IV->idx_end();
+ exti != exte && insi != inse;
+ ++exti, ++insi) {
+ if (*insi != *exti)
+ // The insert and extract both reference distinctly different elements.
+ // This means the extract is not influenced by the insert, and we can
+ // replace the aggregate operand of the extract with the aggregate
+ // operand of the insert. i.e., replace
+ // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
+ // %E = extractvalue { i32, { i32 } } %I, 0
+ // with
+ // %E = extractvalue { i32, { i32 } } %A, 0
+ return ExtractValueInst::Create(IV->getAggregateOperand(),
+ EV.idx_begin(), EV.idx_end());
+ }
+ if (exti == exte && insi == inse)
+ // Both iterators are at the end: Index lists are identical. Replace
+ // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
+ // %C = extractvalue { i32, { i32 } } %B, 1, 0
+ // with "i32 42"
+ return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
+ if (exti == exte) {
+ // The extract list is a prefix of the insert list. i.e. replace
+ // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
+ // %E = extractvalue { i32, { i32 } } %I, 1
+ // with
+ // %X = extractvalue { i32, { i32 } } %A, 1
+ // %E = insertvalue { i32 } %X, i32 42, 0
+ // by switching the order of the insert and extract (though the
+ // insertvalue should be left in, since it may have other uses).
+ Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
+ EV.idx_begin(), EV.idx_end());
+ return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
+ insi, inse);
+ }
+ if (insi == inse)
+ // The insert list is a prefix of the extract list
+ // We can simply remove the common indices from the extract and make it
+ // operate on the inserted value instead of the insertvalue result.
+ // i.e., replace
+ // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
+ // %E = extractvalue { i32, { i32 } } %I, 1, 0
+ // with
+ // %E extractvalue { i32 } { i32 42 }, 0
+ return ExtractValueInst::Create(IV->getInsertedValueOperand(),
+ exti, exte);
+ }
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
+ // We're extracting from an intrinsic, see if we're the only user, which
+ // allows us to simplify multiple result intrinsics to simpler things that
+ // just get one value..
+ if (II->hasOneUse()) {
+ // Check if we're grabbing the overflow bit or the result of a 'with
+ // overflow' intrinsic. If it's the latter we can remove the intrinsic
+ // and replace it with a traditional binary instruction.
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::sadd_with_overflow:
+ if (*EV.idx_begin() == 0) { // Normal result.
+ Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
+ II->replaceAllUsesWith(UndefValue::get(II->getType()));
+ EraseInstFromFunction(*II);
+ return BinaryOperator::CreateAdd(LHS, RHS);
+ }
+ break;
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ if (*EV.idx_begin() == 0) { // Normal result.
+ Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
+ II->replaceAllUsesWith(UndefValue::get(II->getType()));
+ EraseInstFromFunction(*II);
+ return BinaryOperator::CreateSub(LHS, RHS);
+ }
+ break;
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ if (*EV.idx_begin() == 0) { // Normal result.
+ Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
+ II->replaceAllUsesWith(UndefValue::get(II->getType()));
+ EraseInstFromFunction(*II);
+ return BinaryOperator::CreateMul(LHS, RHS);
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ }
+ // Can't simplify extracts from other values. Note that nested extracts are
+ // already simplified implicitely by the above (extract ( extract (insert) )
+ // will be translated into extract ( insert ( extract ) ) first and then just
+ // the value inserted, if appropriate).
+ return 0;
+}
+
+
+
+
+/// TryToSinkInstruction - Try to move the specified instruction from its
+/// current block into the beginning of DestBlock, which can only happen if it's
+/// safe to move the instruction past all of the instructions between it and the
+/// end of its block.
+static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
+ assert(I->hasOneUse() && "Invariants didn't hold!");
+
+ // Cannot move control-flow-involving, volatile loads, vaarg, etc.
+ if (isa<PHINode>(I) || I->mayHaveSideEffects() || isa<TerminatorInst>(I))
+ return false;
+
+ // Do not sink alloca instructions out of the entry block.
+ if (isa<AllocaInst>(I) && I->getParent() ==
+ &DestBlock->getParent()->getEntryBlock())
+ return false;
+
+ // We can only sink load instructions if there is nothing between the load and
+ // the end of block that could change the value.
+ if (I->mayReadFromMemory()) {
+ for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
+ Scan != E; ++Scan)
+ if (Scan->mayWriteToMemory())
+ return false;
+ }
+
+ BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
+
+ I->moveBefore(InsertPos);
+ ++NumSunkInst;
+ return true;
+}
+
+
+/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
+/// all reachable code to the worklist.
+///
+/// This has a couple of tricks to make the code faster and more powerful. In
+/// particular, we constant fold and DCE instructions as we go, to avoid adding
+/// them to the worklist (this significantly speeds up instcombine on code where
+/// many instructions are dead or constant). Additionally, if we find a branch
+/// whose condition is a known constant, we only visit the reachable successors.
+///
+static bool AddReachableCodeToWorklist(BasicBlock *BB,
+ SmallPtrSet<BasicBlock*, 64> &Visited,
+ InstCombiner &IC,
+ const TargetData *TD) {
+ bool MadeIRChange = false;
+ SmallVector<BasicBlock*, 256> Worklist;
+ Worklist.push_back(BB);
+
+ std::vector<Instruction*> InstrsForInstCombineWorklist;
+ InstrsForInstCombineWorklist.reserve(128);
+
+ SmallPtrSet<ConstantExpr*, 64> FoldedConstants;
+
+ do {
+ BB = Worklist.pop_back_val();
+
+ // We have now visited this block! If we've already been here, ignore it.
+ if (!Visited.insert(BB)) continue;
+
+ for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
+ Instruction *Inst = BBI++;
+
+ // DCE instruction if trivially dead.
+ if (isInstructionTriviallyDead(Inst)) {
+ ++NumDeadInst;
+ DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
+ Inst->eraseFromParent();
+ continue;
+ }
+
+ // ConstantProp instruction if trivially constant.
+ if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
+ if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
+ DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
+ << *Inst << '\n');
+ Inst->replaceAllUsesWith(C);
+ ++NumConstProp;
+ Inst->eraseFromParent();
+ continue;
+ }
+
+ if (TD) {
+ // See if we can constant fold its operands.
+ for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
+ i != e; ++i) {
+ ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
+ if (CE == 0) continue;
+
+ // If we already folded this constant, don't try again.
+ if (!FoldedConstants.insert(CE))
+ continue;
+
+ Constant *NewC = ConstantFoldConstantExpression(CE, TD);
+ if (NewC && NewC != CE) {
+ *i = NewC;
+ MadeIRChange = true;
+ }
+ }
+ }
+
+ InstrsForInstCombineWorklist.push_back(Inst);
+ }
+
+ // Recursively visit successors. If this is a branch or switch on a
+ // constant, only visit the reachable successor.
+ TerminatorInst *TI = BB->getTerminator();
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
+ bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
+ BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
+ Worklist.push_back(ReachableBB);
+ continue;
+ }
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
+ // See if this is an explicit destination.
+ for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
+ if (SI->getCaseValue(i) == Cond) {
+ BasicBlock *ReachableBB = SI->getSuccessor(i);
+ Worklist.push_back(ReachableBB);
+ continue;
+ }
+
+ // Otherwise it is the default destination.
+ Worklist.push_back(SI->getSuccessor(0));
+ continue;
+ }
+ }
+
+ for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
+ Worklist.push_back(TI->getSuccessor(i));
+ } while (!Worklist.empty());
+
+ // Once we've found all of the instructions to add to instcombine's worklist,
+ // add them in reverse order. This way instcombine will visit from the top
+ // of the function down. This jives well with the way that it adds all uses
+ // of instructions to the worklist after doing a transformation, thus avoiding
+ // some N^2 behavior in pathological cases.
+ IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
+ InstrsForInstCombineWorklist.size());
+
+ return MadeIRChange;
+}
+
+bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
+ MadeIRChange = false;
+
+ DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
+ << F.getNameStr() << "\n");
+
+ {
+ // Do a depth-first traversal of the function, populate the worklist with
+ // the reachable instructions. Ignore blocks that are not reachable. Keep
+ // track of which blocks we visit.
+ SmallPtrSet<BasicBlock*, 64> Visited;
+ MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
+
+ // Do a quick scan over the function. If we find any blocks that are
+ // unreachable, remove any instructions inside of them. This prevents
+ // the instcombine code from having to deal with some bad special cases.
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ if (!Visited.count(BB)) {
+ Instruction *Term = BB->getTerminator();
+ while (Term != BB->begin()) { // Remove instrs bottom-up
+ BasicBlock::iterator I = Term; --I;
+
+ DEBUG(errs() << "IC: DCE: " << *I << '\n');
+ // A debug intrinsic shouldn't force another iteration if we weren't
+ // going to do one without it.
+ if (!isa<DbgInfoIntrinsic>(I)) {
+ ++NumDeadInst;
+ MadeIRChange = true;
+ }
+
+ // If I is not void type then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!I->getType()->isVoidTy())
+ I->replaceAllUsesWith(UndefValue::get(I->getType()));
+ I->eraseFromParent();
+ }
+ }
+ }
+
+ while (!Worklist.isEmpty()) {
+ Instruction *I = Worklist.RemoveOne();
+ if (I == 0) continue; // skip null values.
+
+ // Check to see if we can DCE the instruction.
+ if (isInstructionTriviallyDead(I)) {
+ DEBUG(errs() << "IC: DCE: " << *I << '\n');
+ EraseInstFromFunction(*I);
+ ++NumDeadInst;
+ MadeIRChange = true;
+ continue;
+ }
+
+ // Instruction isn't dead, see if we can constant propagate it.
+ if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
+ if (Constant *C = ConstantFoldInstruction(I, TD)) {
+ DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
+
+ // Add operands to the worklist.
+ ReplaceInstUsesWith(*I, C);
+ ++NumConstProp;
+ EraseInstFromFunction(*I);
+ MadeIRChange = true;
+ continue;
+ }
+
+ // See if we can trivially sink this instruction to a successor basic block.
+ if (I->hasOneUse()) {
+ BasicBlock *BB = I->getParent();
+ Instruction *UserInst = cast<Instruction>(I->use_back());
+ BasicBlock *UserParent;
+
+ // Get the block the use occurs in.
+ if (PHINode *PN = dyn_cast<PHINode>(UserInst))
+ UserParent = PN->getIncomingBlock(I->use_begin().getUse());
+ else
+ UserParent = UserInst->getParent();
+
+ if (UserParent != BB) {
+ bool UserIsSuccessor = false;
+ // See if the user is one of our successors.
+ for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
+ if (*SI == UserParent) {
+ UserIsSuccessor = true;
+ break;
+ }
+
+ // If the user is one of our immediate successors, and if that successor
+ // only has us as a predecessors (we'd have to split the critical edge
+ // otherwise), we can keep going.
+ if (UserIsSuccessor && UserParent->getSinglePredecessor())
+ // Okay, the CFG is simple enough, try to sink this instruction.
+ MadeIRChange |= TryToSinkInstruction(I, UserParent);
+ }
+ }
+
+ // Now that we have an instruction, try combining it to simplify it.
+ Builder->SetInsertPoint(I->getParent(), I);
+
+#ifndef NDEBUG
+ std::string OrigI;
+#endif
+ DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
+ DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
+
+ if (Instruction *Result = visit(*I)) {
+ ++NumCombined;
+ // Should we replace the old instruction with a new one?
+ if (Result != I) {
+ DEBUG(errs() << "IC: Old = " << *I << '\n'
+ << " New = " << *Result << '\n');
+
+ // Everything uses the new instruction now.
+ I->replaceAllUsesWith(Result);
+
+ // Push the new instruction and any users onto the worklist.
+ Worklist.Add(Result);
+ Worklist.AddUsersToWorkList(*Result);
+
+ // Move the name to the new instruction first.
+ Result->takeName(I);
+
+ // Insert the new instruction into the basic block...
+ BasicBlock *InstParent = I->getParent();
+ BasicBlock::iterator InsertPos = I;
+
+ if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
+ while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
+ ++InsertPos;
+
+ InstParent->getInstList().insert(InsertPos, Result);
+
+ EraseInstFromFunction(*I);
+ } else {
+#ifndef NDEBUG
+ DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
+ << " New = " << *I << '\n');
+#endif
+
+ // If the instruction was modified, it's possible that it is now dead.
+ // if so, remove it.
+ if (isInstructionTriviallyDead(I)) {
+ EraseInstFromFunction(*I);
+ } else {
+ Worklist.Add(I);
+ Worklist.AddUsersToWorkList(*I);
+ }
+ }
+ MadeIRChange = true;
+ }
+ }
+
+ Worklist.Zap();
+ return MadeIRChange;
+}
+
+
+bool InstCombiner::runOnFunction(Function &F) {
+ MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
+ TD = getAnalysisIfAvailable<TargetData>();
+
+
+ /// Builder - This is an IRBuilder that automatically inserts new
+ /// instructions into the worklist when they are created.
+ IRBuilder<true, TargetFolder, InstCombineIRInserter>
+ TheBuilder(F.getContext(), TargetFolder(TD),
+ InstCombineIRInserter(Worklist));
+ Builder = &TheBuilder;
+
+ bool EverMadeChange = false;
+
+ // Iterate while there is work to do.
+ unsigned Iteration = 0;
+ while (DoOneIteration(F, Iteration++))
+ EverMadeChange = true;
+
+ Builder = 0;
+ return EverMadeChange;
+}
+
+FunctionPass *llvm::createInstructionCombiningPass() {
+ return new InstCombiner();
+}
diff --git a/lib/Transforms/InstCombine/Makefile b/lib/Transforms/InstCombine/Makefile
new file mode 100644
index 0000000..0c488e78
--- /dev/null
+++ b/lib/Transforms/InstCombine/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Transforms/InstCombine/Makefile -----------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../../..
+LIBRARYNAME = LLVMInstCombine
+BUILD_ARCHIVE = 1
+
+include $(LEVEL)/Makefile.common
+
diff --git a/lib/Transforms/Instrumentation/BlockProfiling.cpp b/lib/Transforms/Instrumentation/BlockProfiling.cpp
deleted file mode 100644
index 211a6d6..0000000
--- a/lib/Transforms/Instrumentation/BlockProfiling.cpp
+++ /dev/null
@@ -1,128 +0,0 @@
-//===- BlockProfiling.cpp - Insert counters for block profiling -----------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass instruments the specified program with counters for basic block or
-// function profiling. This is the most basic form of profiling, which can tell
-// which blocks are hot, but cannot reliably detect hot paths through the CFG.
-// Block profiling counts the number of times each basic block executes, and
-// function profiling counts the number of times each function is called.
-//
-// Note that this implementation is very naive. Control equivalent regions of
-// the CFG should not require duplicate counters, but we do put duplicate
-// counters in.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Instrumentation.h"
-#include "RSProfiling.h"
-#include "ProfilingUtils.h"
-using namespace llvm;
-
-namespace {
- class FunctionProfiler : public RSProfilers_std {
- public:
- static char ID;
- bool runOnModule(Module &M);
- };
-}
-
-char FunctionProfiler::ID = 0;
-
-static RegisterPass<FunctionProfiler>
-X("insert-function-profiling",
- "Insert instrumentation for function profiling");
-static RegisterAnalysisGroup<RSProfilers> XG(X);
-
-ModulePass *llvm::createFunctionProfilerPass() {
- return new FunctionProfiler();
-}
-
-bool FunctionProfiler::runOnModule(Module &M) {
- Function *Main = M.getFunction("main");
- if (Main == 0) {
- errs() << "WARNING: cannot insert function profiling into a module"
- << " with no main function!\n";
- return false; // No main, no instrumentation!
- }
-
- unsigned NumFunctions = 0;
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
- if (!I->isDeclaration())
- ++NumFunctions;
-
- const Type *ATy = ArrayType::get(Type::getInt32Ty(M.getContext()),
- NumFunctions);
- GlobalVariable *Counters =
- new GlobalVariable(M, ATy, false, GlobalValue::InternalLinkage,
- Constant::getNullValue(ATy), "FuncProfCounters");
-
- // Instrument all of the functions...
- unsigned i = 0;
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
- if (!I->isDeclaration())
- // Insert counter at the start of the function
- IncrementCounterInBlock(&I->getEntryBlock(), i++, Counters);
-
- // Add the initialization call to main.
- InsertProfilingInitCall(Main, "llvm_start_func_profiling", Counters);
- return true;
-}
-
-
-namespace {
- class BlockProfiler : public RSProfilers_std {
- bool runOnModule(Module &M);
- public:
- static char ID;
- };
-}
-
-char BlockProfiler::ID = 0;
-static RegisterPass<BlockProfiler>
-Y("insert-block-profiling", "Insert instrumentation for block profiling");
-static RegisterAnalysisGroup<RSProfilers> YG(Y);
-
-ModulePass *llvm::createBlockProfilerPass() { return new BlockProfiler(); }
-
-bool BlockProfiler::runOnModule(Module &M) {
- Function *Main = M.getFunction("main");
- if (Main == 0) {
- errs() << "WARNING: cannot insert block profiling into a module"
- << " with no main function!\n";
- return false; // No main, no instrumentation!
- }
-
- unsigned NumBlocks = 0;
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
- if (!I->isDeclaration())
- NumBlocks += I->size();
-
- const Type *ATy = ArrayType::get(Type::getInt32Ty(M.getContext()), NumBlocks);
- GlobalVariable *Counters =
- new GlobalVariable(M, ATy, false, GlobalValue::InternalLinkage,
- Constant::getNullValue(ATy), "BlockProfCounters");
-
- // Instrument all of the blocks...
- unsigned i = 0;
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
- if (I->isDeclaration()) continue;
- for (Function::iterator BB = I->begin(), E = I->end(); BB != E; ++BB)
- // Insert counter at the start of the block
- IncrementCounterInBlock(BB, i++, Counters);
- }
-
- // Add the initialization call to main.
- InsertProfilingInitCall(Main, "llvm_start_block_profiling", Counters);
- return true;
-}
-
diff --git a/lib/Transforms/Instrumentation/CMakeLists.txt b/lib/Transforms/Instrumentation/CMakeLists.txt
index 494928e..128bf48 100644
--- a/lib/Transforms/Instrumentation/CMakeLists.txt
+++ b/lib/Transforms/Instrumentation/CMakeLists.txt
@@ -1,7 +1,5 @@
add_llvm_library(LLVMInstrumentation
- BlockProfiling.cpp
EdgeProfiling.cpp
OptimalEdgeProfiling.cpp
ProfilingUtils.cpp
- RSProfiling.cpp
)
diff --git a/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp b/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp
index 0a46fe5..94b0671 100644
--- a/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp
+++ b/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp
@@ -61,7 +61,7 @@ ModulePass *llvm::createOptimalEdgeProfilerPass() {
inline static void printEdgeCounter(ProfileInfo::Edge e,
BasicBlock* b,
unsigned i) {
- DEBUG(errs() << "--Edge Counter for " << (e) << " in " \
+ DEBUG(dbgs() << "--Edge Counter for " << (e) << " in " \
<< ((b)?(b)->getNameStr():"0") << " (# " << (i) << ")\n");
}
@@ -120,7 +120,7 @@ bool OptimalEdgeProfiler::runOnModule(Module &M) {
unsigned i = 0;
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
if (F->isDeclaration()) continue;
- DEBUG(errs()<<"Working on "<<F->getNameStr()<<"\n");
+ DEBUG(dbgs()<<"Working on "<<F->getNameStr()<<"\n");
// Calculate a Maximum Spanning Tree with the edge weights determined by
// ProfileEstimator. ProfileEstimator also assign weights to the virtual
diff --git a/lib/Transforms/Instrumentation/ProfilingUtils.cpp b/lib/Transforms/Instrumentation/ProfilingUtils.cpp
index 1679bea..3214c8c 100644
--- a/lib/Transforms/Instrumentation/ProfilingUtils.cpp
+++ b/lib/Transforms/Instrumentation/ProfilingUtils.cpp
@@ -84,7 +84,7 @@ void llvm::InsertProfilingInitCall(Function *MainFn, const char *FnName,
AI = MainFn->arg_begin();
// If the program looked at argc, have it look at the return value of the
// init call instead.
- if (AI->getType() != Type::getInt32Ty(Context)) {
+ if (!AI->getType()->isInteger(32)) {
Instruction::CastOps opcode;
if (!AI->use_empty()) {
opcode = CastInst::getCastOpcode(InitCall, true, AI->getType(), true);
diff --git a/lib/Transforms/Instrumentation/RSProfiling.cpp b/lib/Transforms/Instrumentation/RSProfiling.cpp
deleted file mode 100644
index c08efc1..0000000
--- a/lib/Transforms/Instrumentation/RSProfiling.cpp
+++ /dev/null
@@ -1,662 +0,0 @@
-//===- RSProfiling.cpp - Various profiling using random sampling ----------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// These passes implement a random sampling based profiling. Different methods
-// of choosing when to sample are supported, as well as different types of
-// profiling. This is done as two passes. The first is a sequence of profiling
-// passes which insert profiling into the program, and remember what they
-// inserted.
-//
-// The second stage duplicates all instructions in a function, ignoring the
-// profiling code, then connects the two versions togeather at the entry and at
-// backedges. At each connection point a choice is made as to whether to jump
-// to the profiled code (take a sample) or execute the unprofiled code.
-//
-// It is highly recommended that after this pass one runs mem2reg and adce
-// (instcombine load-vn gdce dse also are good to run afterwards)
-//
-// This design is intended to make the profiling passes independent of the RS
-// framework, but any profiling pass that implements the RSProfiling interface
-// is compatible with the rs framework (and thus can be sampled)
-//
-// TODO: obviously the block and function profiling are almost identical to the
-// existing ones, so they can be unified (esp since these passes are valid
-// without the rs framework).
-// TODO: Fix choice code so that frequency is not hard coded
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Pass.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Instructions.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Instrumentation.h"
-#include "RSProfiling.h"
-#include <set>
-#include <map>
-#include <queue>
-using namespace llvm;
-
-namespace {
- enum RandomMeth {
- GBV, GBVO, HOSTCC
- };
-}
-
-static cl::opt<RandomMeth> RandomMethod("profile-randomness",
- cl::desc("How to randomly choose to profile:"),
- cl::values(
- clEnumValN(GBV, "global", "global counter"),
- clEnumValN(GBVO, "ra_global",
- "register allocated global counter"),
- clEnumValN(HOSTCC, "rdcc", "cycle counter"),
- clEnumValEnd));
-
-namespace {
- /// NullProfilerRS - The basic profiler that does nothing. It is the default
- /// profiler and thus terminates RSProfiler chains. It is useful for
- /// measuring framework overhead
- class NullProfilerRS : public RSProfilers {
- public:
- static char ID; // Pass identification, replacement for typeid
- bool isProfiling(Value* v) {
- return false;
- }
- bool runOnModule(Module &M) {
- return false;
- }
- void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- }
- };
-}
-
-static RegisterAnalysisGroup<RSProfilers> A("Profiling passes");
-static RegisterPass<NullProfilerRS> NP("insert-null-profiling-rs",
- "Measure profiling framework overhead");
-static RegisterAnalysisGroup<RSProfilers, true> NPT(NP);
-
-namespace {
- /// Chooser - Something that chooses when to make a sample of the profiled code
- class Chooser {
- public:
- /// ProcessChoicePoint - is called for each basic block inserted to choose
- /// between normal and sample code
- virtual void ProcessChoicePoint(BasicBlock*) = 0;
- /// PrepFunction - is called once per function before other work is done.
- /// This gives the opertunity to insert new allocas and such.
- virtual void PrepFunction(Function*) = 0;
- virtual ~Chooser() {}
- };
-
- //Things that implement sampling policies
- //A global value that is read-mod-stored to choose when to sample.
- //A sample is taken when the global counter hits 0
- class GlobalRandomCounter : public Chooser {
- GlobalVariable* Counter;
- Value* ResetValue;
- const IntegerType* T;
- public:
- GlobalRandomCounter(Module& M, const IntegerType* t, uint64_t resetval);
- virtual ~GlobalRandomCounter();
- virtual void PrepFunction(Function* F);
- virtual void ProcessChoicePoint(BasicBlock* bb);
- };
-
- //Same is GRC, but allow register allocation of the global counter
- class GlobalRandomCounterOpt : public Chooser {
- GlobalVariable* Counter;
- Value* ResetValue;
- AllocaInst* AI;
- const IntegerType* T;
- public:
- GlobalRandomCounterOpt(Module& M, const IntegerType* t, uint64_t resetval);
- virtual ~GlobalRandomCounterOpt();
- virtual void PrepFunction(Function* F);
- virtual void ProcessChoicePoint(BasicBlock* bb);
- };
-
- //Use the cycle counter intrinsic as a source of pseudo randomness when
- //deciding when to sample.
- class CycleCounter : public Chooser {
- uint64_t rm;
- Constant *F;
- public:
- CycleCounter(Module& m, uint64_t resetmask);
- virtual ~CycleCounter();
- virtual void PrepFunction(Function* F);
- virtual void ProcessChoicePoint(BasicBlock* bb);
- };
-
- /// ProfilerRS - Insert the random sampling framework
- struct ProfilerRS : public FunctionPass {
- static char ID; // Pass identification, replacement for typeid
- ProfilerRS() : FunctionPass(&ID) {}
-
- std::map<Value*, Value*> TransCache;
- std::set<BasicBlock*> ChoicePoints;
- Chooser* c;
-
- //Translate and duplicate values for the new profile free version of stuff
- Value* Translate(Value* v);
- //Duplicate an entire function (with out profiling)
- void Duplicate(Function& F, RSProfilers& LI);
- //Called once for each backedge, handle the insertion of choice points and
- //the interconection of the two versions of the code
- void ProcessBackEdge(BasicBlock* src, BasicBlock* dst, Function& F);
- bool runOnFunction(Function& F);
- bool doInitialization(Module &M);
- virtual void getAnalysisUsage(AnalysisUsage &AU) const;
- };
-}
-
-static RegisterPass<ProfilerRS>
-X("insert-rs-profiling-framework",
- "Insert random sampling instrumentation framework");
-
-char RSProfilers::ID = 0;
-char NullProfilerRS::ID = 0;
-char ProfilerRS::ID = 0;
-
-//Local utilities
-static void ReplacePhiPred(BasicBlock* btarget,
- BasicBlock* bold, BasicBlock* bnew);
-
-static void CollapsePhi(BasicBlock* btarget, BasicBlock* bsrc);
-
-template<class T>
-static void recBackEdge(BasicBlock* bb, T& BackEdges,
- std::map<BasicBlock*, int>& color,
- std::map<BasicBlock*, int>& depth,
- std::map<BasicBlock*, int>& finish,
- int& time);
-
-//find the back edges and where they go to
-template<class T>
-static void getBackEdges(Function& F, T& BackEdges);
-
-
-///////////////////////////////////////
-// Methods of choosing when to profile
-///////////////////////////////////////
-
-GlobalRandomCounter::GlobalRandomCounter(Module& M, const IntegerType* t,
- uint64_t resetval) : T(t) {
- ConstantInt* Init = ConstantInt::get(T, resetval);
- ResetValue = Init;
- Counter = new GlobalVariable(M, T, false, GlobalValue::InternalLinkage,
- Init, "RandomSteeringCounter");
-}
-
-GlobalRandomCounter::~GlobalRandomCounter() {}
-
-void GlobalRandomCounter::PrepFunction(Function* F) {}
-
-void GlobalRandomCounter::ProcessChoicePoint(BasicBlock* bb) {
- BranchInst* t = cast<BranchInst>(bb->getTerminator());
-
- //decrement counter
- LoadInst* l = new LoadInst(Counter, "counter", t);
-
- ICmpInst* s = new ICmpInst(t, ICmpInst::ICMP_EQ, l,
- ConstantInt::get(T, 0),
- "countercc");
-
- Value* nv = BinaryOperator::CreateSub(l, ConstantInt::get(T, 1),
- "counternew", t);
- new StoreInst(nv, Counter, t);
- t->setCondition(s);
-
- //reset counter
- BasicBlock* oldnext = t->getSuccessor(0);
- BasicBlock* resetblock = BasicBlock::Create(bb->getContext(),
- "reset", oldnext->getParent(),
- oldnext);
- TerminatorInst* t2 = BranchInst::Create(oldnext, resetblock);
- t->setSuccessor(0, resetblock);
- new StoreInst(ResetValue, Counter, t2);
- ReplacePhiPred(oldnext, bb, resetblock);
-}
-
-GlobalRandomCounterOpt::GlobalRandomCounterOpt(Module& M, const IntegerType* t,
- uint64_t resetval)
- : AI(0), T(t) {
- ConstantInt* Init = ConstantInt::get(T, resetval);
- ResetValue = Init;
- Counter = new GlobalVariable(M, T, false, GlobalValue::InternalLinkage,
- Init, "RandomSteeringCounter");
-}
-
-GlobalRandomCounterOpt::~GlobalRandomCounterOpt() {}
-
-void GlobalRandomCounterOpt::PrepFunction(Function* F) {
- //make a local temporary to cache the global
- BasicBlock& bb = F->getEntryBlock();
- BasicBlock::iterator InsertPt = bb.begin();
- AI = new AllocaInst(T, 0, "localcounter", InsertPt);
- LoadInst* l = new LoadInst(Counter, "counterload", InsertPt);
- new StoreInst(l, AI, InsertPt);
-
- //modify all functions and return values to restore the local variable to/from
- //the global variable
- for(Function::iterator fib = F->begin(), fie = F->end();
- fib != fie; ++fib)
- for(BasicBlock::iterator bib = fib->begin(), bie = fib->end();
- bib != bie; ++bib)
- if (isa<CallInst>(bib)) {
- LoadInst* l = new LoadInst(AI, "counter", bib);
- new StoreInst(l, Counter, bib);
- l = new LoadInst(Counter, "counter", ++bib);
- new StoreInst(l, AI, bib--);
- } else if (isa<InvokeInst>(bib)) {
- LoadInst* l = new LoadInst(AI, "counter", bib);
- new StoreInst(l, Counter, bib);
-
- BasicBlock* bb = cast<InvokeInst>(bib)->getNormalDest();
- BasicBlock::iterator i = bb->getFirstNonPHI();
- l = new LoadInst(Counter, "counter", i);
-
- bb = cast<InvokeInst>(bib)->getUnwindDest();
- i = bb->getFirstNonPHI();
- l = new LoadInst(Counter, "counter", i);
- new StoreInst(l, AI, i);
- } else if (isa<UnwindInst>(&*bib) || isa<ReturnInst>(&*bib)) {
- LoadInst* l = new LoadInst(AI, "counter", bib);
- new StoreInst(l, Counter, bib);
- }
-}
-
-void GlobalRandomCounterOpt::ProcessChoicePoint(BasicBlock* bb) {
- BranchInst* t = cast<BranchInst>(bb->getTerminator());
-
- //decrement counter
- LoadInst* l = new LoadInst(AI, "counter", t);
-
- ICmpInst* s = new ICmpInst(t, ICmpInst::ICMP_EQ, l,
- ConstantInt::get(T, 0),
- "countercc");
-
- Value* nv = BinaryOperator::CreateSub(l, ConstantInt::get(T, 1),
- "counternew", t);
- new StoreInst(nv, AI, t);
- t->setCondition(s);
-
- //reset counter
- BasicBlock* oldnext = t->getSuccessor(0);
- BasicBlock* resetblock = BasicBlock::Create(bb->getContext(),
- "reset", oldnext->getParent(),
- oldnext);
- TerminatorInst* t2 = BranchInst::Create(oldnext, resetblock);
- t->setSuccessor(0, resetblock);
- new StoreInst(ResetValue, AI, t2);
- ReplacePhiPred(oldnext, bb, resetblock);
-}
-
-
-CycleCounter::CycleCounter(Module& m, uint64_t resetmask) : rm(resetmask) {
- F = Intrinsic::getDeclaration(&m, Intrinsic::readcyclecounter);
-}
-
-CycleCounter::~CycleCounter() {}
-
-void CycleCounter::PrepFunction(Function* F) {}
-
-void CycleCounter::ProcessChoicePoint(BasicBlock* bb) {
- BranchInst* t = cast<BranchInst>(bb->getTerminator());
-
- CallInst* c = CallInst::Create(F, "rdcc", t);
- BinaryOperator* b =
- BinaryOperator::CreateAnd(c,
- ConstantInt::get(Type::getInt64Ty(bb->getContext()), rm),
- "mrdcc", t);
-
- ICmpInst *s = new ICmpInst(t, ICmpInst::ICMP_EQ, b,
- ConstantInt::get(Type::getInt64Ty(bb->getContext()), 0),
- "mrdccc");
-
- t->setCondition(s);
-}
-
-///////////////////////////////////////
-// Profiling:
-///////////////////////////////////////
-bool RSProfilers_std::isProfiling(Value* v) {
- if (profcode.find(v) != profcode.end())
- return true;
- //else
- RSProfilers& LI = getAnalysis<RSProfilers>();
- return LI.isProfiling(v);
-}
-
-void RSProfilers_std::IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNum,
- GlobalValue *CounterArray) {
- // Insert the increment after any alloca or PHI instructions...
- BasicBlock::iterator InsertPos = BB->getFirstNonPHI();
- while (isa<AllocaInst>(InsertPos))
- ++InsertPos;
-
- // Create the getelementptr constant expression
- std::vector<Constant*> Indices(2);
- Indices[0] = Constant::getNullValue(Type::getInt32Ty(BB->getContext()));
- Indices[1] = ConstantInt::get(Type::getInt32Ty(BB->getContext()), CounterNum);
- Constant *ElementPtr =ConstantExpr::getGetElementPtr(CounterArray,
- &Indices[0], 2);
-
- // Load, increment and store the value back.
- Value *OldVal = new LoadInst(ElementPtr, "OldCounter", InsertPos);
- profcode.insert(OldVal);
- Value *NewVal = BinaryOperator::CreateAdd(OldVal,
- ConstantInt::get(Type::getInt32Ty(BB->getContext()), 1),
- "NewCounter", InsertPos);
- profcode.insert(NewVal);
- profcode.insert(new StoreInst(NewVal, ElementPtr, InsertPos));
-}
-
-void RSProfilers_std::getAnalysisUsage(AnalysisUsage &AU) const {
- //grab any outstanding profiler, or get the null one
- AU.addRequired<RSProfilers>();
-}
-
-///////////////////////////////////////
-// RS Framework
-///////////////////////////////////////
-
-Value* ProfilerRS::Translate(Value* v) {
- if(TransCache[v])
- return TransCache[v];
-
- if (BasicBlock* bb = dyn_cast<BasicBlock>(v)) {
- if (bb == &bb->getParent()->getEntryBlock())
- TransCache[bb] = bb; //don't translate entry block
- else
- TransCache[bb] = BasicBlock::Create(v->getContext(),
- "dup_" + bb->getName(),
- bb->getParent(), NULL);
- return TransCache[bb];
- } else if (Instruction* i = dyn_cast<Instruction>(v)) {
- //we have already translated this
- //do not translate entry block allocas
- if(&i->getParent()->getParent()->getEntryBlock() == i->getParent()) {
- TransCache[i] = i;
- return i;
- } else {
- //translate this
- Instruction* i2 = i->clone();
- if (i->hasName())
- i2->setName("dup_" + i->getName());
- TransCache[i] = i2;
- //NumNewInst++;
- for (unsigned x = 0; x < i2->getNumOperands(); ++x)
- i2->setOperand(x, Translate(i2->getOperand(x)));
- return i2;
- }
- } else if (isa<Function>(v) || isa<Constant>(v) || isa<Argument>(v)) {
- TransCache[v] = v;
- return v;
- }
- llvm_unreachable("Value not handled");
- return 0;
-}
-
-void ProfilerRS::Duplicate(Function& F, RSProfilers& LI)
-{
- //perform a breadth first search, building up a duplicate of the code
- std::queue<BasicBlock*> worklist;
- std::set<BasicBlock*> seen;
-
- //This loop ensures proper BB order, to help performance
- for (Function::iterator fib = F.begin(), fie = F.end(); fib != fie; ++fib)
- worklist.push(fib);
- while (!worklist.empty()) {
- Translate(worklist.front());
- worklist.pop();
- }
-
- //remember than reg2mem created a new entry block we don't want to duplicate
- worklist.push(F.getEntryBlock().getTerminator()->getSuccessor(0));
- seen.insert(&F.getEntryBlock());
-
- while (!worklist.empty()) {
- BasicBlock* bb = worklist.front();
- worklist.pop();
- if(seen.find(bb) == seen.end()) {
- BasicBlock* bbtarget = cast<BasicBlock>(Translate(bb));
- BasicBlock::InstListType& instlist = bbtarget->getInstList();
- for (BasicBlock::iterator iib = bb->begin(), iie = bb->end();
- iib != iie; ++iib) {
- //NumOldInst++;
- if (!LI.isProfiling(&*iib)) {
- Instruction* i = cast<Instruction>(Translate(iib));
- instlist.insert(bbtarget->end(), i);
- }
- }
- //updated search state;
- seen.insert(bb);
- TerminatorInst* ti = bb->getTerminator();
- for (unsigned x = 0; x < ti->getNumSuccessors(); ++x) {
- BasicBlock* bbs = ti->getSuccessor(x);
- if (seen.find(bbs) == seen.end()) {
- worklist.push(bbs);
- }
- }
- }
- }
-}
-
-void ProfilerRS::ProcessBackEdge(BasicBlock* src, BasicBlock* dst, Function& F) {
- //given a backedge from B -> A, and translations A' and B',
- //a: insert C and C'
- //b: add branches in C to A and A' and in C' to A and A'
- //c: mod terminators@B, replace A with C
- //d: mod terminators@B', replace A' with C'
- //e: mod phis@A for pred B to be pred C
- // if multiple entries, simplify to one
- //f: mod phis@A' for pred B' to be pred C'
- // if multiple entries, simplify to one
- //g: for all phis@A with pred C using x
- // add in edge from C' using x'
- // add in edge from C using x in A'
-
- //a:
- Function::iterator BBN = src; ++BBN;
- BasicBlock* bbC = BasicBlock::Create(F.getContext(), "choice", &F, BBN);
- //ChoicePoints.insert(bbC);
- BBN = cast<BasicBlock>(Translate(src));
- BasicBlock* bbCp = BasicBlock::Create(F.getContext(), "choice", &F, ++BBN);
- ChoicePoints.insert(bbCp);
-
- //b:
- BranchInst::Create(cast<BasicBlock>(Translate(dst)), bbC);
- BranchInst::Create(dst, cast<BasicBlock>(Translate(dst)),
- ConstantInt::get(Type::getInt1Ty(src->getContext()), true), bbCp);
- //c:
- {
- TerminatorInst* iB = src->getTerminator();
- for (unsigned x = 0; x < iB->getNumSuccessors(); ++x)
- if (iB->getSuccessor(x) == dst)
- iB->setSuccessor(x, bbC);
- }
- //d:
- {
- TerminatorInst* iBp = cast<TerminatorInst>(Translate(src->getTerminator()));
- for (unsigned x = 0; x < iBp->getNumSuccessors(); ++x)
- if (iBp->getSuccessor(x) == cast<BasicBlock>(Translate(dst)))
- iBp->setSuccessor(x, bbCp);
- }
- //e:
- ReplacePhiPred(dst, src, bbC);
- //src could be a switch, in which case we are replacing several edges with one
- //thus collapse those edges int the Phi
- CollapsePhi(dst, bbC);
- //f:
- ReplacePhiPred(cast<BasicBlock>(Translate(dst)),
- cast<BasicBlock>(Translate(src)),bbCp);
- CollapsePhi(cast<BasicBlock>(Translate(dst)), bbCp);
- //g:
- for(BasicBlock::iterator ib = dst->begin(), ie = dst->end(); ib != ie;
- ++ib)
- if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
- for(unsigned x = 0; x < phi->getNumIncomingValues(); ++x)
- if(bbC == phi->getIncomingBlock(x)) {
- phi->addIncoming(Translate(phi->getIncomingValue(x)), bbCp);
- cast<PHINode>(Translate(phi))->addIncoming(phi->getIncomingValue(x),
- bbC);
- }
- phi->removeIncomingValue(bbC);
- }
-}
-
-bool ProfilerRS::runOnFunction(Function& F) {
- if (!F.isDeclaration()) {
- std::set<std::pair<BasicBlock*, BasicBlock*> > BackEdges;
- RSProfilers& LI = getAnalysis<RSProfilers>();
-
- getBackEdges(F, BackEdges);
- Duplicate(F, LI);
- //assume that stuff worked. now connect the duplicated basic blocks
- //with the originals in such a way as to preserve ssa. yuk!
- for (std::set<std::pair<BasicBlock*, BasicBlock*> >::iterator
- ib = BackEdges.begin(), ie = BackEdges.end(); ib != ie; ++ib)
- ProcessBackEdge(ib->first, ib->second, F);
-
- //oh, and add the edge from the reg2mem created entry node to the
- //duplicated second node
- TerminatorInst* T = F.getEntryBlock().getTerminator();
- ReplaceInstWithInst(T, BranchInst::Create(T->getSuccessor(0),
- cast<BasicBlock>(
- Translate(T->getSuccessor(0))),
- ConstantInt::get(Type::getInt1Ty(F.getContext()), true)));
-
- //do whatever is needed now that the function is duplicated
- c->PrepFunction(&F);
-
- //add entry node to choice points
- ChoicePoints.insert(&F.getEntryBlock());
-
- for (std::set<BasicBlock*>::iterator
- ii = ChoicePoints.begin(), ie = ChoicePoints.end(); ii != ie; ++ii)
- c->ProcessChoicePoint(*ii);
-
- ChoicePoints.clear();
- TransCache.clear();
-
- return true;
- }
- return false;
-}
-
-bool ProfilerRS::doInitialization(Module &M) {
- switch (RandomMethod) {
- case GBV:
- c = new GlobalRandomCounter(M, Type::getInt32Ty(M.getContext()),
- (1 << 14) - 1);
- break;
- case GBVO:
- c = new GlobalRandomCounterOpt(M, Type::getInt32Ty(M.getContext()),
- (1 << 14) - 1);
- break;
- case HOSTCC:
- c = new CycleCounter(M, (1 << 14) - 1);
- break;
- };
- return true;
-}
-
-void ProfilerRS::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<RSProfilers>();
- AU.addRequiredID(DemoteRegisterToMemoryID);
-}
-
-///////////////////////////////////////
-// Utilities:
-///////////////////////////////////////
-static void ReplacePhiPred(BasicBlock* btarget,
- BasicBlock* bold, BasicBlock* bnew) {
- for(BasicBlock::iterator ib = btarget->begin(), ie = btarget->end();
- ib != ie; ++ib)
- if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
- for(unsigned x = 0; x < phi->getNumIncomingValues(); ++x)
- if(bold == phi->getIncomingBlock(x))
- phi->setIncomingBlock(x, bnew);
- }
-}
-
-static void CollapsePhi(BasicBlock* btarget, BasicBlock* bsrc) {
- for(BasicBlock::iterator ib = btarget->begin(), ie = btarget->end();
- ib != ie; ++ib)
- if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
- std::map<BasicBlock*, Value*> counter;
- for(unsigned i = 0; i < phi->getNumIncomingValues(); ) {
- if (counter[phi->getIncomingBlock(i)]) {
- assert(phi->getIncomingValue(i) == counter[phi->getIncomingBlock(i)]);
- phi->removeIncomingValue(i, false);
- } else {
- counter[phi->getIncomingBlock(i)] = phi->getIncomingValue(i);
- ++i;
- }
- }
- }
-}
-
-template<class T>
-static void recBackEdge(BasicBlock* bb, T& BackEdges,
- std::map<BasicBlock*, int>& color,
- std::map<BasicBlock*, int>& depth,
- std::map<BasicBlock*, int>& finish,
- int& time)
-{
- color[bb] = 1;
- ++time;
- depth[bb] = time;
- TerminatorInst* t= bb->getTerminator();
- for(unsigned i = 0; i < t->getNumSuccessors(); ++i) {
- BasicBlock* bbnew = t->getSuccessor(i);
- if (color[bbnew] == 0)
- recBackEdge(bbnew, BackEdges, color, depth, finish, time);
- else if (color[bbnew] == 1) {
- BackEdges.insert(std::make_pair(bb, bbnew));
- //NumBackEdges++;
- }
- }
- color[bb] = 2;
- ++time;
- finish[bb] = time;
-}
-
-
-
-//find the back edges and where they go to
-template<class T>
-static void getBackEdges(Function& F, T& BackEdges) {
- std::map<BasicBlock*, int> color;
- std::map<BasicBlock*, int> depth;
- std::map<BasicBlock*, int> finish;
- int time = 0;
- recBackEdge(&F.getEntryBlock(), BackEdges, color, depth, finish, time);
- DEBUG(errs() << F.getName() << " " << BackEdges.size() << "\n");
-}
-
-
-//Creation functions
-ModulePass* llvm::createNullProfilerRSPass() {
- return new NullProfilerRS();
-}
-
-FunctionPass* llvm::createRSProfilingPass() {
- return new ProfilerRS();
-}
diff --git a/lib/Transforms/Instrumentation/RSProfiling.h b/lib/Transforms/Instrumentation/RSProfiling.h
deleted file mode 100644
index 8bbe7c7..0000000
--- a/lib/Transforms/Instrumentation/RSProfiling.h
+++ /dev/null
@@ -1,31 +0,0 @@
-//===- RSProfiling.h - Various profiling using random sampling ----------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// See notes in RSProfiling.cpp
-//
-//===----------------------------------------------------------------------===//
-#include "llvm/Transforms/RSProfiling.h"
-#include <set>
-
-namespace llvm {
- /// RSProfilers_std - a simple support class for profilers that handles most
- /// of the work of chaining and tracking inserted code.
- struct RSProfilers_std : public RSProfilers {
- static char ID;
- std::set<Value*> profcode;
- // Lookup up values in profcode
- virtual bool isProfiling(Value* v);
- // handles required chaining
- virtual void getAnalysisUsage(AnalysisUsage &AU) const;
- // places counter updates in basic blocks and recordes added instructions in
- // profcode
- void IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNum,
- GlobalValue *CounterArray);
- };
-}
diff --git a/lib/Transforms/Makefile b/lib/Transforms/Makefile
index 025d02a..ea4a115 100644
--- a/lib/Transforms/Makefile
+++ b/lib/Transforms/Makefile
@@ -8,7 +8,7 @@
##===----------------------------------------------------------------------===##
LEVEL = ../..
-PARALLEL_DIRS = Utils Instrumentation Scalar IPO Hello
+PARALLEL_DIRS = Utils Instrumentation Scalar InstCombine IPO Hello
include $(LEVEL)/Makefile.config
diff --git a/lib/Transforms/Scalar/ABCD.cpp b/lib/Transforms/Scalar/ABCD.cpp
index e58fa63..cf5e8c0 100644
--- a/lib/Transforms/Scalar/ABCD.cpp
+++ b/lib/Transforms/Scalar/ABCD.cpp
@@ -451,7 +451,7 @@ bool ABCD::runOnFunction(Function &F) {
modified = false;
createSSI(F);
executeABCD(F);
- DEBUG(inequality_graph.printGraph(errs(), F));
+ DEBUG(inequality_graph.printGraph(dbgs(), F));
removePhis();
inequality_graph.clear();
diff --git a/lib/Transforms/Scalar/ADCE.cpp b/lib/Transforms/Scalar/ADCE.cpp
index 37f383f..5a49841 100644
--- a/lib/Transforms/Scalar/ADCE.cpp
+++ b/lib/Transforms/Scalar/ADCE.cpp
@@ -62,8 +62,7 @@ bool ADCE::runOnFunction(Function& F) {
// Propagate liveness backwards to operands.
while (!worklist.empty()) {
- Instruction* curr = worklist.back();
- worklist.pop_back();
+ Instruction* curr = worklist.pop_back_val();
for (Instruction::op_iterator OI = curr->op_begin(), OE = curr->op_end();
OI != OE; ++OI)
diff --git a/lib/Transforms/Scalar/CMakeLists.txt b/lib/Transforms/Scalar/CMakeLists.txt
index 5a92399..683c1c2 100644
--- a/lib/Transforms/Scalar/CMakeLists.txt
+++ b/lib/Transforms/Scalar/CMakeLists.txt
@@ -9,7 +9,6 @@ add_llvm_library(LLVMScalarOpts
GEPSplitter.cpp
GVN.cpp
IndVarSimplify.cpp
- InstructionCombining.cpp
JumpThreading.cpp
LICM.cpp
LoopDeletion.cpp
diff --git a/lib/Transforms/Scalar/CodeGenPrepare.cpp b/lib/Transforms/Scalar/CodeGenPrepare.cpp
index 372616c..9c1b440 100644
--- a/lib/Transforms/Scalar/CodeGenPrepare.cpp
+++ b/lib/Transforms/Scalar/CodeGenPrepare.cpp
@@ -237,7 +237,7 @@ void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
BranchInst *BI = cast<BranchInst>(BB->getTerminator());
BasicBlock *DestBB = BI->getSuccessor(0);
- DEBUG(errs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
+ DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
// If the destination block has a single pred, then this is a trivial edge,
// just collapse it.
@@ -251,7 +251,7 @@ void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
if (isEntry && BB != &BB->getParent()->getEntryBlock())
BB->moveBefore(&BB->getParent()->getEntryBlock());
- DEBUG(errs() << "AFTER:\n" << *DestBB << "\n\n\n");
+ DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
return;
}
}
@@ -294,7 +294,7 @@ void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
}
BB->eraseFromParent();
- DEBUG(errs() << "AFTER:\n" << *DestBB << "\n\n\n");
+ DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
}
@@ -591,7 +591,7 @@ bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
// If all the instructions matched are already in this BB, don't do anything.
if (!AnyNonLocal) {
- DEBUG(errs() << "CGP: Found local addrmode: " << AddrMode << "\n");
+ DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n");
return false;
}
@@ -606,12 +606,12 @@ bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
// computation.
Value *&SunkAddr = SunkAddrs[Addr];
if (SunkAddr) {
- DEBUG(errs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
+ DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
<< *MemoryInst);
if (SunkAddr->getType() != Addr->getType())
SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
} else {
- DEBUG(errs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
+ DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
<< *MemoryInst);
const Type *IntPtrTy =
TLI->getTargetData()->getIntPtrType(AccessTy->getContext());
diff --git a/lib/Transforms/Scalar/DeadStoreElimination.cpp b/lib/Transforms/Scalar/DeadStoreElimination.cpp
index 1cfde8f..320afa1 100644
--- a/lib/Transforms/Scalar/DeadStoreElimination.cpp
+++ b/lib/Transforms/Scalar/DeadStoreElimination.cpp
@@ -52,9 +52,9 @@ namespace {
bool runOnBasicBlock(BasicBlock &BB);
bool handleFreeWithNonTrivialDependency(Instruction *F, MemDepResult Dep);
bool handleEndBlock(BasicBlock &BB);
- bool RemoveUndeadPointers(Value* Ptr, uint64_t killPointerSize,
- BasicBlock::iterator& BBI,
- SmallPtrSet<Value*, 64>& deadPointers);
+ bool RemoveUndeadPointers(Value *Ptr, uint64_t killPointerSize,
+ BasicBlock::iterator &BBI,
+ SmallPtrSet<Value*, 64> &deadPointers);
void DeleteDeadInstruction(Instruction *I,
SmallPtrSet<Value*, 64> *deadPointers = 0);
@@ -70,6 +70,8 @@ namespace {
AU.addPreserved<AliasAnalysis>();
AU.addPreserved<MemoryDependenceAnalysis>();
}
+
+ unsigned getPointerSize(Value *V) const;
};
}
@@ -173,7 +175,7 @@ static bool isStoreAtLeastAsWideAs(Instruction *I1, Instruction *I2,
}
bool DSE::runOnBasicBlock(BasicBlock &BB) {
- MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
+ MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
TD = getAnalysisIfAvailable<TargetData>();
bool MadeChange = false;
@@ -355,7 +357,7 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
continue;
}
- Value* killPointer = 0;
+ Value *killPointer = 0;
uint64_t killPointerSize = ~0UL;
// If we encounter a use of the pointer, it is no longer considered dead
@@ -371,14 +373,14 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
}
killPointer = L->getPointerOperand();
- } else if (VAArgInst* V = dyn_cast<VAArgInst>(BBI)) {
+ } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
killPointer = V->getOperand(0);
} else if (isa<MemTransferInst>(BBI) &&
isa<ConstantInt>(cast<MemTransferInst>(BBI)->getLength())) {
killPointer = cast<MemTransferInst>(BBI)->getSource();
killPointerSize = cast<ConstantInt>(
cast<MemTransferInst>(BBI)->getLength())->getZExtValue();
- } else if (AllocaInst* A = dyn_cast<AllocaInst>(BBI)) {
+ } else if (AllocaInst *A = dyn_cast<AllocaInst>(BBI)) {
deadPointers.erase(A);
// Dead alloca's can be DCE'd when we reach them
@@ -412,23 +414,10 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
deadPointers.clear();
return MadeChange;
}
-
- // Get size information for the alloca
- unsigned pointerSize = ~0U;
- if (TD) {
- if (AllocaInst* A = dyn_cast<AllocaInst>(*I)) {
- if (ConstantInt* C = dyn_cast<ConstantInt>(A->getArraySize()))
- pointerSize = C->getZExtValue() *
- TD->getTypeAllocSize(A->getAllocatedType());
- } else {
- const PointerType* PT = cast<PointerType>(
- cast<Argument>(*I)->getType());
- pointerSize = TD->getTypeAllocSize(PT->getElementType());
- }
- }
-
+
// See if the call site touches it
- AliasAnalysis::ModRefResult A = AA.getModRefInfo(CS, *I, pointerSize);
+ AliasAnalysis::ModRefResult A = AA.getModRefInfo(CS, *I,
+ getPointerSize(*I));
if (A == AliasAnalysis::ModRef)
modRef++;
@@ -469,11 +458,11 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
/// RemoveUndeadPointers - check for uses of a pointer that make it
/// undead when scanning for dead stores to alloca's.
-bool DSE::RemoveUndeadPointers(Value* killPointer, uint64_t killPointerSize,
+bool DSE::RemoveUndeadPointers(Value *killPointer, uint64_t killPointerSize,
BasicBlock::iterator &BBI,
- SmallPtrSet<Value*, 64>& deadPointers) {
+ SmallPtrSet<Value*, 64> &deadPointers) {
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
-
+
// If the kill pointer can be easily reduced to an alloca,
// don't bother doing extraneous AA queries.
if (deadPointers.count(killPointer)) {
@@ -488,32 +477,19 @@ bool DSE::RemoveUndeadPointers(Value* killPointer, uint64_t killPointerSize,
bool MadeChange = false;
SmallVector<Value*, 16> undead;
-
+
for (SmallPtrSet<Value*, 64>::iterator I = deadPointers.begin(),
- E = deadPointers.end(); I != E; ++I) {
- // Get size information for the alloca.
- unsigned pointerSize = ~0U;
- if (TD) {
- if (AllocaInst* A = dyn_cast<AllocaInst>(*I)) {
- if (ConstantInt* C = dyn_cast<ConstantInt>(A->getArraySize()))
- pointerSize = C->getZExtValue() *
- TD->getTypeAllocSize(A->getAllocatedType());
- } else {
- const PointerType* PT = cast<PointerType>(cast<Argument>(*I)->getType());
- pointerSize = TD->getTypeAllocSize(PT->getElementType());
- }
- }
-
+ E = deadPointers.end(); I != E; ++I) {
// See if this pointer could alias it
- AliasAnalysis::AliasResult A = AA.alias(*I, pointerSize,
+ AliasAnalysis::AliasResult A = AA.alias(*I, getPointerSize(*I),
killPointer, killPointerSize);
// If it must-alias and a store, we can delete it
if (isa<StoreInst>(BBI) && A == AliasAnalysis::MustAlias) {
- StoreInst* S = cast<StoreInst>(BBI);
+ StoreInst *S = cast<StoreInst>(BBI);
// Remove it!
- BBI++;
+ ++BBI;
DeleteDeadInstruction(S, &deadPointers);
NumFastStores++;
MadeChange = true;
@@ -547,9 +523,8 @@ void DSE::DeleteDeadInstruction(Instruction *I,
// Before we touch this instruction, remove it from memdep!
MemoryDependenceAnalysis &MDA = getAnalysis<MemoryDependenceAnalysis>();
- while (!NowDeadInsts.empty()) {
- Instruction *DeadInst = NowDeadInsts.back();
- NowDeadInsts.pop_back();
+ do {
+ Instruction *DeadInst = NowDeadInsts.pop_back_val();
++NumFastOther;
@@ -573,5 +548,20 @@ void DSE::DeleteDeadInstruction(Instruction *I,
DeadInst->eraseFromParent();
if (ValueSet) ValueSet->erase(DeadInst);
+ } while (!NowDeadInsts.empty());
+}
+
+unsigned DSE::getPointerSize(Value *V) const {
+ if (TD) {
+ if (AllocaInst *A = dyn_cast<AllocaInst>(V)) {
+ // Get size information for the alloca
+ if (ConstantInt *C = dyn_cast<ConstantInt>(A->getArraySize()))
+ return C->getZExtValue() * TD->getTypeAllocSize(A->getAllocatedType());
+ } else {
+ assert(isa<Argument>(V) && "Expected AllocaInst or Argument!");
+ const PointerType *PT = cast<PointerType>(V->getType());
+ return TD->getTypeAllocSize(PT->getElementType());
+ }
}
+ return ~0U;
}
diff --git a/lib/Transforms/Scalar/GVN.cpp b/lib/Transforms/Scalar/GVN.cpp
index 612b415..ac0d850 100644
--- a/lib/Transforms/Scalar/GVN.cpp
+++ b/lib/Transforms/Scalar/GVN.cpp
@@ -829,7 +829,7 @@ SpeculationFailure:
SmallVector<BasicBlock*, 32> BBWorklist;
BBWorklist.push_back(BB);
- while (!BBWorklist.empty()) {
+ do {
BasicBlock *Entry = BBWorklist.pop_back_val();
// Note that this sets blocks to 0 (unavailable) if they happen to not
// already be in FullyAvailableBlocks. This is safe.
@@ -841,7 +841,7 @@ SpeculationFailure:
for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
BBWorklist.push_back(*I);
- }
+ } while (!BBWorklist.empty());
return false;
}
@@ -1022,7 +1022,7 @@ static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
// FIXME: Study to see if/when this happens.
if (LoadOffset == StoreOffset) {
#if 0
- errs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
+ dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
<< "Base = " << *StoreBase << "\n"
<< "Store Ptr = " << *WritePtr << "\n"
<< "Store Offs = " << StoreOffset << "\n"
@@ -1053,7 +1053,7 @@ static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
}
if (isAAFailure) {
#if 0
- errs() << "STORE LOAD DEP WITH COMMON BASE:\n"
+ dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
<< "Base = " << *StoreBase << "\n"
<< "Store Ptr = " << *WritePtr << "\n"
<< "Store Offs = " << StoreOffset << "\n"
@@ -1362,7 +1362,7 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
SmallVector<NonLocalDepResult, 64> Deps;
MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
Deps);
- //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
+ //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
// << Deps.size() << *LI << '\n');
// If we had to process more than one hundred blocks to find the
@@ -1375,9 +1375,9 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
// clobber in the current block. Reject this early.
if (Deps.size() == 1 && Deps[0].getResult().isClobber()) {
DEBUG(
- errs() << "GVN: non-local load ";
- WriteAsOperand(errs(), LI);
- errs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
+ dbgs() << "GVN: non-local load ";
+ WriteAsOperand(dbgs(), LI);
+ dbgs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
);
return false;
}
@@ -1500,7 +1500,7 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
// load, then it is fully redundant and we can use PHI insertion to compute
// its value. Insert PHIs and remove the fully redundant value now.
if (UnavailableBlocks.empty()) {
- DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
+ DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
// Perform PHI construction.
Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
@@ -1614,7 +1614,7 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
// We don't currently handle critical edges :(
if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
- DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
+ DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
<< UnavailablePred->getName() << "': " << *LI << '\n');
return false;
}
@@ -1646,7 +1646,7 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
// we fail PRE.
if (LoadPtr == 0) {
assert(NewInsts.empty() && "Shouldn't insert insts on failure");
- DEBUG(errs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
+ DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
<< *LI->getOperand(0) << "\n");
return false;
}
@@ -1679,9 +1679,9 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
// Okay, we can eliminate this load by inserting a reload in the predecessor
// and using PHI construction to get the value in the other predecessors, do
// it.
- DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
+ DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
DEBUG(if (!NewInsts.empty())
- errs() << "INSERTED " << NewInsts.size() << " INSTS: "
+ dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
<< *NewInsts.back() << '\n');
Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
@@ -1752,7 +1752,7 @@ bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
}
if (AvailVal) {
- DEBUG(errs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
+ DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
<< *AvailVal << '\n' << *L << "\n\n\n");
// Replace the load!
@@ -1766,10 +1766,10 @@ bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
DEBUG(
// fast print dep, using operator<< on instruction would be too slow
- errs() << "GVN: load ";
- WriteAsOperand(errs(), L);
+ dbgs() << "GVN: load ";
+ WriteAsOperand(dbgs(), L);
Instruction *I = Dep.getInst();
- errs() << " is clobbered by " << *I << '\n';
+ dbgs() << " is clobbered by " << *I << '\n';
);
return false;
}
@@ -1793,7 +1793,7 @@ bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
if (StoredVal == 0)
return false;
- DEBUG(errs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
+ DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
<< '\n' << *L << "\n\n\n");
}
else
@@ -1822,7 +1822,7 @@ bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
if (AvailableVal == 0)
return false;
- DEBUG(errs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
+ DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
<< "\n" << *L << "\n\n\n");
}
else
@@ -1990,7 +1990,7 @@ bool GVN::runOnFunction(Function& F) {
unsigned Iteration = 0;
while (ShouldContinue) {
- DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
+ DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
ShouldContinue = iterateOnFunction(F);
Changed |= ShouldContinue;
++Iteration;
@@ -2038,7 +2038,7 @@ bool GVN::processBlock(BasicBlock *BB) {
for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
E = toErase.end(); I != E; ++I) {
- DEBUG(errs() << "GVN removed: " << **I << '\n');
+ DEBUG(dbgs() << "GVN removed: " << **I << '\n');
if (MD) MD->removeInstruction(*I);
(*I)->eraseFromParent();
DEBUG(verifyRemoved(*I));
@@ -2196,7 +2196,7 @@ bool GVN::performPRE(Function &F) {
MD->invalidateCachedPointerInfo(Phi);
VN.erase(CurInst);
- DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
+ DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
if (MD) MD->removeInstruction(CurInst);
CurInst->eraseFromParent();
DEBUG(verifyRemoved(CurInst));
diff --git a/lib/Transforms/Scalar/IndVarSimplify.cpp b/lib/Transforms/Scalar/IndVarSimplify.cpp
index 3aa4fd3..ce1307c 100644
--- a/lib/Transforms/Scalar/IndVarSimplify.cpp
+++ b/lib/Transforms/Scalar/IndVarSimplify.cpp
@@ -182,7 +182,7 @@ ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
else
Opcode = ICmpInst::ICMP_EQ;
- DEBUG(errs() << "INDVARS: Rewriting loop exit condition to:\n"
+ DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
<< " LHS:" << *CmpIndVar << '\n'
<< " op:\t"
<< (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
@@ -273,7 +273,7 @@ void IndVarSimplify::RewriteLoopExitValues(Loop *L,
Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
- DEBUG(errs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
+ DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
<< " LoopVal = " << *Inst << "\n");
PN->setIncomingValue(i, ExitVal);
@@ -401,7 +401,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
++NumInserted;
Changed = true;
- DEBUG(errs() << "INDVARS: New CanIV: " << *IndVar << '\n');
+ DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
// Now that the official induction variable is established, reinsert
// the old canonical-looking variable after it so that the IR remains
@@ -438,7 +438,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
// Clean up dead instructions.
- DeleteDeadPHIs(L->getHeader());
+ Changed |= DeleteDeadPHIs(L->getHeader());
// Check a post-condition.
assert(L->isLCSSAForm() && "Indvars did not leave the loop in lcssa form!");
return Changed;
@@ -506,7 +506,7 @@ void IndVarSimplify::RewriteIVExpressions(Loop *L, const Type *LargestType,
NewVal->takeName(Op);
User->replaceUsesOfWith(Op, NewVal);
UI->setOperandValToReplace(NewVal);
- DEBUG(errs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
+ DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
<< " into = " << *NewVal << "\n");
++NumRemoved;
Changed = true;
diff --git a/lib/Transforms/Scalar/InstructionCombining.cpp b/lib/Transforms/Scalar/InstructionCombining.cpp
deleted file mode 100644
index 516d72e..0000000
--- a/lib/Transforms/Scalar/InstructionCombining.cpp
+++ /dev/null
@@ -1,13736 +0,0 @@
-//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// InstructionCombining - Combine instructions to form fewer, simple
-// instructions. This pass does not modify the CFG. This pass is where
-// algebraic simplification happens.
-//
-// This pass combines things like:
-// %Y = add i32 %X, 1
-// %Z = add i32 %Y, 1
-// into:
-// %Z = add i32 %X, 2
-//
-// This is a simple worklist driven algorithm.
-//
-// This pass guarantees that the following canonicalizations are performed on
-// the program:
-// 1. If a binary operator has a constant operand, it is moved to the RHS
-// 2. Bitwise operators with constant operands are always grouped so that
-// shifts are performed first, then or's, then and's, then xor's.
-// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
-// 4. All cmp instructions on boolean values are replaced with logical ops
-// 5. add X, X is represented as (X*2) => (X << 1)
-// 6. Multiplies with a power-of-two constant argument are transformed into
-// shifts.
-// ... etc.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "instcombine"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Pass.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/GlobalVariable.h"
-#include "llvm/Operator.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Support/CallSite.h"
-#include "llvm/Support/ConstantRange.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/InstVisitor.h"
-#include "llvm/Support/IRBuilder.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/PatternMatch.h"
-#include "llvm/Support/TargetFolder.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
-#include <algorithm>
-#include <climits>
-using namespace llvm;
-using namespace llvm::PatternMatch;
-
-STATISTIC(NumCombined , "Number of insts combined");
-STATISTIC(NumConstProp, "Number of constant folds");
-STATISTIC(NumDeadInst , "Number of dead inst eliminated");
-STATISTIC(NumDeadStore, "Number of dead stores eliminated");
-STATISTIC(NumSunkInst , "Number of instructions sunk");
-
-/// SelectPatternFlavor - We can match a variety of different patterns for
-/// select operations.
-enum SelectPatternFlavor {
- SPF_UNKNOWN = 0,
- SPF_SMIN, SPF_UMIN,
- SPF_SMAX, SPF_UMAX
- //SPF_ABS - TODO.
-};
-
-namespace {
- /// InstCombineWorklist - This is the worklist management logic for
- /// InstCombine.
- class InstCombineWorklist {
- SmallVector<Instruction*, 256> Worklist;
- DenseMap<Instruction*, unsigned> WorklistMap;
-
- void operator=(const InstCombineWorklist&RHS); // DO NOT IMPLEMENT
- InstCombineWorklist(const InstCombineWorklist&); // DO NOT IMPLEMENT
- public:
- InstCombineWorklist() {}
-
- bool isEmpty() const { return Worklist.empty(); }
-
- /// Add - Add the specified instruction to the worklist if it isn't already
- /// in it.
- void Add(Instruction *I) {
- if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second) {
- DEBUG(errs() << "IC: ADD: " << *I << '\n');
- Worklist.push_back(I);
- }
- }
-
- void AddValue(Value *V) {
- if (Instruction *I = dyn_cast<Instruction>(V))
- Add(I);
- }
-
- /// AddInitialGroup - Add the specified batch of stuff in reverse order.
- /// which should only be done when the worklist is empty and when the group
- /// has no duplicates.
- void AddInitialGroup(Instruction *const *List, unsigned NumEntries) {
- assert(Worklist.empty() && "Worklist must be empty to add initial group");
- Worklist.reserve(NumEntries+16);
- DEBUG(errs() << "IC: ADDING: " << NumEntries << " instrs to worklist\n");
- for (; NumEntries; --NumEntries) {
- Instruction *I = List[NumEntries-1];
- WorklistMap.insert(std::make_pair(I, Worklist.size()));
- Worklist.push_back(I);
- }
- }
-
- // Remove - remove I from the worklist if it exists.
- void Remove(Instruction *I) {
- DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
- if (It == WorklistMap.end()) return; // Not in worklist.
-
- // Don't bother moving everything down, just null out the slot.
- Worklist[It->second] = 0;
-
- WorklistMap.erase(It);
- }
-
- Instruction *RemoveOne() {
- Instruction *I = Worklist.back();
- Worklist.pop_back();
- WorklistMap.erase(I);
- return I;
- }
-
- /// AddUsersToWorkList - When an instruction is simplified, add all users of
- /// the instruction to the work lists because they might get more simplified
- /// now.
- ///
- void AddUsersToWorkList(Instruction &I) {
- for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
- UI != UE; ++UI)
- Add(cast<Instruction>(*UI));
- }
-
-
- /// Zap - check that the worklist is empty and nuke the backing store for
- /// the map if it is large.
- void Zap() {
- assert(WorklistMap.empty() && "Worklist empty, but map not?");
-
- // Do an explicit clear, this shrinks the map if needed.
- WorklistMap.clear();
- }
- };
-} // end anonymous namespace.
-
-
-namespace {
- /// InstCombineIRInserter - This is an IRBuilder insertion helper that works
- /// just like the normal insertion helper, but also adds any new instructions
- /// to the instcombine worklist.
- class InstCombineIRInserter : public IRBuilderDefaultInserter<true> {
- InstCombineWorklist &Worklist;
- public:
- InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {}
-
- void InsertHelper(Instruction *I, const Twine &Name,
- BasicBlock *BB, BasicBlock::iterator InsertPt) const {
- IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
- Worklist.Add(I);
- }
- };
-} // end anonymous namespace
-
-
-namespace {
- class InstCombiner : public FunctionPass,
- public InstVisitor<InstCombiner, Instruction*> {
- TargetData *TD;
- bool MustPreserveLCSSA;
- bool MadeIRChange;
- public:
- /// Worklist - All of the instructions that need to be simplified.
- InstCombineWorklist Worklist;
-
- /// Builder - This is an IRBuilder that automatically inserts new
- /// instructions into the worklist when they are created.
- typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
- BuilderTy *Builder;
-
- static char ID; // Pass identification, replacement for typeid
- InstCombiner() : FunctionPass(&ID), TD(0), Builder(0) {}
-
- LLVMContext *Context;
- LLVMContext *getContext() const { return Context; }
-
- public:
- virtual bool runOnFunction(Function &F);
-
- bool DoOneIteration(Function &F, unsigned ItNum);
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addPreservedID(LCSSAID);
- AU.setPreservesCFG();
- }
-
- TargetData *getTargetData() const { return TD; }
-
- // Visitation implementation - Implement instruction combining for different
- // instruction types. The semantics are as follows:
- // Return Value:
- // null - No change was made
- // I - Change was made, I is still valid, I may be dead though
- // otherwise - Change was made, replace I with returned instruction
- //
- Instruction *visitAdd(BinaryOperator &I);
- Instruction *visitFAdd(BinaryOperator &I);
- Value *OptimizePointerDifference(Value *LHS, Value *RHS, const Type *Ty);
- Instruction *visitSub(BinaryOperator &I);
- Instruction *visitFSub(BinaryOperator &I);
- Instruction *visitMul(BinaryOperator &I);
- Instruction *visitFMul(BinaryOperator &I);
- Instruction *visitURem(BinaryOperator &I);
- Instruction *visitSRem(BinaryOperator &I);
- Instruction *visitFRem(BinaryOperator &I);
- bool SimplifyDivRemOfSelect(BinaryOperator &I);
- Instruction *commonRemTransforms(BinaryOperator &I);
- Instruction *commonIRemTransforms(BinaryOperator &I);
- Instruction *commonDivTransforms(BinaryOperator &I);
- Instruction *commonIDivTransforms(BinaryOperator &I);
- Instruction *visitUDiv(BinaryOperator &I);
- Instruction *visitSDiv(BinaryOperator &I);
- Instruction *visitFDiv(BinaryOperator &I);
- Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
- Instruction *FoldAndOfFCmps(Instruction &I, FCmpInst *LHS, FCmpInst *RHS);
- Instruction *visitAnd(BinaryOperator &I);
- Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
- Instruction *FoldOrOfFCmps(Instruction &I, FCmpInst *LHS, FCmpInst *RHS);
- Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
- Value *A, Value *B, Value *C);
- Instruction *visitOr (BinaryOperator &I);
- Instruction *visitXor(BinaryOperator &I);
- Instruction *visitShl(BinaryOperator &I);
- Instruction *visitAShr(BinaryOperator &I);
- Instruction *visitLShr(BinaryOperator &I);
- Instruction *commonShiftTransforms(BinaryOperator &I);
- Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
- Constant *RHSC);
- Instruction *visitFCmpInst(FCmpInst &I);
- Instruction *visitICmpInst(ICmpInst &I);
- Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
- Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
- Instruction *LHS,
- ConstantInt *RHS);
- Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
- ConstantInt *DivRHS);
- Instruction *FoldICmpAddOpCst(ICmpInst &ICI, Value *X, ConstantInt *CI,
- ICmpInst::Predicate Pred, Value *TheAdd);
- Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
- ICmpInst::Predicate Cond, Instruction &I);
- Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
- BinaryOperator &I);
- Instruction *commonCastTransforms(CastInst &CI);
- Instruction *commonIntCastTransforms(CastInst &CI);
- Instruction *commonPointerCastTransforms(CastInst &CI);
- Instruction *visitTrunc(TruncInst &CI);
- Instruction *visitZExt(ZExtInst &CI);
- Instruction *visitSExt(SExtInst &CI);
- Instruction *visitFPTrunc(FPTruncInst &CI);
- Instruction *visitFPExt(CastInst &CI);
- Instruction *visitFPToUI(FPToUIInst &FI);
- Instruction *visitFPToSI(FPToSIInst &FI);
- Instruction *visitUIToFP(CastInst &CI);
- Instruction *visitSIToFP(CastInst &CI);
- Instruction *visitPtrToInt(PtrToIntInst &CI);
- Instruction *visitIntToPtr(IntToPtrInst &CI);
- Instruction *visitBitCast(BitCastInst &CI);
- Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
- Instruction *FI);
- Instruction *FoldSelectIntoOp(SelectInst &SI, Value*, Value*);
- Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
- Value *A, Value *B, Instruction &Outer,
- SelectPatternFlavor SPF2, Value *C);
- Instruction *visitSelectInst(SelectInst &SI);
- Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
- Instruction *visitCallInst(CallInst &CI);
- Instruction *visitInvokeInst(InvokeInst &II);
-
- Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
- Instruction *visitPHINode(PHINode &PN);
- Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
- Instruction *visitAllocaInst(AllocaInst &AI);
- Instruction *visitFree(Instruction &FI);
- Instruction *visitLoadInst(LoadInst &LI);
- Instruction *visitStoreInst(StoreInst &SI);
- Instruction *visitBranchInst(BranchInst &BI);
- Instruction *visitSwitchInst(SwitchInst &SI);
- Instruction *visitInsertElementInst(InsertElementInst &IE);
- Instruction *visitExtractElementInst(ExtractElementInst &EI);
- Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
- Instruction *visitExtractValueInst(ExtractValueInst &EV);
-
- // visitInstruction - Specify what to return for unhandled instructions...
- Instruction *visitInstruction(Instruction &I) { return 0; }
-
- private:
- Instruction *visitCallSite(CallSite CS);
- bool transformConstExprCastCall(CallSite CS);
- Instruction *transformCallThroughTrampoline(CallSite CS);
- Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
- bool DoXform = true);
- bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
- DbgDeclareInst *hasOneUsePlusDeclare(Value *V);
-
-
- public:
- // InsertNewInstBefore - insert an instruction New before instruction Old
- // in the program. Add the new instruction to the worklist.
- //
- Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
- assert(New && New->getParent() == 0 &&
- "New instruction already inserted into a basic block!");
- BasicBlock *BB = Old.getParent();
- BB->getInstList().insert(&Old, New); // Insert inst
- Worklist.Add(New);
- return New;
- }
-
- // ReplaceInstUsesWith - This method is to be used when an instruction is
- // found to be dead, replacable with another preexisting expression. Here
- // we add all uses of I to the worklist, replace all uses of I with the new
- // value, then return I, so that the inst combiner will know that I was
- // modified.
- //
- Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
- Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
-
- // If we are replacing the instruction with itself, this must be in a
- // segment of unreachable code, so just clobber the instruction.
- if (&I == V)
- V = UndefValue::get(I.getType());
-
- I.replaceAllUsesWith(V);
- return &I;
- }
-
- // EraseInstFromFunction - When dealing with an instruction that has side
- // effects or produces a void value, we can't rely on DCE to delete the
- // instruction. Instead, visit methods should return the value returned by
- // this function.
- Instruction *EraseInstFromFunction(Instruction &I) {
- DEBUG(errs() << "IC: ERASE " << I << '\n');
-
- assert(I.use_empty() && "Cannot erase instruction that is used!");
- // Make sure that we reprocess all operands now that we reduced their
- // use counts.
- if (I.getNumOperands() < 8) {
- for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
- if (Instruction *Op = dyn_cast<Instruction>(*i))
- Worklist.Add(Op);
- }
- Worklist.Remove(&I);
- I.eraseFromParent();
- MadeIRChange = true;
- return 0; // Don't do anything with FI
- }
-
- void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
- APInt &KnownOne, unsigned Depth = 0) const {
- return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
- }
-
- bool MaskedValueIsZero(Value *V, const APInt &Mask,
- unsigned Depth = 0) const {
- return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
- }
- unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
- return llvm::ComputeNumSignBits(Op, TD, Depth);
- }
-
- private:
-
- /// SimplifyCommutative - This performs a few simplifications for
- /// commutative operators.
- bool SimplifyCommutative(BinaryOperator &I);
-
- /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
- /// based on the demanded bits.
- Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
- APInt& KnownZero, APInt& KnownOne,
- unsigned Depth);
- bool SimplifyDemandedBits(Use &U, APInt DemandedMask,
- APInt& KnownZero, APInt& KnownOne,
- unsigned Depth=0);
-
- /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
- /// SimplifyDemandedBits knows about. See if the instruction has any
- /// properties that allow us to simplify its operands.
- bool SimplifyDemandedInstructionBits(Instruction &Inst);
-
- Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
- APInt& UndefElts, unsigned Depth = 0);
-
- // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
- // which has a PHI node as operand #0, see if we can fold the instruction
- // into the PHI (which is only possible if all operands to the PHI are
- // constants).
- //
- // If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
- // that would normally be unprofitable because they strongly encourage jump
- // threading.
- Instruction *FoldOpIntoPhi(Instruction &I, bool AllowAggressive = false);
-
- // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
- // operator and they all are only used by the PHI, PHI together their
- // inputs, and do the operation once, to the result of the PHI.
- Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
- Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
- Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
- Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
-
-
- Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
- ConstantInt *AndRHS, BinaryOperator &TheAnd);
-
- Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
- bool isSub, Instruction &I);
- Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
- bool isSigned, bool Inside, Instruction &IB);
- Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
- Instruction *MatchBSwap(BinaryOperator &I);
- bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
- Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
- Instruction *SimplifyMemSet(MemSetInst *MI);
-
-
- Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
-
- bool CanEvaluateInDifferentType(Value *V, const Type *Ty,
- unsigned CastOpc, int &NumCastsRemoved);
- unsigned GetOrEnforceKnownAlignment(Value *V,
- unsigned PrefAlign = 0);
-
- };
-} // end anonymous namespace
-
-char InstCombiner::ID = 0;
-static RegisterPass<InstCombiner>
-X("instcombine", "Combine redundant instructions");
-
-// getComplexity: Assign a complexity or rank value to LLVM Values...
-// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
-static unsigned getComplexity(Value *V) {
- if (isa<Instruction>(V)) {
- if (BinaryOperator::isNeg(V) ||
- BinaryOperator::isFNeg(V) ||
- BinaryOperator::isNot(V))
- return 3;
- return 4;
- }
- if (isa<Argument>(V)) return 3;
- return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
-}
-
-// isOnlyUse - Return true if this instruction will be deleted if we stop using
-// it.
-static bool isOnlyUse(Value *V) {
- return V->hasOneUse() || isa<Constant>(V);
-}
-
-// getPromotedType - Return the specified type promoted as it would be to pass
-// though a va_arg area...
-static const Type *getPromotedType(const Type *Ty) {
- if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
- if (ITy->getBitWidth() < 32)
- return Type::getInt32Ty(Ty->getContext());
- }
- return Ty;
-}
-
-/// ShouldChangeType - Return true if it is desirable to convert a computation
-/// from 'From' to 'To'. We don't want to convert from a legal to an illegal
-/// type for example, or from a smaller to a larger illegal type.
-static bool ShouldChangeType(const Type *From, const Type *To,
- const TargetData *TD) {
- assert(isa<IntegerType>(From) && isa<IntegerType>(To));
-
- // If we don't have TD, we don't know if the source/dest are legal.
- if (!TD) return false;
-
- unsigned FromWidth = From->getPrimitiveSizeInBits();
- unsigned ToWidth = To->getPrimitiveSizeInBits();
- bool FromLegal = TD->isLegalInteger(FromWidth);
- bool ToLegal = TD->isLegalInteger(ToWidth);
-
- // If this is a legal integer from type, and the result would be an illegal
- // type, don't do the transformation.
- if (FromLegal && !ToLegal)
- return false;
-
- // Otherwise, if both are illegal, do not increase the size of the result. We
- // do allow things like i160 -> i64, but not i64 -> i160.
- if (!FromLegal && !ToLegal && ToWidth > FromWidth)
- return false;
-
- return true;
-}
-
-/// getBitCastOperand - If the specified operand is a CastInst, a constant
-/// expression bitcast, or a GetElementPtrInst with all zero indices, return the
-/// operand value, otherwise return null.
-static Value *getBitCastOperand(Value *V) {
- if (Operator *O = dyn_cast<Operator>(V)) {
- if (O->getOpcode() == Instruction::BitCast)
- return O->getOperand(0);
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
- if (GEP->hasAllZeroIndices())
- return GEP->getPointerOperand();
- }
- return 0;
-}
-
-/// This function is a wrapper around CastInst::isEliminableCastPair. It
-/// simply extracts arguments and returns what that function returns.
-static Instruction::CastOps
-isEliminableCastPair(
- const CastInst *CI, ///< The first cast instruction
- unsigned opcode, ///< The opcode of the second cast instruction
- const Type *DstTy, ///< The target type for the second cast instruction
- TargetData *TD ///< The target data for pointer size
-) {
-
- const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
- const Type *MidTy = CI->getType(); // B from above
-
- // Get the opcodes of the two Cast instructions
- Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
- Instruction::CastOps secondOp = Instruction::CastOps(opcode);
-
- unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
- DstTy,
- TD ? TD->getIntPtrType(CI->getContext()) : 0);
-
- // We don't want to form an inttoptr or ptrtoint that converts to an integer
- // type that differs from the pointer size.
- if ((Res == Instruction::IntToPtr &&
- (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
- (Res == Instruction::PtrToInt &&
- (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
- Res = 0;
-
- return Instruction::CastOps(Res);
-}
-
-/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
-/// in any code being generated. It does not require codegen if V is simple
-/// enough or if the cast can be folded into other casts.
-static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
- const Type *Ty, TargetData *TD) {
- if (V->getType() == Ty || isa<Constant>(V)) return false;
-
- // If this is another cast that can be eliminated, it isn't codegen either.
- if (const CastInst *CI = dyn_cast<CastInst>(V))
- if (isEliminableCastPair(CI, opcode, Ty, TD))
- return false;
- return true;
-}
-
-// SimplifyCommutative - This performs a few simplifications for commutative
-// operators:
-//
-// 1. Order operands such that they are listed from right (least complex) to
-// left (most complex). This puts constants before unary operators before
-// binary operators.
-//
-// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
-// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
-//
-bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
- bool Changed = false;
- if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
- Changed = !I.swapOperands();
-
- if (!I.isAssociative()) return Changed;
- Instruction::BinaryOps Opcode = I.getOpcode();
- if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
- if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
- if (isa<Constant>(I.getOperand(1))) {
- Constant *Folded = ConstantExpr::get(I.getOpcode(),
- cast<Constant>(I.getOperand(1)),
- cast<Constant>(Op->getOperand(1)));
- I.setOperand(0, Op->getOperand(0));
- I.setOperand(1, Folded);
- return true;
- } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
- if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
- isOnlyUse(Op) && isOnlyUse(Op1)) {
- Constant *C1 = cast<Constant>(Op->getOperand(1));
- Constant *C2 = cast<Constant>(Op1->getOperand(1));
-
- // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
- Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
- Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
- Op1->getOperand(0),
- Op1->getName(), &I);
- Worklist.Add(New);
- I.setOperand(0, New);
- I.setOperand(1, Folded);
- return true;
- }
- }
- return Changed;
-}
-
-// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
-// if the LHS is a constant zero (which is the 'negate' form).
-//
-static inline Value *dyn_castNegVal(Value *V) {
- if (BinaryOperator::isNeg(V))
- return BinaryOperator::getNegArgument(V);
-
- // Constants can be considered to be negated values if they can be folded.
- if (ConstantInt *C = dyn_cast<ConstantInt>(V))
- return ConstantExpr::getNeg(C);
-
- if (ConstantVector *C = dyn_cast<ConstantVector>(V))
- if (C->getType()->getElementType()->isInteger())
- return ConstantExpr::getNeg(C);
-
- return 0;
-}
-
-// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
-// instruction if the LHS is a constant negative zero (which is the 'negate'
-// form).
-//
-static inline Value *dyn_castFNegVal(Value *V) {
- if (BinaryOperator::isFNeg(V))
- return BinaryOperator::getFNegArgument(V);
-
- // Constants can be considered to be negated values if they can be folded.
- if (ConstantFP *C = dyn_cast<ConstantFP>(V))
- return ConstantExpr::getFNeg(C);
-
- if (ConstantVector *C = dyn_cast<ConstantVector>(V))
- if (C->getType()->getElementType()->isFloatingPoint())
- return ConstantExpr::getFNeg(C);
-
- return 0;
-}
-
-/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
-/// returning the kind and providing the out parameter results if we
-/// successfully match.
-static SelectPatternFlavor
-MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
- SelectInst *SI = dyn_cast<SelectInst>(V);
- if (SI == 0) return SPF_UNKNOWN;
-
- ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
- if (ICI == 0) return SPF_UNKNOWN;
-
- LHS = ICI->getOperand(0);
- RHS = ICI->getOperand(1);
-
- // (icmp X, Y) ? X : Y
- if (SI->getTrueValue() == ICI->getOperand(0) &&
- SI->getFalseValue() == ICI->getOperand(1)) {
- switch (ICI->getPredicate()) {
- default: return SPF_UNKNOWN; // Equality.
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE: return SPF_UMAX;
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE: return SPF_SMAX;
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE: return SPF_UMIN;
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE: return SPF_SMIN;
- }
- }
-
- // (icmp X, Y) ? Y : X
- if (SI->getTrueValue() == ICI->getOperand(1) &&
- SI->getFalseValue() == ICI->getOperand(0)) {
- switch (ICI->getPredicate()) {
- default: return SPF_UNKNOWN; // Equality.
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE: return SPF_UMIN;
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE: return SPF_SMIN;
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE: return SPF_UMAX;
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE: return SPF_SMAX;
- }
- }
-
- // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
-
- return SPF_UNKNOWN;
-}
-
-/// isFreeToInvert - Return true if the specified value is free to invert (apply
-/// ~ to). This happens in cases where the ~ can be eliminated.
-static inline bool isFreeToInvert(Value *V) {
- // ~(~(X)) -> X.
- if (BinaryOperator::isNot(V))
- return true;
-
- // Constants can be considered to be not'ed values.
- if (isa<ConstantInt>(V))
- return true;
-
- // Compares can be inverted if they have a single use.
- if (CmpInst *CI = dyn_cast<CmpInst>(V))
- return CI->hasOneUse();
-
- return false;
-}
-
-static inline Value *dyn_castNotVal(Value *V) {
- // If this is not(not(x)) don't return that this is a not: we want the two
- // not's to be folded first.
- if (BinaryOperator::isNot(V)) {
- Value *Operand = BinaryOperator::getNotArgument(V);
- if (!isFreeToInvert(Operand))
- return Operand;
- }
-
- // Constants can be considered to be not'ed values...
- if (ConstantInt *C = dyn_cast<ConstantInt>(V))
- return ConstantInt::get(C->getType(), ~C->getValue());
- return 0;
-}
-
-
-
-// dyn_castFoldableMul - If this value is a multiply that can be folded into
-// other computations (because it has a constant operand), return the
-// non-constant operand of the multiply, and set CST to point to the multiplier.
-// Otherwise, return null.
-//
-static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
- if (V->hasOneUse() && V->getType()->isInteger())
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- if (I->getOpcode() == Instruction::Mul)
- if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
- return I->getOperand(0);
- if (I->getOpcode() == Instruction::Shl)
- if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
- // The multiplier is really 1 << CST.
- uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
- uint32_t CSTVal = CST->getLimitedValue(BitWidth);
- CST = ConstantInt::get(V->getType()->getContext(),
- APInt(BitWidth, 1).shl(CSTVal));
- return I->getOperand(0);
- }
- }
- return 0;
-}
-
-/// AddOne - Add one to a ConstantInt
-static Constant *AddOne(Constant *C) {
- return ConstantExpr::getAdd(C,
- ConstantInt::get(C->getType(), 1));
-}
-/// SubOne - Subtract one from a ConstantInt
-static Constant *SubOne(ConstantInt *C) {
- return ConstantExpr::getSub(C,
- ConstantInt::get(C->getType(), 1));
-}
-/// MultiplyOverflows - True if the multiply can not be expressed in an int
-/// this size.
-static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
- uint32_t W = C1->getBitWidth();
- APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
- if (sign) {
- LHSExt.sext(W * 2);
- RHSExt.sext(W * 2);
- } else {
- LHSExt.zext(W * 2);
- RHSExt.zext(W * 2);
- }
-
- APInt MulExt = LHSExt * RHSExt;
-
- if (!sign)
- return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
-
- APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
- APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
- return MulExt.slt(Min) || MulExt.sgt(Max);
-}
-
-
-/// ShrinkDemandedConstant - Check to see if the specified operand of the
-/// specified instruction is a constant integer. If so, check to see if there
-/// are any bits set in the constant that are not demanded. If so, shrink the
-/// constant and return true.
-static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
- APInt Demanded) {
- assert(I && "No instruction?");
- assert(OpNo < I->getNumOperands() && "Operand index too large");
-
- // If the operand is not a constant integer, nothing to do.
- ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
- if (!OpC) return false;
-
- // If there are no bits set that aren't demanded, nothing to do.
- Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
- if ((~Demanded & OpC->getValue()) == 0)
- return false;
-
- // This instruction is producing bits that are not demanded. Shrink the RHS.
- Demanded &= OpC->getValue();
- I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
- return true;
-}
-
-// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
-// set of known zero and one bits, compute the maximum and minimum values that
-// could have the specified known zero and known one bits, returning them in
-// min/max.
-static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
- const APInt& KnownOne,
- APInt& Min, APInt& Max) {
- assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
- KnownZero.getBitWidth() == Min.getBitWidth() &&
- KnownZero.getBitWidth() == Max.getBitWidth() &&
- "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
- APInt UnknownBits = ~(KnownZero|KnownOne);
-
- // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
- // bit if it is unknown.
- Min = KnownOne;
- Max = KnownOne|UnknownBits;
-
- if (UnknownBits.isNegative()) { // Sign bit is unknown
- Min.set(Min.getBitWidth()-1);
- Max.clear(Max.getBitWidth()-1);
- }
-}
-
-// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
-// a set of known zero and one bits, compute the maximum and minimum values that
-// could have the specified known zero and known one bits, returning them in
-// min/max.
-static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
- const APInt &KnownOne,
- APInt &Min, APInt &Max) {
- assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
- KnownZero.getBitWidth() == Min.getBitWidth() &&
- KnownZero.getBitWidth() == Max.getBitWidth() &&
- "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
- APInt UnknownBits = ~(KnownZero|KnownOne);
-
- // The minimum value is when the unknown bits are all zeros.
- Min = KnownOne;
- // The maximum value is when the unknown bits are all ones.
- Max = KnownOne|UnknownBits;
-}
-
-/// SimplifyDemandedInstructionBits - Inst is an integer instruction that
-/// SimplifyDemandedBits knows about. See if the instruction has any
-/// properties that allow us to simplify its operands.
-bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
- unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
- APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
-
- Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
- KnownZero, KnownOne, 0);
- if (V == 0) return false;
- if (V == &Inst) return true;
- ReplaceInstUsesWith(Inst, V);
- return true;
-}
-
-/// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
-/// specified instruction operand if possible, updating it in place. It returns
-/// true if it made any change and false otherwise.
-bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
- APInt &KnownZero, APInt &KnownOne,
- unsigned Depth) {
- Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
- KnownZero, KnownOne, Depth);
- if (NewVal == 0) return false;
- U = NewVal;
- return true;
-}
-
-
-/// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
-/// value based on the demanded bits. When this function is called, it is known
-/// that only the bits set in DemandedMask of the result of V are ever used
-/// downstream. Consequently, depending on the mask and V, it may be possible
-/// to replace V with a constant or one of its operands. In such cases, this
-/// function does the replacement and returns true. In all other cases, it
-/// returns false after analyzing the expression and setting KnownOne and known
-/// to be one in the expression. KnownZero contains all the bits that are known
-/// to be zero in the expression. These are provided to potentially allow the
-/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
-/// the expression. KnownOne and KnownZero always follow the invariant that
-/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
-/// the bits in KnownOne and KnownZero may only be accurate for those bits set
-/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
-/// and KnownOne must all be the same.
-///
-/// This returns null if it did not change anything and it permits no
-/// simplification. This returns V itself if it did some simplification of V's
-/// operands based on the information about what bits are demanded. This returns
-/// some other non-null value if it found out that V is equal to another value
-/// in the context where the specified bits are demanded, but not for all users.
-Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
- APInt &KnownZero, APInt &KnownOne,
- unsigned Depth) {
- assert(V != 0 && "Null pointer of Value???");
- assert(Depth <= 6 && "Limit Search Depth");
- uint32_t BitWidth = DemandedMask.getBitWidth();
- const Type *VTy = V->getType();
- assert((TD || !isa<PointerType>(VTy)) &&
- "SimplifyDemandedBits needs to know bit widths!");
- assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
- (!VTy->isIntOrIntVector() ||
- VTy->getScalarSizeInBits() == BitWidth) &&
- KnownZero.getBitWidth() == BitWidth &&
- KnownOne.getBitWidth() == BitWidth &&
- "Value *V, DemandedMask, KnownZero and KnownOne "
- "must have same BitWidth");
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- // We know all of the bits for a constant!
- KnownOne = CI->getValue() & DemandedMask;
- KnownZero = ~KnownOne & DemandedMask;
- return 0;
- }
- if (isa<ConstantPointerNull>(V)) {
- // We know all of the bits for a constant!
- KnownOne.clear();
- KnownZero = DemandedMask;
- return 0;
- }
-
- KnownZero.clear();
- KnownOne.clear();
- if (DemandedMask == 0) { // Not demanding any bits from V.
- if (isa<UndefValue>(V))
- return 0;
- return UndefValue::get(VTy);
- }
-
- if (Depth == 6) // Limit search depth.
- return 0;
-
- APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
-
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) {
- ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
- return 0; // Only analyze instructions.
- }
-
- // If there are multiple uses of this value and we aren't at the root, then
- // we can't do any simplifications of the operands, because DemandedMask
- // only reflects the bits demanded by *one* of the users.
- if (Depth != 0 && !I->hasOneUse()) {
- // Despite the fact that we can't simplify this instruction in all User's
- // context, we can at least compute the knownzero/knownone bits, and we can
- // do simplifications that apply to *just* the one user if we know that
- // this instruction has a simpler value in that context.
- if (I->getOpcode() == Instruction::And) {
- // If either the LHS or the RHS are Zero, the result is zero.
- ComputeMaskedBits(I->getOperand(1), DemandedMask,
- RHSKnownZero, RHSKnownOne, Depth+1);
- ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
- LHSKnownZero, LHSKnownOne, Depth+1);
-
- // If all of the demanded bits are known 1 on one side, return the other.
- // These bits cannot contribute to the result of the 'and' in this
- // context.
- if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
- (DemandedMask & ~LHSKnownZero))
- return I->getOperand(0);
- if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
- (DemandedMask & ~RHSKnownZero))
- return I->getOperand(1);
-
- // If all of the demanded bits in the inputs are known zeros, return zero.
- if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
- return Constant::getNullValue(VTy);
-
- } else if (I->getOpcode() == Instruction::Or) {
- // We can simplify (X|Y) -> X or Y in the user's context if we know that
- // only bits from X or Y are demanded.
-
- // If either the LHS or the RHS are One, the result is One.
- ComputeMaskedBits(I->getOperand(1), DemandedMask,
- RHSKnownZero, RHSKnownOne, Depth+1);
- ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
- LHSKnownZero, LHSKnownOne, Depth+1);
-
- // If all of the demanded bits are known zero on one side, return the
- // other. These bits cannot contribute to the result of the 'or' in this
- // context.
- if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
- (DemandedMask & ~LHSKnownOne))
- return I->getOperand(0);
- if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
- (DemandedMask & ~RHSKnownOne))
- return I->getOperand(1);
-
- // If all of the potentially set bits on one side are known to be set on
- // the other side, just use the 'other' side.
- if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
- (DemandedMask & (~RHSKnownZero)))
- return I->getOperand(0);
- if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
- (DemandedMask & (~LHSKnownZero)))
- return I->getOperand(1);
- }
-
- // Compute the KnownZero/KnownOne bits to simplify things downstream.
- ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth);
- return 0;
- }
-
- // If this is the root being simplified, allow it to have multiple uses,
- // just set the DemandedMask to all bits so that we can try to simplify the
- // operands. This allows visitTruncInst (for example) to simplify the
- // operand of a trunc without duplicating all the logic below.
- if (Depth == 0 && !V->hasOneUse())
- DemandedMask = APInt::getAllOnesValue(BitWidth);
-
- switch (I->getOpcode()) {
- default:
- ComputeMaskedBits(I, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
- break;
- case Instruction::And:
- // If either the LHS or the RHS are Zero, the result is zero.
- if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
- RHSKnownZero, RHSKnownOne, Depth+1) ||
- SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
- LHSKnownZero, LHSKnownOne, Depth+1))
- return I;
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
-
- // If all of the demanded bits are known 1 on one side, return the other.
- // These bits cannot contribute to the result of the 'and'.
- if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
- (DemandedMask & ~LHSKnownZero))
- return I->getOperand(0);
- if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
- (DemandedMask & ~RHSKnownZero))
- return I->getOperand(1);
-
- // If all of the demanded bits in the inputs are known zeros, return zero.
- if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
- return Constant::getNullValue(VTy);
-
- // If the RHS is a constant, see if we can simplify it.
- if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
- return I;
-
- // Output known-1 bits are only known if set in both the LHS & RHS.
- RHSKnownOne &= LHSKnownOne;
- // Output known-0 are known to be clear if zero in either the LHS | RHS.
- RHSKnownZero |= LHSKnownZero;
- break;
- case Instruction::Or:
- // If either the LHS or the RHS are One, the result is One.
- if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
- RHSKnownZero, RHSKnownOne, Depth+1) ||
- SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
- LHSKnownZero, LHSKnownOne, Depth+1))
- return I;
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
-
- // If all of the demanded bits are known zero on one side, return the other.
- // These bits cannot contribute to the result of the 'or'.
- if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
- (DemandedMask & ~LHSKnownOne))
- return I->getOperand(0);
- if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
- (DemandedMask & ~RHSKnownOne))
- return I->getOperand(1);
-
- // If all of the potentially set bits on one side are known to be set on
- // the other side, just use the 'other' side.
- if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
- (DemandedMask & (~RHSKnownZero)))
- return I->getOperand(0);
- if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
- (DemandedMask & (~LHSKnownZero)))
- return I->getOperand(1);
-
- // If the RHS is a constant, see if we can simplify it.
- if (ShrinkDemandedConstant(I, 1, DemandedMask))
- return I;
-
- // Output known-0 bits are only known if clear in both the LHS & RHS.
- RHSKnownZero &= LHSKnownZero;
- // Output known-1 are known to be set if set in either the LHS | RHS.
- RHSKnownOne |= LHSKnownOne;
- break;
- case Instruction::Xor: {
- if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
- RHSKnownZero, RHSKnownOne, Depth+1) ||
- SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
- LHSKnownZero, LHSKnownOne, Depth+1))
- return I;
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
-
- // If all of the demanded bits are known zero on one side, return the other.
- // These bits cannot contribute to the result of the 'xor'.
- if ((DemandedMask & RHSKnownZero) == DemandedMask)
- return I->getOperand(0);
- if ((DemandedMask & LHSKnownZero) == DemandedMask)
- return I->getOperand(1);
-
- // Output known-0 bits are known if clear or set in both the LHS & RHS.
- APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
- (RHSKnownOne & LHSKnownOne);
- // Output known-1 are known to be set if set in only one of the LHS, RHS.
- APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
- (RHSKnownOne & LHSKnownZero);
-
- // If all of the demanded bits are known to be zero on one side or the
- // other, turn this into an *inclusive* or.
- // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
- if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
- Instruction *Or =
- BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
- I->getName());
- return InsertNewInstBefore(Or, *I);
- }
-
- // If all of the demanded bits on one side are known, and all of the set
- // bits on that side are also known to be set on the other side, turn this
- // into an AND, as we know the bits will be cleared.
- // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
- if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
- // all known
- if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
- Constant *AndC = Constant::getIntegerValue(VTy,
- ~RHSKnownOne & DemandedMask);
- Instruction *And =
- BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
- return InsertNewInstBefore(And, *I);
- }
- }
-
- // If the RHS is a constant, see if we can simplify it.
- // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
- if (ShrinkDemandedConstant(I, 1, DemandedMask))
- return I;
-
- // If our LHS is an 'and' and if it has one use, and if any of the bits we
- // are flipping are known to be set, then the xor is just resetting those
- // bits to zero. We can just knock out bits from the 'and' and the 'xor',
- // simplifying both of them.
- if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
- if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
- isa<ConstantInt>(I->getOperand(1)) &&
- isa<ConstantInt>(LHSInst->getOperand(1)) &&
- (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
- ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
- ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
- APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
-
- Constant *AndC =
- ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
- Instruction *NewAnd =
- BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
- InsertNewInstBefore(NewAnd, *I);
-
- Constant *XorC =
- ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
- Instruction *NewXor =
- BinaryOperator::CreateXor(NewAnd, XorC, "tmp");
- return InsertNewInstBefore(NewXor, *I);
- }
-
-
- RHSKnownZero = KnownZeroOut;
- RHSKnownOne = KnownOneOut;
- break;
- }
- case Instruction::Select:
- if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
- RHSKnownZero, RHSKnownOne, Depth+1) ||
- SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
- LHSKnownZero, LHSKnownOne, Depth+1))
- return I;
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
-
- // If the operands are constants, see if we can simplify them.
- if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
- ShrinkDemandedConstant(I, 2, DemandedMask))
- return I;
-
- // Only known if known in both the LHS and RHS.
- RHSKnownOne &= LHSKnownOne;
- RHSKnownZero &= LHSKnownZero;
- break;
- case Instruction::Trunc: {
- unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
- DemandedMask.zext(truncBf);
- RHSKnownZero.zext(truncBf);
- RHSKnownOne.zext(truncBf);
- if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
- RHSKnownZero, RHSKnownOne, Depth+1))
- return I;
- DemandedMask.trunc(BitWidth);
- RHSKnownZero.trunc(BitWidth);
- RHSKnownOne.trunc(BitWidth);
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- break;
- }
- case Instruction::BitCast:
- if (!I->getOperand(0)->getType()->isIntOrIntVector())
- return false; // vector->int or fp->int?
-
- if (const VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
- if (const VectorType *SrcVTy =
- dyn_cast<VectorType>(I->getOperand(0)->getType())) {
- if (DstVTy->getNumElements() != SrcVTy->getNumElements())
- // Don't touch a bitcast between vectors of different element counts.
- return false;
- } else
- // Don't touch a scalar-to-vector bitcast.
- return false;
- } else if (isa<VectorType>(I->getOperand(0)->getType()))
- // Don't touch a vector-to-scalar bitcast.
- return false;
-
- if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
- RHSKnownZero, RHSKnownOne, Depth+1))
- return I;
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- break;
- case Instruction::ZExt: {
- // Compute the bits in the result that are not present in the input.
- unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
-
- DemandedMask.trunc(SrcBitWidth);
- RHSKnownZero.trunc(SrcBitWidth);
- RHSKnownOne.trunc(SrcBitWidth);
- if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
- RHSKnownZero, RHSKnownOne, Depth+1))
- return I;
- DemandedMask.zext(BitWidth);
- RHSKnownZero.zext(BitWidth);
- RHSKnownOne.zext(BitWidth);
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- // The top bits are known to be zero.
- RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
- break;
- }
- case Instruction::SExt: {
- // Compute the bits in the result that are not present in the input.
- unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
-
- APInt InputDemandedBits = DemandedMask &
- APInt::getLowBitsSet(BitWidth, SrcBitWidth);
-
- APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
- // If any of the sign extended bits are demanded, we know that the sign
- // bit is demanded.
- if ((NewBits & DemandedMask) != 0)
- InputDemandedBits.set(SrcBitWidth-1);
-
- InputDemandedBits.trunc(SrcBitWidth);
- RHSKnownZero.trunc(SrcBitWidth);
- RHSKnownOne.trunc(SrcBitWidth);
- if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
- RHSKnownZero, RHSKnownOne, Depth+1))
- return I;
- InputDemandedBits.zext(BitWidth);
- RHSKnownZero.zext(BitWidth);
- RHSKnownOne.zext(BitWidth);
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
-
- // If the sign bit of the input is known set or clear, then we know the
- // top bits of the result.
-
- // If the input sign bit is known zero, or if the NewBits are not demanded
- // convert this into a zero extension.
- if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
- // Convert to ZExt cast
- CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
- return InsertNewInstBefore(NewCast, *I);
- } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
- RHSKnownOne |= NewBits;
- }
- break;
- }
- case Instruction::Add: {
- // Figure out what the input bits are. If the top bits of the and result
- // are not demanded, then the add doesn't demand them from its input
- // either.
- unsigned NLZ = DemandedMask.countLeadingZeros();
-
- // If there is a constant on the RHS, there are a variety of xformations
- // we can do.
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
- // If null, this should be simplified elsewhere. Some of the xforms here
- // won't work if the RHS is zero.
- if (RHS->isZero())
- break;
-
- // If the top bit of the output is demanded, demand everything from the
- // input. Otherwise, we demand all the input bits except NLZ top bits.
- APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
-
- // Find information about known zero/one bits in the input.
- if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
- LHSKnownZero, LHSKnownOne, Depth+1))
- return I;
-
- // If the RHS of the add has bits set that can't affect the input, reduce
- // the constant.
- if (ShrinkDemandedConstant(I, 1, InDemandedBits))
- return I;
-
- // Avoid excess work.
- if (LHSKnownZero == 0 && LHSKnownOne == 0)
- break;
-
- // Turn it into OR if input bits are zero.
- if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
- Instruction *Or =
- BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
- I->getName());
- return InsertNewInstBefore(Or, *I);
- }
-
- // We can say something about the output known-zero and known-one bits,
- // depending on potential carries from the input constant and the
- // unknowns. For example if the LHS is known to have at most the 0x0F0F0
- // bits set and the RHS constant is 0x01001, then we know we have a known
- // one mask of 0x00001 and a known zero mask of 0xE0F0E.
-
- // To compute this, we first compute the potential carry bits. These are
- // the bits which may be modified. I'm not aware of a better way to do
- // this scan.
- const APInt &RHSVal = RHS->getValue();
- APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
-
- // Now that we know which bits have carries, compute the known-1/0 sets.
-
- // Bits are known one if they are known zero in one operand and one in the
- // other, and there is no input carry.
- RHSKnownOne = ((LHSKnownZero & RHSVal) |
- (LHSKnownOne & ~RHSVal)) & ~CarryBits;
-
- // Bits are known zero if they are known zero in both operands and there
- // is no input carry.
- RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
- } else {
- // If the high-bits of this ADD are not demanded, then it does not demand
- // the high bits of its LHS or RHS.
- if (DemandedMask[BitWidth-1] == 0) {
- // Right fill the mask of bits for this ADD to demand the most
- // significant bit and all those below it.
- APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
- if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
- LHSKnownZero, LHSKnownOne, Depth+1) ||
- SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
- LHSKnownZero, LHSKnownOne, Depth+1))
- return I;
- }
- }
- break;
- }
- case Instruction::Sub:
- // If the high-bits of this SUB are not demanded, then it does not demand
- // the high bits of its LHS or RHS.
- if (DemandedMask[BitWidth-1] == 0) {
- // Right fill the mask of bits for this SUB to demand the most
- // significant bit and all those below it.
- uint32_t NLZ = DemandedMask.countLeadingZeros();
- APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
- if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
- LHSKnownZero, LHSKnownOne, Depth+1) ||
- SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
- LHSKnownZero, LHSKnownOne, Depth+1))
- return I;
- }
- // Otherwise just hand the sub off to ComputeMaskedBits to fill in
- // the known zeros and ones.
- ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
- break;
- case Instruction::Shl:
- if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
- uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
- APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
- if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
- RHSKnownZero, RHSKnownOne, Depth+1))
- return I;
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- RHSKnownZero <<= ShiftAmt;
- RHSKnownOne <<= ShiftAmt;
- // low bits known zero.
- if (ShiftAmt)
- RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
- }
- break;
- case Instruction::LShr:
- // For a logical shift right
- if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
- uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
-
- // Unsigned shift right.
- APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
- if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
- RHSKnownZero, RHSKnownOne, Depth+1))
- return I;
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
- RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
- if (ShiftAmt) {
- // Compute the new bits that are at the top now.
- APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
- RHSKnownZero |= HighBits; // high bits known zero.
- }
- }
- break;
- case Instruction::AShr:
- // If this is an arithmetic shift right and only the low-bit is set, we can
- // always convert this into a logical shr, even if the shift amount is
- // variable. The low bit of the shift cannot be an input sign bit unless
- // the shift amount is >= the size of the datatype, which is undefined.
- if (DemandedMask == 1) {
- // Perform the logical shift right.
- Instruction *NewVal = BinaryOperator::CreateLShr(
- I->getOperand(0), I->getOperand(1), I->getName());
- return InsertNewInstBefore(NewVal, *I);
- }
-
- // If the sign bit is the only bit demanded by this ashr, then there is no
- // need to do it, the shift doesn't change the high bit.
- if (DemandedMask.isSignBit())
- return I->getOperand(0);
-
- if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
- uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
-
- // Signed shift right.
- APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
- // If any of the "high bits" are demanded, we should set the sign bit as
- // demanded.
- if (DemandedMask.countLeadingZeros() <= ShiftAmt)
- DemandedMaskIn.set(BitWidth-1);
- if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
- RHSKnownZero, RHSKnownOne, Depth+1))
- return I;
- assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
- // Compute the new bits that are at the top now.
- APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
- RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
- RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
-
- // Handle the sign bits.
- APInt SignBit(APInt::getSignBit(BitWidth));
- // Adjust to where it is now in the mask.
- SignBit = APIntOps::lshr(SignBit, ShiftAmt);
-
- // If the input sign bit is known to be zero, or if none of the top bits
- // are demanded, turn this into an unsigned shift right.
- if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] ||
- (HighBits & ~DemandedMask) == HighBits) {
- // Perform the logical shift right.
- Instruction *NewVal = BinaryOperator::CreateLShr(
- I->getOperand(0), SA, I->getName());
- return InsertNewInstBefore(NewVal, *I);
- } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
- RHSKnownOne |= HighBits;
- }
- }
- break;
- case Instruction::SRem:
- if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
- APInt RA = Rem->getValue().abs();
- if (RA.isPowerOf2()) {
- if (DemandedMask.ult(RA)) // srem won't affect demanded bits
- return I->getOperand(0);
-
- APInt LowBits = RA - 1;
- APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
- if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
- LHSKnownZero, LHSKnownOne, Depth+1))
- return I;
-
- if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
- LHSKnownZero |= ~LowBits;
-
- KnownZero |= LHSKnownZero & DemandedMask;
-
- assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
- }
- }
- break;
- case Instruction::URem: {
- APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
- APInt AllOnes = APInt::getAllOnesValue(BitWidth);
- if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
- KnownZero2, KnownOne2, Depth+1) ||
- SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
- KnownZero2, KnownOne2, Depth+1))
- return I;
-
- unsigned Leaders = KnownZero2.countLeadingOnes();
- Leaders = std::max(Leaders,
- KnownZero2.countLeadingOnes());
- KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
- break;
- }
- case Instruction::Call:
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::bswap: {
- // If the only bits demanded come from one byte of the bswap result,
- // just shift the input byte into position to eliminate the bswap.
- unsigned NLZ = DemandedMask.countLeadingZeros();
- unsigned NTZ = DemandedMask.countTrailingZeros();
-
- // Round NTZ down to the next byte. If we have 11 trailing zeros, then
- // we need all the bits down to bit 8. Likewise, round NLZ. If we
- // have 14 leading zeros, round to 8.
- NLZ &= ~7;
- NTZ &= ~7;
- // If we need exactly one byte, we can do this transformation.
- if (BitWidth-NLZ-NTZ == 8) {
- unsigned ResultBit = NTZ;
- unsigned InputBit = BitWidth-NTZ-8;
-
- // Replace this with either a left or right shift to get the byte into
- // the right place.
- Instruction *NewVal;
- if (InputBit > ResultBit)
- NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
- ConstantInt::get(I->getType(), InputBit-ResultBit));
- else
- NewVal = BinaryOperator::CreateShl(I->getOperand(1),
- ConstantInt::get(I->getType(), ResultBit-InputBit));
- NewVal->takeName(I);
- return InsertNewInstBefore(NewVal, *I);
- }
-
- // TODO: Could compute known zero/one bits based on the input.
- break;
- }
- }
- }
- ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
- break;
- }
-
- // If the client is only demanding bits that we know, return the known
- // constant.
- if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
- return Constant::getIntegerValue(VTy, RHSKnownOne);
- return false;
-}
-
-
-/// SimplifyDemandedVectorElts - The specified value produces a vector with
-/// any number of elements. DemandedElts contains the set of elements that are
-/// actually used by the caller. This method analyzes which elements of the
-/// operand are undef and returns that information in UndefElts.
-///
-/// If the information about demanded elements can be used to simplify the
-/// operation, the operation is simplified, then the resultant value is
-/// returned. This returns null if no change was made.
-Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
- APInt& UndefElts,
- unsigned Depth) {
- unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
- APInt EltMask(APInt::getAllOnesValue(VWidth));
- assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
-
- if (isa<UndefValue>(V)) {
- // If the entire vector is undefined, just return this info.
- UndefElts = EltMask;
- return 0;
- } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
- UndefElts = EltMask;
- return UndefValue::get(V->getType());
- }
-
- UndefElts = 0;
- if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
- const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
- Constant *Undef = UndefValue::get(EltTy);
-
- std::vector<Constant*> Elts;
- for (unsigned i = 0; i != VWidth; ++i)
- if (!DemandedElts[i]) { // If not demanded, set to undef.
- Elts.push_back(Undef);
- UndefElts.set(i);
- } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
- Elts.push_back(Undef);
- UndefElts.set(i);
- } else { // Otherwise, defined.
- Elts.push_back(CP->getOperand(i));
- }
-
- // If we changed the constant, return it.
- Constant *NewCP = ConstantVector::get(Elts);
- return NewCP != CP ? NewCP : 0;
- } else if (isa<ConstantAggregateZero>(V)) {
- // Simplify the CAZ to a ConstantVector where the non-demanded elements are
- // set to undef.
-
- // Check if this is identity. If so, return 0 since we are not simplifying
- // anything.
- if (DemandedElts == ((1ULL << VWidth) -1))
- return 0;
-
- const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
- Constant *Zero = Constant::getNullValue(EltTy);
- Constant *Undef = UndefValue::get(EltTy);
- std::vector<Constant*> Elts;
- for (unsigned i = 0; i != VWidth; ++i) {
- Constant *Elt = DemandedElts[i] ? Zero : Undef;
- Elts.push_back(Elt);
- }
- UndefElts = DemandedElts ^ EltMask;
- return ConstantVector::get(Elts);
- }
-
- // Limit search depth.
- if (Depth == 10)
- return 0;
-
- // If multiple users are using the root value, procede with
- // simplification conservatively assuming that all elements
- // are needed.
- if (!V->hasOneUse()) {
- // Quit if we find multiple users of a non-root value though.
- // They'll be handled when it's their turn to be visited by
- // the main instcombine process.
- if (Depth != 0)
- // TODO: Just compute the UndefElts information recursively.
- return 0;
-
- // Conservatively assume that all elements are needed.
- DemandedElts = EltMask;
- }
-
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return 0; // Only analyze instructions.
-
- bool MadeChange = false;
- APInt UndefElts2(VWidth, 0);
- Value *TmpV;
- switch (I->getOpcode()) {
- default: break;
-
- case Instruction::InsertElement: {
- // If this is a variable index, we don't know which element it overwrites.
- // demand exactly the same input as we produce.
- ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
- if (Idx == 0) {
- // Note that we can't propagate undef elt info, because we don't know
- // which elt is getting updated.
- TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
- UndefElts2, Depth+1);
- if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
- break;
- }
-
- // If this is inserting an element that isn't demanded, remove this
- // insertelement.
- unsigned IdxNo = Idx->getZExtValue();
- if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
- Worklist.Add(I);
- return I->getOperand(0);
- }
-
- // Otherwise, the element inserted overwrites whatever was there, so the
- // input demanded set is simpler than the output set.
- APInt DemandedElts2 = DemandedElts;
- DemandedElts2.clear(IdxNo);
- TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
- UndefElts, Depth+1);
- if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
-
- // The inserted element is defined.
- UndefElts.clear(IdxNo);
- break;
- }
- case Instruction::ShuffleVector: {
- ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
- uint64_t LHSVWidth =
- cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
- APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
- for (unsigned i = 0; i < VWidth; i++) {
- if (DemandedElts[i]) {
- unsigned MaskVal = Shuffle->getMaskValue(i);
- if (MaskVal != -1u) {
- assert(MaskVal < LHSVWidth * 2 &&
- "shufflevector mask index out of range!");
- if (MaskVal < LHSVWidth)
- LeftDemanded.set(MaskVal);
- else
- RightDemanded.set(MaskVal - LHSVWidth);
- }
- }
- }
-
- APInt UndefElts4(LHSVWidth, 0);
- TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
- UndefElts4, Depth+1);
- if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
-
- APInt UndefElts3(LHSVWidth, 0);
- TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
- UndefElts3, Depth+1);
- if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
-
- bool NewUndefElts = false;
- for (unsigned i = 0; i < VWidth; i++) {
- unsigned MaskVal = Shuffle->getMaskValue(i);
- if (MaskVal == -1u) {
- UndefElts.set(i);
- } else if (MaskVal < LHSVWidth) {
- if (UndefElts4[MaskVal]) {
- NewUndefElts = true;
- UndefElts.set(i);
- }
- } else {
- if (UndefElts3[MaskVal - LHSVWidth]) {
- NewUndefElts = true;
- UndefElts.set(i);
- }
- }
- }
-
- if (NewUndefElts) {
- // Add additional discovered undefs.
- std::vector<Constant*> Elts;
- for (unsigned i = 0; i < VWidth; ++i) {
- if (UndefElts[i])
- Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context)));
- else
- Elts.push_back(ConstantInt::get(Type::getInt32Ty(*Context),
- Shuffle->getMaskValue(i)));
- }
- I->setOperand(2, ConstantVector::get(Elts));
- MadeChange = true;
- }
- break;
- }
- case Instruction::BitCast: {
- // Vector->vector casts only.
- const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
- if (!VTy) break;
- unsigned InVWidth = VTy->getNumElements();
- APInt InputDemandedElts(InVWidth, 0);
- unsigned Ratio;
-
- if (VWidth == InVWidth) {
- // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
- // elements as are demanded of us.
- Ratio = 1;
- InputDemandedElts = DemandedElts;
- } else if (VWidth > InVWidth) {
- // Untested so far.
- break;
-
- // If there are more elements in the result than there are in the source,
- // then an input element is live if any of the corresponding output
- // elements are live.
- Ratio = VWidth/InVWidth;
- for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
- if (DemandedElts[OutIdx])
- InputDemandedElts.set(OutIdx/Ratio);
- }
- } else {
- // Untested so far.
- break;
-
- // If there are more elements in the source than there are in the result,
- // then an input element is live if the corresponding output element is
- // live.
- Ratio = InVWidth/VWidth;
- for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
- if (DemandedElts[InIdx/Ratio])
- InputDemandedElts.set(InIdx);
- }
-
- // div/rem demand all inputs, because they don't want divide by zero.
- TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
- UndefElts2, Depth+1);
- if (TmpV) {
- I->setOperand(0, TmpV);
- MadeChange = true;
- }
-
- UndefElts = UndefElts2;
- if (VWidth > InVWidth) {
- llvm_unreachable("Unimp");
- // If there are more elements in the result than there are in the source,
- // then an output element is undef if the corresponding input element is
- // undef.
- for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
- if (UndefElts2[OutIdx/Ratio])
- UndefElts.set(OutIdx);
- } else if (VWidth < InVWidth) {
- llvm_unreachable("Unimp");
- // If there are more elements in the source than there are in the result,
- // then a result element is undef if all of the corresponding input
- // elements are undef.
- UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
- for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
- if (!UndefElts2[InIdx]) // Not undef?
- UndefElts.clear(InIdx/Ratio); // Clear undef bit.
- }
- break;
- }
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- // div/rem demand all inputs, because they don't want divide by zero.
- TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
- UndefElts, Depth+1);
- if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
- TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
- UndefElts2, Depth+1);
- if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
-
- // Output elements are undefined if both are undefined. Consider things
- // like undef&0. The result is known zero, not undef.
- UndefElts &= UndefElts2;
- break;
-
- case Instruction::Call: {
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
- if (!II) break;
- switch (II->getIntrinsicID()) {
- default: break;
-
- // Binary vector operations that work column-wise. A dest element is a
- // function of the corresponding input elements from the two inputs.
- case Intrinsic::x86_sse_sub_ss:
- case Intrinsic::x86_sse_mul_ss:
- case Intrinsic::x86_sse_min_ss:
- case Intrinsic::x86_sse_max_ss:
- case Intrinsic::x86_sse2_sub_sd:
- case Intrinsic::x86_sse2_mul_sd:
- case Intrinsic::x86_sse2_min_sd:
- case Intrinsic::x86_sse2_max_sd:
- TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
- UndefElts, Depth+1);
- if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
- TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
- UndefElts2, Depth+1);
- if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
-
- // If only the low elt is demanded and this is a scalarizable intrinsic,
- // scalarize it now.
- if (DemandedElts == 1) {
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::x86_sse_sub_ss:
- case Intrinsic::x86_sse_mul_ss:
- case Intrinsic::x86_sse2_sub_sd:
- case Intrinsic::x86_sse2_mul_sd:
- // TODO: Lower MIN/MAX/ABS/etc
- Value *LHS = II->getOperand(1);
- Value *RHS = II->getOperand(2);
- // Extract the element as scalars.
- LHS = InsertNewInstBefore(ExtractElementInst::Create(LHS,
- ConstantInt::get(Type::getInt32Ty(*Context), 0U, false), "tmp"), *II);
- RHS = InsertNewInstBefore(ExtractElementInst::Create(RHS,
- ConstantInt::get(Type::getInt32Ty(*Context), 0U, false), "tmp"), *II);
-
- switch (II->getIntrinsicID()) {
- default: llvm_unreachable("Case stmts out of sync!");
- case Intrinsic::x86_sse_sub_ss:
- case Intrinsic::x86_sse2_sub_sd:
- TmpV = InsertNewInstBefore(BinaryOperator::CreateFSub(LHS, RHS,
- II->getName()), *II);
- break;
- case Intrinsic::x86_sse_mul_ss:
- case Intrinsic::x86_sse2_mul_sd:
- TmpV = InsertNewInstBefore(BinaryOperator::CreateFMul(LHS, RHS,
- II->getName()), *II);
- break;
- }
-
- Instruction *New =
- InsertElementInst::Create(
- UndefValue::get(II->getType()), TmpV,
- ConstantInt::get(Type::getInt32Ty(*Context), 0U, false), II->getName());
- InsertNewInstBefore(New, *II);
- return New;
- }
- }
-
- // Output elements are undefined if both are undefined. Consider things
- // like undef&0. The result is known zero, not undef.
- UndefElts &= UndefElts2;
- break;
- }
- break;
- }
- }
- return MadeChange ? I : 0;
-}
-
-
-/// AssociativeOpt - Perform an optimization on an associative operator. This
-/// function is designed to check a chain of associative operators for a
-/// potential to apply a certain optimization. Since the optimization may be
-/// applicable if the expression was reassociated, this checks the chain, then
-/// reassociates the expression as necessary to expose the optimization
-/// opportunity. This makes use of a special Functor, which must define
-/// 'shouldApply' and 'apply' methods.
-///
-template<typename Functor>
-static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
- unsigned Opcode = Root.getOpcode();
- Value *LHS = Root.getOperand(0);
-
- // Quick check, see if the immediate LHS matches...
- if (F.shouldApply(LHS))
- return F.apply(Root);
-
- // Otherwise, if the LHS is not of the same opcode as the root, return.
- Instruction *LHSI = dyn_cast<Instruction>(LHS);
- while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
- // Should we apply this transform to the RHS?
- bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
-
- // If not to the RHS, check to see if we should apply to the LHS...
- if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
- cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
- ShouldApply = true;
- }
-
- // If the functor wants to apply the optimization to the RHS of LHSI,
- // reassociate the expression from ((? op A) op B) to (? op (A op B))
- if (ShouldApply) {
- // Now all of the instructions are in the current basic block, go ahead
- // and perform the reassociation.
- Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
-
- // First move the selected RHS to the LHS of the root...
- Root.setOperand(0, LHSI->getOperand(1));
-
- // Make what used to be the LHS of the root be the user of the root...
- Value *ExtraOperand = TmpLHSI->getOperand(1);
- if (&Root == TmpLHSI) {
- Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
- return 0;
- }
- Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
- TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
- BasicBlock::iterator ARI = &Root; ++ARI;
- TmpLHSI->moveBefore(ARI); // Move TmpLHSI to after Root
- ARI = Root;
-
- // Now propagate the ExtraOperand down the chain of instructions until we
- // get to LHSI.
- while (TmpLHSI != LHSI) {
- Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
- // Move the instruction to immediately before the chain we are
- // constructing to avoid breaking dominance properties.
- NextLHSI->moveBefore(ARI);
- ARI = NextLHSI;
-
- Value *NextOp = NextLHSI->getOperand(1);
- NextLHSI->setOperand(1, ExtraOperand);
- TmpLHSI = NextLHSI;
- ExtraOperand = NextOp;
- }
-
- // Now that the instructions are reassociated, have the functor perform
- // the transformation...
- return F.apply(Root);
- }
-
- LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
- }
- return 0;
-}
-
-namespace {
-
-// AddRHS - Implements: X + X --> X << 1
-struct AddRHS {
- Value *RHS;
- explicit AddRHS(Value *rhs) : RHS(rhs) {}
- bool shouldApply(Value *LHS) const { return LHS == RHS; }
- Instruction *apply(BinaryOperator &Add) const {
- return BinaryOperator::CreateShl(Add.getOperand(0),
- ConstantInt::get(Add.getType(), 1));
- }
-};
-
-// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
-// iff C1&C2 == 0
-struct AddMaskingAnd {
- Constant *C2;
- explicit AddMaskingAnd(Constant *c) : C2(c) {}
- bool shouldApply(Value *LHS) const {
- ConstantInt *C1;
- return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
- ConstantExpr::getAnd(C1, C2)->isNullValue();
- }
- Instruction *apply(BinaryOperator &Add) const {
- return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
- }
-};
-
-}
-
-static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
- InstCombiner *IC) {
- if (CastInst *CI = dyn_cast<CastInst>(&I))
- return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
-
- // Figure out if the constant is the left or the right argument.
- bool ConstIsRHS = isa<Constant>(I.getOperand(1));
- Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
-
- if (Constant *SOC = dyn_cast<Constant>(SO)) {
- if (ConstIsRHS)
- return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
- return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
- }
-
- Value *Op0 = SO, *Op1 = ConstOperand;
- if (!ConstIsRHS)
- std::swap(Op0, Op1);
-
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
- return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
- SO->getName()+".op");
- if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
- return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
- SO->getName()+".cmp");
- if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
- return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
- SO->getName()+".cmp");
- llvm_unreachable("Unknown binary instruction type!");
-}
-
-// FoldOpIntoSelect - Given an instruction with a select as one operand and a
-// constant as the other operand, try to fold the binary operator into the
-// select arguments. This also works for Cast instructions, which obviously do
-// not have a second operand.
-static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
- InstCombiner *IC) {
- // Don't modify shared select instructions
- if (!SI->hasOneUse()) return 0;
- Value *TV = SI->getOperand(1);
- Value *FV = SI->getOperand(2);
-
- if (isa<Constant>(TV) || isa<Constant>(FV)) {
- // Bool selects with constant operands can be folded to logical ops.
- if (SI->getType() == Type::getInt1Ty(*IC->getContext())) return 0;
-
- Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
- Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
-
- return SelectInst::Create(SI->getCondition(), SelectTrueVal,
- SelectFalseVal);
- }
- return 0;
-}
-
-
-/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
-/// has a PHI node as operand #0, see if we can fold the instruction into the
-/// PHI (which is only possible if all operands to the PHI are constants).
-///
-/// If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
-/// that would normally be unprofitable because they strongly encourage jump
-/// threading.
-Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
- bool AllowAggressive) {
- AllowAggressive = false;
- PHINode *PN = cast<PHINode>(I.getOperand(0));
- unsigned NumPHIValues = PN->getNumIncomingValues();
- if (NumPHIValues == 0 ||
- // We normally only transform phis with a single use, unless we're trying
- // hard to make jump threading happen.
- (!PN->hasOneUse() && !AllowAggressive))
- return 0;
-
-
- // Check to see if all of the operands of the PHI are simple constants
- // (constantint/constantfp/undef). If there is one non-constant value,
- // remember the BB it is in. If there is more than one or if *it* is a PHI,
- // bail out. We don't do arbitrary constant expressions here because moving
- // their computation can be expensive without a cost model.
- BasicBlock *NonConstBB = 0;
- for (unsigned i = 0; i != NumPHIValues; ++i)
- if (!isa<Constant>(PN->getIncomingValue(i)) ||
- isa<ConstantExpr>(PN->getIncomingValue(i))) {
- if (NonConstBB) return 0; // More than one non-const value.
- if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
- NonConstBB = PN->getIncomingBlock(i);
-
- // If the incoming non-constant value is in I's block, we have an infinite
- // loop.
- if (NonConstBB == I.getParent())
- return 0;
- }
-
- // If there is exactly one non-constant value, we can insert a copy of the
- // operation in that block. However, if this is a critical edge, we would be
- // inserting the computation one some other paths (e.g. inside a loop). Only
- // do this if the pred block is unconditionally branching into the phi block.
- if (NonConstBB != 0 && !AllowAggressive) {
- BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
- if (!BI || !BI->isUnconditional()) return 0;
- }
-
- // Okay, we can do the transformation: create the new PHI node.
- PHINode *NewPN = PHINode::Create(I.getType(), "");
- NewPN->reserveOperandSpace(PN->getNumOperands()/2);
- InsertNewInstBefore(NewPN, *PN);
- NewPN->takeName(PN);
-
- // Next, add all of the operands to the PHI.
- if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
- // We only currently try to fold the condition of a select when it is a phi,
- // not the true/false values.
- Value *TrueV = SI->getTrueValue();
- Value *FalseV = SI->getFalseValue();
- BasicBlock *PhiTransBB = PN->getParent();
- for (unsigned i = 0; i != NumPHIValues; ++i) {
- BasicBlock *ThisBB = PN->getIncomingBlock(i);
- Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
- Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
- Value *InV = 0;
- if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
- InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
- } else {
- assert(PN->getIncomingBlock(i) == NonConstBB);
- InV = SelectInst::Create(PN->getIncomingValue(i), TrueVInPred,
- FalseVInPred,
- "phitmp", NonConstBB->getTerminator());
- Worklist.Add(cast<Instruction>(InV));
- }
- NewPN->addIncoming(InV, ThisBB);
- }
- } else if (I.getNumOperands() == 2) {
- Constant *C = cast<Constant>(I.getOperand(1));
- for (unsigned i = 0; i != NumPHIValues; ++i) {
- Value *InV = 0;
- if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
- if (CmpInst *CI = dyn_cast<CmpInst>(&I))
- InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
- else
- InV = ConstantExpr::get(I.getOpcode(), InC, C);
- } else {
- assert(PN->getIncomingBlock(i) == NonConstBB);
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
- InV = BinaryOperator::Create(BO->getOpcode(),
- PN->getIncomingValue(i), C, "phitmp",
- NonConstBB->getTerminator());
- else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
- InV = CmpInst::Create(CI->getOpcode(),
- CI->getPredicate(),
- PN->getIncomingValue(i), C, "phitmp",
- NonConstBB->getTerminator());
- else
- llvm_unreachable("Unknown binop!");
-
- Worklist.Add(cast<Instruction>(InV));
- }
- NewPN->addIncoming(InV, PN->getIncomingBlock(i));
- }
- } else {
- CastInst *CI = cast<CastInst>(&I);
- const Type *RetTy = CI->getType();
- for (unsigned i = 0; i != NumPHIValues; ++i) {
- Value *InV;
- if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
- InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
- } else {
- assert(PN->getIncomingBlock(i) == NonConstBB);
- InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
- I.getType(), "phitmp",
- NonConstBB->getTerminator());
- Worklist.Add(cast<Instruction>(InV));
- }
- NewPN->addIncoming(InV, PN->getIncomingBlock(i));
- }
- }
- return ReplaceInstUsesWith(I, NewPN);
-}
-
-
-/// WillNotOverflowSignedAdd - Return true if we can prove that:
-/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
-/// This basically requires proving that the add in the original type would not
-/// overflow to change the sign bit or have a carry out.
-bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
- // There are different heuristics we can use for this. Here are some simple
- // ones.
-
- // Add has the property that adding any two 2's complement numbers can only
- // have one carry bit which can change a sign. As such, if LHS and RHS each
- // have at least two sign bits, we know that the addition of the two values
- // will sign extend fine.
- if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
- return true;
-
-
- // If one of the operands only has one non-zero bit, and if the other operand
- // has a known-zero bit in a more significant place than it (not including the
- // sign bit) the ripple may go up to and fill the zero, but won't change the
- // sign. For example, (X & ~4) + 1.
-
- // TODO: Implement.
-
- return false;
-}
-
-
-Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
- bool Changed = SimplifyCommutative(I);
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
-
- if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
- I.hasNoUnsignedWrap(), TD))
- return ReplaceInstUsesWith(I, V);
-
-
- if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
- // X + (signbit) --> X ^ signbit
- const APInt& Val = CI->getValue();
- uint32_t BitWidth = Val.getBitWidth();
- if (Val == APInt::getSignBit(BitWidth))
- return BinaryOperator::CreateXor(LHS, RHS);
-
- // See if SimplifyDemandedBits can simplify this. This handles stuff like
- // (X & 254)+1 -> (X&254)|1
- if (SimplifyDemandedInstructionBits(I))
- return &I;
-
- // zext(bool) + C -> bool ? C + 1 : C
- if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
- if (ZI->getSrcTy() == Type::getInt1Ty(*Context))
- return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
- }
-
- if (isa<PHINode>(LHS))
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
-
- ConstantInt *XorRHS = 0;
- Value *XorLHS = 0;
- if (isa<ConstantInt>(RHSC) &&
- match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
- uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
- const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
-
- uint32_t Size = TySizeBits / 2;
- APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
- APInt CFF80Val(-C0080Val);
- do {
- if (TySizeBits > Size) {
- // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
- // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
- if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
- (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
- // This is a sign extend if the top bits are known zero.
- if (!MaskedValueIsZero(XorLHS,
- APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
- Size = 0; // Not a sign ext, but can't be any others either.
- break;
- }
- }
- Size >>= 1;
- C0080Val = APIntOps::lshr(C0080Val, Size);
- CFF80Val = APIntOps::ashr(CFF80Val, Size);
- } while (Size >= 1);
-
- // FIXME: This shouldn't be necessary. When the backends can handle types
- // with funny bit widths then this switch statement should be removed. It
- // is just here to get the size of the "middle" type back up to something
- // that the back ends can handle.
- const Type *MiddleType = 0;
- switch (Size) {
- default: break;
- case 32: MiddleType = Type::getInt32Ty(*Context); break;
- case 16: MiddleType = Type::getInt16Ty(*Context); break;
- case 8: MiddleType = Type::getInt8Ty(*Context); break;
- }
- if (MiddleType) {
- Value *NewTrunc = Builder->CreateTrunc(XorLHS, MiddleType, "sext");
- return new SExtInst(NewTrunc, I.getType(), I.getName());
- }
- }
- }
-
- if (I.getType() == Type::getInt1Ty(*Context))
- return BinaryOperator::CreateXor(LHS, RHS);
-
- // X + X --> X << 1
- if (I.getType()->isInteger()) {
- if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS)))
- return Result;
-
- if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
- if (RHSI->getOpcode() == Instruction::Sub)
- if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
- return ReplaceInstUsesWith(I, RHSI->getOperand(0));
- }
- if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
- if (LHSI->getOpcode() == Instruction::Sub)
- if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
- return ReplaceInstUsesWith(I, LHSI->getOperand(0));
- }
- }
-
- // -A + B --> B - A
- // -A + -B --> -(A + B)
- if (Value *LHSV = dyn_castNegVal(LHS)) {
- if (LHS->getType()->isIntOrIntVector()) {
- if (Value *RHSV = dyn_castNegVal(RHS)) {
- Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
- return BinaryOperator::CreateNeg(NewAdd);
- }
- }
-
- return BinaryOperator::CreateSub(RHS, LHSV);
- }
-
- // A + -B --> A - B
- if (!isa<Constant>(RHS))
- if (Value *V = dyn_castNegVal(RHS))
- return BinaryOperator::CreateSub(LHS, V);
-
-
- ConstantInt *C2;
- if (Value *X = dyn_castFoldableMul(LHS, C2)) {
- if (X == RHS) // X*C + X --> X * (C+1)
- return BinaryOperator::CreateMul(RHS, AddOne(C2));
-
- // X*C1 + X*C2 --> X * (C1+C2)
- ConstantInt *C1;
- if (X == dyn_castFoldableMul(RHS, C1))
- return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
- }
-
- // X + X*C --> X * (C+1)
- if (dyn_castFoldableMul(RHS, C2) == LHS)
- return BinaryOperator::CreateMul(LHS, AddOne(C2));
-
- // X + ~X --> -1 since ~X = -X-1
- if (dyn_castNotVal(LHS) == RHS ||
- dyn_castNotVal(RHS) == LHS)
- return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
-
-
- // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
- if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
- if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
- return R;
-
- // A+B --> A|B iff A and B have no bits set in common.
- if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
- APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
- APInt LHSKnownOne(IT->getBitWidth(), 0);
- APInt LHSKnownZero(IT->getBitWidth(), 0);
- ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
- if (LHSKnownZero != 0) {
- APInt RHSKnownOne(IT->getBitWidth(), 0);
- APInt RHSKnownZero(IT->getBitWidth(), 0);
- ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
-
- // No bits in common -> bitwise or.
- if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
- return BinaryOperator::CreateOr(LHS, RHS);
- }
- }
-
- // W*X + Y*Z --> W * (X+Z) iff W == Y
- if (I.getType()->isIntOrIntVector()) {
- Value *W, *X, *Y, *Z;
- if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
- match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
- if (W != Y) {
- if (W == Z) {
- std::swap(Y, Z);
- } else if (Y == X) {
- std::swap(W, X);
- } else if (X == Z) {
- std::swap(Y, Z);
- std::swap(W, X);
- }
- }
-
- if (W == Y) {
- Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
- return BinaryOperator::CreateMul(W, NewAdd);
- }
- }
- }
-
- if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
- Value *X = 0;
- if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
- return BinaryOperator::CreateSub(SubOne(CRHS), X);
-
- // (X & FF00) + xx00 -> (X+xx00) & FF00
- if (LHS->hasOneUse() &&
- match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
- Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
- if (Anded == CRHS) {
- // See if all bits from the first bit set in the Add RHS up are included
- // in the mask. First, get the rightmost bit.
- const APInt& AddRHSV = CRHS->getValue();
-
- // Form a mask of all bits from the lowest bit added through the top.
- APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
-
- // See if the and mask includes all of these bits.
- APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
-
- if (AddRHSHighBits == AddRHSHighBitsAnd) {
- // Okay, the xform is safe. Insert the new add pronto.
- Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
- return BinaryOperator::CreateAnd(NewAdd, C2);
- }
- }
- }
-
- // Try to fold constant add into select arguments.
- if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
- if (Instruction *R = FoldOpIntoSelect(I, SI, this))
- return R;
- }
-
- // add (select X 0 (sub n A)) A --> select X A n
- {
- SelectInst *SI = dyn_cast<SelectInst>(LHS);
- Value *A = RHS;
- if (!SI) {
- SI = dyn_cast<SelectInst>(RHS);
- A = LHS;
- }
- if (SI && SI->hasOneUse()) {
- Value *TV = SI->getTrueValue();
- Value *FV = SI->getFalseValue();
- Value *N;
-
- // Can we fold the add into the argument of the select?
- // We check both true and false select arguments for a matching subtract.
- if (match(FV, m_Zero()) &&
- match(TV, m_Sub(m_Value(N), m_Specific(A))))
- // Fold the add into the true select value.
- return SelectInst::Create(SI->getCondition(), N, A);
- if (match(TV, m_Zero()) &&
- match(FV, m_Sub(m_Value(N), m_Specific(A))))
- // Fold the add into the false select value.
- return SelectInst::Create(SI->getCondition(), A, N);
- }
- }
-
- // Check for (add (sext x), y), see if we can merge this into an
- // integer add followed by a sext.
- if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
- // (add (sext x), cst) --> (sext (add x, cst'))
- if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
- Constant *CI =
- ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
- if (LHSConv->hasOneUse() &&
- ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
- WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
- // Insert the new, smaller add.
- Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
- CI, "addconv");
- return new SExtInst(NewAdd, I.getType());
- }
- }
-
- // (add (sext x), (sext y)) --> (sext (add int x, y))
- if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
- // Only do this if x/y have the same type, if at last one of them has a
- // single use (so we don't increase the number of sexts), and if the
- // integer add will not overflow.
- if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
- (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
- WillNotOverflowSignedAdd(LHSConv->getOperand(0),
- RHSConv->getOperand(0))) {
- // Insert the new integer add.
- Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
- RHSConv->getOperand(0), "addconv");
- return new SExtInst(NewAdd, I.getType());
- }
- }
- }
-
- return Changed ? &I : 0;
-}
-
-Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
- bool Changed = SimplifyCommutative(I);
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
-
- if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
- // X + 0 --> X
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
- if (CFP->isExactlyValue(ConstantFP::getNegativeZero
- (I.getType())->getValueAPF()))
- return ReplaceInstUsesWith(I, LHS);
- }
-
- if (isa<PHINode>(LHS))
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
- }
-
- // -A + B --> B - A
- // -A + -B --> -(A + B)
- if (Value *LHSV = dyn_castFNegVal(LHS))
- return BinaryOperator::CreateFSub(RHS, LHSV);
-
- // A + -B --> A - B
- if (!isa<Constant>(RHS))
- if (Value *V = dyn_castFNegVal(RHS))
- return BinaryOperator::CreateFSub(LHS, V);
-
- // Check for X+0.0. Simplify it to X if we know X is not -0.0.
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
- if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
- return ReplaceInstUsesWith(I, LHS);
-
- // Check for (add double (sitofp x), y), see if we can merge this into an
- // integer add followed by a promotion.
- if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
- // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
- // ... if the constant fits in the integer value. This is useful for things
- // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
- // requires a constant pool load, and generally allows the add to be better
- // instcombined.
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
- Constant *CI =
- ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
- if (LHSConv->hasOneUse() &&
- ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
- WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
- // Insert the new integer add.
- Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
- CI, "addconv");
- return new SIToFPInst(NewAdd, I.getType());
- }
- }
-
- // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
- if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
- // Only do this if x/y have the same type, if at last one of them has a
- // single use (so we don't increase the number of int->fp conversions),
- // and if the integer add will not overflow.
- if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
- (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
- WillNotOverflowSignedAdd(LHSConv->getOperand(0),
- RHSConv->getOperand(0))) {
- // Insert the new integer add.
- Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
- RHSConv->getOperand(0),"addconv");
- return new SIToFPInst(NewAdd, I.getType());
- }
- }
- }
-
- return Changed ? &I : 0;
-}
-
-
-/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
-/// code necessary to compute the offset from the base pointer (without adding
-/// in the base pointer). Return the result as a signed integer of intptr size.
-static Value *EmitGEPOffset(User *GEP, InstCombiner &IC) {
- TargetData &TD = *IC.getTargetData();
- gep_type_iterator GTI = gep_type_begin(GEP);
- const Type *IntPtrTy = TD.getIntPtrType(GEP->getContext());
- Value *Result = Constant::getNullValue(IntPtrTy);
-
- // Build a mask for high order bits.
- unsigned IntPtrWidth = TD.getPointerSizeInBits();
- uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
-
- for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
- ++i, ++GTI) {
- Value *Op = *i;
- uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
- if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
- if (OpC->isZero()) continue;
-
- // Handle a struct index, which adds its field offset to the pointer.
- if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
- Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
-
- Result = IC.Builder->CreateAdd(Result,
- ConstantInt::get(IntPtrTy, Size),
- GEP->getName()+".offs");
- continue;
- }
-
- Constant *Scale = ConstantInt::get(IntPtrTy, Size);
- Constant *OC =
- ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
- Scale = ConstantExpr::getMul(OC, Scale);
- // Emit an add instruction.
- Result = IC.Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
- continue;
- }
- // Convert to correct type.
- if (Op->getType() != IntPtrTy)
- Op = IC.Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
- if (Size != 1) {
- Constant *Scale = ConstantInt::get(IntPtrTy, Size);
- // We'll let instcombine(mul) convert this to a shl if possible.
- Op = IC.Builder->CreateMul(Op, Scale, GEP->getName()+".idx");
- }
-
- // Emit an add instruction.
- Result = IC.Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
- }
- return Result;
-}
-
-
-/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
-/// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
-/// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
-/// be complex, and scales are involved. The above expression would also be
-/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
-/// This later form is less amenable to optimization though, and we are allowed
-/// to generate the first by knowing that pointer arithmetic doesn't overflow.
-///
-/// If we can't emit an optimized form for this expression, this returns null.
-///
-static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
- InstCombiner &IC) {
- TargetData &TD = *IC.getTargetData();
- gep_type_iterator GTI = gep_type_begin(GEP);
-
- // Check to see if this gep only has a single variable index. If so, and if
- // any constant indices are a multiple of its scale, then we can compute this
- // in terms of the scale of the variable index. For example, if the GEP
- // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
- // because the expression will cross zero at the same point.
- unsigned i, e = GEP->getNumOperands();
- int64_t Offset = 0;
- for (i = 1; i != e; ++i, ++GTI) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
- // Compute the aggregate offset of constant indices.
- if (CI->isZero()) continue;
-
- // Handle a struct index, which adds its field offset to the pointer.
- if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
- Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
- } else {
- uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
- Offset += Size*CI->getSExtValue();
- }
- } else {
- // Found our variable index.
- break;
- }
- }
-
- // If there are no variable indices, we must have a constant offset, just
- // evaluate it the general way.
- if (i == e) return 0;
-
- Value *VariableIdx = GEP->getOperand(i);
- // Determine the scale factor of the variable element. For example, this is
- // 4 if the variable index is into an array of i32.
- uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
-
- // Verify that there are no other variable indices. If so, emit the hard way.
- for (++i, ++GTI; i != e; ++i, ++GTI) {
- ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
- if (!CI) return 0;
-
- // Compute the aggregate offset of constant indices.
- if (CI->isZero()) continue;
-
- // Handle a struct index, which adds its field offset to the pointer.
- if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
- Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
- } else {
- uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
- Offset += Size*CI->getSExtValue();
- }
- }
-
- // Okay, we know we have a single variable index, which must be a
- // pointer/array/vector index. If there is no offset, life is simple, return
- // the index.
- unsigned IntPtrWidth = TD.getPointerSizeInBits();
- if (Offset == 0) {
- // Cast to intptrty in case a truncation occurs. If an extension is needed,
- // we don't need to bother extending: the extension won't affect where the
- // computation crosses zero.
- if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
- VariableIdx = new TruncInst(VariableIdx,
- TD.getIntPtrType(VariableIdx->getContext()),
- VariableIdx->getName(), &I);
- return VariableIdx;
- }
-
- // Otherwise, there is an index. The computation we will do will be modulo
- // the pointer size, so get it.
- uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
-
- Offset &= PtrSizeMask;
- VariableScale &= PtrSizeMask;
-
- // To do this transformation, any constant index must be a multiple of the
- // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
- // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
- // multiple of the variable scale.
- int64_t NewOffs = Offset / (int64_t)VariableScale;
- if (Offset != NewOffs*(int64_t)VariableScale)
- return 0;
-
- // Okay, we can do this evaluation. Start by converting the index to intptr.
- const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
- if (VariableIdx->getType() != IntPtrTy)
- VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
- true /*SExt*/,
- VariableIdx->getName(), &I);
- Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
- return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
-}
-
-
-/// Optimize pointer differences into the same array into a size. Consider:
-/// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
-/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
-///
-Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
- const Type *Ty) {
- assert(TD && "Must have target data info for this");
-
- // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
- // this.
- bool Swapped;
- GetElementPtrInst *GEP;
-
- if ((GEP = dyn_cast<GetElementPtrInst>(LHS)) &&
- GEP->getOperand(0) == RHS)
- Swapped = false;
- else if ((GEP = dyn_cast<GetElementPtrInst>(RHS)) &&
- GEP->getOperand(0) == LHS)
- Swapped = true;
- else
- return 0;
-
- // TODO: Could also optimize &A[i] - &A[j] -> "i-j".
-
- // Emit the offset of the GEP and an intptr_t.
- Value *Result = EmitGEPOffset(GEP, *this);
-
- // If we have p - gep(p, ...) then we have to negate the result.
- if (Swapped)
- Result = Builder->CreateNeg(Result, "diff.neg");
-
- return Builder->CreateIntCast(Result, Ty, true);
-}
-
-
-Instruction *InstCombiner::visitSub(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- if (Op0 == Op1) // sub X, X -> 0
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
-
- // If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW.
- if (Value *V = dyn_castNegVal(Op1)) {
- BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
- Res->setHasNoSignedWrap(I.hasNoSignedWrap());
- Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
- return Res;
- }
-
- if (isa<UndefValue>(Op0))
- return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
- if (isa<UndefValue>(Op1))
- return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
- if (I.getType() == Type::getInt1Ty(*Context))
- return BinaryOperator::CreateXor(Op0, Op1);
-
- if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
- // Replace (-1 - A) with (~A).
- if (C->isAllOnesValue())
- return BinaryOperator::CreateNot(Op1);
-
- // C - ~X == X + (1+C)
- Value *X = 0;
- if (match(Op1, m_Not(m_Value(X))))
- return BinaryOperator::CreateAdd(X, AddOne(C));
-
- // -(X >>u 31) -> (X >>s 31)
- // -(X >>s 31) -> (X >>u 31)
- if (C->isZero()) {
- if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
- if (SI->getOpcode() == Instruction::LShr) {
- if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
- // Check to see if we are shifting out everything but the sign bit.
- if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
- SI->getType()->getPrimitiveSizeInBits()-1) {
- // Ok, the transformation is safe. Insert AShr.
- return BinaryOperator::Create(Instruction::AShr,
- SI->getOperand(0), CU, SI->getName());
- }
- }
- } else if (SI->getOpcode() == Instruction::AShr) {
- if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
- // Check to see if we are shifting out everything but the sign bit.
- if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
- SI->getType()->getPrimitiveSizeInBits()-1) {
- // Ok, the transformation is safe. Insert LShr.
- return BinaryOperator::CreateLShr(
- SI->getOperand(0), CU, SI->getName());
- }
- }
- }
- }
- }
-
- // Try to fold constant sub into select arguments.
- if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
- if (Instruction *R = FoldOpIntoSelect(I, SI, this))
- return R;
-
- // C - zext(bool) -> bool ? C - 1 : C
- if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1))
- if (ZI->getSrcTy() == Type::getInt1Ty(*Context))
- return SelectInst::Create(ZI->getOperand(0), SubOne(C), C);
- }
-
- if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
- if (Op1I->getOpcode() == Instruction::Add) {
- if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
- return BinaryOperator::CreateNeg(Op1I->getOperand(1),
- I.getName());
- else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
- return BinaryOperator::CreateNeg(Op1I->getOperand(0),
- I.getName());
- else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
- if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
- // C1-(X+C2) --> (C1-C2)-X
- return BinaryOperator::CreateSub(
- ConstantExpr::getSub(CI1, CI2), Op1I->getOperand(0));
- }
- }
-
- if (Op1I->hasOneUse()) {
- // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
- // is not used by anyone else...
- //
- if (Op1I->getOpcode() == Instruction::Sub) {
- // Swap the two operands of the subexpr...
- Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
- Op1I->setOperand(0, IIOp1);
- Op1I->setOperand(1, IIOp0);
-
- // Create the new top level add instruction...
- return BinaryOperator::CreateAdd(Op0, Op1);
- }
-
- // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
- //
- if (Op1I->getOpcode() == Instruction::And &&
- (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
- Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
-
- Value *NewNot = Builder->CreateNot(OtherOp, "B.not");
- return BinaryOperator::CreateAnd(Op0, NewNot);
- }
-
- // 0 - (X sdiv C) -> (X sdiv -C)
- if (Op1I->getOpcode() == Instruction::SDiv)
- if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
- if (CSI->isZero())
- if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
- return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
- ConstantExpr::getNeg(DivRHS));
-
- // X - X*C --> X * (1-C)
- ConstantInt *C2 = 0;
- if (dyn_castFoldableMul(Op1I, C2) == Op0) {
- Constant *CP1 =
- ConstantExpr::getSub(ConstantInt::get(I.getType(), 1),
- C2);
- return BinaryOperator::CreateMul(Op0, CP1);
- }
- }
- }
-
- if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
- if (Op0I->getOpcode() == Instruction::Add) {
- if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
- return ReplaceInstUsesWith(I, Op0I->getOperand(1));
- else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
- return ReplaceInstUsesWith(I, Op0I->getOperand(0));
- } else if (Op0I->getOpcode() == Instruction::Sub) {
- if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
- return BinaryOperator::CreateNeg(Op0I->getOperand(1),
- I.getName());
- }
- }
-
- ConstantInt *C1;
- if (Value *X = dyn_castFoldableMul(Op0, C1)) {
- if (X == Op1) // X*C - X --> X * (C-1)
- return BinaryOperator::CreateMul(Op1, SubOne(C1));
-
- ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
- if (X == dyn_castFoldableMul(Op1, C2))
- return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
- }
-
- // Optimize pointer differences into the same array into a size. Consider:
- // &A[10] - &A[0]: we should compile this to "10".
- if (TD) {
- if (PtrToIntInst *LHS = dyn_cast<PtrToIntInst>(Op0))
- if (PtrToIntInst *RHS = dyn_cast<PtrToIntInst>(Op1))
- if (Value *Res = OptimizePointerDifference(LHS->getOperand(0),
- RHS->getOperand(0),
- I.getType()))
- return ReplaceInstUsesWith(I, Res);
-
- // trunc(p)-trunc(q) -> trunc(p-q)
- if (TruncInst *LHST = dyn_cast<TruncInst>(Op0))
- if (TruncInst *RHST = dyn_cast<TruncInst>(Op1))
- if (PtrToIntInst *LHS = dyn_cast<PtrToIntInst>(LHST->getOperand(0)))
- if (PtrToIntInst *RHS = dyn_cast<PtrToIntInst>(RHST->getOperand(0)))
- if (Value *Res = OptimizePointerDifference(LHS->getOperand(0),
- RHS->getOperand(0),
- I.getType()))
- return ReplaceInstUsesWith(I, Res);
- }
-
- return 0;
-}
-
-Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- // If this is a 'B = x-(-A)', change to B = x+A...
- if (Value *V = dyn_castFNegVal(Op1))
- return BinaryOperator::CreateFAdd(Op0, V);
-
- if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
- if (Op1I->getOpcode() == Instruction::FAdd) {
- if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
- return BinaryOperator::CreateFNeg(Op1I->getOperand(1),
- I.getName());
- else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
- return BinaryOperator::CreateFNeg(Op1I->getOperand(0),
- I.getName());
- }
- }
-
- return 0;
-}
-
-/// isSignBitCheck - Given an exploded icmp instruction, return true if the
-/// comparison only checks the sign bit. If it only checks the sign bit, set
-/// TrueIfSigned if the result of the comparison is true when the input value is
-/// signed.
-static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
- bool &TrueIfSigned) {
- switch (pred) {
- case ICmpInst::ICMP_SLT: // True if LHS s< 0
- TrueIfSigned = true;
- return RHS->isZero();
- case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
- TrueIfSigned = true;
- return RHS->isAllOnesValue();
- case ICmpInst::ICMP_SGT: // True if LHS s> -1
- TrueIfSigned = false;
- return RHS->isAllOnesValue();
- case ICmpInst::ICMP_UGT:
- // True if LHS u> RHS and RHS == high-bit-mask - 1
- TrueIfSigned = true;
- return RHS->getValue() ==
- APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
- case ICmpInst::ICMP_UGE:
- // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
- TrueIfSigned = true;
- return RHS->getValue().isSignBit();
- default:
- return false;
- }
-}
-
-Instruction *InstCombiner::visitMul(BinaryOperator &I) {
- bool Changed = SimplifyCommutative(I);
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- if (isa<UndefValue>(Op1)) // undef * X -> 0
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
-
- // Simplify mul instructions with a constant RHS.
- if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1C)) {
-
- // ((X << C1)*C2) == (X * (C2 << C1))
- if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
- if (SI->getOpcode() == Instruction::Shl)
- if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
- return BinaryOperator::CreateMul(SI->getOperand(0),
- ConstantExpr::getShl(CI, ShOp));
-
- if (CI->isZero())
- return ReplaceInstUsesWith(I, Op1C); // X * 0 == 0
- if (CI->equalsInt(1)) // X * 1 == X
- return ReplaceInstUsesWith(I, Op0);
- if (CI->isAllOnesValue()) // X * -1 == 0 - X
- return BinaryOperator::CreateNeg(Op0, I.getName());
-
- const APInt& Val = cast<ConstantInt>(CI)->getValue();
- if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
- return BinaryOperator::CreateShl(Op0,
- ConstantInt::get(Op0->getType(), Val.logBase2()));
- }
- } else if (isa<VectorType>(Op1C->getType())) {
- if (Op1C->isNullValue())
- return ReplaceInstUsesWith(I, Op1C);
-
- if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1C)) {
- if (Op1V->isAllOnesValue()) // X * -1 == 0 - X
- return BinaryOperator::CreateNeg(Op0, I.getName());
-
- // As above, vector X*splat(1.0) -> X in all defined cases.
- if (Constant *Splat = Op1V->getSplatValue()) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Splat))
- if (CI->equalsInt(1))
- return ReplaceInstUsesWith(I, Op0);
- }
- }
- }
-
- if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
- if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
- isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1C)) {
- // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
- Value *Add = Builder->CreateMul(Op0I->getOperand(0), Op1C, "tmp");
- Value *C1C2 = Builder->CreateMul(Op1C, Op0I->getOperand(1));
- return BinaryOperator::CreateAdd(Add, C1C2);
-
- }
-
- // Try to fold constant mul into select arguments.
- if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
- if (Instruction *R = FoldOpIntoSelect(I, SI, this))
- return R;
-
- if (isa<PHINode>(Op0))
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
- }
-
- if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
- if (Value *Op1v = dyn_castNegVal(Op1))
- return BinaryOperator::CreateMul(Op0v, Op1v);
-
- // (X / Y) * Y = X - (X % Y)
- // (X / Y) * -Y = (X % Y) - X
- {
- Value *Op1C = Op1;
- BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
- if (!BO ||
- (BO->getOpcode() != Instruction::UDiv &&
- BO->getOpcode() != Instruction::SDiv)) {
- Op1C = Op0;
- BO = dyn_cast<BinaryOperator>(Op1);
- }
- Value *Neg = dyn_castNegVal(Op1C);
- if (BO && BO->hasOneUse() &&
- (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
- (BO->getOpcode() == Instruction::UDiv ||
- BO->getOpcode() == Instruction::SDiv)) {
- Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
-
- // If the division is exact, X % Y is zero.
- if (SDivOperator *SDiv = dyn_cast<SDivOperator>(BO))
- if (SDiv->isExact()) {
- if (Op1BO == Op1C)
- return ReplaceInstUsesWith(I, Op0BO);
- return BinaryOperator::CreateNeg(Op0BO);
- }
-
- Value *Rem;
- if (BO->getOpcode() == Instruction::UDiv)
- Rem = Builder->CreateURem(Op0BO, Op1BO);
- else
- Rem = Builder->CreateSRem(Op0BO, Op1BO);
- Rem->takeName(BO);
-
- if (Op1BO == Op1C)
- return BinaryOperator::CreateSub(Op0BO, Rem);
- return BinaryOperator::CreateSub(Rem, Op0BO);
- }
- }
-
- /// i1 mul -> i1 and.
- if (I.getType() == Type::getInt1Ty(*Context))
- return BinaryOperator::CreateAnd(Op0, Op1);
-
- // X*(1 << Y) --> X << Y
- // (1 << Y)*X --> X << Y
- {
- Value *Y;
- if (match(Op0, m_Shl(m_One(), m_Value(Y))))
- return BinaryOperator::CreateShl(Op1, Y);
- if (match(Op1, m_Shl(m_One(), m_Value(Y))))
- return BinaryOperator::CreateShl(Op0, Y);
- }
-
- // If one of the operands of the multiply is a cast from a boolean value, then
- // we know the bool is either zero or one, so this is a 'masking' multiply.
- // X * Y (where Y is 0 or 1) -> X & (0-Y)
- if (!isa<VectorType>(I.getType())) {
- // -2 is "-1 << 1" so it is all bits set except the low one.
- APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
-
- Value *BoolCast = 0, *OtherOp = 0;
- if (MaskedValueIsZero(Op0, Negative2))
- BoolCast = Op0, OtherOp = Op1;
- else if (MaskedValueIsZero(Op1, Negative2))
- BoolCast = Op1, OtherOp = Op0;
-
- if (BoolCast) {
- Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
- BoolCast, "tmp");
- return BinaryOperator::CreateAnd(V, OtherOp);
- }
- }
-
- return Changed ? &I : 0;
-}
-
-Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
- bool Changed = SimplifyCommutative(I);
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- // Simplify mul instructions with a constant RHS...
- if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
- if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) {
- // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
- // ANSI says we can drop signals, so we can do this anyway." (from GCC)
- if (Op1F->isExactlyValue(1.0))
- return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
- } else if (isa<VectorType>(Op1C->getType())) {
- if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1C)) {
- // As above, vector X*splat(1.0) -> X in all defined cases.
- if (Constant *Splat = Op1V->getSplatValue()) {
- if (ConstantFP *F = dyn_cast<ConstantFP>(Splat))
- if (F->isExactlyValue(1.0))
- return ReplaceInstUsesWith(I, Op0);
- }
- }
- }
-
- // Try to fold constant mul into select arguments.
- if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
- if (Instruction *R = FoldOpIntoSelect(I, SI, this))
- return R;
-
- if (isa<PHINode>(Op0))
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
- }
-
- if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y
- if (Value *Op1v = dyn_castFNegVal(Op1))
- return BinaryOperator::CreateFMul(Op0v, Op1v);
-
- return Changed ? &I : 0;
-}
-
-/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
-/// instruction.
-bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
- SelectInst *SI = cast<SelectInst>(I.getOperand(1));
-
- // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
- int NonNullOperand = -1;
- if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
- if (ST->isNullValue())
- NonNullOperand = 2;
- // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
- if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
- if (ST->isNullValue())
- NonNullOperand = 1;
-
- if (NonNullOperand == -1)
- return false;
-
- Value *SelectCond = SI->getOperand(0);
-
- // Change the div/rem to use 'Y' instead of the select.
- I.setOperand(1, SI->getOperand(NonNullOperand));
-
- // Okay, we know we replace the operand of the div/rem with 'Y' with no
- // problem. However, the select, or the condition of the select may have
- // multiple uses. Based on our knowledge that the operand must be non-zero,
- // propagate the known value for the select into other uses of it, and
- // propagate a known value of the condition into its other users.
-
- // If the select and condition only have a single use, don't bother with this,
- // early exit.
- if (SI->use_empty() && SelectCond->hasOneUse())
- return true;
-
- // Scan the current block backward, looking for other uses of SI.
- BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
-
- while (BBI != BBFront) {
- --BBI;
- // If we found a call to a function, we can't assume it will return, so
- // information from below it cannot be propagated above it.
- if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
- break;
-
- // Replace uses of the select or its condition with the known values.
- for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
- I != E; ++I) {
- if (*I == SI) {
- *I = SI->getOperand(NonNullOperand);
- Worklist.Add(BBI);
- } else if (*I == SelectCond) {
- *I = NonNullOperand == 1 ? ConstantInt::getTrue(*Context) :
- ConstantInt::getFalse(*Context);
- Worklist.Add(BBI);
- }
- }
-
- // If we past the instruction, quit looking for it.
- if (&*BBI == SI)
- SI = 0;
- if (&*BBI == SelectCond)
- SelectCond = 0;
-
- // If we ran out of things to eliminate, break out of the loop.
- if (SelectCond == 0 && SI == 0)
- break;
-
- }
- return true;
-}
-
-
-/// This function implements the transforms on div instructions that work
-/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
-/// used by the visitors to those instructions.
-/// @brief Transforms common to all three div instructions
-Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- // undef / X -> 0 for integer.
- // undef / X -> undef for FP (the undef could be a snan).
- if (isa<UndefValue>(Op0)) {
- if (Op0->getType()->isFPOrFPVector())
- return ReplaceInstUsesWith(I, Op0);
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
- }
-
- // X / undef -> undef
- if (isa<UndefValue>(Op1))
- return ReplaceInstUsesWith(I, Op1);
-
- return 0;
-}
-
-/// This function implements the transforms common to both integer division
-/// instructions (udiv and sdiv). It is called by the visitors to those integer
-/// division instructions.
-/// @brief Common integer divide transforms
-Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- // (sdiv X, X) --> 1 (udiv X, X) --> 1
- if (Op0 == Op1) {
- if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
- Constant *CI = ConstantInt::get(Ty->getElementType(), 1);
- std::vector<Constant*> Elts(Ty->getNumElements(), CI);
- return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
- }
-
- Constant *CI = ConstantInt::get(I.getType(), 1);
- return ReplaceInstUsesWith(I, CI);
- }
-
- if (Instruction *Common = commonDivTransforms(I))
- return Common;
-
- // Handle cases involving: [su]div X, (select Cond, Y, Z)
- // This does not apply for fdiv.
- if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
- return &I;
-
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
- // div X, 1 == X
- if (RHS->equalsInt(1))
- return ReplaceInstUsesWith(I, Op0);
-
- // (X / C1) / C2 -> X / (C1*C2)
- if (Instruction *LHS = dyn_cast<Instruction>(Op0))
- if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
- if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
- if (MultiplyOverflows(RHS, LHSRHS,
- I.getOpcode()==Instruction::SDiv))
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
- else
- return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
- ConstantExpr::getMul(RHS, LHSRHS));
- }
-
- if (!RHS->isZero()) { // avoid X udiv 0
- if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
- if (Instruction *R = FoldOpIntoSelect(I, SI, this))
- return R;
- if (isa<PHINode>(Op0))
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
- }
- }
-
- // 0 / X == 0, we don't need to preserve faults!
- if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
- if (LHS->equalsInt(0))
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
-
- // It can't be division by zero, hence it must be division by one.
- if (I.getType() == Type::getInt1Ty(*Context))
- return ReplaceInstUsesWith(I, Op0);
-
- if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
- if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue()))
- // div X, 1 == X
- if (X->isOne())
- return ReplaceInstUsesWith(I, Op0);
- }
-
- return 0;
-}
-
-Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- // Handle the integer div common cases
- if (Instruction *Common = commonIDivTransforms(I))
- return Common;
-
- if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
- // X udiv C^2 -> X >> C
- // Check to see if this is an unsigned division with an exact power of 2,
- // if so, convert to a right shift.
- if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
- return BinaryOperator::CreateLShr(Op0,
- ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
-
- // X udiv C, where C >= signbit
- if (C->getValue().isNegative()) {
- Value *IC = Builder->CreateICmpULT( Op0, C);
- return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
- ConstantInt::get(I.getType(), 1));
- }
- }
-
- // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
- if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
- if (RHSI->getOpcode() == Instruction::Shl &&
- isa<ConstantInt>(RHSI->getOperand(0))) {
- const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
- if (C1.isPowerOf2()) {
- Value *N = RHSI->getOperand(1);
- const Type *NTy = N->getType();
- if (uint32_t C2 = C1.logBase2())
- N = Builder->CreateAdd(N, ConstantInt::get(NTy, C2), "tmp");
- return BinaryOperator::CreateLShr(Op0, N);
- }
- }
- }
-
- // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
- // where C1&C2 are powers of two.
- if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
- if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
- if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
- const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
- if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
- // Compute the shift amounts
- uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
- // Construct the "on true" case of the select
- Constant *TC = ConstantInt::get(Op0->getType(), TSA);
- Value *TSI = Builder->CreateLShr(Op0, TC, SI->getName()+".t");
-
- // Construct the "on false" case of the select
- Constant *FC = ConstantInt::get(Op0->getType(), FSA);
- Value *FSI = Builder->CreateLShr(Op0, FC, SI->getName()+".f");
-
- // construct the select instruction and return it.
- return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
- }
- }
- return 0;
-}
-
-Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- // Handle the integer div common cases
- if (Instruction *Common = commonIDivTransforms(I))
- return Common;
-
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
- // sdiv X, -1 == -X
- if (RHS->isAllOnesValue())
- return BinaryOperator::CreateNeg(Op0);
-
- // sdiv X, C --> ashr X, log2(C)
- if (cast<SDivOperator>(&I)->isExact() &&
- RHS->getValue().isNonNegative() &&
- RHS->getValue().isPowerOf2()) {
- Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
- RHS->getValue().exactLogBase2());
- return BinaryOperator::CreateAShr(Op0, ShAmt, I.getName());
- }
-
- // -X/C --> X/-C provided the negation doesn't overflow.
- if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
- if (isa<Constant>(Sub->getOperand(0)) &&
- cast<Constant>(Sub->getOperand(0))->isNullValue() &&
- Sub->hasNoSignedWrap())
- return BinaryOperator::CreateSDiv(Sub->getOperand(1),
- ConstantExpr::getNeg(RHS));
- }
-
- // If the sign bits of both operands are zero (i.e. we can prove they are
- // unsigned inputs), turn this into a udiv.
- if (I.getType()->isInteger()) {
- APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
- if (MaskedValueIsZero(Op0, Mask)) {
- if (MaskedValueIsZero(Op1, Mask)) {
- // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
- return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
- }
- ConstantInt *ShiftedInt;
- if (match(Op1, m_Shl(m_ConstantInt(ShiftedInt), m_Value())) &&
- ShiftedInt->getValue().isPowerOf2()) {
- // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
- // Safe because the only negative value (1 << Y) can take on is
- // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
- // the sign bit set.
- return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
- }
- }
- }
-
- return 0;
-}
-
-Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
- return commonDivTransforms(I);
-}
-
-/// This function implements the transforms on rem instructions that work
-/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
-/// is used by the visitors to those instructions.
-/// @brief Transforms common to all three rem instructions
-Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- if (isa<UndefValue>(Op0)) { // undef % X -> 0
- if (I.getType()->isFPOrFPVector())
- return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
- }
- if (isa<UndefValue>(Op1))
- return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
-
- // Handle cases involving: rem X, (select Cond, Y, Z)
- if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
- return &I;
-
- return 0;
-}
-
-/// This function implements the transforms common to both integer remainder
-/// instructions (urem and srem). It is called by the visitors to those integer
-/// remainder instructions.
-/// @brief Common integer remainder transforms
-Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- if (Instruction *common = commonRemTransforms(I))
- return common;
-
- // 0 % X == 0 for integer, we don't need to preserve faults!
- if (Constant *LHS = dyn_cast<Constant>(Op0))
- if (LHS->isNullValue())
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
-
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
- // X % 0 == undef, we don't need to preserve faults!
- if (RHS->equalsInt(0))
- return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
-
- if (RHS->equalsInt(1)) // X % 1 == 0
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
-
- if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
- if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
- if (Instruction *R = FoldOpIntoSelect(I, SI, this))
- return R;
- } else if (isa<PHINode>(Op0I)) {
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
- }
-
- // See if we can fold away this rem instruction.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
- }
- }
-
- return 0;
-}
-
-Instruction *InstCombiner::visitURem(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- if (Instruction *common = commonIRemTransforms(I))
- return common;
-
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
- // X urem C^2 -> X and C
- // Check to see if this is an unsigned remainder with an exact power of 2,
- // if so, convert to a bitwise and.
- if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
- if (C->getValue().isPowerOf2())
- return BinaryOperator::CreateAnd(Op0, SubOne(C));
- }
-
- if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
- // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
- if (RHSI->getOpcode() == Instruction::Shl &&
- isa<ConstantInt>(RHSI->getOperand(0))) {
- if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
- Constant *N1 = Constant::getAllOnesValue(I.getType());
- Value *Add = Builder->CreateAdd(RHSI, N1, "tmp");
- return BinaryOperator::CreateAnd(Op0, Add);
- }
- }
- }
-
- // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
- // where C1&C2 are powers of two.
- if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
- if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
- if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
- // STO == 0 and SFO == 0 handled above.
- if ((STO->getValue().isPowerOf2()) &&
- (SFO->getValue().isPowerOf2())) {
- Value *TrueAnd = Builder->CreateAnd(Op0, SubOne(STO),
- SI->getName()+".t");
- Value *FalseAnd = Builder->CreateAnd(Op0, SubOne(SFO),
- SI->getName()+".f");
- return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
- }
- }
- }
-
- return 0;
-}
-
-Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- // Handle the integer rem common cases
- if (Instruction *Common = commonIRemTransforms(I))
- return Common;
-
- if (Value *RHSNeg = dyn_castNegVal(Op1))
- if (!isa<Constant>(RHSNeg) ||
- (isa<ConstantInt>(RHSNeg) &&
- cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
- // X % -Y -> X % Y
- Worklist.AddValue(I.getOperand(1));
- I.setOperand(1, RHSNeg);
- return &I;
- }
-
- // If the sign bits of both operands are zero (i.e. we can prove they are
- // unsigned inputs), turn this into a urem.
- if (I.getType()->isInteger()) {
- APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
- if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
- // X srem Y -> X urem Y, iff X and Y don't have sign bit set
- return BinaryOperator::CreateURem(Op0, Op1, I.getName());
- }
- }
-
- // If it's a constant vector, flip any negative values positive.
- if (ConstantVector *RHSV = dyn_cast<ConstantVector>(Op1)) {
- unsigned VWidth = RHSV->getNumOperands();
-
- bool hasNegative = false;
- for (unsigned i = 0; !hasNegative && i != VWidth; ++i)
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i)))
- if (RHS->getValue().isNegative())
- hasNegative = true;
-
- if (hasNegative) {
- std::vector<Constant *> Elts(VWidth);
- for (unsigned i = 0; i != VWidth; ++i) {
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) {
- if (RHS->getValue().isNegative())
- Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
- else
- Elts[i] = RHS;
- }
- }
-
- Constant *NewRHSV = ConstantVector::get(Elts);
- if (NewRHSV != RHSV) {
- Worklist.AddValue(I.getOperand(1));
- I.setOperand(1, NewRHSV);
- return &I;
- }
- }
- }
-
- return 0;
-}
-
-Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
- return commonRemTransforms(I);
-}
-
-// isOneBitSet - Return true if there is exactly one bit set in the specified
-// constant.
-static bool isOneBitSet(const ConstantInt *CI) {
- return CI->getValue().isPowerOf2();
-}
-
-// isHighOnes - Return true if the constant is of the form 1+0+.
-// This is the same as lowones(~X).
-static bool isHighOnes(const ConstantInt *CI) {
- return (~CI->getValue() + 1).isPowerOf2();
-}
-
-/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
-/// are carefully arranged to allow folding of expressions such as:
-///
-/// (A < B) | (A > B) --> (A != B)
-///
-/// Note that this is only valid if the first and second predicates have the
-/// same sign. Is illegal to do: (A u< B) | (A s> B)
-///
-/// Three bits are used to represent the condition, as follows:
-/// 0 A > B
-/// 1 A == B
-/// 2 A < B
-///
-/// <=> Value Definition
-/// 000 0 Always false
-/// 001 1 A > B
-/// 010 2 A == B
-/// 011 3 A >= B
-/// 100 4 A < B
-/// 101 5 A != B
-/// 110 6 A <= B
-/// 111 7 Always true
-///
-static unsigned getICmpCode(const ICmpInst *ICI) {
- switch (ICI->getPredicate()) {
- // False -> 0
- case ICmpInst::ICMP_UGT: return 1; // 001
- case ICmpInst::ICMP_SGT: return 1; // 001
- case ICmpInst::ICMP_EQ: return 2; // 010
- case ICmpInst::ICMP_UGE: return 3; // 011
- case ICmpInst::ICMP_SGE: return 3; // 011
- case ICmpInst::ICMP_ULT: return 4; // 100
- case ICmpInst::ICMP_SLT: return 4; // 100
- case ICmpInst::ICMP_NE: return 5; // 101
- case ICmpInst::ICMP_ULE: return 6; // 110
- case ICmpInst::ICMP_SLE: return 6; // 110
- // True -> 7
- default:
- llvm_unreachable("Invalid ICmp predicate!");
- return 0;
- }
-}
-
-/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
-/// predicate into a three bit mask. It also returns whether it is an ordered
-/// predicate by reference.
-static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
- isOrdered = false;
- switch (CC) {
- case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
- case FCmpInst::FCMP_UNO: return 0; // 000
- case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
- case FCmpInst::FCMP_UGT: return 1; // 001
- case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
- case FCmpInst::FCMP_UEQ: return 2; // 010
- case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
- case FCmpInst::FCMP_UGE: return 3; // 011
- case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
- case FCmpInst::FCMP_ULT: return 4; // 100
- case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
- case FCmpInst::FCMP_UNE: return 5; // 101
- case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
- case FCmpInst::FCMP_ULE: return 6; // 110
- // True -> 7
- default:
- // Not expecting FCMP_FALSE and FCMP_TRUE;
- llvm_unreachable("Unexpected FCmp predicate!");
- return 0;
- }
-}
-
-/// getICmpValue - This is the complement of getICmpCode, which turns an
-/// opcode and two operands into either a constant true or false, or a brand
-/// new ICmp instruction. The sign is passed in to determine which kind
-/// of predicate to use in the new icmp instruction.
-static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS,
- LLVMContext *Context) {
- switch (code) {
- default: llvm_unreachable("Illegal ICmp code!");
- case 0: return ConstantInt::getFalse(*Context);
- case 1:
- if (sign)
- return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
- else
- return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
- case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
- case 3:
- if (sign)
- return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
- else
- return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
- case 4:
- if (sign)
- return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
- else
- return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
- case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
- case 6:
- if (sign)
- return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
- else
- return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
- case 7: return ConstantInt::getTrue(*Context);
- }
-}
-
-/// getFCmpValue - This is the complement of getFCmpCode, which turns an
-/// opcode and two operands into either a FCmp instruction. isordered is passed
-/// in to determine which kind of predicate to use in the new fcmp instruction.
-static Value *getFCmpValue(bool isordered, unsigned code,
- Value *LHS, Value *RHS, LLVMContext *Context) {
- switch (code) {
- default: llvm_unreachable("Illegal FCmp code!");
- case 0:
- if (isordered)
- return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
- else
- return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
- case 1:
- if (isordered)
- return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
- else
- return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
- case 2:
- if (isordered)
- return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
- else
- return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
- case 3:
- if (isordered)
- return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
- else
- return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
- case 4:
- if (isordered)
- return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
- else
- return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
- case 5:
- if (isordered)
- return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
- else
- return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
- case 6:
- if (isordered)
- return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
- else
- return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
- case 7: return ConstantInt::getTrue(*Context);
- }
-}
-
-/// PredicatesFoldable - Return true if both predicates match sign or if at
-/// least one of them is an equality comparison (which is signless).
-static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
- return (CmpInst::isSigned(p1) == CmpInst::isSigned(p2)) ||
- (CmpInst::isSigned(p1) && ICmpInst::isEquality(p2)) ||
- (CmpInst::isSigned(p2) && ICmpInst::isEquality(p1));
-}
-
-namespace {
-// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
-struct FoldICmpLogical {
- InstCombiner &IC;
- Value *LHS, *RHS;
- ICmpInst::Predicate pred;
- FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
- : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
- pred(ICI->getPredicate()) {}
- bool shouldApply(Value *V) const {
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
- if (PredicatesFoldable(pred, ICI->getPredicate()))
- return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
- (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
- return false;
- }
- Instruction *apply(Instruction &Log) const {
- ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
- if (ICI->getOperand(0) != LHS) {
- assert(ICI->getOperand(1) == LHS);
- ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
- }
-
- ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
- unsigned LHSCode = getICmpCode(ICI);
- unsigned RHSCode = getICmpCode(RHSICI);
- unsigned Code;
- switch (Log.getOpcode()) {
- case Instruction::And: Code = LHSCode & RHSCode; break;
- case Instruction::Or: Code = LHSCode | RHSCode; break;
- case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
- default: llvm_unreachable("Illegal logical opcode!"); return 0;
- }
-
- bool isSigned = RHSICI->isSigned() || ICI->isSigned();
- Value *RV = getICmpValue(isSigned, Code, LHS, RHS, IC.getContext());
- if (Instruction *I = dyn_cast<Instruction>(RV))
- return I;
- // Otherwise, it's a constant boolean value...
- return IC.ReplaceInstUsesWith(Log, RV);
- }
-};
-} // end anonymous namespace
-
-// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
-// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
-// guaranteed to be a binary operator.
-Instruction *InstCombiner::OptAndOp(Instruction *Op,
- ConstantInt *OpRHS,
- ConstantInt *AndRHS,
- BinaryOperator &TheAnd) {
- Value *X = Op->getOperand(0);
- Constant *Together = 0;
- if (!Op->isShift())
- Together = ConstantExpr::getAnd(AndRHS, OpRHS);
-
- switch (Op->getOpcode()) {
- case Instruction::Xor:
- if (Op->hasOneUse()) {
- // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
- Value *And = Builder->CreateAnd(X, AndRHS);
- And->takeName(Op);
- return BinaryOperator::CreateXor(And, Together);
- }
- break;
- case Instruction::Or:
- if (Together == AndRHS) // (X | C) & C --> C
- return ReplaceInstUsesWith(TheAnd, AndRHS);
-
- if (Op->hasOneUse() && Together != OpRHS) {
- // (X | C1) & C2 --> (X | (C1&C2)) & C2
- Value *Or = Builder->CreateOr(X, Together);
- Or->takeName(Op);
- return BinaryOperator::CreateAnd(Or, AndRHS);
- }
- break;
- case Instruction::Add:
- if (Op->hasOneUse()) {
- // Adding a one to a single bit bit-field should be turned into an XOR
- // of the bit. First thing to check is to see if this AND is with a
- // single bit constant.
- const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
-
- // If there is only one bit set...
- if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
- // Ok, at this point, we know that we are masking the result of the
- // ADD down to exactly one bit. If the constant we are adding has
- // no bits set below this bit, then we can eliminate the ADD.
- const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
-
- // Check to see if any bits below the one bit set in AndRHSV are set.
- if ((AddRHS & (AndRHSV-1)) == 0) {
- // If not, the only thing that can effect the output of the AND is
- // the bit specified by AndRHSV. If that bit is set, the effect of
- // the XOR is to toggle the bit. If it is clear, then the ADD has
- // no effect.
- if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
- TheAnd.setOperand(0, X);
- return &TheAnd;
- } else {
- // Pull the XOR out of the AND.
- Value *NewAnd = Builder->CreateAnd(X, AndRHS);
- NewAnd->takeName(Op);
- return BinaryOperator::CreateXor(NewAnd, AndRHS);
- }
- }
- }
- }
- break;
-
- case Instruction::Shl: {
- // We know that the AND will not produce any of the bits shifted in, so if
- // the anded constant includes them, clear them now!
- //
- uint32_t BitWidth = AndRHS->getType()->getBitWidth();
- uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
- APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
- ConstantInt *CI = ConstantInt::get(*Context, AndRHS->getValue() & ShlMask);
-
- if (CI->getValue() == ShlMask) {
- // Masking out bits that the shift already masks
- return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
- } else if (CI != AndRHS) { // Reducing bits set in and.
- TheAnd.setOperand(1, CI);
- return &TheAnd;
- }
- break;
- }
- case Instruction::LShr:
- {
- // We know that the AND will not produce any of the bits shifted in, so if
- // the anded constant includes them, clear them now! This only applies to
- // unsigned shifts, because a signed shr may bring in set bits!
- //
- uint32_t BitWidth = AndRHS->getType()->getBitWidth();
- uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
- APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
- ConstantInt *CI = ConstantInt::get(*Context, AndRHS->getValue() & ShrMask);
-
- if (CI->getValue() == ShrMask) {
- // Masking out bits that the shift already masks.
- return ReplaceInstUsesWith(TheAnd, Op);
- } else if (CI != AndRHS) {
- TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
- return &TheAnd;
- }
- break;
- }
- case Instruction::AShr:
- // Signed shr.
- // See if this is shifting in some sign extension, then masking it out
- // with an and.
- if (Op->hasOneUse()) {
- uint32_t BitWidth = AndRHS->getType()->getBitWidth();
- uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
- APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
- Constant *C = ConstantInt::get(*Context, AndRHS->getValue() & ShrMask);
- if (C == AndRHS) { // Masking out bits shifted in.
- // (Val ashr C1) & C2 -> (Val lshr C1) & C2
- // Make the argument unsigned.
- Value *ShVal = Op->getOperand(0);
- ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
- return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
- }
- }
- break;
- }
- return 0;
-}
-
-
-/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
-/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
-/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
-/// whether to treat the V, Lo and HI as signed or not. IB is the location to
-/// insert new instructions.
-Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
- bool isSigned, bool Inside,
- Instruction &IB) {
- assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
- ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
- "Lo is not <= Hi in range emission code!");
-
- if (Inside) {
- if (Lo == Hi) // Trivially false.
- return new ICmpInst(ICmpInst::ICMP_NE, V, V);
-
- // V >= Min && V < Hi --> V < Hi
- if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
- ICmpInst::Predicate pred = (isSigned ?
- ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
- return new ICmpInst(pred, V, Hi);
- }
-
- // Emit V-Lo <u Hi-Lo
- Constant *NegLo = ConstantExpr::getNeg(Lo);
- Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
- Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
- return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
- }
-
- if (Lo == Hi) // Trivially true.
- return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
-
- // V < Min || V >= Hi -> V > Hi-1
- Hi = SubOne(cast<ConstantInt>(Hi));
- if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
- ICmpInst::Predicate pred = (isSigned ?
- ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
- return new ICmpInst(pred, V, Hi);
- }
-
- // Emit V-Lo >u Hi-1-Lo
- // Note that Hi has already had one subtracted from it, above.
- ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
- Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
- Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
- return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
-}
-
-// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
-// any number of 0s on either side. The 1s are allowed to wrap from LSB to
-// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
-// not, since all 1s are not contiguous.
-static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
- const APInt& V = Val->getValue();
- uint32_t BitWidth = Val->getType()->getBitWidth();
- if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
-
- // look for the first zero bit after the run of ones
- MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
- // look for the first non-zero bit
- ME = V.getActiveBits();
- return true;
-}
-
-/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
-/// where isSub determines whether the operator is a sub. If we can fold one of
-/// the following xforms:
-///
-/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
-/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
-/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
-///
-/// return (A +/- B).
-///
-Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
- ConstantInt *Mask, bool isSub,
- Instruction &I) {
- Instruction *LHSI = dyn_cast<Instruction>(LHS);
- if (!LHSI || LHSI->getNumOperands() != 2 ||
- !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
-
- ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
-
- switch (LHSI->getOpcode()) {
- default: return 0;
- case Instruction::And:
- if (ConstantExpr::getAnd(N, Mask) == Mask) {
- // If the AndRHS is a power of two minus one (0+1+), this is simple.
- if ((Mask->getValue().countLeadingZeros() +
- Mask->getValue().countPopulation()) ==
- Mask->getValue().getBitWidth())
- break;
-
- // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
- // part, we don't need any explicit masks to take them out of A. If that
- // is all N is, ignore it.
- uint32_t MB = 0, ME = 0;
- if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
- uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
- APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
- if (MaskedValueIsZero(RHS, Mask))
- break;
- }
- }
- return 0;
- case Instruction::Or:
- case Instruction::Xor:
- // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
- if ((Mask->getValue().countLeadingZeros() +
- Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
- && ConstantExpr::getAnd(N, Mask)->isNullValue())
- break;
- return 0;
- }
-
- if (isSub)
- return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
- return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
-}
-
-/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
-Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
- ICmpInst *LHS, ICmpInst *RHS) {
- // (icmp eq A, null) & (icmp eq B, null) -->
- // (icmp eq (ptrtoint(A)|ptrtoint(B)), 0)
- if (TD &&
- LHS->getPredicate() == ICmpInst::ICMP_EQ &&
- RHS->getPredicate() == ICmpInst::ICMP_EQ &&
- isa<ConstantPointerNull>(LHS->getOperand(1)) &&
- isa<ConstantPointerNull>(RHS->getOperand(1))) {
- const Type *IntPtrTy = TD->getIntPtrType(I.getContext());
- Value *A = Builder->CreatePtrToInt(LHS->getOperand(0), IntPtrTy);
- Value *B = Builder->CreatePtrToInt(RHS->getOperand(0), IntPtrTy);
- Value *NewOr = Builder->CreateOr(A, B);
- return new ICmpInst(ICmpInst::ICMP_EQ, NewOr,
- Constant::getNullValue(IntPtrTy));
- }
-
- Value *Val, *Val2;
- ConstantInt *LHSCst, *RHSCst;
- ICmpInst::Predicate LHSCC, RHSCC;
-
- // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
- if (!match(LHS, m_ICmp(LHSCC, m_Value(Val),
- m_ConstantInt(LHSCst))) ||
- !match(RHS, m_ICmp(RHSCC, m_Value(Val2),
- m_ConstantInt(RHSCst))))
- return 0;
-
- if (LHSCst == RHSCst && LHSCC == RHSCC) {
- // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
- // where C is a power of 2
- if (LHSCC == ICmpInst::ICMP_ULT &&
- LHSCst->getValue().isPowerOf2()) {
- Value *NewOr = Builder->CreateOr(Val, Val2);
- return new ICmpInst(LHSCC, NewOr, LHSCst);
- }
-
- // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
- if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
- Value *NewOr = Builder->CreateOr(Val, Val2);
- return new ICmpInst(LHSCC, NewOr, LHSCst);
- }
- }
-
- // From here on, we only handle:
- // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
- if (Val != Val2) return 0;
-
- // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
- if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
- RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
- LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
- RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
- return 0;
-
- // We can't fold (ugt x, C) & (sgt x, C2).
- if (!PredicatesFoldable(LHSCC, RHSCC))
- return 0;
-
- // Ensure that the larger constant is on the RHS.
- bool ShouldSwap;
- if (CmpInst::isSigned(LHSCC) ||
- (ICmpInst::isEquality(LHSCC) &&
- CmpInst::isSigned(RHSCC)))
- ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
- else
- ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
-
- if (ShouldSwap) {
- std::swap(LHS, RHS);
- std::swap(LHSCst, RHSCst);
- std::swap(LHSCC, RHSCC);
- }
-
- // At this point, we know we have have two icmp instructions
- // comparing a value against two constants and and'ing the result
- // together. Because of the above check, we know that we only have
- // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
- // (from the FoldICmpLogical check above), that the two constants
- // are not equal and that the larger constant is on the RHS
- assert(LHSCst != RHSCst && "Compares not folded above?");
-
- switch (LHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
- case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
- case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
- case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
- case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
- case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
- return ReplaceInstUsesWith(I, LHS);
- }
- case ICmpInst::ICMP_NE:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_ULT:
- if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
- return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst);
- break; // (X != 13 & X u< 15) -> no change
- case ICmpInst::ICMP_SLT:
- if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
- return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst);
- break; // (X != 13 & X s< 15) -> no change
- case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
- case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
- case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
- return ReplaceInstUsesWith(I, RHS);
- case ICmpInst::ICMP_NE:
- if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
- Constant *AddCST = ConstantExpr::getNeg(LHSCst);
- Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
- return new ICmpInst(ICmpInst::ICMP_UGT, Add,
- ConstantInt::get(Add->getType(), 1));
- }
- break; // (X != 13 & X != 15) -> no change
- }
- break;
- case ICmpInst::ICMP_ULT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
- case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
- case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
- break;
- case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
- case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
- return ReplaceInstUsesWith(I, LHS);
- case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
- break;
- }
- break;
- case ICmpInst::ICMP_SLT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
- case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
- case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
- break;
- case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
- case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
- return ReplaceInstUsesWith(I, LHS);
- case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
- break;
- }
- break;
- case ICmpInst::ICMP_UGT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
- case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
- return ReplaceInstUsesWith(I, RHS);
- case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
- break;
- case ICmpInst::ICMP_NE:
- if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
- return new ICmpInst(LHSCC, Val, RHSCst);
- break; // (X u> 13 & X != 15) -> no change
- case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
- return InsertRangeTest(Val, AddOne(LHSCst),
- RHSCst, false, true, I);
- case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
- break;
- }
- break;
- case ICmpInst::ICMP_SGT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
- case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
- return ReplaceInstUsesWith(I, RHS);
- case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
- break;
- case ICmpInst::ICMP_NE:
- if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
- return new ICmpInst(LHSCC, Val, RHSCst);
- break; // (X s> 13 & X != 15) -> no change
- case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
- return InsertRangeTest(Val, AddOne(LHSCst),
- RHSCst, true, true, I);
- case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
- break;
- }
- break;
- }
-
- return 0;
-}
-
-Instruction *InstCombiner::FoldAndOfFCmps(Instruction &I, FCmpInst *LHS,
- FCmpInst *RHS) {
-
- if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
- RHS->getPredicate() == FCmpInst::FCMP_ORD) {
- // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
- if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
- if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
- // If either of the constants are nans, then the whole thing returns
- // false.
- if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
- return new FCmpInst(FCmpInst::FCMP_ORD,
- LHS->getOperand(0), RHS->getOperand(0));
- }
-
- // Handle vector zeros. This occurs because the canonical form of
- // "fcmp ord x,x" is "fcmp ord x, 0".
- if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
- isa<ConstantAggregateZero>(RHS->getOperand(1)))
- return new FCmpInst(FCmpInst::FCMP_ORD,
- LHS->getOperand(0), RHS->getOperand(0));
- return 0;
- }
-
- Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
- Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
- FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
-
-
- if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
- // Swap RHS operands to match LHS.
- Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
- std::swap(Op1LHS, Op1RHS);
- }
-
- if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
- // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
- if (Op0CC == Op1CC)
- return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
-
- if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
- if (Op0CC == FCmpInst::FCMP_TRUE)
- return ReplaceInstUsesWith(I, RHS);
- if (Op1CC == FCmpInst::FCMP_TRUE)
- return ReplaceInstUsesWith(I, LHS);
-
- bool Op0Ordered;
- bool Op1Ordered;
- unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
- unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
- if (Op1Pred == 0) {
- std::swap(LHS, RHS);
- std::swap(Op0Pred, Op1Pred);
- std::swap(Op0Ordered, Op1Ordered);
- }
- if (Op0Pred == 0) {
- // uno && ueq -> uno && (uno || eq) -> ueq
- // ord && olt -> ord && (ord && lt) -> olt
- if (Op0Ordered == Op1Ordered)
- return ReplaceInstUsesWith(I, RHS);
-
- // uno && oeq -> uno && (ord && eq) -> false
- // uno && ord -> false
- if (!Op0Ordered)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
- // ord && ueq -> ord && (uno || eq) -> oeq
- return cast<Instruction>(getFCmpValue(true, Op1Pred,
- Op0LHS, Op0RHS, Context));
- }
- }
-
- return 0;
-}
-
-
-Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
- bool Changed = SimplifyCommutative(I);
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- if (Value *V = SimplifyAndInst(Op0, Op1, TD))
- return ReplaceInstUsesWith(I, V);
-
- // See if we can simplify any instructions used by the instruction whose sole
- // purpose is to compute bits we don't care about.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
-
-
- if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
- const APInt &AndRHSMask = AndRHS->getValue();
- APInt NotAndRHS(~AndRHSMask);
-
- // Optimize a variety of ((val OP C1) & C2) combinations...
- if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
- Value *Op0LHS = Op0I->getOperand(0);
- Value *Op0RHS = Op0I->getOperand(1);
- switch (Op0I->getOpcode()) {
- default: break;
- case Instruction::Xor:
- case Instruction::Or:
- // If the mask is only needed on one incoming arm, push it up.
- if (!Op0I->hasOneUse()) break;
-
- if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
- // Not masking anything out for the LHS, move to RHS.
- Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
- Op0RHS->getName()+".masked");
- return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
- }
- if (!isa<Constant>(Op0RHS) &&
- MaskedValueIsZero(Op0RHS, NotAndRHS)) {
- // Not masking anything out for the RHS, move to LHS.
- Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
- Op0LHS->getName()+".masked");
- return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
- }
-
- break;
- case Instruction::Add:
- // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
- // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
- // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
- if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
- return BinaryOperator::CreateAnd(V, AndRHS);
- if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
- return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
- break;
-
- case Instruction::Sub:
- // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
- // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
- // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
- if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
- return BinaryOperator::CreateAnd(V, AndRHS);
-
- // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
- // has 1's for all bits that the subtraction with A might affect.
- if (Op0I->hasOneUse()) {
- uint32_t BitWidth = AndRHSMask.getBitWidth();
- uint32_t Zeros = AndRHSMask.countLeadingZeros();
- APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
-
- ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
- if (!(A && A->isZero()) && // avoid infinite recursion.
- MaskedValueIsZero(Op0LHS, Mask)) {
- Value *NewNeg = Builder->CreateNeg(Op0RHS);
- return BinaryOperator::CreateAnd(NewNeg, AndRHS);
- }
- }
- break;
-
- case Instruction::Shl:
- case Instruction::LShr:
- // (1 << x) & 1 --> zext(x == 0)
- // (1 >> x) & 1 --> zext(x == 0)
- if (AndRHSMask == 1 && Op0LHS == AndRHS) {
- Value *NewICmp =
- Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
- return new ZExtInst(NewICmp, I.getType());
- }
- break;
- }
-
- if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
- if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
- return Res;
- } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
- // If this is an integer truncation or change from signed-to-unsigned, and
- // if the source is an and/or with immediate, transform it. This
- // frequently occurs for bitfield accesses.
- if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
- if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
- CastOp->getNumOperands() == 2)
- if (ConstantInt *AndCI =dyn_cast<ConstantInt>(CastOp->getOperand(1))){
- if (CastOp->getOpcode() == Instruction::And) {
- // Change: and (cast (and X, C1) to T), C2
- // into : and (cast X to T), trunc_or_bitcast(C1)&C2
- // This will fold the two constants together, which may allow
- // other simplifications.
- Value *NewCast = Builder->CreateTruncOrBitCast(
- CastOp->getOperand(0), I.getType(),
- CastOp->getName()+".shrunk");
- // trunc_or_bitcast(C1)&C2
- Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
- C3 = ConstantExpr::getAnd(C3, AndRHS);
- return BinaryOperator::CreateAnd(NewCast, C3);
- } else if (CastOp->getOpcode() == Instruction::Or) {
- // Change: and (cast (or X, C1) to T), C2
- // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
- Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
- if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS)
- // trunc(C1)&C2
- return ReplaceInstUsesWith(I, AndRHS);
- }
- }
- }
- }
-
- // Try to fold constant and into select arguments.
- if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
- if (Instruction *R = FoldOpIntoSelect(I, SI, this))
- return R;
- if (isa<PHINode>(Op0))
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
- }
-
-
- // (~A & ~B) == (~(A | B)) - De Morgan's Law
- if (Value *Op0NotVal = dyn_castNotVal(Op0))
- if (Value *Op1NotVal = dyn_castNotVal(Op1))
- if (Op0->hasOneUse() && Op1->hasOneUse()) {
- Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
- I.getName()+".demorgan");
- return BinaryOperator::CreateNot(Or);
- }
-
- {
- Value *A = 0, *B = 0, *C = 0, *D = 0;
- // (A|B) & ~(A&B) -> A^B
- if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
- match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
- ((A == C && B == D) || (A == D && B == C)))
- return BinaryOperator::CreateXor(A, B);
-
- // ~(A&B) & (A|B) -> A^B
- if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
- match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
- ((A == C && B == D) || (A == D && B == C)))
- return BinaryOperator::CreateXor(A, B);
-
- if (Op0->hasOneUse() &&
- match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
- if (A == Op1) { // (A^B)&A -> A&(A^B)
- I.swapOperands(); // Simplify below
- std::swap(Op0, Op1);
- } else if (B == Op1) { // (A^B)&B -> B&(B^A)
- cast<BinaryOperator>(Op0)->swapOperands();
- I.swapOperands(); // Simplify below
- std::swap(Op0, Op1);
- }
- }
-
- if (Op1->hasOneUse() &&
- match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
- if (B == Op0) { // B&(A^B) -> B&(B^A)
- cast<BinaryOperator>(Op1)->swapOperands();
- std::swap(A, B);
- }
- if (A == Op0) // A&(A^B) -> A & ~B
- return BinaryOperator::CreateAnd(A, Builder->CreateNot(B, "tmp"));
- }
-
- // (A&((~A)|B)) -> A&B
- if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
- match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
- return BinaryOperator::CreateAnd(A, Op1);
- if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
- match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
- return BinaryOperator::CreateAnd(A, Op0);
- }
-
- if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
- // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
- if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
- return R;
-
- if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
- if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS))
- return Res;
- }
-
- // fold (and (cast A), (cast B)) -> (cast (and A, B))
- if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
- if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
- if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
- const Type *SrcTy = Op0C->getOperand(0)->getType();
- if (SrcTy == Op1C->getOperand(0)->getType() &&
- SrcTy->isIntOrIntVector() &&
- // Only do this if the casts both really cause code to be generated.
- ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
- I.getType(), TD) &&
- ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
- I.getType(), TD)) {
- Value *NewOp = Builder->CreateAnd(Op0C->getOperand(0),
- Op1C->getOperand(0), I.getName());
- return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
- }
- }
-
- // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
- if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
- if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
- if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
- SI0->getOperand(1) == SI1->getOperand(1) &&
- (SI0->hasOneUse() || SI1->hasOneUse())) {
- Value *NewOp =
- Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
- SI0->getName());
- return BinaryOperator::Create(SI1->getOpcode(), NewOp,
- SI1->getOperand(1));
- }
- }
-
- // If and'ing two fcmp, try combine them into one.
- if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
- if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
- if (Instruction *Res = FoldAndOfFCmps(I, LHS, RHS))
- return Res;
- }
-
- return Changed ? &I : 0;
-}
-
-/// CollectBSwapParts - Analyze the specified subexpression and see if it is
-/// capable of providing pieces of a bswap. The subexpression provides pieces
-/// of a bswap if it is proven that each of the non-zero bytes in the output of
-/// the expression came from the corresponding "byte swapped" byte in some other
-/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
-/// we know that the expression deposits the low byte of %X into the high byte
-/// of the bswap result and that all other bytes are zero. This expression is
-/// accepted, the high byte of ByteValues is set to X to indicate a correct
-/// match.
-///
-/// This function returns true if the match was unsuccessful and false if so.
-/// On entry to the function the "OverallLeftShift" is a signed integer value
-/// indicating the number of bytes that the subexpression is later shifted. For
-/// example, if the expression is later right shifted by 16 bits, the
-/// OverallLeftShift value would be -2 on entry. This is used to specify which
-/// byte of ByteValues is actually being set.
-///
-/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
-/// byte is masked to zero by a user. For example, in (X & 255), X will be
-/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
-/// this function to working on up to 32-byte (256 bit) values. ByteMask is
-/// always in the local (OverallLeftShift) coordinate space.
-///
-static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
- SmallVector<Value*, 8> &ByteValues) {
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- // If this is an or instruction, it may be an inner node of the bswap.
- if (I->getOpcode() == Instruction::Or) {
- return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
- ByteValues) ||
- CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
- ByteValues);
- }
-
- // If this is a logical shift by a constant multiple of 8, recurse with
- // OverallLeftShift and ByteMask adjusted.
- if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
- unsigned ShAmt =
- cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
- // Ensure the shift amount is defined and of a byte value.
- if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
- return true;
-
- unsigned ByteShift = ShAmt >> 3;
- if (I->getOpcode() == Instruction::Shl) {
- // X << 2 -> collect(X, +2)
- OverallLeftShift += ByteShift;
- ByteMask >>= ByteShift;
- } else {
- // X >>u 2 -> collect(X, -2)
- OverallLeftShift -= ByteShift;
- ByteMask <<= ByteShift;
- ByteMask &= (~0U >> (32-ByteValues.size()));
- }
-
- if (OverallLeftShift >= (int)ByteValues.size()) return true;
- if (OverallLeftShift <= -(int)ByteValues.size()) return true;
-
- return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
- ByteValues);
- }
-
- // If this is a logical 'and' with a mask that clears bytes, clear the
- // corresponding bytes in ByteMask.
- if (I->getOpcode() == Instruction::And &&
- isa<ConstantInt>(I->getOperand(1))) {
- // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
- unsigned NumBytes = ByteValues.size();
- APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
- const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
-
- for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
- // If this byte is masked out by a later operation, we don't care what
- // the and mask is.
- if ((ByteMask & (1 << i)) == 0)
- continue;
-
- // If the AndMask is all zeros for this byte, clear the bit.
- APInt MaskB = AndMask & Byte;
- if (MaskB == 0) {
- ByteMask &= ~(1U << i);
- continue;
- }
-
- // If the AndMask is not all ones for this byte, it's not a bytezap.
- if (MaskB != Byte)
- return true;
-
- // Otherwise, this byte is kept.
- }
-
- return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
- ByteValues);
- }
- }
-
- // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
- // the input value to the bswap. Some observations: 1) if more than one byte
- // is demanded from this input, then it could not be successfully assembled
- // into a byteswap. At least one of the two bytes would not be aligned with
- // their ultimate destination.
- if (!isPowerOf2_32(ByteMask)) return true;
- unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
-
- // 2) The input and ultimate destinations must line up: if byte 3 of an i32
- // is demanded, it needs to go into byte 0 of the result. This means that the
- // byte needs to be shifted until it lands in the right byte bucket. The
- // shift amount depends on the position: if the byte is coming from the high
- // part of the value (e.g. byte 3) then it must be shifted right. If from the
- // low part, it must be shifted left.
- unsigned DestByteNo = InputByteNo + OverallLeftShift;
- if (InputByteNo < ByteValues.size()/2) {
- if (ByteValues.size()-1-DestByteNo != InputByteNo)
- return true;
- } else {
- if (ByteValues.size()-1-DestByteNo != InputByteNo)
- return true;
- }
-
- // If the destination byte value is already defined, the values are or'd
- // together, which isn't a bswap (unless it's an or of the same bits).
- if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
- return true;
- ByteValues[DestByteNo] = V;
- return false;
-}
-
-/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
-/// If so, insert the new bswap intrinsic and return it.
-Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
- const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
- if (!ITy || ITy->getBitWidth() % 16 ||
- // ByteMask only allows up to 32-byte values.
- ITy->getBitWidth() > 32*8)
- return 0; // Can only bswap pairs of bytes. Can't do vectors.
-
- /// ByteValues - For each byte of the result, we keep track of which value
- /// defines each byte.
- SmallVector<Value*, 8> ByteValues;
- ByteValues.resize(ITy->getBitWidth()/8);
-
- // Try to find all the pieces corresponding to the bswap.
- uint32_t ByteMask = ~0U >> (32-ByteValues.size());
- if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
- return 0;
-
- // Check to see if all of the bytes come from the same value.
- Value *V = ByteValues[0];
- if (V == 0) return 0; // Didn't find a byte? Must be zero.
-
- // Check to make sure that all of the bytes come from the same value.
- for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
- if (ByteValues[i] != V)
- return 0;
- const Type *Tys[] = { ITy };
- Module *M = I.getParent()->getParent()->getParent();
- Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
- return CallInst::Create(F, V);
-}
-
-/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
-/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
-/// we can simplify this expression to "cond ? C : D or B".
-static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
- Value *C, Value *D,
- LLVMContext *Context) {
- // If A is not a select of -1/0, this cannot match.
- Value *Cond = 0;
- if (!match(A, m_SelectCst<-1, 0>(m_Value(Cond))))
- return 0;
-
- // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
- if (match(D, m_SelectCst<0, -1>(m_Specific(Cond))))
- return SelectInst::Create(Cond, C, B);
- if (match(D, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond)))))
- return SelectInst::Create(Cond, C, B);
- // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
- if (match(B, m_SelectCst<0, -1>(m_Specific(Cond))))
- return SelectInst::Create(Cond, C, D);
- if (match(B, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond)))))
- return SelectInst::Create(Cond, C, D);
- return 0;
-}
-
-/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
-Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
- ICmpInst *LHS, ICmpInst *RHS) {
- // (icmp ne A, null) | (icmp ne B, null) -->
- // (icmp ne (ptrtoint(A)|ptrtoint(B)), 0)
- if (TD &&
- LHS->getPredicate() == ICmpInst::ICMP_NE &&
- RHS->getPredicate() == ICmpInst::ICMP_NE &&
- isa<ConstantPointerNull>(LHS->getOperand(1)) &&
- isa<ConstantPointerNull>(RHS->getOperand(1))) {
- const Type *IntPtrTy = TD->getIntPtrType(I.getContext());
- Value *A = Builder->CreatePtrToInt(LHS->getOperand(0), IntPtrTy);
- Value *B = Builder->CreatePtrToInt(RHS->getOperand(0), IntPtrTy);
- Value *NewOr = Builder->CreateOr(A, B);
- return new ICmpInst(ICmpInst::ICMP_NE, NewOr,
- Constant::getNullValue(IntPtrTy));
- }
-
- Value *Val, *Val2;
- ConstantInt *LHSCst, *RHSCst;
- ICmpInst::Predicate LHSCC, RHSCC;
-
- // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
- if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
- !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
- return 0;
-
-
- // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
- if (LHSCst == RHSCst && LHSCC == RHSCC &&
- LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
- Value *NewOr = Builder->CreateOr(Val, Val2);
- return new ICmpInst(LHSCC, NewOr, LHSCst);
- }
-
- // From here on, we only handle:
- // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
- if (Val != Val2) return 0;
-
- // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
- if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
- RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
- LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
- RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
- return 0;
-
- // We can't fold (ugt x, C) | (sgt x, C2).
- if (!PredicatesFoldable(LHSCC, RHSCC))
- return 0;
-
- // Ensure that the larger constant is on the RHS.
- bool ShouldSwap;
- if (CmpInst::isSigned(LHSCC) ||
- (ICmpInst::isEquality(LHSCC) &&
- CmpInst::isSigned(RHSCC)))
- ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
- else
- ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
-
- if (ShouldSwap) {
- std::swap(LHS, RHS);
- std::swap(LHSCst, RHSCst);
- std::swap(LHSCC, RHSCC);
- }
-
- // At this point, we know we have have two icmp instructions
- // comparing a value against two constants and or'ing the result
- // together. Because of the above check, we know that we only have
- // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
- // FoldICmpLogical check above), that the two constants are not
- // equal.
- assert(LHSCst != RHSCst && "Compares not folded above?");
-
- switch (LHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ:
- if (LHSCst == SubOne(RHSCst)) {
- // (X == 13 | X == 14) -> X-13 <u 2
- Constant *AddCST = ConstantExpr::getNeg(LHSCst);
- Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
- AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
- return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
- }
- break; // (X == 13 | X == 15) -> no change
- case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
- case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
- break;
- case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
- case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
- case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
- return ReplaceInstUsesWith(I, RHS);
- }
- break;
- case ICmpInst::ICMP_NE:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
- case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
- case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
- return ReplaceInstUsesWith(I, LHS);
- case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
- case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
- case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
- }
- break;
- case ICmpInst::ICMP_ULT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
- break;
- case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
- // If RHSCst is [us]MAXINT, it is always false. Not handling
- // this can cause overflow.
- if (RHSCst->isMaxValue(false))
- return ReplaceInstUsesWith(I, LHS);
- return InsertRangeTest(Val, LHSCst, AddOne(RHSCst),
- false, false, I);
- case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
- break;
- case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
- case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
- return ReplaceInstUsesWith(I, RHS);
- case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
- break;
- }
- break;
- case ICmpInst::ICMP_SLT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
- break;
- case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
- // If RHSCst is [us]MAXINT, it is always false. Not handling
- // this can cause overflow.
- if (RHSCst->isMaxValue(true))
- return ReplaceInstUsesWith(I, LHS);
- return InsertRangeTest(Val, LHSCst, AddOne(RHSCst),
- true, false, I);
- case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
- break;
- case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
- case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
- return ReplaceInstUsesWith(I, RHS);
- case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
- break;
- }
- break;
- case ICmpInst::ICMP_UGT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
- case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
- return ReplaceInstUsesWith(I, LHS);
- case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
- break;
- case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
- case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
- case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
- break;
- }
- break;
- case ICmpInst::ICMP_SGT:
- switch (RHSCC) {
- default: llvm_unreachable("Unknown integer condition code!");
- case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
- case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
- return ReplaceInstUsesWith(I, LHS);
- case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
- break;
- case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
- case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
- case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
- break;
- }
- break;
- }
- return 0;
-}
-
-Instruction *InstCombiner::FoldOrOfFCmps(Instruction &I, FCmpInst *LHS,
- FCmpInst *RHS) {
- if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
- RHS->getPredicate() == FCmpInst::FCMP_UNO &&
- LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
- if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
- if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
- // If either of the constants are nans, then the whole thing returns
- // true.
- if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
-
- // Otherwise, no need to compare the two constants, compare the
- // rest.
- return new FCmpInst(FCmpInst::FCMP_UNO,
- LHS->getOperand(0), RHS->getOperand(0));
- }
-
- // Handle vector zeros. This occurs because the canonical form of
- // "fcmp uno x,x" is "fcmp uno x, 0".
- if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
- isa<ConstantAggregateZero>(RHS->getOperand(1)))
- return new FCmpInst(FCmpInst::FCMP_UNO,
- LHS->getOperand(0), RHS->getOperand(0));
-
- return 0;
- }
-
- Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
- Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
- FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
-
- if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
- // Swap RHS operands to match LHS.
- Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
- std::swap(Op1LHS, Op1RHS);
- }
- if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
- // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
- if (Op0CC == Op1CC)
- return new FCmpInst((FCmpInst::Predicate)Op0CC,
- Op0LHS, Op0RHS);
- if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
- if (Op0CC == FCmpInst::FCMP_FALSE)
- return ReplaceInstUsesWith(I, RHS);
- if (Op1CC == FCmpInst::FCMP_FALSE)
- return ReplaceInstUsesWith(I, LHS);
- bool Op0Ordered;
- bool Op1Ordered;
- unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
- unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
- if (Op0Ordered == Op1Ordered) {
- // If both are ordered or unordered, return a new fcmp with
- // or'ed predicates.
- Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred,
- Op0LHS, Op0RHS, Context);
- if (Instruction *I = dyn_cast<Instruction>(RV))
- return I;
- // Otherwise, it's a constant boolean value...
- return ReplaceInstUsesWith(I, RV);
- }
- }
- return 0;
-}
-
-/// FoldOrWithConstants - This helper function folds:
-///
-/// ((A | B) & C1) | (B & C2)
-///
-/// into:
-///
-/// (A & C1) | B
-///
-/// when the XOR of the two constants is "all ones" (-1).
-Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
- Value *A, Value *B, Value *C) {
- ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
- if (!CI1) return 0;
-
- Value *V1 = 0;
- ConstantInt *CI2 = 0;
- if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
-
- APInt Xor = CI1->getValue() ^ CI2->getValue();
- if (!Xor.isAllOnesValue()) return 0;
-
- if (V1 == A || V1 == B) {
- Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
- return BinaryOperator::CreateOr(NewOp, V1);
- }
-
- return 0;
-}
-
-Instruction *InstCombiner::visitOr(BinaryOperator &I) {
- bool Changed = SimplifyCommutative(I);
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- if (Value *V = SimplifyOrInst(Op0, Op1, TD))
- return ReplaceInstUsesWith(I, V);
-
-
- // See if we can simplify any instructions used by the instruction whose sole
- // purpose is to compute bits we don't care about.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
-
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
- ConstantInt *C1 = 0; Value *X = 0;
- // (X & C1) | C2 --> (X | C2) & (C1|C2)
- if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
- isOnlyUse(Op0)) {
- Value *Or = Builder->CreateOr(X, RHS);
- Or->takeName(Op0);
- return BinaryOperator::CreateAnd(Or,
- ConstantInt::get(*Context, RHS->getValue() | C1->getValue()));
- }
-
- // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
- if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
- isOnlyUse(Op0)) {
- Value *Or = Builder->CreateOr(X, RHS);
- Or->takeName(Op0);
- return BinaryOperator::CreateXor(Or,
- ConstantInt::get(*Context, C1->getValue() & ~RHS->getValue()));
- }
-
- // Try to fold constant and into select arguments.
- if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
- if (Instruction *R = FoldOpIntoSelect(I, SI, this))
- return R;
- if (isa<PHINode>(Op0))
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
- }
-
- Value *A = 0, *B = 0;
- ConstantInt *C1 = 0, *C2 = 0;
-
- // (A | B) | C and A | (B | C) -> bswap if possible.
- // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
- if (match(Op0, m_Or(m_Value(), m_Value())) ||
- match(Op1, m_Or(m_Value(), m_Value())) ||
- (match(Op0, m_Shift(m_Value(), m_Value())) &&
- match(Op1, m_Shift(m_Value(), m_Value())))) {
- if (Instruction *BSwap = MatchBSwap(I))
- return BSwap;
- }
-
- // (X^C)|Y -> (X|Y)^C iff Y&C == 0
- if (Op0->hasOneUse() &&
- match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
- MaskedValueIsZero(Op1, C1->getValue())) {
- Value *NOr = Builder->CreateOr(A, Op1);
- NOr->takeName(Op0);
- return BinaryOperator::CreateXor(NOr, C1);
- }
-
- // Y|(X^C) -> (X|Y)^C iff Y&C == 0
- if (Op1->hasOneUse() &&
- match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
- MaskedValueIsZero(Op0, C1->getValue())) {
- Value *NOr = Builder->CreateOr(A, Op0);
- NOr->takeName(Op0);
- return BinaryOperator::CreateXor(NOr, C1);
- }
-
- // (A & C)|(B & D)
- Value *C = 0, *D = 0;
- if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
- match(Op1, m_And(m_Value(B), m_Value(D)))) {
- Value *V1 = 0, *V2 = 0, *V3 = 0;
- C1 = dyn_cast<ConstantInt>(C);
- C2 = dyn_cast<ConstantInt>(D);
- if (C1 && C2) { // (A & C1)|(B & C2)
- // If we have: ((V + N) & C1) | (V & C2)
- // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
- // replace with V+N.
- if (C1->getValue() == ~C2->getValue()) {
- if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
- match(A, m_Add(m_Value(V1), m_Value(V2)))) {
- // Add commutes, try both ways.
- if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
- return ReplaceInstUsesWith(I, A);
- if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
- return ReplaceInstUsesWith(I, A);
- }
- // Or commutes, try both ways.
- if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
- match(B, m_Add(m_Value(V1), m_Value(V2)))) {
- // Add commutes, try both ways.
- if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
- return ReplaceInstUsesWith(I, B);
- if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
- return ReplaceInstUsesWith(I, B);
- }
- }
- V1 = 0; V2 = 0; V3 = 0;
- }
-
- // Check to see if we have any common things being and'ed. If so, find the
- // terms for V1 & (V2|V3).
- if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
- if (A == B) // (A & C)|(A & D) == A & (C|D)
- V1 = A, V2 = C, V3 = D;
- else if (A == D) // (A & C)|(B & A) == A & (B|C)
- V1 = A, V2 = B, V3 = C;
- else if (C == B) // (A & C)|(C & D) == C & (A|D)
- V1 = C, V2 = A, V3 = D;
- else if (C == D) // (A & C)|(B & C) == C & (A|B)
- V1 = C, V2 = A, V3 = B;
-
- if (V1) {
- Value *Or = Builder->CreateOr(V2, V3, "tmp");
- return BinaryOperator::CreateAnd(V1, Or);
- }
- }
-
- // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants
- if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D, Context))
- return Match;
- if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C, Context))
- return Match;
- if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D, Context))
- return Match;
- if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C, Context))
- return Match;
-
- // ((A&~B)|(~A&B)) -> A^B
- if ((match(C, m_Not(m_Specific(D))) &&
- match(B, m_Not(m_Specific(A)))))
- return BinaryOperator::CreateXor(A, D);
- // ((~B&A)|(~A&B)) -> A^B
- if ((match(A, m_Not(m_Specific(D))) &&
- match(B, m_Not(m_Specific(C)))))
- return BinaryOperator::CreateXor(C, D);
- // ((A&~B)|(B&~A)) -> A^B
- if ((match(C, m_Not(m_Specific(B))) &&
- match(D, m_Not(m_Specific(A)))))
- return BinaryOperator::CreateXor(A, B);
- // ((~B&A)|(B&~A)) -> A^B
- if ((match(A, m_Not(m_Specific(B))) &&
- match(D, m_Not(m_Specific(C)))))
- return BinaryOperator::CreateXor(C, B);
- }
-
- // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
- if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
- if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
- if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
- SI0->getOperand(1) == SI1->getOperand(1) &&
- (SI0->hasOneUse() || SI1->hasOneUse())) {
- Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
- SI0->getName());
- return BinaryOperator::Create(SI1->getOpcode(), NewOp,
- SI1->getOperand(1));
- }
- }
-
- // ((A|B)&1)|(B&-2) -> (A&1) | B
- if (match(Op0, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
- match(Op0, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
- Instruction *Ret = FoldOrWithConstants(I, Op1, A, B, C);
- if (Ret) return Ret;
- }
- // (B&-2)|((A|B)&1) -> (A&1) | B
- if (match(Op1, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
- match(Op1, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
- Instruction *Ret = FoldOrWithConstants(I, Op0, A, B, C);
- if (Ret) return Ret;
- }
-
- // (~A | ~B) == (~(A & B)) - De Morgan's Law
- if (Value *Op0NotVal = dyn_castNotVal(Op0))
- if (Value *Op1NotVal = dyn_castNotVal(Op1))
- if (Op0->hasOneUse() && Op1->hasOneUse()) {
- Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
- I.getName()+".demorgan");
- return BinaryOperator::CreateNot(And);
- }
-
- // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
- if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
- if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
- return R;
-
- if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
- if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS))
- return Res;
- }
-
- // fold (or (cast A), (cast B)) -> (cast (or A, B))
- if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
- if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
- if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
- if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
- !isa<ICmpInst>(Op1C->getOperand(0))) {
- const Type *SrcTy = Op0C->getOperand(0)->getType();
- if (SrcTy == Op1C->getOperand(0)->getType() &&
- SrcTy->isIntOrIntVector() &&
- // Only do this if the casts both really cause code to be
- // generated.
- ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
- I.getType(), TD) &&
- ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
- I.getType(), TD)) {
- Value *NewOp = Builder->CreateOr(Op0C->getOperand(0),
- Op1C->getOperand(0), I.getName());
- return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
- }
- }
- }
- }
-
-
- // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
- if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
- if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
- if (Instruction *Res = FoldOrOfFCmps(I, LHS, RHS))
- return Res;
- }
-
- return Changed ? &I : 0;
-}
-
-namespace {
-
-// XorSelf - Implements: X ^ X --> 0
-struct XorSelf {
- Value *RHS;
- XorSelf(Value *rhs) : RHS(rhs) {}
- bool shouldApply(Value *LHS) const { return LHS == RHS; }
- Instruction *apply(BinaryOperator &Xor) const {
- return &Xor;
- }
-};
-
-}
-
-Instruction *InstCombiner::visitXor(BinaryOperator &I) {
- bool Changed = SimplifyCommutative(I);
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- if (isa<UndefValue>(Op1)) {
- if (isa<UndefValue>(Op0))
- // Handle undef ^ undef -> 0 special case. This is a common
- // idiom (misuse).
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
- return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
- }
-
- // xor X, X = 0, even if X is nested in a sequence of Xor's.
- if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
- assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
- }
-
- // See if we can simplify any instructions used by the instruction whose sole
- // purpose is to compute bits we don't care about.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
- if (isa<VectorType>(I.getType()))
- if (isa<ConstantAggregateZero>(Op1))
- return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
-
- // Is this a ~ operation?
- if (Value *NotOp = dyn_castNotVal(&I)) {
- if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
- if (Op0I->getOpcode() == Instruction::And ||
- Op0I->getOpcode() == Instruction::Or) {
- // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
- // ~(~X | Y) === (X & ~Y) - De Morgan's Law
- if (dyn_castNotVal(Op0I->getOperand(1)))
- Op0I->swapOperands();
- if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
- Value *NotY =
- Builder->CreateNot(Op0I->getOperand(1),
- Op0I->getOperand(1)->getName()+".not");
- if (Op0I->getOpcode() == Instruction::And)
- return BinaryOperator::CreateOr(Op0NotVal, NotY);
- return BinaryOperator::CreateAnd(Op0NotVal, NotY);
- }
-
- // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
- // ~(X | Y) === (~X & ~Y) - De Morgan's Law
- if (isFreeToInvert(Op0I->getOperand(0)) &&
- isFreeToInvert(Op0I->getOperand(1))) {
- Value *NotX =
- Builder->CreateNot(Op0I->getOperand(0), "notlhs");
- Value *NotY =
- Builder->CreateNot(Op0I->getOperand(1), "notrhs");
- if (Op0I->getOpcode() == Instruction::And)
- return BinaryOperator::CreateOr(NotX, NotY);
- return BinaryOperator::CreateAnd(NotX, NotY);
- }
- }
- }
- }
-
-
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
- if (RHS->isOne() && Op0->hasOneUse()) {
- // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
- return new ICmpInst(ICI->getInversePredicate(),
- ICI->getOperand(0), ICI->getOperand(1));
-
- if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
- return new FCmpInst(FCI->getInversePredicate(),
- FCI->getOperand(0), FCI->getOperand(1));
- }
-
- // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
- if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
- if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
- if (CI->hasOneUse() && Op0C->hasOneUse()) {
- Instruction::CastOps Opcode = Op0C->getOpcode();
- if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
- (RHS == ConstantExpr::getCast(Opcode,
- ConstantInt::getTrue(*Context),
- Op0C->getDestTy()))) {
- CI->setPredicate(CI->getInversePredicate());
- return CastInst::Create(Opcode, CI, Op0C->getType());
- }
- }
- }
- }
-
- if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
- // ~(c-X) == X-c-1 == X+(-c-1)
- if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
- if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
- Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
- Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
- ConstantInt::get(I.getType(), 1));
- return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
- }
-
- if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
- if (Op0I->getOpcode() == Instruction::Add) {
- // ~(X-c) --> (-c-1)-X
- if (RHS->isAllOnesValue()) {
- Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
- return BinaryOperator::CreateSub(
- ConstantExpr::getSub(NegOp0CI,
- ConstantInt::get(I.getType(), 1)),
- Op0I->getOperand(0));
- } else if (RHS->getValue().isSignBit()) {
- // (X + C) ^ signbit -> (X + C + signbit)
- Constant *C = ConstantInt::get(*Context,
- RHS->getValue() + Op0CI->getValue());
- return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
-
- }
- } else if (Op0I->getOpcode() == Instruction::Or) {
- // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
- if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
- Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
- // Anything in both C1 and C2 is known to be zero, remove it from
- // NewRHS.
- Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
- NewRHS = ConstantExpr::getAnd(NewRHS,
- ConstantExpr::getNot(CommonBits));
- Worklist.Add(Op0I);
- I.setOperand(0, Op0I->getOperand(0));
- I.setOperand(1, NewRHS);
- return &I;
- }
- }
- }
- }
-
- // Try to fold constant and into select arguments.
- if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
- if (Instruction *R = FoldOpIntoSelect(I, SI, this))
- return R;
- if (isa<PHINode>(Op0))
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
- }
-
- if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
- if (X == Op1)
- return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
-
- if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
- if (X == Op0)
- return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
-
-
- BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
- if (Op1I) {
- Value *A, *B;
- if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
- if (A == Op0) { // B^(B|A) == (A|B)^B
- Op1I->swapOperands();
- I.swapOperands();
- std::swap(Op0, Op1);
- } else if (B == Op0) { // B^(A|B) == (A|B)^B
- I.swapOperands(); // Simplified below.
- std::swap(Op0, Op1);
- }
- } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) {
- return ReplaceInstUsesWith(I, B); // A^(A^B) == B
- } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) {
- return ReplaceInstUsesWith(I, A); // A^(B^A) == B
- } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
- Op1I->hasOneUse()){
- if (A == Op0) { // A^(A&B) -> A^(B&A)
- Op1I->swapOperands();
- std::swap(A, B);
- }
- if (B == Op0) { // A^(B&A) -> (B&A)^A
- I.swapOperands(); // Simplified below.
- std::swap(Op0, Op1);
- }
- }
- }
-
- BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
- if (Op0I) {
- Value *A, *B;
- if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
- Op0I->hasOneUse()) {
- if (A == Op1) // (B|A)^B == (A|B)^B
- std::swap(A, B);
- if (B == Op1) // (A|B)^B == A & ~B
- return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1, "tmp"));
- } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) {
- return ReplaceInstUsesWith(I, B); // (A^B)^A == B
- } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) {
- return ReplaceInstUsesWith(I, A); // (B^A)^A == B
- } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
- Op0I->hasOneUse()){
- if (A == Op1) // (A&B)^A -> (B&A)^A
- std::swap(A, B);
- if (B == Op1 && // (B&A)^A == ~B & A
- !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
- return BinaryOperator::CreateAnd(Builder->CreateNot(A, "tmp"), Op1);
- }
- }
- }
-
- // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
- if (Op0I && Op1I && Op0I->isShift() &&
- Op0I->getOpcode() == Op1I->getOpcode() &&
- Op0I->getOperand(1) == Op1I->getOperand(1) &&
- (Op1I->hasOneUse() || Op1I->hasOneUse())) {
- Value *NewOp =
- Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
- Op0I->getName());
- return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
- Op1I->getOperand(1));
- }
-
- if (Op0I && Op1I) {
- Value *A, *B, *C, *D;
- // (A & B)^(A | B) -> A ^ B
- if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
- match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
- if ((A == C && B == D) || (A == D && B == C))
- return BinaryOperator::CreateXor(A, B);
- }
- // (A | B)^(A & B) -> A ^ B
- if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
- match(Op1I, m_And(m_Value(C), m_Value(D)))) {
- if ((A == C && B == D) || (A == D && B == C))
- return BinaryOperator::CreateXor(A, B);
- }
-
- // (A & B)^(C & D)
- if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
- match(Op0I, m_And(m_Value(A), m_Value(B))) &&
- match(Op1I, m_And(m_Value(C), m_Value(D)))) {
- // (X & Y)^(X & Y) -> (Y^Z) & X
- Value *X = 0, *Y = 0, *Z = 0;
- if (A == C)
- X = A, Y = B, Z = D;
- else if (A == D)
- X = A, Y = B, Z = C;
- else if (B == C)
- X = B, Y = A, Z = D;
- else if (B == D)
- X = B, Y = A, Z = C;
-
- if (X) {
- Value *NewOp = Builder->CreateXor(Y, Z, Op0->getName());
- return BinaryOperator::CreateAnd(NewOp, X);
- }
- }
- }
-
- // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
- if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
- if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
- return R;
-
- // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
- if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
- if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
- if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
- const Type *SrcTy = Op0C->getOperand(0)->getType();
- if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
- // Only do this if the casts both really cause code to be generated.
- ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
- I.getType(), TD) &&
- ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
- I.getType(), TD)) {
- Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
- Op1C->getOperand(0), I.getName());
- return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
- }
- }
- }
-
- return Changed ? &I : 0;
-}
-
-static ConstantInt *ExtractElement(Constant *V, Constant *Idx,
- LLVMContext *Context) {
- return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
-}
-
-static bool HasAddOverflow(ConstantInt *Result,
- ConstantInt *In1, ConstantInt *In2,
- bool IsSigned) {
- if (IsSigned)
- if (In2->getValue().isNegative())
- return Result->getValue().sgt(In1->getValue());
- else
- return Result->getValue().slt(In1->getValue());
- else
- return Result->getValue().ult(In1->getValue());
-}
-
-/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
-/// overflowed for this type.
-static bool AddWithOverflow(Constant *&Result, Constant *In1,
- Constant *In2, LLVMContext *Context,
- bool IsSigned = false) {
- Result = ConstantExpr::getAdd(In1, In2);
-
- if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
- for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
- Constant *Idx = ConstantInt::get(Type::getInt32Ty(*Context), i);
- if (HasAddOverflow(ExtractElement(Result, Idx, Context),
- ExtractElement(In1, Idx, Context),
- ExtractElement(In2, Idx, Context),
- IsSigned))
- return true;
- }
- return false;
- }
-
- return HasAddOverflow(cast<ConstantInt>(Result),
- cast<ConstantInt>(In1), cast<ConstantInt>(In2),
- IsSigned);
-}
-
-static bool HasSubOverflow(ConstantInt *Result,
- ConstantInt *In1, ConstantInt *In2,
- bool IsSigned) {
- if (IsSigned)
- if (In2->getValue().isNegative())
- return Result->getValue().slt(In1->getValue());
- else
- return Result->getValue().sgt(In1->getValue());
- else
- return Result->getValue().ugt(In1->getValue());
-}
-
-/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
-/// overflowed for this type.
-static bool SubWithOverflow(Constant *&Result, Constant *In1,
- Constant *In2, LLVMContext *Context,
- bool IsSigned = false) {
- Result = ConstantExpr::getSub(In1, In2);
-
- if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
- for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
- Constant *Idx = ConstantInt::get(Type::getInt32Ty(*Context), i);
- if (HasSubOverflow(ExtractElement(Result, Idx, Context),
- ExtractElement(In1, Idx, Context),
- ExtractElement(In2, Idx, Context),
- IsSigned))
- return true;
- }
- return false;
- }
-
- return HasSubOverflow(cast<ConstantInt>(Result),
- cast<ConstantInt>(In1), cast<ConstantInt>(In2),
- IsSigned);
-}
-
-
-/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
-/// else. At this point we know that the GEP is on the LHS of the comparison.
-Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
- ICmpInst::Predicate Cond,
- Instruction &I) {
- // Look through bitcasts.
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
- RHS = BCI->getOperand(0);
-
- Value *PtrBase = GEPLHS->getOperand(0);
- if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
- // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
- // This transformation (ignoring the base and scales) is valid because we
- // know pointers can't overflow since the gep is inbounds. See if we can
- // output an optimized form.
- Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
-
- // If not, synthesize the offset the hard way.
- if (Offset == 0)
- Offset = EmitGEPOffset(GEPLHS, *this);
- return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
- Constant::getNullValue(Offset->getType()));
- } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
- // If the base pointers are different, but the indices are the same, just
- // compare the base pointer.
- if (PtrBase != GEPRHS->getOperand(0)) {
- bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
- IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
- GEPRHS->getOperand(0)->getType();
- if (IndicesTheSame)
- for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
- if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
- IndicesTheSame = false;
- break;
- }
-
- // If all indices are the same, just compare the base pointers.
- if (IndicesTheSame)
- return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
- GEPLHS->getOperand(0), GEPRHS->getOperand(0));
-
- // Otherwise, the base pointers are different and the indices are
- // different, bail out.
- return 0;
- }
-
- // If one of the GEPs has all zero indices, recurse.
- bool AllZeros = true;
- for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
- if (!isa<Constant>(GEPLHS->getOperand(i)) ||
- !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
- AllZeros = false;
- break;
- }
- if (AllZeros)
- return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
- ICmpInst::getSwappedPredicate(Cond), I);
-
- // If the other GEP has all zero indices, recurse.
- AllZeros = true;
- for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
- if (!isa<Constant>(GEPRHS->getOperand(i)) ||
- !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
- AllZeros = false;
- break;
- }
- if (AllZeros)
- return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
-
- if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
- // If the GEPs only differ by one index, compare it.
- unsigned NumDifferences = 0; // Keep track of # differences.
- unsigned DiffOperand = 0; // The operand that differs.
- for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
- if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
- if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
- GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
- // Irreconcilable differences.
- NumDifferences = 2;
- break;
- } else {
- if (NumDifferences++) break;
- DiffOperand = i;
- }
- }
-
- if (NumDifferences == 0) // SAME GEP?
- return ReplaceInstUsesWith(I, // No comparison is needed here.
- ConstantInt::get(Type::getInt1Ty(*Context),
- ICmpInst::isTrueWhenEqual(Cond)));
-
- else if (NumDifferences == 1) {
- Value *LHSV = GEPLHS->getOperand(DiffOperand);
- Value *RHSV = GEPRHS->getOperand(DiffOperand);
- // Make sure we do a signed comparison here.
- return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
- }
- }
-
- // Only lower this if the icmp is the only user of the GEP or if we expect
- // the result to fold to a constant!
- if (TD &&
- (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
- (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
- // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
- Value *L = EmitGEPOffset(GEPLHS, *this);
- Value *R = EmitGEPOffset(GEPRHS, *this);
- return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
- }
- }
- return 0;
-}
-
-/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
-///
-Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
- Instruction *LHSI,
- Constant *RHSC) {
- if (!isa<ConstantFP>(RHSC)) return 0;
- const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
-
- // Get the width of the mantissa. We don't want to hack on conversions that
- // might lose information from the integer, e.g. "i64 -> float"
- int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
- if (MantissaWidth == -1) return 0; // Unknown.
-
- // Check to see that the input is converted from an integer type that is small
- // enough that preserves all bits. TODO: check here for "known" sign bits.
- // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
- unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
-
- // If this is a uitofp instruction, we need an extra bit to hold the sign.
- bool LHSUnsigned = isa<UIToFPInst>(LHSI);
- if (LHSUnsigned)
- ++InputSize;
-
- // If the conversion would lose info, don't hack on this.
- if ((int)InputSize > MantissaWidth)
- return 0;
-
- // Otherwise, we can potentially simplify the comparison. We know that it
- // will always come through as an integer value and we know the constant is
- // not a NAN (it would have been previously simplified).
- assert(!RHS.isNaN() && "NaN comparison not already folded!");
-
- ICmpInst::Predicate Pred;
- switch (I.getPredicate()) {
- default: llvm_unreachable("Unexpected predicate!");
- case FCmpInst::FCMP_UEQ:
- case FCmpInst::FCMP_OEQ:
- Pred = ICmpInst::ICMP_EQ;
- break;
- case FCmpInst::FCMP_UGT:
- case FCmpInst::FCMP_OGT:
- Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
- break;
- case FCmpInst::FCMP_UGE:
- case FCmpInst::FCMP_OGE:
- Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
- break;
- case FCmpInst::FCMP_ULT:
- case FCmpInst::FCMP_OLT:
- Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
- break;
- case FCmpInst::FCMP_ULE:
- case FCmpInst::FCMP_OLE:
- Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
- break;
- case FCmpInst::FCMP_UNE:
- case FCmpInst::FCMP_ONE:
- Pred = ICmpInst::ICMP_NE;
- break;
- case FCmpInst::FCMP_ORD:
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
- case FCmpInst::FCMP_UNO:
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
- }
-
- const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
-
- // Now we know that the APFloat is a normal number, zero or inf.
-
- // See if the FP constant is too large for the integer. For example,
- // comparing an i8 to 300.0.
- unsigned IntWidth = IntTy->getScalarSizeInBits();
-
- if (!LHSUnsigned) {
- // If the RHS value is > SignedMax, fold the comparison. This handles +INF
- // and large values.
- APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
- SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
- APFloat::rmNearestTiesToEven);
- if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
- if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
- Pred == ICmpInst::ICMP_SLE)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
- }
- } else {
- // If the RHS value is > UnsignedMax, fold the comparison. This handles
- // +INF and large values.
- APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
- UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
- APFloat::rmNearestTiesToEven);
- if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
- if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
- Pred == ICmpInst::ICMP_ULE)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
- }
- }
-
- if (!LHSUnsigned) {
- // See if the RHS value is < SignedMin.
- APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
- SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
- APFloat::rmNearestTiesToEven);
- if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
- if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
- Pred == ICmpInst::ICMP_SGE)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
- }
- }
-
- // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
- // [0, UMAX], but it may still be fractional. See if it is fractional by
- // casting the FP value to the integer value and back, checking for equality.
- // Don't do this for zero, because -0.0 is not fractional.
- Constant *RHSInt = LHSUnsigned
- ? ConstantExpr::getFPToUI(RHSC, IntTy)
- : ConstantExpr::getFPToSI(RHSC, IntTy);
- if (!RHS.isZero()) {
- bool Equal = LHSUnsigned
- ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
- : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
- if (!Equal) {
- // If we had a comparison against a fractional value, we have to adjust
- // the compare predicate and sometimes the value. RHSC is rounded towards
- // zero at this point.
- switch (Pred) {
- default: llvm_unreachable("Unexpected integer comparison!");
- case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
- case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
- case ICmpInst::ICMP_ULE:
- // (float)int <= 4.4 --> int <= 4
- // (float)int <= -4.4 --> false
- if (RHS.isNegative())
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
- break;
- case ICmpInst::ICMP_SLE:
- // (float)int <= 4.4 --> int <= 4
- // (float)int <= -4.4 --> int < -4
- if (RHS.isNegative())
- Pred = ICmpInst::ICMP_SLT;
- break;
- case ICmpInst::ICMP_ULT:
- // (float)int < -4.4 --> false
- // (float)int < 4.4 --> int <= 4
- if (RHS.isNegative())
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
- Pred = ICmpInst::ICMP_ULE;
- break;
- case ICmpInst::ICMP_SLT:
- // (float)int < -4.4 --> int < -4
- // (float)int < 4.4 --> int <= 4
- if (!RHS.isNegative())
- Pred = ICmpInst::ICMP_SLE;
- break;
- case ICmpInst::ICMP_UGT:
- // (float)int > 4.4 --> int > 4
- // (float)int > -4.4 --> true
- if (RHS.isNegative())
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
- break;
- case ICmpInst::ICMP_SGT:
- // (float)int > 4.4 --> int > 4
- // (float)int > -4.4 --> int >= -4
- if (RHS.isNegative())
- Pred = ICmpInst::ICMP_SGE;
- break;
- case ICmpInst::ICMP_UGE:
- // (float)int >= -4.4 --> true
- // (float)int >= 4.4 --> int > 4
- if (!RHS.isNegative())
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
- Pred = ICmpInst::ICMP_UGT;
- break;
- case ICmpInst::ICMP_SGE:
- // (float)int >= -4.4 --> int >= -4
- // (float)int >= 4.4 --> int > 4
- if (!RHS.isNegative())
- Pred = ICmpInst::ICMP_SGT;
- break;
- }
- }
- }
-
- // Lower this FP comparison into an appropriate integer version of the
- // comparison.
- return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
-}
-
-Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
- bool Changed = false;
-
- /// Orders the operands of the compare so that they are listed from most
- /// complex to least complex. This puts constants before unary operators,
- /// before binary operators.
- if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
- I.swapOperands();
- Changed = true;
- }
-
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
- return ReplaceInstUsesWith(I, V);
-
- // Simplify 'fcmp pred X, X'
- if (Op0 == Op1) {
- switch (I.getPredicate()) {
- default: llvm_unreachable("Unknown predicate!");
- case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
- case FCmpInst::FCMP_ULT: // True if unordered or less than
- case FCmpInst::FCMP_UGT: // True if unordered or greater than
- case FCmpInst::FCMP_UNE: // True if unordered or not equal
- // Canonicalize these to be 'fcmp uno %X, 0.0'.
- I.setPredicate(FCmpInst::FCMP_UNO);
- I.setOperand(1, Constant::getNullValue(Op0->getType()));
- return &I;
-
- case FCmpInst::FCMP_ORD: // True if ordered (no nans)
- case FCmpInst::FCMP_OEQ: // True if ordered and equal
- case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
- case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
- // Canonicalize these to be 'fcmp ord %X, 0.0'.
- I.setPredicate(FCmpInst::FCMP_ORD);
- I.setOperand(1, Constant::getNullValue(Op0->getType()));
- return &I;
- }
- }
-
- // Handle fcmp with constant RHS
- if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
- if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
- switch (LHSI->getOpcode()) {
- case Instruction::PHI:
- // Only fold fcmp into the PHI if the phi and fcmp are in the same
- // block. If in the same block, we're encouraging jump threading. If
- // not, we are just pessimizing the code by making an i1 phi.
- if (LHSI->getParent() == I.getParent())
- if (Instruction *NV = FoldOpIntoPhi(I, true))
- return NV;
- break;
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
- return NV;
- break;
- case Instruction::Select:
- // If either operand of the select is a constant, we can fold the
- // comparison into the select arms, which will cause one to be
- // constant folded and the select turned into a bitwise or.
- Value *Op1 = 0, *Op2 = 0;
- if (LHSI->hasOneUse()) {
- if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
- // Fold the known value into the constant operand.
- Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
- // Insert a new FCmp of the other select operand.
- Op2 = Builder->CreateFCmp(I.getPredicate(),
- LHSI->getOperand(2), RHSC, I.getName());
- } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
- // Fold the known value into the constant operand.
- Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
- // Insert a new FCmp of the other select operand.
- Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
- RHSC, I.getName());
- }
- }
-
- if (Op1)
- return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
- break;
- }
- }
-
- return Changed ? &I : 0;
-}
-
-Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
- bool Changed = false;
-
- /// Orders the operands of the compare so that they are listed from most
- /// complex to least complex. This puts constants before unary operators,
- /// before binary operators.
- if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
- I.swapOperands();
- Changed = true;
- }
-
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
- return ReplaceInstUsesWith(I, V);
-
- const Type *Ty = Op0->getType();
-
- // icmp's with boolean values can always be turned into bitwise operations
- if (Ty == Type::getInt1Ty(*Context)) {
- switch (I.getPredicate()) {
- default: llvm_unreachable("Invalid icmp instruction!");
- case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
- Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
- return BinaryOperator::CreateNot(Xor);
- }
- case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
- return BinaryOperator::CreateXor(Op0, Op1);
-
- case ICmpInst::ICMP_UGT:
- std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
- // FALL THROUGH
- case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
- Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
- return BinaryOperator::CreateAnd(Not, Op1);
- }
- case ICmpInst::ICMP_SGT:
- std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
- // FALL THROUGH
- case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
- Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
- return BinaryOperator::CreateAnd(Not, Op0);
- }
- case ICmpInst::ICMP_UGE:
- std::swap(Op0, Op1); // Change icmp uge -> icmp ule
- // FALL THROUGH
- case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
- Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
- return BinaryOperator::CreateOr(Not, Op1);
- }
- case ICmpInst::ICMP_SGE:
- std::swap(Op0, Op1); // Change icmp sge -> icmp sle
- // FALL THROUGH
- case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
- Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
- return BinaryOperator::CreateOr(Not, Op0);
- }
- }
- }
-
- unsigned BitWidth = 0;
- if (TD)
- BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
- else if (Ty->isIntOrIntVector())
- BitWidth = Ty->getScalarSizeInBits();
-
- bool isSignBit = false;
-
- // See if we are doing a comparison with a constant.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- Value *A = 0, *B = 0;
-
- // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
- if (I.isEquality() && CI->isNullValue() &&
- match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
- // (icmp cond A B) if cond is equality
- return new ICmpInst(I.getPredicate(), A, B);
- }
-
- // If we have an icmp le or icmp ge instruction, turn it into the
- // appropriate icmp lt or icmp gt instruction. This allows us to rely on
- // them being folded in the code below. The SimplifyICmpInst code has
- // already handled the edge cases for us, so we just assert on them.
- switch (I.getPredicate()) {
- default: break;
- case ICmpInst::ICMP_ULE:
- assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE
- return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
- AddOne(CI));
- case ICmpInst::ICMP_SLE:
- assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE
- return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
- AddOne(CI));
- case ICmpInst::ICMP_UGE:
- assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE
- return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
- SubOne(CI));
- case ICmpInst::ICMP_SGE:
- assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE
- return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
- SubOne(CI));
- }
-
- // If this comparison is a normal comparison, it demands all
- // bits, if it is a sign bit comparison, it only demands the sign bit.
- bool UnusedBit;
- isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
- }
-
- // See if we can fold the comparison based on range information we can get
- // by checking whether bits are known to be zero or one in the input.
- if (BitWidth != 0) {
- APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
- APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
-
- if (SimplifyDemandedBits(I.getOperandUse(0),
- isSignBit ? APInt::getSignBit(BitWidth)
- : APInt::getAllOnesValue(BitWidth),
- Op0KnownZero, Op0KnownOne, 0))
- return &I;
- if (SimplifyDemandedBits(I.getOperandUse(1),
- APInt::getAllOnesValue(BitWidth),
- Op1KnownZero, Op1KnownOne, 0))
- return &I;
-
- // Given the known and unknown bits, compute a range that the LHS could be
- // in. Compute the Min, Max and RHS values based on the known bits. For the
- // EQ and NE we use unsigned values.
- APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
- APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
- if (I.isSigned()) {
- ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
- Op0Min, Op0Max);
- ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
- Op1Min, Op1Max);
- } else {
- ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
- Op0Min, Op0Max);
- ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
- Op1Min, Op1Max);
- }
-
- // If Min and Max are known to be the same, then SimplifyDemandedBits
- // figured out that the LHS is a constant. Just constant fold this now so
- // that code below can assume that Min != Max.
- if (!isa<Constant>(Op0) && Op0Min == Op0Max)
- return new ICmpInst(I.getPredicate(),
- ConstantInt::get(*Context, Op0Min), Op1);
- if (!isa<Constant>(Op1) && Op1Min == Op1Max)
- return new ICmpInst(I.getPredicate(), Op0,
- ConstantInt::get(*Context, Op1Min));
-
- // Based on the range information we know about the LHS, see if we can
- // simplify this comparison. For example, (x&4) < 8 is always true.
- switch (I.getPredicate()) {
- default: llvm_unreachable("Unknown icmp opcode!");
- case ICmpInst::ICMP_EQ:
- if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
- break;
- case ICmpInst::ICMP_NE:
- if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
- break;
- case ICmpInst::ICMP_ULT:
- if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
- if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
- if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
- return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
- SubOne(CI));
-
- // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
- if (CI->isMinValue(true))
- return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
- Constant::getAllOnesValue(Op0->getType()));
- }
- break;
- case ICmpInst::ICMP_UGT:
- if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
- if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
-
- if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
- return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
- AddOne(CI));
-
- // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
- if (CI->isMaxValue(true))
- return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
- Constant::getNullValue(Op0->getType()));
- }
- break;
- case ICmpInst::ICMP_SLT:
- if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
- if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
- if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
- return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
- SubOne(CI));
- }
- break;
- case ICmpInst::ICMP_SGT:
- if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
- if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
-
- if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
- return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
- AddOne(CI));
- }
- break;
- case ICmpInst::ICMP_SGE:
- assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
- if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
- if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
- break;
- case ICmpInst::ICMP_SLE:
- assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
- if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
- if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
- break;
- case ICmpInst::ICMP_UGE:
- assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
- if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
- if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
- break;
- case ICmpInst::ICMP_ULE:
- assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
- if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
- return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
- if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
- return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
- break;
- }
-
- // Turn a signed comparison into an unsigned one if both operands
- // are known to have the same sign.
- if (I.isSigned() &&
- ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
- (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
- return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
- }
-
- // Test if the ICmpInst instruction is used exclusively by a select as
- // part of a minimum or maximum operation. If so, refrain from doing
- // any other folding. This helps out other analyses which understand
- // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
- // and CodeGen. And in this case, at least one of the comparison
- // operands has at least one user besides the compare (the select),
- // which would often largely negate the benefit of folding anyway.
- if (I.hasOneUse())
- if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
- if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
- (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
- return 0;
-
- // See if we are doing a comparison between a constant and an instruction that
- // can be folded into the comparison.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- // Since the RHS is a ConstantInt (CI), if the left hand side is an
- // instruction, see if that instruction also has constants so that the
- // instruction can be folded into the icmp
- if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
- if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
- return Res;
- }
-
- // Handle icmp with constant (but not simple integer constant) RHS
- if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
- if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
- switch (LHSI->getOpcode()) {
- case Instruction::GetElementPtr:
- if (RHSC->isNullValue()) {
- // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
- bool isAllZeros = true;
- for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
- if (!isa<Constant>(LHSI->getOperand(i)) ||
- !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
- isAllZeros = false;
- break;
- }
- if (isAllZeros)
- return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
- Constant::getNullValue(LHSI->getOperand(0)->getType()));
- }
- break;
-
- case Instruction::PHI:
- // Only fold icmp into the PHI if the phi and icmp are in the same
- // block. If in the same block, we're encouraging jump threading. If
- // not, we are just pessimizing the code by making an i1 phi.
- if (LHSI->getParent() == I.getParent())
- if (Instruction *NV = FoldOpIntoPhi(I, true))
- return NV;
- break;
- case Instruction::Select: {
- // If either operand of the select is a constant, we can fold the
- // comparison into the select arms, which will cause one to be
- // constant folded and the select turned into a bitwise or.
- Value *Op1 = 0, *Op2 = 0;
- if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
- Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
- if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
- Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
-
- // We only want to perform this transformation if it will not lead to
- // additional code. This is true if either both sides of the select
- // fold to a constant (in which case the icmp is replaced with a select
- // which will usually simplify) or this is the only user of the
- // select (in which case we are trading a select+icmp for a simpler
- // select+icmp).
- if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
- if (!Op1)
- Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
- RHSC, I.getName());
- if (!Op2)
- Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
- RHSC, I.getName());
- return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
- }
- break;
- }
- case Instruction::Call:
- // If we have (malloc != null), and if the malloc has a single use, we
- // can assume it is successful and remove the malloc.
- if (isMalloc(LHSI) && LHSI->hasOneUse() &&
- isa<ConstantPointerNull>(RHSC)) {
- // Need to explicitly erase malloc call here, instead of adding it to
- // Worklist, because it won't get DCE'd from the Worklist since
- // isInstructionTriviallyDead() returns false for function calls.
- // It is OK to replace LHSI/MallocCall with Undef because the
- // instruction that uses it will be erased via Worklist.
- if (extractMallocCall(LHSI)) {
- LHSI->replaceAllUsesWith(UndefValue::get(LHSI->getType()));
- EraseInstFromFunction(*LHSI);
- return ReplaceInstUsesWith(I,
- ConstantInt::get(Type::getInt1Ty(*Context),
- !I.isTrueWhenEqual()));
- }
- if (CallInst* MallocCall = extractMallocCallFromBitCast(LHSI))
- if (MallocCall->hasOneUse()) {
- MallocCall->replaceAllUsesWith(
- UndefValue::get(MallocCall->getType()));
- EraseInstFromFunction(*MallocCall);
- Worklist.Add(LHSI); // The malloc's bitcast use.
- return ReplaceInstUsesWith(I,
- ConstantInt::get(Type::getInt1Ty(*Context),
- !I.isTrueWhenEqual()));
- }
- }
- break;
- }
- }
-
- // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
- if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
- return NI;
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
- if (Instruction *NI = FoldGEPICmp(GEP, Op0,
- ICmpInst::getSwappedPredicate(I.getPredicate()), I))
- return NI;
-
- // Test to see if the operands of the icmp are casted versions of other
- // values. If the ptr->ptr cast can be stripped off both arguments, we do so
- // now.
- if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
- if (isa<PointerType>(Op0->getType()) &&
- (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
- // We keep moving the cast from the left operand over to the right
- // operand, where it can often be eliminated completely.
- Op0 = CI->getOperand(0);
-
- // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
- // so eliminate it as well.
- if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
- Op1 = CI2->getOperand(0);
-
- // If Op1 is a constant, we can fold the cast into the constant.
- if (Op0->getType() != Op1->getType()) {
- if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
- Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
- } else {
- // Otherwise, cast the RHS right before the icmp
- Op1 = Builder->CreateBitCast(Op1, Op0->getType());
- }
- }
- return new ICmpInst(I.getPredicate(), Op0, Op1);
- }
- }
-
- if (isa<CastInst>(Op0)) {
- // Handle the special case of: icmp (cast bool to X), <cst>
- // This comes up when you have code like
- // int X = A < B;
- // if (X) ...
- // For generality, we handle any zero-extension of any operand comparison
- // with a constant or another cast from the same type.
- if (isa<Constant>(Op1) || isa<CastInst>(Op1))
- if (Instruction *R = visitICmpInstWithCastAndCast(I))
- return R;
- }
-
- // See if it's the same type of instruction on the left and right.
- if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
- if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
- if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
- Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1)) {
- switch (Op0I->getOpcode()) {
- default: break;
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Xor:
- if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
- return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
- Op1I->getOperand(0));
- // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
- if (CI->getValue().isSignBit()) {
- ICmpInst::Predicate Pred = I.isSigned()
- ? I.getUnsignedPredicate()
- : I.getSignedPredicate();
- return new ICmpInst(Pred, Op0I->getOperand(0),
- Op1I->getOperand(0));
- }
-
- if (CI->getValue().isMaxSignedValue()) {
- ICmpInst::Predicate Pred = I.isSigned()
- ? I.getUnsignedPredicate()
- : I.getSignedPredicate();
- Pred = I.getSwappedPredicate(Pred);
- return new ICmpInst(Pred, Op0I->getOperand(0),
- Op1I->getOperand(0));
- }
- }
- break;
- case Instruction::Mul:
- if (!I.isEquality())
- break;
-
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
- // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
- // Mask = -1 >> count-trailing-zeros(Cst).
- if (!CI->isZero() && !CI->isOne()) {
- const APInt &AP = CI->getValue();
- ConstantInt *Mask = ConstantInt::get(*Context,
- APInt::getLowBitsSet(AP.getBitWidth(),
- AP.getBitWidth() -
- AP.countTrailingZeros()));
- Value *And1 = Builder->CreateAnd(Op0I->getOperand(0), Mask);
- Value *And2 = Builder->CreateAnd(Op1I->getOperand(0), Mask);
- return new ICmpInst(I.getPredicate(), And1, And2);
- }
- }
- break;
- }
- }
- }
- }
-
- // ~x < ~y --> y < x
- { Value *A, *B;
- if (match(Op0, m_Not(m_Value(A))) &&
- match(Op1, m_Not(m_Value(B))))
- return new ICmpInst(I.getPredicate(), B, A);
- }
-
- if (I.isEquality()) {
- Value *A, *B, *C, *D;
-
- // -x == -y --> x == y
- if (match(Op0, m_Neg(m_Value(A))) &&
- match(Op1, m_Neg(m_Value(B))))
- return new ICmpInst(I.getPredicate(), A, B);
-
- if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
- if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
- Value *OtherVal = A == Op1 ? B : A;
- return new ICmpInst(I.getPredicate(), OtherVal,
- Constant::getNullValue(A->getType()));
- }
-
- if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
- // A^c1 == C^c2 --> A == C^(c1^c2)
- ConstantInt *C1, *C2;
- if (match(B, m_ConstantInt(C1)) &&
- match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
- Constant *NC =
- ConstantInt::get(*Context, C1->getValue() ^ C2->getValue());
- Value *Xor = Builder->CreateXor(C, NC, "tmp");
- return new ICmpInst(I.getPredicate(), A, Xor);
- }
-
- // A^B == A^D -> B == D
- if (A == C) return new ICmpInst(I.getPredicate(), B, D);
- if (A == D) return new ICmpInst(I.getPredicate(), B, C);
- if (B == C) return new ICmpInst(I.getPredicate(), A, D);
- if (B == D) return new ICmpInst(I.getPredicate(), A, C);
- }
- }
-
- if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
- (A == Op0 || B == Op0)) {
- // A == (A^B) -> B == 0
- Value *OtherVal = A == Op0 ? B : A;
- return new ICmpInst(I.getPredicate(), OtherVal,
- Constant::getNullValue(A->getType()));
- }
-
- // (A-B) == A -> B == 0
- if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
- return new ICmpInst(I.getPredicate(), B,
- Constant::getNullValue(B->getType()));
-
- // A == (A-B) -> B == 0
- if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
- return new ICmpInst(I.getPredicate(), B,
- Constant::getNullValue(B->getType()));
-
- // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
- if (Op0->hasOneUse() && Op1->hasOneUse() &&
- match(Op0, m_And(m_Value(A), m_Value(B))) &&
- match(Op1, m_And(m_Value(C), m_Value(D)))) {
- Value *X = 0, *Y = 0, *Z = 0;
-
- if (A == C) {
- X = B; Y = D; Z = A;
- } else if (A == D) {
- X = B; Y = C; Z = A;
- } else if (B == C) {
- X = A; Y = D; Z = B;
- } else if (B == D) {
- X = A; Y = C; Z = B;
- }
-
- if (X) { // Build (X^Y) & Z
- Op1 = Builder->CreateXor(X, Y, "tmp");
- Op1 = Builder->CreateAnd(Op1, Z, "tmp");
- I.setOperand(0, Op1);
- I.setOperand(1, Constant::getNullValue(Op1->getType()));
- return &I;
- }
- }
- }
-
- {
- Value *X; ConstantInt *Cst;
- // icmp X+Cst, X
- if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
- return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
-
- // icmp X, X+Cst
- if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
- return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
- }
- return Changed ? &I : 0;
-}
-
-/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
-Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
- Value *X, ConstantInt *CI,
- ICmpInst::Predicate Pred,
- Value *TheAdd) {
- // If we have X+0, exit early (simplifying logic below) and let it get folded
- // elsewhere. icmp X+0, X -> icmp X, X
- if (CI->isZero()) {
- bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
- return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
- }
-
- // (X+4) == X -> false.
- if (Pred == ICmpInst::ICMP_EQ)
- return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
-
- // (X+4) != X -> true.
- if (Pred == ICmpInst::ICMP_NE)
- return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
-
- // If this is an instruction (as opposed to constantexpr) get NUW/NSW info.
- bool isNUW = false, isNSW = false;
- if (BinaryOperator *Add = dyn_cast<BinaryOperator>(TheAdd)) {
- isNUW = Add->hasNoUnsignedWrap();
- isNSW = Add->hasNoSignedWrap();
- }
-
- // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
- // so the values can never be equal. Similiarly for all other "or equals"
- // operators.
-
- // (X+1) <u X --> X >u (MAXUINT-1) --> X != 255
- // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
- // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
- if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
- // If this is an NUW add, then this is always false.
- if (isNUW)
- return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
-
- Value *R = ConstantExpr::getSub(ConstantInt::get(CI->getType(), -1ULL), CI);
- return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
- }
-
- // (X+1) >u X --> X <u (0-1) --> X != 255
- // (X+2) >u X --> X <u (0-2) --> X <u 254
- // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
- if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
- // If this is an NUW add, then this is always true.
- if (isNUW)
- return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
- return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
- }
-
- unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
- ConstantInt *SMax = ConstantInt::get(X->getContext(),
- APInt::getSignedMaxValue(BitWidth));
-
- // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
- // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
- // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
- // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
- // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
- // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
- if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
- // If this is an NSW add, then we have two cases: if the constant is
- // positive, then this is always false, if negative, this is always true.
- if (isNSW) {
- bool isTrue = CI->getValue().isNegative();
- return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
- }
-
- return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
- }
-
- // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
- // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
- // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
- // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
- // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
- // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
-
- // If this is an NSW add, then we have two cases: if the constant is
- // positive, then this is always true, if negative, this is always false.
- if (isNSW) {
- bool isTrue = !CI->getValue().isNegative();
- return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
- }
-
- assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
- Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
- return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
-}
-
-/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
-/// and CmpRHS are both known to be integer constants.
-Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
- ConstantInt *DivRHS) {
- ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
- const APInt &CmpRHSV = CmpRHS->getValue();
-
- // FIXME: If the operand types don't match the type of the divide
- // then don't attempt this transform. The code below doesn't have the
- // logic to deal with a signed divide and an unsigned compare (and
- // vice versa). This is because (x /s C1) <s C2 produces different
- // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
- // (x /u C1) <u C2. Simply casting the operands and result won't
- // work. :( The if statement below tests that condition and bails
- // if it finds it.
- bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
- if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
- return 0;
- if (DivRHS->isZero())
- return 0; // The ProdOV computation fails on divide by zero.
- if (DivIsSigned && DivRHS->isAllOnesValue())
- return 0; // The overflow computation also screws up here
- if (DivRHS->isOne())
- return 0; // Not worth bothering, and eliminates some funny cases
- // with INT_MIN.
-
- // Compute Prod = CI * DivRHS. We are essentially solving an equation
- // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
- // C2 (CI). By solving for X we can turn this into a range check
- // instead of computing a divide.
- Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
-
- // Determine if the product overflows by seeing if the product is
- // not equal to the divide. Make sure we do the same kind of divide
- // as in the LHS instruction that we're folding.
- bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
- ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
-
- // Get the ICmp opcode
- ICmpInst::Predicate Pred = ICI.getPredicate();
-
- // Figure out the interval that is being checked. For example, a comparison
- // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
- // Compute this interval based on the constants involved and the signedness of
- // the compare/divide. This computes a half-open interval, keeping track of
- // whether either value in the interval overflows. After analysis each
- // overflow variable is set to 0 if it's corresponding bound variable is valid
- // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
- int LoOverflow = 0, HiOverflow = 0;
- Constant *LoBound = 0, *HiBound = 0;
-
- if (!DivIsSigned) { // udiv
- // e.g. X/5 op 3 --> [15, 20)
- LoBound = Prod;
- HiOverflow = LoOverflow = ProdOV;
- if (!HiOverflow)
- HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, Context, false);
- } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
- if (CmpRHSV == 0) { // (X / pos) op 0
- // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
- LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
- HiBound = DivRHS;
- } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
- LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
- HiOverflow = LoOverflow = ProdOV;
- if (!HiOverflow)
- HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, Context, true);
- } else { // (X / pos) op neg
- // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
- HiBound = AddOne(Prod);
- LoOverflow = HiOverflow = ProdOV ? -1 : 0;
- if (!LoOverflow) {
- ConstantInt* DivNeg =
- cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
- LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, Context,
- true) ? -1 : 0;
- }
- }
- } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
- if (CmpRHSV == 0) { // (X / neg) op 0
- // e.g. X/-5 op 0 --> [-4, 5)
- LoBound = AddOne(DivRHS);
- HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
- if (HiBound == DivRHS) { // -INTMIN = INTMIN
- HiOverflow = 1; // [INTMIN+1, overflow)
- HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
- }
- } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
- // e.g. X/-5 op 3 --> [-19, -14)
- HiBound = AddOne(Prod);
- HiOverflow = LoOverflow = ProdOV ? -1 : 0;
- if (!LoOverflow)
- LoOverflow = AddWithOverflow(LoBound, HiBound,
- DivRHS, Context, true) ? -1 : 0;
- } else { // (X / neg) op neg
- LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
- LoOverflow = HiOverflow = ProdOV;
- if (!HiOverflow)
- HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, Context, true);
- }
-
- // Dividing by a negative swaps the condition. LT <-> GT
- Pred = ICmpInst::getSwappedPredicate(Pred);
- }
-
- Value *X = DivI->getOperand(0);
- switch (Pred) {
- default: llvm_unreachable("Unhandled icmp opcode!");
- case ICmpInst::ICMP_EQ:
- if (LoOverflow && HiOverflow)
- return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
- else if (HiOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
- ICmpInst::ICMP_UGE, X, LoBound);
- else if (LoOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
- ICmpInst::ICMP_ULT, X, HiBound);
- else
- return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
- case ICmpInst::ICMP_NE:
- if (LoOverflow && HiOverflow)
- return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
- else if (HiOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
- ICmpInst::ICMP_ULT, X, LoBound);
- else if (LoOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
- ICmpInst::ICMP_UGE, X, HiBound);
- else
- return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_SLT:
- if (LoOverflow == +1) // Low bound is greater than input range.
- return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
- if (LoOverflow == -1) // Low bound is less than input range.
- return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
- return new ICmpInst(Pred, X, LoBound);
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_SGT:
- if (HiOverflow == +1) // High bound greater than input range.
- return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
- else if (HiOverflow == -1) // High bound less than input range.
- return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
- if (Pred == ICmpInst::ICMP_UGT)
- return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
- else
- return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
- }
-}
-
-
-/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
-///
-Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
- Instruction *LHSI,
- ConstantInt *RHS) {
- const APInt &RHSV = RHS->getValue();
-
- switch (LHSI->getOpcode()) {
- case Instruction::Trunc:
- if (ICI.isEquality() && LHSI->hasOneUse()) {
- // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
- // of the high bits truncated out of x are known.
- unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
- SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
- APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
- APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
- ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
-
- // If all the high bits are known, we can do this xform.
- if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
- // Pull in the high bits from known-ones set.
- APInt NewRHS(RHS->getValue());
- NewRHS.zext(SrcBits);
- NewRHS |= KnownOne;
- return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
- ConstantInt::get(*Context, NewRHS));
- }
- }
- break;
-
- case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
- if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
- // If this is a comparison that tests the signbit (X < 0) or (x > -1),
- // fold the xor.
- if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
- (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
- Value *CompareVal = LHSI->getOperand(0);
-
- // If the sign bit of the XorCST is not set, there is no change to
- // the operation, just stop using the Xor.
- if (!XorCST->getValue().isNegative()) {
- ICI.setOperand(0, CompareVal);
- Worklist.Add(LHSI);
- return &ICI;
- }
-
- // Was the old condition true if the operand is positive?
- bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
-
- // If so, the new one isn't.
- isTrueIfPositive ^= true;
-
- if (isTrueIfPositive)
- return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
- SubOne(RHS));
- else
- return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
- AddOne(RHS));
- }
-
- if (LHSI->hasOneUse()) {
- // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
- if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
- const APInt &SignBit = XorCST->getValue();
- ICmpInst::Predicate Pred = ICI.isSigned()
- ? ICI.getUnsignedPredicate()
- : ICI.getSignedPredicate();
- return new ICmpInst(Pred, LHSI->getOperand(0),
- ConstantInt::get(*Context, RHSV ^ SignBit));
- }
-
- // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
- if (!ICI.isEquality() && XorCST->getValue().isMaxSignedValue()) {
- const APInt &NotSignBit = XorCST->getValue();
- ICmpInst::Predicate Pred = ICI.isSigned()
- ? ICI.getUnsignedPredicate()
- : ICI.getSignedPredicate();
- Pred = ICI.getSwappedPredicate(Pred);
- return new ICmpInst(Pred, LHSI->getOperand(0),
- ConstantInt::get(*Context, RHSV ^ NotSignBit));
- }
- }
- }
- break;
- case Instruction::And: // (icmp pred (and X, AndCST), RHS)
- if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
- LHSI->getOperand(0)->hasOneUse()) {
- ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
-
- // If the LHS is an AND of a truncating cast, we can widen the
- // and/compare to be the input width without changing the value
- // produced, eliminating a cast.
- if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
- // We can do this transformation if either the AND constant does not
- // have its sign bit set or if it is an equality comparison.
- // Extending a relational comparison when we're checking the sign
- // bit would not work.
- if (Cast->hasOneUse() &&
- (ICI.isEquality() ||
- (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
- uint32_t BitWidth =
- cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
- APInt NewCST = AndCST->getValue();
- NewCST.zext(BitWidth);
- APInt NewCI = RHSV;
- NewCI.zext(BitWidth);
- Value *NewAnd =
- Builder->CreateAnd(Cast->getOperand(0),
- ConstantInt::get(*Context, NewCST), LHSI->getName());
- return new ICmpInst(ICI.getPredicate(), NewAnd,
- ConstantInt::get(*Context, NewCI));
- }
- }
-
- // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
- // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
- // happens a LOT in code produced by the C front-end, for bitfield
- // access.
- BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
- if (Shift && !Shift->isShift())
- Shift = 0;
-
- ConstantInt *ShAmt;
- ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
- const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
- const Type *AndTy = AndCST->getType(); // Type of the and.
-
- // We can fold this as long as we can't shift unknown bits
- // into the mask. This can only happen with signed shift
- // rights, as they sign-extend.
- if (ShAmt) {
- bool CanFold = Shift->isLogicalShift();
- if (!CanFold) {
- // To test for the bad case of the signed shr, see if any
- // of the bits shifted in could be tested after the mask.
- uint32_t TyBits = Ty->getPrimitiveSizeInBits();
- int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
-
- uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
- if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
- AndCST->getValue()) == 0)
- CanFold = true;
- }
-
- if (CanFold) {
- Constant *NewCst;
- if (Shift->getOpcode() == Instruction::Shl)
- NewCst = ConstantExpr::getLShr(RHS, ShAmt);
- else
- NewCst = ConstantExpr::getShl(RHS, ShAmt);
-
- // Check to see if we are shifting out any of the bits being
- // compared.
- if (ConstantExpr::get(Shift->getOpcode(),
- NewCst, ShAmt) != RHS) {
- // If we shifted bits out, the fold is not going to work out.
- // As a special case, check to see if this means that the
- // result is always true or false now.
- if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
- return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
- if (ICI.getPredicate() == ICmpInst::ICMP_NE)
- return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
- } else {
- ICI.setOperand(1, NewCst);
- Constant *NewAndCST;
- if (Shift->getOpcode() == Instruction::Shl)
- NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
- else
- NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
- LHSI->setOperand(1, NewAndCST);
- LHSI->setOperand(0, Shift->getOperand(0));
- Worklist.Add(Shift); // Shift is dead.
- return &ICI;
- }
- }
- }
-
- // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
- // preferable because it allows the C<<Y expression to be hoisted out
- // of a loop if Y is invariant and X is not.
- if (Shift && Shift->hasOneUse() && RHSV == 0 &&
- ICI.isEquality() && !Shift->isArithmeticShift() &&
- !isa<Constant>(Shift->getOperand(0))) {
- // Compute C << Y.
- Value *NS;
- if (Shift->getOpcode() == Instruction::LShr) {
- NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp");
- } else {
- // Insert a logical shift.
- NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp");
- }
-
- // Compute X & (C << Y).
- Value *NewAnd =
- Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
-
- ICI.setOperand(0, NewAnd);
- return &ICI;
- }
- }
- break;
-
- case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
- ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
- if (!ShAmt) break;
-
- uint32_t TypeBits = RHSV.getBitWidth();
-
- // Check that the shift amount is in range. If not, don't perform
- // undefined shifts. When the shift is visited it will be
- // simplified.
- if (ShAmt->uge(TypeBits))
- break;
-
- if (ICI.isEquality()) {
- // If we are comparing against bits always shifted out, the
- // comparison cannot succeed.
- Constant *Comp =
- ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
- ShAmt);
- if (Comp != RHS) {// Comparing against a bit that we know is zero.
- bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
- Constant *Cst = ConstantInt::get(Type::getInt1Ty(*Context), IsICMP_NE);
- return ReplaceInstUsesWith(ICI, Cst);
- }
-
- if (LHSI->hasOneUse()) {
- // Otherwise strength reduce the shift into an and.
- uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
- Constant *Mask =
- ConstantInt::get(*Context, APInt::getLowBitsSet(TypeBits,
- TypeBits-ShAmtVal));
-
- Value *And =
- Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
- return new ICmpInst(ICI.getPredicate(), And,
- ConstantInt::get(*Context, RHSV.lshr(ShAmtVal)));
- }
- }
-
- // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
- bool TrueIfSigned = false;
- if (LHSI->hasOneUse() &&
- isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
- // (X << 31) <s 0 --> (X&1) != 0
- Constant *Mask = ConstantInt::get(*Context, APInt(TypeBits, 1) <<
- (TypeBits-ShAmt->getZExtValue()-1));
- Value *And =
- Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
- return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
- And, Constant::getNullValue(And->getType()));
- }
- break;
- }
-
- case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
- case Instruction::AShr: {
- // Only handle equality comparisons of shift-by-constant.
- ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
- if (!ShAmt || !ICI.isEquality()) break;
-
- // Check that the shift amount is in range. If not, don't perform
- // undefined shifts. When the shift is visited it will be
- // simplified.
- uint32_t TypeBits = RHSV.getBitWidth();
- if (ShAmt->uge(TypeBits))
- break;
-
- uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
-
- // If we are comparing against bits always shifted out, the
- // comparison cannot succeed.
- APInt Comp = RHSV << ShAmtVal;
- if (LHSI->getOpcode() == Instruction::LShr)
- Comp = Comp.lshr(ShAmtVal);
- else
- Comp = Comp.ashr(ShAmtVal);
-
- if (Comp != RHSV) { // Comparing against a bit that we know is zero.
- bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
- Constant *Cst = ConstantInt::get(Type::getInt1Ty(*Context), IsICMP_NE);
- return ReplaceInstUsesWith(ICI, Cst);
- }
-
- // Otherwise, check to see if the bits shifted out are known to be zero.
- // If so, we can compare against the unshifted value:
- // (X & 4) >> 1 == 2 --> (X & 4) == 4.
- if (LHSI->hasOneUse() &&
- MaskedValueIsZero(LHSI->getOperand(0),
- APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
- return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
- ConstantExpr::getShl(RHS, ShAmt));
- }
-
- if (LHSI->hasOneUse()) {
- // Otherwise strength reduce the shift into an and.
- APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
- Constant *Mask = ConstantInt::get(*Context, Val);
-
- Value *And = Builder->CreateAnd(LHSI->getOperand(0),
- Mask, LHSI->getName()+".mask");
- return new ICmpInst(ICI.getPredicate(), And,
- ConstantExpr::getShl(RHS, ShAmt));
- }
- break;
- }
-
- case Instruction::SDiv:
- case Instruction::UDiv:
- // Fold: icmp pred ([us]div X, C1), C2 -> range test
- // Fold this div into the comparison, producing a range check.
- // Determine, based on the divide type, what the range is being
- // checked. If there is an overflow on the low or high side, remember
- // it, otherwise compute the range [low, hi) bounding the new value.
- // See: InsertRangeTest above for the kinds of replacements possible.
- if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
- if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
- DivRHS))
- return R;
- break;
-
- case Instruction::Add:
- // Fold: icmp pred (add X, C1), C2
- if (!ICI.isEquality()) {
- ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
- if (!LHSC) break;
- const APInt &LHSV = LHSC->getValue();
-
- ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
- .subtract(LHSV);
-
- if (ICI.isSigned()) {
- if (CR.getLower().isSignBit()) {
- return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
- ConstantInt::get(*Context, CR.getUpper()));
- } else if (CR.getUpper().isSignBit()) {
- return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
- ConstantInt::get(*Context, CR.getLower()));
- }
- } else {
- if (CR.getLower().isMinValue()) {
- return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
- ConstantInt::get(*Context, CR.getUpper()));
- } else if (CR.getUpper().isMinValue()) {
- return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
- ConstantInt::get(*Context, CR.getLower()));
- }
- }
- }
- break;
- }
-
- // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
- if (ICI.isEquality()) {
- bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
-
- // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
- // the second operand is a constant, simplify a bit.
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
- switch (BO->getOpcode()) {
- case Instruction::SRem:
- // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
- if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
- const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
- if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
- Value *NewRem =
- Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
- BO->getName());
- return new ICmpInst(ICI.getPredicate(), NewRem,
- Constant::getNullValue(BO->getType()));
- }
- }
- break;
- case Instruction::Add:
- // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
- if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
- if (BO->hasOneUse())
- return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
- ConstantExpr::getSub(RHS, BOp1C));
- } else if (RHSV == 0) {
- // Replace ((add A, B) != 0) with (A != -B) if A or B is
- // efficiently invertible, or if the add has just this one use.
- Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
-
- if (Value *NegVal = dyn_castNegVal(BOp1))
- return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
- else if (Value *NegVal = dyn_castNegVal(BOp0))
- return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
- else if (BO->hasOneUse()) {
- Value *Neg = Builder->CreateNeg(BOp1);
- Neg->takeName(BO);
- return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
- }
- }
- break;
- case Instruction::Xor:
- // For the xor case, we can xor two constants together, eliminating
- // the explicit xor.
- if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
- return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
- ConstantExpr::getXor(RHS, BOC));
-
- // FALLTHROUGH
- case Instruction::Sub:
- // Replace (([sub|xor] A, B) != 0) with (A != B)
- if (RHSV == 0)
- return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
- BO->getOperand(1));
- break;
-
- case Instruction::Or:
- // If bits are being or'd in that are not present in the constant we
- // are comparing against, then the comparison could never succeed!
- if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
- Constant *NotCI = ConstantExpr::getNot(RHS);
- if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
- return ReplaceInstUsesWith(ICI,
- ConstantInt::get(Type::getInt1Ty(*Context),
- isICMP_NE));
- }
- break;
-
- case Instruction::And:
- if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
- // If bits are being compared against that are and'd out, then the
- // comparison can never succeed!
- if ((RHSV & ~BOC->getValue()) != 0)
- return ReplaceInstUsesWith(ICI,
- ConstantInt::get(Type::getInt1Ty(*Context),
- isICMP_NE));
-
- // If we have ((X & C) == C), turn it into ((X & C) != 0).
- if (RHS == BOC && RHSV.isPowerOf2())
- return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
- ICmpInst::ICMP_NE, LHSI,
- Constant::getNullValue(RHS->getType()));
-
- // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
- if (BOC->getValue().isSignBit()) {
- Value *X = BO->getOperand(0);
- Constant *Zero = Constant::getNullValue(X->getType());
- ICmpInst::Predicate pred = isICMP_NE ?
- ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
- return new ICmpInst(pred, X, Zero);
- }
-
- // ((X & ~7) == 0) --> X < 8
- if (RHSV == 0 && isHighOnes(BOC)) {
- Value *X = BO->getOperand(0);
- Constant *NegX = ConstantExpr::getNeg(BOC);
- ICmpInst::Predicate pred = isICMP_NE ?
- ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
- return new ICmpInst(pred, X, NegX);
- }
- }
- default: break;
- }
- } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
- // Handle icmp {eq|ne} <intrinsic>, intcst.
- if (II->getIntrinsicID() == Intrinsic::bswap) {
- Worklist.Add(II);
- ICI.setOperand(0, II->getOperand(1));
- ICI.setOperand(1, ConstantInt::get(*Context, RHSV.byteSwap()));
- return &ICI;
- }
- }
- }
- return 0;
-}
-
-/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
-/// We only handle extending casts so far.
-///
-Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
- const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
- Value *LHSCIOp = LHSCI->getOperand(0);
- const Type *SrcTy = LHSCIOp->getType();
- const Type *DestTy = LHSCI->getType();
- Value *RHSCIOp;
-
- // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
- // integer type is the same size as the pointer type.
- if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
- TD->getPointerSizeInBits() ==
- cast<IntegerType>(DestTy)->getBitWidth()) {
- Value *RHSOp = 0;
- if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
- RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
- } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
- RHSOp = RHSC->getOperand(0);
- // If the pointer types don't match, insert a bitcast.
- if (LHSCIOp->getType() != RHSOp->getType())
- RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
- }
-
- if (RHSOp)
- return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
- }
-
- // The code below only handles extension cast instructions, so far.
- // Enforce this.
- if (LHSCI->getOpcode() != Instruction::ZExt &&
- LHSCI->getOpcode() != Instruction::SExt)
- return 0;
-
- bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
- bool isSignedCmp = ICI.isSigned();
-
- if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
- // Not an extension from the same type?
- RHSCIOp = CI->getOperand(0);
- if (RHSCIOp->getType() != LHSCIOp->getType())
- return 0;
-
- // If the signedness of the two casts doesn't agree (i.e. one is a sext
- // and the other is a zext), then we can't handle this.
- if (CI->getOpcode() != LHSCI->getOpcode())
- return 0;
-
- // Deal with equality cases early.
- if (ICI.isEquality())
- return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
-
- // A signed comparison of sign extended values simplifies into a
- // signed comparison.
- if (isSignedCmp && isSignedExt)
- return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
-
- // The other three cases all fold into an unsigned comparison.
- return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
- }
-
- // If we aren't dealing with a constant on the RHS, exit early
- ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
- if (!CI)
- return 0;
-
- // Compute the constant that would happen if we truncated to SrcTy then
- // reextended to DestTy.
- Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
- Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
- Res1, DestTy);
-
- // If the re-extended constant didn't change...
- if (Res2 == CI) {
- // Deal with equality cases early.
- if (ICI.isEquality())
- return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
-
- // A signed comparison of sign extended values simplifies into a
- // signed comparison.
- if (isSignedExt && isSignedCmp)
- return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
-
- // The other three cases all fold into an unsigned comparison.
- return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
- }
-
- // The re-extended constant changed so the constant cannot be represented
- // in the shorter type. Consequently, we cannot emit a simple comparison.
-
- // First, handle some easy cases. We know the result cannot be equal at this
- // point so handle the ICI.isEquality() cases
- if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
- return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
- if (ICI.getPredicate() == ICmpInst::ICMP_NE)
- return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
-
- // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
- // should have been folded away previously and not enter in here.
- Value *Result;
- if (isSignedCmp) {
- // We're performing a signed comparison.
- if (cast<ConstantInt>(CI)->getValue().isNegative())
- Result = ConstantInt::getFalse(*Context); // X < (small) --> false
- else
- Result = ConstantInt::getTrue(*Context); // X < (large) --> true
- } else {
- // We're performing an unsigned comparison.
- if (isSignedExt) {
- // We're performing an unsigned comp with a sign extended value.
- // This is true if the input is >= 0. [aka >s -1]
- Constant *NegOne = Constant::getAllOnesValue(SrcTy);
- Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
- } else {
- // Unsigned extend & unsigned compare -> always true.
- Result = ConstantInt::getTrue(*Context);
- }
- }
-
- // Finally, return the value computed.
- if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
- ICI.getPredicate() == ICmpInst::ICMP_SLT)
- return ReplaceInstUsesWith(ICI, Result);
-
- assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
- ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
- "ICmp should be folded!");
- if (Constant *CI = dyn_cast<Constant>(Result))
- return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
- return BinaryOperator::CreateNot(Result);
-}
-
-Instruction *InstCombiner::visitShl(BinaryOperator &I) {
- return commonShiftTransforms(I);
-}
-
-Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
- return commonShiftTransforms(I);
-}
-
-Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
- if (Instruction *R = commonShiftTransforms(I))
- return R;
-
- Value *Op0 = I.getOperand(0);
-
- // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
- if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
- if (CSI->isAllOnesValue())
- return ReplaceInstUsesWith(I, CSI);
-
- // See if we can turn a signed shr into an unsigned shr.
- if (MaskedValueIsZero(Op0,
- APInt::getSignBit(I.getType()->getScalarSizeInBits())))
- return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
-
- // Arithmetic shifting an all-sign-bit value is a no-op.
- unsigned NumSignBits = ComputeNumSignBits(Op0);
- if (NumSignBits == Op0->getType()->getScalarSizeInBits())
- return ReplaceInstUsesWith(I, Op0);
-
- return 0;
-}
-
-Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
- assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- // shl X, 0 == X and shr X, 0 == X
- // shl 0, X == 0 and shr 0, X == 0
- if (Op1 == Constant::getNullValue(Op1->getType()) ||
- Op0 == Constant::getNullValue(Op0->getType()))
- return ReplaceInstUsesWith(I, Op0);
-
- if (isa<UndefValue>(Op0)) {
- if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
- return ReplaceInstUsesWith(I, Op0);
- else // undef << X -> 0, undef >>u X -> 0
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
- }
- if (isa<UndefValue>(Op1)) {
- if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
- return ReplaceInstUsesWith(I, Op0);
- else // X << undef, X >>u undef -> 0
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
- }
-
- // See if we can fold away this shift.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
-
- // Try to fold constant and into select arguments.
- if (isa<Constant>(Op0))
- if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
- if (Instruction *R = FoldOpIntoSelect(I, SI, this))
- return R;
-
- if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
- if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
- return Res;
- return 0;
-}
-
-Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
- BinaryOperator &I) {
- bool isLeftShift = I.getOpcode() == Instruction::Shl;
-
- // See if we can simplify any instructions used by the instruction whose sole
- // purpose is to compute bits we don't care about.
- uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
-
- // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate
- // a signed shift.
- //
- if (Op1->uge(TypeBits)) {
- if (I.getOpcode() != Instruction::AShr)
- return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
- else {
- I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
- return &I;
- }
- }
-
- // ((X*C1) << C2) == (X * (C1 << C2))
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
- if (BO->getOpcode() == Instruction::Mul && isLeftShift)
- if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
- return BinaryOperator::CreateMul(BO->getOperand(0),
- ConstantExpr::getShl(BOOp, Op1));
-
- // Try to fold constant and into select arguments.
- if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
- if (Instruction *R = FoldOpIntoSelect(I, SI, this))
- return R;
- if (isa<PHINode>(Op0))
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
-
- // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
- if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
- Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
- // If 'shift2' is an ashr, we would have to get the sign bit into a funny
- // place. Don't try to do this transformation in this case. Also, we
- // require that the input operand is a shift-by-constant so that we have
- // confidence that the shifts will get folded together. We could do this
- // xform in more cases, but it is unlikely to be profitable.
- if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
- isa<ConstantInt>(TrOp->getOperand(1))) {
- // Okay, we'll do this xform. Make the shift of shift.
- Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
- // (shift2 (shift1 & 0x00FF), c2)
- Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
-
- // For logical shifts, the truncation has the effect of making the high
- // part of the register be zeros. Emulate this by inserting an AND to
- // clear the top bits as needed. This 'and' will usually be zapped by
- // other xforms later if dead.
- unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
- unsigned DstSize = TI->getType()->getScalarSizeInBits();
- APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
-
- // The mask we constructed says what the trunc would do if occurring
- // between the shifts. We want to know the effect *after* the second
- // shift. We know that it is a logical shift by a constant, so adjust the
- // mask as appropriate.
- if (I.getOpcode() == Instruction::Shl)
- MaskV <<= Op1->getZExtValue();
- else {
- assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
- MaskV = MaskV.lshr(Op1->getZExtValue());
- }
-
- // shift1 & 0x00FF
- Value *And = Builder->CreateAnd(NSh, ConstantInt::get(*Context, MaskV),
- TI->getName());
-
- // Return the value truncated to the interesting size.
- return new TruncInst(And, I.getType());
- }
- }
-
- if (Op0->hasOneUse()) {
- if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
- // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
- Value *V1, *V2;
- ConstantInt *CC;
- switch (Op0BO->getOpcode()) {
- default: break;
- case Instruction::Add:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // These operators commute.
- // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
- if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
- match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
- m_Specific(Op1)))) {
- Value *YS = // (Y << C)
- Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
- // (X + (Y << C))
- Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
- Op0BO->getOperand(1)->getName());
- uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
- return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context,
- APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
- }
-
- // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
- Value *Op0BOOp1 = Op0BO->getOperand(1);
- if (isLeftShift && Op0BOOp1->hasOneUse() &&
- match(Op0BOOp1,
- m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
- m_ConstantInt(CC))) &&
- cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
- Value *YS = // (Y << C)
- Builder->CreateShl(Op0BO->getOperand(0), Op1,
- Op0BO->getName());
- // X & (CC << C)
- Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
- V1->getName()+".mask");
- return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
- }
- }
-
- // FALL THROUGH.
- case Instruction::Sub: {
- // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
- if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
- match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
- m_Specific(Op1)))) {
- Value *YS = // (Y << C)
- Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
- // (X + (Y << C))
- Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
- Op0BO->getOperand(0)->getName());
- uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
- return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context,
- APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
- }
-
- // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
- if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
- match(Op0BO->getOperand(0),
- m_And(m_Shr(m_Value(V1), m_Value(V2)),
- m_ConstantInt(CC))) && V2 == Op1 &&
- cast<BinaryOperator>(Op0BO->getOperand(0))
- ->getOperand(0)->hasOneUse()) {
- Value *YS = // (Y << C)
- Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
- // X & (CC << C)
- Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
- V1->getName()+".mask");
-
- return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
- }
-
- break;
- }
- }
-
-
- // If the operand is an bitwise operator with a constant RHS, and the
- // shift is the only use, we can pull it out of the shift.
- if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
- bool isValid = true; // Valid only for And, Or, Xor
- bool highBitSet = false; // Transform if high bit of constant set?
-
- switch (Op0BO->getOpcode()) {
- default: isValid = false; break; // Do not perform transform!
- case Instruction::Add:
- isValid = isLeftShift;
- break;
- case Instruction::Or:
- case Instruction::Xor:
- highBitSet = false;
- break;
- case Instruction::And:
- highBitSet = true;
- break;
- }
-
- // If this is a signed shift right, and the high bit is modified
- // by the logical operation, do not perform the transformation.
- // The highBitSet boolean indicates the value of the high bit of
- // the constant which would cause it to be modified for this
- // operation.
- //
- if (isValid && I.getOpcode() == Instruction::AShr)
- isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
-
- if (isValid) {
- Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
-
- Value *NewShift =
- Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
- NewShift->takeName(Op0BO);
-
- return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
- NewRHS);
- }
- }
- }
- }
-
- // Find out if this is a shift of a shift by a constant.
- BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
- if (ShiftOp && !ShiftOp->isShift())
- ShiftOp = 0;
-
- if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
- ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
- uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
- uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
- assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
- if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
- Value *X = ShiftOp->getOperand(0);
-
- uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
-
- const IntegerType *Ty = cast<IntegerType>(I.getType());
-
- // Check for (X << c1) << c2 and (X >> c1) >> c2
- if (I.getOpcode() == ShiftOp->getOpcode()) {
- // If this is oversized composite shift, then unsigned shifts get 0, ashr
- // saturates.
- if (AmtSum >= TypeBits) {
- if (I.getOpcode() != Instruction::AShr)
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
- AmtSum = TypeBits-1; // Saturate to 31 for i32 ashr.
- }
-
- return BinaryOperator::Create(I.getOpcode(), X,
- ConstantInt::get(Ty, AmtSum));
- }
-
- if (ShiftOp->getOpcode() == Instruction::LShr &&
- I.getOpcode() == Instruction::AShr) {
- if (AmtSum >= TypeBits)
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
-
- // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
- return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
- }
-
- if (ShiftOp->getOpcode() == Instruction::AShr &&
- I.getOpcode() == Instruction::LShr) {
- // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
- if (AmtSum >= TypeBits)
- AmtSum = TypeBits-1;
-
- Value *Shift = Builder->CreateAShr(X, ConstantInt::get(Ty, AmtSum));
-
- APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
- return BinaryOperator::CreateAnd(Shift, ConstantInt::get(*Context, Mask));
- }
-
- // Okay, if we get here, one shift must be left, and the other shift must be
- // right. See if the amounts are equal.
- if (ShiftAmt1 == ShiftAmt2) {
- // If we have ((X >>? C) << C), turn this into X & (-1 << C).
- if (I.getOpcode() == Instruction::Shl) {
- APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
- return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context, Mask));
- }
- // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
- if (I.getOpcode() == Instruction::LShr) {
- APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
- return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context, Mask));
- }
- // We can simplify ((X << C) >>s C) into a trunc + sext.
- // NOTE: we could do this for any C, but that would make 'unusual' integer
- // types. For now, just stick to ones well-supported by the code
- // generators.
- const Type *SExtType = 0;
- switch (Ty->getBitWidth() - ShiftAmt1) {
- case 1 :
- case 8 :
- case 16 :
- case 32 :
- case 64 :
- case 128:
- SExtType = IntegerType::get(*Context, Ty->getBitWidth() - ShiftAmt1);
- break;
- default: break;
- }
- if (SExtType)
- return new SExtInst(Builder->CreateTrunc(X, SExtType, "sext"), Ty);
- // Otherwise, we can't handle it yet.
- } else if (ShiftAmt1 < ShiftAmt2) {
- uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
-
- // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
- if (I.getOpcode() == Instruction::Shl) {
- assert(ShiftOp->getOpcode() == Instruction::LShr ||
- ShiftOp->getOpcode() == Instruction::AShr);
- Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
-
- APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
- return BinaryOperator::CreateAnd(Shift,
- ConstantInt::get(*Context, Mask));
- }
-
- // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
- if (I.getOpcode() == Instruction::LShr) {
- assert(ShiftOp->getOpcode() == Instruction::Shl);
- Value *Shift = Builder->CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
-
- APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
- return BinaryOperator::CreateAnd(Shift,
- ConstantInt::get(*Context, Mask));
- }
-
- // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
- } else {
- assert(ShiftAmt2 < ShiftAmt1);
- uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
-
- // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
- if (I.getOpcode() == Instruction::Shl) {
- assert(ShiftOp->getOpcode() == Instruction::LShr ||
- ShiftOp->getOpcode() == Instruction::AShr);
- Value *Shift = Builder->CreateBinOp(ShiftOp->getOpcode(), X,
- ConstantInt::get(Ty, ShiftDiff));
-
- APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
- return BinaryOperator::CreateAnd(Shift,
- ConstantInt::get(*Context, Mask));
- }
-
- // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
- if (I.getOpcode() == Instruction::LShr) {
- assert(ShiftOp->getOpcode() == Instruction::Shl);
- Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
-
- APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
- return BinaryOperator::CreateAnd(Shift,
- ConstantInt::get(*Context, Mask));
- }
-
- // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
- }
- }
- return 0;
-}
-
-
-/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
-/// expression. If so, decompose it, returning some value X, such that Val is
-/// X*Scale+Offset.
-///
-static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
- int &Offset, LLVMContext *Context) {
- assert(Val->getType() == Type::getInt32Ty(*Context) &&
- "Unexpected allocation size type!");
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
- Offset = CI->getZExtValue();
- Scale = 0;
- return ConstantInt::get(Type::getInt32Ty(*Context), 0);
- } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
- if (I->getOpcode() == Instruction::Shl) {
- // This is a value scaled by '1 << the shift amt'.
- Scale = 1U << RHS->getZExtValue();
- Offset = 0;
- return I->getOperand(0);
- } else if (I->getOpcode() == Instruction::Mul) {
- // This value is scaled by 'RHS'.
- Scale = RHS->getZExtValue();
- Offset = 0;
- return I->getOperand(0);
- } else if (I->getOpcode() == Instruction::Add) {
- // We have X+C. Check to see if we really have (X*C2)+C1,
- // where C1 is divisible by C2.
- unsigned SubScale;
- Value *SubVal =
- DecomposeSimpleLinearExpr(I->getOperand(0), SubScale,
- Offset, Context);
- Offset += RHS->getZExtValue();
- Scale = SubScale;
- return SubVal;
- }
- }
- }
-
- // Otherwise, we can't look past this.
- Scale = 1;
- Offset = 0;
- return Val;
-}
-
-
-/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
-/// try to eliminate the cast by moving the type information into the alloc.
-Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
- AllocaInst &AI) {
- const PointerType *PTy = cast<PointerType>(CI.getType());
-
- BuilderTy AllocaBuilder(*Builder);
- AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
-
- // Remove any uses of AI that are dead.
- assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
-
- for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
- Instruction *User = cast<Instruction>(*UI++);
- if (isInstructionTriviallyDead(User)) {
- while (UI != E && *UI == User)
- ++UI; // If this instruction uses AI more than once, don't break UI.
-
- ++NumDeadInst;
- DEBUG(errs() << "IC: DCE: " << *User << '\n');
- EraseInstFromFunction(*User);
- }
- }
-
- // This requires TargetData to get the alloca alignment and size information.
- if (!TD) return 0;
-
- // Get the type really allocated and the type casted to.
- const Type *AllocElTy = AI.getAllocatedType();
- const Type *CastElTy = PTy->getElementType();
- if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
-
- unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
- unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
- if (CastElTyAlign < AllocElTyAlign) return 0;
-
- // If the allocation has multiple uses, only promote it if we are strictly
- // increasing the alignment of the resultant allocation. If we keep it the
- // same, we open the door to infinite loops of various kinds. (A reference
- // from a dbg.declare doesn't count as a use for this purpose.)
- if (!AI.hasOneUse() && !hasOneUsePlusDeclare(&AI) &&
- CastElTyAlign == AllocElTyAlign) return 0;
-
- uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
- uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
- if (CastElTySize == 0 || AllocElTySize == 0) return 0;
-
- // See if we can satisfy the modulus by pulling a scale out of the array
- // size argument.
- unsigned ArraySizeScale;
- int ArrayOffset;
- Value *NumElements = // See if the array size is a decomposable linear expr.
- DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale,
- ArrayOffset, Context);
-
- // If we can now satisfy the modulus, by using a non-1 scale, we really can
- // do the xform.
- if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
- (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
-
- unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
- Value *Amt = 0;
- if (Scale == 1) {
- Amt = NumElements;
- } else {
- Amt = ConstantInt::get(Type::getInt32Ty(*Context), Scale);
- // Insert before the alloca, not before the cast.
- Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
- }
-
- if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
- Value *Off = ConstantInt::get(Type::getInt32Ty(*Context), Offset, true);
- Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
- }
-
- AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
- New->setAlignment(AI.getAlignment());
- New->takeName(&AI);
-
- // If the allocation has one real use plus a dbg.declare, just remove the
- // declare.
- if (DbgDeclareInst *DI = hasOneUsePlusDeclare(&AI)) {
- EraseInstFromFunction(*DI);
- }
- // If the allocation has multiple real uses, insert a cast and change all
- // things that used it to use the new cast. This will also hack on CI, but it
- // will die soon.
- else if (!AI.hasOneUse()) {
- // New is the allocation instruction, pointer typed. AI is the original
- // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
- Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
- AI.replaceAllUsesWith(NewCast);
- }
- return ReplaceInstUsesWith(CI, New);
-}
-
-/// CanEvaluateInDifferentType - Return true if we can take the specified value
-/// and return it as type Ty without inserting any new casts and without
-/// changing the computed value. This is used by code that tries to decide
-/// whether promoting or shrinking integer operations to wider or smaller types
-/// will allow us to eliminate a truncate or extend.
-///
-/// This is a truncation operation if Ty is smaller than V->getType(), or an
-/// extension operation if Ty is larger.
-///
-/// If CastOpc is a truncation, then Ty will be a type smaller than V. We
-/// should return true if trunc(V) can be computed by computing V in the smaller
-/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
-/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
-/// efficiently truncated.
-///
-/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
-/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
-/// the final result.
-bool InstCombiner::CanEvaluateInDifferentType(Value *V, const Type *Ty,
- unsigned CastOpc,
- int &NumCastsRemoved){
- // We can always evaluate constants in another type.
- if (isa<Constant>(V))
- return true;
-
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return false;
-
- const Type *OrigTy = V->getType();
-
- // If this is an extension or truncate, we can often eliminate it.
- if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
- // If this is a cast from the destination type, we can trivially eliminate
- // it, and this will remove a cast overall.
- if (I->getOperand(0)->getType() == Ty) {
- // If the first operand is itself a cast, and is eliminable, do not count
- // this as an eliminable cast. We would prefer to eliminate those two
- // casts first.
- if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
- ++NumCastsRemoved;
- return true;
- }
- }
-
- // We can't extend or shrink something that has multiple uses: doing so would
- // require duplicating the instruction in general, which isn't profitable.
- if (!I->hasOneUse()) return false;
-
- unsigned Opc = I->getOpcode();
- switch (Opc) {
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- // These operators can all arbitrarily be extended or truncated.
- return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
- NumCastsRemoved) &&
- CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
- NumCastsRemoved);
-
- case Instruction::UDiv:
- case Instruction::URem: {
- // UDiv and URem can be truncated if all the truncated bits are zero.
- uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
- uint32_t BitWidth = Ty->getScalarSizeInBits();
- if (BitWidth < OrigBitWidth) {
- APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
- if (MaskedValueIsZero(I->getOperand(0), Mask) &&
- MaskedValueIsZero(I->getOperand(1), Mask)) {
- return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
- NumCastsRemoved) &&
- CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
- NumCastsRemoved);
- }
- }
- break;
- }
- case Instruction::Shl:
- // If we are truncating the result of this SHL, and if it's a shift of a
- // constant amount, we can always perform a SHL in a smaller type.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
- uint32_t BitWidth = Ty->getScalarSizeInBits();
- if (BitWidth < OrigTy->getScalarSizeInBits() &&
- CI->getLimitedValue(BitWidth) < BitWidth)
- return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
- NumCastsRemoved);
- }
- break;
- case Instruction::LShr:
- // If this is a truncate of a logical shr, we can truncate it to a smaller
- // lshr iff we know that the bits we would otherwise be shifting in are
- // already zeros.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
- uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
- uint32_t BitWidth = Ty->getScalarSizeInBits();
- if (BitWidth < OrigBitWidth &&
- MaskedValueIsZero(I->getOperand(0),
- APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
- CI->getLimitedValue(BitWidth) < BitWidth) {
- return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
- NumCastsRemoved);
- }
- }
- break;
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::Trunc:
- // If this is the same kind of case as our original (e.g. zext+zext), we
- // can safely replace it. Note that replacing it does not reduce the number
- // of casts in the input.
- if (Opc == CastOpc)
- return true;
-
- // sext (zext ty1), ty2 -> zext ty2
- if (CastOpc == Instruction::SExt && Opc == Instruction::ZExt)
- return true;
- break;
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(I);
- return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
- NumCastsRemoved) &&
- CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
- NumCastsRemoved);
- }
- case Instruction::PHI: {
- // We can change a phi if we can change all operands.
- PHINode *PN = cast<PHINode>(I);
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
- NumCastsRemoved))
- return false;
- return true;
- }
- default:
- // TODO: Can handle more cases here.
- break;
- }
-
- return false;
-}
-
-/// EvaluateInDifferentType - Given an expression that
-/// CanEvaluateInDifferentType returns true for, actually insert the code to
-/// evaluate the expression.
-Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
- bool isSigned) {
- if (Constant *C = dyn_cast<Constant>(V))
- return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
-
- // Otherwise, it must be an instruction.
- Instruction *I = cast<Instruction>(V);
- Instruction *Res = 0;
- unsigned Opc = I->getOpcode();
- switch (Opc) {
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::AShr:
- case Instruction::LShr:
- case Instruction::Shl:
- case Instruction::UDiv:
- case Instruction::URem: {
- Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
- Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
- Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
- break;
- }
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- // If the source type of the cast is the type we're trying for then we can
- // just return the source. There's no need to insert it because it is not
- // new.
- if (I->getOperand(0)->getType() == Ty)
- return I->getOperand(0);
-
- // Otherwise, must be the same type of cast, so just reinsert a new one.
- Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),Ty);
- break;
- case Instruction::Select: {
- Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
- Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
- Res = SelectInst::Create(I->getOperand(0), True, False);
- break;
- }
- case Instruction::PHI: {
- PHINode *OPN = cast<PHINode>(I);
- PHINode *NPN = PHINode::Create(Ty);
- for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
- Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
- NPN->addIncoming(V, OPN->getIncomingBlock(i));
- }
- Res = NPN;
- break;
- }
- default:
- // TODO: Can handle more cases here.
- llvm_unreachable("Unreachable!");
- break;
- }
-
- Res->takeName(I);
- return InsertNewInstBefore(Res, *I);
-}
-
-/// @brief Implement the transforms common to all CastInst visitors.
-Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
- Value *Src = CI.getOperand(0);
-
- // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
- // eliminate it now.
- if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
- if (Instruction::CastOps opc =
- isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
- // The first cast (CSrc) is eliminable so we need to fix up or replace
- // the second cast (CI). CSrc will then have a good chance of being dead.
- return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
- }
- }
-
- // If we are casting a select then fold the cast into the select
- if (SelectInst *SI = dyn_cast<SelectInst>(Src))
- if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
- return NV;
-
- // If we are casting a PHI then fold the cast into the PHI
- if (isa<PHINode>(Src)) {
- // We don't do this if this would create a PHI node with an illegal type if
- // it is currently legal.
- if (!isa<IntegerType>(Src->getType()) ||
- !isa<IntegerType>(CI.getType()) ||
- ShouldChangeType(CI.getType(), Src->getType(), TD))
- if (Instruction *NV = FoldOpIntoPhi(CI))
- return NV;
- }
-
- return 0;
-}
-
-/// FindElementAtOffset - Given a type and a constant offset, determine whether
-/// or not there is a sequence of GEP indices into the type that will land us at
-/// the specified offset. If so, fill them into NewIndices and return the
-/// resultant element type, otherwise return null.
-static const Type *FindElementAtOffset(const Type *Ty, int64_t Offset,
- SmallVectorImpl<Value*> &NewIndices,
- const TargetData *TD,
- LLVMContext *Context) {
- if (!TD) return 0;
- if (!Ty->isSized()) return 0;
-
- // Start with the index over the outer type. Note that the type size
- // might be zero (even if the offset isn't zero) if the indexed type
- // is something like [0 x {int, int}]
- const Type *IntPtrTy = TD->getIntPtrType(*Context);
- int64_t FirstIdx = 0;
- if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
- FirstIdx = Offset/TySize;
- Offset -= FirstIdx*TySize;
-
- // Handle hosts where % returns negative instead of values [0..TySize).
- if (Offset < 0) {
- --FirstIdx;
- Offset += TySize;
- assert(Offset >= 0);
- }
- assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
- }
-
- NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
-
- // Index into the types. If we fail, set OrigBase to null.
- while (Offset) {
- // Indexing into tail padding between struct/array elements.
- if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
- return 0;
-
- if (const StructType *STy = dyn_cast<StructType>(Ty)) {
- const StructLayout *SL = TD->getStructLayout(STy);
- assert(Offset < (int64_t)SL->getSizeInBytes() &&
- "Offset must stay within the indexed type");
-
- unsigned Elt = SL->getElementContainingOffset(Offset);
- NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(*Context), Elt));
-
- Offset -= SL->getElementOffset(Elt);
- Ty = STy->getElementType(Elt);
- } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
- uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
- assert(EltSize && "Cannot index into a zero-sized array");
- NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
- Offset %= EltSize;
- Ty = AT->getElementType();
- } else {
- // Otherwise, we can't index into the middle of this atomic type, bail.
- return 0;
- }
- }
-
- return Ty;
-}
-
-/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
-Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
- Value *Src = CI.getOperand(0);
-
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
- // If casting the result of a getelementptr instruction with no offset, turn
- // this into a cast of the original pointer!
- if (GEP->hasAllZeroIndices()) {
- // Changing the cast operand is usually not a good idea but it is safe
- // here because the pointer operand is being replaced with another
- // pointer operand so the opcode doesn't need to change.
- Worklist.Add(GEP);
- CI.setOperand(0, GEP->getOperand(0));
- return &CI;
- }
-
- // If the GEP has a single use, and the base pointer is a bitcast, and the
- // GEP computes a constant offset, see if we can convert these three
- // instructions into fewer. This typically happens with unions and other
- // non-type-safe code.
- if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
- if (GEP->hasAllConstantIndices()) {
- // We are guaranteed to get a constant from EmitGEPOffset.
- ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, *this));
- int64_t Offset = OffsetV->getSExtValue();
-
- // Get the base pointer input of the bitcast, and the type it points to.
- Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
- const Type *GEPIdxTy =
- cast<PointerType>(OrigBase->getType())->getElementType();
- SmallVector<Value*, 8> NewIndices;
- if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices, TD, Context)) {
- // If we were able to index down into an element, create the GEP
- // and bitcast the result. This eliminates one bitcast, potentially
- // two.
- Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
- Builder->CreateInBoundsGEP(OrigBase,
- NewIndices.begin(), NewIndices.end()) :
- Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
- NGEP->takeName(GEP);
-
- if (isa<BitCastInst>(CI))
- return new BitCastInst(NGEP, CI.getType());
- assert(isa<PtrToIntInst>(CI));
- return new PtrToIntInst(NGEP, CI.getType());
- }
- }
- }
- }
-
- return commonCastTransforms(CI);
-}
-
-/// commonIntCastTransforms - This function implements the common transforms
-/// for trunc, zext, and sext.
-Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
- if (Instruction *Result = commonCastTransforms(CI))
- return Result;
-
- Value *Src = CI.getOperand(0);
- const Type *SrcTy = Src->getType();
- const Type *DestTy = CI.getType();
- uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
- uint32_t DestBitSize = DestTy->getScalarSizeInBits();
-
- // See if we can simplify any instructions used by the LHS whose sole
- // purpose is to compute bits we don't care about.
- if (SimplifyDemandedInstructionBits(CI))
- return &CI;
-
- // If the source isn't an instruction or has more than one use then we
- // can't do anything more.
- Instruction *SrcI = dyn_cast<Instruction>(Src);
- if (!SrcI || !Src->hasOneUse())
- return 0;
-
- // Attempt to propagate the cast into the instruction for int->int casts.
- int NumCastsRemoved = 0;
- // Only do this if the dest type is a simple type, don't convert the
- // expression tree to something weird like i93 unless the source is also
- // strange.
- if ((isa<VectorType>(DestTy) ||
- ShouldChangeType(SrcI->getType(), DestTy, TD)) &&
- CanEvaluateInDifferentType(SrcI, DestTy,
- CI.getOpcode(), NumCastsRemoved)) {
- // If this cast is a truncate, evaluting in a different type always
- // eliminates the cast, so it is always a win. If this is a zero-extension,
- // we need to do an AND to maintain the clear top-part of the computation,
- // so we require that the input have eliminated at least one cast. If this
- // is a sign extension, we insert two new casts (to do the extension) so we
- // require that two casts have been eliminated.
- bool DoXForm = false;
- bool JustReplace = false;
- switch (CI.getOpcode()) {
- default:
- // All the others use floating point so we shouldn't actually
- // get here because of the check above.
- llvm_unreachable("Unknown cast type");
- case Instruction::Trunc:
- DoXForm = true;
- break;
- case Instruction::ZExt: {
- DoXForm = NumCastsRemoved >= 1;
-
- if (!DoXForm && 0) {
- // If it's unnecessary to issue an AND to clear the high bits, it's
- // always profitable to do this xform.
- Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, false);
- APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize));
- if (MaskedValueIsZero(TryRes, Mask))
- return ReplaceInstUsesWith(CI, TryRes);
-
- if (Instruction *TryI = dyn_cast<Instruction>(TryRes))
- if (TryI->use_empty())
- EraseInstFromFunction(*TryI);
- }
- break;
- }
- case Instruction::SExt: {
- DoXForm = NumCastsRemoved >= 2;
- if (!DoXForm && !isa<TruncInst>(SrcI) && 0) {
- // If we do not have to emit the truncate + sext pair, then it's always
- // profitable to do this xform.
- //
- // It's not safe to eliminate the trunc + sext pair if one of the
- // eliminated cast is a truncate. e.g.
- // t2 = trunc i32 t1 to i16
- // t3 = sext i16 t2 to i32
- // !=
- // i32 t1
- Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, true);
- unsigned NumSignBits = ComputeNumSignBits(TryRes);
- if (NumSignBits > (DestBitSize - SrcBitSize))
- return ReplaceInstUsesWith(CI, TryRes);
-
- if (Instruction *TryI = dyn_cast<Instruction>(TryRes))
- if (TryI->use_empty())
- EraseInstFromFunction(*TryI);
- }
- break;
- }
- }
-
- if (DoXForm) {
- DEBUG(errs() << "ICE: EvaluateInDifferentType converting expression type"
- " to avoid cast: " << CI);
- Value *Res = EvaluateInDifferentType(SrcI, DestTy,
- CI.getOpcode() == Instruction::SExt);
- if (JustReplace)
- // Just replace this cast with the result.
- return ReplaceInstUsesWith(CI, Res);
-
- assert(Res->getType() == DestTy);
- switch (CI.getOpcode()) {
- default: llvm_unreachable("Unknown cast type!");
- case Instruction::Trunc:
- // Just replace this cast with the result.
- return ReplaceInstUsesWith(CI, Res);
- case Instruction::ZExt: {
- assert(SrcBitSize < DestBitSize && "Not a zext?");
-
- // If the high bits are already zero, just replace this cast with the
- // result.
- APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize));
- if (MaskedValueIsZero(Res, Mask))
- return ReplaceInstUsesWith(CI, Res);
-
- // We need to emit an AND to clear the high bits.
- Constant *C = ConstantInt::get(*Context,
- APInt::getLowBitsSet(DestBitSize, SrcBitSize));
- return BinaryOperator::CreateAnd(Res, C);
- }
- case Instruction::SExt: {
- // If the high bits are already filled with sign bit, just replace this
- // cast with the result.
- unsigned NumSignBits = ComputeNumSignBits(Res);
- if (NumSignBits > (DestBitSize - SrcBitSize))
- return ReplaceInstUsesWith(CI, Res);
-
- // We need to emit a cast to truncate, then a cast to sext.
- return new SExtInst(Builder->CreateTrunc(Res, Src->getType()), DestTy);
- }
- }
- }
- }
-
- Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
- Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
-
- switch (SrcI->getOpcode()) {
- case Instruction::Add:
- case Instruction::Mul:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- // If we are discarding information, rewrite.
- if (DestBitSize < SrcBitSize && DestBitSize != 1) {
- // Don't insert two casts unless at least one can be eliminated.
- if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
- !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
- Value *Op0c = Builder->CreateTrunc(Op0, DestTy, Op0->getName());
- Value *Op1c = Builder->CreateTrunc(Op1, DestTy, Op1->getName());
- return BinaryOperator::Create(
- cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
- }
- }
-
- // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
- if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
- SrcI->getOpcode() == Instruction::Xor &&
- Op1 == ConstantInt::getTrue(*Context) &&
- (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
- Value *New = Builder->CreateZExt(Op0, DestTy, Op0->getName());
- return BinaryOperator::CreateXor(New,
- ConstantInt::get(CI.getType(), 1));
- }
- break;
-
- case Instruction::Shl: {
- // Canonicalize trunc inside shl, if we can.
- ConstantInt *CI = dyn_cast<ConstantInt>(Op1);
- if (CI && DestBitSize < SrcBitSize &&
- CI->getLimitedValue(DestBitSize) < DestBitSize) {
- Value *Op0c = Builder->CreateTrunc(Op0, DestTy, Op0->getName());
- Value *Op1c = Builder->CreateTrunc(Op1, DestTy, Op1->getName());
- return BinaryOperator::CreateShl(Op0c, Op1c);
- }
- break;
- }
- }
- return 0;
-}
-
-Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
- if (Instruction *Result = commonIntCastTransforms(CI))
- return Result;
-
- Value *Src = CI.getOperand(0);
- const Type *Ty = CI.getType();
- uint32_t DestBitWidth = Ty->getScalarSizeInBits();
- uint32_t SrcBitWidth = Src->getType()->getScalarSizeInBits();
-
- // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0)
- if (DestBitWidth == 1) {
- Constant *One = ConstantInt::get(Src->getType(), 1);
- Src = Builder->CreateAnd(Src, One, "tmp");
- Value *Zero = Constant::getNullValue(Src->getType());
- return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
- }
-
- // Optimize trunc(lshr(), c) to pull the shift through the truncate.
- ConstantInt *ShAmtV = 0;
- Value *ShiftOp = 0;
- if (Src->hasOneUse() &&
- match(Src, m_LShr(m_Value(ShiftOp), m_ConstantInt(ShAmtV)))) {
- uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
-
- // Get a mask for the bits shifting in.
- APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
- if (MaskedValueIsZero(ShiftOp, Mask)) {
- if (ShAmt >= DestBitWidth) // All zeros.
- return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
-
- // Okay, we can shrink this. Truncate the input, then return a new
- // shift.
- Value *V1 = Builder->CreateTrunc(ShiftOp, Ty, ShiftOp->getName());
- Value *V2 = ConstantExpr::getTrunc(ShAmtV, Ty);
- return BinaryOperator::CreateLShr(V1, V2);
- }
- }
-
- return 0;
-}
-
-/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
-/// in order to eliminate the icmp.
-Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
- bool DoXform) {
- // If we are just checking for a icmp eq of a single bit and zext'ing it
- // to an integer, then shift the bit to the appropriate place and then
- // cast to integer to avoid the comparison.
- if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
- const APInt &Op1CV = Op1C->getValue();
-
- // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
- // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
- if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
- (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
- if (!DoXform) return ICI;
-
- Value *In = ICI->getOperand(0);
- Value *Sh = ConstantInt::get(In->getType(),
- In->getType()->getScalarSizeInBits()-1);
- In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
- if (In->getType() != CI.getType())
- In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
-
- if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
- Constant *One = ConstantInt::get(In->getType(), 1);
- In = Builder->CreateXor(In, One, In->getName()+".not");
- }
-
- return ReplaceInstUsesWith(CI, In);
- }
-
-
-
- // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
- // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
- // zext (X == 1) to i32 --> X iff X has only the low bit set.
- // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
- // zext (X != 0) to i32 --> X iff X has only the low bit set.
- // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
- // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
- // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
- if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
- // This only works for EQ and NE
- ICI->isEquality()) {
- // If Op1C some other power of two, convert:
- uint32_t BitWidth = Op1C->getType()->getBitWidth();
- APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- APInt TypeMask(APInt::getAllOnesValue(BitWidth));
- ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
-
- APInt KnownZeroMask(~KnownZero);
- if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
- if (!DoXform) return ICI;
-
- bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
- if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
- // (X&4) == 2 --> false
- // (X&4) != 2 --> true
- Constant *Res = ConstantInt::get(Type::getInt1Ty(*Context), isNE);
- Res = ConstantExpr::getZExt(Res, CI.getType());
- return ReplaceInstUsesWith(CI, Res);
- }
-
- uint32_t ShiftAmt = KnownZeroMask.logBase2();
- Value *In = ICI->getOperand(0);
- if (ShiftAmt) {
- // Perform a logical shr by shiftamt.
- // Insert the shift to put the result in the low bit.
- In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
- In->getName()+".lobit");
- }
-
- if ((Op1CV != 0) == isNE) { // Toggle the low bit.
- Constant *One = ConstantInt::get(In->getType(), 1);
- In = Builder->CreateXor(In, One, "tmp");
- }
-
- if (CI.getType() == In->getType())
- return ReplaceInstUsesWith(CI, In);
- else
- return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
- }
- }
- }
-
- // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
- // It is also profitable to transform icmp eq into not(xor(A, B)) because that
- // may lead to additional simplifications.
- if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
- if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
- uint32_t BitWidth = ITy->getBitWidth();
- Value *LHS = ICI->getOperand(0);
- Value *RHS = ICI->getOperand(1);
-
- APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
- APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
- APInt TypeMask(APInt::getAllOnesValue(BitWidth));
- ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
- ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
-
- if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
- APInt KnownBits = KnownZeroLHS | KnownOneLHS;
- APInt UnknownBit = ~KnownBits;
- if (UnknownBit.countPopulation() == 1) {
- if (!DoXform) return ICI;
-
- Value *Result = Builder->CreateXor(LHS, RHS);
-
- // Mask off any bits that are set and won't be shifted away.
- if (KnownOneLHS.uge(UnknownBit))
- Result = Builder->CreateAnd(Result,
- ConstantInt::get(ITy, UnknownBit));
-
- // Shift the bit we're testing down to the lsb.
- Result = Builder->CreateLShr(
- Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
-
- if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
- Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
- Result->takeName(ICI);
- return ReplaceInstUsesWith(CI, Result);
- }
- }
- }
- }
-
- return 0;
-}
-
-Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
- // If one of the common conversion will work ..
- if (Instruction *Result = commonIntCastTransforms(CI))
- return Result;
-
- Value *Src = CI.getOperand(0);
-
- // If this is a TRUNC followed by a ZEXT then we are dealing with integral
- // types and if the sizes are just right we can convert this into a logical
- // 'and' which will be much cheaper than the pair of casts.
- if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
- // Get the sizes of the types involved. We know that the intermediate type
- // will be smaller than A or C, but don't know the relation between A and C.
- Value *A = CSrc->getOperand(0);
- unsigned SrcSize = A->getType()->getScalarSizeInBits();
- unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
- unsigned DstSize = CI.getType()->getScalarSizeInBits();
- // If we're actually extending zero bits, then if
- // SrcSize < DstSize: zext(a & mask)
- // SrcSize == DstSize: a & mask
- // SrcSize > DstSize: trunc(a) & mask
- if (SrcSize < DstSize) {
- APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
- Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
- Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
- return new ZExtInst(And, CI.getType());
- }
-
- if (SrcSize == DstSize) {
- APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
- return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
- AndValue));
- }
- if (SrcSize > DstSize) {
- Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
- APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
- return BinaryOperator::CreateAnd(Trunc,
- ConstantInt::get(Trunc->getType(),
- AndValue));
- }
- }
-
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
- return transformZExtICmp(ICI, CI);
-
- BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
- if (SrcI && SrcI->getOpcode() == Instruction::Or) {
- // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
- // of the (zext icmp) will be transformed.
- ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
- ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
- if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
- (transformZExtICmp(LHS, CI, false) ||
- transformZExtICmp(RHS, CI, false))) {
- Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
- Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
- return BinaryOperator::Create(Instruction::Or, LCast, RCast);
- }
- }
-
- // zext(trunc(t) & C) -> (t & zext(C)).
- if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
- if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
- if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
- Value *TI0 = TI->getOperand(0);
- if (TI0->getType() == CI.getType())
- return
- BinaryOperator::CreateAnd(TI0,
- ConstantExpr::getZExt(C, CI.getType()));
- }
-
- // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
- if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
- if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
- if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
- if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
- And->getOperand(1) == C)
- if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
- Value *TI0 = TI->getOperand(0);
- if (TI0->getType() == CI.getType()) {
- Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
- Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
- return BinaryOperator::CreateXor(NewAnd, ZC);
- }
- }
-
- return 0;
-}
-
-Instruction *InstCombiner::visitSExt(SExtInst &CI) {
- if (Instruction *I = commonIntCastTransforms(CI))
- return I;
-
- Value *Src = CI.getOperand(0);
-
- // Canonicalize sign-extend from i1 to a select.
- if (Src->getType() == Type::getInt1Ty(*Context))
- return SelectInst::Create(Src,
- Constant::getAllOnesValue(CI.getType()),
- Constant::getNullValue(CI.getType()));
-
- // See if the value being truncated is already sign extended. If so, just
- // eliminate the trunc/sext pair.
- if (Operator::getOpcode(Src) == Instruction::Trunc) {
- Value *Op = cast<User>(Src)->getOperand(0);
- unsigned OpBits = Op->getType()->getScalarSizeInBits();
- unsigned MidBits = Src->getType()->getScalarSizeInBits();
- unsigned DestBits = CI.getType()->getScalarSizeInBits();
- unsigned NumSignBits = ComputeNumSignBits(Op);
-
- if (OpBits == DestBits) {
- // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
- // bits, it is already ready.
- if (NumSignBits > DestBits-MidBits)
- return ReplaceInstUsesWith(CI, Op);
- } else if (OpBits < DestBits) {
- // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
- // bits, just sext from i32.
- if (NumSignBits > OpBits-MidBits)
- return new SExtInst(Op, CI.getType(), "tmp");
- } else {
- // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
- // bits, just truncate to i32.
- if (NumSignBits > OpBits-MidBits)
- return new TruncInst(Op, CI.getType(), "tmp");
- }
- }
-
- // If the input is a shl/ashr pair of a same constant, then this is a sign
- // extension from a smaller value. If we could trust arbitrary bitwidth
- // integers, we could turn this into a truncate to the smaller bit and then
- // use a sext for the whole extension. Since we don't, look deeper and check
- // for a truncate. If the source and dest are the same type, eliminate the
- // trunc and extend and just do shifts. For example, turn:
- // %a = trunc i32 %i to i8
- // %b = shl i8 %a, 6
- // %c = ashr i8 %b, 6
- // %d = sext i8 %c to i32
- // into:
- // %a = shl i32 %i, 30
- // %d = ashr i32 %a, 30
- Value *A = 0;
- ConstantInt *BA = 0, *CA = 0;
- if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
- m_ConstantInt(CA))) &&
- BA == CA && isa<TruncInst>(A)) {
- Value *I = cast<TruncInst>(A)->getOperand(0);
- if (I->getType() == CI.getType()) {
- unsigned MidSize = Src->getType()->getScalarSizeInBits();
- unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
- unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
- Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
- I = Builder->CreateShl(I, ShAmtV, CI.getName());
- return BinaryOperator::CreateAShr(I, ShAmtV);
- }
- }
-
- return 0;
-}
-
-/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
-/// in the specified FP type without changing its value.
-static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem,
- LLVMContext *Context) {
- bool losesInfo;
- APFloat F = CFP->getValueAPF();
- (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
- if (!losesInfo)
- return ConstantFP::get(*Context, F);
- return 0;
-}
-
-/// LookThroughFPExtensions - If this is an fp extension instruction, look
-/// through it until we get the source value.
-static Value *LookThroughFPExtensions(Value *V, LLVMContext *Context) {
- if (Instruction *I = dyn_cast<Instruction>(V))
- if (I->getOpcode() == Instruction::FPExt)
- return LookThroughFPExtensions(I->getOperand(0), Context);
-
- // If this value is a constant, return the constant in the smallest FP type
- // that can accurately represent it. This allows us to turn
- // (float)((double)X+2.0) into x+2.0f.
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
- if (CFP->getType() == Type::getPPC_FP128Ty(*Context))
- return V; // No constant folding of this.
- // See if the value can be truncated to float and then reextended.
- if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle, Context))
- return V;
- if (CFP->getType() == Type::getDoubleTy(*Context))
- return V; // Won't shrink.
- if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble, Context))
- return V;
- // Don't try to shrink to various long double types.
- }
-
- return V;
-}
-
-Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
- if (Instruction *I = commonCastTransforms(CI))
- return I;
-
- // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
- // smaller than the destination type, we can eliminate the truncate by doing
- // the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well as
- // many builtins (sqrt, etc).
- BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
- if (OpI && OpI->hasOneUse()) {
- switch (OpI->getOpcode()) {
- default: break;
- case Instruction::FAdd:
- case Instruction::FSub:
- case Instruction::FMul:
- case Instruction::FDiv:
- case Instruction::FRem:
- const Type *SrcTy = OpI->getType();
- Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0), Context);
- Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1), Context);
- if (LHSTrunc->getType() != SrcTy &&
- RHSTrunc->getType() != SrcTy) {
- unsigned DstSize = CI.getType()->getScalarSizeInBits();
- // If the source types were both smaller than the destination type of
- // the cast, do this xform.
- if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
- RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
- LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
- RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
- return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
- }
- }
- break;
- }
- }
- return 0;
-}
-
-Instruction *InstCombiner::visitFPExt(CastInst &CI) {
- return commonCastTransforms(CI);
-}
-
-Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
- Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
- if (OpI == 0)
- return commonCastTransforms(FI);
-
- // fptoui(uitofp(X)) --> X
- // fptoui(sitofp(X)) --> X
- // This is safe if the intermediate type has enough bits in its mantissa to
- // accurately represent all values of X. For example, do not do this with
- // i64->float->i64. This is also safe for sitofp case, because any negative
- // 'X' value would cause an undefined result for the fptoui.
- if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
- OpI->getOperand(0)->getType() == FI.getType() &&
- (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
- OpI->getType()->getFPMantissaWidth())
- return ReplaceInstUsesWith(FI, OpI->getOperand(0));
-
- return commonCastTransforms(FI);
-}
-
-Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
- Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
- if (OpI == 0)
- return commonCastTransforms(FI);
-
- // fptosi(sitofp(X)) --> X
- // fptosi(uitofp(X)) --> X
- // This is safe if the intermediate type has enough bits in its mantissa to
- // accurately represent all values of X. For example, do not do this with
- // i64->float->i64. This is also safe for sitofp case, because any negative
- // 'X' value would cause an undefined result for the fptoui.
- if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
- OpI->getOperand(0)->getType() == FI.getType() &&
- (int)FI.getType()->getScalarSizeInBits() <=
- OpI->getType()->getFPMantissaWidth())
- return ReplaceInstUsesWith(FI, OpI->getOperand(0));
-
- return commonCastTransforms(FI);
-}
-
-Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
- return commonCastTransforms(CI);
-}
-
-Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
- return commonCastTransforms(CI);
-}
-
-Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
- // If the destination integer type is smaller than the intptr_t type for
- // this target, do a ptrtoint to intptr_t then do a trunc. This allows the
- // trunc to be exposed to other transforms. Don't do this for extending
- // ptrtoint's, because we don't know if the target sign or zero extends its
- // pointers.
- if (TD &&
- CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
- Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
- TD->getIntPtrType(CI.getContext()),
- "tmp");
- return new TruncInst(P, CI.getType());
- }
-
- return commonPointerCastTransforms(CI);
-}
-
-Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
- // If the source integer type is larger than the intptr_t type for
- // this target, do a trunc to the intptr_t type, then inttoptr of it. This
- // allows the trunc to be exposed to other transforms. Don't do this for
- // extending inttoptr's, because we don't know if the target sign or zero
- // extends to pointers.
- if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() >
- TD->getPointerSizeInBits()) {
- Value *P = Builder->CreateTrunc(CI.getOperand(0),
- TD->getIntPtrType(CI.getContext()), "tmp");
- return new IntToPtrInst(P, CI.getType());
- }
-
- if (Instruction *I = commonCastTransforms(CI))
- return I;
-
- return 0;
-}
-
-Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
- // If the operands are integer typed then apply the integer transforms,
- // otherwise just apply the common ones.
- Value *Src = CI.getOperand(0);
- const Type *SrcTy = Src->getType();
- const Type *DestTy = CI.getType();
-
- if (isa<PointerType>(SrcTy)) {
- if (Instruction *I = commonPointerCastTransforms(CI))
- return I;
- } else {
- if (Instruction *Result = commonCastTransforms(CI))
- return Result;
- }
-
-
- // Get rid of casts from one type to the same type. These are useless and can
- // be replaced by the operand.
- if (DestTy == Src->getType())
- return ReplaceInstUsesWith(CI, Src);
-
- if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
- const PointerType *SrcPTy = cast<PointerType>(SrcTy);
- const Type *DstElTy = DstPTy->getElementType();
- const Type *SrcElTy = SrcPTy->getElementType();
-
- // If the address spaces don't match, don't eliminate the bitcast, which is
- // required for changing types.
- if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
- return 0;
-
- // If we are casting a alloca to a pointer to a type of the same
- // size, rewrite the allocation instruction to allocate the "right" type.
- // There is no need to modify malloc calls because it is their bitcast that
- // needs to be cleaned up.
- if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
- if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
- return V;
-
- // If the source and destination are pointers, and this cast is equivalent
- // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
- // This can enhance SROA and other transforms that want type-safe pointers.
- Constant *ZeroUInt = Constant::getNullValue(Type::getInt32Ty(*Context));
- unsigned NumZeros = 0;
- while (SrcElTy != DstElTy &&
- isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
- SrcElTy->getNumContainedTypes() /* not "{}" */) {
- SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
- ++NumZeros;
- }
-
- // If we found a path from the src to dest, create the getelementptr now.
- if (SrcElTy == DstElTy) {
- SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
- return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(), "",
- ((Instruction*) NULL));
- }
- }
-
- if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
- if (DestVTy->getNumElements() == 1) {
- if (!isa<VectorType>(SrcTy)) {
- Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
- return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
- Constant::getNullValue(Type::getInt32Ty(*Context)));
- }
- // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
- }
- }
-
- if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
- if (SrcVTy->getNumElements() == 1) {
- if (!isa<VectorType>(DestTy)) {
- Value *Elem =
- Builder->CreateExtractElement(Src,
- Constant::getNullValue(Type::getInt32Ty(*Context)));
- return CastInst::Create(Instruction::BitCast, Elem, DestTy);
- }
- }
- }
-
- if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
- if (SVI->hasOneUse()) {
- // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
- // a bitconvert to a vector with the same # elts.
- if (isa<VectorType>(DestTy) &&
- cast<VectorType>(DestTy)->getNumElements() ==
- SVI->getType()->getNumElements() &&
- SVI->getType()->getNumElements() ==
- cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
- CastInst *Tmp;
- // If either of the operands is a cast from CI.getType(), then
- // evaluating the shuffle in the casted destination's type will allow
- // us to eliminate at least one cast.
- if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
- Tmp->getOperand(0)->getType() == DestTy) ||
- ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
- Tmp->getOperand(0)->getType() == DestTy)) {
- Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
- Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
- // Return a new shuffle vector. Use the same element ID's, as we
- // know the vector types match #elts.
- return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
- }
- }
- }
- }
- return 0;
-}
-
-/// GetSelectFoldableOperands - We want to turn code that looks like this:
-/// %C = or %A, %B
-/// %D = select %cond, %C, %A
-/// into:
-/// %C = select %cond, %B, 0
-/// %D = or %A, %C
-///
-/// Assuming that the specified instruction is an operand to the select, return
-/// a bitmask indicating which operands of this instruction are foldable if they
-/// equal the other incoming value of the select.
-///
-static unsigned GetSelectFoldableOperands(Instruction *I) {
- switch (I->getOpcode()) {
- case Instruction::Add:
- case Instruction::Mul:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- return 3; // Can fold through either operand.
- case Instruction::Sub: // Can only fold on the amount subtracted.
- case Instruction::Shl: // Can only fold on the shift amount.
- case Instruction::LShr:
- case Instruction::AShr:
- return 1;
- default:
- return 0; // Cannot fold
- }
-}
-
-/// GetSelectFoldableConstant - For the same transformation as the previous
-/// function, return the identity constant that goes into the select.
-static Constant *GetSelectFoldableConstant(Instruction *I,
- LLVMContext *Context) {
- switch (I->getOpcode()) {
- default: llvm_unreachable("This cannot happen!");
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- return Constant::getNullValue(I->getType());
- case Instruction::And:
- return Constant::getAllOnesValue(I->getType());
- case Instruction::Mul:
- return ConstantInt::get(I->getType(), 1);
- }
-}
-
-/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
-/// have the same opcode and only one use each. Try to simplify this.
-Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
- Instruction *FI) {
- if (TI->getNumOperands() == 1) {
- // If this is a non-volatile load or a cast from the same type,
- // merge.
- if (TI->isCast()) {
- if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
- return 0;
- } else {
- return 0; // unknown unary op.
- }
-
- // Fold this by inserting a select from the input values.
- SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
- FI->getOperand(0), SI.getName()+".v");
- InsertNewInstBefore(NewSI, SI);
- return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
- TI->getType());
- }
-
- // Only handle binary operators here.
- if (!isa<BinaryOperator>(TI))
- return 0;
-
- // Figure out if the operations have any operands in common.
- Value *MatchOp, *OtherOpT, *OtherOpF;
- bool MatchIsOpZero;
- if (TI->getOperand(0) == FI->getOperand(0)) {
- MatchOp = TI->getOperand(0);
- OtherOpT = TI->getOperand(1);
- OtherOpF = FI->getOperand(1);
- MatchIsOpZero = true;
- } else if (TI->getOperand(1) == FI->getOperand(1)) {
- MatchOp = TI->getOperand(1);
- OtherOpT = TI->getOperand(0);
- OtherOpF = FI->getOperand(0);
- MatchIsOpZero = false;
- } else if (!TI->isCommutative()) {
- return 0;
- } else if (TI->getOperand(0) == FI->getOperand(1)) {
- MatchOp = TI->getOperand(0);
- OtherOpT = TI->getOperand(1);
- OtherOpF = FI->getOperand(0);
- MatchIsOpZero = true;
- } else if (TI->getOperand(1) == FI->getOperand(0)) {
- MatchOp = TI->getOperand(1);
- OtherOpT = TI->getOperand(0);
- OtherOpF = FI->getOperand(1);
- MatchIsOpZero = true;
- } else {
- return 0;
- }
-
- // If we reach here, they do have operations in common.
- SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
- OtherOpF, SI.getName()+".v");
- InsertNewInstBefore(NewSI, SI);
-
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
- if (MatchIsOpZero)
- return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
- else
- return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
- }
- llvm_unreachable("Shouldn't get here");
- return 0;
-}
-
-static bool isSelect01(Constant *C1, Constant *C2) {
- ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
- if (!C1I)
- return false;
- ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
- if (!C2I)
- return false;
- return (C1I->isZero() || C1I->isOne()) && (C2I->isZero() || C2I->isOne());
-}
-
-/// FoldSelectIntoOp - Try fold the select into one of the operands to
-/// facilitate further optimization.
-Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
- Value *FalseVal) {
- // See the comment above GetSelectFoldableOperands for a description of the
- // transformation we are doing here.
- if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
- if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
- !isa<Constant>(FalseVal)) {
- if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
- unsigned OpToFold = 0;
- if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
- OpToFold = 1;
- } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
- OpToFold = 2;
- }
-
- if (OpToFold) {
- Constant *C = GetSelectFoldableConstant(TVI, Context);
- Value *OOp = TVI->getOperand(2-OpToFold);
- // Avoid creating select between 2 constants unless it's selecting
- // between 0 and 1.
- if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
- Instruction *NewSel = SelectInst::Create(SI.getCondition(), OOp, C);
- InsertNewInstBefore(NewSel, SI);
- NewSel->takeName(TVI);
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
- return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
- llvm_unreachable("Unknown instruction!!");
- }
- }
- }
- }
- }
-
- if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
- if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
- !isa<Constant>(TrueVal)) {
- if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
- unsigned OpToFold = 0;
- if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
- OpToFold = 1;
- } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
- OpToFold = 2;
- }
-
- if (OpToFold) {
- Constant *C = GetSelectFoldableConstant(FVI, Context);
- Value *OOp = FVI->getOperand(2-OpToFold);
- // Avoid creating select between 2 constants unless it's selecting
- // between 0 and 1.
- if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
- Instruction *NewSel = SelectInst::Create(SI.getCondition(), C, OOp);
- InsertNewInstBefore(NewSel, SI);
- NewSel->takeName(FVI);
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
- return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
- llvm_unreachable("Unknown instruction!!");
- }
- }
- }
- }
- }
-
- return 0;
-}
-
-/// visitSelectInstWithICmp - Visit a SelectInst that has an
-/// ICmpInst as its first operand.
-///
-Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
- ICmpInst *ICI) {
- bool Changed = false;
- ICmpInst::Predicate Pred = ICI->getPredicate();
- Value *CmpLHS = ICI->getOperand(0);
- Value *CmpRHS = ICI->getOperand(1);
- Value *TrueVal = SI.getTrueValue();
- Value *FalseVal = SI.getFalseValue();
-
- // Check cases where the comparison is with a constant that
- // can be adjusted to fit the min/max idiom. We may edit ICI in
- // place here, so make sure the select is the only user.
- if (ICI->hasOneUse())
- if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
- switch (Pred) {
- default: break;
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_SLT: {
- // X < MIN ? T : F --> F
- if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
- return ReplaceInstUsesWith(SI, FalseVal);
- // X < C ? X : C-1 --> X > C-1 ? C-1 : X
- Constant *AdjustedRHS = SubOne(CI);
- if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
- (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
- Pred = ICmpInst::getSwappedPredicate(Pred);
- CmpRHS = AdjustedRHS;
- std::swap(FalseVal, TrueVal);
- ICI->setPredicate(Pred);
- ICI->setOperand(1, CmpRHS);
- SI.setOperand(1, TrueVal);
- SI.setOperand(2, FalseVal);
- Changed = true;
- }
- break;
- }
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_SGT: {
- // X > MAX ? T : F --> F
- if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
- return ReplaceInstUsesWith(SI, FalseVal);
- // X > C ? X : C+1 --> X < C+1 ? C+1 : X
- Constant *AdjustedRHS = AddOne(CI);
- if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
- (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
- Pred = ICmpInst::getSwappedPredicate(Pred);
- CmpRHS = AdjustedRHS;
- std::swap(FalseVal, TrueVal);
- ICI->setPredicate(Pred);
- ICI->setOperand(1, CmpRHS);
- SI.setOperand(1, TrueVal);
- SI.setOperand(2, FalseVal);
- Changed = true;
- }
- break;
- }
- }
-
- // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
- // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
- CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
- if (match(TrueVal, m_ConstantInt<-1>()) &&
- match(FalseVal, m_ConstantInt<0>()))
- Pred = ICI->getPredicate();
- else if (match(TrueVal, m_ConstantInt<0>()) &&
- match(FalseVal, m_ConstantInt<-1>()))
- Pred = CmpInst::getInversePredicate(ICI->getPredicate());
-
- if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
- // If we are just checking for a icmp eq of a single bit and zext'ing it
- // to an integer, then shift the bit to the appropriate place and then
- // cast to integer to avoid the comparison.
- const APInt &Op1CV = CI->getValue();
-
- // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
- // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
- if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
- (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
- Value *In = ICI->getOperand(0);
- Value *Sh = ConstantInt::get(In->getType(),
- In->getType()->getScalarSizeInBits()-1);
- In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
- In->getName()+".lobit"),
- *ICI);
- if (In->getType() != SI.getType())
- In = CastInst::CreateIntegerCast(In, SI.getType(),
- true/*SExt*/, "tmp", ICI);
-
- if (Pred == ICmpInst::ICMP_SGT)
- In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
- In->getName()+".not"), *ICI);
-
- return ReplaceInstUsesWith(SI, In);
- }
- }
- }
-
- if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
- // Transform (X == Y) ? X : Y -> Y
- if (Pred == ICmpInst::ICMP_EQ)
- return ReplaceInstUsesWith(SI, FalseVal);
- // Transform (X != Y) ? X : Y -> X
- if (Pred == ICmpInst::ICMP_NE)
- return ReplaceInstUsesWith(SI, TrueVal);
- /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
-
- } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
- // Transform (X == Y) ? Y : X -> X
- if (Pred == ICmpInst::ICMP_EQ)
- return ReplaceInstUsesWith(SI, FalseVal);
- // Transform (X != Y) ? Y : X -> Y
- if (Pred == ICmpInst::ICMP_NE)
- return ReplaceInstUsesWith(SI, TrueVal);
- /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
- }
- return Changed ? &SI : 0;
-}
-
-
-/// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
-/// PHI node (but the two may be in different blocks). See if the true/false
-/// values (V) are live in all of the predecessor blocks of the PHI. For
-/// example, cases like this cannot be mapped:
-///
-/// X = phi [ C1, BB1], [C2, BB2]
-/// Y = add
-/// Z = select X, Y, 0
-///
-/// because Y is not live in BB1/BB2.
-///
-static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
- const SelectInst &SI) {
- // If the value is a non-instruction value like a constant or argument, it
- // can always be mapped.
- const Instruction *I = dyn_cast<Instruction>(V);
- if (I == 0) return true;
-
- // If V is a PHI node defined in the same block as the condition PHI, we can
- // map the arguments.
- const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
-
- if (const PHINode *VP = dyn_cast<PHINode>(I))
- if (VP->getParent() == CondPHI->getParent())
- return true;
-
- // Otherwise, if the PHI and select are defined in the same block and if V is
- // defined in a different block, then we can transform it.
- if (SI.getParent() == CondPHI->getParent() &&
- I->getParent() != CondPHI->getParent())
- return true;
-
- // Otherwise we have a 'hard' case and we can't tell without doing more
- // detailed dominator based analysis, punt.
- return false;
-}
-
-/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
-/// SPF2(SPF1(A, B), C)
-Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
- SelectPatternFlavor SPF1,
- Value *A, Value *B,
- Instruction &Outer,
- SelectPatternFlavor SPF2, Value *C) {
- if (C == A || C == B) {
- // MAX(MAX(A, B), B) -> MAX(A, B)
- // MIN(MIN(a, b), a) -> MIN(a, b)
- if (SPF1 == SPF2)
- return ReplaceInstUsesWith(Outer, Inner);
-
- // MAX(MIN(a, b), a) -> a
- // MIN(MAX(a, b), a) -> a
- if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
- (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
- (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
- (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
- return ReplaceInstUsesWith(Outer, C);
- }
-
- // TODO: MIN(MIN(A, 23), 97)
- return 0;
-}
-
-
-
-
-Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
- Value *CondVal = SI.getCondition();
- Value *TrueVal = SI.getTrueValue();
- Value *FalseVal = SI.getFalseValue();
-
- // select true, X, Y -> X
- // select false, X, Y -> Y
- if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
- return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
-
- // select C, X, X -> X
- if (TrueVal == FalseVal)
- return ReplaceInstUsesWith(SI, TrueVal);
-
- if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
- return ReplaceInstUsesWith(SI, FalseVal);
- if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
- return ReplaceInstUsesWith(SI, TrueVal);
- if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
- if (isa<Constant>(TrueVal))
- return ReplaceInstUsesWith(SI, TrueVal);
- else
- return ReplaceInstUsesWith(SI, FalseVal);
- }
-
- if (SI.getType() == Type::getInt1Ty(*Context)) {
- if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
- if (C->getZExtValue()) {
- // Change: A = select B, true, C --> A = or B, C
- return BinaryOperator::CreateOr(CondVal, FalseVal);
- } else {
- // Change: A = select B, false, C --> A = and !B, C
- Value *NotCond =
- InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
- "not."+CondVal->getName()), SI);
- return BinaryOperator::CreateAnd(NotCond, FalseVal);
- }
- } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
- if (C->getZExtValue() == false) {
- // Change: A = select B, C, false --> A = and B, C
- return BinaryOperator::CreateAnd(CondVal, TrueVal);
- } else {
- // Change: A = select B, C, true --> A = or !B, C
- Value *NotCond =
- InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
- "not."+CondVal->getName()), SI);
- return BinaryOperator::CreateOr(NotCond, TrueVal);
- }
- }
-
- // select a, b, a -> a&b
- // select a, a, b -> a|b
- if (CondVal == TrueVal)
- return BinaryOperator::CreateOr(CondVal, FalseVal);
- else if (CondVal == FalseVal)
- return BinaryOperator::CreateAnd(CondVal, TrueVal);
- }
-
- // Selecting between two integer constants?
- if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
- if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
- // select C, 1, 0 -> zext C to int
- if (FalseValC->isZero() && TrueValC->getValue() == 1) {
- return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
- } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
- // select C, 0, 1 -> zext !C to int
- Value *NotCond =
- InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
- "not."+CondVal->getName()), SI);
- return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
- }
-
- if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
- // If one of the constants is zero (we know they can't both be) and we
- // have an icmp instruction with zero, and we have an 'and' with the
- // non-constant value, eliminate this whole mess. This corresponds to
- // cases like this: ((X & 27) ? 27 : 0)
- if (TrueValC->isZero() || FalseValC->isZero())
- if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
- cast<Constant>(IC->getOperand(1))->isNullValue())
- if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
- if (ICA->getOpcode() == Instruction::And &&
- isa<ConstantInt>(ICA->getOperand(1)) &&
- (ICA->getOperand(1) == TrueValC ||
- ICA->getOperand(1) == FalseValC) &&
- isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
- // Okay, now we know that everything is set up, we just don't
- // know whether we have a icmp_ne or icmp_eq and whether the
- // true or false val is the zero.
- bool ShouldNotVal = !TrueValC->isZero();
- ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
- Value *V = ICA;
- if (ShouldNotVal)
- V = InsertNewInstBefore(BinaryOperator::Create(
- Instruction::Xor, V, ICA->getOperand(1)), SI);
- return ReplaceInstUsesWith(SI, V);
- }
- }
- }
-
- // See if we are selecting two values based on a comparison of the two values.
- if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
- if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
- // Transform (X == Y) ? X : Y -> Y
- if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
- // This is not safe in general for floating point:
- // consider X== -0, Y== +0.
- // It becomes safe if either operand is a nonzero constant.
- ConstantFP *CFPt, *CFPf;
- if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
- !CFPt->getValueAPF().isZero()) ||
- ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
- !CFPf->getValueAPF().isZero()))
- return ReplaceInstUsesWith(SI, FalseVal);
- }
- // Transform (X != Y) ? X : Y -> X
- if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
- return ReplaceInstUsesWith(SI, TrueVal);
- // NOTE: if we wanted to, this is where to detect MIN/MAX
-
- } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
- // Transform (X == Y) ? Y : X -> X
- if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
- // This is not safe in general for floating point:
- // consider X== -0, Y== +0.
- // It becomes safe if either operand is a nonzero constant.
- ConstantFP *CFPt, *CFPf;
- if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
- !CFPt->getValueAPF().isZero()) ||
- ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
- !CFPf->getValueAPF().isZero()))
- return ReplaceInstUsesWith(SI, FalseVal);
- }
- // Transform (X != Y) ? Y : X -> Y
- if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
- return ReplaceInstUsesWith(SI, TrueVal);
- // NOTE: if we wanted to, this is where to detect MIN/MAX
- }
- // NOTE: if we wanted to, this is where to detect ABS
- }
-
- // See if we are selecting two values based on a comparison of the two values.
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
- if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
- return Result;
-
- if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
- if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
- if (TI->hasOneUse() && FI->hasOneUse()) {
- Instruction *AddOp = 0, *SubOp = 0;
-
- // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
- if (TI->getOpcode() == FI->getOpcode())
- if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
- return IV;
-
- // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
- // even legal for FP.
- if ((TI->getOpcode() == Instruction::Sub &&
- FI->getOpcode() == Instruction::Add) ||
- (TI->getOpcode() == Instruction::FSub &&
- FI->getOpcode() == Instruction::FAdd)) {
- AddOp = FI; SubOp = TI;
- } else if ((FI->getOpcode() == Instruction::Sub &&
- TI->getOpcode() == Instruction::Add) ||
- (FI->getOpcode() == Instruction::FSub &&
- TI->getOpcode() == Instruction::FAdd)) {
- AddOp = TI; SubOp = FI;
- }
-
- if (AddOp) {
- Value *OtherAddOp = 0;
- if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
- OtherAddOp = AddOp->getOperand(1);
- } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
- OtherAddOp = AddOp->getOperand(0);
- }
-
- if (OtherAddOp) {
- // So at this point we know we have (Y -> OtherAddOp):
- // select C, (add X, Y), (sub X, Z)
- Value *NegVal; // Compute -Z
- if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
- NegVal = ConstantExpr::getNeg(C);
- } else {
- NegVal = InsertNewInstBefore(
- BinaryOperator::CreateNeg(SubOp->getOperand(1),
- "tmp"), SI);
- }
-
- Value *NewTrueOp = OtherAddOp;
- Value *NewFalseOp = NegVal;
- if (AddOp != TI)
- std::swap(NewTrueOp, NewFalseOp);
- Instruction *NewSel =
- SelectInst::Create(CondVal, NewTrueOp,
- NewFalseOp, SI.getName() + ".p");
-
- NewSel = InsertNewInstBefore(NewSel, SI);
- return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
- }
- }
- }
-
- // See if we can fold the select into one of our operands.
- if (SI.getType()->isInteger()) {
- if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
- return FoldI;
-
- // MAX(MAX(a, b), a) -> MAX(a, b)
- // MIN(MIN(a, b), a) -> MIN(a, b)
- // MAX(MIN(a, b), a) -> a
- // MIN(MAX(a, b), a) -> a
- Value *LHS, *RHS, *LHS2, *RHS2;
- if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
- if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
- if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
- SI, SPF, RHS))
- return R;
- if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
- if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
- SI, SPF, LHS))
- return R;
- }
-
- // TODO.
- // ABS(-X) -> ABS(X)
- // ABS(ABS(X)) -> ABS(X)
- }
-
- // See if we can fold the select into a phi node if the condition is a select.
- if (isa<PHINode>(SI.getCondition()))
- // The true/false values have to be live in the PHI predecessor's blocks.
- if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
- CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
- if (Instruction *NV = FoldOpIntoPhi(SI))
- return NV;
-
- if (BinaryOperator::isNot(CondVal)) {
- SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
- SI.setOperand(1, FalseVal);
- SI.setOperand(2, TrueVal);
- return &SI;
- }
-
- return 0;
-}
-
-/// EnforceKnownAlignment - If the specified pointer points to an object that
-/// we control, modify the object's alignment to PrefAlign. This isn't
-/// often possible though. If alignment is important, a more reliable approach
-/// is to simply align all global variables and allocation instructions to
-/// their preferred alignment from the beginning.
-///
-static unsigned EnforceKnownAlignment(Value *V,
- unsigned Align, unsigned PrefAlign) {
-
- User *U = dyn_cast<User>(V);
- if (!U) return Align;
-
- switch (Operator::getOpcode(U)) {
- default: break;
- case Instruction::BitCast:
- return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
- case Instruction::GetElementPtr: {
- // If all indexes are zero, it is just the alignment of the base pointer.
- bool AllZeroOperands = true;
- for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
- if (!isa<Constant>(*i) ||
- !cast<Constant>(*i)->isNullValue()) {
- AllZeroOperands = false;
- break;
- }
-
- if (AllZeroOperands) {
- // Treat this like a bitcast.
- return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
- }
- break;
- }
- }
-
- if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- // If there is a large requested alignment and we can, bump up the alignment
- // of the global.
- if (!GV->isDeclaration()) {
- if (GV->getAlignment() >= PrefAlign)
- Align = GV->getAlignment();
- else {
- GV->setAlignment(PrefAlign);
- Align = PrefAlign;
- }
- }
- } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
- // If there is a requested alignment and if this is an alloca, round up.
- if (AI->getAlignment() >= PrefAlign)
- Align = AI->getAlignment();
- else {
- AI->setAlignment(PrefAlign);
- Align = PrefAlign;
- }
- }
-
- return Align;
-}
-
-/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
-/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
-/// and it is more than the alignment of the ultimate object, see if we can
-/// increase the alignment of the ultimate object, making this check succeed.
-unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
- unsigned PrefAlign) {
- unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
- sizeof(PrefAlign) * CHAR_BIT;
- APInt Mask = APInt::getAllOnesValue(BitWidth);
- APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
- unsigned TrailZ = KnownZero.countTrailingOnes();
- unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
-
- if (PrefAlign > Align)
- Align = EnforceKnownAlignment(V, Align, PrefAlign);
-
- // We don't need to make any adjustment.
- return Align;
-}
-
-Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
- unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
- unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
- unsigned MinAlign = std::min(DstAlign, SrcAlign);
- unsigned CopyAlign = MI->getAlignment();
-
- if (CopyAlign < MinAlign) {
- MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
- MinAlign, false));
- return MI;
- }
-
- // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
- // load/store.
- ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
- if (MemOpLength == 0) return 0;
-
- // Source and destination pointer types are always "i8*" for intrinsic. See
- // if the size is something we can handle with a single primitive load/store.
- // A single load+store correctly handles overlapping memory in the memmove
- // case.
- unsigned Size = MemOpLength->getZExtValue();
- if (Size == 0) return MI; // Delete this mem transfer.
-
- if (Size > 8 || (Size&(Size-1)))
- return 0; // If not 1/2/4/8 bytes, exit.
-
- // Use an integer load+store unless we can find something better.
- Type *NewPtrTy =
- PointerType::getUnqual(IntegerType::get(*Context, Size<<3));
-
- // Memcpy forces the use of i8* for the source and destination. That means
- // that if you're using memcpy to move one double around, you'll get a cast
- // from double* to i8*. We'd much rather use a double load+store rather than
- // an i64 load+store, here because this improves the odds that the source or
- // dest address will be promotable. See if we can find a better type than the
- // integer datatype.
- if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
- const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
- if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
- // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
- // down through these levels if so.
- while (!SrcETy->isSingleValueType()) {
- if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
- if (STy->getNumElements() == 1)
- SrcETy = STy->getElementType(0);
- else
- break;
- } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
- if (ATy->getNumElements() == 1)
- SrcETy = ATy->getElementType();
- else
- break;
- } else
- break;
- }
-
- if (SrcETy->isSingleValueType())
- NewPtrTy = PointerType::getUnqual(SrcETy);
- }
- }
-
-
- // If the memcpy/memmove provides better alignment info than we can
- // infer, use it.
- SrcAlign = std::max(SrcAlign, CopyAlign);
- DstAlign = std::max(DstAlign, CopyAlign);
-
- Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy);
- Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy);
- Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
- InsertNewInstBefore(L, *MI);
- InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
-
- // Set the size of the copy to 0, it will be deleted on the next iteration.
- MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
- return MI;
-}
-
-Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
- unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
- if (MI->getAlignment() < Alignment) {
- MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
- Alignment, false));
- return MI;
- }
-
- // Extract the length and alignment and fill if they are constant.
- ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
- ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
- if (!LenC || !FillC || FillC->getType() != Type::getInt8Ty(*Context))
- return 0;
- uint64_t Len = LenC->getZExtValue();
- Alignment = MI->getAlignment();
-
- // If the length is zero, this is a no-op
- if (Len == 0) return MI; // memset(d,c,0,a) -> noop
-
- // memset(s,c,n) -> store s, c (for n=1,2,4,8)
- if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
- const Type *ITy = IntegerType::get(*Context, Len*8); // n=1 -> i8.
-
- Value *Dest = MI->getDest();
- Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
-
- // Alignment 0 is identity for alignment 1 for memset, but not store.
- if (Alignment == 0) Alignment = 1;
-
- // Extract the fill value and store.
- uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
- InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
- Dest, false, Alignment), *MI);
-
- // Set the size of the copy to 0, it will be deleted on the next iteration.
- MI->setLength(Constant::getNullValue(LenC->getType()));
- return MI;
- }
-
- return 0;
-}
-
-
-/// visitCallInst - CallInst simplification. This mostly only handles folding
-/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
-/// the heavy lifting.
-///
-Instruction *InstCombiner::visitCallInst(CallInst &CI) {
- if (isFreeCall(&CI))
- return visitFree(CI);
-
- // If the caller function is nounwind, mark the call as nounwind, even if the
- // callee isn't.
- if (CI.getParent()->getParent()->doesNotThrow() &&
- !CI.doesNotThrow()) {
- CI.setDoesNotThrow();
- return &CI;
- }
-
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
- if (!II) return visitCallSite(&CI);
-
- // Intrinsics cannot occur in an invoke, so handle them here instead of in
- // visitCallSite.
- if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
- bool Changed = false;
-
- // memmove/cpy/set of zero bytes is a noop.
- if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
- if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
-
- if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
- if (CI->getZExtValue() == 1) {
- // Replace the instruction with just byte operations. We would
- // transform other cases to loads/stores, but we don't know if
- // alignment is sufficient.
- }
- }
-
- // If we have a memmove and the source operation is a constant global,
- // then the source and dest pointers can't alias, so we can change this
- // into a call to memcpy.
- if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
- if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
- if (GVSrc->isConstant()) {
- Module *M = CI.getParent()->getParent()->getParent();
- Intrinsic::ID MemCpyID = Intrinsic::memcpy;
- const Type *Tys[1];
- Tys[0] = CI.getOperand(3)->getType();
- CI.setOperand(0,
- Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
- Changed = true;
- }
- }
-
- if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
- // memmove(x,x,size) -> noop.
- if (MTI->getSource() == MTI->getDest())
- return EraseInstFromFunction(CI);
- }
-
- // If we can determine a pointer alignment that is bigger than currently
- // set, update the alignment.
- if (isa<MemTransferInst>(MI)) {
- if (Instruction *I = SimplifyMemTransfer(MI))
- return I;
- } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
- if (Instruction *I = SimplifyMemSet(MSI))
- return I;
- }
-
- if (Changed) return II;
- }
-
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::bswap:
- // bswap(bswap(x)) -> x
- if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
- if (Operand->getIntrinsicID() == Intrinsic::bswap)
- return ReplaceInstUsesWith(CI, Operand->getOperand(1));
- break;
- case Intrinsic::powi:
- if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) {
- // powi(x, 0) -> 1.0
- if (Power->isZero())
- return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
- // powi(x, 1) -> x
- if (Power->isOne())
- return ReplaceInstUsesWith(CI, II->getOperand(1));
- // powi(x, -1) -> 1/x
- if (Power->isAllOnesValue())
- return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
- II->getOperand(1));
- }
- break;
-
- case Intrinsic::uadd_with_overflow: {
- Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
- const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
- uint32_t BitWidth = IT->getBitWidth();
- APInt Mask = APInt::getSignBit(BitWidth);
- APInt LHSKnownZero(BitWidth, 0);
- APInt LHSKnownOne(BitWidth, 0);
- ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
- bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
- bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
-
- if (LHSKnownNegative || LHSKnownPositive) {
- APInt RHSKnownZero(BitWidth, 0);
- APInt RHSKnownOne(BitWidth, 0);
- ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
- bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
- bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
- if (LHSKnownNegative && RHSKnownNegative) {
- // The sign bit is set in both cases: this MUST overflow.
- // Create a simple add instruction, and insert it into the struct.
- Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
- Worklist.Add(Add);
- Constant *V[] = {
- UndefValue::get(LHS->getType()), ConstantInt::getTrue(*Context)
- };
- Constant *Struct = ConstantStruct::get(*Context, V, 2, false);
- return InsertValueInst::Create(Struct, Add, 0);
- }
-
- if (LHSKnownPositive && RHSKnownPositive) {
- // The sign bit is clear in both cases: this CANNOT overflow.
- // Create a simple add instruction, and insert it into the struct.
- Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
- Worklist.Add(Add);
- Constant *V[] = {
- UndefValue::get(LHS->getType()), ConstantInt::getFalse(*Context)
- };
- Constant *Struct = ConstantStruct::get(*Context, V, 2, false);
- return InsertValueInst::Create(Struct, Add, 0);
- }
- }
- }
- // FALL THROUGH uadd into sadd
- case Intrinsic::sadd_with_overflow:
- // Canonicalize constants into the RHS.
- if (isa<Constant>(II->getOperand(1)) &&
- !isa<Constant>(II->getOperand(2))) {
- Value *LHS = II->getOperand(1);
- II->setOperand(1, II->getOperand(2));
- II->setOperand(2, LHS);
- return II;
- }
-
- // X + undef -> undef
- if (isa<UndefValue>(II->getOperand(2)))
- return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
-
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
- // X + 0 -> {X, false}
- if (RHS->isZero()) {
- Constant *V[] = {
- UndefValue::get(II->getOperand(0)->getType()),
- ConstantInt::getFalse(*Context)
- };
- Constant *Struct = ConstantStruct::get(*Context, V, 2, false);
- return InsertValueInst::Create(Struct, II->getOperand(1), 0);
- }
- }
- break;
- case Intrinsic::usub_with_overflow:
- case Intrinsic::ssub_with_overflow:
- // undef - X -> undef
- // X - undef -> undef
- if (isa<UndefValue>(II->getOperand(1)) ||
- isa<UndefValue>(II->getOperand(2)))
- return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
-
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
- // X - 0 -> {X, false}
- if (RHS->isZero()) {
- Constant *V[] = {
- UndefValue::get(II->getOperand(1)->getType()),
- ConstantInt::getFalse(*Context)
- };
- Constant *Struct = ConstantStruct::get(*Context, V, 2, false);
- return InsertValueInst::Create(Struct, II->getOperand(1), 0);
- }
- }
- break;
- case Intrinsic::umul_with_overflow:
- case Intrinsic::smul_with_overflow:
- // Canonicalize constants into the RHS.
- if (isa<Constant>(II->getOperand(1)) &&
- !isa<Constant>(II->getOperand(2))) {
- Value *LHS = II->getOperand(1);
- II->setOperand(1, II->getOperand(2));
- II->setOperand(2, LHS);
- return II;
- }
-
- // X * undef -> undef
- if (isa<UndefValue>(II->getOperand(2)))
- return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
-
- if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) {
- // X*0 -> {0, false}
- if (RHSI->isZero())
- return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
-
- // X * 1 -> {X, false}
- if (RHSI->equalsInt(1)) {
- Constant *V[] = {
- UndefValue::get(II->getOperand(1)->getType()),
- ConstantInt::getFalse(*Context)
- };
- Constant *Struct = ConstantStruct::get(*Context, V, 2, false);
- return InsertValueInst::Create(Struct, II->getOperand(1), 0);
- }
- }
- break;
- case Intrinsic::ppc_altivec_lvx:
- case Intrinsic::ppc_altivec_lvxl:
- case Intrinsic::x86_sse_loadu_ps:
- case Intrinsic::x86_sse2_loadu_pd:
- case Intrinsic::x86_sse2_loadu_dq:
- // Turn PPC lvx -> load if the pointer is known aligned.
- // Turn X86 loadups -> load if the pointer is known aligned.
- if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
- Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
- PointerType::getUnqual(II->getType()));
- return new LoadInst(Ptr);
- }
- break;
- case Intrinsic::ppc_altivec_stvx:
- case Intrinsic::ppc_altivec_stvxl:
- // Turn stvx -> store if the pointer is known aligned.
- if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
- const Type *OpPtrTy =
- PointerType::getUnqual(II->getOperand(1)->getType());
- Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
- return new StoreInst(II->getOperand(1), Ptr);
- }
- break;
- case Intrinsic::x86_sse_storeu_ps:
- case Intrinsic::x86_sse2_storeu_pd:
- case Intrinsic::x86_sse2_storeu_dq:
- // Turn X86 storeu -> store if the pointer is known aligned.
- if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
- const Type *OpPtrTy =
- PointerType::getUnqual(II->getOperand(2)->getType());
- Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
- return new StoreInst(II->getOperand(2), Ptr);
- }
- break;
-
- case Intrinsic::x86_sse_cvttss2si: {
- // These intrinsics only demands the 0th element of its input vector. If
- // we can simplify the input based on that, do so now.
- unsigned VWidth =
- cast<VectorType>(II->getOperand(1)->getType())->getNumElements();
- APInt DemandedElts(VWidth, 1);
- APInt UndefElts(VWidth, 0);
- if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
- UndefElts)) {
- II->setOperand(1, V);
- return II;
- }
- break;
- }
-
- case Intrinsic::ppc_altivec_vperm:
- // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
- if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
- assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
-
- // Check that all of the elements are integer constants or undefs.
- bool AllEltsOk = true;
- for (unsigned i = 0; i != 16; ++i) {
- if (!isa<ConstantInt>(Mask->getOperand(i)) &&
- !isa<UndefValue>(Mask->getOperand(i))) {
- AllEltsOk = false;
- break;
- }
- }
-
- if (AllEltsOk) {
- // Cast the input vectors to byte vectors.
- Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
- Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
- Value *Result = UndefValue::get(Op0->getType());
-
- // Only extract each element once.
- Value *ExtractedElts[32];
- memset(ExtractedElts, 0, sizeof(ExtractedElts));
-
- for (unsigned i = 0; i != 16; ++i) {
- if (isa<UndefValue>(Mask->getOperand(i)))
- continue;
- unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
- Idx &= 31; // Match the hardware behavior.
-
- if (ExtractedElts[Idx] == 0) {
- ExtractedElts[Idx] =
- Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
- ConstantInt::get(Type::getInt32Ty(*Context), Idx&15, false),
- "tmp");
- }
-
- // Insert this value into the result vector.
- Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
- ConstantInt::get(Type::getInt32Ty(*Context), i, false),
- "tmp");
- }
- return CastInst::Create(Instruction::BitCast, Result, CI.getType());
- }
- }
- break;
-
- case Intrinsic::stackrestore: {
- // If the save is right next to the restore, remove the restore. This can
- // happen when variable allocas are DCE'd.
- if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
- if (SS->getIntrinsicID() == Intrinsic::stacksave) {
- BasicBlock::iterator BI = SS;
- if (&*++BI == II)
- return EraseInstFromFunction(CI);
- }
- }
-
- // Scan down this block to see if there is another stack restore in the
- // same block without an intervening call/alloca.
- BasicBlock::iterator BI = II;
- TerminatorInst *TI = II->getParent()->getTerminator();
- bool CannotRemove = false;
- for (++BI; &*BI != TI; ++BI) {
- if (isa<AllocaInst>(BI) || isMalloc(BI)) {
- CannotRemove = true;
- break;
- }
- if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
- // If there is a stackrestore below this one, remove this one.
- if (II->getIntrinsicID() == Intrinsic::stackrestore)
- return EraseInstFromFunction(CI);
- // Otherwise, ignore the intrinsic.
- } else {
- // If we found a non-intrinsic call, we can't remove the stack
- // restore.
- CannotRemove = true;
- break;
- }
- }
- }
-
- // If the stack restore is in a return/unwind block and if there are no
- // allocas or calls between the restore and the return, nuke the restore.
- if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
- return EraseInstFromFunction(CI);
- break;
- }
- }
-
- return visitCallSite(II);
-}
-
-// InvokeInst simplification
-//
-Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
- return visitCallSite(&II);
-}
-
-/// isSafeToEliminateVarargsCast - If this cast does not affect the value
-/// passed through the varargs area, we can eliminate the use of the cast.
-static bool isSafeToEliminateVarargsCast(const CallSite CS,
- const CastInst * const CI,
- const TargetData * const TD,
- const int ix) {
- if (!CI->isLosslessCast())
- return false;
-
- // The size of ByVal arguments is derived from the type, so we
- // can't change to a type with a different size. If the size were
- // passed explicitly we could avoid this check.
- if (!CS.paramHasAttr(ix, Attribute::ByVal))
- return true;
-
- const Type* SrcTy =
- cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
- const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
- if (!SrcTy->isSized() || !DstTy->isSized())
- return false;
- if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
- return false;
- return true;
-}
-
-// visitCallSite - Improvements for call and invoke instructions.
-//
-Instruction *InstCombiner::visitCallSite(CallSite CS) {
- bool Changed = false;
-
- // If the callee is a constexpr cast of a function, attempt to move the cast
- // to the arguments of the call/invoke.
- if (transformConstExprCastCall(CS)) return 0;
-
- Value *Callee = CS.getCalledValue();
-
- if (Function *CalleeF = dyn_cast<Function>(Callee))
- if (CalleeF->getCallingConv() != CS.getCallingConv()) {
- Instruction *OldCall = CS.getInstruction();
- // If the call and callee calling conventions don't match, this call must
- // be unreachable, as the call is undefined.
- new StoreInst(ConstantInt::getTrue(*Context),
- UndefValue::get(Type::getInt1PtrTy(*Context)),
- OldCall);
- // If OldCall dues not return void then replaceAllUsesWith undef.
- // This allows ValueHandlers and custom metadata to adjust itself.
- if (!OldCall->getType()->isVoidTy())
- OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
- if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
- return EraseInstFromFunction(*OldCall);
- return 0;
- }
-
- if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
- // This instruction is not reachable, just remove it. We insert a store to
- // undef so that we know that this code is not reachable, despite the fact
- // that we can't modify the CFG here.
- new StoreInst(ConstantInt::getTrue(*Context),
- UndefValue::get(Type::getInt1PtrTy(*Context)),
- CS.getInstruction());
-
- // If CS dues not return void then replaceAllUsesWith undef.
- // This allows ValueHandlers and custom metadata to adjust itself.
- if (!CS.getInstruction()->getType()->isVoidTy())
- CS.getInstruction()->
- replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
-
- if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
- // Don't break the CFG, insert a dummy cond branch.
- BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
- ConstantInt::getTrue(*Context), II);
- }
- return EraseInstFromFunction(*CS.getInstruction());
- }
-
- if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
- if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
- if (In->getIntrinsicID() == Intrinsic::init_trampoline)
- return transformCallThroughTrampoline(CS);
-
- const PointerType *PTy = cast<PointerType>(Callee->getType());
- const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
- if (FTy->isVarArg()) {
- int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
- // See if we can optimize any arguments passed through the varargs area of
- // the call.
- for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
- E = CS.arg_end(); I != E; ++I, ++ix) {
- CastInst *CI = dyn_cast<CastInst>(*I);
- if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
- *I = CI->getOperand(0);
- Changed = true;
- }
- }
- }
-
- if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
- // Inline asm calls cannot throw - mark them 'nounwind'.
- CS.setDoesNotThrow();
- Changed = true;
- }
-
- return Changed ? CS.getInstruction() : 0;
-}
-
-// transformConstExprCastCall - If the callee is a constexpr cast of a function,
-// attempt to move the cast to the arguments of the call/invoke.
-//
-bool InstCombiner::transformConstExprCastCall(CallSite CS) {
- if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
- ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
- if (CE->getOpcode() != Instruction::BitCast ||
- !isa<Function>(CE->getOperand(0)))
- return false;
- Function *Callee = cast<Function>(CE->getOperand(0));
- Instruction *Caller = CS.getInstruction();
- const AttrListPtr &CallerPAL = CS.getAttributes();
-
- // Okay, this is a cast from a function to a different type. Unless doing so
- // would cause a type conversion of one of our arguments, change this call to
- // be a direct call with arguments casted to the appropriate types.
- //
- const FunctionType *FT = Callee->getFunctionType();
- const Type *OldRetTy = Caller->getType();
- const Type *NewRetTy = FT->getReturnType();
-
- if (isa<StructType>(NewRetTy))
- return false; // TODO: Handle multiple return values.
-
- // Check to see if we are changing the return type...
- if (OldRetTy != NewRetTy) {
- if (Callee->isDeclaration() &&
- // Conversion is ok if changing from one pointer type to another or from
- // a pointer to an integer of the same size.
- !((isa<PointerType>(OldRetTy) || !TD ||
- OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
- (isa<PointerType>(NewRetTy) || !TD ||
- NewRetTy == TD->getIntPtrType(Caller->getContext()))))
- return false; // Cannot transform this return value.
-
- if (!Caller->use_empty() &&
- // void -> non-void is handled specially
- !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
- return false; // Cannot transform this return value.
-
- if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
- Attributes RAttrs = CallerPAL.getRetAttributes();
- if (RAttrs & Attribute::typeIncompatible(NewRetTy))
- return false; // Attribute not compatible with transformed value.
- }
-
- // If the callsite is an invoke instruction, and the return value is used by
- // a PHI node in a successor, we cannot change the return type of the call
- // because there is no place to put the cast instruction (without breaking
- // the critical edge). Bail out in this case.
- if (!Caller->use_empty())
- if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
- for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
- UI != E; ++UI)
- if (PHINode *PN = dyn_cast<PHINode>(*UI))
- if (PN->getParent() == II->getNormalDest() ||
- PN->getParent() == II->getUnwindDest())
- return false;
- }
-
- unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
- unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
-
- CallSite::arg_iterator AI = CS.arg_begin();
- for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
- const Type *ParamTy = FT->getParamType(i);
- const Type *ActTy = (*AI)->getType();
-
- if (!CastInst::isCastable(ActTy, ParamTy))
- return false; // Cannot transform this parameter value.
-
- if (CallerPAL.getParamAttributes(i + 1)
- & Attribute::typeIncompatible(ParamTy))
- return false; // Attribute not compatible with transformed value.
-
- // Converting from one pointer type to another or between a pointer and an
- // integer of the same size is safe even if we do not have a body.
- bool isConvertible = ActTy == ParamTy ||
- (TD && ((isa<PointerType>(ParamTy) ||
- ParamTy == TD->getIntPtrType(Caller->getContext())) &&
- (isa<PointerType>(ActTy) ||
- ActTy == TD->getIntPtrType(Caller->getContext()))));
- if (Callee->isDeclaration() && !isConvertible) return false;
- }
-
- if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
- Callee->isDeclaration())
- return false; // Do not delete arguments unless we have a function body.
-
- if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
- !CallerPAL.isEmpty())
- // In this case we have more arguments than the new function type, but we
- // won't be dropping them. Check that these extra arguments have attributes
- // that are compatible with being a vararg call argument.
- for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
- if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
- break;
- Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
- if (PAttrs & Attribute::VarArgsIncompatible)
- return false;
- }
-
- // Okay, we decided that this is a safe thing to do: go ahead and start
- // inserting cast instructions as necessary...
- std::vector<Value*> Args;
- Args.reserve(NumActualArgs);
- SmallVector<AttributeWithIndex, 8> attrVec;
- attrVec.reserve(NumCommonArgs);
-
- // Get any return attributes.
- Attributes RAttrs = CallerPAL.getRetAttributes();
-
- // If the return value is not being used, the type may not be compatible
- // with the existing attributes. Wipe out any problematic attributes.
- RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
-
- // Add the new return attributes.
- if (RAttrs)
- attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
-
- AI = CS.arg_begin();
- for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
- const Type *ParamTy = FT->getParamType(i);
- if ((*AI)->getType() == ParamTy) {
- Args.push_back(*AI);
- } else {
- Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
- false, ParamTy, false);
- Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
- }
-
- // Add any parameter attributes.
- if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
- attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
- }
-
- // If the function takes more arguments than the call was taking, add them
- // now.
- for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
- Args.push_back(Constant::getNullValue(FT->getParamType(i)));
-
- // If we are removing arguments to the function, emit an obnoxious warning.
- if (FT->getNumParams() < NumActualArgs) {
- if (!FT->isVarArg()) {
- errs() << "WARNING: While resolving call to function '"
- << Callee->getName() << "' arguments were dropped!\n";
- } else {
- // Add all of the arguments in their promoted form to the arg list.
- for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
- const Type *PTy = getPromotedType((*AI)->getType());
- if (PTy != (*AI)->getType()) {
- // Must promote to pass through va_arg area!
- Instruction::CastOps opcode =
- CastInst::getCastOpcode(*AI, false, PTy, false);
- Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
- } else {
- Args.push_back(*AI);
- }
-
- // Add any parameter attributes.
- if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
- attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
- }
- }
- }
-
- if (Attributes FnAttrs = CallerPAL.getFnAttributes())
- attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
-
- if (NewRetTy->isVoidTy())
- Caller->setName(""); // Void type should not have a name.
-
- const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
- attrVec.end());
-
- Instruction *NC;
- if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
- NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
- Args.begin(), Args.end(),
- Caller->getName(), Caller);
- cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
- cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
- } else {
- NC = CallInst::Create(Callee, Args.begin(), Args.end(),
- Caller->getName(), Caller);
- CallInst *CI = cast<CallInst>(Caller);
- if (CI->isTailCall())
- cast<CallInst>(NC)->setTailCall();
- cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
- cast<CallInst>(NC)->setAttributes(NewCallerPAL);
- }
-
- // Insert a cast of the return type as necessary.
- Value *NV = NC;
- if (OldRetTy != NV->getType() && !Caller->use_empty()) {
- if (!NV->getType()->isVoidTy()) {
- Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
- OldRetTy, false);
- NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
-
- // If this is an invoke instruction, we should insert it after the first
- // non-phi, instruction in the normal successor block.
- if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
- BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
- InsertNewInstBefore(NC, *I);
- } else {
- // Otherwise, it's a call, just insert cast right after the call instr
- InsertNewInstBefore(NC, *Caller);
- }
- Worklist.AddUsersToWorkList(*Caller);
- } else {
- NV = UndefValue::get(Caller->getType());
- }
- }
-
-
- if (!Caller->use_empty())
- Caller->replaceAllUsesWith(NV);
-
- EraseInstFromFunction(*Caller);
- return true;
-}
-
-// transformCallThroughTrampoline - Turn a call to a function created by the
-// init_trampoline intrinsic into a direct call to the underlying function.
-//
-Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
- Value *Callee = CS.getCalledValue();
- const PointerType *PTy = cast<PointerType>(Callee->getType());
- const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
- const AttrListPtr &Attrs = CS.getAttributes();
-
- // If the call already has the 'nest' attribute somewhere then give up -
- // otherwise 'nest' would occur twice after splicing in the chain.
- if (Attrs.hasAttrSomewhere(Attribute::Nest))
- return 0;
-
- IntrinsicInst *Tramp =
- cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
-
- Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
- const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
- const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
-
- const AttrListPtr &NestAttrs = NestF->getAttributes();
- if (!NestAttrs.isEmpty()) {
- unsigned NestIdx = 1;
- const Type *NestTy = 0;
- Attributes NestAttr = Attribute::None;
-
- // Look for a parameter marked with the 'nest' attribute.
- for (FunctionType::param_iterator I = NestFTy->param_begin(),
- E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
- if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
- // Record the parameter type and any other attributes.
- NestTy = *I;
- NestAttr = NestAttrs.getParamAttributes(NestIdx);
- break;
- }
-
- if (NestTy) {
- Instruction *Caller = CS.getInstruction();
- std::vector<Value*> NewArgs;
- NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
-
- SmallVector<AttributeWithIndex, 8> NewAttrs;
- NewAttrs.reserve(Attrs.getNumSlots() + 1);
-
- // Insert the nest argument into the call argument list, which may
- // mean appending it. Likewise for attributes.
-
- // Add any result attributes.
- if (Attributes Attr = Attrs.getRetAttributes())
- NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
-
- {
- unsigned Idx = 1;
- CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
- do {
- if (Idx == NestIdx) {
- // Add the chain argument and attributes.
- Value *NestVal = Tramp->getOperand(3);
- if (NestVal->getType() != NestTy)
- NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
- NewArgs.push_back(NestVal);
- NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
- }
-
- if (I == E)
- break;
-
- // Add the original argument and attributes.
- NewArgs.push_back(*I);
- if (Attributes Attr = Attrs.getParamAttributes(Idx))
- NewAttrs.push_back
- (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
-
- ++Idx, ++I;
- } while (1);
- }
-
- // Add any function attributes.
- if (Attributes Attr = Attrs.getFnAttributes())
- NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
-
- // The trampoline may have been bitcast to a bogus type (FTy).
- // Handle this by synthesizing a new function type, equal to FTy
- // with the chain parameter inserted.
-
- std::vector<const Type*> NewTypes;
- NewTypes.reserve(FTy->getNumParams()+1);
-
- // Insert the chain's type into the list of parameter types, which may
- // mean appending it.
- {
- unsigned Idx = 1;
- FunctionType::param_iterator I = FTy->param_begin(),
- E = FTy->param_end();
-
- do {
- if (Idx == NestIdx)
- // Add the chain's type.
- NewTypes.push_back(NestTy);
-
- if (I == E)
- break;
-
- // Add the original type.
- NewTypes.push_back(*I);
-
- ++Idx, ++I;
- } while (1);
- }
-
- // Replace the trampoline call with a direct call. Let the generic
- // code sort out any function type mismatches.
- FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
- FTy->isVarArg());
- Constant *NewCallee =
- NestF->getType() == PointerType::getUnqual(NewFTy) ?
- NestF : ConstantExpr::getBitCast(NestF,
- PointerType::getUnqual(NewFTy));
- const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
- NewAttrs.end());
-
- Instruction *NewCaller;
- if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
- NewCaller = InvokeInst::Create(NewCallee,
- II->getNormalDest(), II->getUnwindDest(),
- NewArgs.begin(), NewArgs.end(),
- Caller->getName(), Caller);
- cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
- cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
- } else {
- NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
- Caller->getName(), Caller);
- if (cast<CallInst>(Caller)->isTailCall())
- cast<CallInst>(NewCaller)->setTailCall();
- cast<CallInst>(NewCaller)->
- setCallingConv(cast<CallInst>(Caller)->getCallingConv());
- cast<CallInst>(NewCaller)->setAttributes(NewPAL);
- }
- if (!Caller->getType()->isVoidTy())
- Caller->replaceAllUsesWith(NewCaller);
- Caller->eraseFromParent();
- Worklist.Remove(Caller);
- return 0;
- }
- }
-
- // Replace the trampoline call with a direct call. Since there is no 'nest'
- // parameter, there is no need to adjust the argument list. Let the generic
- // code sort out any function type mismatches.
- Constant *NewCallee =
- NestF->getType() == PTy ? NestF :
- ConstantExpr::getBitCast(NestF, PTy);
- CS.setCalledFunction(NewCallee);
- return CS.getInstruction();
-}
-
-/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
-/// and if a/b/c and the add's all have a single use, turn this into a phi
-/// and a single binop.
-Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
- Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
- assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
- unsigned Opc = FirstInst->getOpcode();
- Value *LHSVal = FirstInst->getOperand(0);
- Value *RHSVal = FirstInst->getOperand(1);
-
- const Type *LHSType = LHSVal->getType();
- const Type *RHSType = RHSVal->getType();
-
- // Scan to see if all operands are the same opcode, and all have one use.
- for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
- Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
- if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
- // Verify type of the LHS matches so we don't fold cmp's of different
- // types or GEP's with different index types.
- I->getOperand(0)->getType() != LHSType ||
- I->getOperand(1)->getType() != RHSType)
- return 0;
-
- // If they are CmpInst instructions, check their predicates
- if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
- if (cast<CmpInst>(I)->getPredicate() !=
- cast<CmpInst>(FirstInst)->getPredicate())
- return 0;
-
- // Keep track of which operand needs a phi node.
- if (I->getOperand(0) != LHSVal) LHSVal = 0;
- if (I->getOperand(1) != RHSVal) RHSVal = 0;
- }
-
- // If both LHS and RHS would need a PHI, don't do this transformation,
- // because it would increase the number of PHIs entering the block,
- // which leads to higher register pressure. This is especially
- // bad when the PHIs are in the header of a loop.
- if (!LHSVal && !RHSVal)
- return 0;
-
- // Otherwise, this is safe to transform!
-
- Value *InLHS = FirstInst->getOperand(0);
- Value *InRHS = FirstInst->getOperand(1);
- PHINode *NewLHS = 0, *NewRHS = 0;
- if (LHSVal == 0) {
- NewLHS = PHINode::Create(LHSType,
- FirstInst->getOperand(0)->getName() + ".pn");
- NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
- NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
- InsertNewInstBefore(NewLHS, PN);
- LHSVal = NewLHS;
- }
-
- if (RHSVal == 0) {
- NewRHS = PHINode::Create(RHSType,
- FirstInst->getOperand(1)->getName() + ".pn");
- NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
- NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
- InsertNewInstBefore(NewRHS, PN);
- RHSVal = NewRHS;
- }
-
- // Add all operands to the new PHIs.
- if (NewLHS || NewRHS) {
- for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
- Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
- if (NewLHS) {
- Value *NewInLHS = InInst->getOperand(0);
- NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
- }
- if (NewRHS) {
- Value *NewInRHS = InInst->getOperand(1);
- NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
- }
- }
- }
-
- if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
- return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
- CmpInst *CIOp = cast<CmpInst>(FirstInst);
- return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
- LHSVal, RHSVal);
-}
-
-Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
- GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
-
- SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
- FirstInst->op_end());
- // This is true if all GEP bases are allocas and if all indices into them are
- // constants.
- bool AllBasePointersAreAllocas = true;
-
- // We don't want to replace this phi if the replacement would require
- // more than one phi, which leads to higher register pressure. This is
- // especially bad when the PHIs are in the header of a loop.
- bool NeededPhi = false;
-
- // Scan to see if all operands are the same opcode, and all have one use.
- for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
- GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
- if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
- GEP->getNumOperands() != FirstInst->getNumOperands())
- return 0;
-
- // Keep track of whether or not all GEPs are of alloca pointers.
- if (AllBasePointersAreAllocas &&
- (!isa<AllocaInst>(GEP->getOperand(0)) ||
- !GEP->hasAllConstantIndices()))
- AllBasePointersAreAllocas = false;
-
- // Compare the operand lists.
- for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
- if (FirstInst->getOperand(op) == GEP->getOperand(op))
- continue;
-
- // Don't merge two GEPs when two operands differ (introducing phi nodes)
- // if one of the PHIs has a constant for the index. The index may be
- // substantially cheaper to compute for the constants, so making it a
- // variable index could pessimize the path. This also handles the case
- // for struct indices, which must always be constant.
- if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
- isa<ConstantInt>(GEP->getOperand(op)))
- return 0;
-
- if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
- return 0;
-
- // If we already needed a PHI for an earlier operand, and another operand
- // also requires a PHI, we'd be introducing more PHIs than we're
- // eliminating, which increases register pressure on entry to the PHI's
- // block.
- if (NeededPhi)
- return 0;
-
- FixedOperands[op] = 0; // Needs a PHI.
- NeededPhi = true;
- }
- }
-
- // If all of the base pointers of the PHI'd GEPs are from allocas, don't
- // bother doing this transformation. At best, this will just save a bit of
- // offset calculation, but all the predecessors will have to materialize the
- // stack address into a register anyway. We'd actually rather *clone* the
- // load up into the predecessors so that we have a load of a gep of an alloca,
- // which can usually all be folded into the load.
- if (AllBasePointersAreAllocas)
- return 0;
-
- // Otherwise, this is safe to transform. Insert PHI nodes for each operand
- // that is variable.
- SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
-
- bool HasAnyPHIs = false;
- for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
- if (FixedOperands[i]) continue; // operand doesn't need a phi.
- Value *FirstOp = FirstInst->getOperand(i);
- PHINode *NewPN = PHINode::Create(FirstOp->getType(),
- FirstOp->getName()+".pn");
- InsertNewInstBefore(NewPN, PN);
-
- NewPN->reserveOperandSpace(e);
- NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
- OperandPhis[i] = NewPN;
- FixedOperands[i] = NewPN;
- HasAnyPHIs = true;
- }
-
-
- // Add all operands to the new PHIs.
- if (HasAnyPHIs) {
- for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
- GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
- BasicBlock *InBB = PN.getIncomingBlock(i);
-
- for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
- if (PHINode *OpPhi = OperandPhis[op])
- OpPhi->addIncoming(InGEP->getOperand(op), InBB);
- }
- }
-
- Value *Base = FixedOperands[0];
- return cast<GEPOperator>(FirstInst)->isInBounds() ?
- GetElementPtrInst::CreateInBounds(Base, FixedOperands.begin()+1,
- FixedOperands.end()) :
- GetElementPtrInst::Create(Base, FixedOperands.begin()+1,
- FixedOperands.end());
-}
-
-
-/// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to
-/// sink the load out of the block that defines it. This means that it must be
-/// obvious the value of the load is not changed from the point of the load to
-/// the end of the block it is in.
-///
-/// Finally, it is safe, but not profitable, to sink a load targetting a
-/// non-address-taken alloca. Doing so will cause us to not promote the alloca
-/// to a register.
-static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
- BasicBlock::iterator BBI = L, E = L->getParent()->end();
-
- for (++BBI; BBI != E; ++BBI)
- if (BBI->mayWriteToMemory())
- return false;
-
- // Check for non-address taken alloca. If not address-taken already, it isn't
- // profitable to do this xform.
- if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
- bool isAddressTaken = false;
- for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
- UI != E; ++UI) {
- if (isa<LoadInst>(UI)) continue;
- if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
- // If storing TO the alloca, then the address isn't taken.
- if (SI->getOperand(1) == AI) continue;
- }
- isAddressTaken = true;
- break;
- }
-
- if (!isAddressTaken && AI->isStaticAlloca())
- return false;
- }
-
- // If this load is a load from a GEP with a constant offset from an alloca,
- // then we don't want to sink it. In its present form, it will be
- // load [constant stack offset]. Sinking it will cause us to have to
- // materialize the stack addresses in each predecessor in a register only to
- // do a shared load from register in the successor.
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
- if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
- if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
- return false;
-
- return true;
-}
-
-Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
- LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
-
- // When processing loads, we need to propagate two bits of information to the
- // sunk load: whether it is volatile, and what its alignment is. We currently
- // don't sink loads when some have their alignment specified and some don't.
- // visitLoadInst will propagate an alignment onto the load when TD is around,
- // and if TD isn't around, we can't handle the mixed case.
- bool isVolatile = FirstLI->isVolatile();
- unsigned LoadAlignment = FirstLI->getAlignment();
-
- // We can't sink the load if the loaded value could be modified between the
- // load and the PHI.
- if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
- !isSafeAndProfitableToSinkLoad(FirstLI))
- return 0;
-
- // If the PHI is of volatile loads and the load block has multiple
- // successors, sinking it would remove a load of the volatile value from
- // the path through the other successor.
- if (isVolatile &&
- FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
- return 0;
-
- // Check to see if all arguments are the same operation.
- for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
- LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
- if (!LI || !LI->hasOneUse())
- return 0;
-
- // We can't sink the load if the loaded value could be modified between
- // the load and the PHI.
- if (LI->isVolatile() != isVolatile ||
- LI->getParent() != PN.getIncomingBlock(i) ||
- !isSafeAndProfitableToSinkLoad(LI))
- return 0;
-
- // If some of the loads have an alignment specified but not all of them,
- // we can't do the transformation.
- if ((LoadAlignment != 0) != (LI->getAlignment() != 0))
- return 0;
-
- LoadAlignment = std::min(LoadAlignment, LI->getAlignment());
-
- // If the PHI is of volatile loads and the load block has multiple
- // successors, sinking it would remove a load of the volatile value from
- // the path through the other successor.
- if (isVolatile &&
- LI->getParent()->getTerminator()->getNumSuccessors() != 1)
- return 0;
- }
-
- // Okay, they are all the same operation. Create a new PHI node of the
- // correct type, and PHI together all of the LHS's of the instructions.
- PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
- PN.getName()+".in");
- NewPN->reserveOperandSpace(PN.getNumOperands()/2);
-
- Value *InVal = FirstLI->getOperand(0);
- NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
-
- // Add all operands to the new PHI.
- for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
- Value *NewInVal = cast<LoadInst>(PN.getIncomingValue(i))->getOperand(0);
- if (NewInVal != InVal)
- InVal = 0;
- NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
- }
-
- Value *PhiVal;
- if (InVal) {
- // The new PHI unions all of the same values together. This is really
- // common, so we handle it intelligently here for compile-time speed.
- PhiVal = InVal;
- delete NewPN;
- } else {
- InsertNewInstBefore(NewPN, PN);
- PhiVal = NewPN;
- }
-
- // If this was a volatile load that we are merging, make sure to loop through
- // and mark all the input loads as non-volatile. If we don't do this, we will
- // insert a new volatile load and the old ones will not be deletable.
- if (isVolatile)
- for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
- cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
-
- return new LoadInst(PhiVal, "", isVolatile, LoadAlignment);
-}
-
-
-
-/// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
-/// operator and they all are only used by the PHI, PHI together their
-/// inputs, and do the operation once, to the result of the PHI.
-Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
- Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
-
- if (isa<GetElementPtrInst>(FirstInst))
- return FoldPHIArgGEPIntoPHI(PN);
- if (isa<LoadInst>(FirstInst))
- return FoldPHIArgLoadIntoPHI(PN);
-
- // Scan the instruction, looking for input operations that can be folded away.
- // If all input operands to the phi are the same instruction (e.g. a cast from
- // the same type or "+42") we can pull the operation through the PHI, reducing
- // code size and simplifying code.
- Constant *ConstantOp = 0;
- const Type *CastSrcTy = 0;
-
- if (isa<CastInst>(FirstInst)) {
- CastSrcTy = FirstInst->getOperand(0)->getType();
-
- // Be careful about transforming integer PHIs. We don't want to pessimize
- // the code by turning an i32 into an i1293.
- if (isa<IntegerType>(PN.getType()) && isa<IntegerType>(CastSrcTy)) {
- if (!ShouldChangeType(PN.getType(), CastSrcTy, TD))
- return 0;
- }
- } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
- // Can fold binop, compare or shift here if the RHS is a constant,
- // otherwise call FoldPHIArgBinOpIntoPHI.
- ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
- if (ConstantOp == 0)
- return FoldPHIArgBinOpIntoPHI(PN);
- } else {
- return 0; // Cannot fold this operation.
- }
-
- // Check to see if all arguments are the same operation.
- for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
- Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
- if (I == 0 || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
- return 0;
- if (CastSrcTy) {
- if (I->getOperand(0)->getType() != CastSrcTy)
- return 0; // Cast operation must match.
- } else if (I->getOperand(1) != ConstantOp) {
- return 0;
- }
- }
-
- // Okay, they are all the same operation. Create a new PHI node of the
- // correct type, and PHI together all of the LHS's of the instructions.
- PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
- PN.getName()+".in");
- NewPN->reserveOperandSpace(PN.getNumOperands()/2);
-
- Value *InVal = FirstInst->getOperand(0);
- NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
-
- // Add all operands to the new PHI.
- for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
- Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
- if (NewInVal != InVal)
- InVal = 0;
- NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
- }
-
- Value *PhiVal;
- if (InVal) {
- // The new PHI unions all of the same values together. This is really
- // common, so we handle it intelligently here for compile-time speed.
- PhiVal = InVal;
- delete NewPN;
- } else {
- InsertNewInstBefore(NewPN, PN);
- PhiVal = NewPN;
- }
-
- // Insert and return the new operation.
- if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst))
- return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
-
- if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
- return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
-
- CmpInst *CIOp = cast<CmpInst>(FirstInst);
- return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
- PhiVal, ConstantOp);
-}
-
-/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
-/// that is dead.
-static bool DeadPHICycle(PHINode *PN,
- SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
- if (PN->use_empty()) return true;
- if (!PN->hasOneUse()) return false;
-
- // Remember this node, and if we find the cycle, return.
- if (!PotentiallyDeadPHIs.insert(PN))
- return true;
-
- // Don't scan crazily complex things.
- if (PotentiallyDeadPHIs.size() == 16)
- return false;
-
- if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
- return DeadPHICycle(PU, PotentiallyDeadPHIs);
-
- return false;
-}
-
-/// PHIsEqualValue - Return true if this phi node is always equal to
-/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
-/// z = some value; x = phi (y, z); y = phi (x, z)
-static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
- SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
- // See if we already saw this PHI node.
- if (!ValueEqualPHIs.insert(PN))
- return true;
-
- // Don't scan crazily complex things.
- if (ValueEqualPHIs.size() == 16)
- return false;
-
- // Scan the operands to see if they are either phi nodes or are equal to
- // the value.
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *Op = PN->getIncomingValue(i);
- if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
- if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
- return false;
- } else if (Op != NonPhiInVal)
- return false;
- }
-
- return true;
-}
-
-
-namespace {
-struct PHIUsageRecord {
- unsigned PHIId; // The ID # of the PHI (something determinstic to sort on)
- unsigned Shift; // The amount shifted.
- Instruction *Inst; // The trunc instruction.
-
- PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
- : PHIId(pn), Shift(Sh), Inst(User) {}
-
- bool operator<(const PHIUsageRecord &RHS) const {
- if (PHIId < RHS.PHIId) return true;
- if (PHIId > RHS.PHIId) return false;
- if (Shift < RHS.Shift) return true;
- if (Shift > RHS.Shift) return false;
- return Inst->getType()->getPrimitiveSizeInBits() <
- RHS.Inst->getType()->getPrimitiveSizeInBits();
- }
-};
-
-struct LoweredPHIRecord {
- PHINode *PN; // The PHI that was lowered.
- unsigned Shift; // The amount shifted.
- unsigned Width; // The width extracted.
-
- LoweredPHIRecord(PHINode *pn, unsigned Sh, const Type *Ty)
- : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
-
- // Ctor form used by DenseMap.
- LoweredPHIRecord(PHINode *pn, unsigned Sh)
- : PN(pn), Shift(Sh), Width(0) {}
-};
-}
-
-namespace llvm {
- template<>
- struct DenseMapInfo<LoweredPHIRecord> {
- static inline LoweredPHIRecord getEmptyKey() {
- return LoweredPHIRecord(0, 0);
- }
- static inline LoweredPHIRecord getTombstoneKey() {
- return LoweredPHIRecord(0, 1);
- }
- static unsigned getHashValue(const LoweredPHIRecord &Val) {
- return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
- (Val.Width>>3);
- }
- static bool isEqual(const LoweredPHIRecord &LHS,
- const LoweredPHIRecord &RHS) {
- return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
- LHS.Width == RHS.Width;
- }
- };
- template <>
- struct isPodLike<LoweredPHIRecord> { static const bool value = true; };
-}
-
-
-/// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an
-/// illegal type: see if it is only used by trunc or trunc(lshr) operations. If
-/// so, we split the PHI into the various pieces being extracted. This sort of
-/// thing is introduced when SROA promotes an aggregate to large integer values.
-///
-/// TODO: The user of the trunc may be an bitcast to float/double/vector or an
-/// inttoptr. We should produce new PHIs in the right type.
-///
-Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
- // PHIUsers - Keep track of all of the truncated values extracted from a set
- // of PHIs, along with their offset. These are the things we want to rewrite.
- SmallVector<PHIUsageRecord, 16> PHIUsers;
-
- // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
- // nodes which are extracted from. PHIsToSlice is a set we use to avoid
- // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
- // check the uses of (to ensure they are all extracts).
- SmallVector<PHINode*, 8> PHIsToSlice;
- SmallPtrSet<PHINode*, 8> PHIsInspected;
-
- PHIsToSlice.push_back(&FirstPhi);
- PHIsInspected.insert(&FirstPhi);
-
- for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
- PHINode *PN = PHIsToSlice[PHIId];
-
- // Scan the input list of the PHI. If any input is an invoke, and if the
- // input is defined in the predecessor, then we won't be split the critical
- // edge which is required to insert a truncate. Because of this, we have to
- // bail out.
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
- if (II == 0) continue;
- if (II->getParent() != PN->getIncomingBlock(i))
- continue;
-
- // If we have a phi, and if it's directly in the predecessor, then we have
- // a critical edge where we need to put the truncate. Since we can't
- // split the edge in instcombine, we have to bail out.
- return 0;
- }
-
-
- for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
- UI != E; ++UI) {
- Instruction *User = cast<Instruction>(*UI);
-
- // If the user is a PHI, inspect its uses recursively.
- if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
- if (PHIsInspected.insert(UserPN))
- PHIsToSlice.push_back(UserPN);
- continue;
- }
-
- // Truncates are always ok.
- if (isa<TruncInst>(User)) {
- PHIUsers.push_back(PHIUsageRecord(PHIId, 0, User));
- continue;
- }
-
- // Otherwise it must be a lshr which can only be used by one trunc.
- if (User->getOpcode() != Instruction::LShr ||
- !User->hasOneUse() || !isa<TruncInst>(User->use_back()) ||
- !isa<ConstantInt>(User->getOperand(1)))
- return 0;
-
- unsigned Shift = cast<ConstantInt>(User->getOperand(1))->getZExtValue();
- PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, User->use_back()));
- }
- }
-
- // If we have no users, they must be all self uses, just nuke the PHI.
- if (PHIUsers.empty())
- return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
-
- // If this phi node is transformable, create new PHIs for all the pieces
- // extracted out of it. First, sort the users by their offset and size.
- array_pod_sort(PHIUsers.begin(), PHIUsers.end());
-
- DEBUG(errs() << "SLICING UP PHI: " << FirstPhi << '\n';
- for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
- errs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] <<'\n';
- );
-
- // PredValues - This is a temporary used when rewriting PHI nodes. It is
- // hoisted out here to avoid construction/destruction thrashing.
- DenseMap<BasicBlock*, Value*> PredValues;
-
- // ExtractedVals - Each new PHI we introduce is saved here so we don't
- // introduce redundant PHIs.
- DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
-
- for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
- unsigned PHIId = PHIUsers[UserI].PHIId;
- PHINode *PN = PHIsToSlice[PHIId];
- unsigned Offset = PHIUsers[UserI].Shift;
- const Type *Ty = PHIUsers[UserI].Inst->getType();
-
- PHINode *EltPHI;
-
- // If we've already lowered a user like this, reuse the previously lowered
- // value.
- if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == 0) {
-
- // Otherwise, Create the new PHI node for this user.
- EltPHI = PHINode::Create(Ty, PN->getName()+".off"+Twine(Offset), PN);
- assert(EltPHI->getType() != PN->getType() &&
- "Truncate didn't shrink phi?");
-
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *Pred = PN->getIncomingBlock(i);
- Value *&PredVal = PredValues[Pred];
-
- // If we already have a value for this predecessor, reuse it.
- if (PredVal) {
- EltPHI->addIncoming(PredVal, Pred);
- continue;
- }
-
- // Handle the PHI self-reuse case.
- Value *InVal = PN->getIncomingValue(i);
- if (InVal == PN) {
- PredVal = EltPHI;
- EltPHI->addIncoming(PredVal, Pred);
- continue;
- }
-
- if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
- // If the incoming value was a PHI, and if it was one of the PHIs we
- // already rewrote it, just use the lowered value.
- if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
- PredVal = Res;
- EltPHI->addIncoming(PredVal, Pred);
- continue;
- }
- }
-
- // Otherwise, do an extract in the predecessor.
- Builder->SetInsertPoint(Pred, Pred->getTerminator());
- Value *Res = InVal;
- if (Offset)
- Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(),
- Offset), "extract");
- Res = Builder->CreateTrunc(Res, Ty, "extract.t");
- PredVal = Res;
- EltPHI->addIncoming(Res, Pred);
-
- // If the incoming value was a PHI, and if it was one of the PHIs we are
- // rewriting, we will ultimately delete the code we inserted. This
- // means we need to revisit that PHI to make sure we extract out the
- // needed piece.
- if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
- if (PHIsInspected.count(OldInVal)) {
- unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(),
- OldInVal)-PHIsToSlice.begin();
- PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset,
- cast<Instruction>(Res)));
- ++UserE;
- }
- }
- PredValues.clear();
-
- DEBUG(errs() << " Made element PHI for offset " << Offset << ": "
- << *EltPHI << '\n');
- ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
- }
-
- // Replace the use of this piece with the PHI node.
- ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
- }
-
- // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
- // with undefs.
- Value *Undef = UndefValue::get(FirstPhi.getType());
- for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
- ReplaceInstUsesWith(*PHIsToSlice[i], Undef);
- return ReplaceInstUsesWith(FirstPhi, Undef);
-}
-
-// PHINode simplification
-//
-Instruction *InstCombiner::visitPHINode(PHINode &PN) {
- // If LCSSA is around, don't mess with Phi nodes
- if (MustPreserveLCSSA) return 0;
-
- if (Value *V = PN.hasConstantValue())
- return ReplaceInstUsesWith(PN, V);
-
- // If all PHI operands are the same operation, pull them through the PHI,
- // reducing code size.
- if (isa<Instruction>(PN.getIncomingValue(0)) &&
- isa<Instruction>(PN.getIncomingValue(1)) &&
- cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
- cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
- // FIXME: The hasOneUse check will fail for PHIs that use the value more
- // than themselves more than once.
- PN.getIncomingValue(0)->hasOneUse())
- if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
- return Result;
-
- // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
- // this PHI only has a single use (a PHI), and if that PHI only has one use (a
- // PHI)... break the cycle.
- if (PN.hasOneUse()) {
- Instruction *PHIUser = cast<Instruction>(PN.use_back());
- if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
- SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
- PotentiallyDeadPHIs.insert(&PN);
- if (DeadPHICycle(PU, PotentiallyDeadPHIs))
- return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
- }
-
- // If this phi has a single use, and if that use just computes a value for
- // the next iteration of a loop, delete the phi. This occurs with unused
- // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
- // common case here is good because the only other things that catch this
- // are induction variable analysis (sometimes) and ADCE, which is only run
- // late.
- if (PHIUser->hasOneUse() &&
- (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
- PHIUser->use_back() == &PN) {
- return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
- }
- }
-
- // We sometimes end up with phi cycles that non-obviously end up being the
- // same value, for example:
- // z = some value; x = phi (y, z); y = phi (x, z)
- // where the phi nodes don't necessarily need to be in the same block. Do a
- // quick check to see if the PHI node only contains a single non-phi value, if
- // so, scan to see if the phi cycle is actually equal to that value.
- {
- unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
- // Scan for the first non-phi operand.
- while (InValNo != NumOperandVals &&
- isa<PHINode>(PN.getIncomingValue(InValNo)))
- ++InValNo;
-
- if (InValNo != NumOperandVals) {
- Value *NonPhiInVal = PN.getOperand(InValNo);
-
- // Scan the rest of the operands to see if there are any conflicts, if so
- // there is no need to recursively scan other phis.
- for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
- Value *OpVal = PN.getIncomingValue(InValNo);
- if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
- break;
- }
-
- // If we scanned over all operands, then we have one unique value plus
- // phi values. Scan PHI nodes to see if they all merge in each other or
- // the value.
- if (InValNo == NumOperandVals) {
- SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
- if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
- return ReplaceInstUsesWith(PN, NonPhiInVal);
- }
- }
- }
-
- // If there are multiple PHIs, sort their operands so that they all list
- // the blocks in the same order. This will help identical PHIs be eliminated
- // by other passes. Other passes shouldn't depend on this for correctness
- // however.
- PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
- if (&PN != FirstPN)
- for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *BBA = PN.getIncomingBlock(i);
- BasicBlock *BBB = FirstPN->getIncomingBlock(i);
- if (BBA != BBB) {
- Value *VA = PN.getIncomingValue(i);
- unsigned j = PN.getBasicBlockIndex(BBB);
- Value *VB = PN.getIncomingValue(j);
- PN.setIncomingBlock(i, BBB);
- PN.setIncomingValue(i, VB);
- PN.setIncomingBlock(j, BBA);
- PN.setIncomingValue(j, VA);
- // NOTE: Instcombine normally would want us to "return &PN" if we
- // modified any of the operands of an instruction. However, since we
- // aren't adding or removing uses (just rearranging them) we don't do
- // this in this case.
- }
- }
-
- // If this is an integer PHI and we know that it has an illegal type, see if
- // it is only used by trunc or trunc(lshr) operations. If so, we split the
- // PHI into the various pieces being extracted. This sort of thing is
- // introduced when SROA promotes an aggregate to a single large integer type.
- if (isa<IntegerType>(PN.getType()) && TD &&
- !TD->isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
- if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
- return Res;
-
- return 0;
-}
-
-Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
- SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
-
- if (Value *V = SimplifyGEPInst(&Ops[0], Ops.size(), TD))
- return ReplaceInstUsesWith(GEP, V);
-
- Value *PtrOp = GEP.getOperand(0);
-
- if (isa<UndefValue>(GEP.getOperand(0)))
- return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
-
- // Eliminate unneeded casts for indices.
- if (TD) {
- bool MadeChange = false;
- unsigned PtrSize = TD->getPointerSizeInBits();
-
- gep_type_iterator GTI = gep_type_begin(GEP);
- for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
- I != E; ++I, ++GTI) {
- if (!isa<SequentialType>(*GTI)) continue;
-
- // If we are using a wider index than needed for this platform, shrink it
- // to what we need. If narrower, sign-extend it to what we need. This
- // explicit cast can make subsequent optimizations more obvious.
- unsigned OpBits = cast<IntegerType>((*I)->getType())->getBitWidth();
- if (OpBits == PtrSize)
- continue;
-
- *I = Builder->CreateIntCast(*I, TD->getIntPtrType(GEP.getContext()),true);
- MadeChange = true;
- }
- if (MadeChange) return &GEP;
- }
-
- // Combine Indices - If the source pointer to this getelementptr instruction
- // is a getelementptr instruction, combine the indices of the two
- // getelementptr instructions into a single instruction.
- //
- if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
- // Note that if our source is a gep chain itself that we wait for that
- // chain to be resolved before we perform this transformation. This
- // avoids us creating a TON of code in some cases.
- //
- if (GetElementPtrInst *SrcGEP =
- dyn_cast<GetElementPtrInst>(Src->getOperand(0)))
- if (SrcGEP->getNumOperands() == 2)
- return 0; // Wait until our source is folded to completion.
-
- SmallVector<Value*, 8> Indices;
-
- // Find out whether the last index in the source GEP is a sequential idx.
- bool EndsWithSequential = false;
- for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
- I != E; ++I)
- EndsWithSequential = !isa<StructType>(*I);
-
- // Can we combine the two pointer arithmetics offsets?
- if (EndsWithSequential) {
- // Replace: gep (gep %P, long B), long A, ...
- // With: T = long A+B; gep %P, T, ...
- //
- Value *Sum;
- Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
- Value *GO1 = GEP.getOperand(1);
- if (SO1 == Constant::getNullValue(SO1->getType())) {
- Sum = GO1;
- } else if (GO1 == Constant::getNullValue(GO1->getType())) {
- Sum = SO1;
- } else {
- // If they aren't the same type, then the input hasn't been processed
- // by the loop above yet (which canonicalizes sequential index types to
- // intptr_t). Just avoid transforming this until the input has been
- // normalized.
- if (SO1->getType() != GO1->getType())
- return 0;
- Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
- }
-
- // Update the GEP in place if possible.
- if (Src->getNumOperands() == 2) {
- GEP.setOperand(0, Src->getOperand(0));
- GEP.setOperand(1, Sum);
- return &GEP;
- }
- Indices.append(Src->op_begin()+1, Src->op_end()-1);
- Indices.push_back(Sum);
- Indices.append(GEP.op_begin()+2, GEP.op_end());
- } else if (isa<Constant>(*GEP.idx_begin()) &&
- cast<Constant>(*GEP.idx_begin())->isNullValue() &&
- Src->getNumOperands() != 1) {
- // Otherwise we can do the fold if the first index of the GEP is a zero
- Indices.append(Src->op_begin()+1, Src->op_end());
- Indices.append(GEP.idx_begin()+1, GEP.idx_end());
- }
-
- if (!Indices.empty())
- return (cast<GEPOperator>(&GEP)->isInBounds() &&
- Src->isInBounds()) ?
- GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(),
- Indices.end(), GEP.getName()) :
- GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(),
- Indices.end(), GEP.getName());
- }
-
- // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
- if (Value *X = getBitCastOperand(PtrOp)) {
- assert(isa<PointerType>(X->getType()) && "Must be cast from pointer");
-
- // If the input bitcast is actually "bitcast(bitcast(x))", then we don't
- // want to change the gep until the bitcasts are eliminated.
- if (getBitCastOperand(X)) {
- Worklist.AddValue(PtrOp);
- return 0;
- }
-
- bool HasZeroPointerIndex = false;
- if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
- HasZeroPointerIndex = C->isZero();
-
- // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
- // into : GEP [10 x i8]* X, i32 0, ...
- //
- // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
- // into : GEP i8* X, ...
- //
- // This occurs when the program declares an array extern like "int X[];"
- if (HasZeroPointerIndex) {
- const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
- const PointerType *XTy = cast<PointerType>(X->getType());
- if (const ArrayType *CATy =
- dyn_cast<ArrayType>(CPTy->getElementType())) {
- // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
- if (CATy->getElementType() == XTy->getElementType()) {
- // -> GEP i8* X, ...
- SmallVector<Value*, 8> Indices(GEP.idx_begin()+1, GEP.idx_end());
- return cast<GEPOperator>(&GEP)->isInBounds() ?
- GetElementPtrInst::CreateInBounds(X, Indices.begin(), Indices.end(),
- GEP.getName()) :
- GetElementPtrInst::Create(X, Indices.begin(), Indices.end(),
- GEP.getName());
- }
-
- if (const ArrayType *XATy = dyn_cast<ArrayType>(XTy->getElementType())){
- // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
- if (CATy->getElementType() == XATy->getElementType()) {
- // -> GEP [10 x i8]* X, i32 0, ...
- // At this point, we know that the cast source type is a pointer
- // to an array of the same type as the destination pointer
- // array. Because the array type is never stepped over (there
- // is a leading zero) we can fold the cast into this GEP.
- GEP.setOperand(0, X);
- return &GEP;
- }
- }
- }
- } else if (GEP.getNumOperands() == 2) {
- // Transform things like:
- // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
- // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
- const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
- const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
- if (TD && isa<ArrayType>(SrcElTy) &&
- TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
- TD->getTypeAllocSize(ResElTy)) {
- Value *Idx[2];
- Idx[0] = Constant::getNullValue(Type::getInt32Ty(*Context));
- Idx[1] = GEP.getOperand(1);
- Value *NewGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
- Builder->CreateInBoundsGEP(X, Idx, Idx + 2, GEP.getName()) :
- Builder->CreateGEP(X, Idx, Idx + 2, GEP.getName());
- // V and GEP are both pointer types --> BitCast
- return new BitCastInst(NewGEP, GEP.getType());
- }
-
- // Transform things like:
- // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
- // (where tmp = 8*tmp2) into:
- // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
-
- if (TD && isa<ArrayType>(SrcElTy) && ResElTy == Type::getInt8Ty(*Context)) {
- uint64_t ArrayEltSize =
- TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
-
- // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
- // allow either a mul, shift, or constant here.
- Value *NewIdx = 0;
- ConstantInt *Scale = 0;
- if (ArrayEltSize == 1) {
- NewIdx = GEP.getOperand(1);
- Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
- } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
- NewIdx = ConstantInt::get(CI->getType(), 1);
- Scale = CI;
- } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
- if (Inst->getOpcode() == Instruction::Shl &&
- isa<ConstantInt>(Inst->getOperand(1))) {
- ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
- uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
- Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
- 1ULL << ShAmtVal);
- NewIdx = Inst->getOperand(0);
- } else if (Inst->getOpcode() == Instruction::Mul &&
- isa<ConstantInt>(Inst->getOperand(1))) {
- Scale = cast<ConstantInt>(Inst->getOperand(1));
- NewIdx = Inst->getOperand(0);
- }
- }
-
- // If the index will be to exactly the right offset with the scale taken
- // out, perform the transformation. Note, we don't know whether Scale is
- // signed or not. We'll use unsigned version of division/modulo
- // operation after making sure Scale doesn't have the sign bit set.
- if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
- Scale->getZExtValue() % ArrayEltSize == 0) {
- Scale = ConstantInt::get(Scale->getType(),
- Scale->getZExtValue() / ArrayEltSize);
- if (Scale->getZExtValue() != 1) {
- Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
- false /*ZExt*/);
- NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
- }
-
- // Insert the new GEP instruction.
- Value *Idx[2];
- Idx[0] = Constant::getNullValue(Type::getInt32Ty(*Context));
- Idx[1] = NewIdx;
- Value *NewGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
- Builder->CreateInBoundsGEP(X, Idx, Idx + 2, GEP.getName()) :
- Builder->CreateGEP(X, Idx, Idx + 2, GEP.getName());
- // The NewGEP must be pointer typed, so must the old one -> BitCast
- return new BitCastInst(NewGEP, GEP.getType());
- }
- }
- }
- }
-
- /// See if we can simplify:
- /// X = bitcast A* to B*
- /// Y = gep X, <...constant indices...>
- /// into a gep of the original struct. This is important for SROA and alias
- /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
- if (TD &&
- !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) {
- // Determine how much the GEP moves the pointer. We are guaranteed to get
- // a constant back from EmitGEPOffset.
- ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP, *this));
- int64_t Offset = OffsetV->getSExtValue();
-
- // If this GEP instruction doesn't move the pointer, just replace the GEP
- // with a bitcast of the real input to the dest type.
- if (Offset == 0) {
- // If the bitcast is of an allocation, and the allocation will be
- // converted to match the type of the cast, don't touch this.
- if (isa<AllocaInst>(BCI->getOperand(0)) ||
- isMalloc(BCI->getOperand(0))) {
- // See if the bitcast simplifies, if so, don't nuke this GEP yet.
- if (Instruction *I = visitBitCast(*BCI)) {
- if (I != BCI) {
- I->takeName(BCI);
- BCI->getParent()->getInstList().insert(BCI, I);
- ReplaceInstUsesWith(*BCI, I);
- }
- return &GEP;
- }
- }
- return new BitCastInst(BCI->getOperand(0), GEP.getType());
- }
-
- // Otherwise, if the offset is non-zero, we need to find out if there is a
- // field at Offset in 'A's type. If so, we can pull the cast through the
- // GEP.
- SmallVector<Value*, 8> NewIndices;
- const Type *InTy =
- cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
- if (FindElementAtOffset(InTy, Offset, NewIndices, TD, Context)) {
- Value *NGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
- Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices.begin(),
- NewIndices.end()) :
- Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(),
- NewIndices.end());
-
- if (NGEP->getType() == GEP.getType())
- return ReplaceInstUsesWith(GEP, NGEP);
- NGEP->takeName(&GEP);
- return new BitCastInst(NGEP, GEP.getType());
- }
- }
- }
-
- return 0;
-}
-
-Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
- // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
- if (AI.isArrayAllocation()) { // Check C != 1
- if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
- const Type *NewTy =
- ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
- assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
- AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName());
- New->setAlignment(AI.getAlignment());
-
- // Scan to the end of the allocation instructions, to skip over a block of
- // allocas if possible...also skip interleaved debug info
- //
- BasicBlock::iterator It = New;
- while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
-
- // Now that I is pointing to the first non-allocation-inst in the block,
- // insert our getelementptr instruction...
- //
- Value *NullIdx = Constant::getNullValue(Type::getInt32Ty(*Context));
- Value *Idx[2];
- Idx[0] = NullIdx;
- Idx[1] = NullIdx;
- Value *V = GetElementPtrInst::CreateInBounds(New, Idx, Idx + 2,
- New->getName()+".sub", It);
-
- // Now make everything use the getelementptr instead of the original
- // allocation.
- return ReplaceInstUsesWith(AI, V);
- } else if (isa<UndefValue>(AI.getArraySize())) {
- return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
- }
- }
-
- if (TD && isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) {
- // If alloca'ing a zero byte object, replace the alloca with a null pointer.
- // Note that we only do this for alloca's, because malloc should allocate
- // and return a unique pointer, even for a zero byte allocation.
- if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
- return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
-
- // If the alignment is 0 (unspecified), assign it the preferred alignment.
- if (AI.getAlignment() == 0)
- AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType()));
- }
-
- return 0;
-}
-
-Instruction *InstCombiner::visitFree(Instruction &FI) {
- Value *Op = FI.getOperand(1);
-
- // free undef -> unreachable.
- if (isa<UndefValue>(Op)) {
- // Insert a new store to null because we cannot modify the CFG here.
- new StoreInst(ConstantInt::getTrue(*Context),
- UndefValue::get(Type::getInt1PtrTy(*Context)), &FI);
- return EraseInstFromFunction(FI);
- }
-
- // If we have 'free null' delete the instruction. This can happen in stl code
- // when lots of inlining happens.
- if (isa<ConstantPointerNull>(Op))
- return EraseInstFromFunction(FI);
-
- // If we have a malloc call whose only use is a free call, delete both.
- if (isMalloc(Op)) {
- if (CallInst* CI = extractMallocCallFromBitCast(Op)) {
- if (Op->hasOneUse() && CI->hasOneUse()) {
- EraseInstFromFunction(FI);
- EraseInstFromFunction(*CI);
- return EraseInstFromFunction(*cast<Instruction>(Op));
- }
- } else {
- // Op is a call to malloc
- if (Op->hasOneUse()) {
- EraseInstFromFunction(FI);
- return EraseInstFromFunction(*cast<Instruction>(Op));
- }
- }
- }
-
- return 0;
-}
-
-/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
-static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
- const TargetData *TD) {
- User *CI = cast<User>(LI.getOperand(0));
- Value *CastOp = CI->getOperand(0);
- LLVMContext *Context = IC.getContext();
-
- const PointerType *DestTy = cast<PointerType>(CI->getType());
- const Type *DestPTy = DestTy->getElementType();
- if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
-
- // If the address spaces don't match, don't eliminate the cast.
- if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
- return 0;
-
- const Type *SrcPTy = SrcTy->getElementType();
-
- if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
- isa<VectorType>(DestPTy)) {
- // If the source is an array, the code below will not succeed. Check to
- // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
- // constants.
- if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
- if (Constant *CSrc = dyn_cast<Constant>(CastOp))
- if (ASrcTy->getNumElements() != 0) {
- Value *Idxs[2];
- Idxs[0] = Constant::getNullValue(Type::getInt32Ty(*Context));
- Idxs[1] = Idxs[0];
- CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
- SrcTy = cast<PointerType>(CastOp->getType());
- SrcPTy = SrcTy->getElementType();
- }
-
- if (IC.getTargetData() &&
- (SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
- isa<VectorType>(SrcPTy)) &&
- // Do not allow turning this into a load of an integer, which is then
- // casted to a pointer, this pessimizes pointer analysis a lot.
- (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
- IC.getTargetData()->getTypeSizeInBits(SrcPTy) ==
- IC.getTargetData()->getTypeSizeInBits(DestPTy)) {
-
- // Okay, we are casting from one integer or pointer type to another of
- // the same size. Instead of casting the pointer before the load, cast
- // the result of the loaded value.
- Value *NewLoad =
- IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
- // Now cast the result of the load.
- return new BitCastInst(NewLoad, LI.getType());
- }
- }
- }
- return 0;
-}
-
-Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
- Value *Op = LI.getOperand(0);
-
- // Attempt to improve the alignment.
- if (TD) {
- unsigned KnownAlign =
- GetOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()));
- if (KnownAlign >
- (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
- LI.getAlignment()))
- LI.setAlignment(KnownAlign);
- }
-
- // load (cast X) --> cast (load X) iff safe.
- if (isa<CastInst>(Op))
- if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
- return Res;
-
- // None of the following transforms are legal for volatile loads.
- if (LI.isVolatile()) return 0;
-
- // Do really simple store-to-load forwarding and load CSE, to catch cases
- // where there are several consequtive memory accesses to the same location,
- // separated by a few arithmetic operations.
- BasicBlock::iterator BBI = &LI;
- if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
- return ReplaceInstUsesWith(LI, AvailableVal);
-
- // load(gep null, ...) -> unreachable
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
- const Value *GEPI0 = GEPI->getOperand(0);
- // TODO: Consider a target hook for valid address spaces for this xform.
- if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
- // Insert a new store to null instruction before the load to indicate
- // that this code is not reachable. We do this instead of inserting
- // an unreachable instruction directly because we cannot modify the
- // CFG.
- new StoreInst(UndefValue::get(LI.getType()),
- Constant::getNullValue(Op->getType()), &LI);
- return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
- }
- }
-
- // load null/undef -> unreachable
- // TODO: Consider a target hook for valid address spaces for this xform.
- if (isa<UndefValue>(Op) ||
- (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
- // Insert a new store to null instruction before the load to indicate that
- // this code is not reachable. We do this instead of inserting an
- // unreachable instruction directly because we cannot modify the CFG.
- new StoreInst(UndefValue::get(LI.getType()),
- Constant::getNullValue(Op->getType()), &LI);
- return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
- }
-
- // Instcombine load (constantexpr_cast global) -> cast (load global)
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
- if (CE->isCast())
- if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
- return Res;
-
- if (Op->hasOneUse()) {
- // Change select and PHI nodes to select values instead of addresses: this
- // helps alias analysis out a lot, allows many others simplifications, and
- // exposes redundancy in the code.
- //
- // Note that we cannot do the transformation unless we know that the
- // introduced loads cannot trap! Something like this is valid as long as
- // the condition is always false: load (select bool %C, int* null, int* %G),
- // but it would not be valid if we transformed it to load from null
- // unconditionally.
- //
- if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
- // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
- if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
- isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
- Value *V1 = Builder->CreateLoad(SI->getOperand(1),
- SI->getOperand(1)->getName()+".val");
- Value *V2 = Builder->CreateLoad(SI->getOperand(2),
- SI->getOperand(2)->getName()+".val");
- return SelectInst::Create(SI->getCondition(), V1, V2);
- }
-
- // load (select (cond, null, P)) -> load P
- if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
- if (C->isNullValue()) {
- LI.setOperand(0, SI->getOperand(2));
- return &LI;
- }
-
- // load (select (cond, P, null)) -> load P
- if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
- if (C->isNullValue()) {
- LI.setOperand(0, SI->getOperand(1));
- return &LI;
- }
- }
- }
- return 0;
-}
-
-/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
-/// when possible. This makes it generally easy to do alias analysis and/or
-/// SROA/mem2reg of the memory object.
-static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
- User *CI = cast<User>(SI.getOperand(1));
- Value *CastOp = CI->getOperand(0);
-
- const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
- const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
- if (SrcTy == 0) return 0;
-
- const Type *SrcPTy = SrcTy->getElementType();
-
- if (!DestPTy->isInteger() && !isa<PointerType>(DestPTy))
- return 0;
-
- /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
- /// to its first element. This allows us to handle things like:
- /// store i32 xxx, (bitcast {foo*, float}* %P to i32*)
- /// on 32-bit hosts.
- SmallVector<Value*, 4> NewGEPIndices;
-
- // If the source is an array, the code below will not succeed. Check to
- // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
- // constants.
- if (isa<ArrayType>(SrcPTy) || isa<StructType>(SrcPTy)) {
- // Index through pointer.
- Constant *Zero = Constant::getNullValue(Type::getInt32Ty(*IC.getContext()));
- NewGEPIndices.push_back(Zero);
-
- while (1) {
- if (const StructType *STy = dyn_cast<StructType>(SrcPTy)) {
- if (!STy->getNumElements()) /* Struct can be empty {} */
- break;
- NewGEPIndices.push_back(Zero);
- SrcPTy = STy->getElementType(0);
- } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
- NewGEPIndices.push_back(Zero);
- SrcPTy = ATy->getElementType();
- } else {
- break;
- }
- }
-
- SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
- }
-
- if (!SrcPTy->isInteger() && !isa<PointerType>(SrcPTy))
- return 0;
-
- // If the pointers point into different address spaces or if they point to
- // values with different sizes, we can't do the transformation.
- if (!IC.getTargetData() ||
- SrcTy->getAddressSpace() !=
- cast<PointerType>(CI->getType())->getAddressSpace() ||
- IC.getTargetData()->getTypeSizeInBits(SrcPTy) !=
- IC.getTargetData()->getTypeSizeInBits(DestPTy))
- return 0;
-
- // Okay, we are casting from one integer or pointer type to another of
- // the same size. Instead of casting the pointer before
- // the store, cast the value to be stored.
- Value *NewCast;
- Value *SIOp0 = SI.getOperand(0);
- Instruction::CastOps opcode = Instruction::BitCast;
- const Type* CastSrcTy = SIOp0->getType();
- const Type* CastDstTy = SrcPTy;
- if (isa<PointerType>(CastDstTy)) {
- if (CastSrcTy->isInteger())
- opcode = Instruction::IntToPtr;
- } else if (isa<IntegerType>(CastDstTy)) {
- if (isa<PointerType>(SIOp0->getType()))
- opcode = Instruction::PtrToInt;
- }
-
- // SIOp0 is a pointer to aggregate and this is a store to the first field,
- // emit a GEP to index into its first field.
- if (!NewGEPIndices.empty())
- CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices.begin(),
- NewGEPIndices.end());
-
- NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
- SIOp0->getName()+".c");
- return new StoreInst(NewCast, CastOp);
-}
-
-/// equivalentAddressValues - Test if A and B will obviously have the same
-/// value. This includes recognizing that %t0 and %t1 will have the same
-/// value in code like this:
-/// %t0 = getelementptr \@a, 0, 3
-/// store i32 0, i32* %t0
-/// %t1 = getelementptr \@a, 0, 3
-/// %t2 = load i32* %t1
-///
-static bool equivalentAddressValues(Value *A, Value *B) {
- // Test if the values are trivially equivalent.
- if (A == B) return true;
-
- // Test if the values come form identical arithmetic instructions.
- // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
- // its only used to compare two uses within the same basic block, which
- // means that they'll always either have the same value or one of them
- // will have an undefined value.
- if (isa<BinaryOperator>(A) ||
- isa<CastInst>(A) ||
- isa<PHINode>(A) ||
- isa<GetElementPtrInst>(A))
- if (Instruction *BI = dyn_cast<Instruction>(B))
- if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
- return true;
-
- // Otherwise they may not be equivalent.
- return false;
-}
-
-// If this instruction has two uses, one of which is a llvm.dbg.declare,
-// return the llvm.dbg.declare.
-DbgDeclareInst *InstCombiner::hasOneUsePlusDeclare(Value *V) {
- if (!V->hasNUses(2))
- return 0;
- for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
- UI != E; ++UI) {
- if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI))
- return DI;
- if (isa<BitCastInst>(UI) && UI->hasOneUse()) {
- if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI->use_begin()))
- return DI;
- }
- }
- return 0;
-}
-
-Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
- Value *Val = SI.getOperand(0);
- Value *Ptr = SI.getOperand(1);
-
- // If the RHS is an alloca with a single use, zapify the store, making the
- // alloca dead.
- // If the RHS is an alloca with a two uses, the other one being a
- // llvm.dbg.declare, zapify the store and the declare, making the
- // alloca dead. We must do this to prevent declare's from affecting
- // codegen.
- if (!SI.isVolatile()) {
- if (Ptr->hasOneUse()) {
- if (isa<AllocaInst>(Ptr)) {
- EraseInstFromFunction(SI);
- ++NumCombined;
- return 0;
- }
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
- if (isa<AllocaInst>(GEP->getOperand(0))) {
- if (GEP->getOperand(0)->hasOneUse()) {
- EraseInstFromFunction(SI);
- ++NumCombined;
- return 0;
- }
- if (DbgDeclareInst *DI = hasOneUsePlusDeclare(GEP->getOperand(0))) {
- EraseInstFromFunction(*DI);
- EraseInstFromFunction(SI);
- ++NumCombined;
- return 0;
- }
- }
- }
- }
- if (DbgDeclareInst *DI = hasOneUsePlusDeclare(Ptr)) {
- EraseInstFromFunction(*DI);
- EraseInstFromFunction(SI);
- ++NumCombined;
- return 0;
- }
- }
-
- // Attempt to improve the alignment.
- if (TD) {
- unsigned KnownAlign =
- GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()));
- if (KnownAlign >
- (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
- SI.getAlignment()))
- SI.setAlignment(KnownAlign);
- }
-
- // Do really simple DSE, to catch cases where there are several consecutive
- // stores to the same location, separated by a few arithmetic operations. This
- // situation often occurs with bitfield accesses.
- BasicBlock::iterator BBI = &SI;
- for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
- --ScanInsts) {
- --BBI;
- // Don't count debug info directives, lest they affect codegen,
- // and we skip pointer-to-pointer bitcasts, which are NOPs.
- // It is necessary for correctness to skip those that feed into a
- // llvm.dbg.declare, as these are not present when debugging is off.
- if (isa<DbgInfoIntrinsic>(BBI) ||
- (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) {
- ScanInsts++;
- continue;
- }
-
- if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
- // Prev store isn't volatile, and stores to the same location?
- if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1),
- SI.getOperand(1))) {
- ++NumDeadStore;
- ++BBI;
- EraseInstFromFunction(*PrevSI);
- continue;
- }
- break;
- }
-
- // If this is a load, we have to stop. However, if the loaded value is from
- // the pointer we're loading and is producing the pointer we're storing,
- // then *this* store is dead (X = load P; store X -> P).
- if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
- if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
- !SI.isVolatile()) {
- EraseInstFromFunction(SI);
- ++NumCombined;
- return 0;
- }
- // Otherwise, this is a load from some other location. Stores before it
- // may not be dead.
- break;
- }
-
- // Don't skip over loads or things that can modify memory.
- if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
- break;
- }
-
-
- if (SI.isVolatile()) return 0; // Don't hack volatile stores.
-
- // store X, null -> turns into 'unreachable' in SimplifyCFG
- if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
- if (!isa<UndefValue>(Val)) {
- SI.setOperand(0, UndefValue::get(Val->getType()));
- if (Instruction *U = dyn_cast<Instruction>(Val))
- Worklist.Add(U); // Dropped a use.
- ++NumCombined;
- }
- return 0; // Do not modify these!
- }
-
- // store undef, Ptr -> noop
- if (isa<UndefValue>(Val)) {
- EraseInstFromFunction(SI);
- ++NumCombined;
- return 0;
- }
-
- // If the pointer destination is a cast, see if we can fold the cast into the
- // source instead.
- if (isa<CastInst>(Ptr))
- if (Instruction *Res = InstCombineStoreToCast(*this, SI))
- return Res;
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
- if (CE->isCast())
- if (Instruction *Res = InstCombineStoreToCast(*this, SI))
- return Res;
-
-
- // If this store is the last instruction in the basic block (possibly
- // excepting debug info instructions and the pointer bitcasts that feed
- // into them), and if the block ends with an unconditional branch, try
- // to move it to the successor block.
- BBI = &SI;
- do {
- ++BBI;
- } while (isa<DbgInfoIntrinsic>(BBI) ||
- (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType())));
- if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
- if (BI->isUnconditional())
- if (SimplifyStoreAtEndOfBlock(SI))
- return 0; // xform done!
-
- return 0;
-}
-
-/// SimplifyStoreAtEndOfBlock - Turn things like:
-/// if () { *P = v1; } else { *P = v2 }
-/// into a phi node with a store in the successor.
-///
-/// Simplify things like:
-/// *P = v1; if () { *P = v2; }
-/// into a phi node with a store in the successor.
-///
-bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
- BasicBlock *StoreBB = SI.getParent();
-
- // Check to see if the successor block has exactly two incoming edges. If
- // so, see if the other predecessor contains a store to the same location.
- // if so, insert a PHI node (if needed) and move the stores down.
- BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
-
- // Determine whether Dest has exactly two predecessors and, if so, compute
- // the other predecessor.
- pred_iterator PI = pred_begin(DestBB);
- BasicBlock *OtherBB = 0;
- if (*PI != StoreBB)
- OtherBB = *PI;
- ++PI;
- if (PI == pred_end(DestBB))
- return false;
-
- if (*PI != StoreBB) {
- if (OtherBB)
- return false;
- OtherBB = *PI;
- }
- if (++PI != pred_end(DestBB))
- return false;
-
- // Bail out if all the relevant blocks aren't distinct (this can happen,
- // for example, if SI is in an infinite loop)
- if (StoreBB == DestBB || OtherBB == DestBB)
- return false;
-
- // Verify that the other block ends in a branch and is not otherwise empty.
- BasicBlock::iterator BBI = OtherBB->getTerminator();
- BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
- if (!OtherBr || BBI == OtherBB->begin())
- return false;
-
- // If the other block ends in an unconditional branch, check for the 'if then
- // else' case. there is an instruction before the branch.
- StoreInst *OtherStore = 0;
- if (OtherBr->isUnconditional()) {
- --BBI;
- // Skip over debugging info.
- while (isa<DbgInfoIntrinsic>(BBI) ||
- (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) {
- if (BBI==OtherBB->begin())
- return false;
- --BBI;
- }
- // If this isn't a store, isn't a store to the same location, or if the
- // alignments differ, bail out.
- OtherStore = dyn_cast<StoreInst>(BBI);
- if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
- OtherStore->getAlignment() != SI.getAlignment())
- return false;
- } else {
- // Otherwise, the other block ended with a conditional branch. If one of the
- // destinations is StoreBB, then we have the if/then case.
- if (OtherBr->getSuccessor(0) != StoreBB &&
- OtherBr->getSuccessor(1) != StoreBB)
- return false;
-
- // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
- // if/then triangle. See if there is a store to the same ptr as SI that
- // lives in OtherBB.
- for (;; --BBI) {
- // Check to see if we find the matching store.
- if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
- if (OtherStore->getOperand(1) != SI.getOperand(1) ||
- OtherStore->getAlignment() != SI.getAlignment())
- return false;
- break;
- }
- // If we find something that may be using or overwriting the stored
- // value, or if we run out of instructions, we can't do the xform.
- if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
- BBI == OtherBB->begin())
- return false;
- }
-
- // In order to eliminate the store in OtherBr, we have to
- // make sure nothing reads or overwrites the stored value in
- // StoreBB.
- for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
- // FIXME: This should really be AA driven.
- if (I->mayReadFromMemory() || I->mayWriteToMemory())
- return false;
- }
- }
-
- // Insert a PHI node now if we need it.
- Value *MergedVal = OtherStore->getOperand(0);
- if (MergedVal != SI.getOperand(0)) {
- PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
- PN->reserveOperandSpace(2);
- PN->addIncoming(SI.getOperand(0), SI.getParent());
- PN->addIncoming(OtherStore->getOperand(0), OtherBB);
- MergedVal = InsertNewInstBefore(PN, DestBB->front());
- }
-
- // Advance to a place where it is safe to insert the new store and
- // insert it.
- BBI = DestBB->getFirstNonPHI();
- InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
- OtherStore->isVolatile(),
- SI.getAlignment()), *BBI);
-
- // Nuke the old stores.
- EraseInstFromFunction(SI);
- EraseInstFromFunction(*OtherStore);
- ++NumCombined;
- return true;
-}
-
-
-Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
- // Change br (not X), label True, label False to: br X, label False, True
- Value *X = 0;
- BasicBlock *TrueDest;
- BasicBlock *FalseDest;
- if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
- !isa<Constant>(X)) {
- // Swap Destinations and condition...
- BI.setCondition(X);
- BI.setSuccessor(0, FalseDest);
- BI.setSuccessor(1, TrueDest);
- return &BI;
- }
-
- // Cannonicalize fcmp_one -> fcmp_oeq
- FCmpInst::Predicate FPred; Value *Y;
- if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
- TrueDest, FalseDest)) &&
- BI.getCondition()->hasOneUse())
- if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
- FPred == FCmpInst::FCMP_OGE) {
- FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
- Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
-
- // Swap Destinations and condition.
- BI.setSuccessor(0, FalseDest);
- BI.setSuccessor(1, TrueDest);
- Worklist.Add(Cond);
- return &BI;
- }
-
- // Cannonicalize icmp_ne -> icmp_eq
- ICmpInst::Predicate IPred;
- if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
- TrueDest, FalseDest)) &&
- BI.getCondition()->hasOneUse())
- if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
- IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
- IPred == ICmpInst::ICMP_SGE) {
- ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
- Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
- // Swap Destinations and condition.
- BI.setSuccessor(0, FalseDest);
- BI.setSuccessor(1, TrueDest);
- Worklist.Add(Cond);
- return &BI;
- }
-
- return 0;
-}
-
-Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
- Value *Cond = SI.getCondition();
- if (Instruction *I = dyn_cast<Instruction>(Cond)) {
- if (I->getOpcode() == Instruction::Add)
- if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
- // change 'switch (X+4) case 1:' into 'switch (X) case -3'
- for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
- SI.setOperand(i,
- ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
- AddRHS));
- SI.setOperand(0, I->getOperand(0));
- Worklist.Add(I);
- return &SI;
- }
- }
- return 0;
-}
-
-Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
- Value *Agg = EV.getAggregateOperand();
-
- if (!EV.hasIndices())
- return ReplaceInstUsesWith(EV, Agg);
-
- if (Constant *C = dyn_cast<Constant>(Agg)) {
- if (isa<UndefValue>(C))
- return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
-
- if (isa<ConstantAggregateZero>(C))
- return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
-
- if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
- // Extract the element indexed by the first index out of the constant
- Value *V = C->getOperand(*EV.idx_begin());
- if (EV.getNumIndices() > 1)
- // Extract the remaining indices out of the constant indexed by the
- // first index
- return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
- else
- return ReplaceInstUsesWith(EV, V);
- }
- return 0; // Can't handle other constants
- }
- if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
- // We're extracting from an insertvalue instruction, compare the indices
- const unsigned *exti, *exte, *insi, *inse;
- for (exti = EV.idx_begin(), insi = IV->idx_begin(),
- exte = EV.idx_end(), inse = IV->idx_end();
- exti != exte && insi != inse;
- ++exti, ++insi) {
- if (*insi != *exti)
- // The insert and extract both reference distinctly different elements.
- // This means the extract is not influenced by the insert, and we can
- // replace the aggregate operand of the extract with the aggregate
- // operand of the insert. i.e., replace
- // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
- // %E = extractvalue { i32, { i32 } } %I, 0
- // with
- // %E = extractvalue { i32, { i32 } } %A, 0
- return ExtractValueInst::Create(IV->getAggregateOperand(),
- EV.idx_begin(), EV.idx_end());
- }
- if (exti == exte && insi == inse)
- // Both iterators are at the end: Index lists are identical. Replace
- // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
- // %C = extractvalue { i32, { i32 } } %B, 1, 0
- // with "i32 42"
- return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
- if (exti == exte) {
- // The extract list is a prefix of the insert list. i.e. replace
- // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
- // %E = extractvalue { i32, { i32 } } %I, 1
- // with
- // %X = extractvalue { i32, { i32 } } %A, 1
- // %E = insertvalue { i32 } %X, i32 42, 0
- // by switching the order of the insert and extract (though the
- // insertvalue should be left in, since it may have other uses).
- Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
- EV.idx_begin(), EV.idx_end());
- return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
- insi, inse);
- }
- if (insi == inse)
- // The insert list is a prefix of the extract list
- // We can simply remove the common indices from the extract and make it
- // operate on the inserted value instead of the insertvalue result.
- // i.e., replace
- // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
- // %E = extractvalue { i32, { i32 } } %I, 1, 0
- // with
- // %E extractvalue { i32 } { i32 42 }, 0
- return ExtractValueInst::Create(IV->getInsertedValueOperand(),
- exti, exte);
- }
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
- // We're extracting from an intrinsic, see if we're the only user, which
- // allows us to simplify multiple result intrinsics to simpler things that
- // just get one value..
- if (II->hasOneUse()) {
- // Check if we're grabbing the overflow bit or the result of a 'with
- // overflow' intrinsic. If it's the latter we can remove the intrinsic
- // and replace it with a traditional binary instruction.
- switch (II->getIntrinsicID()) {
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::sadd_with_overflow:
- if (*EV.idx_begin() == 0) { // Normal result.
- Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
- II->replaceAllUsesWith(UndefValue::get(II->getType()));
- EraseInstFromFunction(*II);
- return BinaryOperator::CreateAdd(LHS, RHS);
- }
- break;
- case Intrinsic::usub_with_overflow:
- case Intrinsic::ssub_with_overflow:
- if (*EV.idx_begin() == 0) { // Normal result.
- Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
- II->replaceAllUsesWith(UndefValue::get(II->getType()));
- EraseInstFromFunction(*II);
- return BinaryOperator::CreateSub(LHS, RHS);
- }
- break;
- case Intrinsic::umul_with_overflow:
- case Intrinsic::smul_with_overflow:
- if (*EV.idx_begin() == 0) { // Normal result.
- Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
- II->replaceAllUsesWith(UndefValue::get(II->getType()));
- EraseInstFromFunction(*II);
- return BinaryOperator::CreateMul(LHS, RHS);
- }
- break;
- default:
- break;
- }
- }
- }
- // Can't simplify extracts from other values. Note that nested extracts are
- // already simplified implicitely by the above (extract ( extract (insert) )
- // will be translated into extract ( insert ( extract ) ) first and then just
- // the value inserted, if appropriate).
- return 0;
-}
-
-/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
-/// is to leave as a vector operation.
-static bool CheapToScalarize(Value *V, bool isConstant) {
- if (isa<ConstantAggregateZero>(V))
- return true;
- if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
- if (isConstant) return true;
- // If all elts are the same, we can extract.
- Constant *Op0 = C->getOperand(0);
- for (unsigned i = 1; i < C->getNumOperands(); ++i)
- if (C->getOperand(i) != Op0)
- return false;
- return true;
- }
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return false;
-
- // Insert element gets simplified to the inserted element or is deleted if
- // this is constant idx extract element and its a constant idx insertelt.
- if (I->getOpcode() == Instruction::InsertElement && isConstant &&
- isa<ConstantInt>(I->getOperand(2)))
- return true;
- if (I->getOpcode() == Instruction::Load && I->hasOneUse())
- return true;
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
- if (BO->hasOneUse() &&
- (CheapToScalarize(BO->getOperand(0), isConstant) ||
- CheapToScalarize(BO->getOperand(1), isConstant)))
- return true;
- if (CmpInst *CI = dyn_cast<CmpInst>(I))
- if (CI->hasOneUse() &&
- (CheapToScalarize(CI->getOperand(0), isConstant) ||
- CheapToScalarize(CI->getOperand(1), isConstant)))
- return true;
-
- return false;
-}
-
-/// Read and decode a shufflevector mask.
-///
-/// It turns undef elements into values that are larger than the number of
-/// elements in the input.
-static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
- unsigned NElts = SVI->getType()->getNumElements();
- if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
- return std::vector<unsigned>(NElts, 0);
- if (isa<UndefValue>(SVI->getOperand(2)))
- return std::vector<unsigned>(NElts, 2*NElts);
-
- std::vector<unsigned> Result;
- const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
- for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
- if (isa<UndefValue>(*i))
- Result.push_back(NElts*2); // undef -> 8
- else
- Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
- return Result;
-}
-
-/// FindScalarElement - Given a vector and an element number, see if the scalar
-/// value is already around as a register, for example if it were inserted then
-/// extracted from the vector.
-static Value *FindScalarElement(Value *V, unsigned EltNo,
- LLVMContext *Context) {
- assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
- const VectorType *PTy = cast<VectorType>(V->getType());
- unsigned Width = PTy->getNumElements();
- if (EltNo >= Width) // Out of range access.
- return UndefValue::get(PTy->getElementType());
-
- if (isa<UndefValue>(V))
- return UndefValue::get(PTy->getElementType());
- else if (isa<ConstantAggregateZero>(V))
- return Constant::getNullValue(PTy->getElementType());
- else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
- return CP->getOperand(EltNo);
- else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
- // If this is an insert to a variable element, we don't know what it is.
- if (!isa<ConstantInt>(III->getOperand(2)))
- return 0;
- unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
-
- // If this is an insert to the element we are looking for, return the
- // inserted value.
- if (EltNo == IIElt)
- return III->getOperand(1);
-
- // Otherwise, the insertelement doesn't modify the value, recurse on its
- // vector input.
- return FindScalarElement(III->getOperand(0), EltNo, Context);
- } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
- unsigned LHSWidth =
- cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
- unsigned InEl = getShuffleMask(SVI)[EltNo];
- if (InEl < LHSWidth)
- return FindScalarElement(SVI->getOperand(0), InEl, Context);
- else if (InEl < LHSWidth*2)
- return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth, Context);
- else
- return UndefValue::get(PTy->getElementType());
- }
-
- // Otherwise, we don't know.
- return 0;
-}
-
-Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
- // If vector val is undef, replace extract with scalar undef.
- if (isa<UndefValue>(EI.getOperand(0)))
- return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
-
- // If vector val is constant 0, replace extract with scalar 0.
- if (isa<ConstantAggregateZero>(EI.getOperand(0)))
- return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
-
- if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
- // If vector val is constant with all elements the same, replace EI with
- // that element. When the elements are not identical, we cannot replace yet
- // (we do that below, but only when the index is constant).
- Constant *op0 = C->getOperand(0);
- for (unsigned i = 1; i != C->getNumOperands(); ++i)
- if (C->getOperand(i) != op0) {
- op0 = 0;
- break;
- }
- if (op0)
- return ReplaceInstUsesWith(EI, op0);
- }
-
- // If extracting a specified index from the vector, see if we can recursively
- // find a previously computed scalar that was inserted into the vector.
- if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
- unsigned IndexVal = IdxC->getZExtValue();
- unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
-
- // If this is extracting an invalid index, turn this into undef, to avoid
- // crashing the code below.
- if (IndexVal >= VectorWidth)
- return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
-
- // This instruction only demands the single element from the input vector.
- // If the input vector has a single use, simplify it based on this use
- // property.
- if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
- APInt UndefElts(VectorWidth, 0);
- APInt DemandedMask(VectorWidth, 1 << IndexVal);
- if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
- DemandedMask, UndefElts)) {
- EI.setOperand(0, V);
- return &EI;
- }
- }
-
- if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal, Context))
- return ReplaceInstUsesWith(EI, Elt);
-
- // If the this extractelement is directly using a bitcast from a vector of
- // the same number of elements, see if we can find the source element from
- // it. In this case, we will end up needing to bitcast the scalars.
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
- if (const VectorType *VT =
- dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
- if (VT->getNumElements() == VectorWidth)
- if (Value *Elt = FindScalarElement(BCI->getOperand(0),
- IndexVal, Context))
- return new BitCastInst(Elt, EI.getType());
- }
- }
-
- if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
- // Push extractelement into predecessor operation if legal and
- // profitable to do so
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
- if (I->hasOneUse() &&
- CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
- Value *newEI0 =
- Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
- EI.getName()+".lhs");
- Value *newEI1 =
- Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
- EI.getName()+".rhs");
- return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
- }
- } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
- // Extracting the inserted element?
- if (IE->getOperand(2) == EI.getOperand(1))
- return ReplaceInstUsesWith(EI, IE->getOperand(1));
- // If the inserted and extracted elements are constants, they must not
- // be the same value, extract from the pre-inserted value instead.
- if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
- Worklist.AddValue(EI.getOperand(0));
- EI.setOperand(0, IE->getOperand(0));
- return &EI;
- }
- } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
- // If this is extracting an element from a shufflevector, figure out where
- // it came from and extract from the appropriate input element instead.
- if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
- unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
- Value *Src;
- unsigned LHSWidth =
- cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
-
- if (SrcIdx < LHSWidth)
- Src = SVI->getOperand(0);
- else if (SrcIdx < LHSWidth*2) {
- SrcIdx -= LHSWidth;
- Src = SVI->getOperand(1);
- } else {
- return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
- }
- return ExtractElementInst::Create(Src,
- ConstantInt::get(Type::getInt32Ty(*Context), SrcIdx,
- false));
- }
- }
- // FIXME: Canonicalize extractelement(bitcast) -> bitcast(extractelement)
- }
- return 0;
-}
-
-/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
-/// elements from either LHS or RHS, return the shuffle mask and true.
-/// Otherwise, return false.
-static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
- std::vector<Constant*> &Mask,
- LLVMContext *Context) {
- assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
- "Invalid CollectSingleShuffleElements");
- unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
-
- if (isa<UndefValue>(V)) {
- Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(*Context)));
- return true;
- } else if (V == LHS) {
- for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(ConstantInt::get(Type::getInt32Ty(*Context), i));
- return true;
- } else if (V == RHS) {
- for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(ConstantInt::get(Type::getInt32Ty(*Context), i+NumElts));
- return true;
- } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
- // If this is an insert of an extract from some other vector, include it.
- Value *VecOp = IEI->getOperand(0);
- Value *ScalarOp = IEI->getOperand(1);
- Value *IdxOp = IEI->getOperand(2);
-
- if (!isa<ConstantInt>(IdxOp))
- return false;
- unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
-
- if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
- // Okay, we can handle this if the vector we are insertinting into is
- // transitively ok.
- if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask, Context)) {
- // If so, update the mask to reflect the inserted undef.
- Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(*Context));
- return true;
- }
- } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
- if (isa<ConstantInt>(EI->getOperand(1)) &&
- EI->getOperand(0)->getType() == V->getType()) {
- unsigned ExtractedIdx =
- cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
-
- // This must be extracting from either LHS or RHS.
- if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
- // Okay, we can handle this if the vector we are insertinting into is
- // transitively ok.
- if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask, Context)) {
- // If so, update the mask to reflect the inserted value.
- if (EI->getOperand(0) == LHS) {
- Mask[InsertedIdx % NumElts] =
- ConstantInt::get(Type::getInt32Ty(*Context), ExtractedIdx);
- } else {
- assert(EI->getOperand(0) == RHS);
- Mask[InsertedIdx % NumElts] =
- ConstantInt::get(Type::getInt32Ty(*Context), ExtractedIdx+NumElts);
-
- }
- return true;
- }
- }
- }
- }
- }
- // TODO: Handle shufflevector here!
-
- return false;
-}
-
-/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
-/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
-/// that computes V and the LHS value of the shuffle.
-static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
- Value *&RHS, LLVMContext *Context) {
- assert(isa<VectorType>(V->getType()) &&
- (RHS == 0 || V->getType() == RHS->getType()) &&
- "Invalid shuffle!");
- unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
-
- if (isa<UndefValue>(V)) {
- Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(*Context)));
- return V;
- } else if (isa<ConstantAggregateZero>(V)) {
- Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(*Context), 0));
- return V;
- } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
- // If this is an insert of an extract from some other vector, include it.
- Value *VecOp = IEI->getOperand(0);
- Value *ScalarOp = IEI->getOperand(1);
- Value *IdxOp = IEI->getOperand(2);
-
- if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
- if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
- EI->getOperand(0)->getType() == V->getType()) {
- unsigned ExtractedIdx =
- cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
- unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
-
- // Either the extracted from or inserted into vector must be RHSVec,
- // otherwise we'd end up with a shuffle of three inputs.
- if (EI->getOperand(0) == RHS || RHS == 0) {
- RHS = EI->getOperand(0);
- Value *V = CollectShuffleElements(VecOp, Mask, RHS, Context);
- Mask[InsertedIdx % NumElts] =
- ConstantInt::get(Type::getInt32Ty(*Context), NumElts+ExtractedIdx);
- return V;
- }
-
- if (VecOp == RHS) {
- Value *V = CollectShuffleElements(EI->getOperand(0), Mask,
- RHS, Context);
- // Everything but the extracted element is replaced with the RHS.
- for (unsigned i = 0; i != NumElts; ++i) {
- if (i != InsertedIdx)
- Mask[i] = ConstantInt::get(Type::getInt32Ty(*Context), NumElts+i);
- }
- return V;
- }
-
- // If this insertelement is a chain that comes from exactly these two
- // vectors, return the vector and the effective shuffle.
- if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask,
- Context))
- return EI->getOperand(0);
-
- }
- }
- }
- // TODO: Handle shufflevector here!
-
- // Otherwise, can't do anything fancy. Return an identity vector.
- for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(ConstantInt::get(Type::getInt32Ty(*Context), i));
- return V;
-}
-
-Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
- Value *VecOp = IE.getOperand(0);
- Value *ScalarOp = IE.getOperand(1);
- Value *IdxOp = IE.getOperand(2);
-
- // Inserting an undef or into an undefined place, remove this.
- if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
- ReplaceInstUsesWith(IE, VecOp);
-
- // If the inserted element was extracted from some other vector, and if the
- // indexes are constant, try to turn this into a shufflevector operation.
- if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
- if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
- EI->getOperand(0)->getType() == IE.getType()) {
- unsigned NumVectorElts = IE.getType()->getNumElements();
- unsigned ExtractedIdx =
- cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
- unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
-
- if (ExtractedIdx >= NumVectorElts) // Out of range extract.
- return ReplaceInstUsesWith(IE, VecOp);
-
- if (InsertedIdx >= NumVectorElts) // Out of range insert.
- return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
-
- // If we are extracting a value from a vector, then inserting it right
- // back into the same place, just use the input vector.
- if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
- return ReplaceInstUsesWith(IE, VecOp);
-
- // If this insertelement isn't used by some other insertelement, turn it
- // (and any insertelements it points to), into one big shuffle.
- if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
- std::vector<Constant*> Mask;
- Value *RHS = 0;
- Value *LHS = CollectShuffleElements(&IE, Mask, RHS, Context);
- if (RHS == 0) RHS = UndefValue::get(LHS->getType());
- // We now have a shuffle of LHS, RHS, Mask.
- return new ShuffleVectorInst(LHS, RHS,
- ConstantVector::get(Mask));
- }
- }
- }
-
- unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
- APInt UndefElts(VWidth, 0);
- APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
- if (SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts))
- return &IE;
-
- return 0;
-}
-
-
-Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
- Value *LHS = SVI.getOperand(0);
- Value *RHS = SVI.getOperand(1);
- std::vector<unsigned> Mask = getShuffleMask(&SVI);
-
- bool MadeChange = false;
-
- // Undefined shuffle mask -> undefined value.
- if (isa<UndefValue>(SVI.getOperand(2)))
- return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
-
- unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
-
- if (VWidth != cast<VectorType>(LHS->getType())->getNumElements())
- return 0;
-
- APInt UndefElts(VWidth, 0);
- APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
- if (SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
- LHS = SVI.getOperand(0);
- RHS = SVI.getOperand(1);
- MadeChange = true;
- }
-
- // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
- // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
- if (LHS == RHS || isa<UndefValue>(LHS)) {
- if (isa<UndefValue>(LHS) && LHS == RHS) {
- // shuffle(undef,undef,mask) -> undef.
- return ReplaceInstUsesWith(SVI, LHS);
- }
-
- // Remap any references to RHS to use LHS.
- std::vector<Constant*> Elts;
- for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
- if (Mask[i] >= 2*e)
- Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context)));
- else {
- if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
- (Mask[i] < e && isa<UndefValue>(LHS))) {
- Mask[i] = 2*e; // Turn into undef.
- Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context)));
- } else {
- Mask[i] = Mask[i] % e; // Force to LHS.
- Elts.push_back(ConstantInt::get(Type::getInt32Ty(*Context), Mask[i]));
- }
- }
- }
- SVI.setOperand(0, SVI.getOperand(1));
- SVI.setOperand(1, UndefValue::get(RHS->getType()));
- SVI.setOperand(2, ConstantVector::get(Elts));
- LHS = SVI.getOperand(0);
- RHS = SVI.getOperand(1);
- MadeChange = true;
- }
-
- // Analyze the shuffle, are the LHS or RHS and identity shuffles?
- bool isLHSID = true, isRHSID = true;
-
- for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
- if (Mask[i] >= e*2) continue; // Ignore undef values.
- // Is this an identity shuffle of the LHS value?
- isLHSID &= (Mask[i] == i);
-
- // Is this an identity shuffle of the RHS value?
- isRHSID &= (Mask[i]-e == i);
- }
-
- // Eliminate identity shuffles.
- if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
- if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
-
- // If the LHS is a shufflevector itself, see if we can combine it with this
- // one without producing an unusual shuffle. Here we are really conservative:
- // we are absolutely afraid of producing a shuffle mask not in the input
- // program, because the code gen may not be smart enough to turn a merged
- // shuffle into two specific shuffles: it may produce worse code. As such,
- // we only merge two shuffles if the result is one of the two input shuffle
- // masks. In this case, merging the shuffles just removes one instruction,
- // which we know is safe. This is good for things like turning:
- // (splat(splat)) -> splat.
- if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
- if (isa<UndefValue>(RHS)) {
- std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
-
- if (LHSMask.size() == Mask.size()) {
- std::vector<unsigned> NewMask;
- for (unsigned i = 0, e = Mask.size(); i != e; ++i)
- if (Mask[i] >= e)
- NewMask.push_back(2*e);
- else
- NewMask.push_back(LHSMask[Mask[i]]);
-
- // If the result mask is equal to the src shuffle or this
- // shuffle mask, do the replacement.
- if (NewMask == LHSMask || NewMask == Mask) {
- unsigned LHSInNElts =
- cast<VectorType>(LHSSVI->getOperand(0)->getType())->
- getNumElements();
- std::vector<Constant*> Elts;
- for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
- if (NewMask[i] >= LHSInNElts*2) {
- Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context)));
- } else {
- Elts.push_back(ConstantInt::get(Type::getInt32Ty(*Context),
- NewMask[i]));
- }
- }
- return new ShuffleVectorInst(LHSSVI->getOperand(0),
- LHSSVI->getOperand(1),
- ConstantVector::get(Elts));
- }
- }
- }
- }
-
- return MadeChange ? &SVI : 0;
-}
-
-
-
-
-/// TryToSinkInstruction - Try to move the specified instruction from its
-/// current block into the beginning of DestBlock, which can only happen if it's
-/// safe to move the instruction past all of the instructions between it and the
-/// end of its block.
-static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
- assert(I->hasOneUse() && "Invariants didn't hold!");
-
- // Cannot move control-flow-involving, volatile loads, vaarg, etc.
- if (isa<PHINode>(I) || I->mayHaveSideEffects() || isa<TerminatorInst>(I))
- return false;
-
- // Do not sink alloca instructions out of the entry block.
- if (isa<AllocaInst>(I) && I->getParent() ==
- &DestBlock->getParent()->getEntryBlock())
- return false;
-
- // We can only sink load instructions if there is nothing between the load and
- // the end of block that could change the value.
- if (I->mayReadFromMemory()) {
- for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
- Scan != E; ++Scan)
- if (Scan->mayWriteToMemory())
- return false;
- }
-
- BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
-
- CopyPrecedingStopPoint(I, InsertPos);
- I->moveBefore(InsertPos);
- ++NumSunkInst;
- return true;
-}
-
-
-/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
-/// all reachable code to the worklist.
-///
-/// This has a couple of tricks to make the code faster and more powerful. In
-/// particular, we constant fold and DCE instructions as we go, to avoid adding
-/// them to the worklist (this significantly speeds up instcombine on code where
-/// many instructions are dead or constant). Additionally, if we find a branch
-/// whose condition is a known constant, we only visit the reachable successors.
-///
-static bool AddReachableCodeToWorklist(BasicBlock *BB,
- SmallPtrSet<BasicBlock*, 64> &Visited,
- InstCombiner &IC,
- const TargetData *TD) {
- bool MadeIRChange = false;
- SmallVector<BasicBlock*, 256> Worklist;
- Worklist.push_back(BB);
-
- std::vector<Instruction*> InstrsForInstCombineWorklist;
- InstrsForInstCombineWorklist.reserve(128);
-
- SmallPtrSet<ConstantExpr*, 64> FoldedConstants;
-
- while (!Worklist.empty()) {
- BB = Worklist.back();
- Worklist.pop_back();
-
- // We have now visited this block! If we've already been here, ignore it.
- if (!Visited.insert(BB)) continue;
-
- for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
- Instruction *Inst = BBI++;
-
- // DCE instruction if trivially dead.
- if (isInstructionTriviallyDead(Inst)) {
- ++NumDeadInst;
- DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
- Inst->eraseFromParent();
- continue;
- }
-
- // ConstantProp instruction if trivially constant.
- if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
- if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
- DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
- << *Inst << '\n');
- Inst->replaceAllUsesWith(C);
- ++NumConstProp;
- Inst->eraseFromParent();
- continue;
- }
-
-
-
- if (TD) {
- // See if we can constant fold its operands.
- for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
- i != e; ++i) {
- ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
- if (CE == 0) continue;
-
- // If we already folded this constant, don't try again.
- if (!FoldedConstants.insert(CE))
- continue;
-
- Constant *NewC = ConstantFoldConstantExpression(CE, TD);
- if (NewC && NewC != CE) {
- *i = NewC;
- MadeIRChange = true;
- }
- }
- }
-
-
- InstrsForInstCombineWorklist.push_back(Inst);
- }
-
- // Recursively visit successors. If this is a branch or switch on a
- // constant, only visit the reachable successor.
- TerminatorInst *TI = BB->getTerminator();
- if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
- if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
- bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
- BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
- Worklist.push_back(ReachableBB);
- continue;
- }
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
- if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
- // See if this is an explicit destination.
- for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
- if (SI->getCaseValue(i) == Cond) {
- BasicBlock *ReachableBB = SI->getSuccessor(i);
- Worklist.push_back(ReachableBB);
- continue;
- }
-
- // Otherwise it is the default destination.
- Worklist.push_back(SI->getSuccessor(0));
- continue;
- }
- }
-
- for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
- Worklist.push_back(TI->getSuccessor(i));
- }
-
- // Once we've found all of the instructions to add to instcombine's worklist,
- // add them in reverse order. This way instcombine will visit from the top
- // of the function down. This jives well with the way that it adds all uses
- // of instructions to the worklist after doing a transformation, thus avoiding
- // some N^2 behavior in pathological cases.
- IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
- InstrsForInstCombineWorklist.size());
-
- return MadeIRChange;
-}
-
-bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
- MadeIRChange = false;
-
- DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
- << F.getNameStr() << "\n");
-
- {
- // Do a depth-first traversal of the function, populate the worklist with
- // the reachable instructions. Ignore blocks that are not reachable. Keep
- // track of which blocks we visit.
- SmallPtrSet<BasicBlock*, 64> Visited;
- MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
-
- // Do a quick scan over the function. If we find any blocks that are
- // unreachable, remove any instructions inside of them. This prevents
- // the instcombine code from having to deal with some bad special cases.
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
- if (!Visited.count(BB)) {
- Instruction *Term = BB->getTerminator();
- while (Term != BB->begin()) { // Remove instrs bottom-up
- BasicBlock::iterator I = Term; --I;
-
- DEBUG(errs() << "IC: DCE: " << *I << '\n');
- // A debug intrinsic shouldn't force another iteration if we weren't
- // going to do one without it.
- if (!isa<DbgInfoIntrinsic>(I)) {
- ++NumDeadInst;
- MadeIRChange = true;
- }
-
- // If I is not void type then replaceAllUsesWith undef.
- // This allows ValueHandlers and custom metadata to adjust itself.
- if (!I->getType()->isVoidTy())
- I->replaceAllUsesWith(UndefValue::get(I->getType()));
- I->eraseFromParent();
- }
- }
- }
-
- while (!Worklist.isEmpty()) {
- Instruction *I = Worklist.RemoveOne();
- if (I == 0) continue; // skip null values.
-
- // Check to see if we can DCE the instruction.
- if (isInstructionTriviallyDead(I)) {
- DEBUG(errs() << "IC: DCE: " << *I << '\n');
- EraseInstFromFunction(*I);
- ++NumDeadInst;
- MadeIRChange = true;
- continue;
- }
-
- // Instruction isn't dead, see if we can constant propagate it.
- if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
- if (Constant *C = ConstantFoldInstruction(I, TD)) {
- DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
-
- // Add operands to the worklist.
- ReplaceInstUsesWith(*I, C);
- ++NumConstProp;
- EraseInstFromFunction(*I);
- MadeIRChange = true;
- continue;
- }
-
- // See if we can trivially sink this instruction to a successor basic block.
- if (I->hasOneUse()) {
- BasicBlock *BB = I->getParent();
- Instruction *UserInst = cast<Instruction>(I->use_back());
- BasicBlock *UserParent;
-
- // Get the block the use occurs in.
- if (PHINode *PN = dyn_cast<PHINode>(UserInst))
- UserParent = PN->getIncomingBlock(I->use_begin().getUse());
- else
- UserParent = UserInst->getParent();
-
- if (UserParent != BB) {
- bool UserIsSuccessor = false;
- // See if the user is one of our successors.
- for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
- if (*SI == UserParent) {
- UserIsSuccessor = true;
- break;
- }
-
- // If the user is one of our immediate successors, and if that successor
- // only has us as a predecessors (we'd have to split the critical edge
- // otherwise), we can keep going.
- if (UserIsSuccessor && UserParent->getSinglePredecessor())
- // Okay, the CFG is simple enough, try to sink this instruction.
- MadeIRChange |= TryToSinkInstruction(I, UserParent);
- }
- }
-
- // Now that we have an instruction, try combining it to simplify it.
- Builder->SetInsertPoint(I->getParent(), I);
-
-#ifndef NDEBUG
- std::string OrigI;
-#endif
- DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
- DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
-
- if (Instruction *Result = visit(*I)) {
- ++NumCombined;
- // Should we replace the old instruction with a new one?
- if (Result != I) {
- DEBUG(errs() << "IC: Old = " << *I << '\n'
- << " New = " << *Result << '\n');
-
- // Everything uses the new instruction now.
- I->replaceAllUsesWith(Result);
-
- // Push the new instruction and any users onto the worklist.
- Worklist.Add(Result);
- Worklist.AddUsersToWorkList(*Result);
-
- // Move the name to the new instruction first.
- Result->takeName(I);
-
- // Insert the new instruction into the basic block...
- BasicBlock *InstParent = I->getParent();
- BasicBlock::iterator InsertPos = I;
-
- if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
- while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
- ++InsertPos;
-
- InstParent->getInstList().insert(InsertPos, Result);
-
- EraseInstFromFunction(*I);
- } else {
-#ifndef NDEBUG
- DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
- << " New = " << *I << '\n');
-#endif
-
- // If the instruction was modified, it's possible that it is now dead.
- // if so, remove it.
- if (isInstructionTriviallyDead(I)) {
- EraseInstFromFunction(*I);
- } else {
- Worklist.Add(I);
- Worklist.AddUsersToWorkList(*I);
- }
- }
- MadeIRChange = true;
- }
- }
-
- Worklist.Zap();
- return MadeIRChange;
-}
-
-
-bool InstCombiner::runOnFunction(Function &F) {
- MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
- Context = &F.getContext();
- TD = getAnalysisIfAvailable<TargetData>();
-
-
- /// Builder - This is an IRBuilder that automatically inserts new
- /// instructions into the worklist when they are created.
- IRBuilder<true, TargetFolder, InstCombineIRInserter>
- TheBuilder(F.getContext(), TargetFolder(TD),
- InstCombineIRInserter(Worklist));
- Builder = &TheBuilder;
-
- bool EverMadeChange = false;
-
- // Iterate while there is work to do.
- unsigned Iteration = 0;
- while (DoOneIteration(F, Iteration++))
- EverMadeChange = true;
-
- Builder = 0;
- return EverMadeChange;
-}
-
-FunctionPass *llvm::createInstructionCombiningPass() {
- return new InstCombiner();
-}
diff --git a/lib/Transforms/Scalar/JumpThreading.cpp b/lib/Transforms/Scalar/JumpThreading.cpp
index 7e6cf79..9531311 100644
--- a/lib/Transforms/Scalar/JumpThreading.cpp
+++ b/lib/Transforms/Scalar/JumpThreading.cpp
@@ -89,7 +89,7 @@ namespace {
bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
BasicBlock *SuccBB);
bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
- BasicBlock *PredBB);
+ const SmallVectorImpl<BasicBlock *> &PredBBs);
typedef SmallVectorImpl<std::pair<ConstantInt*,
BasicBlock*> > PredValueInfo;
@@ -102,7 +102,8 @@ namespace {
bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
- bool ProcessJumpOnPHI(PHINode *PN);
+ bool ProcessBranchOnPHI(PHINode *PN);
+ bool ProcessBranchOnXOR(BinaryOperator *BO);
bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
};
@@ -118,16 +119,15 @@ FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
/// runOnFunction - Top level algorithm.
///
bool JumpThreading::runOnFunction(Function &F) {
- DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
+ DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
TD = getAnalysisIfAvailable<TargetData>();
LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
FindLoopHeaders(F);
- bool AnotherIteration = true, EverChanged = false;
- while (AnotherIteration) {
- AnotherIteration = false;
- bool Changed = false;
+ bool Changed, EverChanged = false;
+ do {
+ Changed = false;
for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
BasicBlock *BB = I;
// Thread all of the branches we can over this block.
@@ -140,7 +140,7 @@ bool JumpThreading::runOnFunction(Function &F) {
// edges which simplifies the CFG.
if (pred_begin(BB) == pred_end(BB) &&
BB != &BB->getParent()->getEntryBlock()) {
- DEBUG(errs() << " JT: Deleting dead block '" << BB->getName()
+ DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName()
<< "' with terminator: " << *BB->getTerminator() << '\n');
LoopHeaders.erase(BB);
DeleteDeadBlock(BB);
@@ -176,9 +176,8 @@ bool JumpThreading::runOnFunction(Function &F) {
}
}
}
- AnotherIteration = Changed;
EverChanged |= Changed;
- }
+ } while (Changed);
LoopHeaders.clear();
return EverChanged;
@@ -490,7 +489,7 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
// terminator to an unconditional branch. This can occur due to threading in
// other blocks.
if (isa<ConstantInt>(Condition)) {
- DEBUG(errs() << " In block '" << BB->getName()
+ DEBUG(dbgs() << " In block '" << BB->getName()
<< "' folding terminator: " << *BB->getTerminator() << '\n');
++NumFolds;
ConstantFoldTerminator(BB);
@@ -509,7 +508,7 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
}
- DEBUG(errs() << " In block '" << BB->getName()
+ DEBUG(dbgs() << " In block '" << BB->getName()
<< "' folding undef terminator: " << *BBTerm << '\n');
BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
BBTerm->eraseFromParent();
@@ -552,11 +551,6 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
}
- // See if this is a phi node in the current block.
- if (PHINode *PN = dyn_cast<PHINode>(CondInst))
- if (PN->getParent() == BB)
- return ProcessJumpOnPHI(PN);
-
if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
if (!LVI &&
(!isa<PHINode>(CondCmp->getOperand(0)) ||
@@ -585,8 +579,6 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
// we see one, check to see if it's partially redundant. If so, insert a PHI
// which can then be used to thread the values.
//
- // This is particularly important because reg2mem inserts loads and stores all
- // over the place, and this blocks jump threading if we don't zap them.
Value *SimplifyValue = CondInst;
if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
if (isa<Constant>(CondCmp->getOperand(1)))
@@ -606,9 +598,21 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
if (ProcessThreadableEdges(CondInst, BB))
return true;
+ // If this is an otherwise-unfoldable branch on a phi node in the current
+ // block, see if we can simplify.
+ if (PHINode *PN = dyn_cast<PHINode>(CondInst))
+ if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
+ return ProcessBranchOnPHI(PN);
+
+
+ // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
+ if (CondInst->getOpcode() == Instruction::Xor &&
+ CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
+ return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
+
// TODO: If we have: "br (X > 0)" and we have a predecessor where we know
- // "(X == 4)" thread through this block.
+ // "(X == 4)", thread through this block.
return false;
}
@@ -636,7 +640,7 @@ bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
else if (PredBI->getSuccessor(0) != BB)
BranchDir = false;
else {
- DEBUG(errs() << " In block '" << PredBB->getName()
+ DEBUG(dbgs() << " In block '" << PredBB->getName()
<< "' folding terminator: " << *PredBB->getTerminator() << '\n');
++NumFolds;
ConstantFoldTerminator(PredBB);
@@ -648,7 +652,7 @@ bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
// If the dest block has one predecessor, just fix the branch condition to a
// constant and fold it.
if (BB->getSinglePredecessor()) {
- DEBUG(errs() << " In block '" << BB->getName()
+ DEBUG(dbgs() << " In block '" << BB->getName()
<< "' folding condition to '" << BranchDir << "': "
<< *BB->getTerminator() << '\n');
++NumFolds;
@@ -727,8 +731,8 @@ bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
// Otherwise, we're safe to make the change. Make sure that the edge from
// DestSI to DestSucc is not critical and has no PHI nodes.
- DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
- DEBUG(errs() << "THROUGH: " << *DestSI);
+ DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
+ DEBUG(dbgs() << "THROUGH: " << *DestSI);
// If the destination has PHI nodes, just split the edge for updating
// simplicity.
@@ -979,14 +983,14 @@ bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
assert(!PredValues.empty() &&
"ComputeValueKnownInPredecessors returned true with no values");
- DEBUG(errs() << "IN BB: " << *BB;
+ DEBUG(dbgs() << "IN BB: " << *BB;
for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
- errs() << " BB '" << BB->getName() << "': FOUND condition = ";
+ dbgs() << " BB '" << BB->getName() << "': FOUND condition = ";
if (PredValues[i].first)
- errs() << *PredValues[i].first;
+ dbgs() << *PredValues[i].first;
else
- errs() << "UNDEF";
- errs() << " for pred '" << PredValues[i].second->getName()
+ dbgs() << "UNDEF";
+ dbgs() << " for pred '" << PredValues[i].second->getName()
<< "'.\n";
});
@@ -1070,36 +1074,110 @@ bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
return ThreadEdge(BB, PredsToFactor, MostPopularDest);
}
-/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
-/// the current block. See if there are any simplifications we can do based on
-/// inputs to the phi node.
+/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
+/// a PHI node in the current block. See if there are any simplifications we
+/// can do based on inputs to the phi node.
///
-bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
+bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
BasicBlock *BB = PN->getParent();
- // If any of the predecessor blocks end in an unconditional branch, we can
- // *duplicate* the jump into that block in order to further encourage jump
- // threading and to eliminate cases where we have branch on a phi of an icmp
- // (branch on icmp is much better).
-
- // We don't want to do this tranformation for switches, because we don't
- // really want to duplicate a switch.
- if (isa<SwitchInst>(BB->getTerminator()))
- return false;
+ // TODO: We could make use of this to do it once for blocks with common PHI
+ // values.
+ SmallVector<BasicBlock*, 1> PredBBs;
+ PredBBs.resize(1);
- // Look for unconditional branch predecessors.
+ // If any of the predecessor blocks end in an unconditional branch, we can
+ // *duplicate* the conditional branch into that block in order to further
+ // encourage jump threading and to eliminate cases where we have branch on a
+ // phi of an icmp (branch on icmp is much better).
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
BasicBlock *PredBB = PN->getIncomingBlock(i);
if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
- if (PredBr->isUnconditional() &&
- // Try to duplicate BB into PredBB.
- DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
- return true;
+ if (PredBr->isUnconditional()) {
+ PredBBs[0] = PredBB;
+ // Try to duplicate BB into PredBB.
+ if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
+ return true;
+ }
}
return false;
}
+/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
+/// a xor instruction in the current block. See if there are any
+/// simplifications we can do based on inputs to the xor.
+///
+bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
+ BasicBlock *BB = BO->getParent();
+
+ // If either the LHS or RHS of the xor is a constant, don't do this
+ // optimization.
+ if (isa<ConstantInt>(BO->getOperand(0)) ||
+ isa<ConstantInt>(BO->getOperand(1)))
+ return false;
+
+ // If we have a xor as the branch input to this block, and we know that the
+ // LHS or RHS of the xor in any predecessor is true/false, then we can clone
+ // the condition into the predecessor and fix that value to true, saving some
+ // logical ops on that path and encouraging other paths to simplify.
+ //
+ // This copies something like this:
+ //
+ // BB:
+ // %X = phi i1 [1], [%X']
+ // %Y = icmp eq i32 %A, %B
+ // %Z = xor i1 %X, %Y
+ // br i1 %Z, ...
+ //
+ // Into:
+ // BB':
+ // %Y = icmp ne i32 %A, %B
+ // br i1 %Z, ...
+
+ SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
+ bool isLHS = true;
+ if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
+ assert(XorOpValues.empty());
+ if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
+ return false;
+ isLHS = false;
+ }
+
+ assert(!XorOpValues.empty() &&
+ "ComputeValueKnownInPredecessors returned true with no values");
+
+ // Scan the information to see which is most popular: true or false. The
+ // predecessors can be of the set true, false, or undef.
+ unsigned NumTrue = 0, NumFalse = 0;
+ for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
+ if (!XorOpValues[i].first) continue; // Ignore undefs for the count.
+ if (XorOpValues[i].first->isZero())
+ ++NumFalse;
+ else
+ ++NumTrue;
+ }
+
+ // Determine which value to split on, true, false, or undef if neither.
+ ConstantInt *SplitVal = 0;
+ if (NumTrue > NumFalse)
+ SplitVal = ConstantInt::getTrue(BB->getContext());
+ else if (NumTrue != 0 || NumFalse != 0)
+ SplitVal = ConstantInt::getFalse(BB->getContext());
+
+ // Collect all of the blocks that this can be folded into so that we can
+ // factor this once and clone it once.
+ SmallVector<BasicBlock*, 8> BlocksToFoldInto;
+ for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
+ if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
+
+ BlocksToFoldInto.push_back(XorOpValues[i].second);
+ }
+
+ // Try to duplicate BB into PredBB.
+ return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
+}
+
/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
@@ -1133,7 +1211,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
BasicBlock *SuccBB) {
// If threading to the same block as we come from, we would infinite loop.
if (SuccBB == BB) {
- DEBUG(errs() << " Not threading across BB '" << BB->getName()
+ DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
<< "' - would thread to self!\n");
return false;
}
@@ -1141,7 +1219,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
// If threading this would thread across a loop header, don't thread the edge.
// See the comments above FindLoopHeaders for justifications and caveats.
if (LoopHeaders.count(BB)) {
- DEBUG(errs() << " Not threading across loop header BB '" << BB->getName()
+ DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName()
<< "' to dest BB '" << SuccBB->getName()
<< "' - it might create an irreducible loop!\n");
return false;
@@ -1149,7 +1227,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
if (JumpThreadCost > Threshold) {
- DEBUG(errs() << " Not threading BB '" << BB->getName()
+ DEBUG(dbgs() << " Not threading BB '" << BB->getName()
<< "' - Cost is too high: " << JumpThreadCost << "\n");
return false;
}
@@ -1159,14 +1237,14 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
if (PredBBs.size() == 1)
PredBB = PredBBs[0];
else {
- DEBUG(errs() << " Factoring out " << PredBBs.size()
+ DEBUG(dbgs() << " Factoring out " << PredBBs.size()
<< " common predecessors.\n");
PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
".thr_comm", this);
}
// And finally, do it!
- DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '"
+ DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '"
<< SuccBB->getName() << "' with cost: " << JumpThreadCost
<< ", across block:\n "
<< *BB << "\n");
@@ -1235,7 +1313,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
if (UsesToRename.empty())
continue;
- DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
+ DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
// We found a use of I outside of BB. Rename all uses of I that are outside
// its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
@@ -1246,7 +1324,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
while (!UsesToRename.empty())
SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
- DEBUG(errs() << "\n");
+ DEBUG(dbgs() << "\n");
}
@@ -1263,20 +1341,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
// At this point, the IR is fully up to date and consistent. Do a quick scan
// over the new instructions and zap any that are constants or dead. This
// frequently happens because of phi translation.
- BI = NewBB->begin();
- for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
- Instruction *Inst = BI++;
-
- if (Value *V = SimplifyInstruction(Inst, TD)) {
- WeakVH BIHandle(BI);
- ReplaceAndSimplifyAllUses(Inst, V, TD);
- if (BIHandle == 0)
- BI = NewBB->begin();
- continue;
- }
-
- RecursivelyDeleteTriviallyDeadInstructions(Inst);
- }
+ SimplifyInstructionsInBlock(NewBB, TD);
// Threaded an edge!
++NumThreads;
@@ -1289,30 +1354,52 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
/// improves the odds that the branch will be on an analyzable instruction like
/// a compare.
bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
- BasicBlock *PredBB) {
+ const SmallVectorImpl<BasicBlock *> &PredBBs) {
+ assert(!PredBBs.empty() && "Can't handle an empty set");
+
// If BB is a loop header, then duplicating this block outside the loop would
// cause us to transform this into an irreducible loop, don't do this.
// See the comments above FindLoopHeaders for justifications and caveats.
if (LoopHeaders.count(BB)) {
- DEBUG(errs() << " Not duplicating loop header '" << BB->getName()
- << "' into predecessor block '" << PredBB->getName()
+ DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
+ << "' into predecessor block '" << PredBBs[0]->getName()
<< "' - it might create an irreducible loop!\n");
return false;
}
unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
if (DuplicationCost > Threshold) {
- DEBUG(errs() << " Not duplicating BB '" << BB->getName()
+ DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
<< "' - Cost is too high: " << DuplicationCost << "\n");
return false;
}
+ // And finally, do it! Start by factoring the predecessors is needed.
+ BasicBlock *PredBB;
+ if (PredBBs.size() == 1)
+ PredBB = PredBBs[0];
+ else {
+ DEBUG(dbgs() << " Factoring out " << PredBBs.size()
+ << " common predecessors.\n");
+ PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
+ ".thr_comm", this);
+ }
+
// Okay, we decided to do this! Clone all the instructions in BB onto the end
// of PredBB.
- DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '"
+ DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '"
<< PredBB->getName() << "' to eliminate branch on phi. Cost: "
<< DuplicationCost << " block is:" << *BB << "\n");
+ // Unless PredBB ends with an unconditional branch, split the edge so that we
+ // can just clone the bits from BB into the end of the new PredBB.
+ BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
+
+ if (!OldPredBranch->isUnconditional()) {
+ PredBB = SplitEdge(PredBB, BB, this);
+ OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
+ }
+
// We are going to have to map operands from the original BB block into the
// PredBB block. Evaluate PHI nodes in BB.
DenseMap<Instruction*, Value*> ValueMapping;
@@ -1321,15 +1408,10 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
- BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
-
// Clone the non-phi instructions of BB into PredBB, keeping track of the
// mapping and using it to remap operands in the cloned instructions.
for (; BI != BB->end(); ++BI) {
Instruction *New = BI->clone();
- New->setName(BI->getName());
- PredBB->getInstList().insert(OldPredBranch, New);
- ValueMapping[BI] = New;
// Remap operands to patch up intra-block references.
for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
@@ -1338,6 +1420,19 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
if (I != ValueMapping.end())
New->setOperand(i, I->second);
}
+
+ // If this instruction can be simplified after the operands are updated,
+ // just use the simplified value instead. This frequently happens due to
+ // phi translation.
+ if (Value *IV = SimplifyInstruction(New, TD)) {
+ delete New;
+ ValueMapping[BI] = IV;
+ } else {
+ // Otherwise, insert the new instruction into the block.
+ New->setName(BI->getName());
+ PredBB->getInstList().insert(OldPredBranch, New);
+ ValueMapping[BI] = New;
+ }
}
// Check to see if the targets of the branch had PHI nodes. If so, we need to
@@ -1373,7 +1468,7 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
if (UsesToRename.empty())
continue;
- DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
+ DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
// We found a use of I outside of BB. Rename all uses of I that are outside
// its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
@@ -1384,7 +1479,7 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
while (!UsesToRename.empty())
SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
- DEBUG(errs() << "\n");
+ DEBUG(dbgs() << "\n");
}
// PredBB no longer jumps to BB, remove entries in the PHI node for the edge
diff --git a/lib/Transforms/Scalar/LICM.cpp b/lib/Transforms/Scalar/LICM.cpp
index 99f3ae0..81f9ae6 100644
--- a/lib/Transforms/Scalar/LICM.cpp
+++ b/lib/Transforms/Scalar/LICM.cpp
@@ -384,10 +384,6 @@ bool LICM::canSinkOrHoistInst(Instruction &I) {
Size = AA->getTypeStoreSize(LI->getType());
return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
} else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
- if (isa<DbgStopPointInst>(CI)) {
- // Don't hoist/sink dbgstoppoints, we handle them separately
- return false;
- }
// Handle obvious cases efficiently.
AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
if (Behavior == AliasAnalysis::DoesNotAccessMemory)
@@ -461,7 +457,7 @@ bool LICM::isLoopInvariantInst(Instruction &I) {
/// position, and may either delete it or move it to outside of the loop.
///
void LICM::sink(Instruction &I) {
- DEBUG(errs() << "LICM sinking instruction: " << I);
+ DEBUG(dbgs() << "LICM sinking instruction: " << I);
SmallVector<BasicBlock*, 8> ExitBlocks;
CurLoop->getExitBlocks(ExitBlocks);
@@ -603,7 +599,7 @@ void LICM::sink(Instruction &I) {
/// that is safe to hoist, this instruction is called to do the dirty work.
///
void LICM::hoist(Instruction &I) {
- DEBUG(errs() << "LICM hoisting to " << Preheader->getName() << ": "
+ DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
<< I << "\n");
// Remove the instruction from its current basic block... but don't delete the
@@ -859,7 +855,7 @@ void LICM::FindPromotableValuesInLoop(
for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
ValueToAllocaMap.insert(std::make_pair(I->getValue(), AI));
- DEBUG(errs() << "LICM: Promoting value: " << *V << "\n");
+ DEBUG(dbgs() << "LICM: Promoting value: " << *V << "\n");
}
}
diff --git a/lib/Transforms/Scalar/LoopIndexSplit.cpp b/lib/Transforms/Scalar/LoopIndexSplit.cpp
index 1d9dd68..16d3f2f 100644
--- a/lib/Transforms/Scalar/LoopIndexSplit.cpp
+++ b/lib/Transforms/Scalar/LoopIndexSplit.cpp
@@ -708,7 +708,7 @@ void LoopIndexSplit::removeBlocks(BasicBlock *DeadBB, Loop *LP,
}
while (!WorkList.empty()) {
- BasicBlock *BB = WorkList.back(); WorkList.pop_back();
+ BasicBlock *BB = WorkList.pop_back_val();
LPM->deleteSimpleAnalysisValue(BB, LP);
for(BasicBlock::iterator BBI = BB->begin(), BBE = BB->end();
BBI != BBE; ) {
@@ -726,7 +726,7 @@ void LoopIndexSplit::removeBlocks(BasicBlock *DeadBB, Loop *LP,
// Update Frontier BBs' dominator info.
while (!FrontierBBs.empty()) {
- BasicBlock *FBB = FrontierBBs.back(); FrontierBBs.pop_back();
+ BasicBlock *FBB = FrontierBBs.pop_back_val();
BasicBlock *NewDominator = FBB->getSinglePredecessor();
if (!NewDominator) {
pred_iterator PI = pred_begin(FBB), PE = pred_end(FBB);
diff --git a/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/lib/Transforms/Scalar/LoopStrengthReduce.cpp
index 85f7368..fa820ed 100644
--- a/lib/Transforms/Scalar/LoopStrengthReduce.cpp
+++ b/lib/Transforms/Scalar/LoopStrengthReduce.cpp
@@ -2723,7 +2723,7 @@ bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
// At this point, it is worth checking to see if any recurrence PHIs are also
// dead, so that we can remove them as well.
- DeleteDeadPHIs(L->getHeader());
+ Changed |= DeleteDeadPHIs(L->getHeader());
return Changed;
}
diff --git a/lib/Transforms/Scalar/LoopUnrollPass.cpp b/lib/Transforms/Scalar/LoopUnrollPass.cpp
index c2bf9f2..ee8cb4f 100644
--- a/lib/Transforms/Scalar/LoopUnrollPass.cpp
+++ b/lib/Transforms/Scalar/LoopUnrollPass.cpp
@@ -89,7 +89,7 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
LoopInfo *LI = &getAnalysis<LoopInfo>();
BasicBlock *Header = L->getHeader();
- DEBUG(errs() << "Loop Unroll: F[" << Header->getParent()->getName()
+ DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
<< "] Loop %" << Header->getName() << "\n");
(void)Header;
@@ -111,13 +111,13 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
// Enforce the threshold.
if (UnrollThreshold != NoThreshold) {
unsigned LoopSize = ApproximateLoopSize(L);
- DEBUG(errs() << " Loop Size = " << LoopSize << "\n");
+ DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
uint64_t Size = (uint64_t)LoopSize*Count;
if (TripCount != 1 && Size > UnrollThreshold) {
- DEBUG(errs() << " Too large to fully unroll with count: " << Count
+ DEBUG(dbgs() << " Too large to fully unroll with count: " << Count
<< " because size: " << Size << ">" << UnrollThreshold << "\n");
if (!UnrollAllowPartial) {
- DEBUG(errs() << " will not try to unroll partially because "
+ DEBUG(dbgs() << " will not try to unroll partially because "
<< "-unroll-allow-partial not given\n");
return false;
}
@@ -127,10 +127,10 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
Count--;
}
if (Count < 2) {
- DEBUG(errs() << " could not unroll partially\n");
+ DEBUG(dbgs() << " could not unroll partially\n");
return false;
}
- DEBUG(errs() << " partially unrolling with count: " << Count << "\n");
+ DEBUG(dbgs() << " partially unrolling with count: " << Count << "\n");
}
}
diff --git a/lib/Transforms/Scalar/LoopUnswitch.cpp b/lib/Transforms/Scalar/LoopUnswitch.cpp
index 0c19133..527a7b5 100644
--- a/lib/Transforms/Scalar/LoopUnswitch.cpp
+++ b/lib/Transforms/Scalar/LoopUnswitch.cpp
@@ -436,7 +436,7 @@ bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val){
if (Metrics.NumInsts > Threshold ||
Metrics.NumBlocks * 5 > Threshold ||
Metrics.NeverInline) {
- DEBUG(errs() << "NOT unswitching loop %"
+ DEBUG(dbgs() << "NOT unswitching loop %"
<< currentLoop->getHeader()->getName() << ", cost too high: "
<< currentLoop->getBlocks().size() << "\n");
return false;
@@ -522,7 +522,7 @@ void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
Constant *Val,
BasicBlock *ExitBlock) {
- DEBUG(errs() << "loop-unswitch: Trivial-Unswitch loop %"
+ DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
<< loopHeader->getName() << " [" << L->getBlocks().size()
<< " blocks] in Function " << L->getHeader()->getParent()->getName()
<< " on cond: " << *Val << " == " << *Cond << "\n");
@@ -581,7 +581,7 @@ void LoopUnswitch::SplitExitEdges(Loop *L,
void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
Loop *L) {
Function *F = loopHeader->getParent();
- DEBUG(errs() << "loop-unswitch: Unswitching loop %"
+ DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
<< loopHeader->getName() << " [" << L->getBlocks().size()
<< " blocks] in Function " << F->getName()
<< " when '" << *Val << "' == " << *LIC << "\n");
@@ -707,7 +707,7 @@ static void RemoveFromWorklist(Instruction *I,
static void ReplaceUsesOfWith(Instruction *I, Value *V,
std::vector<Instruction*> &Worklist,
Loop *L, LPPassManager *LPM) {
- DEBUG(errs() << "Replace with '" << *V << "': " << *I);
+ DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
// Add uses to the worklist, which may be dead now.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
@@ -769,7 +769,7 @@ void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
return;
}
- DEBUG(errs() << "Nuking dead block: " << *BB);
+ DEBUG(dbgs() << "Nuking dead block: " << *BB);
// Remove the instructions in the basic block from the worklist.
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
@@ -867,7 +867,7 @@ void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
// If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
// in the loop with the appropriate one directly.
if (IsEqual || (isa<ConstantInt>(Val) &&
- Val->getType() == Type::getInt1Ty(Val->getContext()))) {
+ Val->getType()->isInteger(1))) {
Value *Replacement;
if (IsEqual)
Replacement = Val;
@@ -968,7 +968,7 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
// Simple DCE.
if (isInstructionTriviallyDead(I)) {
- DEBUG(errs() << "Remove dead instruction '" << *I);
+ DEBUG(dbgs() << "Remove dead instruction '" << *I);
// Add uses to the worklist, which may be dead now.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
@@ -993,10 +993,10 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
case Instruction::And:
if (isa<ConstantInt>(I->getOperand(0)) &&
// constant -> RHS
- I->getOperand(0)->getType() == Type::getInt1Ty(I->getContext()))
+ I->getOperand(0)->getType()->isInteger(1))
cast<BinaryOperator>(I)->swapOperands();
if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
- if (CB->getType() == Type::getInt1Ty(I->getContext())) {
+ if (CB->getType()->isInteger(1)) {
if (CB->isOne()) // X & 1 -> X
ReplaceUsesOfWith(I, I->getOperand(0), Worklist, L, LPM);
else // X & 0 -> 0
@@ -1007,10 +1007,10 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
case Instruction::Or:
if (isa<ConstantInt>(I->getOperand(0)) &&
// constant -> RHS
- I->getOperand(0)->getType() == Type::getInt1Ty(I->getContext()))
+ I->getOperand(0)->getType()->isInteger(1))
cast<BinaryOperator>(I)->swapOperands();
if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
- if (CB->getType() == Type::getInt1Ty(I->getContext())) {
+ if (CB->getType()->isInteger(1)) {
if (CB->isOne()) // X | 1 -> 1
ReplaceUsesOfWith(I, I->getOperand(1), Worklist, L, LPM);
else // X | 0 -> X
@@ -1029,7 +1029,7 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
if (!SinglePred) continue; // Nothing to do.
assert(SinglePred == Pred && "CFG broken");
- DEBUG(errs() << "Merging blocks: " << Pred->getName() << " <- "
+ DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
<< Succ->getName() << "\n");
// Resolve any single entry PHI nodes in Succ.
@@ -1057,7 +1057,7 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
// remove dead blocks.
break; // FIXME: Enable.
- DEBUG(errs() << "Folded branch: " << *BI);
+ DEBUG(dbgs() << "Folded branch: " << *BI);
BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
DeadSucc->removePredecessor(BI->getParent(), true);
diff --git a/lib/Transforms/Scalar/MemCpyOptimizer.cpp b/lib/Transforms/Scalar/MemCpyOptimizer.cpp
index c922814..e0aa491 100644
--- a/lib/Transforms/Scalar/MemCpyOptimizer.cpp
+++ b/lib/Transforms/Scalar/MemCpyOptimizer.cpp
@@ -42,7 +42,7 @@ static Value *isBytewiseValue(Value *V) {
LLVMContext &Context = V->getContext();
// All byte-wide stores are splatable, even of arbitrary variables.
- if (V->getType() == Type::getInt8Ty(Context)) return V;
+ if (V->getType()->isInteger(8)) return V;
// Constant float and double values can be handled as integer values if the
// corresponding integer value is "byteable". An important case is 0.0.
@@ -456,10 +456,10 @@ bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
ConstantInt::get(Type::getInt32Ty(Context), Range.Alignment)
};
Value *C = CallInst::Create(MemSetF, Ops, Ops+4, "", InsertPt);
- DEBUG(errs() << "Replace stores:\n";
+ DEBUG(dbgs() << "Replace stores:\n";
for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
- errs() << *Range.TheStores[i];
- errs() << "With: " << *C); C=C;
+ dbgs() << *Range.TheStores[i];
+ dbgs() << "With: " << *C); C=C;
// Don't invalidate the iterator
BBI = BI;
@@ -562,8 +562,7 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
srcAlloca->use_end());
while (!srcUseList.empty()) {
- User *UI = srcUseList.back();
- srcUseList.pop_back();
+ User *UI = srcUseList.pop_back_val();
if (isa<BitCastInst>(UI)) {
for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
@@ -725,7 +724,7 @@ bool MemCpyOpt::processMemMove(MemMoveInst *M) {
AliasAnalysis::NoAlias)
return false;
- DEBUG(errs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
+ DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
// If not, then we know we can transform this.
Module *Mod = M->getParent()->getParent()->getParent();
diff --git a/lib/Transforms/Scalar/Reassociate.cpp b/lib/Transforms/Scalar/Reassociate.cpp
index 827b47d..4a99f4a 100644
--- a/lib/Transforms/Scalar/Reassociate.cpp
+++ b/lib/Transforms/Scalar/Reassociate.cpp
@@ -60,12 +60,12 @@ namespace {
///
static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Module *M = I->getParent()->getParent()->getParent();
- errs() << Instruction::getOpcodeName(I->getOpcode()) << " "
+ dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
<< *Ops[0].Op->getType() << '\t';
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- errs() << "[ ";
- WriteAsOperand(errs(), Ops[i].Op, false, M);
- errs() << ", #" << Ops[i].Rank << "] ";
+ dbgs() << "[ ";
+ WriteAsOperand(dbgs(), Ops[i].Op, false, M);
+ dbgs() << ", #" << Ops[i].Rank << "] ";
}
}
#endif
@@ -186,7 +186,7 @@ unsigned Reassociate::getRank(Value *V) {
(!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
++Rank;
- //DEBUG(errs() << "Calculated Rank[" << V->getName() << "] = "
+ //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
// << Rank << "\n");
return ValueRankMap[I] = Rank;
@@ -226,7 +226,7 @@ void Reassociate::LinearizeExpr(BinaryOperator *I) {
isReassociableOp(RHS, I->getOpcode()) &&
"Not an expression that needs linearization?");
- DEBUG(errs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
+ DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
// Move the RHS instruction to live immediately before I, avoiding breaking
// dominator properties.
@@ -239,7 +239,7 @@ void Reassociate::LinearizeExpr(BinaryOperator *I) {
++NumLinear;
MadeChange = true;
- DEBUG(errs() << "Linearized: " << *I << '\n');
+ DEBUG(dbgs() << "Linearized: " << *I << '\n');
// If D is part of this expression tree, tail recurse.
if (isReassociableOp(I->getOperand(1), I->getOpcode()))
@@ -335,10 +335,10 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
if (I->getOperand(0) != Ops[i].Op ||
I->getOperand(1) != Ops[i+1].Op) {
Value *OldLHS = I->getOperand(0);
- DEBUG(errs() << "RA: " << *I << '\n');
+ DEBUG(dbgs() << "RA: " << *I << '\n');
I->setOperand(0, Ops[i].Op);
I->setOperand(1, Ops[i+1].Op);
- DEBUG(errs() << "TO: " << *I << '\n');
+ DEBUG(dbgs() << "TO: " << *I << '\n');
MadeChange = true;
++NumChanged;
@@ -351,9 +351,9 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
assert(i+2 < Ops.size() && "Ops index out of range!");
if (I->getOperand(1) != Ops[i].Op) {
- DEBUG(errs() << "RA: " << *I << '\n');
+ DEBUG(dbgs() << "RA: " << *I << '\n');
I->setOperand(1, Ops[i].Op);
- DEBUG(errs() << "TO: " << *I << '\n');
+ DEBUG(dbgs() << "TO: " << *I << '\n');
MadeChange = true;
++NumChanged;
}
@@ -414,6 +414,10 @@ static Value *NegateValue(Value *V, Instruction *BI) {
// non-instruction value) or right after the definition. These negates will
// be zapped by reassociate later, so we don't need much finesse here.
BinaryOperator *TheNeg = cast<BinaryOperator>(*UI);
+
+ // Verify that the negate is in this function, V might be a constant expr.
+ if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
+ continue;
BasicBlock::iterator InsertPt;
if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
@@ -480,7 +484,7 @@ static Instruction *BreakUpSubtract(Instruction *Sub,
Sub->replaceAllUsesWith(New);
Sub->eraseFromParent();
- DEBUG(errs() << "Negated: " << *New << '\n');
+ DEBUG(dbgs() << "Negated: " << *New << '\n');
return New;
}
@@ -788,6 +792,11 @@ Value *Reassociate::OptimizeAdd(Instruction *I,
Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
SmallVector<Value*, 4> NewMulOps;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ // Only try to remove factors from expressions we're allowed to.
+ BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
+ if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
+ continue;
+
if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
NewMulOps.push_back(V);
Ops.erase(Ops.begin()+i);
@@ -797,14 +806,15 @@ Value *Reassociate::OptimizeAdd(Instruction *I,
// No need for extra uses anymore.
delete DummyInst;
-
+
unsigned NumAddedValues = NewMulOps.size();
Value *V = EmitAddTreeOfValues(I, NewMulOps);
-
+
// Now that we have inserted the add tree, optimize it. This allows us to
// handle cases that require multiple factoring steps, such as this:
// A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
+ (void)NumAddedValues;
V = ReassociateExpression(cast<BinaryOperator>(V));
// Create the multiply.
@@ -928,6 +938,10 @@ void Reassociate::ReassociateBB(BasicBlock *BB) {
if (BI->getOpcode() == Instruction::Sub) {
if (ShouldBreakUpSubtract(BI)) {
BI = BreakUpSubtract(BI, ValueRankMap);
+ // Reset the BBI iterator in case BreakUpSubtract changed the
+ // instruction it points to.
+ BBI = BI;
+ ++BBI;
MadeChange = true;
} else if (BinaryOperator::isNeg(BI)) {
// Otherwise, this is a negation. See if the operand is a multiply tree
@@ -967,7 +981,7 @@ Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
SmallVector<ValueEntry, 8> Ops;
LinearizeExprTree(I, Ops);
- DEBUG(errs() << "RAIn:\t"; PrintOps(I, Ops); errs() << '\n');
+ DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
// Now that we have linearized the tree to a list and have gathered all of
// the operands and their ranks, sort the operands by their rank. Use a
@@ -982,7 +996,7 @@ Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
if (Value *V = OptimizeExpression(I, Ops)) {
// This expression tree simplified to something that isn't a tree,
// eliminate it.
- DEBUG(errs() << "Reassoc to scalar: " << *V << '\n');
+ DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
I->replaceAllUsesWith(V);
RemoveDeadBinaryOp(I);
++NumAnnihil;
@@ -1001,7 +1015,7 @@ Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
Ops.insert(Ops.begin(), Tmp);
}
- DEBUG(errs() << "RAOut:\t"; PrintOps(I, Ops); errs() << '\n');
+ DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
if (Ops.size() == 1) {
// This expression tree simplified to something that isn't a tree,
diff --git a/lib/Transforms/Scalar/SCCP.cpp b/lib/Transforms/Scalar/SCCP.cpp
index d8c59b1..02b45a1 100644
--- a/lib/Transforms/Scalar/SCCP.cpp
+++ b/lib/Transforms/Scalar/SCCP.cpp
@@ -218,7 +218,7 @@ public:
/// This returns true if the block was not considered live before.
bool MarkBlockExecutable(BasicBlock *BB) {
if (!BBExecutable.insert(BB)) return false;
- DEBUG(errs() << "Marking Block Executable: " << BB->getName() << "\n");
+ DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
BBWorkList.push_back(BB); // Add the block to the work list!
return true;
}
@@ -316,7 +316,7 @@ private:
//
void markConstant(LatticeVal &IV, Value *V, Constant *C) {
if (!IV.markConstant(C)) return;
- DEBUG(errs() << "markConstant: " << *C << ": " << *V << '\n');
+ DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
InstWorkList.push_back(V);
}
@@ -328,7 +328,7 @@ private:
void markForcedConstant(Value *V, Constant *C) {
assert(!isa<StructType>(V->getType()) && "Should use other method");
ValueState[V].markForcedConstant(C);
- DEBUG(errs() << "markForcedConstant: " << *C << ": " << *V << '\n');
+ DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
InstWorkList.push_back(V);
}
@@ -339,11 +339,11 @@ private:
void markOverdefined(LatticeVal &IV, Value *V) {
if (!IV.markOverdefined()) return;
- DEBUG(errs() << "markOverdefined: ";
+ DEBUG(dbgs() << "markOverdefined: ";
if (Function *F = dyn_cast<Function>(V))
- errs() << "Function '" << F->getName() << "'\n";
+ dbgs() << "Function '" << F->getName() << "'\n";
else
- errs() << *V << '\n');
+ dbgs() << *V << '\n');
// Only instructions go on the work list
OverdefinedInstWorkList.push_back(V);
}
@@ -431,7 +431,7 @@ private:
// If the destination is already executable, we just made an *edge*
// feasible that wasn't before. Revisit the PHI nodes in the block
// because they have potentially new operands.
- DEBUG(errs() << "Marking Edge Executable: " << Source->getName()
+ DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
<< " -> " << Dest->getName() << "\n");
PHINode *PN;
@@ -516,7 +516,7 @@ private:
void visitInstruction(Instruction &I) {
// If a new instruction is added to LLVM that we don't handle.
- errs() << "SCCP: Don't know how to handle: " << I;
+ dbgs() << "SCCP: Don't know how to handle: " << I;
markAnythingOverdefined(&I); // Just in case
}
};
@@ -580,7 +580,7 @@ void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
}
#ifndef NDEBUG
- errs() << "Unknown terminator instruction: " << TI << '\n';
+ dbgs() << "Unknown terminator instruction: " << TI << '\n';
#endif
llvm_unreachable("SCCP: Don't know how to handle this terminator!");
}
@@ -640,7 +640,7 @@ bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
return true;
#ifndef NDEBUG
- errs() << "Unknown terminator instruction: " << *TI << '\n';
+ dbgs() << "Unknown terminator instruction: " << *TI << '\n';
#endif
llvm_unreachable(0);
}
@@ -1324,7 +1324,7 @@ void SCCPSolver::Solve() {
while (!OverdefinedInstWorkList.empty()) {
Value *I = OverdefinedInstWorkList.pop_back_val();
- DEBUG(errs() << "\nPopped off OI-WL: " << *I << '\n');
+ DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
// "I" got into the work list because it either made the transition from
// bottom to constant
@@ -1343,7 +1343,7 @@ void SCCPSolver::Solve() {
while (!InstWorkList.empty()) {
Value *I = InstWorkList.pop_back_val();
- DEBUG(errs() << "\nPopped off I-WL: " << *I << '\n');
+ DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
// "I" got into the work list because it made the transition from undef to
// constant.
@@ -1364,7 +1364,7 @@ void SCCPSolver::Solve() {
BasicBlock *BB = BBWorkList.back();
BBWorkList.pop_back();
- DEBUG(errs() << "\nPopped off BBWL: " << *BB << '\n');
+ DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
// Notify all instructions in this basic block that they are newly
// executable.
@@ -1597,7 +1597,7 @@ FunctionPass *llvm::createSCCPPass() {
}
static void DeleteInstructionInBlock(BasicBlock *BB) {
- DEBUG(errs() << " BasicBlock Dead:" << *BB);
+ DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
++NumDeadBlocks;
// Delete the instructions backwards, as it has a reduced likelihood of
@@ -1616,7 +1616,7 @@ static void DeleteInstructionInBlock(BasicBlock *BB) {
// and return true if the function was modified.
//
bool SCCP::runOnFunction(Function &F) {
- DEBUG(errs() << "SCCP on function '" << F.getName() << "'\n");
+ DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
SCCPSolver Solver(getAnalysisIfAvailable<TargetData>());
// Mark the first block of the function as being executable.
@@ -1630,7 +1630,7 @@ bool SCCP::runOnFunction(Function &F) {
bool ResolvedUndefs = true;
while (ResolvedUndefs) {
Solver.Solve();
- DEBUG(errs() << "RESOLVING UNDEFs\n");
+ DEBUG(dbgs() << "RESOLVING UNDEFs\n");
ResolvedUndefs = Solver.ResolvedUndefsIn(F);
}
@@ -1665,7 +1665,7 @@ bool SCCP::runOnFunction(Function &F) {
Constant *Const = IV.isConstant()
? IV.getConstant() : UndefValue::get(Inst->getType());
- DEBUG(errs() << " Constant: " << *Const << " = " << *Inst);
+ DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst);
// Replaces all of the uses of a variable with uses of the constant.
Inst->replaceAllUsesWith(Const);
@@ -1775,7 +1775,7 @@ bool IPSCCP::runOnModule(Module &M) {
while (ResolvedUndefs) {
Solver.Solve();
- DEBUG(errs() << "RESOLVING UNDEFS\n");
+ DEBUG(dbgs() << "RESOLVING UNDEFS\n");
ResolvedUndefs = false;
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
@@ -1802,7 +1802,7 @@ bool IPSCCP::runOnModule(Module &M) {
Constant *CST = IV.isConstant() ?
IV.getConstant() : UndefValue::get(AI->getType());
- DEBUG(errs() << "*** Arg " << *AI << " = " << *CST <<"\n");
+ DEBUG(dbgs() << "*** Arg " << *AI << " = " << *CST <<"\n");
// Replaces all of the uses of a variable with uses of the
// constant.
@@ -1847,7 +1847,7 @@ bool IPSCCP::runOnModule(Module &M) {
Constant *Const = IV.isConstant()
? IV.getConstant() : UndefValue::get(Inst->getType());
- DEBUG(errs() << " Constant: " << *Const << " = " << *Inst);
+ DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst);
// Replaces all of the uses of a variable with uses of the
// constant.
@@ -1944,7 +1944,7 @@ bool IPSCCP::runOnModule(Module &M) {
GlobalVariable *GV = I->first;
assert(!I->second.isOverdefined() &&
"Overdefined values should have been taken out of the map!");
- DEBUG(errs() << "Found that GV '" << GV->getName() << "' is constant!\n");
+ DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
while (!GV->use_empty()) {
StoreInst *SI = cast<StoreInst>(GV->use_back());
SI->eraseFromParent();
diff --git a/lib/Transforms/Scalar/SCCVN.cpp b/lib/Transforms/Scalar/SCCVN.cpp
index f91fbda..9685a29 100644
--- a/lib/Transforms/Scalar/SCCVN.cpp
+++ b/lib/Transforms/Scalar/SCCVN.cpp
@@ -678,8 +678,7 @@ bool SCCVN::runOnFunction(Function& F) {
stack.push_back(*PI);
while (!stack.empty()) {
- BasicBlock* CurrBB = stack.back();
- stack.pop_back();
+ BasicBlock* CurrBB = stack.pop_back_val();
visited.insert(CurrBB);
ValueNumberScope* S = BBMap[CurrBB];
diff --git a/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/lib/Transforms/Scalar/ScalarReplAggregates.cpp
index 79bb7c5..9e1e79a 100644
--- a/lib/Transforms/Scalar/ScalarReplAggregates.cpp
+++ b/lib/Transforms/Scalar/ScalarReplAggregates.cpp
@@ -252,8 +252,8 @@ bool SROA::performScalarRepl(Function &F) {
// constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
// is only subsequently read.
if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
- DEBUG(errs() << "Found alloca equal to global: " << *AI << '\n');
- DEBUG(errs() << " memcpy = " << *TheCopy << '\n');
+ DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
+ DEBUG(dbgs() << " memcpy = " << *TheCopy << '\n');
Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
TheCopy->eraseFromParent(); // Don't mutate the global.
@@ -314,14 +314,14 @@ bool SROA::performScalarRepl(Function &F) {
// we just get a lot of insert/extracts. If at least one vector is
// involved, then we probably really do have a union of vector/array.
if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
- DEBUG(errs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
+ DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
<< *VectorTy << '\n');
// Create and insert the vector alloca.
NewAI = new AllocaInst(VectorTy, 0, "", AI->getParent()->begin());
ConvertUsesToScalar(AI, NewAI, 0);
} else {
- DEBUG(errs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
+ DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
// Create and insert the integer alloca.
const Type *NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
@@ -345,7 +345,7 @@ bool SROA::performScalarRepl(Function &F) {
/// predicate, do SROA now.
void SROA::DoScalarReplacement(AllocaInst *AI,
std::vector<AllocaInst*> &WorkList) {
- DEBUG(errs() << "Found inst to SROA: " << *AI << '\n');
+ DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
SmallVector<AllocaInst*, 32> ElementAllocas;
if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
ElementAllocas.reserve(ST->getNumContainedTypes());
@@ -919,7 +919,7 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
IntegerType::get(SI->getContext(), AllocaSizeBits),
"", SI);
- DEBUG(errs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
+ DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
<< '\n');
// There are two forms here: AI could be an array or struct. Both cases
@@ -1029,7 +1029,7 @@ void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
const Type *AllocaEltTy = AI->getAllocatedType();
uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
- DEBUG(errs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
+ DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
<< '\n');
// There are two forms here: AI could be an array or struct. Both cases
@@ -1153,7 +1153,7 @@ int SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
isSafeForScalarRepl(AI, AI, 0, Info);
if (Info.isUnsafe) {
- DEBUG(errs() << "Cannot transform: " << *AI << '\n');
+ DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
return 0;
}
@@ -1181,7 +1181,7 @@ void SROA::CleanupAllocaUsers(Value *V) {
if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
// Safe to remove debug info uses.
while (!DbgInUses.empty()) {
- DbgInfoIntrinsic *DI = DbgInUses.back(); DbgInUses.pop_back();
+ DbgInfoIntrinsic *DI = DbgInUses.pop_back_val();
DI->eraseFromParent();
}
I->eraseFromParent();
diff --git a/lib/Transforms/Scalar/SimplifyCFGPass.cpp b/lib/Transforms/Scalar/SimplifyCFGPass.cpp
index a36da78..43447de 100644
--- a/lib/Transforms/Scalar/SimplifyCFGPass.cpp
+++ b/lib/Transforms/Scalar/SimplifyCFGPass.cpp
@@ -99,9 +99,8 @@ static bool MarkAliveBlocks(BasicBlock *BB,
SmallVector<BasicBlock*, 128> Worklist;
Worklist.push_back(BB);
bool Changed = false;
- while (!Worklist.empty()) {
- BB = Worklist.back();
- Worklist.pop_back();
+ do {
+ BB = Worklist.pop_back_val();
if (!Reachable.insert(BB))
continue;
@@ -150,7 +149,7 @@ static bool MarkAliveBlocks(BasicBlock *BB,
Changed |= ConstantFoldTerminator(BB);
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
Worklist.push_back(*SI);
- }
+ } while (!Worklist.empty());
return Changed;
}
diff --git a/lib/Transforms/Scalar/SimplifyLibCalls.cpp b/lib/Transforms/Scalar/SimplifyLibCalls.cpp
index 3c28ad2..9183f3a 100644
--- a/lib/Transforms/Scalar/SimplifyLibCalls.cpp
+++ b/lib/Transforms/Scalar/SimplifyLibCalls.cpp
@@ -80,7 +80,7 @@ public:
/// specified pointer and character. Ptr is required to be some pointer type,
/// and the return value has 'i8*' type.
Value *EmitStrChr(Value *Ptr, char C, IRBuilder<> &B);
-
+
/// EmitMemCpy - Emit a call to the memcpy function to the builder. This
/// always expects that the size has type 'intptr_t' and Dst/Src are pointers.
Value *EmitMemCpy(Value *Dst, Value *Src, Value *Len,
@@ -101,10 +101,11 @@ public:
/// EmitMemSet - Emit a call to the memset function
Value *EmitMemSet(Value *Dst, Value *Val, Value *Len, IRBuilder<> &B);
- /// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
- /// 'floor'). This function is known to take a single of type matching 'Op'
- /// and returns one value with the same type. If 'Op' is a long double, 'l'
- /// is added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
+ /// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name'
+ /// (e.g. 'floor'). This function is known to take a single of type matching
+ /// 'Op' and returns one value with the same type. If 'Op' is a long double,
+ /// 'l' is added as the suffix of name, if 'Op' is a float, we add a 'f'
+ /// suffix.
Value *EmitUnaryFloatFnCall(Value *Op, const char *Name, IRBuilder<> &B,
const AttrListPtr &Attrs);
@@ -163,7 +164,7 @@ Value *LibCallOptimization::EmitStrChr(Value *Ptr, char C, IRBuilder<> &B) {
Module *M = Caller->getParent();
AttributeWithIndex AWI =
AttributeWithIndex::get(~0u, Attribute::ReadOnly | Attribute::NoUnwind);
-
+
const Type *I8Ptr = Type::getInt8PtrTy(*Context);
const Type *I32Ty = Type::getInt32Ty(*Context);
Constant *StrChr = M->getOrInsertFunction("strchr", AttrListPtr::get(&AWI, 1),
@@ -236,8 +237,8 @@ Value *LibCallOptimization::EmitMemCmp(Value *Ptr1, Value *Ptr2,
Value *MemCmp = M->getOrInsertFunction("memcmp", AttrListPtr::get(AWI, 3),
Type::getInt32Ty(*Context),
- Type::getInt8PtrTy(*Context),
- Type::getInt8PtrTy(*Context),
+ Type::getInt8PtrTy(*Context),
+ Type::getInt8PtrTy(*Context),
TD->getIntPtrType(*Context), NULL);
CallInst *CI = B.CreateCall3(MemCmp, CastToCStr(Ptr1, B), CastToCStr(Ptr2, B),
Len, "memcmp");
@@ -504,8 +505,7 @@ static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
// Must be a Constant Array
ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
- if (!Array ||
- Array->getType()->getElementType() != Type::getInt8Ty(V->getContext()))
+ if (!Array || !Array->getType()->getElementType()->isInteger(8))
return false;
// Get the number of elements in the array
@@ -677,8 +677,7 @@ struct StrChrOpt : public LibCallOptimization {
if (!TD) return 0;
uint64_t Len = GetStringLength(SrcStr);
- if (Len == 0 ||
- FT->getParamType(1) != Type::getInt32Ty(*Context)) // memchr needs i32.
+ if (Len == 0 || !FT->getParamType(1)->isInteger(32)) // memchr needs i32.
return 0;
return EmitMemChr(SrcStr, CI->getOperand(2), // include nul.
@@ -720,7 +719,7 @@ struct StrCmpOpt : public LibCallOptimization {
// Verify the "strcmp" function prototype.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
- FT->getReturnType() != Type::getInt32Ty(*Context) ||
+ !FT->getReturnType()->isInteger(32) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != Type::getInt8PtrTy(*Context))
return 0;
@@ -768,7 +767,7 @@ struct StrNCmpOpt : public LibCallOptimization {
// Verify the "strncmp" function prototype.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 ||
- FT->getReturnType() != Type::getInt32Ty(*Context) ||
+ !FT->getReturnType()->isInteger(32) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != Type::getInt8PtrTy(*Context) ||
!isa<IntegerType>(FT->getParamType(2)))
@@ -949,20 +948,20 @@ struct StrStrOpt : public LibCallOptimization {
// fold strstr(x, x) -> x.
if (CI->getOperand(1) == CI->getOperand(2))
return B.CreateBitCast(CI->getOperand(1), CI->getType());
-
+
// See if either input string is a constant string.
std::string SearchStr, ToFindStr;
bool HasStr1 = GetConstantStringInfo(CI->getOperand(1), SearchStr);
bool HasStr2 = GetConstantStringInfo(CI->getOperand(2), ToFindStr);
-
+
// fold strstr(x, "") -> x.
if (HasStr2 && ToFindStr.empty())
return B.CreateBitCast(CI->getOperand(1), CI->getType());
-
+
// If both strings are known, constant fold it.
if (HasStr1 && HasStr2) {
std::string::size_type Offset = SearchStr.find(ToFindStr);
-
+
if (Offset == std::string::npos) // strstr("foo", "bar") -> null
return Constant::getNullValue(CI->getType());
@@ -971,7 +970,7 @@ struct StrStrOpt : public LibCallOptimization {
Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
return B.CreateBitCast(Result, CI->getType());
}
-
+
// fold strstr(x, "y") -> strchr(x, 'y').
if (HasStr2 && ToFindStr.size() == 1)
return B.CreateBitCast(EmitStrChr(CI->getOperand(1), ToFindStr[0], B),
@@ -979,7 +978,7 @@ struct StrStrOpt : public LibCallOptimization {
return 0;
}
};
-
+
//===---------------------------------------===//
// 'memcmp' Optimizations
@@ -989,7 +988,7 @@ struct MemCmpOpt : public LibCallOptimization {
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || !isa<PointerType>(FT->getParamType(0)) ||
!isa<PointerType>(FT->getParamType(1)) ||
- FT->getReturnType() != Type::getInt32Ty(*Context))
+ !FT->getReturnType()->isInteger(32))
return 0;
Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2);
@@ -1096,27 +1095,6 @@ struct MemSetOpt : public LibCallOptimization {
//===----------------------------------------------------------------------===//
//===---------------------------------------===//
-// 'object size'
-namespace {
-struct SizeOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // TODO: We can do more with this, but delaying to here should be no change
- // in behavior.
- ConstantInt *Const = dyn_cast<ConstantInt>(CI->getOperand(2));
-
- if (!Const) return 0;
-
- const Type *Ty = Callee->getFunctionType()->getReturnType();
-
- if (Const->getZExtValue() == 0)
- return Constant::getAllOnesValue(Ty);
- else
- return ConstantInt::get(Ty, 0);
- }
-};
-}
-
-//===---------------------------------------===//
// 'memcpy_chk' Optimizations
struct MemCpyChkOpt : public LibCallOptimization {
@@ -1351,7 +1329,7 @@ struct FFSOpt : public LibCallOptimization {
// Just make sure this has 2 arguments of the same FP type, which match the
// result type.
if (FT->getNumParams() != 1 ||
- FT->getReturnType() != Type::getInt32Ty(*Context) ||
+ !FT->getReturnType()->isInteger(32) ||
!isa<IntegerType>(FT->getParamType(0)))
return 0;
@@ -1387,7 +1365,7 @@ struct IsDigitOpt : public LibCallOptimization {
const FunctionType *FT = Callee->getFunctionType();
// We require integer(i32)
if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
- FT->getParamType(0) != Type::getInt32Ty(*Context))
+ !FT->getParamType(0)->isInteger(32))
return 0;
// isdigit(c) -> (c-'0') <u 10
@@ -1408,7 +1386,7 @@ struct IsAsciiOpt : public LibCallOptimization {
const FunctionType *FT = Callee->getFunctionType();
// We require integer(i32)
if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
- FT->getParamType(0) != Type::getInt32Ty(*Context))
+ !FT->getParamType(0)->isInteger(32))
return 0;
// isascii(c) -> c <u 128
@@ -1449,7 +1427,7 @@ struct ToAsciiOpt : public LibCallOptimization {
const FunctionType *FT = Callee->getFunctionType();
// We require i32(i32)
if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
- FT->getParamType(0) != Type::getInt32Ty(*Context))
+ !FT->getParamType(0)->isInteger(32))
return 0;
// isascii(c) -> c & 0x7f
@@ -1558,7 +1536,8 @@ struct SPrintFOpt : public LibCallOptimization {
// sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
EmitMemCpy(CI->getOperand(1), CI->getOperand(2), // Copy the nul byte.
- ConstantInt::get(TD->getIntPtrType(*Context), FormatStr.size()+1),1,B);
+ ConstantInt::get
+ (TD->getIntPtrType(*Context), FormatStr.size()+1),1,B);
return ConstantInt::get(CI->getType(), FormatStr.size());
}
@@ -1688,8 +1667,9 @@ struct FPrintFOpt : public LibCallOptimization {
// These optimizations require TargetData.
if (!TD) return 0;
- EmitFWrite(CI->getOperand(2), ConstantInt::get(TD->getIntPtrType(*Context),
- FormatStr.size()),
+ EmitFWrite(CI->getOperand(2),
+ ConstantInt::get(TD->getIntPtrType(*Context),
+ FormatStr.size()),
CI->getOperand(1), B);
return ConstantInt::get(CI->getType(), FormatStr.size());
}
@@ -1744,7 +1724,6 @@ namespace {
FWriteOpt FWrite; FPutsOpt FPuts; FPrintFOpt FPrintF;
// Object Size Checking
- SizeOpt ObjectSize;
MemCpyChkOpt MemCpyChk; MemSetChkOpt MemSetChk; MemMoveChkOpt MemMoveChk;
bool Modified; // This is only used by doInitialization.
@@ -1854,8 +1833,6 @@ void SimplifyLibCalls::InitOptimizations() {
Optimizations["fprintf"] = &FPrintF;
// Object Size Checking
- Optimizations["llvm.objectsize.i32"] = &ObjectSize;
- Optimizations["llvm.objectsize.i64"] = &ObjectSize;
Optimizations["__memcpy_chk"] = &MemCpyChk;
Optimizations["__memset_chk"] = &MemSetChk;
Optimizations["__memmove_chk"] = &MemMoveChk;
@@ -1896,8 +1873,8 @@ bool SimplifyLibCalls::runOnFunction(Function &F) {
Value *Result = LCO->OptimizeCall(CI, TD, Builder);
if (Result == 0) continue;
- DEBUG(errs() << "SimplifyLibCalls simplified: " << *CI;
- errs() << " into: " << *Result << "\n");
+ DEBUG(dbgs() << "SimplifyLibCalls simplified: " << *CI;
+ dbgs() << " into: " << *Result << "\n");
// Something changed!
Changed = true;
diff --git a/lib/Transforms/Scalar/TailDuplication.cpp b/lib/Transforms/Scalar/TailDuplication.cpp
index b06ae3d..2306a77 100644
--- a/lib/Transforms/Scalar/TailDuplication.cpp
+++ b/lib/Transforms/Scalar/TailDuplication.cpp
@@ -243,13 +243,13 @@ void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) {
BasicBlock *DestBlock = Branch->getSuccessor(0);
assert(SourceBlock != DestBlock && "Our predicate is broken!");
- DEBUG(errs() << "TailDuplication[" << SourceBlock->getParent()->getName()
+ DEBUG(dbgs() << "TailDuplication[" << SourceBlock->getParent()->getName()
<< "]: Eliminating branch: " << *Branch);
// See if we can avoid duplicating code by moving it up to a dominator of both
// blocks.
if (BasicBlock *DomBlock = FindObviousSharedDomOf(SourceBlock, DestBlock)) {
- DEBUG(errs() << "Found shared dominator: " << DomBlock->getName() << "\n");
+ DEBUG(dbgs() << "Found shared dominator: " << DomBlock->getName() << "\n");
// If there are non-phi instructions in DestBlock that have no operands
// defined in DestBlock, and if the instruction has no side effects, we can
@@ -272,7 +272,7 @@ void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) {
// Remove from DestBlock, move right before the term in DomBlock.
DestBlock->getInstList().remove(I);
DomBlock->getInstList().insert(DomBlock->getTerminator(), I);
- DEBUG(errs() << "Hoisted: " << *I);
+ DEBUG(dbgs() << "Hoisted: " << *I);
}
}
}
diff --git a/lib/Transforms/Utils/AddrModeMatcher.cpp b/lib/Transforms/Utils/AddrModeMatcher.cpp
index 135a621..8c4aa59 100644
--- a/lib/Transforms/Utils/AddrModeMatcher.cpp
+++ b/lib/Transforms/Utils/AddrModeMatcher.cpp
@@ -17,6 +17,7 @@
#include "llvm/Instruction.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Target/TargetData.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
#include "llvm/Support/raw_ostream.h"
@@ -54,8 +55,8 @@ void ExtAddrMode::print(raw_ostream &OS) const {
}
void ExtAddrMode::dump() const {
- print(errs());
- errs() << '\n';
+ print(dbgs());
+ dbgs() << '\n';
}
diff --git a/lib/Transforms/Utils/BasicBlockUtils.cpp b/lib/Transforms/Utils/BasicBlockUtils.cpp
index 2962e84..e902688 100644
--- a/lib/Transforms/Utils/BasicBlockUtils.cpp
+++ b/lib/Transforms/Utils/BasicBlockUtils.cpp
@@ -78,7 +78,7 @@ void llvm::FoldSingleEntryPHINodes(BasicBlock *BB) {
/// is dead. Also recursively delete any operands that become dead as
/// a result. This includes tracing the def-use list from the PHI to see if
/// it is ultimately unused or if it reaches an unused cycle.
-void llvm::DeleteDeadPHIs(BasicBlock *BB) {
+bool llvm::DeleteDeadPHIs(BasicBlock *BB) {
// Recursively deleting a PHI may cause multiple PHIs to be deleted
// or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
SmallVector<WeakVH, 8> PHIs;
@@ -86,9 +86,12 @@ void llvm::DeleteDeadPHIs(BasicBlock *BB) {
PHINode *PN = dyn_cast<PHINode>(I); ++I)
PHIs.push_back(PN);
+ bool Changed = false;
for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
- RecursivelyDeleteDeadPHINode(PN);
+ Changed |= RecursivelyDeleteDeadPHINode(PN);
+
+ return Changed;
}
/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
@@ -252,7 +255,7 @@ void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
Value *RetVal = 0;
// Create a value to return... if the function doesn't return null...
- if (BB->getParent()->getReturnType() != Type::getVoidTy(TI->getContext()))
+ if (!BB->getParent()->getReturnType()->isVoidTy())
RetVal = Constant::getNullValue(BB->getParent()->getReturnType());
// Create the return...
@@ -673,16 +676,3 @@ Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
return 0;
}
-/// CopyPrecedingStopPoint - If I is immediately preceded by a StopPoint,
-/// make a copy of the stoppoint before InsertPos (presumably before copying
-/// or moving I).
-void llvm::CopyPrecedingStopPoint(Instruction *I,
- BasicBlock::iterator InsertPos) {
- if (I != I->getParent()->begin()) {
- BasicBlock::iterator BBI = I; --BBI;
- if (DbgStopPointInst *DSPI = dyn_cast<DbgStopPointInst>(BBI)) {
- CallInst *newDSPI = cast<CallInst>(DSPI->clone());
- newDSPI->insertBefore(InsertPos);
- }
- }
-}
diff --git a/lib/Transforms/Utils/BasicInliner.cpp b/lib/Transforms/Utils/BasicInliner.cpp
index b5ffe06..c580b8f 100644
--- a/lib/Transforms/Utils/BasicInliner.cpp
+++ b/lib/Transforms/Utils/BasicInliner.cpp
@@ -89,7 +89,7 @@ void BasicInlinerImpl::inlineFunctions() {
}
}
- DEBUG(errs() << ": " << CallSites.size() << " call sites.\n");
+ DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
// Inline call sites.
bool Changed = false;
@@ -109,21 +109,21 @@ void BasicInlinerImpl::inlineFunctions() {
}
InlineCost IC = CA.getInlineCost(CS, NeverInline);
if (IC.isAlways()) {
- DEBUG(errs() << " Inlining: cost=always"
+ DEBUG(dbgs() << " Inlining: cost=always"
<<", call: " << *CS.getInstruction());
} else if (IC.isNever()) {
- DEBUG(errs() << " NOT Inlining: cost=never"
+ DEBUG(dbgs() << " NOT Inlining: cost=never"
<<", call: " << *CS.getInstruction());
continue;
} else {
int Cost = IC.getValue();
if (Cost >= (int) BasicInlineThreshold) {
- DEBUG(errs() << " NOT Inlining: cost = " << Cost
+ DEBUG(dbgs() << " NOT Inlining: cost = " << Cost
<< ", call: " << *CS.getInstruction());
continue;
} else {
- DEBUG(errs() << " Inlining: cost = " << Cost
+ DEBUG(dbgs() << " Inlining: cost = " << Cost
<< ", call: " << *CS.getInstruction());
}
}
diff --git a/lib/Transforms/Utils/CloneFunction.cpp b/lib/Transforms/Utils/CloneFunction.cpp
index c287747..bd750cc 100644
--- a/lib/Transforms/Utils/CloneFunction.cpp
+++ b/lib/Transforms/Utils/CloneFunction.cpp
@@ -184,7 +184,6 @@ namespace {
const char *NameSuffix;
ClonedCodeInfo *CodeInfo;
const TargetData *TD;
- Value *DbgFnStart;
public:
PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
DenseMap<const Value*, Value*> &valueMap,
@@ -193,7 +192,7 @@ namespace {
ClonedCodeInfo *codeInfo,
const TargetData *td)
: NewFunc(newFunc), OldFunc(oldFunc), ValueMap(valueMap), Returns(returns),
- NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td), DbgFnStart(NULL) {
+ NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
}
/// CloneBlock - The specified block is found to be reachable, clone it and
@@ -235,19 +234,6 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
continue;
}
- // Do not clone llvm.dbg.region.end. It will be adjusted by the inliner.
- if (const DbgFuncStartInst *DFSI = dyn_cast<DbgFuncStartInst>(II)) {
- if (DbgFnStart == NULL) {
- DISubprogram SP(DFSI->getSubprogram());
- if (SP.describes(BB->getParent()))
- DbgFnStart = DFSI->getSubprogram();
- }
- }
- if (const DbgRegionEndInst *DREIS = dyn_cast<DbgRegionEndInst>(II)) {
- if (DREIS->getContext() == DbgFnStart)
- continue;
- }
-
Instruction *NewInst = II->clone();
if (II->hasName())
NewInst->setName(II->getName()+NameSuffix);
diff --git a/lib/Transforms/Utils/CloneLoop.cpp b/lib/Transforms/Utils/CloneLoop.cpp
index 7e000a1..38928dc 100644
--- a/lib/Transforms/Utils/CloneLoop.cpp
+++ b/lib/Transforms/Utils/CloneLoop.cpp
@@ -91,7 +91,7 @@ Loop *llvm::CloneLoop(Loop *OrigL, LPPassManager *LPM, LoopInfo *LI,
Loop *NewParentLoop = NULL;
- while (!LoopNest.empty()) {
+ do {
Loop *L = LoopNest.pop_back_val();
Loop *NewLoop = new Loop();
@@ -123,7 +123,7 @@ Loop *llvm::CloneLoop(Loop *OrigL, LPPassManager *LPM, LoopInfo *LI,
// Process sub loops
for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
LoopNest.push_back(*I);
- }
+ } while (!LoopNest.empty());
// Remap instructions to reference operands from ValueMap.
for(SmallVector<BasicBlock *, 16>::iterator NBItr = NewBlocks.begin(),
diff --git a/lib/Transforms/Utils/CodeExtractor.cpp b/lib/Transforms/Utils/CodeExtractor.cpp
index f966681..b208494 100644
--- a/lib/Transforms/Utils/CodeExtractor.cpp
+++ b/lib/Transforms/Utils/CodeExtractor.cpp
@@ -29,6 +29,7 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringExtras.h"
#include <algorithm>
#include <set>
@@ -44,8 +45,8 @@ AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
namespace {
class CodeExtractor {
- typedef std::vector<Value*> Values;
- std::set<BasicBlock*> BlocksToExtract;
+ typedef SetVector<Value*> Values;
+ SetVector<BasicBlock*> BlocksToExtract;
DominatorTree* DT;
bool AggregateArgs;
unsigned NumExitBlocks;
@@ -135,7 +136,7 @@ void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
// We only want to code extract the second block now, and it becomes the new
// header of the region.
BasicBlock *OldPred = Header;
- BlocksToExtract.erase(OldPred);
+ BlocksToExtract.remove(OldPred);
BlocksToExtract.insert(NewBB);
Header = NewBB;
@@ -180,7 +181,7 @@ void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
}
void CodeExtractor::splitReturnBlocks() {
- for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(),
+ for (SetVector<BasicBlock*>::iterator I = BlocksToExtract.begin(),
E = BlocksToExtract.end(); I != E; ++I)
if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
@@ -206,7 +207,7 @@ void CodeExtractor::splitReturnBlocks() {
//
void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) {
std::set<BasicBlock*> ExitBlocks;
- for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(),
+ for (SetVector<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(),
ce = BlocksToExtract.end(); ci != ce; ++ci) {
BasicBlock *BB = *ci;
@@ -215,13 +216,13 @@ void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) {
// instruction is used outside the region, it's an output.
for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O)
if (definedInCaller(*O))
- inputs.push_back(*O);
+ inputs.insert(*O);
// Consider uses of this instruction (outputs).
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
UI != E; ++UI)
if (!definedInRegion(*UI)) {
- outputs.push_back(I);
+ outputs.insert(I);
break;
}
} // for: insts
@@ -234,12 +235,6 @@ void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) {
} // for: basic blocks
NumExitBlocks = ExitBlocks.size();
-
- // Eliminate duplicates.
- std::sort(inputs.begin(), inputs.end());
- inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end());
- std::sort(outputs.begin(), outputs.end());
- outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end());
}
/// constructFunction - make a function based on inputs and outputs, as follows:
@@ -252,8 +247,8 @@ Function *CodeExtractor::constructFunction(const Values &inputs,
BasicBlock *newHeader,
Function *oldFunction,
Module *M) {
- DEBUG(errs() << "inputs: " << inputs.size() << "\n");
- DEBUG(errs() << "outputs: " << outputs.size() << "\n");
+ DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
+ DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
// This function returns unsigned, outputs will go back by reference.
switch (NumExitBlocks) {
@@ -269,25 +264,25 @@ Function *CodeExtractor::constructFunction(const Values &inputs,
for (Values::const_iterator i = inputs.begin(),
e = inputs.end(); i != e; ++i) {
const Value *value = *i;
- DEBUG(errs() << "value used in func: " << *value << "\n");
+ DEBUG(dbgs() << "value used in func: " << *value << "\n");
paramTy.push_back(value->getType());
}
// Add the types of the output values to the function's argument list.
for (Values::const_iterator I = outputs.begin(), E = outputs.end();
I != E; ++I) {
- DEBUG(errs() << "instr used in func: " << **I << "\n");
+ DEBUG(dbgs() << "instr used in func: " << **I << "\n");
if (AggregateArgs)
paramTy.push_back((*I)->getType());
else
paramTy.push_back(PointerType::getUnqual((*I)->getType()));
}
- DEBUG(errs() << "Function type: " << *RetTy << " f(");
+ DEBUG(dbgs() << "Function type: " << *RetTy << " f(");
for (std::vector<const Type*>::iterator i = paramTy.begin(),
e = paramTy.end(); i != e; ++i)
- DEBUG(errs() << **i << ", ");
- DEBUG(errs() << ")\n");
+ DEBUG(dbgs() << **i << ", ");
+ DEBUG(dbgs() << ")\n");
if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
PointerType *StructPtr =
@@ -482,7 +477,7 @@ emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
unsigned switchVal = 0;
- for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
+ for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
e = BlocksToExtract.end(); i != e; ++i) {
TerminatorInst *TI = (*i)->getTerminator();
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
@@ -593,7 +588,7 @@ emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
// this should be rewritten as a `ret'
// Check if the function should return a value
- if (OldFnRetTy == Type::getVoidTy(Context)) {
+ if (OldFnRetTy->isVoidTy()) {
ReturnInst::Create(Context, 0, TheSwitch); // Return void
} else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
// return what we have
@@ -633,7 +628,7 @@ void CodeExtractor::moveCodeToFunction(Function *newFunction) {
Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
- for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
+ for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
e = BlocksToExtract.end(); i != e; ++i) {
// Delete the basic block from the old function, and the list of blocks
oldBlocks.remove(*i);
diff --git a/lib/Transforms/Utils/InlineFunction.cpp b/lib/Transforms/Utils/InlineFunction.cpp
index 043046c..17f8827 100644
--- a/lib/Transforms/Utils/InlineFunction.cpp
+++ b/lib/Transforms/Utils/InlineFunction.cpp
@@ -210,34 +210,6 @@ static void UpdateCallGraphAfterInlining(CallSite CS,
CallerNode->removeCallEdgeFor(CS);
}
-/// findFnRegionEndMarker - This is a utility routine that is used by
-/// InlineFunction. Return llvm.dbg.region.end intrinsic that corresponds
-/// to the llvm.dbg.func.start of the function F. Otherwise return NULL.
-///
-static const DbgRegionEndInst *findFnRegionEndMarker(const Function *F) {
-
- MDNode *FnStart = NULL;
- const DbgRegionEndInst *FnEnd = NULL;
- for (Function::const_iterator FI = F->begin(), FE =F->end(); FI != FE; ++FI)
- for (BasicBlock::const_iterator BI = FI->begin(), BE = FI->end(); BI != BE;
- ++BI) {
- if (FnStart == NULL) {
- if (const DbgFuncStartInst *FSI = dyn_cast<DbgFuncStartInst>(BI)) {
- DISubprogram SP(FSI->getSubprogram());
- assert (SP.isNull() == false && "Invalid llvm.dbg.func.start");
- if (SP.describes(F))
- FnStart = SP.getNode();
- }
- continue;
- }
-
- if (const DbgRegionEndInst *REI = dyn_cast<DbgRegionEndInst>(BI))
- if (REI->getContext() == FnStart)
- FnEnd = REI;
- }
- return FnEnd;
-}
-
// InlineFunction - This function inlines the called function into the basic
// block of the caller. This returns false if it is not possible to inline this
// call. The program is still in a well defined state if this occurs though.
@@ -364,23 +336,6 @@ bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD,
ValueMap[I] = ActualArg;
}
- // Adjust llvm.dbg.region.end. If the CalledFunc has region end
- // marker then clone that marker after next stop point at the
- // call site. The function body cloner does not clone original
- // region end marker from the CalledFunc. This will ensure that
- // inlined function's scope ends at the right place.
- if (const DbgRegionEndInst *DREI = findFnRegionEndMarker(CalledFunc)) {
- for (BasicBlock::iterator BI = TheCall, BE = TheCall->getParent()->end();
- BI != BE; ++BI) {
- if (DbgStopPointInst *DSPI = dyn_cast<DbgStopPointInst>(BI)) {
- if (DbgRegionEndInst *NewDREI =
- dyn_cast<DbgRegionEndInst>(DREI->clone()))
- NewDREI->insertAfter(DSPI);
- break;
- }
- }
- }
-
// We want the inliner to prune the code as it copies. We would LOVE to
// have no dead or constant instructions leftover after inlining occurs
// (which can happen, e.g., because an argument was constant), but we'll be
diff --git a/lib/Transforms/Utils/InstructionNamer.cpp b/lib/Transforms/Utils/InstructionNamer.cpp
index 7f11acf..090af95 100644
--- a/lib/Transforms/Utils/InstructionNamer.cpp
+++ b/lib/Transforms/Utils/InstructionNamer.cpp
@@ -32,7 +32,7 @@ namespace {
bool runOnFunction(Function &F) {
for (Function::arg_iterator AI = F.arg_begin(), AE = F.arg_end();
AI != AE; ++AI)
- if (!AI->hasName() && AI->getType() != Type::getVoidTy(F.getContext()))
+ if (!AI->hasName() && !AI->getType()->isVoidTy())
AI->setName("arg");
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
@@ -40,7 +40,7 @@ namespace {
BB->setName("bb");
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- if (!I->hasName() && I->getType() != Type::getVoidTy(F.getContext()))
+ if (!I->hasName() && !I->getType()->isVoidTy())
I->setName("tmp");
}
return true;
diff --git a/lib/Transforms/Utils/Local.cpp b/lib/Transforms/Utils/Local.cpp
index 2426e3e..90e929e 100644
--- a/lib/Transforms/Utils/Local.cpp
+++ b/lib/Transforms/Utils/Local.cpp
@@ -268,16 +268,17 @@ bool llvm::isInstructionTriviallyDead(Instruction *I) {
/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
/// trivially dead instruction, delete it. If that makes any of its operands
-/// trivially dead, delete them too, recursively.
-void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
+/// trivially dead, delete them too, recursively. Return true if any
+/// instructions were deleted.
+bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
Instruction *I = dyn_cast<Instruction>(V);
if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
- return;
+ return false;
SmallVector<Instruction*, 16> DeadInsts;
DeadInsts.push_back(I);
- while (!DeadInsts.empty()) {
+ do {
I = DeadInsts.pop_back_val();
// Null out all of the instruction's operands to see if any operand becomes
@@ -297,22 +298,25 @@ void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
}
I->eraseFromParent();
- }
+ } while (!DeadInsts.empty());
+
+ return true;
}
/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
/// dead PHI node, due to being a def-use chain of single-use nodes that
/// either forms a cycle or is terminated by a trivially dead instruction,
/// delete it. If that makes any of its operands trivially dead, delete them
-/// too, recursively.
-void
+/// too, recursively. Return true if the PHI node is actually deleted.
+bool
llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
// We can remove a PHI if it is on a cycle in the def-use graph
// where each node in the cycle has degree one, i.e. only one use,
// and is an instruction with no side effects.
if (!PN->hasOneUse())
- return;
+ return false;
+ bool Changed = false;
SmallPtrSet<PHINode *, 4> PHIs;
PHIs.insert(PN);
for (Instruction *J = cast<Instruction>(*PN->use_begin());
@@ -324,9 +328,35 @@ llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
if (!PHIs.insert(cast<PHINode>(JP))) {
// Break the cycle and delete the PHI and its operands.
JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
- RecursivelyDeleteTriviallyDeadInstructions(JP);
+ (void)RecursivelyDeleteTriviallyDeadInstructions(JP);
+ Changed = true;
break;
}
+ return Changed;
+}
+
+/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
+/// simplify any instructions in it and recursively delete dead instructions.
+///
+/// This returns true if it changed the code, note that it can delete
+/// instructions in other blocks as well in this block.
+bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
+ bool MadeChange = false;
+ for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
+ Instruction *Inst = BI++;
+
+ if (Value *V = SimplifyInstruction(Inst, TD)) {
+ WeakVH BIHandle(BI);
+ ReplaceAndSimplifyAllUses(Inst, V, TD);
+ MadeChange = true;
+ if (BIHandle == 0)
+ BI = BB->begin();
+ continue;
+ }
+
+ MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
+ }
+ return MadeChange;
}
//===----------------------------------------------------------------------===//
@@ -421,7 +451,7 @@ void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
- DEBUG(errs() << "Looking to fold " << BB->getName() << " into "
+ DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
<< Succ->getName() << "\n");
// Shortcut, if there is only a single predecessor it must be BB and merging
// is always safe
@@ -456,7 +486,7 @@ static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
PI != PE; PI++) {
if (BBPN->getIncomingValueForBlock(*PI)
!= PN->getIncomingValueForBlock(*PI)) {
- DEBUG(errs() << "Can't fold, phi node " << PN->getName() << " in "
+ DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
<< Succ->getName() << " is conflicting with "
<< BBPN->getName() << " with regard to common predecessor "
<< (*PI)->getName() << "\n");
@@ -471,7 +501,7 @@ static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
// one for BB, in which case this phi node will not prevent the merging
// of the block.
if (Val != PN->getIncomingValueForBlock(*PI)) {
- DEBUG(errs() << "Can't fold, phi node " << PN->getName() << " in "
+ DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
<< Succ->getName() << " is conflicting with regard to common "
<< "predecessor " << (*PI)->getName() << "\n");
return false;
@@ -525,7 +555,7 @@ bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
}
}
- DEBUG(errs() << "Killing Trivial BB: \n" << *BB);
+ DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
if (isa<PHINode>(Succ->begin())) {
// If there is more than one pred of succ, and there are PHI nodes in
diff --git a/lib/Transforms/Utils/LoopUnroll.cpp b/lib/Transforms/Utils/LoopUnroll.cpp
index 6b2c591..53117a0 100644
--- a/lib/Transforms/Utils/LoopUnroll.cpp
+++ b/lib/Transforms/Utils/LoopUnroll.cpp
@@ -63,7 +63,7 @@ static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI) {
if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
return 0;
- DEBUG(errs() << "Merging: " << *BB << "into: " << *OnlyPred);
+ DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
// Resolve any PHI nodes at the start of the block. They are all
// guaranteed to have exactly one entry if they exist, unless there are
@@ -110,13 +110,13 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM)
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) {
- DEBUG(errs() << " Can't unroll; loop preheader-insertion failed.\n");
+ DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
return false;
}
BasicBlock *LatchBlock = L->getLoopLatch();
if (!LatchBlock) {
- DEBUG(errs() << " Can't unroll; loop exit-block-insertion failed.\n");
+ DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
return false;
}
@@ -125,7 +125,7 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM)
if (!BI || BI->isUnconditional()) {
// The loop-rotate pass can be helpful to avoid this in many cases.
- DEBUG(errs() <<
+ DEBUG(dbgs() <<
" Can't unroll; loop not terminated by a conditional branch.\n");
return false;
}
@@ -138,9 +138,9 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM)
TripMultiple = L->getSmallConstantTripMultiple();
if (TripCount != 0)
- DEBUG(errs() << " Trip Count = " << TripCount << "\n");
+ DEBUG(dbgs() << " Trip Count = " << TripCount << "\n");
if (TripMultiple != 1)
- DEBUG(errs() << " Trip Multiple = " << TripMultiple << "\n");
+ DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n");
// Effectively "DCE" unrolled iterations that are beyond the tripcount
// and will never be executed.
@@ -166,17 +166,17 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM)
}
if (CompletelyUnroll) {
- DEBUG(errs() << "COMPLETELY UNROLLING loop %" << Header->getName()
+ DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
<< " with trip count " << TripCount << "!\n");
} else {
- DEBUG(errs() << "UNROLLING loop %" << Header->getName()
+ DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
<< " by " << Count);
if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
- DEBUG(errs() << " with a breakout at trip " << BreakoutTrip);
+ DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
} else if (TripMultiple != 1) {
- DEBUG(errs() << " with " << TripMultiple << " trips per branch");
+ DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
}
- DEBUG(errs() << "!\n");
+ DEBUG(dbgs() << "!\n");
}
std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
diff --git a/lib/Transforms/Utils/LowerInvoke.cpp b/lib/Transforms/Utils/LowerInvoke.cpp
index 6e6e8d2..766c4d9 100644
--- a/lib/Transforms/Utils/LowerInvoke.cpp
+++ b/lib/Transforms/Utils/LowerInvoke.cpp
@@ -255,7 +255,7 @@ bool LowerInvoke::insertCheapEHSupport(Function &F) {
// Insert a return instruction. This really should be a "barrier", as it
// is unreachable.
ReturnInst::Create(F.getContext(),
- F.getReturnType() == Type::getVoidTy(F.getContext()) ?
+ F.getReturnType()->isVoidTy() ?
0 : Constant::getNullValue(F.getReturnType()), UI);
// Remove the unwind instruction now.
diff --git a/lib/Transforms/Utils/LowerSwitch.cpp b/lib/Transforms/Utils/LowerSwitch.cpp
index 743bb6e..468a5fe 100644
--- a/lib/Transforms/Utils/LowerSwitch.cpp
+++ b/lib/Transforms/Utils/LowerSwitch.cpp
@@ -137,12 +137,12 @@ BasicBlock* LowerSwitch::switchConvert(CaseItr Begin, CaseItr End,
unsigned Mid = Size / 2;
std::vector<CaseRange> LHS(Begin, Begin + Mid);
- DEBUG(errs() << "LHS: " << LHS << "\n");
+ DEBUG(dbgs() << "LHS: " << LHS << "\n");
std::vector<CaseRange> RHS(Begin + Mid, End);
- DEBUG(errs() << "RHS: " << RHS << "\n");
+ DEBUG(dbgs() << "RHS: " << RHS << "\n");
CaseRange& Pivot = *(Begin + Mid);
- DEBUG(errs() << "Pivot ==> "
+ DEBUG(dbgs() << "Pivot ==> "
<< cast<ConstantInt>(Pivot.Low)->getValue() << " -"
<< cast<ConstantInt>(Pivot.High)->getValue() << "\n");
@@ -306,9 +306,9 @@ void LowerSwitch::processSwitchInst(SwitchInst *SI) {
CaseVector Cases;
unsigned numCmps = Clusterify(Cases, SI);
- DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size()
+ DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
<< ". Total compares: " << numCmps << "\n");
- DEBUG(errs() << "Cases: " << Cases << "\n");
+ DEBUG(dbgs() << "Cases: " << Cases << "\n");
(void)numCmps;
BasicBlock* SwitchBlock = switchConvert(Cases.begin(), Cases.end(), Val,
diff --git a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
index 846e432..baaa130 100644
--- a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
+++ b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
@@ -448,13 +448,13 @@ void PromoteMem2Reg::run() {
//
std::vector<RenamePassData> RenamePassWorkList;
RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
- while (!RenamePassWorkList.empty()) {
+ do {
RenamePassData RPD;
RPD.swap(RenamePassWorkList.back());
RenamePassWorkList.pop_back();
// RenamePass may add new worklist entries.
RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
- }
+ } while (!RenamePassWorkList.empty());
// The renamer uses the Visited set to avoid infinite loops. Clear it now.
Visited.clear();
diff --git a/lib/Transforms/Utils/SSAUpdater.cpp b/lib/Transforms/Utils/SSAUpdater.cpp
index 9881b3c..161bf21 100644
--- a/lib/Transforms/Utils/SSAUpdater.cpp
+++ b/lib/Transforms/Utils/SSAUpdater.cpp
@@ -191,7 +191,7 @@ Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
// If the client wants to know about all new instructions, tell it.
if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
- DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n");
+ DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
return InsertedPHI;
}
@@ -352,7 +352,7 @@ Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
InsertedPHI->eraseFromParent();
InsertedVal = ConstVal;
} else {
- DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n");
+ DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
// If the client wants to know about all new instructions, tell it.
if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
diff --git a/lib/Transforms/Utils/SSI.cpp b/lib/Transforms/Utils/SSI.cpp
index 1c4afff..4e813dd 100644
--- a/lib/Transforms/Utils/SSI.cpp
+++ b/lib/Transforms/Utils/SSI.cpp
@@ -416,7 +416,7 @@ bool SSIEverything::runOnFunction(Function &F) {
for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B)
for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I)
- if (I->getType() != Type::getVoidTy(F.getContext()))
+ if (!I->getType()->isVoidTy())
Insts.push_back(I);
ssi.createSSI(Insts);
diff --git a/lib/Transforms/Utils/SimplifyCFG.cpp b/lib/Transforms/Utils/SimplifyCFG.cpp
index d7ca45e..cb53296 100644
--- a/lib/Transforms/Utils/SimplifyCFG.cpp
+++ b/lib/Transforms/Utils/SimplifyCFG.cpp
@@ -459,7 +459,7 @@ static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
// Remove PHI node entries for the dead edge.
ThisCases[0].second->removePredecessor(TI->getParent());
- DEBUG(errs() << "Threading pred instr: " << *Pred->getTerminator()
+ DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
<< "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
EraseTerminatorInstAndDCECond(TI);
@@ -472,7 +472,7 @@ static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
DeadCases.insert(PredCases[i].first);
- DEBUG(errs() << "Threading pred instr: " << *Pred->getTerminator()
+ DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
<< "Through successor TI: " << *TI);
for (unsigned i = SI->getNumCases()-1; i != 0; --i)
@@ -481,7 +481,7 @@ static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
SI->removeCase(i);
}
- DEBUG(errs() << "Leaving: " << *TI << "\n");
+ DEBUG(dbgs() << "Leaving: " << *TI << "\n");
return true;
}
}
@@ -524,7 +524,7 @@ static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
Instruction *NI = BranchInst::Create(TheRealDest, TI);
(void) NI;
- DEBUG(errs() << "Threading pred instr: " << *Pred->getTerminator()
+ DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
<< "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
EraseTerminatorInstAndDCECond(TI);
@@ -753,7 +753,7 @@ HoistTerminator:
// Okay, it is safe to hoist the terminator.
Instruction *NT = I1->clone();
BIParent->getInstList().insert(BI, NT);
- if (NT->getType() != Type::getVoidTy(BB1->getContext())) {
+ if (!NT->getType()->isVoidTy()) {
I1->replaceAllUsesWith(NT);
I2->replaceAllUsesWith(NT);
NT->takeName(I1);
@@ -1011,7 +1011,7 @@ static bool FoldCondBranchOnPHI(BranchInst *BI) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
ConstantInt *CB;
if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
- CB->getType() == Type::getInt1Ty(BB->getContext())) {
+ CB->getType()->isInteger(1)) {
// Okay, we now know that all edges from PredBB should be revectored to
// branch to RealDest.
BasicBlock *PredBB = PN->getIncomingBlock(i);
@@ -1111,7 +1111,7 @@ static bool FoldTwoEntryPHINode(PHINode *PN) {
if (NumPhis > 2)
return false;
- DEBUG(errs() << "FOUND IF CONDITION! " << *IfCond << " T: "
+ DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: "
<< IfTrue->getName() << " F: " << IfFalse->getName() << "\n");
// Loop over the PHI's seeing if we can promote them all to select
@@ -1295,7 +1295,7 @@ static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
ReturnInst::Create(BI->getContext(), TrueValue, BI);
(void) RI;
- DEBUG(errs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
+ DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
<< "\n " << *BI << "NewRet = " << *RI
<< "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
@@ -1377,7 +1377,7 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
else
continue;
- DEBUG(errs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
+ DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
// If we need to invert the condition in the pred block to match, do so now.
if (InvertPredCond) {
@@ -1511,7 +1511,7 @@ static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
// Finally, if everything is ok, fold the branches to logical ops.
BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
- DEBUG(errs() << "FOLDING BRs:" << *PBI->getParent()
+ DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
<< "AND: " << *BI->getParent());
@@ -1531,7 +1531,7 @@ static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
OtherDest = InfLoopBlock;
}
- DEBUG(errs() << *PBI->getParent()->getParent());
+ DEBUG(dbgs() << *PBI->getParent()->getParent());
// BI may have other predecessors. Because of this, we leave
// it alone, but modify PBI.
@@ -1581,8 +1581,8 @@ static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
}
}
- DEBUG(errs() << "INTO: " << *PBI->getParent());
- DEBUG(errs() << *PBI->getParent()->getParent());
+ DEBUG(dbgs() << "INTO: " << *PBI->getParent());
+ DEBUG(dbgs() << *PBI->getParent()->getParent());
// This basic block is probably dead. We know it has at least
// one fewer predecessor.
@@ -1608,7 +1608,7 @@ bool llvm::SimplifyCFG(BasicBlock *BB) {
// Remove basic blocks that have no predecessors... or that just have themself
// as a predecessor. These are unreachable.
if (pred_begin(BB) == pred_end(BB) || BB->getSinglePredecessor() == BB) {
- DEBUG(errs() << "Removing BB: \n" << *BB);
+ DEBUG(dbgs() << "Removing BB: \n" << *BB);
DeleteDeadBlock(BB);
return true;
}
@@ -1651,20 +1651,13 @@ bool llvm::SimplifyCFG(BasicBlock *BB) {
if (!UncondBranchPreds.empty()) {
while (!UncondBranchPreds.empty()) {
BasicBlock *Pred = UncondBranchPreds.pop_back_val();
- DEBUG(errs() << "FOLDING: " << *BB
+ DEBUG(dbgs() << "FOLDING: " << *BB
<< "INTO UNCOND BRANCH PRED: " << *Pred);
Instruction *UncondBranch = Pred->getTerminator();
// Clone the return and add it to the end of the predecessor.
Instruction *NewRet = RI->clone();
Pred->getInstList().push_back(NewRet);
- BasicBlock::iterator BBI = RI;
- if (BBI != BB->begin()) {
- // Move region end info into the predecessor.
- if (DbgRegionEndInst *DREI = dyn_cast<DbgRegionEndInst>(--BBI))
- DREI->moveBefore(NewRet);
- }
-
// If the return instruction returns a value, and if the value was a
// PHI node in "BB", propagate the right value into the return.
for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
diff --git a/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp b/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
index 30cb94d..3fa8b70 100644
--- a/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
+++ b/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
@@ -112,7 +112,7 @@ bool UnifyFunctionExitNodes::runOnFunction(Function &F) {
"UnifiedReturnBlock", &F);
PHINode *PN = 0;
- if (F.getReturnType() == Type::getVoidTy(F.getContext())) {
+ if (F.getReturnType()->isVoidTy()) {
ReturnInst::Create(F.getContext(), NULL, NewRetBlock);
} else {
// If the function doesn't return void... add a PHI node to the block...
diff --git a/lib/VMCore/AsmWriter.cpp b/lib/VMCore/AsmWriter.cpp
index d3c9d77..eff2c77 100644
--- a/lib/VMCore/AsmWriter.cpp
+++ b/lib/VMCore/AsmWriter.cpp
@@ -30,6 +30,7 @@
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
@@ -563,11 +564,14 @@ static SlotTracker *createSlotTracker(const Value *V) {
if (const Function *Func = dyn_cast<Function>(V))
return new SlotTracker(Func);
+ if (isa<MDNode>(V))
+ return new SlotTracker((Function *)0);
+
return 0;
}
#if 0
-#define ST_DEBUG(X) errs() << X
+#define ST_DEBUG(X) dbgs() << X
#else
#define ST_DEBUG(X)
#endif
@@ -614,8 +618,7 @@ void SlotTracker::processModule() {
E = TheModule->named_metadata_end(); I != E; ++I) {
const NamedMDNode *NMD = I;
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
- // FIXME: Change accessor to be type safe.
- if (MDNode *MD = cast_or_null<MDNode>(NMD->getOperand(i)))
+ if (MDNode *MD = NMD->getOperand(i))
CreateMetadataSlot(MD);
}
}
@@ -832,7 +835,7 @@ static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
TypePrinting &TypePrinter, SlotTracker *Machine) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
- if (CI->getType() == Type::getInt1Ty(CV->getContext())) {
+ if (CI->getType()->isInteger(1)) {
Out << (CI->getZExtValue() ? "true" : "false");
return;
}
@@ -1136,6 +1139,8 @@ static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
return;
}
+ if (!Machine)
+ Machine = createSlotTracker(V);
Out << '!' << Machine->getMetadataSlot(N);
return;
}
@@ -1369,10 +1374,10 @@ void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
Out << "!" << NMD->getName() << " = !{";
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
if (i) Out << ", ";
- // FIXME: Change accessor to be typesafe.
- // FIXME: This doesn't handle null??
- MDNode *MD = cast_or_null<MDNode>(NMD->getOperand(i));
- Out << '!' << Machine.getMetadataSlot(MD);
+ if (MDNode *MD = NMD->getOperand(i))
+ Out << '!' << Machine.getMetadataSlot(MD);
+ else
+ Out << "null";
}
Out << "}\n";
}
@@ -2057,8 +2062,9 @@ void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
else
W.printAlias(cast<GlobalAlias>(GV));
} else if (const MDNode *N = dyn_cast<MDNode>(this)) {
- SlotTracker SlotTable((Function*)0);
- AssemblyWriter W(OS, SlotTable, 0, AAW);
+ Function *F = N->getFunction();
+ SlotTracker SlotTable(F);
+ AssemblyWriter W(OS, SlotTable, getModuleFromVal(F), AAW);
W.printMDNodeBody(N);
} else if (const NamedMDNode *N = dyn_cast<NamedMDNode>(this)) {
SlotTracker SlotTable(N->getParent());
@@ -2085,17 +2091,17 @@ void Value::printCustom(raw_ostream &OS) const {
}
// Value::dump - allow easy printing of Values from the debugger.
-void Value::dump() const { print(errs()); errs() << '\n'; }
+void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
// Type::dump - allow easy printing of Types from the debugger.
// This one uses type names from the given context module
void Type::dump(const Module *Context) const {
- WriteTypeSymbolic(errs(), this, Context);
- errs() << '\n';
+ WriteTypeSymbolic(dbgs(), this, Context);
+ dbgs() << '\n';
}
// Type::dump - allow easy printing of Types from the debugger.
void Type::dump() const { dump(0); }
// Module::dump() - Allow printing of Modules from the debugger.
-void Module::dump() const { print(errs(), 0); }
+void Module::dump() const { print(dbgs(), 0); }
diff --git a/lib/VMCore/Attributes.cpp b/lib/VMCore/Attributes.cpp
index d68bba3..a371c6f 100644
--- a/lib/VMCore/Attributes.cpp
+++ b/lib/VMCore/Attributes.cpp
@@ -17,6 +17,7 @@
#include "llvm/ADT/FoldingSet.h"
#include "llvm/System/Atomic.h"
#include "llvm/System/Mutex.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -318,11 +319,11 @@ AttrListPtr AttrListPtr::removeAttr(unsigned Idx, Attributes Attrs) const {
}
void AttrListPtr::dump() const {
- errs() << "PAL[ ";
+ dbgs() << "PAL[ ";
for (unsigned i = 0; i < getNumSlots(); ++i) {
const AttributeWithIndex &PAWI = getSlot(i);
- errs() << "{" << PAWI.Index << "," << PAWI.Attrs << "} ";
+ dbgs() << "{" << PAWI.Index << "," << PAWI.Attrs << "} ";
}
- errs() << "]\n";
+ dbgs() << "]\n";
}
diff --git a/lib/VMCore/AutoUpgrade.cpp b/lib/VMCore/AutoUpgrade.cpp
index 77ab19f..2161841 100644
--- a/lib/VMCore/AutoUpgrade.cpp
+++ b/lib/VMCore/AutoUpgrade.cpp
@@ -480,61 +480,42 @@ void llvm::UpgradeCallsToIntrinsic(Function* F) {
}
}
-/// This function checks debug info intrinsics. If an intrinsic is invalid
-/// then this function simply removes the intrinsic.
+/// This function strips all debug info intrinsics, except for llvm.dbg.declare.
+/// If an llvm.dbg.declare intrinsic is invalid, then this function simply
+/// strips that use.
void llvm::CheckDebugInfoIntrinsics(Module *M) {
if (Function *FuncStart = M->getFunction("llvm.dbg.func.start")) {
- if (!FuncStart->use_empty()) {
- DbgFuncStartInst *DFSI = cast<DbgFuncStartInst>(FuncStart->use_back());
- if (!isa<MDNode>(DFSI->getOperand(1))) {
- while (!FuncStart->use_empty()) {
- CallInst *CI = cast<CallInst>(FuncStart->use_back());
- CI->eraseFromParent();
- }
- FuncStart->eraseFromParent();
- }
+ while (!FuncStart->use_empty()) {
+ CallInst *CI = cast<CallInst>(FuncStart->use_back());
+ CI->eraseFromParent();
}
+ FuncStart->eraseFromParent();
}
-
+
if (Function *StopPoint = M->getFunction("llvm.dbg.stoppoint")) {
- if (!StopPoint->use_empty()) {
- DbgStopPointInst *DSPI = cast<DbgStopPointInst>(StopPoint->use_back());
- if (!isa<MDNode>(DSPI->getOperand(3))) {
- while (!StopPoint->use_empty()) {
- CallInst *CI = cast<CallInst>(StopPoint->use_back());
- CI->eraseFromParent();
- }
- StopPoint->eraseFromParent();
- }
+ while (!StopPoint->use_empty()) {
+ CallInst *CI = cast<CallInst>(StopPoint->use_back());
+ CI->eraseFromParent();
}
+ StopPoint->eraseFromParent();
}
if (Function *RegionStart = M->getFunction("llvm.dbg.region.start")) {
- if (!RegionStart->use_empty()) {
- DbgRegionStartInst *DRSI = cast<DbgRegionStartInst>(RegionStart->use_back());
- if (!isa<MDNode>(DRSI->getOperand(1))) {
- while (!RegionStart->use_empty()) {
- CallInst *CI = cast<CallInst>(RegionStart->use_back());
- CI->eraseFromParent();
- }
- RegionStart->eraseFromParent();
- }
+ while (!RegionStart->use_empty()) {
+ CallInst *CI = cast<CallInst>(RegionStart->use_back());
+ CI->eraseFromParent();
}
+ RegionStart->eraseFromParent();
}
if (Function *RegionEnd = M->getFunction("llvm.dbg.region.end")) {
- if (!RegionEnd->use_empty()) {
- DbgRegionEndInst *DREI = cast<DbgRegionEndInst>(RegionEnd->use_back());
- if (!isa<MDNode>(DREI->getOperand(1))) {
- while (!RegionEnd->use_empty()) {
- CallInst *CI = cast<CallInst>(RegionEnd->use_back());
- CI->eraseFromParent();
- }
- RegionEnd->eraseFromParent();
- }
+ while (!RegionEnd->use_empty()) {
+ CallInst *CI = cast<CallInst>(RegionEnd->use_back());
+ CI->eraseFromParent();
}
+ RegionEnd->eraseFromParent();
}
if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
diff --git a/lib/VMCore/ConstantFold.cpp b/lib/VMCore/ConstantFold.cpp
index 2449739..3a24389 100644
--- a/lib/VMCore/ConstantFold.cpp
+++ b/lib/VMCore/ConstantFold.cpp
@@ -1162,7 +1162,7 @@ Constant *llvm::ConstantFoldBinaryInstruction(LLVMContext &Context,
}
// i1 can be simplified in many cases.
- if (C1->getType() == Type::getInt1Ty(Context)) {
+ if (C1->getType()->isInteger(1)) {
switch (Opcode) {
case Instruction::Add:
case Instruction::Sub:
@@ -1229,10 +1229,10 @@ static int IdxCompare(LLVMContext &Context, Constant *C1, Constant *C2,
// Ok, we have two differing integer indices. Sign extend them to be the same
// type. Long is always big enough, so we use it.
- if (C1->getType() != Type::getInt64Ty(Context))
+ if (!C1->getType()->isInteger(64))
C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(Context));
- if (C2->getType() != Type::getInt64Ty(Context))
+ if (!C2->getType()->isInteger(64))
C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(Context));
if (C1 == C2) return 0; // They are equal
@@ -1587,7 +1587,7 @@ Constant *llvm::ConstantFoldCompareInstruction(LLVMContext &Context,
}
// If the comparison is a comparison between two i1's, simplify it.
- if (C1->getType() == Type::getInt1Ty(Context)) {
+ if (C1->getType()->isInteger(1)) {
switch(pred) {
case ICmpInst::ICMP_EQ:
if (isa<ConstantInt>(C2))
@@ -2042,10 +2042,10 @@ Constant *llvm::ConstantFoldGetElementPtr(LLVMContext &Context,
// Before adding, extend both operands to i64 to avoid
// overflow trouble.
- if (PrevIdx->getType() != Type::getInt64Ty(Context))
+ if (!PrevIdx->getType()->isInteger(64))
PrevIdx = ConstantExpr::getSExt(PrevIdx,
Type::getInt64Ty(Context));
- if (Div->getType() != Type::getInt64Ty(Context))
+ if (!Div->getType()->isInteger(64))
Div = ConstantExpr::getSExt(Div,
Type::getInt64Ty(Context));
diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp
index e3c6144..cc8961f 100644
--- a/lib/VMCore/Constants.cpp
+++ b/lib/VMCore/Constants.cpp
@@ -110,7 +110,7 @@ void Constant::destroyConstantImpl() {
Value *V = use_back();
#ifndef NDEBUG // Only in -g mode...
if (!isa<Constant>(V)) {
- errs() << "While deleting: " << *this
+ dbgs() << "While deleting: " << *this
<< "\n\nUse still stuck around after Def is destroyed: "
<< *V << "\n\n";
}
@@ -197,6 +197,24 @@ Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
return BA->getFunction()->getRelocationInfo();
+ // While raw uses of blockaddress need to be relocated, differences between
+ // two of them don't when they are for labels in the same function. This is a
+ // common idiom when creating a table for the indirect goto extension, so we
+ // handle it efficiently here.
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
+ if (CE->getOpcode() == Instruction::Sub) {
+ ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
+ ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
+ if (LHS && RHS &&
+ LHS->getOpcode() == Instruction::PtrToInt &&
+ RHS->getOpcode() == Instruction::PtrToInt &&
+ isa<BlockAddress>(LHS->getOperand(0)) &&
+ isa<BlockAddress>(RHS->getOperand(0)) &&
+ cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
+ cast<BlockAddress>(RHS->getOperand(0))->getFunction())
+ return NoRelocation;
+ }
+
PossibleRelocationsTy Result = NoRelocation;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
Result = std::max(Result,
@@ -910,7 +928,7 @@ void ConstantArray::destroyConstant() {
/// if the elements of the array are all ConstantInt's.
bool ConstantArray::isString() const {
// Check the element type for i8...
- if (getType()->getElementType() != Type::getInt8Ty(getContext()))
+ if (!getType()->getElementType()->isInteger(8))
return false;
// Check the elements to make sure they are all integers, not constant
// expressions.
@@ -925,7 +943,7 @@ bool ConstantArray::isString() const {
/// null bytes except its terminator.
bool ConstantArray::isCString() const {
// Check the element type for i8...
- if (getType()->getElementType() != Type::getInt8Ty(getContext()))
+ if (!getType()->getElementType()->isInteger(8))
return false;
// Last element must be a null.
@@ -1671,7 +1689,7 @@ Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
assert(isa<VectorType>(Val->getType()) &&
"Tried to create extractelement operation on non-vector type!");
- assert(Idx->getType() == Type::getInt32Ty(Val->getContext()) &&
+ assert(Idx->getType()->isInteger(32) &&
"Extractelement index must be i32 type!");
return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(),
Val, Idx);
@@ -1698,7 +1716,7 @@ Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
"Tried to create insertelement operation on non-vector type!");
assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
&& "Insertelement types must match!");
- assert(Idx->getType() == Type::getInt32Ty(Val->getContext()) &&
+ assert(Idx->getType()->isInteger(32) &&
"Insertelement index must be i32 type!");
return getInsertElementTy(Val->getType(), Val, Elt, Idx);
}
diff --git a/lib/VMCore/ConstantsContext.h b/lib/VMCore/ConstantsContext.h
index 268a660..08224e4 100644
--- a/lib/VMCore/ConstantsContext.h
+++ b/lib/VMCore/ConstantsContext.h
@@ -764,7 +764,7 @@ public:
}
void dump() const {
- DEBUG(errs() << "Constant.cpp: ConstantUniqueMap\n");
+ DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
}
};
diff --git a/lib/VMCore/Core.cpp b/lib/VMCore/Core.cpp
index 449e967..984d245 100644
--- a/lib/VMCore/Core.cpp
+++ b/lib/VMCore/Core.cpp
@@ -89,7 +89,7 @@ void LLVMSetTarget(LLVMModuleRef M, const char *Triple) {
}
/*--.. Type names ..........................................................--*/
-int LLVMAddTypeName(LLVMModuleRef M, const char *Name, LLVMTypeRef Ty) {
+LLVMBool LLVMAddTypeName(LLVMModuleRef M, const char *Name, LLVMTypeRef Ty) {
return unwrap(M)->addTypeName(Name, unwrap(Ty));
}
@@ -237,7 +237,7 @@ LLVMTypeRef LLVMPPCFP128Type(void) {
LLVMTypeRef LLVMFunctionType(LLVMTypeRef ReturnType,
LLVMTypeRef *ParamTypes, unsigned ParamCount,
- int IsVarArg) {
+ LLVMBool IsVarArg) {
std::vector<const Type*> Tys;
for (LLVMTypeRef *I = ParamTypes, *E = ParamTypes + ParamCount; I != E; ++I)
Tys.push_back(unwrap(*I));
@@ -245,7 +245,7 @@ LLVMTypeRef LLVMFunctionType(LLVMTypeRef ReturnType,
return wrap(FunctionType::get(unwrap(ReturnType), Tys, IsVarArg != 0));
}
-int LLVMIsFunctionVarArg(LLVMTypeRef FunctionTy) {
+LLVMBool LLVMIsFunctionVarArg(LLVMTypeRef FunctionTy) {
return unwrap<FunctionType>(FunctionTy)->isVarArg();
}
@@ -267,7 +267,7 @@ void LLVMGetParamTypes(LLVMTypeRef FunctionTy, LLVMTypeRef *Dest) {
/*--.. Operations on struct types ..........................................--*/
LLVMTypeRef LLVMStructTypeInContext(LLVMContextRef C, LLVMTypeRef *ElementTypes,
- unsigned ElementCount, int Packed) {
+ unsigned ElementCount, LLVMBool Packed) {
std::vector<const Type*> Tys;
for (LLVMTypeRef *I = ElementTypes,
*E = ElementTypes + ElementCount; I != E; ++I)
@@ -277,7 +277,7 @@ LLVMTypeRef LLVMStructTypeInContext(LLVMContextRef C, LLVMTypeRef *ElementTypes,
}
LLVMTypeRef LLVMStructType(LLVMTypeRef *ElementTypes,
- unsigned ElementCount, int Packed) {
+ unsigned ElementCount, LLVMBool Packed) {
return LLVMStructTypeInContext(LLVMGetGlobalContext(), ElementTypes,
ElementCount, Packed);
}
@@ -294,7 +294,7 @@ void LLVMGetStructElementTypes(LLVMTypeRef StructTy, LLVMTypeRef *Dest) {
*Dest++ = wrap(*I);
}
-int LLVMIsPackedStruct(LLVMTypeRef StructTy) {
+LLVMBool LLVMIsPackedStruct(LLVMTypeRef StructTy) {
return unwrap<StructType>(StructTy)->isPacked();
}
@@ -442,17 +442,17 @@ LLVMValueRef LLVMGetUndef(LLVMTypeRef Ty) {
return wrap(UndefValue::get(unwrap(Ty)));
}
-int LLVMIsConstant(LLVMValueRef Ty) {
+LLVMBool LLVMIsConstant(LLVMValueRef Ty) {
return isa<Constant>(unwrap(Ty));
}
-int LLVMIsNull(LLVMValueRef Val) {
+LLVMBool LLVMIsNull(LLVMValueRef Val) {
if (Constant *C = dyn_cast<Constant>(unwrap(Val)))
return C->isNullValue();
return false;
}
-int LLVMIsUndef(LLVMValueRef Val) {
+LLVMBool LLVMIsUndef(LLVMValueRef Val) {
return isa<UndefValue>(unwrap(Val));
}
@@ -464,7 +464,7 @@ LLVMValueRef LLVMConstPointerNull(LLVMTypeRef Ty) {
/*--.. Operations on scalar constants ......................................--*/
LLVMValueRef LLVMConstInt(LLVMTypeRef IntTy, unsigned long long N,
- int SignExtend) {
+ LLVMBool SignExtend) {
return wrap(ConstantInt::get(unwrap<IntegerType>(IntTy), N, SignExtend != 0));
}
@@ -504,7 +504,8 @@ long long LLVMConstIntGetSExtValue(LLVMValueRef ConstantVal) {
/*--.. Operations on composite constants ...................................--*/
LLVMValueRef LLVMConstStringInContext(LLVMContextRef C, const char *Str,
- unsigned Length, int DontNullTerminate) {
+ unsigned Length,
+ LLVMBool DontNullTerminate) {
/* Inverted the sense of AddNull because ', 0)' is a
better mnemonic for null termination than ', 1)'. */
return wrap(ConstantArray::get(*unwrap(C), std::string(Str, Length),
@@ -512,14 +513,14 @@ LLVMValueRef LLVMConstStringInContext(LLVMContextRef C, const char *Str,
}
LLVMValueRef LLVMConstStructInContext(LLVMContextRef C,
LLVMValueRef *ConstantVals,
- unsigned Count, int Packed) {
+ unsigned Count, LLVMBool Packed) {
return wrap(ConstantStruct::get(*unwrap(C),
unwrap<Constant>(ConstantVals, Count),
Count, Packed != 0));
}
LLVMValueRef LLVMConstString(const char *Str, unsigned Length,
- int DontNullTerminate) {
+ LLVMBool DontNullTerminate) {
return LLVMConstStringInContext(LLVMGetGlobalContext(), Str, Length,
DontNullTerminate);
}
@@ -530,7 +531,7 @@ LLVMValueRef LLVMConstArray(LLVMTypeRef ElementTy,
Length));
}
LLVMValueRef LLVMConstStruct(LLVMValueRef *ConstantVals, unsigned Count,
- int Packed) {
+ LLVMBool Packed) {
return LLVMConstStructInContext(LLVMGetGlobalContext(), ConstantVals, Count,
Packed);
}
@@ -820,7 +821,7 @@ LLVMValueRef LLVMConstPointerCast(LLVMValueRef ConstantVal,
}
LLVMValueRef LLVMConstIntCast(LLVMValueRef ConstantVal, LLVMTypeRef ToType,
- unsigned isSigned) {
+ LLVMBool isSigned) {
return wrap(ConstantExpr::getIntegerCast(
unwrap<Constant>(ConstantVal),
unwrap(ToType),
@@ -883,10 +884,11 @@ LLVMValueRef LLVMConstInsertValue(LLVMValueRef AggConstant,
IdxList, NumIdx));
}
-LLVMValueRef LLVMConstInlineAsm(LLVMTypeRef Ty, const char *AsmString,
- const char *Constraints, int HasSideEffects,
- int IsAlignStack) {
- return wrap(InlineAsm::get(dyn_cast<FunctionType>(unwrap(Ty)), AsmString,
+LLVMValueRef LLVMConstInlineAsm(LLVMTypeRef Ty, const char *AsmString,
+ const char *Constraints,
+ LLVMBool HasSideEffects,
+ LLVMBool IsAlignStack) {
+ return wrap(InlineAsm::get(dyn_cast<FunctionType>(unwrap(Ty)), AsmString,
Constraints, HasSideEffects, IsAlignStack));
}
@@ -896,7 +898,7 @@ LLVMModuleRef LLVMGetGlobalParent(LLVMValueRef Global) {
return wrap(unwrap<GlobalValue>(Global)->getParent());
}
-int LLVMIsDeclaration(LLVMValueRef Global) {
+LLVMBool LLVMIsDeclaration(LLVMValueRef Global) {
return unwrap<GlobalValue>(Global)->isDeclaration();
}
@@ -1079,19 +1081,19 @@ void LLVMSetInitializer(LLVMValueRef GlobalVar, LLVMValueRef ConstantVal) {
->setInitializer(unwrap<Constant>(ConstantVal));
}
-int LLVMIsThreadLocal(LLVMValueRef GlobalVar) {
+LLVMBool LLVMIsThreadLocal(LLVMValueRef GlobalVar) {
return unwrap<GlobalVariable>(GlobalVar)->isThreadLocal();
}
-void LLVMSetThreadLocal(LLVMValueRef GlobalVar, int IsThreadLocal) {
+void LLVMSetThreadLocal(LLVMValueRef GlobalVar, LLVMBool IsThreadLocal) {
unwrap<GlobalVariable>(GlobalVar)->setThreadLocal(IsThreadLocal != 0);
}
-int LLVMIsGlobalConstant(LLVMValueRef GlobalVar) {
+LLVMBool LLVMIsGlobalConstant(LLVMValueRef GlobalVar) {
return unwrap<GlobalVariable>(GlobalVar)->isConstant();
}
-void LLVMSetGlobalConstant(LLVMValueRef GlobalVar, int IsConstant) {
+void LLVMSetGlobalConstant(LLVMValueRef GlobalVar, LLVMBool IsConstant) {
unwrap<GlobalVariable>(GlobalVar)->setConstant(IsConstant != 0);
}
@@ -1285,7 +1287,7 @@ LLVMValueRef LLVMBasicBlockAsValue(LLVMBasicBlockRef BB) {
return wrap(static_cast<Value*>(unwrap(BB)));
}
-int LLVMValueIsBasicBlock(LLVMValueRef Val) {
+LLVMBool LLVMValueIsBasicBlock(LLVMValueRef Val) {
return isa<BasicBlock>(unwrap(Val));
}
@@ -1452,11 +1454,11 @@ void LLVMSetInstrParamAlignment(LLVMValueRef Instr, unsigned index,
/*--.. Operations on call instructions (only) ..............................--*/
-int LLVMIsTailCall(LLVMValueRef Call) {
+LLVMBool LLVMIsTailCall(LLVMValueRef Call) {
return unwrap<CallInst>(Call)->isTailCall();
}
-void LLVMSetTailCall(LLVMValueRef Call, int isTailCall) {
+void LLVMSetTailCall(LLVMValueRef Call, LLVMBool isTailCall) {
unwrap<CallInst>(Call)->setTailCall(isTailCall);
}
@@ -1973,9 +1975,11 @@ void LLVMDisposeModuleProvider(LLVMModuleProviderRef MP) {
/*===-- Memory buffers ----------------------------------------------------===*/
-int LLVMCreateMemoryBufferWithContentsOfFile(const char *Path,
- LLVMMemoryBufferRef *OutMemBuf,
- char **OutMessage) {
+LLVMBool LLVMCreateMemoryBufferWithContentsOfFile(
+ const char *Path,
+ LLVMMemoryBufferRef *OutMemBuf,
+ char **OutMessage) {
+
std::string Error;
if (MemoryBuffer *MB = MemoryBuffer::getFile(Path, &Error)) {
*OutMemBuf = wrap(MB);
@@ -1986,8 +1990,8 @@ int LLVMCreateMemoryBufferWithContentsOfFile(const char *Path,
return 1;
}
-int LLVMCreateMemoryBufferWithSTDIN(LLVMMemoryBufferRef *OutMemBuf,
- char **OutMessage) {
+LLVMBool LLVMCreateMemoryBufferWithSTDIN(LLVMMemoryBufferRef *OutMemBuf,
+ char **OutMessage) {
MemoryBuffer *MB = MemoryBuffer::getSTDIN();
if (!MB->getBufferSize()) {
delete MB;
diff --git a/lib/VMCore/Function.cpp b/lib/VMCore/Function.cpp
index e04b6d6..f00f6ee 100644
--- a/lib/VMCore/Function.cpp
+++ b/lib/VMCore/Function.cpp
@@ -189,7 +189,7 @@ void Function::BuildLazyArguments() const {
// Create the arguments vector, all arguments start out unnamed.
const FunctionType *FT = getFunctionType();
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
- assert(FT->getParamType(i) != Type::getVoidTy(FT->getContext()) &&
+ assert(!FT->getParamType(i)->isVoidTy() &&
"Cannot have void typed arguments!");
ArgumentList.push_back(new Argument(FT->getParamType(i)));
}
diff --git a/lib/VMCore/InlineAsm.cpp b/lib/VMCore/InlineAsm.cpp
index 16de1af..ec21773 100644
--- a/lib/VMCore/InlineAsm.cpp
+++ b/lib/VMCore/InlineAsm.cpp
@@ -217,7 +217,7 @@ bool InlineAsm::Verify(const FunctionType *Ty, StringRef ConstStr) {
switch (NumOutputs) {
case 0:
- if (Ty->getReturnType() != Type::getVoidTy(Ty->getContext())) return false;
+ if (!Ty->getReturnType()->isVoidTy()) return false;
break;
case 1:
if (isa<StructType>(Ty->getReturnType())) return false;
diff --git a/lib/VMCore/Instruction.cpp b/lib/VMCore/Instruction.cpp
index a5500e6..3fabfd0 100644
--- a/lib/VMCore/Instruction.cpp
+++ b/lib/VMCore/Instruction.cpp
@@ -374,37 +374,6 @@ bool Instruction::isCommutative(unsigned op) {
}
}
-// Code here matches isMalloc from MemoryBuiltins, which is not in VMCore.
-static bool isMalloc(const Value* I) {
- const CallInst *CI = dyn_cast<CallInst>(I);
- if (!CI) {
- const BitCastInst *BCI = dyn_cast<BitCastInst>(I);
- if (!BCI) return false;
-
- CI = dyn_cast<CallInst>(BCI->getOperand(0));
- }
-
- if (!CI)
- return false;
- Function *Callee = CI->getCalledFunction();
- if (Callee == 0 || !Callee->isDeclaration() || Callee->getName() != "malloc")
- return false;
-
- // Check malloc prototype.
- // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
- // attribute will exist.
- const FunctionType *FTy = Callee->getFunctionType();
- if (FTy->getNumParams() != 1)
- return false;
- if (IntegerType *ITy = dyn_cast<IntegerType>(FTy->param_begin()->get())) {
- if (ITy->getBitWidth() != 32 && ITy->getBitWidth() != 64)
- return false;
- return true;
- }
-
- return false;
-}
-
bool Instruction::isSafeToSpeculativelyExecute() const {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (Constant *C = dyn_cast<Constant>(getOperand(i)))
@@ -430,7 +399,9 @@ bool Instruction::isSafeToSpeculativelyExecute() const {
case Load: {
if (cast<LoadInst>(this)->isVolatile())
return false;
- if (isa<AllocaInst>(getOperand(0)) || isMalloc(getOperand(0)))
+ // Note that it is not safe to speculate into a malloc'd region because
+ // malloc may return null.
+ if (isa<AllocaInst>(getOperand(0)))
return true;
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(getOperand(0)))
return !GV->hasExternalWeakLinkage();
diff --git a/lib/VMCore/Instructions.cpp b/lib/VMCore/Instructions.cpp
index 3e9950e..2619047 100644
--- a/lib/VMCore/Instructions.cpp
+++ b/lib/VMCore/Instructions.cpp
@@ -523,8 +523,7 @@ static Instruction *createMalloc(Instruction *InsertBefore,
MCall->setCallingConv(F->getCallingConv());
if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
}
- assert(MCall->getType() != Type::getVoidTy(BB->getContext()) &&
- "Malloc has void return type");
+ assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
return Result;
}
@@ -788,7 +787,7 @@ BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
void BranchInst::AssertOK() {
if (isConditional())
- assert(getCondition()->getType() == Type::getInt1Ty(getContext()) &&
+ assert(getCondition()->getType()->isInteger(1) &&
"May only branch on boolean predicates!");
}
@@ -893,7 +892,7 @@ static Value *getAISize(LLVMContext &Context, Value *Amt) {
else {
assert(!isa<BasicBlock>(Amt) &&
"Passed basic block into allocation size parameter! Use other ctor");
- assert(Amt->getType() == Type::getInt32Ty(Context) &&
+ assert(Amt->getType()->isInteger(32) &&
"Allocation array size is not a 32-bit integer!");
}
return Amt;
@@ -904,7 +903,7 @@ AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize,
: UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
getAISize(Ty->getContext(), ArraySize), InsertBefore) {
setAlignment(0);
- assert(Ty != Type::getVoidTy(Ty->getContext()) && "Cannot allocate void!");
+ assert(!Ty->isVoidTy() && "Cannot allocate void!");
setName(Name);
}
@@ -913,7 +912,7 @@ AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize,
: UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
setAlignment(0);
- assert(Ty != Type::getVoidTy(Ty->getContext()) && "Cannot allocate void!");
+ assert(!Ty->isVoidTy() && "Cannot allocate void!");
setName(Name);
}
@@ -922,7 +921,7 @@ AllocaInst::AllocaInst(const Type *Ty, const Twine &Name,
: UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
getAISize(Ty->getContext(), 0), InsertBefore) {
setAlignment(0);
- assert(Ty != Type::getVoidTy(Ty->getContext()) && "Cannot allocate void!");
+ assert(!Ty->isVoidTy() && "Cannot allocate void!");
setName(Name);
}
@@ -931,7 +930,7 @@ AllocaInst::AllocaInst(const Type *Ty, const Twine &Name,
: UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
getAISize(Ty->getContext(), 0), InsertAtEnd) {
setAlignment(0);
- assert(Ty != Type::getVoidTy(Ty->getContext()) && "Cannot allocate void!");
+ assert(!Ty->isVoidTy() && "Cannot allocate void!");
setName(Name);
}
@@ -940,7 +939,7 @@ AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
: UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
getAISize(Ty->getContext(), ArraySize), InsertBefore) {
setAlignment(Align);
- assert(Ty != Type::getVoidTy(Ty->getContext()) && "Cannot allocate void!");
+ assert(!Ty->isVoidTy() && "Cannot allocate void!");
setName(Name);
}
@@ -949,7 +948,7 @@ AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
: UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
setAlignment(Align);
- assert(Ty != Type::getVoidTy(Ty->getContext()) && "Cannot allocate void!");
+ assert(!Ty->isVoidTy() && "Cannot allocate void!");
setName(Name);
}
@@ -1392,8 +1391,7 @@ ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
- if (!isa<VectorType>(Val->getType()) ||
- Index->getType() != Type::getInt32Ty(Val->getContext()))
+ if (!isa<VectorType>(Val->getType()) || !Index->getType()->isInteger(32))
return false;
return true;
}
@@ -1440,7 +1438,7 @@ bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
return false;// Second operand of insertelement must be vector element type.
- if (Index->getType() != Type::getInt32Ty(Vec->getContext()))
+ if (!Index->getType()->isInteger(32))
return false; // Third operand of insertelement must be i32.
return true;
}
@@ -1492,7 +1490,7 @@ bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
const VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
if (!isa<Constant>(Mask) || MaskTy == 0 ||
- MaskTy->getElementType() != Type::getInt32Ty(V1->getContext()))
+ !MaskTy->getElementType()->isInteger(32))
return false;
return true;
}
@@ -2287,7 +2285,8 @@ CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
bool isSigned, const Twine &Name,
Instruction *InsertBefore) {
- assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
+ assert(C->getType()->isIntOrIntVector() && Ty->isIntOrIntVector() &&
+ "Invalid integer cast");
unsigned SrcBits = C->getType()->getScalarSizeInBits();
unsigned DstBits = Ty->getScalarSizeInBits();
Instruction::CastOps opcode =
diff --git a/lib/VMCore/IntrinsicInst.cpp b/lib/VMCore/IntrinsicInst.cpp
index 5e0f42e..cb9252e 100644
--- a/lib/VMCore/IntrinsicInst.cpp
+++ b/lib/VMCore/IntrinsicInst.cpp
@@ -8,11 +8,7 @@
//===----------------------------------------------------------------------===//
//
// This file implements methods that make it really easy to deal with intrinsic
-// functions with the isa/dyncast family of functions. In particular, this
-// allows you to do things like:
-//
-// if (DbgStopPointInst *SPI = dyn_cast<DbgStopPointInst>(Inst))
-// ... SPI->getFileName() ... SPI->getDirectory() ...
+// functions.
//
// All intrinsic function calls are instances of the call instruction, so these
// are all subclasses of the CallInst class. Note that none of these classes
@@ -55,25 +51,13 @@ Value *DbgInfoIntrinsic::StripCast(Value *C) {
}
//===----------------------------------------------------------------------===//
-/// DbgStopPointInst - This represents the llvm.dbg.stoppoint instruction.
+/// DbgValueInst - This represents the llvm.dbg.value instruction.
///
-Value *DbgStopPointInst::getFileName() const {
- // Once the operand indices are verified, update this assert
- assert(LLVMDebugVersion == (7 << 16) && "Verify operand indices");
- return getContext()->getOperand(3);
-}
-
-Value *DbgStopPointInst::getDirectory() const {
- // Once the operand indices are verified, update this assert
- assert(LLVMDebugVersion == (7 << 16) && "Verify operand indices");
- return getContext()->getOperand(4);
+const Value *DbgValueInst::getValue() const {
+ return cast<MDNode>(getOperand(1))->getOperand(0);
}
-//===----------------------------------------------------------------------===//
-/// DbgValueInst - This represents the llvm.dbg.value instruction.
-///
-
-Value *DbgValueInst::getValue() const {
+Value *DbgValueInst::getValue() {
return cast<MDNode>(getOperand(1))->getOperand(0);
}
diff --git a/lib/VMCore/Mangler.cpp b/lib/VMCore/Mangler.cpp
index 33eb044..7d9f330 100644
--- a/lib/VMCore/Mangler.cpp
+++ b/lib/VMCore/Mangler.cpp
@@ -16,7 +16,7 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
-#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/SmallString.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -24,57 +24,57 @@ static char HexDigit(int V) {
return V < 10 ? V+'0' : V+'A'-10;
}
-static std::string MangleLetter(unsigned char C) {
- char Result[] = { '_', HexDigit(C >> 4), HexDigit(C & 15), '_', 0 };
- return Result;
+static void MangleLetter(SmallVectorImpl<char> &OutName, unsigned char C) {
+ OutName.push_back('_');
+ OutName.push_back(HexDigit(C >> 4));
+ OutName.push_back(HexDigit(C & 15));
+ OutName.push_back('_');
}
/// makeNameProper - We don't want identifier names non-C-identifier characters
/// in them, so mangle them as appropriate.
///
-std::string Mangler::makeNameProper(const std::string &X,
- ManglerPrefixTy PrefixTy) {
+/// FIXME: This is deprecated, new code should use getNameWithPrefix and use
+/// MCSymbol printing to handle quotes or not etc.
+///
+void Mangler::makeNameProper(SmallVectorImpl<char> &OutName,
+ const Twine &TheName,
+ ManglerPrefixTy PrefixTy) {
+ SmallString<256> TmpData;
+ StringRef X = TheName.toStringRef(TmpData);
assert(!X.empty() && "Cannot mangle empty strings");
if (!UseQuotes) {
- std::string Result;
-
// If X does not start with (char)1, add the prefix.
- bool NeedPrefix = true;
- std::string::const_iterator I = X.begin();
+ StringRef::iterator I = X.begin();
if (*I == 1) {
- NeedPrefix = false;
- ++I; // Skip over the marker.
+ ++I; // Skip over the no-prefix marker.
+ } else {
+ if (PrefixTy == Mangler::Private)
+ OutName.append(PrivatePrefix, PrivatePrefix+strlen(PrivatePrefix));
+ else if (PrefixTy == Mangler::LinkerPrivate)
+ OutName.append(LinkerPrivatePrefix,
+ LinkerPrivatePrefix+strlen(LinkerPrivatePrefix));
+ OutName.append(Prefix, Prefix+strlen(Prefix));
}
// Mangle the first letter specially, don't allow numbers unless the target
// explicitly allows them.
if (!SymbolsCanStartWithDigit && *I >= '0' && *I <= '9')
- Result += MangleLetter(*I++);
+ MangleLetter(OutName, *I++);
- for (std::string::const_iterator E = X.end(); I != E; ++I) {
+ for (StringRef::iterator E = X.end(); I != E; ++I) {
if (!isCharAcceptable(*I))
- Result += MangleLetter(*I);
+ MangleLetter(OutName, *I);
else
- Result += *I;
- }
-
- if (NeedPrefix) {
- Result = Prefix + Result;
-
- if (PrefixTy == Mangler::Private)
- Result = PrivatePrefix + Result;
- else if (PrefixTy == Mangler::LinkerPrivate)
- Result = LinkerPrivatePrefix + Result;
+ OutName.push_back(*I);
}
-
- return Result;
+ return;
}
bool NeedPrefix = true;
bool NeedQuotes = false;
- std::string Result;
- std::string::const_iterator I = X.begin();
+ StringRef::iterator I = X.begin();
if (*I == 1) {
NeedPrefix = false;
++I; // Skip over the marker.
@@ -87,7 +87,7 @@ std::string Mangler::makeNameProper(const std::string &X,
// Do an initial scan of the string, checking to see if we need quotes or
// to escape a '"' or not.
if (!NeedQuotes)
- for (std::string::const_iterator E = X.end(); I != E; ++I)
+ for (StringRef::iterator E = X.end(); I != E; ++I)
if (!isCharAcceptable(*I)) {
NeedQuotes = true;
break;
@@ -95,43 +95,57 @@ std::string Mangler::makeNameProper(const std::string &X,
// In the common case, we don't need quotes. Handle this quickly.
if (!NeedQuotes) {
- if (!NeedPrefix)
- return X.substr(1); // Strip off the \001.
-
- Result = Prefix + X;
+ if (!NeedPrefix) {
+ OutName.append(X.begin()+1, X.end()); // Strip off the \001.
+ return;
+ }
if (PrefixTy == Mangler::Private)
- Result = PrivatePrefix + Result;
+ OutName.append(PrivatePrefix, PrivatePrefix+strlen(PrivatePrefix));
else if (PrefixTy == Mangler::LinkerPrivate)
- Result = LinkerPrivatePrefix + Result;
-
- return Result;
- }
-
- if (NeedPrefix)
- Result = X.substr(0, I-X.begin());
+ OutName.append(LinkerPrivatePrefix,
+ LinkerPrivatePrefix+strlen(LinkerPrivatePrefix));
- // Otherwise, construct the string the expensive way.
- for (std::string::const_iterator E = X.end(); I != E; ++I) {
- if (*I == '"')
- Result += "_QQ_";
- else if (*I == '\n')
- Result += "_NL_";
+ if (Prefix[0] == 0)
+ ; // Common noop, no prefix.
+ else if (Prefix[1] == 0)
+ OutName.push_back(Prefix[0]); // Common, one character prefix.
else
- Result += *I;
+ OutName.append(Prefix, Prefix+strlen(Prefix)); // Arbitrary prefix.
+ OutName.append(X.begin(), X.end());
+ return;
}
+ // Add leading quote.
+ OutName.push_back('"');
+
+ // Add prefixes unless disabled.
if (NeedPrefix) {
- Result = Prefix + Result;
-
if (PrefixTy == Mangler::Private)
- Result = PrivatePrefix + Result;
+ OutName.append(PrivatePrefix, PrivatePrefix+strlen(PrivatePrefix));
else if (PrefixTy == Mangler::LinkerPrivate)
- Result = LinkerPrivatePrefix + Result;
+ OutName.append(LinkerPrivatePrefix,
+ LinkerPrivatePrefix+strlen(LinkerPrivatePrefix));
+ OutName.append(Prefix, Prefix+strlen(Prefix));
+ }
+
+ // Add the piece that we already scanned through.
+ OutName.append(X.begin()+!NeedPrefix, I);
+
+ // Otherwise, construct the string the expensive way.
+ for (StringRef::iterator E = X.end(); I != E; ++I) {
+ if (*I == '"') {
+ const char *Quote = "_QQ_";
+ OutName.append(Quote, Quote+4);
+ } else if (*I == '\n') {
+ const char *Newline = "_NL_";
+ OutName.append(Newline, Newline+4);
+ } else
+ OutName.push_back(*I);
}
- Result = '"' + Result + '"';
- return Result;
+ // Add trailing quote.
+ OutName.push_back('"');
}
/// getMangledName - Returns the mangled name of V, an LLVM Value,
@@ -139,6 +153,9 @@ std::string Mangler::makeNameProper(const std::string &X,
/// specified suffix. If 'ForcePrivate' is specified, the label is specified
/// to have a private label prefix.
///
+/// FIXME: This is deprecated, new code should use getNameWithPrefix and use
+/// MCSymbol printing to handle quotes or not etc.
+///
std::string Mangler::getMangledName(const GlobalValue *GV, const char *Suffix,
bool ForcePrivate) {
assert((!isa<Function>(GV) || !cast<Function>(GV)->isIntrinsic()) &&
@@ -148,8 +165,11 @@ std::string Mangler::getMangledName(const GlobalValue *GV, const char *Suffix,
(GV->hasPrivateLinkage() || ForcePrivate) ? Mangler::Private :
GV->hasLinkerPrivateLinkage() ? Mangler::LinkerPrivate : Mangler::Default;
- if (GV->hasName())
- return makeNameProper(GV->getNameStr() + Suffix, PrefixTy);
+ SmallString<128> Result;
+ if (GV->hasName()) {
+ makeNameProper(Result, GV->getNameStr() + Suffix, PrefixTy);
+ return Result.str().str();
+ }
// Get the ID for the global, assigning a new one if we haven't got one
// already.
@@ -157,7 +177,38 @@ std::string Mangler::getMangledName(const GlobalValue *GV, const char *Suffix,
if (ID == 0) ID = NextAnonGlobalID++;
// Must mangle the global into a unique ID.
- return makeNameProper("__unnamed_" + utostr(ID) + Suffix, PrefixTy);
+ makeNameProper(Result, "__unnamed_" + utostr(ID) + Suffix, PrefixTy);
+ return Result.str().str();
+}
+
+/// getNameWithPrefix - Fill OutName with the name of the appropriate prefix
+/// and the specified name as the global variable name. GVName must not be
+/// empty.
+void Mangler::getNameWithPrefix(SmallVectorImpl<char> &OutName,
+ const Twine &GVName, ManglerPrefixTy PrefixTy) {
+ SmallString<256> TmpData;
+ StringRef Name = GVName.toStringRef(TmpData);
+ assert(!Name.empty() && "getNameWithPrefix requires non-empty name");
+
+ // If the global name is not led with \1, add the appropriate prefixes.
+ if (Name[0] != '\1') {
+ if (PrefixTy == Mangler::Private)
+ OutName.append(PrivatePrefix, PrivatePrefix+strlen(PrivatePrefix));
+ else if (PrefixTy == Mangler::LinkerPrivate)
+ OutName.append(LinkerPrivatePrefix,
+ LinkerPrivatePrefix+strlen(LinkerPrivatePrefix));
+
+ if (Prefix[0] == 0)
+ ; // Common noop, no prefix.
+ else if (Prefix[1] == 0)
+ OutName.push_back(Prefix[0]); // Common, one character prefix.
+ else
+ OutName.append(Prefix, Prefix+strlen(Prefix)); // Arbitrary prefix.
+ } else {
+ Name = Name.substr(1);
+ }
+
+ OutName.append(Name.begin(), Name.end());
}
@@ -167,33 +218,28 @@ std::string Mangler::getMangledName(const GlobalValue *GV, const char *Suffix,
void Mangler::getNameWithPrefix(SmallVectorImpl<char> &OutName,
const GlobalValue *GV,
bool isImplicitlyPrivate) {
-
- // If the global is anonymous or not led with \1, then add the appropriate
- // prefix.
- if (!GV->hasName() || GV->getName()[0] != '\1') {
+ // If this global has a name, handle it simply.
+ if (GV->hasName()) {
+ ManglerPrefixTy PrefixTy = Mangler::Default;
if (GV->hasPrivateLinkage() || isImplicitlyPrivate)
- OutName.append(PrivatePrefix, PrivatePrefix+strlen(PrivatePrefix));
+ PrefixTy = Mangler::Private;
else if (GV->hasLinkerPrivateLinkage())
- OutName.append(LinkerPrivatePrefix,
- LinkerPrivatePrefix+strlen(LinkerPrivatePrefix));;
- OutName.append(Prefix, Prefix+strlen(Prefix));
- }
-
- // If the global has a name, just append it now.
- if (GV->hasName()) {
- StringRef Name = GV->getName();
+ PrefixTy = Mangler::LinkerPrivate;
- // Strip off the prefix marker if present.
- if (Name[0] != '\1')
- OutName.append(Name.begin(), Name.end());
- else
- OutName.append(Name.begin()+1, Name.end());
- return;
+ return getNameWithPrefix(OutName, GV->getName(), PrefixTy);
}
// If the global variable doesn't have a name, return a unique name for the
// global based on a numbering.
+ // Anonymous names always get prefixes.
+ if (GV->hasPrivateLinkage() || isImplicitlyPrivate)
+ OutName.append(PrivatePrefix, PrivatePrefix+strlen(PrivatePrefix));
+ else if (GV->hasLinkerPrivateLinkage())
+ OutName.append(LinkerPrivatePrefix,
+ LinkerPrivatePrefix+strlen(LinkerPrivatePrefix));;
+ OutName.append(Prefix, Prefix+strlen(Prefix));
+
// Get the ID for the global, assigning a new one if we haven't got one
// already.
unsigned &ID = AnonGlobalIDs[GV];
diff --git a/lib/VMCore/Metadata.cpp b/lib/VMCore/Metadata.cpp
index 8e9aab9..7988b44 100644
--- a/lib/VMCore/Metadata.cpp
+++ b/lib/VMCore/Metadata.cpp
@@ -18,6 +18,7 @@
#include "llvm/Instruction.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/SmallString.h"
#include "SymbolTableListTraitsImpl.h"
#include "llvm/Support/ValueHandle.h"
using namespace llvm;
@@ -31,7 +32,7 @@ MDString::MDString(LLVMContext &C, StringRef S)
MDString *MDString::get(LLVMContext &Context, StringRef Str) {
LLVMContextImpl *pImpl = Context.pImpl;
- StringMapEntry<MDString *> &Entry =
+ StringMapEntry<MDString *> &Entry =
pImpl->MDStringCache.GetOrCreateValue(Str);
MDString *&S = Entry.getValue();
if (!S) S = new MDString(Context, Entry.getKey());
@@ -40,7 +41,7 @@ MDString *MDString::get(LLVMContext &Context, StringRef Str) {
MDString *MDString::get(LLVMContext &Context, const char *Str) {
LLVMContextImpl *pImpl = Context.pImpl;
- StringMapEntry<MDString *> &Entry =
+ StringMapEntry<MDString *> &Entry =
pImpl->MDStringCache.GetOrCreateValue(Str ? StringRef(Str) : StringRef());
MDString *&S = Entry.getValue();
if (!S) S = new MDString(Context, Entry.getKey());
@@ -58,11 +59,11 @@ class MDNodeOperand : public CallbackVH {
public:
MDNodeOperand(Value *V, MDNode *P) : CallbackVH(V), Parent(P) {}
~MDNodeOperand() {}
-
+
void set(Value *V) {
setValPtr(V);
}
-
+
virtual void deleted();
virtual void allUsesReplacedWith(Value *NV);
};
@@ -94,7 +95,7 @@ MDNode::MDNode(LLVMContext &C, Value *const *Vals, unsigned NumVals,
bool isFunctionLocal)
: MetadataBase(Type::getMetadataTy(C), Value::MDNodeVal) {
NumOperands = NumVals;
-
+
if (isFunctionLocal)
setValueSubclassData(getSubclassDataFromValue() | FunctionLocalBit);
@@ -107,19 +108,82 @@ MDNode::MDNode(LLVMContext &C, Value *const *Vals, unsigned NumVals,
/// ~MDNode - Destroy MDNode.
MDNode::~MDNode() {
- assert((getSubclassDataFromValue() & DestroyFlag) != 0 &&
+ assert((getSubclassDataFromValue() & DestroyFlag) != 0 &&
"Not being destroyed through destroy()?");
if (!isNotUniqued()) {
LLVMContextImpl *pImpl = getType()->getContext().pImpl;
pImpl->MDNodeSet.RemoveNode(this);
}
-
+
// Destroy the operands.
for (MDNodeOperand *Op = getOperandPtr(this, 0), *E = Op+NumOperands;
Op != E; ++Op)
Op->~MDNodeOperand();
}
+#ifndef NDEBUG
+static Function *assertLocalFunction(const MDNode *N,
+ SmallPtrSet<const MDNode *, 32> &Visited) {
+ Function *F = NULL;
+ // Only visit each MDNode once.
+ if (!Visited.insert(N)) return F;
+
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ Value *V = N->getOperand(i);
+ Function *NewF = NULL;
+ if (!V) continue;
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ NewF = I->getParent()->getParent();
+ else if (BasicBlock *BB = dyn_cast<BasicBlock>(V))
+ NewF = BB->getParent();
+ else if (Argument *A = dyn_cast<Argument>(V))
+ NewF = A->getParent();
+ else if (MDNode *MD = dyn_cast<MDNode>(V))
+ if (MD->isFunctionLocal())
+ NewF = assertLocalFunction(MD, Visited);
+ if (F && NewF) assert(F == NewF && "inconsistent function-local metadata");
+ if (!F) F = NewF;
+ }
+ return F;
+}
+#endif
+
+static Function *getFunctionHelper(const MDNode *N,
+ SmallPtrSet<const MDNode *, 32> &Visited) {
+ assert(N->isFunctionLocal() && "Should only be called on function-local MD");
+#ifndef NDEBUG
+ return assertLocalFunction(N, Visited);
+#endif
+ Function *F = NULL;
+ // Only visit each MDNode once.
+ if (!Visited.insert(N)) return F;
+
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ Value *V = N->getOperand(i);
+ if (!V) continue;
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ F = I->getParent()->getParent();
+ else if (BasicBlock *BB = dyn_cast<BasicBlock>(V))
+ F = BB->getParent();
+ else if (Argument *A = dyn_cast<Argument>(V))
+ F = A->getParent();
+ else if (MDNode *MD = dyn_cast<MDNode>(V))
+ if (MD->isFunctionLocal())
+ F = getFunctionHelper(MD, Visited);
+ if (F) break;
+ }
+ return F;
+}
+
+// getFunction - If this metadata is function-local and recursively has a
+// function-local operand, return the first such operand's parent function.
+// Otherwise, return null.
+Function *MDNode::getFunction() const {
+ if (!isFunctionLocal()) return NULL;
+ SmallPtrSet<const MDNode *, 32> Visited;
+ return getFunctionHelper(this, Visited);
+}
+
// destroy - Delete this node. Only when there are no uses.
void MDNode::destroy() {
setValueSubclassData(getSubclassDataFromValue() | DestroyFlag);
@@ -128,9 +192,8 @@ void MDNode::destroy() {
free(this);
}
-
-MDNode *MDNode::get(LLVMContext &Context, Value*const* Vals, unsigned NumVals,
- bool isFunctionLocal) {
+MDNode *MDNode::getMDNode(LLVMContext &Context, Value *const *Vals,
+ unsigned NumVals, FunctionLocalness FL) {
LLVMContextImpl *pImpl = Context.pImpl;
FoldingSetNodeID ID;
for (unsigned i = 0; i != NumVals; ++i)
@@ -139,16 +202,46 @@ MDNode *MDNode::get(LLVMContext &Context, Value*const* Vals, unsigned NumVals,
void *InsertPoint;
MDNode *N = pImpl->MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint);
if (!N) {
+ bool isFunctionLocal = false;
+ switch (FL) {
+ case FL_Unknown:
+ for (unsigned i = 0; i != NumVals; ++i) {
+ Value *V = Vals[i];
+ if (!V) continue;
+ if (isa<Instruction>(V) || isa<Argument>(V) || isa<BasicBlock>(V) ||
+ (isa<MDNode>(V) && cast<MDNode>(V)->isFunctionLocal())) {
+ isFunctionLocal = true;
+ break;
+ }
+ }
+ break;
+ case FL_No:
+ isFunctionLocal = false;
+ break;
+ case FL_Yes:
+ isFunctionLocal = true;
+ break;
+ }
+
// Coallocate space for the node and Operands together, then placement new.
void *Ptr = malloc(sizeof(MDNode)+NumVals*sizeof(MDNodeOperand));
N = new (Ptr) MDNode(Context, Vals, NumVals, isFunctionLocal);
-
+
// InsertPoint will have been set by the FindNodeOrInsertPos call.
pImpl->MDNodeSet.InsertNode(N, InsertPoint);
}
return N;
}
+MDNode *MDNode::get(LLVMContext &Context, Value*const* Vals, unsigned NumVals) {
+ return getMDNode(Context, Vals, NumVals, FL_Unknown);
+}
+
+MDNode *MDNode::getWhenValsUnresolved(LLVMContext &Context, Value*const* Vals,
+ unsigned NumVals, bool isFunctionLocal) {
+ return getMDNode(Context, Vals, NumVals, isFunctionLocal ? FL_Yes : FL_No);
+}
+
/// getOperand - Return specified operand.
Value *MDNode::getOperand(unsigned i) const {
return *getOperandPtr(const_cast<MDNode*>(this), i);
@@ -163,7 +256,7 @@ void MDNode::Profile(FoldingSetNodeID &ID) const {
// Replace value from this node's operand list.
void MDNode::replaceOperand(MDNodeOperand *Op, Value *To) {
Value *From = *Op;
-
+
if (From == To)
return;
@@ -173,7 +266,7 @@ void MDNode::replaceOperand(MDNodeOperand *Op, Value *To) {
// If this node is already not being uniqued (because one of the operands
// already went to null), then there is nothing else to do here.
if (isNotUniqued()) return;
-
+
LLVMContextImpl *pImpl = getType()->getContext().pImpl;
// Remove "this" from the context map. FoldingSet doesn't have to reprofile
@@ -187,7 +280,7 @@ void MDNode::replaceOperand(MDNodeOperand *Op, Value *To) {
setIsNotUniqued();
return;
}
-
+
// Now that the node is out of the folding set, get ready to reinsert it.
// First, check to see if another node with the same operands already exists
// in the set. If it doesn't exist, this returns the position to insert it.
@@ -210,21 +303,40 @@ void MDNode::replaceOperand(MDNodeOperand *Op, Value *To) {
//===----------------------------------------------------------------------===//
// NamedMDNode implementation.
//
-static SmallVector<TrackingVH<MetadataBase>, 4> &getNMDOps(void *Operands) {
- return *(SmallVector<TrackingVH<MetadataBase>, 4>*)Operands;
+
+namespace llvm {
+// SymbolTableListTraits specialization for MDSymbolTable.
+void ilist_traits<NamedMDNode>
+::addNodeToList(NamedMDNode *N) {
+ assert(N->getParent() == 0 && "Value already in a container!!");
+ Module *Owner = getListOwner();
+ N->setParent(Owner);
+ MDSymbolTable &ST = Owner->getMDSymbolTable();
+ ST.insert(N->getName(), N);
+}
+
+void ilist_traits<NamedMDNode>::removeNodeFromList(NamedMDNode *N) {
+ N->setParent(0);
+ Module *Owner = getListOwner();
+ MDSymbolTable &ST = Owner->getMDSymbolTable();
+ ST.remove(N->getName());
+}
+}
+
+static SmallVector<WeakVH, 4> &getNMDOps(void *Operands) {
+ return *(SmallVector<WeakVH, 4>*)Operands;
}
NamedMDNode::NamedMDNode(LLVMContext &C, const Twine &N,
- MetadataBase *const *MDs,
+ MDNode *const *MDs,
unsigned NumMDs, Module *ParentModule)
- : MetadataBase(Type::getMetadataTy(C), Value::NamedMDNodeVal), Parent(0) {
+ : Value(Type::getMetadataTy(C), Value::NamedMDNodeVal), Parent(0) {
setName(N);
-
- Operands = new SmallVector<TrackingVH<MetadataBase>, 4>();
-
- SmallVector<TrackingVH<MetadataBase>, 4> &Node = getNMDOps(Operands);
+ Operands = new SmallVector<WeakVH, 4>();
+
+ SmallVector<WeakVH, 4> &Node = getNMDOps(Operands);
for (unsigned i = 0; i != NumMDs; ++i)
- Node.push_back(TrackingVH<MetadataBase>(MDs[i]));
+ Node.push_back(WeakVH(MDs[i]));
if (ParentModule)
ParentModule->getNamedMDList().push_back(this);
@@ -232,9 +344,9 @@ NamedMDNode::NamedMDNode(LLVMContext &C, const Twine &N,
NamedMDNode *NamedMDNode::Create(const NamedMDNode *NMD, Module *M) {
assert(NMD && "Invalid source NamedMDNode!");
- SmallVector<MetadataBase *, 4> Elems;
+ SmallVector<MDNode *, 4> Elems;
Elems.reserve(NMD->getNumOperands());
-
+
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
Elems.push_back(NMD->getOperand(i));
return new NamedMDNode(NMD->getContext(), NMD->getName().data(),
@@ -252,14 +364,14 @@ unsigned NamedMDNode::getNumOperands() const {
}
/// getOperand - Return specified operand.
-MetadataBase *NamedMDNode::getOperand(unsigned i) const {
+MDNode *NamedMDNode::getOperand(unsigned i) const {
assert(i < getNumOperands() && "Invalid Operand number!");
- return getNMDOps(Operands)[i];
+ return dyn_cast_or_null<MDNode>(getNMDOps(Operands)[i]);
}
/// addOperand - Add metadata Operand.
-void NamedMDNode::addOperand(MetadataBase *M) {
- getNMDOps(Operands).push_back(TrackingVH<MetadataBase>(M));
+void NamedMDNode::addOperand(MDNode *M) {
+ getNMDOps(Operands).push_back(WeakVH(M));
}
/// eraseFromParent - Drop all references and remove the node from parent
@@ -273,6 +385,26 @@ void NamedMDNode::dropAllReferences() {
getNMDOps(Operands).clear();
}
+/// setName - Set the name of this named metadata.
+void NamedMDNode::setName(const Twine &NewName) {
+ assert (!NewName.isTriviallyEmpty() && "Invalid named metadata name!");
+
+ SmallString<256> NameData;
+ StringRef NameRef = NewName.toStringRef(NameData);
+
+ // Name isn't changing?
+ if (getName() == NameRef)
+ return;
+
+ Name = NameRef.str();
+ if (Parent)
+ Parent->getMDSymbolTable().insert(NameRef, this);
+}
+
+/// getName - Return a constant reference to this named metadata's name.
+StringRef NamedMDNode::getName() const {
+ return StringRef(Name);
+}
//===----------------------------------------------------------------------===//
// LLVMContext MDKind naming implementation.
@@ -299,9 +431,9 @@ static bool isValidName(StringRef MDName) {
/// getMDKindID - Return a unique non-zero ID for the specified metadata kind.
unsigned LLVMContext::getMDKindID(StringRef Name) const {
assert(isValidName(Name) && "Invalid MDNode name");
-
+
unsigned &Entry = pImpl->CustomMDKindNames[Name];
-
+
// If this is new, assign it its ID.
if (Entry == 0) Entry = pImpl->CustomMDKindNames.size();
return Entry;
@@ -313,7 +445,7 @@ void LLVMContext::getMDKindNames(SmallVectorImpl<StringRef> &Names) const {
Names.resize(pImpl->CustomMDKindNames.size()+1);
Names[0] = "";
for (StringMap<unsigned>::const_iterator I = pImpl->CustomMDKindNames.begin(),
- E = pImpl->CustomMDKindNames.end(); I != E; ++I)
+ E = pImpl->CustomMDKindNames.end(); I != E; ++I)
// MD Handlers are numbered from 1.
Names[I->second] = I->first();
}
@@ -336,7 +468,7 @@ MDNode *Instruction::getMetadataImpl(const char *Kind) const {
/// Node is null.
void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
if (Node == 0 && !hasMetadata()) return;
-
+
// Handle the case when we're adding/updating metadata on an instruction.
if (Node) {
LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this];
@@ -351,24 +483,24 @@ void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
return;
}
}
-
+
// No replacement, just add it to the list.
Info.push_back(std::make_pair(KindID, Node));
return;
}
-
+
// Otherwise, we're removing metadata from an instruction.
assert(hasMetadata() && getContext().pImpl->MetadataStore.count(this) &&
"HasMetadata bit out of date!");
LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this];
-
+
// Common case is removing the only entry.
if (Info.size() == 1 && Info[0].first == KindID) {
getContext().pImpl->MetadataStore.erase(this);
setHasMetadata(false);
return;
}
-
+
// Handle replacement of an existing value.
for (unsigned i = 0, e = Info.size(); i != e; ++i)
if (Info[i].first == KindID) {
@@ -383,7 +515,7 @@ void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
MDNode *Instruction::getMetadataImpl(unsigned KindID) const {
LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this];
assert(hasMetadata() && !Info.empty() && "Shouldn't have called this");
-
+
for (LLVMContextImpl::MDMapTy::iterator I = Info.begin(), E = Info.end();
I != E; ++I)
if (I->first == KindID)
@@ -398,10 +530,10 @@ void Instruction::getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned,
const LLVMContextImpl::MDMapTy &Info =
getContext().pImpl->MetadataStore.find(this)->second;
assert(!Info.empty() && "Shouldn't have called this");
-
+
Result.clear();
Result.append(Info.begin(), Info.end());
-
+
// Sort the resulting array so it is stable.
if (Result.size() > 1)
array_pod_sort(Result.begin(), Result.end());
diff --git a/lib/VMCore/Module.cpp b/lib/VMCore/Module.cpp
index a7f503b..503e708 100644
--- a/lib/VMCore/Module.cpp
+++ b/lib/VMCore/Module.cpp
@@ -59,6 +59,7 @@ Module::Module(StringRef MID, LLVMContext& C)
: Context(C), ModuleID(MID), DataLayout("") {
ValSymTab = new ValueSymbolTable();
TypeSymTab = new TypeSymbolTable();
+ NamedMDSymTab = new MDSymbolTable();
}
Module::~Module() {
@@ -70,15 +71,17 @@ Module::~Module() {
NamedMDList.clear();
delete ValSymTab;
delete TypeSymTab;
+ delete NamedMDSymTab;
}
/// Target endian information...
Module::Endianness Module::getEndianness() const {
- std::string temp = DataLayout;
+ StringRef temp = DataLayout;
Module::Endianness ret = AnyEndianness;
while (!temp.empty()) {
- std::string token = getToken(temp, "-");
+ StringRef token = DataLayout;
+ tie(token, temp) = getToken(DataLayout, "-");
if (token[0] == 'e') {
ret = LittleEndian;
@@ -92,15 +95,17 @@ Module::Endianness Module::getEndianness() const {
/// Target Pointer Size information...
Module::PointerSize Module::getPointerSize() const {
- std::string temp = DataLayout;
+ StringRef temp = DataLayout;
Module::PointerSize ret = AnyPointerSize;
while (!temp.empty()) {
- std::string token = getToken(temp, "-");
- char signal = getToken(token, ":")[0];
+ StringRef token, signalToken;
+ tie(token, temp) = getToken(temp, "-");
+ tie(signalToken, token) = getToken(token, ":");
- if (signal == 'p') {
- int size = atoi(getToken(token, ":").c_str());
+ if (signalToken[0] == 'p') {
+ int size = 0;
+ getToken(token, ":").first.getAsInteger(10, size);
if (size == 32)
ret = Pointer32;
else if (size == 64)
@@ -307,15 +312,14 @@ GlobalAlias *Module::getNamedAlias(StringRef Name) const {
/// specified name. This method returns null if a NamedMDNode with the
//// specified name is not found.
NamedMDNode *Module::getNamedMetadata(StringRef Name) const {
- return dyn_cast_or_null<NamedMDNode>(getValueSymbolTable().lookup(Name));
+ return NamedMDSymTab->lookup(Name);
}
/// getOrInsertNamedMetadata - Return the first named MDNode in the module
/// with the specified name. This method returns a new NamedMDNode if a
/// NamedMDNode with the specified name is not found.
NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) {
- NamedMDNode *NMD =
- dyn_cast_or_null<NamedMDNode>(getValueSymbolTable().lookup(Name));
+ NamedMDNode *NMD = NamedMDSymTab->lookup(Name);
if (!NMD)
NMD = NamedMDNode::Create(getContext(), Name, NULL, 0, this);
return NMD;
diff --git a/lib/VMCore/Pass.cpp b/lib/VMCore/Pass.cpp
index 6bea7a8..39da8fb 100644
--- a/lib/VMCore/Pass.cpp
+++ b/lib/VMCore/Pass.cpp
@@ -19,6 +19,7 @@
#include "llvm/ModuleProvider.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringMap.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Atomic.h"
@@ -51,7 +52,7 @@ bool Pass::mustPreserveAnalysisID(const PassInfo *AnalysisID) const {
// dumpPassStructure - Implement the -debug-passes=Structure option
void Pass::dumpPassStructure(unsigned Offset) {
- errs().indent(Offset*2) << getPassName() << "\n";
+ dbgs().indent(Offset*2) << getPassName() << "\n";
}
/// getPassName - Return a nice clean name for a pass. This usually
@@ -95,7 +96,7 @@ void Pass::print(raw_ostream &O,const Module*) const {
// dump - call print(cerr);
void Pass::dump() const {
- print(errs(), 0);
+ print(dbgs(), 0);
}
//===----------------------------------------------------------------------===//
diff --git a/lib/VMCore/PassManager.cpp b/lib/VMCore/PassManager.cpp
index d688385..b37b2ae 100644
--- a/lib/VMCore/PassManager.cpp
+++ b/lib/VMCore/PassManager.cpp
@@ -15,6 +15,7 @@
#include "llvm/PassManagers.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/Timer.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
@@ -132,7 +133,7 @@ public:
// Print passes managed by this manager
void dumpPassStructure(unsigned Offset) {
- llvm::errs() << std::string(Offset*2, ' ') << "BasicBlockPass Manager\n";
+ llvm::dbgs() << std::string(Offset*2, ' ') << "BasicBlockPass Manager\n";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
BasicBlockPass *BP = getContainedPass(Index);
BP->dumpPassStructure(Offset + 1);
@@ -272,7 +273,7 @@ public:
// Print passes managed by this manager
void dumpPassStructure(unsigned Offset) {
- llvm::errs() << std::string(Offset*2, ' ') << "ModulePass Manager\n";
+ llvm::dbgs() << std::string(Offset*2, ' ') << "ModulePass Manager\n";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
ModulePass *MP = getContainedPass(Index);
MP->dumpPassStructure(Offset + 1);
@@ -595,11 +596,11 @@ void PMTopLevelManager::dumpArguments() const {
if (PassDebugging < Arguments)
return;
- errs() << "Pass Arguments: ";
+ dbgs() << "Pass Arguments: ";
for (SmallVector<PMDataManager *, 8>::const_iterator I = PassManagers.begin(),
E = PassManagers.end(); I != E; ++I)
(*I)->dumpPassArguments();
- errs() << "\n";
+ dbgs() << "\n";
}
void PMTopLevelManager::initializeAllAnalysisInfo() {
@@ -718,8 +719,8 @@ void PMDataManager::removeNotPreservedAnalysis(Pass *P) {
// Remove this analysis
if (PassDebugging >= Details) {
Pass *S = Info->second;
- errs() << " -- '" << P->getPassName() << "' is not preserving '";
- errs() << S->getPassName() << "'\n";
+ dbgs() << " -- '" << P->getPassName() << "' is not preserving '";
+ dbgs() << S->getPassName() << "'\n";
}
AvailableAnalysis.erase(Info);
}
@@ -742,8 +743,8 @@ void PMDataManager::removeNotPreservedAnalysis(Pass *P) {
// Remove this analysis
if (PassDebugging >= Details) {
Pass *S = Info->second;
- errs() << " -- '" << P->getPassName() << "' is not preserving '";
- errs() << S->getPassName() << "'\n";
+ dbgs() << " -- '" << P->getPassName() << "' is not preserving '";
+ dbgs() << S->getPassName() << "'\n";
}
InheritedAnalysis[Index]->erase(Info);
}
@@ -764,9 +765,9 @@ void PMDataManager::removeDeadPasses(Pass *P, StringRef Msg,
TPM->collectLastUses(DeadPasses, P);
if (PassDebugging >= Details && !DeadPasses.empty()) {
- errs() << " -*- '" << P->getPassName();
- errs() << "' is the last user of following pass instances.";
- errs() << " Free these instances\n";
+ dbgs() << " -*- '" << P->getPassName();
+ dbgs() << "' is the last user of following pass instances.";
+ dbgs() << " Free these instances\n";
}
for (SmallVector<Pass *, 12>::iterator I = DeadPasses.begin(),
@@ -959,7 +960,7 @@ void PMDataManager::dumpLastUses(Pass *P, unsigned Offset) const{
for (SmallVector<Pass *, 12>::iterator I = LUses.begin(),
E = LUses.end(); I != E; ++I) {
- llvm::errs() << "--" << std::string(Offset*2, ' ');
+ llvm::dbgs() << "--" << std::string(Offset*2, ' ');
(*I)->dumpPassStructure(0);
}
}
@@ -972,7 +973,7 @@ void PMDataManager::dumpPassArguments() const {
else
if (const PassInfo *PI = (*I)->getPassInfo())
if (!PI->isAnalysisGroup())
- errs() << " -" << PI->getPassArgument();
+ dbgs() << " -" << PI->getPassArgument();
}
}
@@ -981,35 +982,35 @@ void PMDataManager::dumpPassInfo(Pass *P, enum PassDebuggingString S1,
StringRef Msg) {
if (PassDebugging < Executions)
return;
- errs() << (void*)this << std::string(getDepth()*2+1, ' ');
+ dbgs() << (void*)this << std::string(getDepth()*2+1, ' ');
switch (S1) {
case EXECUTION_MSG:
- errs() << "Executing Pass '" << P->getPassName();
+ dbgs() << "Executing Pass '" << P->getPassName();
break;
case MODIFICATION_MSG:
- errs() << "Made Modification '" << P->getPassName();
+ dbgs() << "Made Modification '" << P->getPassName();
break;
case FREEING_MSG:
- errs() << " Freeing Pass '" << P->getPassName();
+ dbgs() << " Freeing Pass '" << P->getPassName();
break;
default:
break;
}
switch (S2) {
case ON_BASICBLOCK_MSG:
- errs() << "' on BasicBlock '" << Msg << "'...\n";
+ dbgs() << "' on BasicBlock '" << Msg << "'...\n";
break;
case ON_FUNCTION_MSG:
- errs() << "' on Function '" << Msg << "'...\n";
+ dbgs() << "' on Function '" << Msg << "'...\n";
break;
case ON_MODULE_MSG:
- errs() << "' on Module '" << Msg << "'...\n";
+ dbgs() << "' on Module '" << Msg << "'...\n";
break;
case ON_LOOP_MSG:
- errs() << "' on Loop '" << Msg << "'...\n";
+ dbgs() << "' on Loop '" << Msg << "'...\n";
break;
case ON_CG_MSG:
- errs() << "' on Call Graph Nodes '" << Msg << "'...\n";
+ dbgs() << "' on Call Graph Nodes '" << Msg << "'...\n";
break;
default:
break;
@@ -1039,12 +1040,12 @@ void PMDataManager::dumpAnalysisUsage(StringRef Msg, const Pass *P,
assert(PassDebugging >= Details);
if (Set.empty())
return;
- errs() << (void*)P << std::string(getDepth()*2+3, ' ') << Msg << " Analyses:";
+ dbgs() << (void*)P << std::string(getDepth()*2+3, ' ') << Msg << " Analyses:";
for (unsigned i = 0; i != Set.size(); ++i) {
- if (i) errs() << ',';
- errs() << ' ' << Set[i]->getPassName();
+ if (i) dbgs() << ',';
+ dbgs() << ' ' << Set[i]->getPassName();
}
- errs() << '\n';
+ dbgs() << '\n';
}
/// Add RequiredPass into list of lower level passes required by pass P.
@@ -1067,8 +1068,8 @@ void PMDataManager::addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) {
// checks whether any lower level manager will be able to provide this
// analysis info on demand or not.
#ifndef NDEBUG
- errs() << "Unable to schedule '" << RequiredPass->getPassName();
- errs() << "' required by '" << P->getPassName() << "'\n";
+ dbgs() << "Unable to schedule '" << RequiredPass->getPassName();
+ dbgs() << "' required by '" << P->getPassName() << "'\n";
#endif
llvm_unreachable("Unable to schedule pass");
}
@@ -1300,7 +1301,7 @@ bool FunctionPassManagerImpl::run(Function &F) {
char FPPassManager::ID = 0;
/// Print passes managed by this manager
void FPPassManager::dumpPassStructure(unsigned Offset) {
- llvm::errs() << std::string(Offset*2, ' ') << "FunctionPass Manager\n";
+ llvm::dbgs() << std::string(Offset*2, ' ') << "FunctionPass Manager\n";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
FunctionPass *FP = getContainedPass(Index);
FP->dumpPassStructure(Offset + 1);
@@ -1698,19 +1699,19 @@ LLVMPassManagerRef LLVMCreateFunctionPassManager(LLVMModuleProviderRef P) {
return wrap(new FunctionPassManager(unwrap(P)));
}
-int LLVMRunPassManager(LLVMPassManagerRef PM, LLVMModuleRef M) {
+LLVMBool LLVMRunPassManager(LLVMPassManagerRef PM, LLVMModuleRef M) {
return unwrap<PassManager>(PM)->run(*unwrap(M));
}
-int LLVMInitializeFunctionPassManager(LLVMPassManagerRef FPM) {
+LLVMBool LLVMInitializeFunctionPassManager(LLVMPassManagerRef FPM) {
return unwrap<FunctionPassManager>(FPM)->doInitialization();
}
-int LLVMRunFunctionPassManager(LLVMPassManagerRef FPM, LLVMValueRef F) {
+LLVMBool LLVMRunFunctionPassManager(LLVMPassManagerRef FPM, LLVMValueRef F) {
return unwrap<FunctionPassManager>(FPM)->run(*unwrap<Function>(F));
}
-int LLVMFinalizeFunctionPassManager(LLVMPassManagerRef FPM) {
+LLVMBool LLVMFinalizeFunctionPassManager(LLVMPassManagerRef FPM) {
return unwrap<FunctionPassManager>(FPM)->doFinalization();
}
diff --git a/lib/VMCore/PrintModulePass.cpp b/lib/VMCore/PrintModulePass.cpp
index 3d4f19d..f0f6e7a 100644
--- a/lib/VMCore/PrintModulePass.cpp
+++ b/lib/VMCore/PrintModulePass.cpp
@@ -16,6 +16,7 @@
#include "llvm/Function.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -26,7 +27,7 @@ namespace {
bool DeleteStream; // Delete the ostream in our dtor?
public:
static char ID;
- PrintModulePass() : ModulePass(&ID), Out(&errs()),
+ PrintModulePass() : ModulePass(&ID), Out(&dbgs()),
DeleteStream(false) {}
PrintModulePass(raw_ostream *o, bool DS)
: ModulePass(&ID), Out(o), DeleteStream(DS) {}
@@ -51,7 +52,7 @@ namespace {
bool DeleteStream; // Delete the ostream in our dtor?
public:
static char ID;
- PrintFunctionPass() : FunctionPass(&ID), Banner(""), Out(&errs()),
+ PrintFunctionPass() : FunctionPass(&ID), Banner(""), Out(&dbgs()),
DeleteStream(false) {}
PrintFunctionPass(const std::string &B, raw_ostream *o, bool DS)
: FunctionPass(&ID), Banner(B), Out(o), DeleteStream(DS) {}
diff --git a/lib/VMCore/Type.cpp b/lib/VMCore/Type.cpp
index fd46aa1..044de4f 100644
--- a/lib/VMCore/Type.cpp
+++ b/lib/VMCore/Type.cpp
@@ -124,6 +124,11 @@ const Type *Type::getScalarType() const {
return this;
}
+/// isInteger - Return true if this is an IntegerType of the specified width.
+bool Type::isInteger(unsigned Bitwidth) const {
+ return isInteger() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
+}
+
/// isIntOrIntVector - Return true if this is an integer type or a vector of
/// integer types.
///
@@ -280,7 +285,7 @@ std::string Type::getDescription() const {
bool StructType::indexValid(const Value *V) const {
// Structure indexes require 32-bit integer constants.
- if (V->getType() == Type::getInt32Ty(V->getContext()))
+ if (V->getType()->isInteger(32))
if (const ConstantInt *CU = dyn_cast<ConstantInt>(V))
return indexValid(CU->getZExtValue());
return false;
@@ -487,7 +492,7 @@ PointerType::PointerType(const Type *E, unsigned AddrSpace)
OpaqueType::OpaqueType(LLVMContext &C) : DerivedType(C, OpaqueTyID) {
setAbstract(true);
#ifdef DEBUG_MERGE_TYPES
- DEBUG(errs() << "Derived new type: " << *this << "\n");
+ DEBUG(dbgs() << "Derived new type: " << *this << "\n");
#endif
}
@@ -782,7 +787,7 @@ const IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
pImpl->IntegerTypes.add(IVT, ITy);
}
#ifdef DEBUG_MERGE_TYPES
- DEBUG(errs() << "Derived new type: " << *ITy << "\n");
+ DEBUG(dbgs() << "Derived new type: " << *ITy << "\n");
#endif
return ITy;
}
@@ -825,7 +830,7 @@ FunctionType *FunctionType::get(const Type *ReturnType,
}
#ifdef DEBUG_MERGE_TYPES
- DEBUG(errs() << "Derived new type: " << FT << "\n");
+ DEBUG(dbgs() << "Derived new type: " << FT << "\n");
#endif
return FT;
}
@@ -846,7 +851,7 @@ ArrayType *ArrayType::get(const Type *ElementType, uint64_t NumElements) {
pImpl->ArrayTypes.add(AVT, AT = new ArrayType(ElementType, NumElements));
}
#ifdef DEBUG_MERGE_TYPES
- DEBUG(errs() << "Derived new type: " << *AT << "\n");
+ DEBUG(dbgs() << "Derived new type: " << *AT << "\n");
#endif
return AT;
}
@@ -870,7 +875,7 @@ VectorType *VectorType::get(const Type *ElementType, unsigned NumElements) {
pImpl->VectorTypes.add(PVT, PT = new VectorType(ElementType, NumElements));
}
#ifdef DEBUG_MERGE_TYPES
- DEBUG(errs() << "Derived new type: " << *PT << "\n");
+ DEBUG(dbgs() << "Derived new type: " << *PT << "\n");
#endif
return PT;
}
@@ -902,7 +907,7 @@ StructType *StructType::get(LLVMContext &Context,
pImpl->StructTypes.add(STV, ST);
}
#ifdef DEBUG_MERGE_TYPES
- DEBUG(errs() << "Derived new type: " << *ST << "\n");
+ DEBUG(dbgs() << "Derived new type: " << *ST << "\n");
#endif
return ST;
}
@@ -946,7 +951,7 @@ PointerType *PointerType::get(const Type *ValueType, unsigned AddressSpace) {
pImpl->PointerTypes.add(PVT, PT = new PointerType(ValueType, AddressSpace));
}
#ifdef DEBUG_MERGE_TYPES
- DEBUG(errs() << "Derived new type: " << *PT << "\n");
+ DEBUG(dbgs() << "Derived new type: " << *PT << "\n");
#endif
return PT;
}
@@ -1009,13 +1014,13 @@ void Type::removeAbstractTypeUser(AbstractTypeUser *U) const {
AbstractTypeUsers.erase(AbstractTypeUsers.begin()+i);
#ifdef DEBUG_MERGE_TYPES
- DEBUG(errs() << " remAbstractTypeUser[" << (void*)this << ", "
+ DEBUG(dbgs() << " remAbstractTypeUser[" << (void*)this << ", "
<< *this << "][" << i << "] User = " << U << "\n");
#endif
if (AbstractTypeUsers.empty() && getRefCount() == 0 && isAbstract()) {
#ifdef DEBUG_MERGE_TYPES
- DEBUG(errs() << "DELETEing unused abstract type: <" << *this
+ DEBUG(dbgs() << "DELETEing unused abstract type: <" << *this
<< ">[" << (void*)this << "]" << "\n");
#endif
@@ -1041,7 +1046,7 @@ void DerivedType::unlockedRefineAbstractTypeTo(const Type *NewType) {
pImpl->AbstractTypeDescriptions.clear();
#ifdef DEBUG_MERGE_TYPES
- DEBUG(errs() << "REFINING abstract type [" << (void*)this << " "
+ DEBUG(dbgs() << "REFINING abstract type [" << (void*)this << " "
<< *this << "] to [" << (void*)NewType << " "
<< *NewType << "]!\n");
#endif
@@ -1078,7 +1083,7 @@ void DerivedType::unlockedRefineAbstractTypeTo(const Type *NewType) {
unsigned OldSize = AbstractTypeUsers.size(); OldSize=OldSize;
#ifdef DEBUG_MERGE_TYPES
- DEBUG(errs() << " REFINING user " << OldSize-1 << "[" << (void*)User
+ DEBUG(dbgs() << " REFINING user " << OldSize-1 << "[" << (void*)User
<< "] of abstract type [" << (void*)this << " "
<< *this << "] to [" << (void*)NewTy.get() << " "
<< *NewTy << "]!\n");
@@ -1109,7 +1114,7 @@ void DerivedType::refineAbstractTypeTo(const Type *NewType) {
//
void DerivedType::notifyUsesThatTypeBecameConcrete() {
#ifdef DEBUG_MERGE_TYPES
- DEBUG(errs() << "typeIsREFINED type: " << (void*)this << " " << *this <<"\n");
+ DEBUG(dbgs() << "typeIsREFINED type: " << (void*)this << " " << *this <<"\n");
#endif
unsigned OldSize = AbstractTypeUsers.size(); OldSize=OldSize;
diff --git a/lib/VMCore/TypeSymbolTable.cpp b/lib/VMCore/TypeSymbolTable.cpp
index 0d0cdf5..b4daf0f 100644
--- a/lib/VMCore/TypeSymbolTable.cpp
+++ b/lib/VMCore/TypeSymbolTable.cpp
@@ -15,6 +15,7 @@
#include "llvm/DerivedTypes.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
@@ -58,7 +59,7 @@ Type* TypeSymbolTable::remove(iterator Entry) {
#if DEBUG_SYMBOL_TABLE
dump();
- errs() << " Removing Value: " << Result->getDescription() << "\n";
+ dbgs() << " Removing Value: " << Result->getDescription() << "\n";
#endif
tmap.erase(Entry);
@@ -67,7 +68,7 @@ Type* TypeSymbolTable::remove(iterator Entry) {
// list...
if (Result->isAbstract()) {
#if DEBUG_ABSTYPE
- errs() << "Removing abstract type from symtab"
+ dbgs() << "Removing abstract type from symtab"
<< Result->getDescription()
<< "\n";
#endif
@@ -87,7 +88,7 @@ void TypeSymbolTable::insert(StringRef Name, const Type* T) {
#if DEBUG_SYMBOL_TABLE
dump();
- errs() << " Inserted type: " << Name << ": " << T->getDescription() << "\n";
+ dbgs() << " Inserted type: " << Name << ": " << T->getDescription() << "\n";
#endif
} else {
// If there is a name conflict...
@@ -99,7 +100,7 @@ void TypeSymbolTable::insert(StringRef Name, const Type* T) {
#if DEBUG_SYMBOL_TABLE
dump();
- errs() << " Inserting type: " << UniqueName << ": "
+ dbgs() << " Inserting type: " << UniqueName << ": "
<< T->getDescription() << "\n";
#endif
@@ -111,7 +112,7 @@ void TypeSymbolTable::insert(StringRef Name, const Type* T) {
if (T->isAbstract()) {
cast<DerivedType>(T)->addAbstractTypeUser(this);
#if DEBUG_ABSTYPE
- errs() << "Added abstract type to ST: " << T->getDescription() << "\n";
+ dbgs() << "Added abstract type to ST: " << T->getDescription() << "\n";
#endif
}
}
@@ -127,14 +128,14 @@ void TypeSymbolTable::refineAbstractType(const DerivedType *OldType,
for (iterator I = begin(), E = end(); I != E; ++I) {
if (I->second == (Type*)OldType) { // FIXME when Types aren't const.
#if DEBUG_ABSTYPE
- errs() << "Removing type " << OldType->getDescription() << "\n";
+ dbgs() << "Removing type " << OldType->getDescription() << "\n";
#endif
OldType->removeAbstractTypeUser(this);
I->second = (Type*)NewType; // TODO FIXME when types aren't const
if (NewType->isAbstract()) {
#if DEBUG_ABSTYPE
- errs() << "Added type " << NewType->getDescription() << "\n";
+ dbgs() << "Added type " << NewType->getDescription() << "\n";
#endif
cast<DerivedType>(NewType)->addAbstractTypeUser(this);
}
@@ -154,13 +155,13 @@ void TypeSymbolTable::typeBecameConcrete(const DerivedType *AbsTy) {
}
static void DumpTypes(const std::pair<const std::string, const Type*>& T ) {
- errs() << " '" << T.first << "' = ";
+ dbgs() << " '" << T.first << "' = ";
T.second->dump();
- errs() << "\n";
+ dbgs() << "\n";
}
void TypeSymbolTable::dump() const {
- errs() << "TypeSymbolPlane: ";
+ dbgs() << "TypeSymbolPlane: ";
for_each(tmap.begin(), tmap.end(), DumpTypes);
}
diff --git a/lib/VMCore/TypesContext.h b/lib/VMCore/TypesContext.h
index e7950bd..93a801b 100644
--- a/lib/VMCore/TypesContext.h
+++ b/lib/VMCore/TypesContext.h
@@ -302,7 +302,7 @@ public:
void RefineAbstractType(TypeClass *Ty, const DerivedType *OldType,
const Type *NewType) {
#ifdef DEBUG_MERGE_TYPES
- DEBUG(errs() << "RefineAbstractType(" << (void*)OldType << "[" << *OldType
+ DEBUG(dbgs() << "RefineAbstractType(" << (void*)OldType << "[" << *OldType
<< "], " << (void*)NewType << " [" << *NewType << "])\n");
#endif
@@ -408,11 +408,11 @@ public:
void print(const char *Arg) const {
#ifdef DEBUG_MERGE_TYPES
- DEBUG(errs() << "TypeMap<>::" << Arg << " table contents:\n");
+ DEBUG(dbgs() << "TypeMap<>::" << Arg << " table contents:\n");
unsigned i = 0;
for (typename std::map<ValType, PATypeHolder>::const_iterator I
= Map.begin(), E = Map.end(); I != E; ++I)
- DEBUG(errs() << " " << (++i) << ". " << (void*)I->second.get() << " "
+ DEBUG(dbgs() << " " << (++i) << ". " << (void*)I->second.get() << " "
<< *I->second.get() << "\n");
#endif
}
diff --git a/lib/VMCore/Value.cpp b/lib/VMCore/Value.cpp
index fe1219f..40679bf 100644
--- a/lib/VMCore/Value.cpp
+++ b/lib/VMCore/Value.cpp
@@ -44,14 +44,12 @@ Value::Value(const Type *ty, unsigned scid)
SubclassOptionalData(0), SubclassData(0), VTy(checkType(ty)),
UseList(0), Name(0) {
if (isa<CallInst>(this) || isa<InvokeInst>(this))
- assert((VTy->isFirstClassType() ||
- VTy == Type::getVoidTy(ty->getContext()) ||
+ assert((VTy->isFirstClassType() || VTy->isVoidTy() ||
isa<OpaqueType>(ty) || VTy->getTypeID() == Type::StructTyID) &&
"invalid CallInst type!");
else if (!isa<Constant>(this) && !isa<BasicBlock>(this))
- assert((VTy->isFirstClassType() ||
- VTy == Type::getVoidTy(ty->getContext()) ||
- isa<OpaqueType>(ty)) &&
+ assert((VTy->isFirstClassType() || VTy->isVoidTy() ||
+ isa<OpaqueType>(ty)) &&
"Cannot create non-first-class values except for constants!");
}
@@ -68,9 +66,9 @@ Value::~Value() {
// a <badref>
//
if (!use_empty()) {
- errs() << "While deleting: " << *VTy << " %" << getNameStr() << "\n";
+ dbgs() << "While deleting: " << *VTy << " %" << getNameStr() << "\n";
for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
- errs() << "Use still stuck around after Def is destroyed:"
+ dbgs() << "Use still stuck around after Def is destroyed:"
<< **I << "\n";
}
#endif
@@ -172,17 +170,13 @@ void Value::setName(const Twine &NewName) {
return;
SmallString<256> NameData;
- NewName.toVector(NameData);
-
- const char *NameStr = NameData.data();
- unsigned NameLen = NameData.size();
+ StringRef NameRef = NewName.toStringRef(NameData);
// Name isn't changing?
- if (getName() == StringRef(NameStr, NameLen))
+ if (getName() == NameRef)
return;
- assert(getType() != Type::getVoidTy(getContext()) &&
- "Cannot assign a name to void values!");
+ assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
// Get the symbol table to update for this object.
ValueSymbolTable *ST;
@@ -190,7 +184,7 @@ void Value::setName(const Twine &NewName) {
return; // Cannot set a name on this value (e.g. constant).
if (!ST) { // No symbol table to update? Just do the change.
- if (NameLen == 0) {
+ if (NameRef.empty()) {
// Free the name for this value.
Name->Destroy();
Name = 0;
@@ -204,7 +198,7 @@ void Value::setName(const Twine &NewName) {
// then reallocated.
// Create the new name.
- Name = ValueName::Create(NameStr, NameStr+NameLen);
+ Name = ValueName::Create(NameRef.begin(), NameRef.end());
Name->setValue(this);
return;
}
@@ -217,12 +211,12 @@ void Value::setName(const Twine &NewName) {
Name->Destroy();
Name = 0;
- if (NameLen == 0)
+ if (NameRef.empty())
return;
}
// Name is changing to something new.
- Name = ST->createValueName(StringRef(NameStr, NameLen), this);
+ Name = ST->createValueName(NameRef, this);
}
@@ -522,7 +516,7 @@ void ValueHandleBase::ValueIsDeleted(Value *V) {
// All callbacks, weak references, and assertingVHs should be dropped by now.
if (V->HasValueHandle) {
#ifndef NDEBUG // Only in +Asserts mode...
- errs() << "While deleting: " << *V->getType() << " %" << V->getNameStr()
+ dbgs() << "While deleting: " << *V->getType() << " %" << V->getNameStr()
<< "\n";
if (pImpl->ValueHandles[V]->getKind() == Assert)
llvm_unreachable("An asserting value handle still pointed to this"
diff --git a/lib/VMCore/ValueSymbolTable.cpp b/lib/VMCore/ValueSymbolTable.cpp
index 9d39a50..d30a9d6 100644
--- a/lib/VMCore/ValueSymbolTable.cpp
+++ b/lib/VMCore/ValueSymbolTable.cpp
@@ -24,7 +24,7 @@ using namespace llvm;
ValueSymbolTable::~ValueSymbolTable() {
#ifndef NDEBUG // Only do this in -g mode...
for (iterator VI = vmap.begin(), VE = vmap.end(); VI != VE; ++VI)
- errs() << "Value still in symbol table! Type = '"
+ dbgs() << "Value still in symbol table! Type = '"
<< VI->getValue()->getType()->getDescription() << "' Name = '"
<< VI->getKeyData() << "'\n";
assert(vmap.empty() && "Values remain in symbol table!");
@@ -38,7 +38,7 @@ void ValueSymbolTable::reinsertValue(Value* V) {
// Try inserting the name, assuming it won't conflict.
if (vmap.insert(V->Name)) {
- //DEBUG(errs() << " Inserted value: " << V->Name << ": " << *V << "\n");
+ //DEBUG(dbgs() << " Inserted value: " << V->Name << ": " << *V << "\n");
return;
}
@@ -62,14 +62,14 @@ void ValueSymbolTable::reinsertValue(Value* V) {
// Newly inserted name. Success!
NewName.setValue(V);
V->Name = &NewName;
- //DEBUG(errs() << " Inserted value: " << UniqueName << ": " << *V << "\n");
+ //DEBUG(dbgs() << " Inserted value: " << UniqueName << ": " << *V << "\n");
return;
}
}
}
void ValueSymbolTable::removeValueName(ValueName *V) {
- //DEBUG(errs() << " Removing Value: " << V->getKeyData() << "\n");
+ //DEBUG(dbgs() << " Removing Value: " << V->getKeyData() << "\n");
// Remove the value from the symbol table.
vmap.remove(V);
}
@@ -82,7 +82,7 @@ ValueName *ValueSymbolTable::createValueName(StringRef Name, Value *V) {
ValueName &Entry = vmap.GetOrCreateValue(Name);
if (Entry.getValue() == 0) {
Entry.setValue(V);
- //DEBUG(errs() << " Inserted value: " << Entry.getKeyData() << ": "
+ //DEBUG(dbgs() << " Inserted value: " << Entry.getKeyData() << ": "
// << *V << "\n");
return &Entry;
}
@@ -102,7 +102,7 @@ ValueName *ValueSymbolTable::createValueName(StringRef Name, Value *V) {
if (NewName.getValue() == 0) {
// Newly inserted name. Success!
NewName.setValue(V);
- //DEBUG(errs() << " Inserted value: " << UniqueName << ": " << *V << "\n");
+ //DEBUG(dbgs() << " Inserted value: " << UniqueName << ": " << *V << "\n");
return &NewName;
}
}
@@ -112,10 +112,12 @@ ValueName *ValueSymbolTable::createValueName(StringRef Name, Value *V) {
// dump - print out the symbol table
//
void ValueSymbolTable::dump() const {
- //DEBUG(errs() << "ValueSymbolTable:\n");
+ //DEBUG(dbgs() << "ValueSymbolTable:\n");
for (const_iterator I = begin(), E = end(); I != E; ++I) {
- //DEBUG(errs() << " '" << I->getKeyData() << "' = ");
+ //DEBUG(dbgs() << " '" << I->getKeyData() << "' = ");
I->getValue()->dump();
- //DEBUG(errs() << "\n");
+ //DEBUG(dbgs() << "\n");
}
}
+
+MDSymbolTable::~MDSymbolTable() { }
diff --git a/lib/VMCore/Verifier.cpp b/lib/VMCore/Verifier.cpp
index 30528bf..ec475e4 100644
--- a/lib/VMCore/Verifier.cpp
+++ b/lib/VMCore/Verifier.cpp
@@ -56,6 +56,7 @@
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
@@ -85,9 +86,9 @@ namespace { // Anonymous namespace for class
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
if (I->empty() || !I->back().isTerminator()) {
- errs() << "Basic Block does not have terminator!\n";
- WriteAsOperand(errs(), I, true);
- errs() << "\n";
+ dbgs() << "Basic Block does not have terminator!\n";
+ WriteAsOperand(dbgs(), I, true);
+ dbgs() << "\n";
Broken = true;
}
}
@@ -262,12 +263,12 @@ namespace {
default: llvm_unreachable("Unknown action");
case AbortProcessAction:
MessagesStr << "compilation aborted!\n";
- errs() << MessagesStr.str();
+ dbgs() << MessagesStr.str();
// Client should choose different reaction if abort is not desired
abort();
case PrintMessageAction:
MessagesStr << "verification continues.\n";
- errs() << MessagesStr.str();
+ dbgs() << MessagesStr.str();
return false;
case ReturnStatusAction:
MessagesStr << "compilation terminated.\n";
@@ -1589,9 +1590,10 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
default:
break;
case Intrinsic::dbg_declare: // llvm.dbg.declare
- if (Constant *C = dyn_cast<Constant>(CI.getOperand(1)))
- Assert1(C && !isa<ConstantPointerNull>(C),
- "invalid llvm.dbg.declare intrinsic call", &CI);
+ if (MDNode *MD = dyn_cast<MDNode>(CI.getOperand(1)))
+ if (Constant *C = dyn_cast<Constant>(MD->getOperand(0)))
+ Assert1(C && !isa<ConstantPointerNull>(C),
+ "invalid llvm.dbg.declare intrinsic call", &CI);
break;
case Intrinsic::memcpy:
case Intrinsic::memmove:
OpenPOWER on IntegriCloud